WO2002045184A1 - Field effect transistors and materials and methods for their manufacture - Google Patents

Field effect transistors and materials and methods for their manufacture Download PDF

Info

Publication number
WO2002045184A1
WO2002045184A1 PCT/GB2001/005145 GB0105145W WO0245184A1 WO 2002045184 A1 WO2002045184 A1 WO 2002045184A1 GB 0105145 W GB0105145 W GB 0105145W WO 0245184 A1 WO0245184 A1 WO 0245184A1
Authority
WO
WIPO (PCT)
Prior art keywords
binder
organic
field effect
semiconductor
layer
Prior art date
Application number
PCT/GB2001/005145
Other languages
English (en)
French (fr)
Inventor
Beverley Anne Brown
Domenico Carlo Cupertino
Stephen William Leeming
John David Schofield
Janos Veres
Stephen George Yeates
Original Assignee
Avecia Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Avecia Limited filed Critical Avecia Limited
Priority to AU2081802A priority Critical patent/AU2081802A/xx
Priority to DE60125819T priority patent/DE60125819T2/de
Priority to JP2002547243A priority patent/JP4429603B2/ja
Priority to AU2002220818A priority patent/AU2002220818B2/en
Priority to CA2427222A priority patent/CA2427222C/en
Priority to EP01999012A priority patent/EP1340270B1/en
Priority to KR1020037006957A priority patent/KR100824026B1/ko
Priority to US10/416,005 priority patent/US7095044B2/en
Publication of WO2002045184A1 publication Critical patent/WO2002045184A1/en

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having a potential-jump barrier or a surface barrier
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • H10K10/462Insulated gate field-effect transistors [IGFETs]
    • H10K10/484Insulated gate field-effect transistors [IGFETs] characterised by the channel regions
    • H10K10/488Insulated gate field-effect transistors [IGFETs] characterised by the channel regions the channel region comprising a layer of composite material having interpenetrating or embedded materials, e.g. a mixture of donor and acceptor moieties, that form a bulk heterojunction
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/113Heteroaromatic compounds comprising sulfur or selene, e.g. polythiophene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/151Copolymers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having a potential-jump barrier or a surface barrier
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • H10K10/462Insulated gate field-effect transistors [IGFETs]
    • H10K10/466Lateral bottom-gate IGFETs comprising only a single gate
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/115Polyfluorene; Derivatives thereof
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/141Organic polymers or oligomers comprising aliphatic or olefinic chains, e.g. poly N-vinylcarbazol, PVC or PTFE
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine

Definitions

  • This invention relates to Field Effect Transistors (FETs) and materials and methods for their manufacture.
  • FETs are electronic devices which are capable of modulating the current between two electrodes called the drain and the source by the application of a voltage on a third electrode called the gate.
  • the current is modulated by accumulating or depleting charge carriers in a semiconductor channel between the drain and the source.
  • inorganic semiconductors such as Si or GaAs have been used for the channel material.
  • FETs find use in a number of applications at present such as in the active drive matrix for large area displays.
  • FETs using inorganic materials are often difficult and expensive to manufacture due to the high temperature processing conditions and vacuum required to give uniform devices over large areas.
  • organic compounds J. Mater. Chem..
  • EP 0910100A2 (Xerox) describes compositions for conductive coatings, which comprise of a polymer binder, charge transport molecules and an oxidising agent.
  • the oxidising agent is used to increase the carrier concentration.
  • Such coatings may be envisaged as conductive electrodes for electronic devices, e.g. transistors such as gate, drain and source contacts or conductive tracks between them.
  • the disclosure does not relate to the semiconductor channel material for FETs.
  • US 5,500,537 (Mitsubishi) claims FETs with at least two different organic channel materials, both of which are semiconductors, one compound having a higher conductivity than the other and used to supply carriers in the channel, thus achieving better current modulation.
  • the application also mentions that a further "electrically insulating material" can be mixed in but without reference what such material may be or how it is applied.
  • the carrier supply function of the first material can also be achieved when it forms a layer next to the second material.
  • EP0478380A1 (Toshiba) describes organic thin film elements consisting of a mixed stacked charge-transfer (CT) complex using a mixture of donor and acceptor like materials.
  • CT charge-transfer
  • the complex film can be affected to change its state from neutral to ionic by the application of an electric field.
  • FET field-effect transistor
  • Multi-stack channels are also described using several double-layers of a CT complex layer followed by an insulating polyvinylidene fluoride (PVDF) layer.
  • PVDF polyvinylidene fluoride
  • EP 0528 662 A1 discloses an FET with a first organic layer constituting the FET channel and a second, adjacent layer with a different carrier concentration.
  • the role of the second layer is to inject carriers into the channel when a voltage is applied to the gate.
  • the second organic layer can be made as a photoreceptor consisting of photogeneration and charge transport layers.
  • the charge transport layer may consist of a charge transport material in a binder polymer.
  • the invention uses such charge generating/charge transporting layers solely as a second layer supplying excess carriers into the first organic layer (the channel) and does not suggest using binder compositions as the active channel layer itself.
  • EP 0981165 A1 (Lucent) describes thin film transistor integrated circuits with inverted structures.
  • semiconductor materials used may be 4,4'-diaminobisphenyls in polymer matrices.
  • US 5,625,199 (Lucent) discloses complementary circuits with p and n type organic transistors. It also mentions that p- channel elements may be made of p,p'-diaminobisphenyl in polymer matrices.
  • neither document teaches what the polymer matrices may be and does not consider any other compounds than p,p'-diaminobisphenyls.
  • a field effect transistor in which a continuous semiconductor layer comprises: a) an organic semiconductor; and b) an organic binder which has an inherent conductivity of less than 10 "6 Scm "1 and a permittivity, ⁇ , at 1 ,000 Hz of less than 3.3.
  • the organic binder is preferably one in which at least 95%, more preferably at least 98% and especially all of the atoms are hydrogen, fluorine and carbon atoms.
  • Preferred binders are materials of low permittivity.
  • the organic binder preferably has a permittivity at 1 ,000 Hz of less than 3.0, more preferably less than 2.8 and preferably greater than 1.7, especially a permittivity from 2.0 to 2.8.
  • organic binder is a homopolymer of polystyrene its molecular weight is preferably less than 20,000 daltons, more preferably less than 15,000 daltons, and especially greater than 1 ,000 daltons.
  • the organic semiconductor has a field effect mobility of more than 10 "5 cm 2 V “1 s "1 and an inherent (i.e. when not exposed to an electric field) conductivity of less than 10 ⁇ 6 Scm "1 .
  • a preferred sub-group of field effect transistors comprise a continuous semiconductor layer which has a field effect mobility of more than 10 "5 cmW 1 and an inherent (i.e. when not exposed to an electric field) conductivity of less than 10 "6 Son "1 which layer comprises: a) an organic semiconductor having an inherent conductivity of less than 10 ⁇ 6 Scm “1 and preferably a field effect mobility of more than 10 "5 cm 2 V “1 s "1 and b) an organic binder which has an inherent conductivity of less than 10 6 Scm “1 and a permittivity at 1 ,000 Hz of less than 3 and more preferably less than 2.8 and preferably greater than 1.7, especially from 2.0 to 2.8 with the proviso that if the binder is a homopolymer of polystyrene its molecular weight is less than 20,000 daltons and preferably less than 15,000 daltons, and is preferably greater than 1 ,000 daltons.
  • a further preferred sub-group of field effect transistors comprise a continuous semiconductor layer which comprises: a) an organic semiconductor and b) a binder of which at least 95% and preferably at least 98% and preferably all of the atoms are hydrogen, fluorine and carbon atoms with the proviso that if the hydrocarbon binder is a homopolymer of polystyrene its molecular weight is less than 20,000 daltons and preferably less than 15,000 daltons, and is preferably greater than 1 ,000 daltons.
  • the semiconductor may be an n or p type.
  • the organic semiconductor may be any conjugated aromatic molecule containing at least three aromatic rings. Preferred organic semiconductors contain 5, 6 or 7 membered aromatic rings, especially preferred organic semiconductors contain 5 or 6 membered aromatic rings.
  • Each of the aromatic rings may optionally contain one or more hetero atoms selected from Se, Te, P, Si, B, As, N, O or S, preferably from N, O or S.
  • the rings may be optionally substituted with alkyl, alkoxy, polyalkoxy, thioalkyl, acyl, aryl or substituted aryl groups, a fluorine atom, a cyano group, a nitro group or an optionally substituted secondary or tertiary alkylamine or arylamine -N(R 3 )(R 4 ), where R 3 and R 4 each independently is H, optionally substituted alkyl, optionally substituted aryl, alkoxy or polyalkoxy groups.
  • the alkyl and aryl groups may be optionally fluorinated.
  • T, and T 2 each independently represent H, Cl, F, -C ⁇ N or lower alkyl groups particularly C ⁇ alkyl groups;
  • R' represents H, optionally substituted alkyl or optionally substituted aryl.
  • the alkyl and aryl groups may be optionally fluorinated.
  • organic semi-conducting materials that can be used in this invention include soluble compounds and soluble derivatives of compounds of the following list : conjugated hydrocarbon polymers such as polyacene, polyphenylene, poly(phenylene vinylene), polyfluorene including oligomers of those conjugated hydrocarbon polymers; condensed aromatic hydrocarbons such as tetracene, chrysene, pentacene, pyrene, perylene, coronene; oligomeric para substituted phenylenes such as p-quaterphenyl (p- 4P), p-quinquephenyl (p-5P), p-sexiphenyl (p-6P); conjugated heterocyclic polymers such as poly(3-substituted thiophene), poly(3,4-bisubstituted thiophene), polybenzothiophene, polyisothianapthene, poly( ⁇ /-substituted pyrrole), poly(3-
  • each Y 1 is independently selected from P, S, As, N and Se and preferably Y 1 is N; Ar 1 and Ar 2 are aromatic groups and Ar 3 is present only if Y 1 is N, P, or As in which case it too is an aromatic group.
  • Ar 1 , Ar 2 and Ar 3 may be the same or different and represent, independently if in different repeat units, a multivalent (preferably bivalent) aromatic group (preferably mononuclear but optionally polynuclear) optionally substituted by at least one optionally substituted 0,- 40 carbyl-derived groups and/or at least one other optional substituent, and Ar 3 represents, independently if in different repeat units, a mono or multivalent (preferably bivalent) aromatic group (preferably mononuclear but optionally polynuclear) optionally substituted by at least one: optionally substituted C M0 carbyl- derived group and/or at least one other optional substituent; where at least one terminal group is attached in the polymer to the Ar 1 , Ar 2 and optionally Ar 3 groups located at the
  • WO 99/32537 is a patent application of the applicants which describes certain novel oligomers and polymers which have repeat units of formula 1.
  • polymers of this type are prepared by the addition of an end capping reagent to control the molecular weight of the final polymer and hence its desirable properties as a charge transport material.
  • end capping reagent to control the molecular weight of the final polymer and hence its desirable properties as a charge transport material.
  • the disclosure of this application is incorporated herein by reference, as these materials are particularly useful as semiconductors in the present invention.
  • the number of repeat units of Formula 1 which may be present per molecule in the invention may be from 2 to 1 ,000, preferably from 3 to 100 and more preferably from 3 to 20 inclusive.
  • the preferred polymeric materials are obtainable by polymerisation controlled by the addition of at least one end capping reagent in an amount sufficient to reduce substantially further growth of the polymer chain.
  • the asterisks extending from Ar 1 and Ar 2 in Formula 1 are intended to indicate that these groups may be multivalent (including divalent as shown in Formula 1 ).
  • amine materials that may be useful in this invention are tetrakis(N,N ' -aryl)biaryldiamines, bis(N,N'-[substitutedphenyl]), bis(N,N'-phenyl)-1 ,1 ' -bi- phenyl-4,4 ' -diamines including 4-methyl, 2,4-dimethyl and/or 3-methyl derivatives thereof; triphenylamine and its alkyl and aryl derivatives and poly(N-phenyl-1 ,4-phenyleneamine); N-dibenzo[a,d]cycloheptene-5-ylidene-N',N'-di-p-tolyl-benzene-1 ,4-diamine, (9,9-dimethyl- 9H-fluorene-2-yl)-di-p-tolyl-amine and their derivatives.
  • Conjugated oligomeric and polymeric heterocyclic semiconductors may comprise a repeat unit of an optionally substituted 5 membered ring and terminal groups Y 1 and Y 2 as shown in Formula 2:
  • X may be Se, Te or preferably O, S, or -N(R)- where R represents H, optionally substituted alkyl or optionally substituted aryl;
  • R 1 , R 2 , A 1 and A 2 may be independently H, alkyl, alkoxy, thioalkyl, acyl, aryl or substituted aryl, a fluorine atom, a cyano group, a nitro group or an optionally substituted secondary or tertiary alkylamine or arylamine -N(R 3 )(R 4 ), where R 3 and R 4 are as defined above.
  • the alkyl and aryl groups represented by R ⁇ R 2 , R 3 , R 4 , A 1 and A 2 may be optionally fluorinated.
  • the number of recurring units in the conjugated oligomer of Formula 2 is represented by an integer n , where n is preferably 2 to 14.
  • Oligomers containing a conjugated linking group may be represented by Formula 3:
  • Polymers may have repeat units of the general Formula 4:
  • the sub units may be polymerised in such a way as to give a regio regular or a regio random polymer comprising repeat units as shown in Formulae 4 to 6:
  • Polymers may have repeat units of the general Formula 7:
  • Polymers may have repeat units of general Formula 8:
  • R 1 and R 2 are defined as above.
  • one of R 1 or R 2 is an alkoxide of general formula C n H 2n+1 O-, and the other of R 1 or R 2 is H, poly('- dodecyloxy- ⁇ , ⁇ ',- ⁇ , ⁇ " terthienyl) i.e. polyDOT 3 .
  • Polymers may have repeat units of general Formula 9:
  • R 5 and R 6 may be independently H, alkyl, aryl or substituted aryl.
  • the alkyl and aryl groups may be optionally fluorinated.
  • Polymers may have repeat units of general Formula 10 in which R 5 and R 6 are as defined in Formula 9:
  • Copolymers comprising repeat units as above described and also other repeat units comprising two or more of the repeat units could be used.
  • the binder normally contains conjugated bonds especially conjugated double bonds and/or aromatic rings. It should preferably form a film, more preferably a flexible film. Copolymers of styrene and alpha methyl styrene, for example copolymers of styrene, alpha methyl styrene and butadiene may suitably be used.
  • Binder materials of low permittivity have few permanent dipoles which could otherwise lead to random fluctuations in molecular site energies.
  • the permittivity (dielectric constant) can be determined by the ASTM D150 test method.
  • polymers include poly(4-methylstyrene), poly(1 ,3-butadiene) or polyphenylene.
  • Copolymers containing the repeat units of the above polymers are also suitable. Copolymers offer the possibility of improving compatibility with the organic semiconductor, modifying the morphology and the glass transition temperature of the final composition. It will be appreciated that in the above table certain materials are insoluble in commonly used solvents. In these cases analogues can be used as copolymers. Some examples of copolymers are given in Table 2 (without limiting to these examples). Both random or block copolymers can be used. It is also possible to add some more polar monomer components as long as the overall composition remains low in polarity. Table 2
  • copolymers may include branched or non-branched polystyrene-block- polybutadiene, polystyrene-block(polyethylene-ran-butylene)-block-polystyrene, polystyrene-block-polybutadiene-block-polystyrene, polystyrene-(ethylene-propylene)- diblock-copolymers (e.g. KRATON®-G1701E, Shell), poly(propylene-co-ethylene) and poly(styrene-co-methylmethacrylate).
  • polystyrene-block- polybutadiene polystyrene-block(polyethylene-ran-butylene)-block-polystyrene, polystyrene-block-polybutadiene-block-polystyrene, polystyrene-(ethylene-propylene)- diblock-copolymers (e.g. KRATON®
  • the binder material should have a higher ionisation potential than the semiconductor, otherwise the binder may form hole traps.
  • the binder In n-channel materials the binder should have lower electron affinity than the n-type semiconductor to avoid electron trapping.
  • the binder may be formed in situ by dissolving the semiconductor in a liquid monomer, oligomer or crosslinkable polymer and depositing the solution for example by dipping, spraying, painting or printing it on a substrate to form a film and then curing the liquid monomer, oligomer or crosslinkable polymer, for example by exposure to radiation, heat or electron beams to produce a solid layer.
  • a preformed binder it may be dissolved together with the semiconductor in a suitable solvent, and the solution deposited for example by dipping, spraying, painting or printing it on a substrate to form a film and then removing the solvent to leave a solid layer.
  • suitable solvents are chosen from those classes which are a good solvent for both the binder and organic semiconductor, and which upon evaporation from the solution blend give a coherent defect free film.
  • Suitable solvents for the resin or organic semiconductor can be determined by preparing a contour diagram for the material as described in ASTM Method D 3132 at the concentration at which the mixture will be employed. The material is added to a wide variety of solvents as described in the ASTM method.
  • organic solvents which may be considered are: CH 2 CI 2 , CHCI 3 , monochlorobenzene, o-dichlorobenzene, tetrahydrofuran, anisole, morpholine, toluene, o-xylene, m-xylene, p-xylene, 1 ,4-dioxane, acetone, methylethylketone, 1 ,2- dichloroethane, 1 ,1 ,1-trichloroethane, 1 ,1 ,2,2-tetrachloroethane, ethyl acetate, n-butyl acetate, dimethylformamide, dimethylacetamide, dimethylsulfoxide, tetralin, decalin and/or mixtures thereof.
  • solutions are evaluated as one of the following categories: complete solution, borderline solution or insoluble.
  • the contour line is drawn to outline the solubility parameter-hydrogen bonding limits dividing solubility and insolubility.
  • Solvent blends may also be used and can be identified as described in "Solvents, W.H.Ellis, Federation of Societies for Coatings Technology, p9-10, 1986". Such a procedure may lead to a blend of 'non' solvents that will dissolve both the binder and organic semi-conductor, although it is desirable to have at least one true solvent in a blend.
  • the proportions of binder to semiconductor are preferably 20:1 to 1:20, more preferably 10:1 to 1 :10 and especially 5:1 to 1:5.
  • a process for producing a field effect transistor which comprises the step of coating a substrate with a liquid layer which comprises an organic semiconductor, a binder and a solvent or which comprises an organic semiconductor and a material capable of reacting to form a binder and converting the liquid layer to a solid layer comprising the semiconductor and the binder by evaporating the solvent or by reacting the material to form the binder as the case may be, the binder being a film forming binder of which at least 95% and preferably least 98%) and preferably all of the atoms are hydrogen, fluorine and carbon atoms or being an organic binder which has an inherent conductivity of less than 10 "6 S/cm and a permittivity of less than 3.3, preferably less than 3 and more preferably less than 2.8 and preferably greater than 1.7, for example 2.0
  • Patterning may be carried out by photolithography or electron beam lithography. Liquid coating of organic field effect transistors is more desirable than vacuum deposition techniques.
  • the semiconductor compositions of the present invention enable the use of a number of liquid coating techniques.
  • the organic semiconductor layer may be incorporated into the final device structure by dip coating, spin coating, ink jet printing, letter-press printing, screen printing, doctor blade coating; roller printing, reverse-roller printing; offset lithography printing, flexographic printing, web printing, spray coating, brush coating or pad printing.
  • Selected compositions of the present invention may be applied to prefabricated transistor substrates by ink jet printing or microdispensing.
  • industrial piezoelectric print heads such as but not limited to those supplied by Aprion, Hitachi-Koki, InkJet Technology, On Target Technology, Picojet, Spectra, Trident, Xaar are used to apply the organic semiconductor layer.
  • semi-industrial heads such as those manufactured by Brother, Epson, Konica, Seiko Instruments Toshiba TEC or single nozzle microdispensers such as those produced by Microdrop and Microfab may be used.
  • solvents In order to be applied by ink jet printing or microdispensing compositions must first be dissolved in a suitable solvent. Solvents must fulfil the requirements previously stated in this document and must not have any detrimental effect on the chosen print head.
  • solvents should have boiling points >100°C, more preferably >150°C in order to prevent operability problems caused by the solution drying out inside the print head.
  • Suitable solvents include substituted and non-substituted xylene derivatives, di-C ⁇ -alkyl formamide, substituted and non-substituted anisoles and other phenol-ether derivatives, substituted heterocycles such as substituted pyridines, pyrazines, pyrimidines, pyrrolidinones, substituted and non-substituted /V./V-di-C ⁇ -alkylanilines arid other fluorinated or chlorinated aromatics.
  • a polymeric binder in the organic semiconductor composition allows the viscosity of the coating solution to be tuned to meet the requirements of the particular print head.
  • Preferred viscosities for ink jet printing are 1 to 25 mPa, more preferably 8 to 15 mPa, especially 3 to 15 mPa.
  • Direct patterning (printing) to form the features of the semiconductor device may be possible using liquid coating. This is simpler and less wasteful than subtractive methods such as photolithography.
  • a summary of suitable non-lithographic techniques for fabricating high quality micro-structures are detailed in Table 3 (without limiting to these examples) below (An ⁇ ew. Chem. Int. Ed.. 1998, 37, 550-575).
  • the substrates, types of insulation and the electrodes may be of conventional type it is preferred that the transistors should be made of flexible organic materials for the sake of robustness and resistance to physical stress.
  • the film in the transistor is suitably a continuous monolayer but may be thicker, preferably at most 50 microns and more preferably at most 1 micron thick.
  • the transistors may be of conventional design.
  • the ratio of the current flowing between the source and drain when no gate voltage is applied (off state) and the current flowing when a gate voltage is applied (on state) is preferably at least 1 :10 and more preferably 1 :1 , 000.
  • the film be amorphous. It may be a single phase, bicontinuous, phase separated or a dispersion of one or more component(s) in other(s). It may consist of one or more phases which may interpenetrate one another so that each is itself continuous phase.
  • a first component a) may be a mixture of semiconductors as described in US 5,500,537 and a second component b) may be a mixture of binders.
  • the transistors of this invention may be integrated into more complex devices as component parts.
  • Nickel(ll) chloride (0.97g), zinc powder (59.1 g), triphenyl phosphine (39.3g), 2,2'bipyridyl (1.76g) and anhydrous N,N-dimethylacetamide (1000 ml) were charged to a 2 litre flask and heated with stirring to 80°C and a deep red/brown solution was produced l o characteristic of formation of the catalyst.
  • Example A The final product prepared above (Sample A) was fractionated as follows: It was dissolved in tetrahydrofuran (THF)(1 part) and added dropwise to stirred methanol (2 parts), the precipitate was filtered off and the filtrate concentrated to yield fraction one. Fractions two and three were similarly obtained by dissolving the first precipitate in THF (1 part) and precipitating into methanol (1.5 and 1 parts respectively).
  • the reaction mixture was allowed to cool to room temperature and poured into a beaker containing distilled water (500 ml) and then extracted with dichloromethane (DCM) (4 x 300 ml). The aqueous fraction was discarded and the organic solution was washed successively with distilled water (4 x 300 ml), hydrochloric acid (2 M, 300 ml) and distilled water (300 ml). The organic extract was dried with anhydrous magnesium sulfate, concentrated under reduced pressure to yield a red oil. This was purified by dry flash, column chromatography (silica gel), to yield a yellow oil. Bulb-to-bulb distillation (200-215 °C, 1.5 mm of Hg) failed to remove an unknown impurity, and the impure title compound was collected as a lime yellow oil (49.5 g, purity of 90 area% as determined by HPLC).
  • DCM dichloromethane
  • a 500 ml, 5-neck reaction flask was charged with nickel (II) chloride (0.1 g), zinc powder (6.0 g), 2,2'-bipyridyl (0.2 g), triphenylphosphine (3.9 g) and anhydrous N,N- dimethylacetamide (120 ml).
  • the reaction mixture was heated to 70°C, and after 40 minutes, a deep red/brown solution was observed which is characteristic of formation of the catalyst.
  • the amine monomer and bis( ⁇ /-4'-chlorophenyl)-(9,9-dimethyl-9H-fluoren-2- yl)-amine (12.6 g) was added and the resulting cardboard brown mixture was stirred and maintained at 75-80°C for 3.5 hours.
  • the reaction mixture was then poured into a beaker containing distilled water (300 ml) and extracted with diethyl ether (400 ml).
  • the organic extract was washed successively with saturated aqueous sodium chloride solution (100 ml) and distilled water (2 x 100 ml).
  • the extract was dried with anhydrous magnesium sulfate and then concentrated to yield a yellow syrup, which solidified upon standing.
  • the solid was crystallised from a mixture of acetone and methanol to yield the product (109.0 g).
  • the resulting mixture was stirred at -78°C for a further 1.5 hours before it was allowed to warm to room temperature and stirred for a further 18 hours.
  • the reaction mixture was then poured into a beaker containing hydrochloric acid (2 M, 540 ml) at -5°C and stirred for 1 hour.
  • the reaction mixture was then extracted with diethyl ether (500 ml).
  • the organic extract was separated, washed with saturated aqueous sodium chloride solution (250 ml) and dried with anhydrous magnesium sulfate.
  • the solution was concentrated to yield a gelatinous residue (19.2 g).
  • a test field effect transistor was manufactured by using a silicon crystal serving as substrate and also as the gate electrode.
  • the silicon wafer was highly doped, conductive and had an insulating 200nm thick SiO 2 layer which acts as the gate dielectric.
  • Two gold electrodes are formed on the surface of the semiconductor to serve as the drain and the source.
  • Appropriate mixtures of semiconductor and binder were dissolved in an appropriate solvent (toluene unless otherwise stated in the footnotes to the Table) and the solution was spin-coated onto such a prefabricated transistor substrate to yield a layer of 100-200 nm upon drying, achieved by baking at 100 °C in an oven for complete drying (see Table). Binders were all commercial grade as follows:
  • Custom made silicon-based transistor substrates were used for testing all material compositions. Typically one part organic semiconductor composition was dissolved in 99 parts toluene or THF by weight. The solution was spin coated onto the Si wafer and left to dry for 1 minute. Further drying followed at 100°C for 20 minutes. After this the device was ready for electrical tests. The voltages applied to the transistor are relative to the potential of the source electrode. In the case of an p type gate material, when a negative potential is applied to the gate, positive charge carriers (holes) are accumulated in the semiconductor on the other side of the gate dielectric. (For an n channel FET, positive voltages are applied). This is called the accumulation mode. The capacitance/area ( ) of the gate dielectric determines the amount of the charge thus induced.
  • V DS negative potential
  • / DS source-drain current
  • Field effect mobilities may be measured directly in the case of organic semiconductors which form films. If they do not do so they may be estimated by forming a series of films containing differing amounts of the organic semiconductor and binder, measuring the field effect mobility for each film and extrapolating the results to a composition of 100% ⁇ organic semiconductor. In three cases in the Table a method of measuring the mobility was used as described by Dimitrakopoulos et al. in Synthetic Metals 1998 pp. 47-52. The drain, source and gate electrodes were connected to the Hewlett-Packard 4155B parameter analyser.
  • V D was held at -20V and V G was scanned from 0 to -20V and back again, and in the third V D was held at +40V and V G was scanned from 0 to +40V and back again.
  • V D more negative than V G , l D tends to saturate (saturation regime) due to the pinch-off in the accumulation layer, and is modelled by equation 3.
  • V ⁇ is a threshold voltage (see reference above). The other parameters have been described previously. For this case ⁇ can be calculated from the slope of the plot of
  • solvent used for deposition was chlorobenzene; method used for measurement was that described by Dimitrakopoulos
  • solvent used for deposition was anisole.
  • the solution was ink jet printed through an industrial drop-on-demand peizoelectric print head onto a prefabricated transistor substrate.
PCT/GB2001/005145 2000-11-28 2001-11-21 Field effect transistors and materials and methods for their manufacture WO2002045184A1 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
AU2081802A AU2081802A (en) 2000-11-28 2001-11-21 Field effect transistors and materials and methods for their manufacture
DE60125819T DE60125819T2 (de) 2000-11-28 2001-11-21 Feldeffekttransistoren und materialien und verfahren zu ihrer herstellung
JP2002547243A JP4429603B2 (ja) 2000-11-28 2001-11-21 電界効果トランジスタ及び電界効果トランジスタの生産方法
AU2002220818A AU2002220818B2 (en) 2000-11-28 2001-11-21 Field effect transistors and materials and methods for their manufacture
CA2427222A CA2427222C (en) 2000-11-28 2001-11-21 Field effect transistors and materials and methods for their manufacture
EP01999012A EP1340270B1 (en) 2000-11-28 2001-11-21 Field effect transistors and materials and methods for their manufacture
KR1020037006957A KR100824026B1 (ko) 2000-11-28 2001-11-21 전계 효과 트랜지스터 및 전계 효과 물질 및 이들의 제조방법
US10/416,005 US7095044B2 (en) 2000-11-28 2001-11-21 Field effect transistors and materials and methods for their manufacture

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GB0028867.0 2000-11-28
GBGB0028867.0A GB0028867D0 (en) 2000-11-28 2000-11-28 Field effect translators,methods for the manufacture thereof and materials therefor

Publications (1)

Publication Number Publication Date
WO2002045184A1 true WO2002045184A1 (en) 2002-06-06

Family

ID=9903936

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/GB2001/005145 WO2002045184A1 (en) 2000-11-28 2001-11-21 Field effect transistors and materials and methods for their manufacture

Country Status (11)

Country Link
US (1) US7095044B2 (US07095044-20060822-C00010.png)
EP (1) EP1340270B1 (US07095044-20060822-C00010.png)
JP (2) JP4429603B2 (US07095044-20060822-C00010.png)
KR (1) KR100824026B1 (US07095044-20060822-C00010.png)
CN (1) CN100416882C (US07095044-20060822-C00010.png)
AT (1) ATE350769T1 (US07095044-20060822-C00010.png)
AU (2) AU2081802A (US07095044-20060822-C00010.png)
CA (1) CA2427222C (US07095044-20060822-C00010.png)
DE (1) DE60125819T2 (US07095044-20060822-C00010.png)
GB (1) GB0028867D0 (US07095044-20060822-C00010.png)
WO (1) WO2002045184A1 (US07095044-20060822-C00010.png)

Cited By (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1329474A1 (en) * 2002-01-11 2003-07-23 Xerox Corporation Polythiophenes and devices thereof
WO2004057688A1 (en) * 2002-12-20 2004-07-08 Avecia Limited Improvements in and relating to organic semiconducting materials
WO2005004251A1 (en) * 2003-07-07 2005-01-13 Philips Intellectual Property & Standards Gmbh Multifluorinated conductor material for leds for improving the light outcoupling
JP2005101493A (ja) * 2003-02-13 2005-04-14 Ricoh Co Ltd 有機薄膜トランジスタおよびその製造方法
WO2005055248A2 (en) 2003-11-28 2005-06-16 Merck Patent Gmbh Organic semiconducting layer formulations comprising polyacenes and organic binder polymers
EP1329477B1 (en) * 2002-01-11 2006-08-09 Xerox Corporation Polythiophenes and devices thereof
JP2006520101A (ja) * 2003-03-07 2006-08-31 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 電子配列の製作方法
WO2007039547A1 (en) 2005-09-30 2007-04-12 Basf Se Organic compositions
WO2007082584A1 (en) * 2006-01-21 2007-07-26 Merck Patent Gmbh Electronic short channel device comprising an organic semiconductor formulation
WO2008093821A1 (ja) 2007-02-02 2008-08-07 Sumitomo Chemical Company, Limited 高分子発光素子、高分子化合物、組成物、液状組成物及び導電性薄膜
EP1986247A1 (en) 2005-05-12 2008-10-29 MERCK PATENT GmbH Polyacene and semiconductor Formulation
WO2009016107A1 (en) * 2007-07-30 2009-02-05 Basf Se Method for depositing a semiconducting layer from a liquid
US7488834B2 (en) 2005-09-30 2009-02-10 Alcatel-Lucent Usa Inc. Organic semiconductors
US7569415B2 (en) 2005-09-30 2009-08-04 Alcatel-Lucent Usa Inc. Liquid phase fabrication of active devices including organic semiconductors
WO2009148103A1 (ja) 2008-06-05 2009-12-10 住友化学株式会社 高分子化合物及びそれを用いた有機トランジスタ
WO2010013723A1 (ja) 2008-07-29 2010-02-04 住友化学株式会社 高分子化合物及びそれを用いた発光素子
US7820077B2 (en) * 2004-02-18 2010-10-26 Merck Patent Gmbh Solutions of organic semiconductors
WO2011078387A1 (ja) 2009-12-25 2011-06-30 住友化学株式会社 組成物及び該組成物を用いてなる発光素子
WO2011078391A1 (ja) 2009-12-25 2011-06-30 住友化学株式会社 組成物及び該組成物を用いてなる発光素子
US8053764B2 (en) 2004-07-08 2011-11-08 Samsung Electronics Co., Ltd. Organic semiconductor copolymers containing oligothiophene and η-type heteroaromatic units
US8164087B2 (en) 2006-06-12 2012-04-24 Alcatel Lucent Organic semiconductor compositions with nanoparticles
WO2012133465A1 (ja) 2011-03-28 2012-10-04 住友化学株式会社 電子デバイス、高分子化合物、有機化合物及び高分子化合物の製造方法
WO2012160382A1 (en) 2011-05-26 2012-11-29 The Centre For Process Innovation Ltd Semiconductor compounds
WO2013146806A1 (ja) 2012-03-27 2013-10-03 住友化学株式会社 高分子化合物およびそれを用いた発光素子
WO2015008851A1 (ja) 2013-07-17 2015-01-22 住友化学株式会社 組成物およびそれを用いた発光素子
WO2015025719A1 (ja) 2013-08-22 2015-02-26 住友化学株式会社 化合物の製造方法
WO2015105014A1 (ja) 2014-01-08 2015-07-16 住友化学株式会社 金属錯体およびそれを用いた発光素子
US9431145B2 (en) 2011-05-26 2016-08-30 Neudrive Limited Transistors and methods for making them
WO2017099012A1 (ja) 2015-12-07 2017-06-15 住友化学株式会社 発光素子
WO2018062278A1 (ja) 2016-09-29 2018-04-05 住友化学株式会社 発光素子及び該発光素子の製造に有用な組成物
WO2018198976A1 (ja) 2017-04-27 2018-11-01 住友化学株式会社 発光素子
WO2018198973A1 (ja) 2017-04-27 2018-11-01 住友化学株式会社 組成物及びそれを用いた発光素子
WO2019049225A1 (ja) 2017-09-06 2019-03-14 住友化学株式会社 発光素子
WO2019065389A1 (ja) 2017-09-29 2019-04-04 住友化学株式会社 発光素子
WO2019208648A1 (ja) 2018-04-26 2019-10-31 住友化学株式会社 発光素子
WO2019208647A1 (ja) 2018-04-26 2019-10-31 住友化学株式会社 ブロック共重合体及びそれを用いた発光素子
WO2019239998A1 (ja) 2018-06-12 2019-12-19 住友化学株式会社 有機エレクトロルミネッセンス素子
WO2020084923A1 (ja) 2018-10-25 2020-04-30 住友化学株式会社 発光素子
WO2020084924A1 (ja) 2018-10-25 2020-04-30 住友化学株式会社 発光素子
EP3674343A1 (en) 2014-08-28 2020-07-01 Sumitomo Chemical Company, Limited Polymer compound and light-emitting element using same
WO2020203209A1 (ja) 2019-03-29 2020-10-08 住友化学株式会社 発光素子及び発光素子用組成物
WO2021019884A1 (ja) 2019-07-26 2021-02-04 住友化学株式会社 金属錯体及びそれを含有する発光素子
WO2021215210A1 (ja) 2020-04-21 2021-10-28 住友化学株式会社 金属錯体、組成物及び発光素子
WO2022024664A1 (ja) 2020-07-28 2022-02-03 住友化学株式会社 組成物及び発光素子
WO2022065099A1 (ja) 2020-09-24 2022-03-31 住友化学株式会社 発光素子及び組成物
WO2022065101A1 (ja) 2020-09-24 2022-03-31 住友化学株式会社 発光素子及び組成物
WO2022065100A1 (ja) 2020-09-24 2022-03-31 住友化学株式会社 発光素子及び組成物
WO2022065102A1 (ja) 2020-09-24 2022-03-31 住友化学株式会社 発光素子及び組成物
WO2022065098A1 (ja) 2020-09-24 2022-03-31 住友化学株式会社 発光素子及び組成物
EP3819325A4 (en) * 2018-07-03 2022-05-11 Hodogaya Chemical Co., Ltd. HIGH MOLECULAR WEIGHT TRIARYLAMINE COMPOUND COMPRISING A TERPHENYL STRUCTURE IN A MAIN MOLECULAR CHAIN AND ORGANIC ELECTROLUMINESCENT ELEMENT COMPRISING SUCH HIGH MOLECULAR WEIGHT COMPOUND

Families Citing this family (159)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10141624A1 (de) * 2001-08-24 2003-03-06 Covion Organic Semiconductors Lösungen polymerer Halbleiter
DE10151036A1 (de) * 2001-10-16 2003-05-08 Siemens Ag Isolator für ein organisches Elektronikbauteil
EP2204861A1 (en) * 2001-12-19 2010-07-07 Merck Patent GmbH Organic field effect transistor with an organic dielectric
JP4545373B2 (ja) * 2002-11-07 2010-09-15 旭化成株式会社 有機半導体薄膜及びその製造方法
DE112004001702T5 (de) * 2003-09-16 2006-07-13 Dow Global Technologies, Inc., Midland Verfahren zur Herstellung eines unlöslichen Polymerfilms auf einem Substrat aus einem löslichen Polymer, das labile lösungsvermittelnde Gruppen enthält
ATE518258T1 (de) * 2004-04-27 2011-08-15 Creator Technology Bv Verfahren zur bildung eines organischen halbleiterbauelements durch eine schmelztechnik
KR100668763B1 (ko) * 2004-04-27 2007-01-12 경상대학교산학협력단 액정성을 가지는 새로운 고분자 반도체 화합물 및 그 화합물을 사용한 유기 박막 트랜지스터
WO2006037458A1 (de) * 2004-10-01 2006-04-13 Merck Patent Gmbh Elektronische vorrichtungen enthaltend organische halbleiter
JP4883898B2 (ja) * 2004-11-18 2012-02-22 パナソニック株式会社 電子デバイスおよびそれを用いた電子機器
US7198977B2 (en) * 2004-12-21 2007-04-03 Eastman Kodak Company N,N′-di(phenylalky)-substituted perylene-based tetracarboxylic diimide compounds as n-type semiconductor materials for thin film transistors
KR101102222B1 (ko) * 2005-02-04 2012-01-05 삼성전자주식회사 전기장 처리를 이용한 유기 박막 트랜지스터의 제조방법
KR20080024136A (ko) * 2005-05-21 2008-03-17 메르크 파텐트 게엠베하 올리고머 폴리아센 및 반도체 배합물
US7781673B2 (en) * 2005-07-14 2010-08-24 Konarka Technologies, Inc. Polymers with low band gaps and high charge mobility
US8158881B2 (en) * 2005-07-14 2012-04-17 Konarka Technologies, Inc. Tandem photovoltaic cells
US20080006324A1 (en) * 2005-07-14 2008-01-10 Konarka Technologies, Inc. Tandem Photovoltaic Cells
US20070181179A1 (en) 2005-12-21 2007-08-09 Konarka Technologies, Inc. Tandem photovoltaic cells
US7772485B2 (en) * 2005-07-14 2010-08-10 Konarka Technologies, Inc. Polymers with low band gaps and high charge mobility
US20070131270A1 (en) * 2005-07-14 2007-06-14 Russell Gaudiana Window with photovoltaic cell
US20070267055A1 (en) * 2005-07-14 2007-11-22 Konarka Technologies, Inc. Tandem Photovoltaic Cells
JP4888043B2 (ja) * 2005-12-27 2012-02-29 セイコーエプソン株式会社 有機半導体用組成物、トランジスタの製造方法、アクティブマトリクス装置の製造方法、電気光学装置の製造方法および電子機器の製造方法
JP2007220772A (ja) * 2006-02-15 2007-08-30 Idemitsu Kosan Co Ltd 有機エレクトロルミネッセンス用高分子化合物及びその製造方法
JP5032781B2 (ja) * 2006-03-09 2012-09-26 株式会社リコー 有機薄膜トランジスタ
JP5130659B2 (ja) * 2006-05-31 2013-01-30 住友化学株式会社 有機薄膜トランジスタ
WO2008024378A2 (en) 2006-08-24 2008-02-28 E. I. Du Pont De Nemours And Company Hole transport polymers
US8008421B2 (en) 2006-10-11 2011-08-30 Konarka Technologies, Inc. Photovoltaic cell with silole-containing polymer
US8008424B2 (en) 2006-10-11 2011-08-30 Konarka Technologies, Inc. Photovoltaic cell with thiazole-containing polymer
US8106386B2 (en) 2006-12-28 2012-01-31 Alcatel Lucent Organic semiconductor compositions including plasticizers
US8465848B2 (en) * 2006-12-29 2013-06-18 E I Du Pont De Nemours And Company Benzofluorenes for luminescent applications
JP5369384B2 (ja) * 2007-03-29 2013-12-18 住友化学株式会社 有機光電変換素子及びその製造に有用な重合体
JP5214910B2 (ja) * 2007-05-28 2013-06-19 国立大学法人九州大学 電界効果トランジスタ
CN102603459A (zh) * 2007-06-01 2012-07-25 E.I.内穆尔杜邦公司 电荷传输化合物和含该化合物的材料
KR101379616B1 (ko) 2007-07-31 2014-03-31 삼성전자주식회사 계면특성이 향상된 유기박막트랜지스터 및 그의 제조방법
US8063399B2 (en) 2007-11-19 2011-11-22 E. I. Du Pont De Nemours And Company Electroactive materials
WO2009137141A2 (en) * 2008-02-21 2009-11-12 Konarka Technologies, Inc. Tandem photovoltaic cells
JP5480510B2 (ja) 2008-03-31 2014-04-23 住友化学株式会社 有機半導体組成物、並びに有機薄膜及びこれを備える有機薄膜素子
US8343381B1 (en) 2008-05-16 2013-01-01 E I Du Pont De Nemours And Company Hole transport composition
JP5428104B2 (ja) * 2008-05-23 2014-02-26 日本化薬株式会社 有機半導体組成物
WO2010010791A1 (ja) * 2008-07-22 2010-01-28 Dic株式会社 有機トランジスタ及びその製造方法
GB2467316B (en) 2009-01-28 2014-04-09 Pragmatic Printing Ltd Electronic devices, circuits and their manufacture
US8455606B2 (en) * 2008-08-07 2013-06-04 Merck Patent Gmbh Photoactive polymers
JP2012510474A (ja) * 2008-12-01 2012-05-10 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー 電気活性材料
JP2012510540A (ja) * 2008-12-01 2012-05-10 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー 電気活性材料
KR20140116526A (ko) * 2008-12-04 2014-10-02 이 아이 듀폰 디 네모아 앤드 캄파니 전기활성 재료
US20100140593A1 (en) * 2008-12-10 2010-06-10 Xerox Corporation Organic thin-film transistors
US20110037056A1 (en) * 2008-12-12 2011-02-17 E. I. Du Pont De Nemours And Company Photoactive composition and electronic device made with the composition
US8759818B2 (en) 2009-02-27 2014-06-24 E I Du Pont De Nemours And Company Deuterated compounds for electronic applications
KR101582707B1 (ko) * 2009-04-03 2016-01-05 이 아이 듀폰 디 네모아 앤드 캄파니 전기활성 재료
CN102471262A (zh) 2009-08-12 2012-05-23 默克专利股份有限公司 菲并[1,10,9,8-c,d,e,f,g]咔唑聚合物及其作为有机半导体的用途
GB2473200B (en) 2009-09-02 2014-03-05 Pragmatic Printing Ltd Structures comprising planar electronic devices
TW201111326A (en) * 2009-09-29 2011-04-01 Du Pont Deuterated compounds for luminescent applications
CN102596950A (zh) 2009-10-29 2012-07-18 E.I.内穆尔杜邦公司 用于电子应用的氘代化合物
US8617720B2 (en) 2009-12-21 2013-12-31 E I Du Pont De Nemours And Company Electroactive composition and electronic device made with the composition
US8309394B2 (en) * 2010-01-22 2012-11-13 Eastman Kodak Company Method of making N-type semiconductor devices
US8212243B2 (en) * 2010-01-22 2012-07-03 Eastman Kodak Company Organic semiconducting compositions and N-type semiconductor devices
KR101108540B1 (ko) * 2010-02-01 2012-01-30 건국대학교 산학협력단 패터닝이 가능한 브러쉬 코팅공정을 적용한 유기전자소자의 제조방법
SG182822A1 (en) 2010-02-15 2012-09-27 Merck Patent Gmbh Semiconducting polymers
SG183949A1 (en) 2010-03-24 2012-10-30 Merck Patent Gmbh Polymers of 8,9-dihydrobenzo[def]carbazole and their use as organic semiconductors
US10050201B2 (en) 2010-04-19 2018-08-14 Merck Patent Gmbh Polymers of benzodithiophene and their use as organic semiconductors
EP2381503B1 (en) 2010-04-23 2013-04-17 Polyphotonix Limited Method for manufacturing material for use in manufacturing electroluminescent organic semiconductor devices
KR20130135830A (ko) 2010-07-08 2013-12-11 메르크 파텐트 게엠베하 반전도성 중합체
JP5789298B2 (ja) 2010-07-09 2015-10-07 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツングMerck Patent Gesellschaft mit beschraenkter Haftung 半導性ポリマー
WO2012008483A1 (ja) 2010-07-13 2012-01-19 住友化学株式会社 有機半導体組成物、有機薄膜及びこれを備える有機薄膜トランジスタ
US9306172B2 (en) 2010-08-13 2016-04-05 Merck Patent Gmbh Anthra[2,3-b:7,6-b']dithiophene derivatives and their use as organic semiconductors
GB201013820D0 (en) * 2010-08-18 2010-09-29 Cambridge Display Tech Ltd Low contact resistance organic thin film transistors
JP5941467B2 (ja) 2010-09-04 2016-06-29 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツングMerck Patent Gesellschaft mit beschraenkter Haftung 共役ポリマー
SG188395A1 (en) 2010-09-10 2013-04-30 Merck Patent Gmbh Anthra[2,3-b:7,6b']dithiophene derivatives and their use as organic semiconductors
JP5912122B2 (ja) 2010-10-20 2016-04-27 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツングMerck Patent Gesellschaft mit beschraenkter Haftung 共役ポリマー
EP2649082B1 (en) 2010-12-06 2015-01-14 Merck Patent GmbH Non-linear acene derivatives and their use as organic semiconductors
EP2651953B1 (en) 2010-12-17 2020-10-14 Raynergy Tek Inc. Conjugated polymers
EP2655547A1 (en) 2010-12-20 2013-10-30 E.I. Du Pont De Nemours And Company Compositions for electronic applications
US9373801B2 (en) 2011-01-28 2016-06-21 Merck Patent Gmbh Flavanthrene derivatives and their use as organic semiconductors
EP2683726A1 (en) 2011-03-11 2014-01-15 Merck Patent GmbH Dinaphtho[2,3-a:2',3'-h]phenazines and their use as organic semiconductors
KR20140023923A (ko) 2011-03-11 2014-02-27 메르크 파텐트 게엠베하 공액 중합체
EP2503616A1 (en) 2011-03-21 2012-09-26 Polyphotonix Limited Emissive element for light emitting device, light emitting device and method for manufacturing such element and device
CN103443865A (zh) 2011-03-25 2013-12-11 默克专利股份有限公司 吡咯并[3,2-b]吡咯-2,5-二酮和它们作为有机半导体的用途
JP2014517853A (ja) 2011-04-18 2014-07-24 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツング 共役ポリマー
JP2014513743A (ja) 2011-05-16 2014-06-05 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツング 共役ポリマー
GB2491810B (en) * 2011-05-31 2018-03-21 Smartkem Ltd Organic semiconductor compositions
JP2014517524A (ja) 2011-06-01 2014-07-17 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツング ハイブリッド両極性tft
US9520565B2 (en) 2011-06-28 2016-12-13 Merck Patent Gmbh Indaceno derivatives as organic semiconductors
EP2729513A2 (en) 2011-07-08 2014-05-14 Merck Patent GmbH Conjugated polymers
EP2734528B1 (en) 2011-07-19 2017-03-29 Merck Patent GmbH Organic semiconductors
KR20140067008A (ko) 2011-07-21 2014-06-03 메르크 파텐트 게엠베하 공액 중합체
JP2014529343A (ja) 2011-07-27 2014-11-06 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツングMerck Patent Gesellschaft mit beschraenkter Haftung 小分子および有機半導体としてのそれらの使用
KR20140086982A (ko) 2011-09-28 2014-07-08 메르크 파텐트 게엠베하 공액 중합체
KR20140088571A (ko) 2011-10-20 2014-07-10 메르크 파텐트 게엠베하 유기 반도체
CN104105734A (zh) 2012-02-15 2014-10-15 默克专利股份有限公司 共轭聚合物
CN104136484B (zh) 2012-02-15 2017-02-22 默克专利股份有限公司 共轭聚合物
US9620716B2 (en) 2012-02-16 2017-04-11 Merck Patent Gmbh Organic semiconducting polymers
TWI635111B (zh) 2012-03-16 2018-09-11 馬克專利公司 共軛聚合物
WO2013159862A1 (en) 2012-04-25 2013-10-31 Merck Patent Gmbh Conjugated polymers
GB2516798A (en) 2012-04-25 2015-02-04 Merck Patent Gmbh Conjugated Polymers
WO2013182262A1 (en) 2012-06-04 2013-12-12 Merck Patent Gmbh Organic semiconductors
JP2015521205A (ja) 2012-06-05 2015-07-27 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツングMerck Patent Gesellschaft mit beschraenkter Haftung 小分子および有機半導体としてのそれらの使用
US9695190B2 (en) 2012-07-02 2017-07-04 Merck Patent Gmbh Conjugated polymers
WO2014008971A1 (en) 2012-07-13 2014-01-16 Merck Patent Gmbh Organic electronic device comprising an organic semiconductor formulation
KR20150041094A (ko) 2012-08-09 2015-04-15 메르크 파텐트 게엠베하 유기 반도성 제제
WO2014029453A1 (en) 2012-08-24 2014-02-27 Merck Patent Gmbh Conjugated polymers
EP2928939A1 (en) 2012-12-07 2015-10-14 Merck Patent GmbH Polymer comprising a naphthalene group and its use in organic electronic devices
EP2935427B1 (en) 2012-12-18 2018-12-26 Merck Patent GmbH Polymer comprising a thiadiazol group, the production of such polymer and its use in organic electronic devices
JP2014146637A (ja) 2013-01-28 2014-08-14 Sony Corp 電子デバイス及びその製造方法、並びに、積層構造体の形成方法
JP5940104B2 (ja) * 2013-02-07 2016-06-29 富士フイルム株式会社 有機薄膜トランジスタ、有機半導体薄膜および有機半導体材料
US9985211B2 (en) 2013-06-21 2018-05-29 Merck Patent Gmbh Conjugated polymers
US9356248B2 (en) 2013-08-16 2016-05-31 Palo Alto Research Center Incorporated Organic thin-film transistor
JP5715664B2 (ja) * 2013-08-21 2015-05-13 日本化薬株式会社 有機半導体組成物
KR102257780B1 (ko) 2013-09-11 2021-05-28 라이너지 테크 인코포레이션 사이클로헥사디엔 풀러렌 유도체
CN104513262A (zh) 2013-09-30 2015-04-15 默克专利股份有限公司 氮杂硼杂苯衍生物,它们的合成及其在有机电子器件中的用途
JP6588429B2 (ja) 2013-10-22 2019-10-09 メルク パテント ゲーエムベーハー 共役系ポリマー
EP3066147A2 (en) 2013-11-06 2016-09-14 Merck Patent GmbH Conjugated polymers
US10134994B2 (en) 2013-11-28 2018-11-20 Merck Patent Gmbh Polycyclic polymer comprising thiophene units, a method of producing and uses of such polymer
KR102365446B1 (ko) 2014-02-19 2022-02-18 메르크 파텐트 게엠베하 메톡시아릴 표면 개질제 및 상기 메톡시아릴 표면 개질제를 포함하는 유기 전자 소자
US10629815B2 (en) 2014-02-20 2020-04-21 Innovationlab Gmbh Conjugated polymers
JP6106114B2 (ja) 2014-03-03 2017-03-29 富士フイルム株式会社 有機薄膜トランジスタ及びその製造方法
JP6140626B2 (ja) 2014-03-03 2017-05-31 富士フイルム株式会社 有機薄膜トランジスタ及びその製造方法
KR20160124913A (ko) 2014-03-17 2016-10-28 메르크 파텐트 게엠베하 유기 반도체성 화합물
KR102605581B1 (ko) 2014-03-31 2023-11-22 나노-씨, 인크. 융합형 비스-아릴 풀러렌 유도체
US10636974B2 (en) 2014-04-24 2020-04-28 The Trustees Of Columbia University In The City Of New York Molecular compositions, materials, and methods for efficient multiple exciton generation
US10374162B2 (en) 2014-06-17 2019-08-06 Merck Patent Gmbh Fullerene derivatives
JP6133511B2 (ja) * 2014-07-18 2017-05-24 富士フイルム株式会社 有機半導体膜形成用組成物、並びに、有機半導体素子及びその製造方法
JP6898224B2 (ja) 2014-07-29 2021-07-07 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツングMerck Patent Gesellschaft mit beschraenkter Haftung テトラ−ヘテロアリールインダセノジチオフェン系多環式ポリマーおよびそれらの使用
WO2016047391A1 (ja) * 2014-09-24 2016-03-31 富士フイルム株式会社 有機半導体素子及びその製造方法、化合物、有機半導体膜形成用組成物、並びに、有機半導体膜
JP6328535B2 (ja) * 2014-10-30 2018-05-23 富士フイルム株式会社 有機半導体膜形成用組成物、有機半導体膜、及び、有機半導体素子
EP3032599A1 (en) 2014-12-12 2016-06-15 Solvay SA Organic semiconductor composition
US9853230B2 (en) 2015-02-17 2017-12-26 Xerox Corporation Printable nanoparticle conductor ink with improved charge injection
EP3070756B9 (en) 2015-03-18 2021-11-03 Raynergy Tek Inc. Semiconductor mixtures comprising nanoparticles
EP3294795B1 (en) 2015-05-12 2020-11-25 Flexenable Limited Thiadiazolopyridine polymers, their synthesis and their use
KR20180030224A (ko) 2015-08-06 2018-03-21 메르크 파텐트 게엠베하 유기 반도체 조성물 및 유기 전자 디바이스 제조에서의 그 용도
EP3151297A1 (de) 2015-09-30 2017-04-05 InnovationLab GmbH Konjugierte polymere mit thermisch abspaltbaren oxalatseitengruppen
US10094863B2 (en) * 2016-03-02 2018-10-09 Texas Instruments Incorporated High-resolution power electronics measurements
EP3430016B1 (en) 2016-03-15 2022-01-05 Raynergy Tek Inc. Organic semiconductors
US11130837B2 (en) 2016-03-15 2021-09-28 Raynergy Tek Incorporation Organic semiconductors
JP6651606B2 (ja) * 2016-03-16 2020-02-19 富士フイルム株式会社 有機半導体組成物、有機薄膜トランジスタの製造方法、及び有機薄膜トランジスタ
EP3481832A1 (en) 2016-07-08 2019-05-15 Merck Patent GmbH Fused dithienothiophene derivatives and their use as organic semiconductors
EP3481834B1 (en) 2016-07-08 2023-10-18 Raynergy Tek Inc. Organic semiconducting compounds
DE112017003977T5 (de) 2016-08-11 2019-07-04 Merck Patent Gmbh Organische halbleiterverbindungen umfassend einen tetraazapyren-kern
US20190214581A1 (en) 2016-08-22 2019-07-11 Merck Patent Gmbh Organic semiconducting compounds
EP3504216A1 (en) 2016-08-29 2019-07-03 Merck Patent GmbH 1,3-dithiolo[5,6-f]benzo-2,1,3-thiadiazole or 1,3-dithiolo[6,7-g]quinoxaline based organic semiconductors
EP3306690B1 (en) 2016-10-05 2022-09-07 Raynergy Tek Inc. Organic semiconducting compounds
JP2019536744A (ja) 2016-10-05 2019-12-19 メルク パテント ゲーエムベーハー 有機半導体化合物
WO2018065356A1 (en) 2016-10-05 2018-04-12 Merck Patent Gmbh Organic semiconducting compounds
CN109891616B (zh) 2016-10-31 2023-09-29 天光材料科技股份有限公司 有机半导体化合物
EP3333170B1 (en) 2016-12-06 2020-04-29 Merck Patent GmbH Asymmetrical polycyclic compounds for use in organic semiconductors
JP7116075B2 (ja) 2017-03-09 2022-08-09 レイナジー テック インコーポレイション 有機半導体化合物
US11005043B2 (en) 2017-08-11 2021-05-11 Raynergy Tek Incorporation Organic semiconducting polymer
US11552266B2 (en) 2017-09-13 2023-01-10 Flexenable Limited Electrodes for electronic devices comprising an organic semiconducting layer
CN111094298A (zh) 2017-09-13 2020-05-01 默克专利股份有限公司 有机半导体化合物
CN111315796B (zh) 2017-11-02 2023-11-24 天光材料科技股份有限公司 有机半导体化合物
CN111315797A (zh) 2017-11-10 2020-06-19 默克专利股份有限公司 有机半导体化合物
WO2019154973A1 (en) 2018-02-12 2019-08-15 Merck Patent Gmbh Organic semiconducting compounds
CN112352328B (zh) 2018-03-28 2023-09-22 天光材料科技股份有限公司 有机半导体化合物
WO2019185578A1 (en) 2018-03-28 2019-10-03 Merck Patent Gmbh Organic semiconducting compounds
US20210280791A1 (en) 2018-04-27 2021-09-09 Raynergy Tek Incorporation Organic semiconducting polymers
WO2020011831A1 (en) 2018-07-13 2020-01-16 Merck Patent Gmbh Organic semiconducting compounds
WO2020048939A1 (en) 2018-09-06 2020-03-12 Merck Patent Gmbh Organic semiconducting compounds
WO2020114742A1 (en) 2018-12-04 2020-06-11 Merck Patent Gmbh Self-assembled monolayer for electrode modification and device comprising such self-assembled monolayer
WO2020161052A1 (en) 2019-02-06 2020-08-13 Merck Patent Gmbh Organic semiconducting polymers
CN113544186B (zh) 2019-03-07 2024-03-19 天光材料科技股份有限公司 有机半导体组合物
US20220173321A1 (en) 2019-03-19 2022-06-02 Raynergy Tek Incorporation Organic semiconductors
US11930694B2 (en) 2020-06-08 2024-03-12 University Of Waterloo Polymer semiconductors containing acrylyl or acrylyl-like side chain and their devices

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19544977A1 (de) * 1994-12-01 1996-06-05 Toshiba Kawasaki Kk Photoleiter und elektrophotographischer Photorezeptor

Family Cites Families (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1399259A (en) * 1971-12-27 1975-07-02 Eastman Kodak Co Semiconductor materials
US3963498A (en) 1971-12-27 1976-06-15 Eastman Kodak Company Silver halide element containing an organic semiconductor
US4687589A (en) 1985-02-06 1987-08-18 Hermann Block Electronheological fluids
JPS6376378A (ja) * 1986-09-18 1988-04-06 Mitsubishi Electric Corp 電界効果型トランジスタ
JPH01125861A (ja) * 1987-09-30 1989-05-18 Japan Synthetic Rubber Co Ltd 表示パネル用非線形2端子素子
JP2651691B2 (ja) * 1988-03-03 1997-09-10 バンドー化学株式会社 新規な芳香族アミン化合物
JPH0210778A (ja) * 1988-06-29 1990-01-16 Asahi Chem Ind Co Ltd 光電変換素子
JP2813428B2 (ja) * 1989-08-17 1998-10-22 三菱電機株式会社 電界効果トランジスタ及び該電界効果トランジスタを用いた液晶表示装置
US5187310A (en) 1990-03-14 1993-02-16 Kao Corporation Organic silicon compound, method of its production, and photoreceptor for electrophotography incorporating it
US5290963A (en) 1990-05-12 1994-03-01 Kao Corporation Organic silicon compound, method of its production, and photoreceptor for electrophotography incorporating it
JP3150331B2 (ja) * 1990-09-28 2001-03-26 株式会社東芝 有機薄膜素子
JP3224829B2 (ja) 1991-08-15 2001-11-05 株式会社東芝 有機電界効果型素子
JPH05100458A (ja) 1991-10-08 1993-04-23 Fuji Electric Co Ltd 電子写真用感光体
JPH0821718B2 (ja) * 1992-07-30 1996-03-04 日本電気株式会社 電界効果型トランジスタおよびその製造方法
JP2725591B2 (ja) * 1994-03-10 1998-03-11 日本電気株式会社 電界効果型トランジスタ
US5531872A (en) 1994-08-11 1996-07-02 Xerox Corporation Processes for preparing photoconductive members by electrophoresis
US5783519A (en) 1994-08-22 1998-07-21 Minnesota Mining And Manufacturing Company Thermal transfer systems having vanadium oxide antistatic layers
JP2968179B2 (ja) * 1994-09-13 1999-10-25 鐘紡株式会社 有機半導体
JP2865029B2 (ja) * 1994-10-24 1999-03-08 富士ゼロックス株式会社 電荷輸送性ポリエステルを用いた有機電子デバイス
US5482811A (en) 1994-10-31 1996-01-09 Xerox Corporation Method of making hydroxygallium phthalocyanine type V photoconductive imaging members
TW293172B (US07095044-20060822-C00010.png) * 1994-12-09 1996-12-11 At & T Corp
JP2611751B2 (ja) * 1995-04-07 1997-05-21 日本電気株式会社 電界効果型トランジスタ
US5516617A (en) 1995-07-14 1996-05-14 Xerox Corporation Photoreceptor material reclaim method
EP0848288A1 (en) * 1996-12-16 1998-06-17 Lucent Technologies Inc. Resist materials
US6107117A (en) * 1996-12-20 2000-08-22 Lucent Technologies Inc. Method of making an organic thin film transistor
JP3045224B2 (ja) * 1997-01-06 2000-05-29 バンドー化学株式会社 有機半導体並びにこれを用いる光電変換素子及びエレクトロクロミック表示素子
US5876887A (en) 1997-02-26 1999-03-02 Xerox Corporation Charge generation layers comprising pigment mixtures
US5981970A (en) * 1997-03-25 1999-11-09 International Business Machines Corporation Thin-film field-effect transistor with organic semiconductor requiring low operating voltages
US5946551A (en) * 1997-03-25 1999-08-31 Dimitrakopoulos; Christos Dimitrios Fabrication of thin film effect transistor comprising an organic semiconductor and chemical solution deposited metal oxide gate dielectric
US5853906A (en) * 1997-10-14 1998-12-29 Xerox Corporation Conductive polymer compositions and processes thereof
US6566153B1 (en) 1998-10-14 2003-05-20 The Regents Of The University Of California Process for fabricating organic semiconductor devices using ink-jet printing technology and device and system employing same
US6353083B1 (en) * 1999-02-04 2002-03-05 The Dow Chemical Company Fluorene copolymers and devices made therefrom
JP3850005B2 (ja) * 1999-03-03 2006-11-29 パイオニア株式会社 スイッチング素子及び有機エレクトロルミネッセンス素子表示装置
US6252245B1 (en) 1999-03-29 2001-06-26 Howard Edan Katz Device comprising n-channel semiconductor material
JP4262834B2 (ja) 1999-06-14 2009-05-13 大日本印刷株式会社 バインダー添加型電荷輸送液晶材料
US6180309B1 (en) 1999-11-26 2001-01-30 Xerox Corporation Organic photoreceptor with improved adhesion between coated layers
US6165660A (en) 1999-11-29 2000-12-26 Xerox Corporation Organic photoreceptor with improved adhesion between coated layers
US6507026B2 (en) * 2000-01-12 2003-01-14 Kabushiki Kaisha Toshiba Planar X-ray detector
TW541853B (en) * 2000-11-10 2003-07-11 Sumitomo Chemical Co Polymeric fluorescent substance and polymer light-emitting device using the same
US6319645B1 (en) 2001-02-26 2001-11-20 Xerox Corporation Imaging members
KR20040043116A (ko) 2001-04-10 2004-05-22 사르노프 코포레이션 유기 박막 트랜지스터를 이용한 고성능 액티브 매트릭스화소 제공방법 및 제공장치
US20030227014A1 (en) 2002-06-11 2003-12-11 Xerox Corporation. Process for forming semiconductor layer of micro-and nano-electronic devices

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19544977A1 (de) * 1994-12-01 1996-06-05 Toshiba Kawasaki Kk Photoleiter und elektrophotographischer Photorezeptor

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
AERNOUTS T ET AL: "Analysis and simulation of the IV-characteristics of PPV-oligomer based Schottky diodes", EUROPEAN MATERIALS RESEARCH SOCIETY 2000 SPRING MEETING, SYMPOSIUM I: ORGANIC ELECTRONICS;FROM LIGHT EMITTING DIODES TO INTEGRATED CIRCUITS, STRASBOURG, FRANCE, 30 MAY-2 JUNE 2000, vol. 122, no. 1, Synthetic Metals, 1 May 2001, Elsevier, Switzerland, pages 153 - 155, XP001066355, ISSN: 0379-6779 *
BORSENBERGER P M ET AL: "HIGH-MOBILITY DOPED POLYMERS", JAPANESE JOURNAL OF APPLIED PHYSICS, PUBLICATION OFFICE JAPANESE JOURNAL OF APPLIED PHYSICS. TOKYO, JP, vol. 34, PART 2, no. 12A, 1 December 1995 (1995-12-01), pages L1597 - L1598, XP000736035, ISSN: 0021-4922 *
BRABEC C J ET AL: "Photoinduced FT-IR spectroscopy and CW-photocurrent measurements of conjugated polymers and fullerenes blended into a conventional polymer matrix", SOLAR ENERGY MATERIALS AND SOLAR CELLS, ELSEVIER SCIENCE PUBLISHERS, AMSTERDAM, NL, vol. 61, no. 1, 15 February 2000 (2000-02-15), pages 19 - 33, XP004244746, ISSN: 0927-0248 *
GEENS W ET AL: "Field-effect mobility measurements of conjugated polymer/fullerene photovoltaic blends", ELECTRONIC PROPERTIES OF NOVEL MATERIALS - MOLECULAR NANOSTRUCTURES. 14TH INTERNATIONAL WINTERSCHOOL/EUROCONFERENCE, KIRCHBERG, AUSTRIA, 4-11 MARCH 2000, no. 544, AIP Conference Proceedings, 2000, AIP, USA, pages 516 - 520, XP008001919, ISSN: 0094-243X *
TECKLENBURG R ET AL: "THEORY OF ORGANIC FIELD EFFECT TRANSISTOR", ADVANCED MATERIALS FOR OPTICS AND ELECTRONICS, WILEY AND SONS LTD, CHICHESTER, GB, vol. 8, no. 6, 1 November 1998 (1998-11-01), pages 285 - 294, XP000786708, ISSN: 1057-9257 *

Cited By (69)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1329474A1 (en) * 2002-01-11 2003-07-23 Xerox Corporation Polythiophenes and devices thereof
EP1329477B1 (en) * 2002-01-11 2006-08-09 Xerox Corporation Polythiophenes and devices thereof
WO2004057688A1 (en) * 2002-12-20 2004-07-08 Avecia Limited Improvements in and relating to organic semiconducting materials
US7718734B2 (en) 2002-12-20 2010-05-18 Merck Patent Gmbh Organic semiconducting materials
JP2005101493A (ja) * 2003-02-13 2005-04-14 Ricoh Co Ltd 有機薄膜トランジスタおよびその製造方法
JP2006520101A (ja) * 2003-03-07 2006-08-31 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 電子配列の製作方法
WO2005004251A1 (en) * 2003-07-07 2005-01-13 Philips Intellectual Property & Standards Gmbh Multifluorinated conductor material for leds for improving the light outcoupling
US8119804B2 (en) 2003-11-28 2012-02-21 Merck Patent Gmbh Organic semiconducting layers
US7807993B2 (en) 2003-11-28 2010-10-05 Merck Patent Gmbh Organic pentacene semiconducting layers
JP2007519227A (ja) * 2003-11-28 2007-07-12 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフトング 有機半導体層およびその改善
WO2005055248A3 (en) * 2003-11-28 2005-07-28 Avecia Ltd Organic semiconducting layer formulations comprising polyacenes and organic binder polymers
US7842942B2 (en) 2003-11-28 2010-11-30 Merck Patent Gmbh Organic semiconducting layers
WO2005055248A2 (en) 2003-11-28 2005-06-16 Merck Patent Gmbh Organic semiconducting layer formulations comprising polyacenes and organic binder polymers
US7576208B2 (en) 2003-11-28 2009-08-18 Merck Patent Gmbh Organic semiconductor layers
US7820077B2 (en) * 2004-02-18 2010-10-26 Merck Patent Gmbh Solutions of organic semiconductors
US8053764B2 (en) 2004-07-08 2011-11-08 Samsung Electronics Co., Ltd. Organic semiconductor copolymers containing oligothiophene and η-type heteroaromatic units
US8313978B2 (en) 2004-07-08 2012-11-20 Samsung Electronics Co., Ltd. Organic semiconductor copolymers containing oligothiophene and n-type heteroaromatic units
EP1986247A1 (en) 2005-05-12 2008-10-29 MERCK PATENT GmbH Polyacene and semiconductor Formulation
US7488834B2 (en) 2005-09-30 2009-02-10 Alcatel-Lucent Usa Inc. Organic semiconductors
WO2007039547A1 (en) 2005-09-30 2007-04-12 Basf Se Organic compositions
US7569415B2 (en) 2005-09-30 2009-08-04 Alcatel-Lucent Usa Inc. Liquid phase fabrication of active devices including organic semiconductors
DE112006003179T5 (de) 2006-01-21 2009-01-15 Merck Patent Gmbh Elektronische Kurzkanalvorrichtung umfassend eine organische Halbleiterformulierung
JP2009524226A (ja) * 2006-01-21 2009-06-25 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツング 有機半導体配合物を備える電子短チャネル装置
GB2449023A (en) * 2006-01-21 2008-11-05 Merck Patent Gmbh Electronic short channel device comprising an organic semiconductor formulation
GB2449023B (en) * 2006-01-21 2011-06-15 Merck Patent Gmbh Electronic short channel device comprising an organic semiconductor formulation
WO2007082584A1 (en) * 2006-01-21 2007-07-26 Merck Patent Gmbh Electronic short channel device comprising an organic semiconductor formulation
US8164087B2 (en) 2006-06-12 2012-04-24 Alcatel Lucent Organic semiconductor compositions with nanoparticles
US8450143B2 (en) 2006-06-12 2013-05-28 Alcatel Lucent Organic semiconductor compositions with nanoparticles
EP2471834A1 (en) 2007-02-02 2012-07-04 Sumitomo Chemical Co., Ltd. New polymer, composition, liquid composition, and conductive thin film
EP2471833A1 (en) 2007-02-02 2012-07-04 Sumitomo Chemical Co., Ltd. Polymer, composition, liquid composition, and conductive thin film
WO2008093821A1 (ja) 2007-02-02 2008-08-07 Sumitomo Chemical Company, Limited 高分子発光素子、高分子化合物、組成物、液状組成物及び導電性薄膜
WO2009016107A1 (en) * 2007-07-30 2009-02-05 Basf Se Method for depositing a semiconducting layer from a liquid
US8502209B2 (en) 2008-06-05 2013-08-06 Sumitomo Chemical Company, Limited Polymer compound and organic transistor using the same
WO2009148103A1 (ja) 2008-06-05 2009-12-10 住友化学株式会社 高分子化合物及びそれを用いた有機トランジスタ
WO2010013723A1 (ja) 2008-07-29 2010-02-04 住友化学株式会社 高分子化合物及びそれを用いた発光素子
WO2011078387A1 (ja) 2009-12-25 2011-06-30 住友化学株式会社 組成物及び該組成物を用いてなる発光素子
WO2011078391A1 (ja) 2009-12-25 2011-06-30 住友化学株式会社 組成物及び該組成物を用いてなる発光素子
WO2012133465A1 (ja) 2011-03-28 2012-10-04 住友化学株式会社 電子デバイス、高分子化合物、有機化合物及び高分子化合物の製造方法
US9431145B2 (en) 2011-05-26 2016-08-30 Neudrive Limited Transistors and methods for making them
US9406886B2 (en) 2011-05-26 2016-08-02 Neudrive Limited Semiconductor compounds
US10121970B2 (en) 2011-05-26 2018-11-06 Wuhan Xinqu Chuangrou Optoelectronics Technology Co., Ltd. Transistors and methods for making them
WO2012160382A1 (en) 2011-05-26 2012-11-29 The Centre For Process Innovation Ltd Semiconductor compounds
WO2013146806A1 (ja) 2012-03-27 2013-10-03 住友化学株式会社 高分子化合物およびそれを用いた発光素子
US9929347B2 (en) 2012-03-27 2018-03-27 Sumitomo Chemical Company, Limtied Polymer compound and light emitting element using same
WO2015008851A1 (ja) 2013-07-17 2015-01-22 住友化学株式会社 組成物およびそれを用いた発光素子
WO2015025719A1 (ja) 2013-08-22 2015-02-26 住友化学株式会社 化合物の製造方法
WO2015105014A1 (ja) 2014-01-08 2015-07-16 住友化学株式会社 金属錯体およびそれを用いた発光素子
EP3674343A1 (en) 2014-08-28 2020-07-01 Sumitomo Chemical Company, Limited Polymer compound and light-emitting element using same
WO2017099012A1 (ja) 2015-12-07 2017-06-15 住友化学株式会社 発光素子
WO2018062278A1 (ja) 2016-09-29 2018-04-05 住友化学株式会社 発光素子及び該発光素子の製造に有用な組成物
WO2018198973A1 (ja) 2017-04-27 2018-11-01 住友化学株式会社 組成物及びそれを用いた発光素子
WO2018198976A1 (ja) 2017-04-27 2018-11-01 住友化学株式会社 発光素子
WO2019049225A1 (ja) 2017-09-06 2019-03-14 住友化学株式会社 発光素子
WO2019065389A1 (ja) 2017-09-29 2019-04-04 住友化学株式会社 発光素子
WO2019208648A1 (ja) 2018-04-26 2019-10-31 住友化学株式会社 発光素子
WO2019208647A1 (ja) 2018-04-26 2019-10-31 住友化学株式会社 ブロック共重合体及びそれを用いた発光素子
WO2019239998A1 (ja) 2018-06-12 2019-12-19 住友化学株式会社 有機エレクトロルミネッセンス素子
EP3819325A4 (en) * 2018-07-03 2022-05-11 Hodogaya Chemical Co., Ltd. HIGH MOLECULAR WEIGHT TRIARYLAMINE COMPOUND COMPRISING A TERPHENYL STRUCTURE IN A MAIN MOLECULAR CHAIN AND ORGANIC ELECTROLUMINESCENT ELEMENT COMPRISING SUCH HIGH MOLECULAR WEIGHT COMPOUND
WO2020084923A1 (ja) 2018-10-25 2020-04-30 住友化学株式会社 発光素子
WO2020084924A1 (ja) 2018-10-25 2020-04-30 住友化学株式会社 発光素子
WO2020203209A1 (ja) 2019-03-29 2020-10-08 住友化学株式会社 発光素子及び発光素子用組成物
WO2021019884A1 (ja) 2019-07-26 2021-02-04 住友化学株式会社 金属錯体及びそれを含有する発光素子
WO2021215210A1 (ja) 2020-04-21 2021-10-28 住友化学株式会社 金属錯体、組成物及び発光素子
WO2022024664A1 (ja) 2020-07-28 2022-02-03 住友化学株式会社 組成物及び発光素子
WO2022065099A1 (ja) 2020-09-24 2022-03-31 住友化学株式会社 発光素子及び組成物
WO2022065101A1 (ja) 2020-09-24 2022-03-31 住友化学株式会社 発光素子及び組成物
WO2022065100A1 (ja) 2020-09-24 2022-03-31 住友化学株式会社 発光素子及び組成物
WO2022065102A1 (ja) 2020-09-24 2022-03-31 住友化学株式会社 発光素子及び組成物
WO2022065098A1 (ja) 2020-09-24 2022-03-31 住友化学株式会社 発光素子及び組成物

Also Published As

Publication number Publication date
KR100824026B1 (ko) 2008-04-21
CA2427222C (en) 2014-08-12
JP4429603B2 (ja) 2010-03-10
JP2004525501A (ja) 2004-08-19
DE60125819D1 (de) 2007-02-15
CN1478309A (zh) 2004-02-25
US20040038459A1 (en) 2004-02-26
CA2427222A1 (en) 2002-06-06
CN100416882C (zh) 2008-09-03
JP2010028123A (ja) 2010-02-04
GB0028867D0 (en) 2001-01-10
AU2081802A (en) 2002-06-11
DE60125819T2 (de) 2007-10-11
KR20030055318A (ko) 2003-07-02
EP1340270A1 (en) 2003-09-03
US7095044B2 (en) 2006-08-22
EP1340270B1 (en) 2007-01-03
ATE350769T1 (de) 2007-01-15
AU2002220818B2 (en) 2006-09-28

Similar Documents

Publication Publication Date Title
AU2002220818B2 (en) Field effect transistors and materials and methods for their manufacture
AU2002220818A1 (en) Field effect transistors and materials and methods for their manufacture
EP2011157B1 (en) Electronic devices containing acene-thiophene copolymers with silylethynyl groups
US7029945B2 (en) Organic field effect transistor with an organic dielectric
EP1687830B1 (en) Organic semiconducting layer formulations comprising polyacenes and organic binder polymers
EP1579518B1 (en) Improvements in and relating to organic semiconducting materials
US7667230B2 (en) Electronic devices containing acene-thiophene copolymers
KR20130080802A (ko) 유기 전자 소자의 제조를 위한 제형 및 방법
EP3039728A1 (en) Polymyeric organic semiconductor compositions
WO2014031750A1 (en) Acenaphthylene imide-derived semiconductors
KR102365446B1 (ko) 메톡시아릴 표면 개질제 및 상기 메톡시아릴 표면 개질제를 포함하는 유기 전자 소자
KR20150041094A (ko) 유기 반도성 제제
JP5031584B2 (ja) 有機薄膜トランジスタ
Ngo Veres et a1.

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2001999012

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2002220818

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2427222

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 10416005

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1020037006957

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 018195636

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2002547243

Country of ref document: JP

WWP Wipo information: published in national office

Ref document number: 1020037006957

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2001999012

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWG Wipo information: grant in national office

Ref document number: 2001999012

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 2002220818

Country of ref document: AU