WO2022024664A1 - 組成物及び発光素子 - Google Patents

組成物及び発光素子 Download PDF

Info

Publication number
WO2022024664A1
WO2022024664A1 PCT/JP2021/025092 JP2021025092W WO2022024664A1 WO 2022024664 A1 WO2022024664 A1 WO 2022024664A1 JP 2021025092 W JP2021025092 W JP 2021025092W WO 2022024664 A1 WO2022024664 A1 WO 2022024664A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
atom
ring
represented
hydrogen atoms
Prior art date
Application number
PCT/JP2021/025092
Other languages
English (en)
French (fr)
Inventor
龍二 松本
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Priority to KR1020237005861A priority Critical patent/KR20230043907A/ko
Priority to CN202180059390.8A priority patent/CN116134112A/zh
Priority to EP21851004.8A priority patent/EP4190879A1/en
Priority to US18/016,815 priority patent/US20230295449A1/en
Publication of WO2022024664A1 publication Critical patent/WO2022024664A1/ja

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/151Copolymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/30Inkjet printing inks
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L85/00Compositions of macromolecular compounds obtained by reactions forming a linkage in the main chain of the macromolecule containing atoms other than silicon, sulfur, nitrogen, oxygen and carbon; Compositions of derivatives of such polymers
    • C08L85/04Compositions of macromolecular compounds obtained by reactions forming a linkage in the main chain of the macromolecule containing atoms other than silicon, sulfur, nitrogen, oxygen and carbon; Compositions of derivatives of such polymers containing boron
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • H10K85/633Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising polycyclic condensed aromatic hydrocarbons as substituents on the nitrogen atom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/654Aromatic compounds comprising a hetero atom comprising only nitrogen as heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/658Organoboranes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/20Applications use in electrical or conductive gadgets
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/10Triplet emission
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • the present invention relates to a composition and a light emitting device.
  • a light emitting element such as an organic electroluminescence element can be suitably used for, for example, a display and lighting.
  • a light emitting material used for a light emitting layer of a light emitting element for example, Patent Documents 1 and 2 disclose a composition containing a low molecular weight compound such as compound M101 and compound M103, and a high molecular weight compound.
  • the difference between the energy level in the lowest excited triplet state and the energy level in the lowest excited singlet state of the low molecular weight compound is 0.50 eV or less, and the energy level of the high molecular weight compound is 0.50 eV or less.
  • the difference between the energy level in the lowest excited triplet state and the energy level in the lowest excited singlet state was more than 0.50 eV.
  • the light emitting device using these compositions has room for further improvement in luminous efficiency.
  • an object of the present invention is to provide a composition useful for producing a light emitting element having high luminous efficiency, and a light emitting element containing the composition.
  • the present invention provides the following [1] to [12].
  • [1] The repeating unit represented by the formula (Y) and the low molecular weight compound (SM1) in which the absolute value of the difference between the energy level in the lowest triplet excited state and the energy level in the lowest singlet excited state is 0.50 eV or less.
  • SM1 a structural unit excluding one or more hydrogen atoms
  • SM2 A low molecular weight compound in which the absolute value of the difference between the energy level in the lowest triplet excited state and the energy level in the lowest singlet excited state is 0.50 eV or less.
  • the content of the structural unit (SM1) in the composition per unit mass is dSM1
  • the content of the low molecular weight compound (SM2) in the composition is dSM2.
  • n T1 represents an integer of 0 or more. When there are a plurality of n T1 , they may be the same or different. n T2 represents an integer greater than or equal to 0.
  • LT1 represents an alkylene group, a cycloalkylene group, an arylene group, a divalent heterocyclic group, an oxygen atom or a sulfur atom, and these groups may have a substituent. When a plurality of the substituents are present, they may be the same or different, or they may be bonded to each other to form a ring with the atom to which each is bonded. When there are a plurality of LT1 , they may be the same or different.
  • Ar T2 represents a group selected from groups A, B and C.
  • n T2 is 2.
  • Group B A group obtained by removing n T2 hydrogen atoms from an aromatic hydrocarbon having an electron-attracting group
  • Group D excluding one hydrogen atom: Group excluding one or more hydrogen atoms from a heterocyclic compound containing a boron atom, group excluding one or more hydrogen atoms from a heterocyclic compound containing a phosphorus atom , A group from which one or more hydrogen atoms are removed from a heterocyclic compound containing an aluminum atom, a group from which one or more hydrogen atoms are removed from a heterocyclic compound containing a gallium atom, and a heterocyclic compound containing a silicon atom.
  • Atom [3] The composition according to [1] or [2], wherein dSM1 / dSM2 is 0.077 to 0.77, or 1.3 to 13.
  • SM1 small molecule compound
  • D-1 small molecule compound
  • Rx represents an aryl group or an alkyl group, and these groups may have a substituent.
  • Y 1 represents N-Ry, a sulfur atom or a selenium atom.
  • Y 2 and Y 3 independently represent an oxygen atom, N-Ry, sulfur atom or selenium atom, respectively.
  • Ry represents a hydrogen atom, an aryl group, a monovalent heterocyclic group, or an alkyl group, and these groups may have a substituent.
  • Ry When there are a plurality of Ry, they may be the same or different. Ry may be attached to the A ring, the B ring or the C ring directly or via a linking group. n3 is 0 or 1. If n3 is 0, then -Y3-- does not exist. ] [5]
  • a X1 and a X2 each independently represent an integer of 0 or more.
  • Ar X1 and Ar X3 each independently represent an arylene group or a divalent heterocyclic group, and these groups may have a substituent.
  • Ar X2 and Ar X4 each independently form an arylene group, a divalent heterocyclic group, or a divalent group in which at least one arylene group and at least one divalent heterocyclic group are directly bonded. Representing, these groups may have substituents.
  • Ar X2 and Ar X4 they may be the same or different, or they may be bonded to each other to form a ring with the atom to which each is bonded.
  • Ar X2 and Ar X4 they may be the same or different.
  • RX1 , RX2 and RX3 independently represent a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group or a monovalent heterocyclic group, and these groups may have a substituent. When a plurality of the substituents are present, they may be the same or different, or they may be bonded to each other to form a ring with the atom to which each is bonded. When there are a plurality of RX2 and RX3 , they may be the same or different.
  • [6] The composition according to any one of [1] to [5], wherein the small molecule compound (SM2) is a compound represented by the formula (T-11) or a compound having a group selected from the group G. ..
  • n T3 represents an integer greater than or equal to 0.
  • n T4 represents an integer of 1 or more.
  • Ar T3 represents a substituted amino group or a monovalent heterocyclic group, and these groups may have a substituent.
  • a plurality of the substituents are present, they may be the same or different, or they may be bonded to each other to form a ring with the atom to which each is bonded.
  • Ar T3s they may be the same or different.
  • LT2 represents an alkylene group, a cycloalkylene group, an arylene group, a divalent heterocyclic group, an oxygen atom or a sulfur atom, and these groups may have a substituent.
  • Ar T4 represents a group selected from groups A, E and F. However, when Ar T4 is a group selected from the group A, n T4 is 2.
  • Group E A group obtained by removing n T4 hydrogen atoms from an aromatic hydrocarbon having an electron-attracting group
  • Group G excluding one hydrogen atom A group excluding one or more hydrogen atoms from a heterocyclic compound containing a boron atom, and a group excluding one or more hydrogen atoms from a heterocyclic compound containing a phosphorus atom.
  • Atom [7] The composition according to any one of [1] to [6] 6, wherein the small molecule compound (SM2) is a compound represented by the formula (D-11).
  • the E ring, the F ring, and the G ring independently represent an aromatic hydrocarbon ring or an aromatic heterocycle, and these rings may have a substituent.
  • Rx represents an aryl group or an alkyl group, and these groups may have a substituent.
  • Y4 represents N - Ry, a sulfur atom or a selenium atom.
  • Y 5 and Y 6 independently represent an oxygen atom, an N-Ry, a sulfur atom or a selenium atom, respectively.
  • Ry represents a hydrogen atom, an aryl group, a monovalent heterocyclic group, or an alkyl group, and these groups may have a substituent. When there are a plurality of Ry, they may be the same or different. Ry may be attached to the E ring, the F ring or the G ring directly or via a linking group. n6 is 0 or 1. If n6 is 0, then -Y 6- does not exist. ] [8] [8]
  • a second high molecular weight compound having a structural unit (SM1-2) obtained by removing one or more hydrogen atoms from -2) (provided that the low molecular weight compound (SM1-1) and the low molecular weight compound (SM1-2) are present.
  • composition containing When the content of the structural unit (SM1-1) in the composition per unit mass is dSM1a and the content of the structural unit (SM1-2) in the composition per unit mass is dSM1b, dSM1a + dSM1b.
  • the composition is 2.0 ⁇ 10 19 (pieces / g) or more, and dSM1a / dSM1b is 0.020 or more and 50 or less.
  • Ar Y1 represents an arylene group which may have a substituent.
  • the small molecule compound (SM1-1) and the small molecule compound (SM1-2) are independent compounds having a group represented by the formula (T-1) or a group selected from the D group. , [8].
  • n T1 represents an integer of 0 or more. When there are a plurality of n T1 , they may be the same or different. n T2 represents an integer greater than or equal to 0.
  • Ar T1 represents a substituted amino group or a monovalent heterocyclic group, and these groups may have a substituent. When a plurality of the substituents are present, they may be the same or different, or they may be bonded to each other to form a ring with the atom to which each is bonded. When there are a plurality of Ar T1 , they may be the same or different.
  • LT1 represents an alkylene group, a cycloalkylene group, an arylene group, a divalent heterocyclic group, an oxygen atom or a sulfur atom, and these groups may have a substituent.
  • Group D excluding one hydrogen atom: Group excluding one or more hydrogen atoms from a heterocyclic compound containing a boron atom, group excluding one or more hydrogen atoms from a heterocyclic compound containing a phosphorus atom , A group from which one or more hydrogen atoms are removed from a heterocyclic compound containing an aluminum atom, a group from which one or more hydrogen atoms are removed from a heterocyclic compound containing a gallium atom, and a heterocyclic compound containing a silicon atom.
  • Atom [10] The composition according to [8] or [9], wherein the small molecule compound (SM1-1) and the small molecule compound (SM1-2) are independent compounds represented by the formula (D-1). thing. [During the ceremony, The A ring, the B ring, and the C ring independently represent an aromatic hydrocarbon ring or an aromatic heterocycle, and these rings may have a substituent.
  • Rx represents an aryl group or an alkyl group, and these groups may have a substituent.
  • Y 1 represents N-Ry, a sulfur atom or a selenium atom.
  • Y 2 and Y 3 independently represent an oxygen atom, N-Ry, sulfur atom or selenium atom, respectively.
  • Ry represents a hydrogen atom, an aryl group, a monovalent heterocyclic group, or an alkyl group, and these groups may have a substituent.
  • Ry When there are a plurality of Ry, they may be the same or different. Ry may be attached to the A ring, the B ring or the C ring directly or via a linking group. n3 is 0 or 1. If n3 is 0, then -Y3-- does not exist. ] [11] An ink containing the composition according to any one of [1] to [10] and a solvent. [12] A light emitting device containing the composition according to any one of [1] to [10].
  • composition useful for producing a light emitting element having high luminous efficiency and a light emitting element containing the composition are provided.
  • Me represents a methyl group
  • Et represents an ethyl group
  • Bu represents a butyl group
  • i-Pr represents an isopropyl group
  • t-Bu represents a tert-butyl group.
  • the hydrogen atom may be a deuterium atom or a light hydrogen atom.
  • a solid line representing a bond with a metal means an ionic bond, a covalent bond, or a coordinate bond.
  • the “polymer compound” means a polymer having a molecular weight distribution and having a polystyrene-equivalent number average molecular weight of 1 ⁇ 10 3 or more (for example, 1 ⁇ 10 3 to 1 ⁇ 10 8 ).
  • the polymer compound may be a block copolymer, a random copolymer, an alternate copolymer, a graft copolymer, or any other embodiment.
  • the terminal group of the polymer compound is preferably a stable group because if the polymerization active group remains as it is, the light emission characteristics or the luminance life may be deteriorated when the polymer compound is used for manufacturing a light emitting element. Is.
  • the terminal group of the polymer compound is preferably a group bonded to the main chain, for example, an aryl group or a monovalent heterocyclic group bonded to the main chain of the polymer compound via a carbon-carbon bond.
  • the “small molecule compound” means a compound having no molecular weight distribution and having a molecular weight of 1 ⁇ 104 or less.
  • the “constituent unit” means a unit existing in one or more in a polymer compound. A structural unit contained in two or more in a polymer compound is also generally referred to as a "repeating unit".
  • the "alkyl group” may be linear or branched.
  • the number of carbon atoms of the linear alkyl group is usually 1 to 50, preferably 3 to 30, and more preferably 4 to 20 without including the number of carbon atoms of the substituent.
  • the number of carbon atoms of the branched alkyl group is usually 3 to 50, preferably 3 to 30, and more preferably 4 to 20 without including the number of carbon atoms of the substituent.
  • the alkyl group may have a substituent.
  • alkyl group examples include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, a 2-butyl group, an isobutyl group, a tert-butyl group, a pentyl group, an isoamyl group, a 2-ethylbutyl group, a hexyl group and a heptyl.
  • Examples thereof include a group, an octyl group, a 2-ethylhexyl group, a 3-propylheptyl group, a decyl group, a 3,7-dimethyloctyl group, a 2-ethyloctyl group, a 2-hexyldecyl group and a dodecyl group.
  • the alkyl group is a group in which a part or all of the hydrogen atom in these groups is substituted with a substituent (for example, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, a fluorine atom, etc.).
  • Trifluoromethyl group pentafluoroethyl group, perfluorobutyl group, perfluorohexyl group, perfluorooctyl group, 3-phenylpropyl group, 3- (4-methylphenyl) propyl group, 3- (3,5-di) -Hexylphenyl) propyl group, 6-ethyloxyhexyl group) may be used.
  • the number of carbon atoms of the "cycloalkyl group” is usually 3 to 50, preferably 3 to 30, and more preferably 4 to 20 without including the number of carbon atoms of the substituent.
  • the cycloalkyl group may have a substituent.
  • Examples of the cycloalkyl group include a cyclohexyl group, a cyclohexylmethyl group, a cyclohexylethyl group, and a part or all of the hydrogen atom in these groups is a substituent (for example, an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group).
  • Groups substituted with groups (groups, aryl groups, fluorine atoms, etc.) can be mentioned.
  • aromatic hydrocarbon group means a group obtained by removing one or more hydrogen atoms directly bonded to an atom constituting a ring from an aromatic hydrocarbon.
  • a group obtained by removing one hydrogen atom directly bonded to an atom constituting a ring from an aromatic hydrocarbon is also referred to as an "aryl group”.
  • a group obtained by removing two hydrogen atoms directly bonded to an atom constituting a ring from an aromatic hydrocarbon is also referred to as an "arylene group”.
  • the number of carbon atoms of the aromatic hydrocarbon group does not include the number of carbon atoms of the substituent and is usually 6 to 60, preferably 6 to 40, and more preferably 6 to 20.
  • aromatic hydrocarbon group is, for example, a monocyclic aromatic hydrocarbon (for example, benzene) or a polycyclic aromatic hydrocarbon (for example, bicyclic such as naphthalene and inden).
  • Aromatic hydrocarbon groups include groups in which a plurality of these groups are bonded. The aromatic hydrocarbon group may have a substituent.
  • the number of carbon atoms of the aryl group is usually 6 to 60, preferably 6 to 20, and more preferably 6 to 10, not including the number of carbon atoms of the substituent.
  • the aryl group may have a substituent. Examples of the aryl group include a phenyl group, a 1-naphthyl group, a 2-naphthyl group, a 1-anthrasenyl group, a 2-anthrasenyl group, a 9-anthrasenyl group, a 1-pyrenyl group, a 2-pyrenyl group and a 4-pyrenyl group.
  • 2-Fluorenyl group, 3-Fluorenyl group, 4-Fluorenyl group, 2-Phenylphenyl group, 3-Phenylphenyl group, 4-Phenylphenyl group, and some or all of the hydrogen atoms in these groups are substituents (substituents (2) Examples thereof include a group substituted with an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, a fluorine atom, etc.).
  • the number of carbon atoms of the arylene group is usually 6 to 60, preferably 6 to 30, and more preferably 6 to 18, not including the number of carbon atoms of the substituent.
  • the arylene group may have a substituent. Examples of the arylene group include a phenylene group, a naphthalenediyl group, an anthracendyl group, a phenantrenidyl group, a dihydrophenantrangeyl group, a naphthalsendiyl group, a full-orangeyl group, a pyrenidyl group, a perylenediyl group, a chrysendiyl group, and these groups.
  • Examples thereof include a group in which a part or all of a hydrogen atom is substituted with a substituent.
  • a group represented by the formulas (A-1) to (A-20) is preferable.
  • the arylene group includes a group in which a plurality of these groups are bonded.
  • R and Ra independently represent a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group or a monovalent heterocyclic group, respectively.
  • a plurality of R and Ra may be the same or different from each other, and Ra may be bonded to each other to form a ring together with the atoms to which each is bonded.
  • the "alkoxy group” may be either linear or branched.
  • the number of carbon atoms of the linear alkoxy group is usually 1 to 40, preferably 4 to 10, not including the number of carbon atoms of the substituent.
  • the number of carbon atoms of the branched alkoxy group is usually 3 to 40, preferably 4 to 10, not including the number of carbon atoms of the substituent.
  • the alkoxy group may have a substituent.
  • alkoxy group examples include a methoxy group, an ethoxy group, a propyloxy group, an isopropyloxy group, a butyloxy group, an isobutyloxy group, a tert-butyloxy group, a pentyloxy group, a hexyloxy group, a heptyloxy group, an octyloxy group, and 2 -Ethylhexyloxy group, nonyloxy group, decyloxy group, 3,7-dimethyloctyloxy group, lauryloxy group, and some or all of the hydrogen atoms in these groups are substituents (eg, cycloalkyl group, alkoxy group, cyclo).
  • Examples thereof include a group substituted with an alkoxy group, an aryl group, a fluorine atom, etc.).
  • the number of carbon atoms of the "cycloalkoxy group” is usually 3 to 40, preferably 4 to 10, not including the number of carbon atoms of the substituent.
  • the cycloalkoxy group may have a substituent, and examples thereof include a cyclohexyloxy group.
  • the number of carbon atoms of the "aryloxy group” is usually 6 to 60, preferably 6 to 48, not including the number of carbon atoms of the substituent.
  • the aryloxy group may have a substituent, for example, a phenoxy group, a 1-naphthyloxy group, a 2-naphthyloxy group, a 1-anthrasenyloxy group, a 9-anthrasenyloxy group, 1-.
  • Examples thereof include a pyrenyloxy group and a group in which a part or all of hydrogen atoms in these groups are substituted with a substituent (for example, an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, a fluorine atom, etc.).
  • a substituent for example, an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, a fluorine atom, etc.
  • a "p-valent heterocyclic group" (p represents an integer of 1 or more) is p of hydrogen atoms directly bonded to a carbon atom or a hetero atom constituting a ring from a heterocyclic compound. It means the remaining atomic group excluding the hydrogen atom of. Among the p-valent heterocyclic groups, it is the remaining atomic group obtained by removing p hydrogen atoms from the hydrogen atoms directly bonded to the carbon atoms or heteroatoms constituting the ring from the aromatic heterocyclic compound. A "p-valent aromatic heterocyclic group” is preferred.
  • the "aromatic heterocyclic compound” is a complex such as oxadiazole, thiadiazole, thiazole, oxazole, thiophene, pyrrole, phosphor, furan, pyridine, pyrazine, pyrimidine, triazine, pyridazine, quinoline, isoquinoline, carbazole and dibenzophosphol. Even if the compound whose ring itself exhibits aromaticity and the heterocycle itself such as phenoxazine, phenothiazine, dibenzoborol, dibenzosilol, and benzopyran do not exhibit aromaticity, the aromatic ring is fused to the heterocycle. Means a compound.
  • the heterocyclic compound and the aromatic heterocyclic compound are different from the low molecular weight compound (SM1), the low molecular weight compound (SM1-1), the low molecular weight compound (SM1-2) and the low molecular weight compound (SM2). Is preferable.
  • the number of carbon atoms of the monovalent heterocyclic group does not include the number of carbon atoms of the substituent and is usually 2 to 60, preferably 4 to 20.
  • the monovalent heterocyclic group may have a substituent, for example, a thienyl group, a pyrrolyl group, a fryl group, a pyridyl group, a piperidinyl group, a quinolinyl group, an isoquinolinyl group, a pyrimidinyl group, a triazinyl group, and these.
  • Examples thereof include a group in which a part or all of the hydrogen atom in the group is substituted with a substituent (for example, an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, etc.).
  • a substituent for example, an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, etc.
  • the number of carbon atoms of the divalent heterocyclic group is usually 2 to 60, preferably 3 to 20, and more preferably 4 to 15, not including the number of carbon atoms of the substituent.
  • the divalent heterocyclic group may have a substituent.
  • the divalent heterocyclic group includes, for example, pyridine, diazabenzene, triazine, azanaphthalene, diazanaphthalene, carbazole, dibenzofuran, dibenzothiophene, dibenzosilol, phenoxazine, phenothiazine, acridin, dihydroacrindin, furan, thiophene, azole, diazole.
  • the divalent heterocyclic group is preferably a group represented by the formulas (AA-1) to (AA-15) and the formulas (AA-18) to (AA-34).
  • a divalent heterocyclic group includes a group in which a plurality of these groups are bonded.
  • R and Ra have the same meanings as described above.
  • R b represents a hydrogen atom, an alkyl group, a cycloalkyl group, and an aryl group.
  • the plurality of R bs may be the same or different from each other, and the R bs may be bonded to each other to form a ring together with the atoms to which they are bonded.
  • Halogen atom means a fluorine atom, a chlorine atom, a bromine atom or an iodine atom.
  • the "amino group” may have a substituent, and a substituted amino group (that is, a secondary amino group or a tertiary amino group, particularly a tertiary amino group) is preferable.
  • a substituted amino group that is, a secondary amino group or a tertiary amino group, particularly a tertiary amino group
  • an alkyl group, a cycloalkyl group, an aryl group or a monovalent heterocyclic group is preferable.
  • substituents having an amino group are present, they may be the same and different, or they may be bonded to each other to form a ring together with the nitrogen atom to which each is bonded.
  • the substituted amino group include a dialkylamino group, a dicycloalkylamino group and a diarylamino group.
  • substituted amino group examples include a dimethylamino group, a diethylamino group, a diphenylamino group, a bis (4-methylphenyl) amino group, a bis (4-tert-butylphenyl) amino group, and a bis (3,5-di-tert).
  • -Butylphenyl) Amino group can be mentioned.
  • the "alkenyl group” may be either linear or branched.
  • the number of carbon atoms of the linear alkenyl group is usually 2 to 30, preferably 3 to 20, not including the number of carbon atoms of the substituent.
  • the number of carbon atoms of the branched alkenyl group does not include the number of carbon atoms of the substituent and is usually 3 to 30, preferably 4 to 20.
  • the number of carbon atoms of the "cycloalkenyl group” is usually 3 to 30, preferably 4 to 20, not including the number of carbon atoms of the substituent.
  • the alkenyl group and the cycloalkenyl group may have a substituent.
  • alkenyl group examples include a vinyl group, a 1-propenyl group, a 2-propenyl group, a 2-butenyl group, a 3-butenyl group, a 3-pentenyl group, a 4-pentenyl group, a 1-hexenyl group and a 5-hexenyl group.
  • alkenyl group examples include a vinyl group, a 1-propenyl group, a 2-propenyl group, a 2-butenyl group, a 3-butenyl group, a 3-pentenyl group, a 4-pentenyl group, a 1-hexenyl group and a 5-hexenyl group.
  • Examples thereof include a 7-octenyl group and a group in which a part or all of hydrogen atoms in these groups are substituted with a substituent.
  • Examples of the cycloalkenyl group include a cyclohexenyl group, a cyclohexadienyl group, a cyclooctatrienyl group, a norbornylenyl group, and a group in which a part or all of hydrogen atoms in these groups are substituted with a substituent. ..
  • the "alkynyl group” may be either linear or branched.
  • the number of carbon atoms of the alkynyl group is usually 2 to 20, preferably 3 to 20, without including the carbon atom of the substituent.
  • the number of carbon atoms of the branched alkynyl group is usually 4 to 30, preferably 4 to 20, without including the carbon atom of the substituent.
  • the number of carbon atoms of the "cycloalkynyl group” is usually 4 to 30, preferably 4 to 20, without including the carbon atom of the substituent.
  • the alkynyl group and the cycloalkynyl group may have a substituent.
  • alkynyl group examples include an ethynyl group, a 1-propynyl group, a 2-propynyl group, a 2-butynyl group, a 3-butynyl group, a 3-pentynyl group, a 4-pentynyl group, a 1-hexynyl group and a 5-hexynyl group.
  • a group in which a part or all of the hydrogen atom in these groups is substituted with a substituent can be mentioned.
  • the cycloalkynyl group examples include a cyclooctynyl group and a group in which a part or all of hydrogen atoms in this group are substituted with a substituent.
  • the "crosslinking group” is a group capable of forming a new bond by subjecting it to heat treatment, ultraviolet irradiation treatment, near-ultraviolet irradiation treatment, visible light irradiation treatment, infrared irradiation treatment, radical reaction, or the like.
  • the cross-linking group is preferably a cross-linking group represented by the formulas (XL-1) to (XL-19) of the group A of the cross-linking group, and more preferably, the formula (XL-1), the formula (XL-3), and the formula ( XL-9), formula (XL-10), formula (XL-16) or a crosslinking group represented by formulas (XL-17) to formula (XL-19), more preferably formula (XL-1).
  • Crosslink group A group [In the formula, R XL represents a methylene group, an oxygen atom or a sulfur atom, and n XL represents an integer of 0 to 5. If there are multiple RXLs , they may be the same or different. When there are a plurality of n XL , they may be the same or different. * 1 represents the bonding position.
  • cross-linking groups may have substituents, and if a plurality of the substituents are present, they may be the same or different, and they may be bonded to each other to form a ring with the carbon atom to which each is bonded. May be. ]
  • substituted group examples include a halogen atom, a cyano group, an alkyl group, a cycloalkyl group, an aryl group, a monovalent heterocyclic group, an alkoxy group, a cycloalkoxy group, an aryloxy group, an amino group, a substituted amino group and an alkenyl group.
  • Cycloalkenyl group, alkynyl group or cycloalkynyl group is preferred.
  • the substituent may be a cross-linking group.
  • the structural unit represented by the formula (Y) is preferably the structural unit represented by the formula (Y-1) or the formula (Y-2) because the luminous efficiency of the light emitting element is more excellent.
  • RY1 represents a hydrogen atom, an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group or an aryl group, and these groups may have a substituent.
  • a plurality of RY1s existing may be the same or different, and adjacent RY1s may be bonded to each other to form a ring together with the carbon atom to which each is bonded.
  • RY1 has the same meaning as described above.
  • XY1 represents a group represented by -C ( RY2 ) 2-
  • -C ( RY2 ) C ( RY2 )-or -C ( RY2 ) 2 -C ( RY2 ) 2-
  • RY2 represents a hydrogen atom, an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group or an aryl group, and these groups may have a substituent.
  • a plurality of RY2s existing may be the same or different, and the RY2s may be bonded to each other to form a ring together with the carbon atoms to which the RY2s are bonded.
  • the combination of two RY2s in the group represented by -C ( RY2 ) 2- is preferably both an alkyl group or a cycloalkyl group, both an aryl group, or one of the alkyl groups. Alternatively, it may be a cycloalkyl group and the other is an aryl group, and these groups may have a substituent.
  • the two existing RY2s may be bonded to each other to form a ring with the atoms to which they are bonded, and when RY2 forms a ring, it is represented by -C ( RY2 ) 2- . Is preferably a group represented by the formulas (Y—A1) to (Y—A5), and these groups may have a substituent.
  • the Ar Y1 in the formula (Y) is preferably the formula (A-1), the formula (A-2), the formulas (A-6) to (A-10), the formula (A-19) or the formula (A). It is a group represented by -20), and these groups may have a substituent.
  • the group represented by Ar Y1 preferably has a substituent, and the substituent that the group represented by Ar Y1 may have is preferably an alkyl group, a cycloalkyl group or an aryl group, and more. It is preferably an alkyl group or a cycloalkyl group, and these groups may further have a substituent.
  • Examples of the structural unit represented by the formula (Y) include the structural units represented by the formulas (Y-101) to the formula (Y-108).
  • the difference (also referred to as ⁇ EST ) between the energy level in the lowest excited triplet state and the energy level in the lowest excited singlet state of the low molecular weight compound (SM1) is 0.50 eV or less.
  • the ⁇ EST of the small molecule compound (SM1) is preferably 0.46 eV or less, more preferably 0.40 eV or less, still more preferably 0.40 eV or less, because the luminous efficiency of the light emitting element of the present embodiment is more excellent. It is 0.35 eV or less, particularly preferably 0.30 eV or less, particularly preferably 0.25 eV or less, and particularly more preferably 0.20 eV or less.
  • the ⁇ EST of the small molecule compound (SM1) may be 0.001 eV or more, 0.005 eV or more, 0.01 eV or more, or 0.05 eV or more. May be good.
  • TADF thermal activated delayed fluorescence
  • Gaussian 09 which is a quantum chemistry calculation program
  • ⁇ EST can be calculated by using the B3LYP level time-dependent density functional theory after structurally optimizing the ground state of the compound using the B3LYP level density functional theory.
  • 6-31G * is usually used, but if the compound contains an atom that cannot use 6-31G *, LANL2DZ can be used for the atom.
  • the small molecule compound (SM1) is preferably a compound represented by the formula (T-1) or a compound having a group selected from the D group because the luminous efficiency of the light emitting element of the present embodiment is more excellent. ..
  • n T1 is usually an integer of 0 or more and 10 or less, and is preferably an integer of 0 or more and 5 or less, and more preferably an integer of 0 or more and 3 or less because the luminous efficiency of the light emitting element of the present embodiment is more excellent. Yes, more preferably an integer of 0 or more and 2 or less, and particularly preferably 0 or 1.
  • the monovalent heterocyclic group in Ar T1 is preferably a monovalent donor type heterocyclic group.
  • the number of nitrogen atoms in the monovalent donor heterocyclic group is usually 1 to 10, preferably 1 to 5, more preferably 1 to 3, and even more preferably 1 or 2.
  • the number of carbon atoms constituting the ring is usually 1 to 60, preferably 3 to 50, more preferably 5 to 40, still more preferably 7 to 30. It is particularly preferably 10 to 25.
  • the number of heteroatoms constituting the ring is usually 1 to 30, preferably 1 to 10, more preferably 1 to 5, and even more preferably 1 to 3. Is.
  • a group obtained by removing one hydrogen atom directly bonded to a ring-constituting atom (preferably a carbon atom or a nitrogen atom, more preferably a nitrogen atom) from carbazole, indolocarbazole or indenocarbazole, and these groups are used. It may have a substituent.
  • the example and preferred range of the substituted amino group in Ar T1 is the same as the example and preferred range of the substituted amino group in the substituent that Ar T1 may have, which will be described later.
  • Preferred substituents that Ar T1 may have include an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, an aryloxy group, a monovalent heterocyclic group, a substituted amino group and a halogen. It is an atomic or cyano group, more preferably an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, a monovalent heterocyclic group or a substituted amino group, and more preferably an alkyl group or a cycloalkyl group. It is a group, an aryl group, a monovalent heterocyclic group or a substituted amino group, and these groups may further have a substituent.
  • the aryl group in the substituent that Ar T1 may have is preferably a hydrogen atom 1 directly bonded to an atom constituting the ring from a monocyclic or bicyclic to 7-ring aromatic hydrocarbon. It is a group excluding the number of atoms, and more preferably a ring is composed of a monocyclic or bicyclic to 5-ringed (preferably monocyclic, bicyclic or tricyclic) aromatic hydrocarbon. It is a group excluding one hydrogen atom directly bonded to an atom, and more preferably a group excluding one hydrogen atom directly bonded to an atom constituting a ring from benzene, naphthalene, anthracene, phenanthrene or fluorene.
  • the monovalent heterocyclic group in the substituent that Ar T1 may have is preferably hydrogen directly bonded to an atom constituting the ring from a monocyclic or bicyclic to 7-cyclic heterocyclic compound. It is a group excluding one atom, and more preferably a ring is composed of a monocyclic or bicyclic to 5-cyclic (preferably monocyclic, bicyclic or tricyclic) heterocyclic compound.
  • the substituent of the amino group is preferably an aryl group or a monovalent heterocyclic group, more preferably an aryl group, and these groups are further substituted. It may have a group.
  • the examples and preferred ranges of aryl groups in the substituents of the amino group are the same as the examples and preferred ranges of aryl groups in the substituents that Ar T1 may have.
  • the example and preferred range of the monovalent heterocyclic group in the substituent of the amino group is the same as the example and preferred range of the monovalent heterocyclic group in the substituent which Ar T1 may have.
  • substituent that the substituent that Ar T1 may have may further have, an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, an aryloxy group and a monovalent group are preferable.
  • an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, an aryloxy group and a monovalent group are preferable.
  • a heterocyclic group, a substituted amino group, a halogen atom or a cyano group more preferably an alkyl group, a cycloalkyl group, an aryl group, a monovalent heterocyclic group or a substituted amino group, and even more preferably an alkyl group.
  • aryl group it is an aryl group, and these groups may further have a substituent, but it is preferable that the group does not further have a substituent.
  • Examples and preferred ranges of aryl groups, monovalent heterocyclic groups and substituted amino groups in the substituents that the substituents that Ar T1 may have may further have in Ar T1 respectively. It is the same as the example and preferable range of the aryl group, the monovalent heterocyclic group and the substituted amino group in the substituent which may be used.
  • n T2 is an integer of 1 or more
  • at least one of n T2 Ar T1s preferably has a substituted amino group or a substituent because the luminous efficiency of the light emitting element of the present embodiment is more excellent. It may be a monovalent donor type heterocyclic group, and more preferably a monovalent donor type heterocyclic group.
  • LT1 is preferably an alkylene group, a cycloalkylene group, an arylene group or a divalent heterocyclic group, and more preferably an arylene group or a divalent complex, because the light emitting element of the present embodiment has more excellent light emitting efficiency. It is a ring group, more preferably an arylene group, and these groups may have a substituent.
  • the arylene group in LT1 is preferably a group obtained by removing two hydrogen atoms directly bonded to the atoms constituting the ring from the monocyclic or bicyclic to 6-ring aromatic hydrocarbons.
  • It is preferably a group obtained by removing two hydrogen atoms directly bonded to the atoms constituting the ring from a monocyclic, bicyclic or tricyclic aromatic hydrocarbon, and more preferably benzene, naphthalene or anthracene. , Phenantrene or fluorene from which two hydrogen atoms directly bonded to the atoms constituting the ring are removed, particularly preferably a phenylene group, and these groups may have a substituent.
  • the divalent heterocyclic group in LT1 is preferably a hydrogen atom 2 directly bonded to a ring-constituting atom (preferably a carbon atom) from a monocyclic or bicyclic to 6-cyclic heterocyclic compound.
  • the aromatic hydrocarbon having an electron-attracting group means an aromatic hydrocarbon having an electron-attracting group as a substituent, and the aromatic hydrocarbon is a substitution other than the electron-attracting group. It may have a group.
  • the number of electron-attracting groups contained in the aromatic hydrocarbon is usually 1 to 20, preferably 1 to 10, and more preferably 1.
  • the number is ⁇ 7, more preferably 1 to 5, and particularly preferably 1 to 3.
  • Examples of the electron-attracting group include an alkyl group having a fluorine atom as a substituent, a fluorine atom, a cyano group, a nitro group, an acyl group and a carboxyl group, and preferably a cyano group and a fluorine atom as a substituent. It is an alkyl group or a fluorine atom having, more preferably a cyano group.
  • the alkyl group having a fluorine atom as a substituent is preferably a trifluoromethyl group, a pentafluoroethyl group, a perfluorobutyl group, a perfluorohexyl group or a perfluorooctyl group.
  • the aromatic hydrocarbon group in the aromatic hydrocarbon group containing an electron-attracting group is preferably a monocyclic or bicyclic to 6-ring aromatic hydrocarbon directly bonded to an atom constituting the ring. It is a group excluding one or more hydrogen atoms, more preferably one or more hydrogen atoms directly bonded to the atoms constituting the ring from a monocyclic, two-ring or three-ring aromatic hydrocarbon. It is a group excluding one or more hydrogen atoms directly bonded to an atom constituting a ring from benzene, naphthalene, anthracene, phenanthrene or fluorene, and more preferably a group constituting a ring from benzene. It is a group excluding one or more hydrogen atoms directly bonded to the atom, and these groups may have a substituent other than the electron-attracting group.
  • aromatic hydrocarbons having an electron-withdrawing group examples include the following compounds.
  • the group B group is not the group C group and the group D group described later.
  • a bicyclic or tricyclic aromatic hydrocarbon containing a group represented by ⁇ C ( O) ⁇ in the ring, and more preferably naphthoquinone, anthraquinone, phenantquinone, indenone. , Fluolenone or tetralone, more preferably anthraquinone, phenanthquinone or fluorenone, these aromatic hydrocarbons may have substituents.
  • the total number of compounds is usually 1 to 20, preferably 1 to 10, more preferably 1 to 5, and even more preferably 1 to 3.
  • the number of carbon atoms constituting the ring is usually 1 to 60, preferably 2 to 40, and more preferably 3 to 20.
  • the number of heteroatoms constituting the ring is usually 1 to 30, preferably 1 to 10, more preferably 1 to 5, and further preferably 1 to 3. .
  • the acceptor-type heterocyclic compound is preferably a monocyclic or 2- to 5-cyclic heterocyclic compound, and more preferably oxadiazole, thiadiazol, pyridine, diazabenzene, triazine, azanaphthalene, diazanaphthalene.
  • Ppyridine, diazabenzene, triazine, dibenzothiophene dioxide, dibenzothiophene oxide or dibenzopyranone, and these heterocyclic compounds may have a substituent.
  • the group C group is not the group D group described later.
  • Ar T2 is preferably a group selected from Group C.
  • Ar T2 may have a substituent other than the group represented by the formula (T-1-1).
  • the substituent is preferably an alkyl group, a cycloalkyl group, an alkoxy group, and a cycloalkoxy group, and more preferably an alkyl group or a cycloalkyl group.
  • n T2 is usually an integer of 0 or more and 10 or less, and is preferably an integer of 0 or more and 7 or less, and more preferably an integer of 0 or more and 5 or less because the luminous efficiency of the light emitting element of the present embodiment is excellent. .. More preferably, it is an integer of 1 or more and 4 or less, and may be 2 or 3.
  • a compound having a group selected from the D group includes a compound in which a group selected from the D group and a hydrogen atom are bonded (that is, a boron atom, a phosphorus atom, an aluminum atom, a gallium atom, a silicon atom, an arsenic atom or a germanium atom). It may be a heterocyclic compound), or it may be a compound in which a group selected from the D group and a group represented by one or more formulas (T-1-1) are bonded, and these compounds may be used. It may have a substituent.
  • the number of groups represented by the formula (T-1-1) bonded to the group selected from the D group is usually an integer of 0 or more and 10 or less, and this embodiment. Since the light emitting element of the form is excellent in light emitting efficiency, it is preferably an integer of 0 or more and 7 or less, and more preferably an integer of 0 or more and 5 or less. More preferably, it is an integer of 0 or more and 4 or less, and may be 0 or 1.
  • the total number of atoms is usually 1 to 20, preferably 1 to 10, more preferably 1 to 5, and even more preferably 1 to 3.
  • the number of carbon atoms in a heterocyclic compound containing a boron atom, a phosphorus atom, an aluminum atom, a gallium atom, a silicon atom, an arsenic atom or a germanium atom of the D group does not include the carbon atom number of the substituent and is usually 1 to 1. It is 60, preferably 5 to 40, and more preferably 10 to 25.
  • the heterocyclic compound may contain an oxygen atom, a nitrogen atom, a sulfur atom, a selenium atom and the like.
  • the heterocyclic compound containing a boron atom, a phosphorus atom, an aluminum atom, a gallium atom, a silicon atom, an arsenic atom or a germanium atom of the D group includes a boron atom, a phosphorus atom, an aluminum atom, a gallium atom, a silicon atom, an arsenic atom and a germanium. It is preferably a heterocyclic compound having one or more selected from a group of atoms and a fused heterocyclic skeleton (b) containing a nitrogen atom in the ring.
  • At least one of the nitrogen atoms contained in the fused heterocyclic skeleton (b) is preferably a nitrogen atom that does not form a double bond, and the fused heterocyclic skeleton. It is more preferable that all of the nitrogen atoms contained in (b) are nitrogen atoms that do not form a double bond.
  • the number of carbon atoms of the condensed heterocyclic skeleton (b) is usually 1 to 60, preferably 5 to 40, and more preferably 10 to 25, not including the number of carbon atoms of the substituent.
  • the heteroatom number of the fused heterocyclic skeleton (b) does not include the heteroatom number of the substituent, and is usually 2 to 30, preferably 2 to 15, more preferably 2 to 10, and even more preferably. Is 2 to 5, and particularly preferably 2 or 3.
  • the total number of boron atom, phosphorus atom, aluminum atom, gallium atom, silicon atom, arsenic atom, and germanium atom in the fused heterocyclic skeleton (b) is usually 1 to 10 without including the case of being contained in the substituent.
  • the fused heterocyclic skeleton (b) is usually 1 to 20, preferably 1 to 10, more preferably 1 to 5, and even more preferably 1 to 20, not including the number of nitrogen atoms of the substituent. Is 1 to 3, and particularly preferably 2.
  • the condensed heterocyclic skeleton (b) is preferably a 3 to 12 ring type fused heterocyclic skeleton, and more preferably a 3 to 6 ring type condensed heterocyclic skeleton because the light emitting efficiency of the light emitting element of the present embodiment is more excellent. Yes, more preferably a pentacyclic condensed heterocyclic skeleton.
  • nitrogen atom that does not form a double bond means a nitrogen atom that is single-bonded to each of the other three atoms.
  • Containing a nitrogen atom that does not form a double bond in the ring means -N (-RN)-(in the formula, RN represents a hydrogen atom or a substituent) or. formula: It means that it contains a group represented by.
  • a compound represented by the formula (D-1) is preferable.
  • Examples of the heterocyclic compound containing a boron atom, a phosphorus atom, an aluminum atom, a gallium atom, a silicon atom, an arsenic atom or a germanium atom in Group D include a heterocyclic compound containing a boron atom and a heterocyclic compound containing a phosphorus atom.
  • a heterocyclic compound containing a boron atom is more preferable.
  • the alkyl group and the aryl group are preferable because the light emitting efficiency of the light emitting element of the present embodiment is more excellent. It is a monovalent heterocyclic group or a substituted amino group, more preferably an alkyl group, an aryl group, or a substituted amino group, and these groups may have a substituent.
  • Examples of the detailed structure (CA) of the A ring include structures represented by the formulas (CA01) to (CA38), and the luminous efficiency of the light emitting element of the present embodiment is more excellent, so that the formula (CA01) is preferable. It is a structure represented by the formula (CA01) to the formula (CA19), more preferably a structure represented by the formula (CA01) to the formula (CA05), and further preferably a structure represented by the formula (CA01). be.
  • RY2 and Ra have the same meanings as described above.
  • RY4 represents a hydrogen atom, an alkyl group, a cycloalkyl group or an aryl group, and these groups may have a substituent. When there are a plurality of RY4s , they may be the same or different.
  • the hydrogen atom in the formula may be replaced with a substituent which the A ring may have.
  • Examples of the detailed structure (CB) of the B ring include structures represented by the formulas (CB01) to (CB24), and the luminous efficiency of the light emitting element of the present embodiment is excellent, so that the formula (CB01) is preferable.
  • Examples of the detailed structure (CC) of the C ring include structures represented by the formulas (CC01) to (CC24), preferably structures represented by the formulas (CC01) to the formula (CC13). , More preferably, it is a structure represented by the formulas (CC01) to (CC05), and even more preferably, it is a structure represented by the formula (CC01).
  • RY2, RY4 and Ra have the same meanings as described above. The hydrogen atom may be replaced with a substituent which the C ring may have. ]
  • RY2 is preferably both an alkyl group or a cycloalkyl group, both an aryl group and both monovalent heterocyclic groups, or one is an alkyl group or a cycloalkyl group and the other is an aryl group or a monovalent group. It is a heterocyclic group, more preferably one is an alkyl group or a cycloalkyl group and the other is an aryl group, and these groups may have a substituent.
  • the group represented by -C ( RY2 ) 2- When two RY2s in a group represented by -C ( RY2 ) 2- are bonded to each other to form a ring together with the carbon atom, the group represented by -C ( RY2 ) 2- , Preferably a group represented by the formulas (Y-A1) to (Y-A5), more preferably a group represented by the formula (Y-A4), and these groups have a substituent. May be.
  • the group represented by -C (RY2) C (RY2)-.
  • the combination of the two RY2s is preferably both an alkyl group or a cycloalkyl group, or one is an alkyl or cycloalkyl group and the other is an aryl group, and these groups have substituents. May be good.
  • formulas (CA13) to (CA16) formulas (CB11), formulas (CB12), formulas (CC11) and formulas ( CC12 ), they are represented by -C ( RY2 ) 2 -C (RY2) 2- .
  • the four RY2s in the group are preferably an alkyl group which may have a substituent or a cycloalkyl group which may have a substituent.
  • a plurality of RY2s may be bonded to each other to form a ring together with the carbon atom to which each bond is formed.
  • RY2 When RY2 forms a ring, -C (RY2) 2 - C ( RY2 ) 2--
  • the group represented by is preferably a group represented by the formulas (Y-B1) to (Y-B5), more preferably a group represented by the formula (Y-B3), and these groups. May have a substituent. [In the formula, RY2 has the same meaning as described above. ]
  • RY4 is preferably an alkyl group, a cycloalkyl group, an alkoxy group or a cycloalkoxy group.
  • the light emitting efficiency of the light emitting element of the present embodiment is more excellent, so that the A ring is preferably represented by the formulas (CA01) to (CA05).
  • the B ring is a structure represented by the formulas (CB01) to (CB05), and the C ring is a structure represented by the formulas (CC01) to the formula (CC05), which is more preferable.
  • the A ring is represented by the formula (CA01)
  • the B ring is a structure represented by the formulas (CB01) to (CB05)
  • the C ring is a structure represented by the formulas (CC01) to the formula (CC05).
  • the A ring is represented by the formula (CA01)
  • the B ring is represented by the formula (CB01)
  • the C ring is represented by the formula (CB01). It is a structure represented by CC01).
  • N3 is preferably 0 because the external quantum efficiency of the light emitting device of this embodiment is more excellent.
  • Y 2 and Y 3 are preferably -N (-Ry)-or a sulfur atom, and more preferably -N (-Ry)-.
  • At least one of Y 2 and Y 3 is preferably -N (-Ry)-because the luminous efficiency of the present embodiment is more excellent, and both Y 2 and Y 3 are -N (-Ry)-. Is more preferable. However, when n3 is 0, Y2 is preferably ⁇ N ( ⁇ Ry ) ⁇ .
  • Ry is more excellent in the light emitting efficiency of the light emitting element of the present embodiment, it is preferable that it has a hydrogen atom, an aryl group which may have a substituent, or a monovalent complex which may have a substituent. It is a ring group, more preferably a hydrogen atom or an aryl group which may have a substituent, and more preferably an aryl group which may have a substituent.
  • the linking group includes, for example, a divalent group such as —O—, —S—, —CH2- , and boron.
  • Examples include trivalent groups such as atoms.
  • Ry When Ry is attached to the A, B or C ring via a trivalent group, it is usually linked to the A ring and the substituent on the A ring, or to the B ring and the substituent on the B ring. Or, it is linked to the C ring and the substituent on the C ring.
  • the molecular weight of the small molecule compound (SM1) is preferably 1 ⁇ 10 2 to 5 ⁇ 10 3 , more preferably 2 ⁇ 10 2 to 3 ⁇ 10 3 , and even more preferably 3 ⁇ 10 2 to 1.5. It is ⁇ 10 3 , and particularly preferably 4 ⁇ 10 2 to 1 ⁇ 10 3 .
  • Examples of the small molecule compound (SM1) include compounds represented by the following formulas.
  • Z 2 represents an oxygen atom or a sulfur atom.
  • a plurality of Z 1 and Z 2 may be the same or different from each other.
  • Z 2 is preferably an oxygen atom.
  • the small molecule compound (SM1) is described in Aldrich, Lumisense Technology Corp. It is available from etc.
  • Examples of the structural unit consisting of a group consisting of a small molecule compound (SM1) excluding a hydrogen atom include formulas (MC1-1) to formulas (MC1-3) and formulas (MC2-1) to formulas (MC2-8). , And the structural units represented by the formulas (MC3-1) to (MC3-5).
  • n T1 , LT1 , Ar T1 and Ar T2 have the same meanings as described above.
  • Ar L2 represents an arylene group or a divalent heterocyclic group, and these groups may have a substituent.
  • Ar L3 is a group obtained by removing three hydrogen atoms from an aromatic hydrocarbon ring or an aromatic heterocycle.
  • Ar T1' is a group obtained by removing one hydrogen atom from Ar T1 .
  • Ar T2' is a group from which one hydrogen atom has been removed from Ar T2 , a group from which two hydrogen atoms have been removed, or a group selected from the D group.
  • Ar T2'' is a group selected from the D group]
  • R 1T represents a hydrogen atom, an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, a halogen atom, a cyano group, or a group represented by the formula (T1-1-1), and these groups are substituted. It may have a group.
  • RTS is a hydrogen atom, an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, an aryloxy group, a monovalent heterocyclic group, a substituted amino group, a halogen atom or a cyano group, and these groups. May further have a substituent.
  • a plurality of RTSs may be the same or different.
  • the R TS is preferably a hydrogen atom, an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, a monovalent heterocyclic group, a substituted amino group or a cyano group, and is preferably a hydrogen atom, an alkyl group or 1 More preferably, it is a valent heterocyclic group.
  • Examples and preferred ranges of the aryl group represented by RTS , the monovalent heterocyclic group and the substituted amino group, respectively, are the aryl group in the substituent which Ar T1 may have and the monovalent heterocyclic group and the substituted amino group, respectively. Same as the example and preferred range of substituted amino groups.
  • a X1 is preferably 2 or less, more preferably 0 or 1, and further preferably 0. Since the luminous efficiency of the light emitting element of the present embodiment is more excellent, a X2 is preferably 2 or less, and more preferably 0.
  • RX1 , RX2 and RX3 are preferably an alkyl group, a cycloalkyl group, an aryl group or a monovalent heterocyclic group, more preferably an aryl group, and these groups have a substituent. May be good.
  • Examples and preferred ranges of the arylene group represented by Ar X1 , Ar X2 , Ar X3 and Ar X4 and the divalent heterocyclic group are the preferred range of the arylene group represented by Ar Y1 and [common]. Explanation of terms] is a preferable range of the divalent heterocyclic group described in.
  • Examples and preferred examples of arylene groups and divalent heterocyclic groups in a divalent group in which at least one arylene group represented by Ar X2 and Ar X4 and at least one divalent heterocyclic group are directly bonded are the preferred range of the arylene group represented by Ar Y1 , and the preferred range of the divalent heterocyclic group described in [Explanation of Common Terms], respectively.
  • the divalent groups in which at least one arylene group represented by Ar X2 and Ar X4 and at least one divalent heterocyclic group are directly bonded are represented by the formulas (A-1) to (A-20).
  • Ar X1 , Ar X2 , Ar X3 and Ar X4 are preferably arylene groups which may have a substituent.
  • Examples and preferred ranges of substituents represented by Ar X1 to Ar X4 and RX1 to RX3 may include examples of substituents represented by Ar Y1 and preferred ranges. Same as range.
  • the structural unit represented by the formula (X) is preferably a structural unit represented by the formulas (X-1) to (X-7).
  • RX4 and RX5 are independently hydrogen atom, alkyl group, cycloalkyl group, alkoxy group, cycloalkoxy group, aryl group, aryloxy group, halogen atom, monovalent heterocyclic group or cyano. Representing groups, these groups may have substituents.
  • a plurality of RX4s existing may be the same or different, or may be bonded to each other to form a ring together with the carbon atom to which each is bonded.
  • a plurality of RX5s existing may be the same or different, or may be bonded to each other to form a ring together with the carbon atom to which each is bonded.
  • Examples of the structural unit represented by the formula (X) include the structural units represented by the formulas (X1-1) to (X1-15).
  • the structural unit (SM1) is used.
  • the total amount is preferably 0.01 to 50 mol%, more preferably 0.1, with respect to the total amount of the structural units contained in the polymer compound because the light emitting efficiency of the light emitting element of the present embodiment is excellent. It is about 30 mol%, more preferably 0.5 to 15 mol%, and particularly preferably 1 to 15 mol%.
  • the polymer compound may further have a repeating unit represented by the formula (Y-2).
  • Ar Y2 is a divalent heterocyclic group which may have a substituent.
  • the divalent heterocyclic group in the formula (Y-2) is preferably a group represented by the formulas (AA-1) to (AA-15) and the formulas (AA-18) to (AA-34). be.
  • a divalent heterocyclic group includes a group in which a plurality of these groups are bonded.
  • polymer compound examples include the following polymer compounds P-1 to P-4.
  • the "other" structural unit is represented by the structural unit (SM1), the structural unit represented by the formula (X), the structural unit represented by the formula (Y), and the formula (Y-2). It means a structural unit other than a structural unit.
  • the polymer compound may be any of a block copolymer, a random copolymer, an alternating copolymer, a graft copolymer, and other embodiments, but a plurality of kinds of raw material monomers are used together. It is preferably a copolymer obtained by polymerizing.
  • the polystyrene-equivalent weight average molecular weight of the polymer compound is preferably 5 ⁇ 10 3 to 1 ⁇ 10 6 , and more preferably 1.5 ⁇ 10 4 to 1 ⁇ 10 5 .
  • the polymer compound is, for example, a compound represented by the formula (M-1), a compound represented by the formula (M-2), and a compound represented by the formulas (MT-1) to (MT-4). It can be produced by condensation polymerization with at least one compound.
  • Ar Y , Ar T1 , Ar T2 , Ar T1' , Ar T2' , Ar L2 , LT1 and n T1 have the same meanings as described above.
  • Z C1 to Z C4 and Z C9 to Z C11 each independently represent a group selected from the group consisting of the substituent A group and the substituent B group, respectively.
  • Z C1 and Z C2 are groups selected from the substituent A group
  • Z C3 , Z C4 and Z C9 to Z C11 each select a group selected from the substituent B group.
  • Z C1 and Z C2 are groups selected from the substituent B group
  • Z C3 , Z C4 and Z C9 to Z C11 select a group selected from the substituent A group.
  • ⁇ Substituent A group> Chlorine atom, bromine atom, iodine atom, —OS ( O) 2 RC1 (in the formula, RC1 represents an alkyl group, a cycloalkyl group or an aryl group, and these groups have a substituent. It may be.).
  • RC2 represents a hydrogen atom, an alkyl group, a cycloalkyl group or an aryl group, and these groups may have a substituent.
  • a plurality of RC2s present may be present.
  • -BF 3 A group represented by Q'(in the formula, Q'represents Li, Na, K, Rb or Cs); -A group represented by MgY'(in the formula, Y'represents a chlorine atom, a bromine atom or an iodine atom); -A group represented by ZnY'' (wherein Y'' represents a chlorine atom, a bromine atom or an iodine atom; and -Sn (RC3) 3 (In the formula, RC3 represents a hydrogen atom, an alkyl group, a cycloalkyl group or an aryl group, and these groups may have a substituent. A plurality of RC3s present may be present. The groups may be the same or different, and may be linked to each other to form a ring structure together with the tin atoms to
  • the compound having a group selected from the substituent A group and the compound having a group selected from the substituent B group are subjected to condensation polymerization by a known coupling reaction to form a group selected from the substituent A group and a substituent B group.
  • the carbon atoms that bond with the group selected from are bonded to each other. Therefore, if a compound having two groups selected from the substituent A group and a compound having two groups selected from the substituent B group are subjected to a known coupling reaction, the compounds are condensed by condensation polymerization. A polymer can be obtained.
  • Condensation polymerization is usually carried out in the presence of a catalyst, a base and a solvent, but if necessary, a phase transfer catalyst may coexist.
  • the catalyst examples include bis (triphenylphosphine) palladium (II) dichloride, bis (tris-o-methoxyphenylphosphine) palladium (II) dichloride, tetrakis (triphenylphosphine) palladium (0), and tris (dibenzilidenacetone).
  • Dipalladium (0), palladium complex such as palladium acetate, tetrakis (triphenylphosphine) nickel (0), [1,3-bis (diphenylphosphino) propane) nickel (II) dichloride, bis (1,4-) Transitional metal complexes such as cyclooctadiene) nickel (0) and other nickel complexes; these transitional metal complexes further include triphenylphosphine, tri (o-tolyl) phosphine, tri (tert-butyl) phosphine, tricyclohexylphosphine, etc. Examples thereof include complexes having ligands such as 1,3-bis (diphenylphosphino) propane and bipyridyl.
  • the catalyst may be used alone or in combination of two or more.
  • the amount of the catalyst used is usually 0.00001 to 3 molar equivalents as the amount of the transition metal with respect to the total number of moles of the raw material monomers.
  • Examples of the base and phase transfer catalyst include inorganic bases such as sodium carbonate, potassium carbonate, cesium carbonate, potassium fluoride, cesium fluoride, and tripotassium phosphate; tetrabutylammonium fluoride, tetraethylammonium hydroxide, and tetra hydroxide.
  • Organic bases such as butylammonium; phase transfer catalysts such as tetrabutylammonium chloride and tetrabutylammonium bromide can be mentioned.
  • the base and the phase transfer catalyst may be used alone or in combination of two or more.
  • the amount of the base and the phase transfer catalyst used is usually 0.001 to 100 molar equivalents with respect to the total number of moles of the raw material monomers, respectively.
  • the solvent examples include organic solvents such as toluene, xylene, mesitylene, tetrahydrofuran, 1,4-dioxane, dimethoxyethane, N, N-dimethylacetamide, N, N-dimethylformamide, and water.
  • organic solvents such as toluene, xylene, mesitylene, tetrahydrofuran, 1,4-dioxane, dimethoxyethane, N, N-dimethylacetamide, N, N-dimethylformamide, and water.
  • the solvent may be used alone or in combination of two or more.
  • the amount of the solvent used is usually 10 to 100,000 parts by mass with respect to 100 parts by mass of the total amount of the raw material monomers.
  • the reaction temperature of condensation polymerization is usually -100 to 200 ° C.
  • the reaction time of condensation polymerization is usually 1 hour or more.
  • the post-treatment of the polymerization reaction is carried out by a known method, for example, a method of removing water-soluble impurities by separating liquids, a reaction liquid after the polymerization reaction is added to a lower alcohol such as methanol, the precipitated precipitate is filtered, and then dried.
  • the method of making the mixture is used alone or in combination.
  • the purity of the polymer compound is low, it can be purified by a usual method such as crystallization, reprecipitation, continuous extraction with a Soxhlet extractor, and column chromatography.
  • the difference (also referred to as ⁇ EST ) between the energy level in the lowest excited triplet state and the energy level in the lowest excited singlet state of the low molecular weight compound (SM2) is 0.50 eV or less.
  • the ⁇ EST of the small molecule compound (SM2) is preferably 0.46 eV or less, more preferably 0.40 eV or less, still more preferably 0.40 eV or less, because the luminous efficiency of the light emitting element of the present embodiment is more excellent. It is 0.35 eV or less, particularly preferably 0.30 eV or less, particularly preferably 0.25 eV or less, and particularly more preferably 0.20 eV or less. Further, the ⁇ EST of SM2 may be 0.001 eV or more, 0.005 eV or more, 0.01 eV or more, or 0.05 eV or more.
  • the small molecule compound is preferably a compound having thermal activated delayed fluorescence (TADF).
  • ⁇ EST For the ⁇ EST of the small molecule compound (SM2), Gaussian 09, which is a quantum chemistry calculation program, can be used.
  • ⁇ EST can be calculated by using the B3LYP level time-dependent density functional theory after structurally optimizing the ground state of the compound using the B3LYP level density functional theory.
  • 6-31G * is usually used, but if the compound contains an atom that cannot use 6-31G *, LANL2DZ can be used for the atom.
  • the small molecule compound (SM2) is preferably a compound represented by the formula (T-11) or a compound having a group selected from the G group because the luminous efficiency of the light emitting element of the present embodiment is more excellent. ..
  • the preferred range and examples of Ar T3 in the formula (T-11) are the same as the preferred range and examples of Ar T1 in the formula (T-1).
  • the preferred range and examples of Ar T4 in the formula (T-11) are the same as the preferred range and examples of Ar T2 in the formula (T-1).
  • the E group is not the F group and the G group, and the F group is not the G group.
  • the preferred range and examples of LT2 in the formula ( T -11) are the same as the preferred range and examples of LT1 in the formula ( T -1).
  • the preferred range of n T3 in the formula (T-11) is the same as the preferred range of n T1 in the formula (T-1).
  • n T4 in the formula (T-11) is the same as the preferred range of n T2 in the formula (T-1).
  • the preferred range and examples of the compound represented by the formula (T-11) are the same as the preferred range and examples of the compound represented by the formula (T-1).
  • the preferred range and examples of the groups selected from the G group are the same as the preferred range and examples of the groups selected from the D group.
  • the preferred range and examples of the compound having a group selected from the group G are the same as the preferable range and the examples of the compound having a group selected from the group D.
  • the small molecule compound (SM2) is preferably a compound represented by the formula (D-11) because the luminous efficiency of the light emitting element of the present embodiment is more excellent.
  • the preferred range and examples of the E ring in the formula (D-11) are the same as the preferred range and the examples of the A ring in the formula (D-1).
  • the preferred range and illustration of the F ring in the formula (D-11) are the same as the preferred range and the example of the B ring in the formula (D-1).
  • the preferred range and examples of the G-ring in the formula (D-11) are the same as the preferred range and the examples of the C-ring in the formula (D-1).
  • the preferred range of X 2 in the formula (D-11) is the same as the preferred range of X in the formula (D-1).
  • the preferred range of Y 4 in the formula (D-11) is the same as the preferred range of Y 1 in the formula (D-1).
  • the preferred range of Y 5 in the formula (D-11) is the same as the preferred range of Y 2 in the formula (D-1).
  • the preferred range of Y 6 in the formula (D-11) is the same as the preferred range of Y 3 in the formula (D-1).
  • n6 is preferably 0.
  • the preferred range and examples of the compound represented by the formula (D-11) are the same as the preferred range and examples of the compound represented by the formula (D-1).
  • composition contains a polymer compound, and the absolute value of the difference between the energy level in the lowest triplet excited state and the energy level in the lowest singlet excited state is 0 in the composition.
  • structures There are two or more types of structures (SM0) in which one or more hydrogen atoms are removed from a low molecular weight compound having a value of .50 eV or less. That is, in the composition of the present embodiment, the structure (SM0) may be present as a structural unit (SM1) in the polymer compound and as a small molecule compound (SM2) (hereinafter, such as this).
  • SM1 structural unit
  • SM2 small molecule compound
  • the structure (SM0) is used as a structural unit (SM1-1) in the first polymer compound and a structural unit (SM1-2) in the second polymer compound. ) May be present (hereinafter, such a composition is referred to as a second form of the composition).
  • the excellent luminous efficiency of the light emitting element is realized by the physical, chemical or electrical interaction of the two structures (SM0).
  • the present inventor has designed a design in which two structures (SM0) interact efficiently, physically, chemically or electrically (particularly, a design in which they interact efficiently electrically). investigated.
  • the intermolecular distance between one of the two structures (SM0) and the other of the two structures (SM0) is considered important, and the two structures (SM0)
  • the two structures (SM0) We paid attention to the content of SM0) per unit mass and its ratio. More specifically, by designing the content per unit mass and its ratio to have the relationship shown later, the electric energy can be rapidly transferred to one of the two structures (SM0).
  • the light emitting characteristics (particularly the light emitting efficiency) of the light emitting element are better because of the movement.
  • the structural unit (SM1-1) is a structural unit obtained by removing one or more hydrogen atoms from the small molecule compound (SM1-1), and the preferable range and examples of the small molecule compound (SM1-1) are low. The same is true for the preferred range and examples of the molecular compound (SM1).
  • the structural unit (SM1-2) is a structural unit formed by removing one or more hydrogen atoms from the small molecule compound (SM1-2), and the preferable range and examples of the small molecule compound (SM1-2) are low. The same is true for the preferred range and examples of the molecular compound (SM1).
  • the small molecule compound (SM1-1) and the small molecule compound (SM1-2) are different.
  • the content of the structural unit (SM1) in the composition per unit mass is dSM1 (pieces / g), and the content of the low molecular weight compound (SM2) in the composition per unit mass.
  • the total value (dSM1 + dSM2) of dSM1 and dSM2 is 2.0 ⁇ 10 19 (pieces / g) or more, and 3.0 ⁇ 10 19 (pieces / g) or more. It may be 5.0 ⁇ 10 19 (pieces / g) or more, or 7.0 ⁇ 10 19 (pieces / g) or more.
  • dSM1 + dSM2 is usually 4.0 ⁇ 10 20 (pieces / g) or less, may be 3.0 ⁇ 10 20 (pieces / g) or less, and 2.5 ⁇ 10 20 (pieces / g) or less. ) It may be as follows.
  • the ratio of dSM1 (pieces / g) to dSM2 (pieces / g) is preferably within a specific range. This makes it easier for the structural unit (SM1) and the small molecule compound (SM2) to interact more efficiently physically, chemically or electrically, and emits light from a light emitting element using the composition of the present embodiment. More efficient.
  • dSM1 / dSM2 is 0.020 or more, may be 0.033 or more, may be 0.050 or more, may be 0.077 or more, and may be 0.083 or more. May be. Further, from the above viewpoint, dSM1 / dSM2 may be 50 or less, 30 or less, 20 or less, 13 or less, or 12 or less.
  • the ratio of the constituent unit (SM1) to the small molecule compound (SM2) is preferably a ratio in which at least one is larger than the other.
  • the dSM1 / dSM2 is, for example, 1.1 to 50, preferably 1.2 to 20, more preferably 1. It may be 3 to 13, more preferably 1.7 to 12.7.
  • the small molecule compound (SM2) is present in the composition in a larger amount than the structural unit (SM1), the dSM1 / dSM2 is, for example, 0.020 to 0.91, preferably 0.050 to 0.83. , More preferably 0.077 to 0.77, still more preferably 0.079 to 0.59. Having such a relationship facilitates more efficient physical, chemical, or electrical interaction between the structural unit (SM1) and the small molecule compound (SM2), and the composition of the present embodiment. The luminous efficiency of the light emitting element using the above is more excellent.
  • the content of the structural unit (SM1-1) in the composition per unit mass is dSM1a (pieces / g), and the content per unit mass of the structural unit (SM1-2) in the composition.
  • the content of dSM1b (pieces / g) the total number of dSM1a and dSM1b (dSM1a + dSM1b) is 2.0 ⁇ 10 19 (pieces / g) or more, and 3.0 ⁇ 10 19 (pieces / g).
  • dSM1a + dSM1b is usually 4.0 ⁇ 10 20 (pieces / g) or less, may be 3.0 ⁇ 10 20 (pieces / g) or less, and 2.5 ⁇ 10 20 (pieces / g) or less. ) It may be as follows.
  • the ratio of dSM1a (pieces / g) to dSM1b (pieces / g) is preferably within a specific range. This makes it easier for the structural unit (SM1-1) and the structural unit (SM1-2) to interact more efficiently physically, chemically or electrically, and emits light using the composition of the present embodiment.
  • the luminous efficiency of the element is better.
  • dSM1a / dSM1b is 0.020 or more, may be 0.033 or more, may be 0.050 or more, may be 0.077 or more, and may be 0.083 or more. May be. Further, from the above viewpoint, dSM1a / dSM1b may be 50 or less, 30 or less, 20 or less, 13 or less, or 12 or less.
  • the ratio of the constituent unit (SM1-1) and the constituent unit (SM1-2) is such that at least one is larger than the other.
  • dSM1a / dSM1b is, for example, 1.1 to 50, preferably 1.2 to 20, more preferably. May be 1.3 to 13, more preferably 1.7 to 12.7.
  • the structural unit (SM1-2) is present in the composition more than the structural unit (SM1-1)
  • the dSM1 / dSM2 is, for example, 0.020 to 0.91, preferably 0.050 to 0.91. It may be 0.83, more preferably 0.077 to 0.77, and even more preferably 0.079 to 0.59.
  • composition of the present embodiment may further contain materials other than the above.
  • the composition of the present embodiment further comprises at least one material selected from the group consisting of hole transporting materials, hole injecting materials, electron transporting materials, electron injecting materials, light emitting materials and antioxidants. May be good.
  • Hole transport materials are classified into low molecular weight compounds and high molecular weight compounds.
  • polymer compound examples include polyvinylcarbazole and its derivatives; polyarylene having an aromatic amine structure in its side chain or main chain and its derivatives, and polymer compounds containing a structural unit represented by the formula (X). Can be mentioned.
  • the polymer compound may be a compound to which an electron accepting site is bound. Examples of the electron-accepting site include fullerene, tetrafluorotetracyanoquinodimethane, tetracyanoethylene, and trinitrofluorenone, and fullerene is preferable.
  • the blending amount of the hole transport material is usually 1 to 400 parts by mass, preferably 5 to 150 parts by mass, when the polymer compound in the present embodiment is 100 parts by mass.
  • the compounding amount of the hole transport material is usually 1 to 400 parts by mass, preferably 5 parts by mass, when the total amount of the polymer compounds in the present embodiment is 100 parts by mass. ⁇ 150 parts by mass.
  • the hole transport material may be used alone or in combination of two or more.
  • Electron transport materials are classified into low molecular weight compounds and high molecular weight compounds.
  • Examples of the low molecular weight compound include a metal complex having 8-hydroxyquinoline as a ligand, oxadiazole, anthraquinonedimethane, benzoquinone, naphthoquinone, anthraquinone, tetracyanoanthraquinonedimethane, fluorenone, diphenyldicyanoethylene and diphenoquinone. , And these derivatives.
  • polymer compound examples include polymer compounds containing one or more structural units selected from the group consisting of the structural unit represented by the formula (Y) and the structural unit represented by the formula (Y-2). Examples thereof include polyphenylene, polyfluorene, and derivatives thereof.
  • the polymer compound may be doped with a metal.
  • the blending amount of the electron transport material is usually 1 to 400 parts by mass, preferably 5 to 150 parts by mass.
  • the electron transport material may be used alone or in combination of two or more.
  • Hole injection materials and electron injection materials are classified into low molecular weight compounds and high molecular weight compounds, respectively.
  • low molecular weight compound examples include metal phthalocyanines such as copper phthalocyanine; carbon; metal oxides such as molybdenum and tungsten; and metal fluorides such as lithium fluoride, sodium fluoride, cesium fluoride and potassium fluoride.
  • metal phthalocyanines such as copper phthalocyanine
  • carbon carbon
  • metal oxides such as molybdenum and tungsten
  • metal fluorides such as lithium fluoride, sodium fluoride, cesium fluoride and potassium fluoride.
  • polymer compound examples include polyaniline, polythiophene, polypyrrole, polyphenylene vinylene, polythienylene vinylene, polyquinoline and polyquinoxaline, and derivatives thereof; conductivity of polymers having an aromatic amine structure in the main chain or side chain. Examples include sex polymers.
  • the blending amount of the hole injection material and the electron injection material is usually 1 to 400 parts by mass, preferably 5 to 150 parts by mass, respectively, when the polymer compound is 100 parts by mass.
  • the electron injection material and the hole injection material may be used alone or in combination of two or more.
  • the electric conductivity of the conductive polymer is preferably 1 ⁇ 10-5 S / cm to 1 ⁇ 10 3 S / cm. In order to keep the electric conductivity of the conductive polymer within such a range, an appropriate amount of ions can be doped into the conductive polymer.
  • the type of ion to be doped is an anion in the case of a hole injection material and a cation in the case of an electron injection material.
  • the anion include polystyrene sulfonic acid ion, alkylbenzene sulfonic acid ion, and cerebral sulfonic acid ion.
  • the cation include lithium ion, sodium ion, potassium ion and tetrabutylammonium ion.
  • the type of ion to be doped may be used alone or in combination of two or more.
  • the light emitting material is classified into a low molecular weight compound and a high molecular weight compound, and the luminous efficiency of the light emitting element of the present embodiment is more excellent. Therefore, the light emitting material is preferably a low molecular weight compound.
  • Examples of the low molecular weight compound include a fluorescent compound represented by naphthalene and its derivative, anthracene and its derivative, perylene and its derivative, and a phosphorescent compound having iridium, platinum or europium as a central metal. ..
  • Examples of the polymer compound include a phenylene group, a naphthalene diyl group, a fluorangeyl group, a phenanthreneyl group, a dihydrophenanthreneyl group, a carbazolediyl group, a phenoxazinediyl group, a phenothiazinediyl group, an anthracenediyl group, and a pyrenediyl group. Examples thereof include polymer compounds.
  • the antioxidant may be a compound that is soluble in the same solvent as the polymer compound and does not inhibit light emission and charge transport, and examples thereof include phenol-based antioxidants and phosphorus-based antioxidants.
  • the blending amount of the antioxidant is usually 0.001 to 10 parts by mass when the polymer compound is 100 parts by mass.
  • the antioxidant may be used alone or in combination of two or more.
  • composition of the present embodiment can be mixed with a solvent to produce a composition containing a solvent (hereinafter, also referred to as "first ink”), and the composition is described by a spin coating method. It can be suitably used for a wet film forming method such as an inkjet method.
  • the viscosity of the first ink may be adjusted according to the type of the wet method, but when the solution such as the inkjet method is applied to the printing method via the ejection device, clogging and flight bending at the time of ejection are unlikely to occur. Therefore, it is preferably 1 to 20 mPa ⁇ s at 25 ° C.
  • the solvent contained in the first ink is preferably a solvent capable of dissolving or uniformly dispersing the solid content in the ink.
  • the solvent include chlorine-based solvents such as 1,2-dichloroethane, 1,1,2-trichloroethane, chlorobenzene, and o-dichlorobenzene; ether solvents such as tetrahydrofuran, dioxane, anisole, and 4-methylanisol; toluene, and the like.
  • Aromatic hydrocarbon solvents such as xylene, mesitylene, ethylbenzene, n-hexylbenzene, cyclohexylbenzene; cyclohexane, methylcyclohexane, n-pentane, n-hexane, n-heptane, n-octane, n-nonane, n- Aliphatic hydrocarbon solvents such as decane, n-dodecane and bicyclohexyl; ketone solvents such as acetone, methyl ethyl ketone, cyclohexanone and acetophenone; esters such as ethyl acetate, butyl acetate, ethyl cellsolve acetate, methyl benzoate and phenyl acetate.
  • System solvent Polyhydric alcohol solvent such as ethylene glycol, glycerin, 1,2-hexanediol; Alcohol solvent such as isopropyl alcohol and cyclohexanol; Sulfoxide solvent such as dimethyl sulfoxide; N-methyl-2-pyrrolidone, N , N-Dimethylformamide and other amide-based solvents can be mentioned.
  • the solvent may be used alone or in combination of two or more.
  • the blending amount of the solvent is usually 1000 to 100,000 parts by mass when the composition of the present embodiment is 100 parts by mass.
  • the composition of the present embodiment can be used, for example, in a light emitting device having an anode, a cathode, and an organic layer provided between the anode and the cathode.
  • the layer containing the composition of the present embodiment is usually one or more layers of a light emitting layer, a hole transport layer, a hole injection layer, an electron transport layer, and an electron injection layer, and is preferably a light emitting layer. ..
  • Each of these layers contains a light emitting material, a hole transporting material, a hole injecting material, an electron transporting material, and an electron injecting material.
  • a light emitting material, a hole transporting material, a hole injecting material, an electron transporting material, and an electron injecting material are dissolved in the above-mentioned solvent to prepare and use an ink, for example, spin coating method, casting.
  • D1 Anode / hole injection layer / hole transport layer / light emitting layer / cathode
  • D2 anode / hole injection layer / hole transport layer / light emitting layer / electron injection layer / cathode
  • D3 anode / hole injection Layer / hole transport layer / light emitting layer / electron transport layer / electron injection layer / cathode
  • a low molecular weight compound is used as a method for forming each layer such as a light emitting layer, a hole transport layer, an electron transport layer, a hole injection layer, and an electron injection layer in a light emitting element, for example, a vacuum vapor deposition method from powder or a solution.
  • a method of forming a film from a molten state can be mentioned, and when a polymer compound is used, for example, a method of forming a film from a solution or a molten state can be mentioned.
  • the order, number, and thickness of the layers to be laminated may be adjusted in consideration of luminous efficiency and element life.
  • the substrate in the light emitting element may be a substrate that can form an electrode and does not chemically change when an organic layer is formed, and is, for example, a substrate made of a material such as glass, plastic, or silicon. In the case of an opaque substrate, it is preferable that the electrode farthest from the substrate is transparent or translucent.
  • Examples of the material of the anode include conductive metal oxides and translucent metals, preferably indium oxide, zinc oxide, tin oxide; indium tin oxide (ITO), indium zinc oxide and the like. Conductive compounds; composites of silver, palladium and copper (APC); NESA, gold, platinum, silver, copper.
  • Materials for the cathode include, for example, metals such as lithium, sodium, potassium, rubidium, cesium, beryllium, magnesium, calcium, strontium, barium, aluminum, zinc, indium; two or more alloys thereof; one of them. Alloys of more than one species with one or more of silver, copper, manganese, titanium, cobalt, nickel, tungsten, tin; as well as graphite and graphite intercalation compounds.
  • the alloy include magnesium-silver alloy, magnesium-indium alloy, magnesium-aluminum alloy, indium-silver alloy, lithium-aluminum alloy, lithium-magnesium alloy, lithium-indium alloy, and calcium-aluminum alloy.
  • the anode and cathode may each have a laminated structure of two or more layers.
  • the light emitting element of this embodiment is useful for, for example, a display and lighting.
  • the polystyrene-equivalent number average molecular weight (Mn) and the polystyrene-equivalent weight average molecular weight (Mw) of the polymer compound were determined by the following size exclusion chromatography (SEC) using tetrahydrofuran as the mobile phase. ..
  • SEC size exclusion chromatography
  • the polymer compound to be measured was dissolved in tetrahydrofuran at a concentration of about 0.05% by mass, and 10 ⁇ L was injected into SEC.
  • the mobile phase was run at a flow rate of 1.0 mL / min.
  • PLgel MIXED-B manufactured by Polymer Laboratories
  • a UV-VIS detector manufactured by Tosoh, trade name: UV-8320GPC was used as the detector.
  • Compound M8 was synthesized according to the method described in WO 2019/004247.
  • Compound M9 was synthesized according to the method described in International Publication No. 2012/086671.
  • Compounds M10 and M14 were synthesized according to the method described in JP-A-2010-189630.
  • Compound M12 was synthesized according to the method described in WO 2013/191086.
  • Compounds M13 and M16 were synthesized according to the method described in WO 2013/191088.
  • Compound M15 was synthesized according to the method described in WO 2019/004247.
  • Compound M17 was synthesized according to the method described in JP-A-2010-196040.
  • Compound M101 was synthesized according to the method described in International Publication No. 2010/136109.
  • the compound M102 was manufactured by Amadis Chemical.
  • Compounds M103 and M104 were synthesized according to the method described in WO 2015/102118.
  • the ⁇ Ests of compound M101, compound M102, compound M103, and compound M104 were 0.13 eV, 0.12 eV, 0.46 eV, and 0.46 eV, respectively.
  • the polymer compound PC1 was synthesized by using Compound M1, Compound M2 and Compound M3 according to the method described in International Publication No. 2011/049241.
  • the Mn of the polymer compound PC1 was 8.9 ⁇ 10 4
  • the Mw was 4.2 ⁇ 105.
  • the polymer compound PC1 has 50: a structural unit derived from the compound M1, a structural unit derived from the compound M2, and a structural unit derived from the compound M3. It is a copolymer composed of a molar ratio of 42.5: 7.5.
  • the ⁇ Est of the H-form of M8 in the polymer compound PC3 was 0.44 eV.
  • the ⁇ Est of the H-form of M15 in the polymer compound PC4 and the polymer compound PC5 was 0.06 eV.
  • the ⁇ Est of the H-form of M17 in the polymer compound PC8 was 0.16 eV.
  • the polymer compound PC6 and the polymer compound PC7 did not have a structural unit consisting of one or more hydrogen atoms removed from the compound having ⁇ Est of 0.50 eV or less.
  • the content (pieces / g) per unit mass of the structural unit (SM1) obtained by removing one or more hydrogen atoms from the low molecular weight compound (SM1) in the polymer compound PC3 is the Avogadro's number (s).
  • NA the Avogadro's number
  • the content (pieces / g) per unit mass of the structural unit (SM1) obtained by removing one or more hydrogen atoms from the low molecular weight compound (SM1) in the polymer compound PC4 is calculated in the same manner.
  • the content (pieces / g) per unit mass of the structural unit (constituent unit SM1) obtained by removing one or more hydrogen atoms from the low molecular weight compound (SM1) in the polymer compound PC5 is the same.
  • Calculated in Molecular weight of repeating unit obtained from compound M12: 416.69, Than, 0.1 x NA / (244.42 x 0.5 + 416.69 x 0.4 + 1443.98 x 0.1) 1.38 x 10 20 (pieces / g)
  • the content (pieces / g) per unit mass of the structural unit (constituent unit SM1) obtained by removing one or more hydrogen atoms from the low molecular weight compound (SM1) in the polymer compound PC8 is the same.
  • Calculated in Molecular weight of repeating unit obtained from compound M17: 606.86, Than, 0.1 x NA / (244.42 x 0.5 + 388.64 x 0.4 + 606.86 x 0.1) 1.77 x 10 20 (pieces / g)
  • Example D1> Fabrication of light emitting element D1 ⁇ ITO substrate and hole injection layer> An anode was formed on a glass substrate by forming an ITO film with a thickness of 45 nm by a sputtering method.
  • ND-3202 manufactured by Nissan Chemical Industries, Ltd.
  • ND-3202 which is a hole injection material, was formed on an anode with a thickness of 50 nm by a spin coating method, and heated at 240 ° C. for 15 minutes on a hot plate in an atmospheric atmosphere. This formed a hole injection layer.
  • Hole transport layer> The polymer compound PC1 was dissolved in xylene at a concentration of 0.6% by mass.
  • a film was formed on the hole injection layer to a thickness of 20 nm by a spin coating method, and heated on a hot plate at 200 ° C. for 30 minutes under a nitrogen gas atmosphere. As a result, a hole transport layer was formed.
  • a film was formed on the hole transport layer to a thickness of 70 nm by a spin coating method, and heated on a hot plate at 150 ° C. for 10 minutes under a nitrogen gas atmosphere.
  • a light emitting layer was formed.
  • ⁇ Cathode formation> After reducing the pressure of the substrate on which the light emitting layer is formed to 1.0 ⁇ 10 -4 Pa or less in the vapor deposition machine, sodium fluoride is placed on the light emitting layer at about 4 nm and then on the sodium fluoride layer as a cathode. Aluminum was deposited at about 80 nm. After the vapor deposition, the substrate on which the cathode was formed was sealed with a glass substrate to produce a light emitting device D1.
  • Example D7 Preparation of the light emitting device D7
  • the ITO anode, the hole injection layer, the hole transport layer, and the cathode were manufactured by the same procedure as that of the light emitting device D1.
  • a film was formed on the hole transport layer to a thickness of 70 nm by a spin coating method, and heated on a hot plate at 150 ° C. for 10 minutes under a nitrogen gas atmosphere. As a result, a light emitting layer was formed.
  • ⁇ Cathode formation> It was manufactured in the same procedure as the light emitting element D1.
  • Example D11> Fabrication of light emitting device D11 ⁇ ITO substrate and hole injection layer> An anode was formed on a glass substrate by forming an ITO film with a thickness of 45 nm by a sputtering method.
  • ND-3202 manufactured by Nissan Chemical Industries, Ltd.
  • ND-3202 which is a hole injection material, was formed on an anode with a thickness of 35 nm by a spin coating method, and heated at 240 ° C. for 15 minutes on a hot plate in an atmospheric atmosphere. This formed a hole injection layer.
  • Hole transport layer> The polymer compound PC2 was dissolved in xylene at a concentration of 0.6% by mass.
  • a film was formed on the hole injection layer to a thickness of 20 nm by a spin coating method, and heated on a hot plate at 200 ° C. for 30 minutes under a nitrogen gas atmosphere. As a result, a hole transport layer was formed.
  • a film was formed on the hole transport layer to a thickness of 60 nm by a spin coating method, and heated on a hot plate at 150 ° C. for 10 minutes under a nitrogen gas atmosphere. As a result, a light emitting layer was formed.
  • ⁇ Cathode formation> It was manufactured in the same procedure as the light emitting element D1.
  • Example D20> Preparation of the light emitting device D20
  • the ITO anode, the hole injection layer, the hole transport layer, and the cathode were manufactured by the same procedure as that of the light emitting device D20.
  • ⁇ Comparative Example CD4> Preparation of the light emitting device CD4
  • the ITO anode, the hole injection layer, the hole transport layer, and the cathode were manufactured by the same procedure as that of the light emitting device D11.
  • ⁇ Light emitting layer> The polymer compound PC3 was dissolved in xylene at a concentration of 1.2% by mass. Using the obtained xylene solution, a film was formed on the hole transport layer to a thickness of 60 nm by a spin coating method, and heated on a hot plate at 150 ° C. for 10 minutes under a nitrogen gas atmosphere. As a result, a light emitting layer was formed.
  • Example D21> Preparation of the light emitting device D21
  • the ITO anode, the hole injection layer, the hole transport layer, and the cathode were manufactured by the same procedure as that of the light emitting device D1.
  • Example D22> Preparation of the light emitting device D22
  • the ITO anode, the hole injection layer, the hole transport layer, and the cathode were manufactured by the same procedure as that of the light emitting device D1.
  • ⁇ Comparative Example CD5> Preparation of the light emitting device CD5
  • the ITO anode, the hole injection layer, the hole transport layer, and the cathode were manufactured by the same procedure as that of the light emitting device D1.
  • ⁇ Light emitting layer> The polymer compound PC3 was dissolved in xylene at a concentration of 1.2% by mass. Using the obtained xylene solution, a film was formed on the hole transport layer to a thickness of 70 nm by a spin coating method, and heated on a hot plate at 150 ° C. for 10 minutes under a nitrogen gas atmosphere. As a result, a light emitting layer was formed.
  • ⁇ Est1 represents the ⁇ EST of the small molecule compound (SM1)
  • ⁇ Est2 represents the ⁇ EST of the small molecule compound (SM2).
  • the sum and the blending ratio of dSM1 and dSM2 are the content per unit mass of the structural unit (SM1) in the polymer compound PC3 and the molecular weight of the compound M101: 971. Using .22, it is calculated as follows.
  • the compound corresponding to the low molecular weight compound (SM1) in the first type of high molecular weight compound is designated as SM1-1, and corresponds to the low molecular weight compound (SM1) in the second type of high molecular weight compound.
  • the compound was SM1-2.
  • the ⁇ E st of SM1-1 and the ⁇ E st of SM1-2 were defined as ⁇ Est1 (a) and ⁇ Est1 (b), respectively.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Electroluminescent Light Sources (AREA)
  • General Chemical & Material Sciences (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

発光効率が高い発光素子の製造に有用な組成物、及び、該組成物を含有する発光素子を提供する。 式(Y)で表される繰り返し単位、及び、最低三重項励起状態のエネルギー準位と最低一重項励起状態のエネルギー準位との差の絶対値が0.50eV以下である低分子化合物(SM1)から水素原子を1つ以上除いてなる構成単位(SM1)を有する高分子化合物と、最低三重項励起状態のエネルギー準位と最低一重項励起状態のエネルギー準位との差の絶対値が0.50eV以下である低分子化合物(SM2)と、を含む組成物であって、組成物中の構成単位(SM1)の単位質量当たりの含有数をdSM1、組成物中の低分子化合物(SM2)の単位質量当たりの含有数をdSM2としたとき、dSM1+dSM2が2.0×1019(個/g)以上であり、且つ、dSM1/dSM2が0.020以上50以下である、組成物。

Description

組成物及び発光素子
 本発明は、組成物及び発光素子に関する。
 有機エレクトロルミネッセンス素子等の発光素子は、例えば、ディスプレイ及び照明に好適に使用することが可能である。発光素子の発光層に用いられる発光材料として、例えば、特許文献1及び2には、化合物M101、化合物M103等の低分子化合物と、高分子化合物とを含む組成物が開示されている。
Figure JPOXMLDOC01-appb-C000010
国際公開第2018/062276号 国際公開第2018/062278号
 特許文献1及び2に記載の組成物において、低分子化合物の最低励起三重項状態のエネルギー準位と最低励起一重項状態のエネルギー準位との差は0.50eV以下であり、高分子化合物の最低励起三重項状態のエネルギー準位と最低励起一重項状態のエネルギー準位との差は0.50eV超であった。これらの組成物を用いた発光素子は、発光効率に更なる向上の余地があった。
 そこで、本発明は、発光効率が高い発光素子の製造に有用な組成物、及び、該組成物を含有する発光素子を提供することを目的とする。
 本発明は、以下の[1]~[12]を提供する。
[1]
 式(Y)で表される繰り返し単位、及び、最低三重項励起状態のエネルギー準位と最低一重項励起状態のエネルギー準位との差の絶対値が0.50eV以下である低分子化合物(SM1)から水素原子を1つ以上除いてなる構成単位(SM1)を有する高分子化合物と、
 最低三重項励起状態のエネルギー準位と最低一重項励起状態のエネルギー準位との差の絶対値が0.50eV以下である低分子化合物(SM2)と、
を含む組成物であって
 前記組成物中の前記構成単位(SM1)の単位質量当たりの含有数をdSM1、前記組成物中の前記低分子化合物(SM2)の単位質量当たりの含有数をdSM2としたとき、dSM1+dSM2が2.0×1019(個/g)以上であり、且つ、dSM1/dSM2が0.020以上50以下である、組成物。
Figure JPOXMLDOC01-appb-C000011

[式中、ArY1は、置換基を有していてもよいアリーレン基を表す。]
[2]
 前記低分子化合物(SM1)が、式(T-1)で表される化合物、又は、D群から選ばれる基を有する化合物である、[1]に記載の組成物。
Figure JPOXMLDOC01-appb-C000012

[式中、
 nT1は、0以上の整数を表す。nT1が複数存在する場合、それらは同一でも異なっていてもよい。
 nT2は、0以上の整数を表す。
 ArT1は、置換アミノ基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。該置換基が複数存在する場合、それらは同一でも異なっていてもよく、互いに結合して、それぞれが結合する原子とともに環を形成していてもよい。ArT1が複数存在する場合、それらは同一でも異なっていてもよい。但し、ArT1における1価の複素環基は、二重結合を形成していない窒素原子を環内に含み、且つ、=N-で表される基、-C(=O)-で表される基、-S(=O)-で表される基、及び、-S(=O)-で表される基を環内に含まない1価の複素環基である。
 LT1は、アルキレン基、シクロアルキレン基、アリーレン基、2価の複素環基、酸素原子又は硫黄原子を表し、これらの基は置換基を有していてもよい。該置換基が複数存在する場合、それらは同一でも異なっていてもよく、互いに結合して、それぞれが結合する原子とともに環を形成していてもよい。LT1が複数存在する場合、それらは同一でも異なっていてもよい。
 ArT2は、A群、B群及びC群から選ばれる基を表す。但し、ArT2がA群から選ばれる場合、nT2は2である。]
 A群:-C(=O)-、-S(=O)-及び-S(=O)
 B群:電子求引性基を有する芳香族炭化水素からnT2個の水素原子を除いた基
 C群:=N-で表される基を環内に含む複素環式化合物からnT2個の水素原子を除いた基、-C(=O)-で表される基を環内に含む複素環式化合物からnT2個の水素原子を除いた基、-S(=O)-で表される基を環内に含む複素環式化合物からnT2個の水素原子を除いた基、及び、-S(=O)-で表される基を環内に含む複素環式化合物からnT2個の水素原子を除いた基
 D群:ホウ素原子を含む複素環式化合物から1個以上の水素原子を除いた基、リン原子を含む複素環式化合物から1個以上の水素原子を除いた基、アルミニウム原子を含む複素環式化合物から1個以上の水素原子を除いた基、ガリウム原子を含む複素環式化合物から1個以上の水素原子を除いた基、シリコン原子を含む複素環式化合物から1個以上の水素原子を除いた基、ヒ素原子を含む複素環式化合物から1個以上の水素原子を除いた基、及び、ゲルマニウム原子を含む複素環式化合物から1個以上の水素原子を除いた基
[3]
 dSM1/dSM2が、0.077~0.77、又は、1.3~13である、[1]又は[2]に記載の組成物。
[4]
 前記低分子化合物(SM1)が、式(D-1)で表される化合物である、[1]~[3]のいずれかに記載の組成物。
Figure JPOXMLDOC01-appb-C000013

[式中、
 A環、B環及びC環は、それぞれ独立に、芳香族炭化水素環又は芳香族複素環を表し、これらの環は置換基を有していてもよい。
 Xは、ホウ素原子、リン原子、P=O、P=S、アルミニウム原子、ガリウム原子、ヒ素原子、Si-Rx又はGe-Rxを表す。Rxは、アリール基又はアルキル基を表し、これらの基は置換基を有していてもよい。
 Yは、N-Ry、硫黄原子又はセレン原子を表す。Y及びYは、それぞれ独立に、酸素原子、N-Ry、硫黄原子又はセレン原子を表す。Ryは、水素原子、アリール基、1価の複素環基、又はアルキル基を表し、これらの基は置換基を有していてもよい。Ryが複数存在する場合、同一であっても異なっていてもよい。Ryは、直接又は連結基を介して、前記A環、前記B環又は前記C環と結合していてもよい。
 n3は、0又は1である。n3が0である場合、-Y-は存在しない。]
[5]
 前記高分子化合物が、式(X)で表される構成単位(但し、前記構成単位(SM1)と異なる)を更に含む、[1]~[4]のいずれかに記載の組成物。
Figure JPOXMLDOC01-appb-C000014

[式中、
 aX1及びaX2は、それぞれ独立に、0以上の整数を表す。
 ArX1及びArX3は、それぞれ独立に、アリーレン基又は2価の複素環基を表し、これらの基は置換基を有していてもよい。該置換基が複数存在する場合、それらは同一でも異なっていてもよく、互いに結合して、それぞれが結合する原子とともに環を形成していてもよい。
 ArX2及びArX4は、それぞれ独立に、アリーレン基、2価の複素環基、又は、少なくとも1種のアリーレン基と少なくとも1種の2価の複素環基とが直接結合した2価の基を表し、これらの基は置換基を有していてもよい。該置換基が複数存在する場合、それらは同一でも異なっていてもよく、互いに結合して、それぞれが結合する原子とともに環を形成していてもよい。ArX2及びArX4が複数存在する場合、それらは同一でも異なっていてもよい。
 RX1、RX2及びRX3は、それぞれ独立に、水素原子、アルキル基、シクロアルキル基、アリール基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。該置換基が複数存在する場合、それらは同一でも異なっていてもよく、互いに結合して、それぞれが結合する原子とともに環を形成していてもよい。RX2及びRX3が複数存在する場合、それらは同一でも異なっていてもよい。]
[6]
 前記低分子化合物(SM2)が、式(T-11)で表される化合物、又は、G群から選ばれる基を有する化合物である、[1]~[5]のいずれかに記載の組成物。
Figure JPOXMLDOC01-appb-C000015

[式中、
 nT3は、0以上の整数を表す。nT3が複数存在する場合、それらは同一でも異なっていてもよい。
 nT4は、1以上の整数を表す。
 ArT3は、置換アミノ基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。該置換基が複数存在する場合、それらは同一でも異なっていてもよく、互いに結合して、それぞれが結合する原子とともに環を形成していてもよい。ArT3が複数存在する場合、それらは同一でも異なっていてもよい。但し、ArT3における1価の複素環基は、二重結合を形成していない窒素原子を環内に含み、且つ、=N-で表される基、-C(=O)-で表される基、-S(=O)-で表される基、及び、-S(=O)-で表される基を環内に含まない1価の複素環基である。
 LT2は、アルキレン基、シクロアルキレン基、アリーレン基、2価の複素環基、酸素原子又は硫黄原子を表し、これらの基は置換基を有していてもよい。該置換基が複数存在する場合、それらは同一でも異なっていてもよく、互いに結合して、それぞれが結合する原子とともに環を形成していてもよい。LT2が複数存在する場合、それらは同一でも異なっていてもよい。
 ArT4は、A群、E群及びF群から選ばれる基を表す。但し、ArT4がA群から選ばれる基である場合、nT4は2である。]
 A群:-C(=O)-、-S(=O)-及び-S(=O)
 E群:電子求引性基を有する芳香族炭化水素からnT4個の水素原子を除いた基
 F群:=N-で表される基を環内に含む複素環式化合物からnT4個の水素原子を除いた基、-C(=O)-で表される基を環内に含む複素環式化合物からnT4個の水素原子を除いた基、-S(=O)-で表される基を環内に含む複素環式化合物からnT4個の水素原子を除いた基、及び、-S(=O)-で表される基を環内に含む複素環式化合物からnT4個の水素原子を除いた基
 G群:ホウ素原子を含む複素環式化合物から1個以上の水素原子を除いた基、リン原子を含む複素環式化合物から1個以上の水素原子を除いた基、アルミニウム原子を含む複素環式化合物から1個以上の水素原子を除いた基、ガリウム原子を含む複素環式化合物から1個以上の水素原子を除いた基、シリコン原子を含む複素環式化合物から1個以上の水素原子を除いた基、ヒ素原子を含む複素環式化合物から1個以上の水素原子を除いた基、及び、ゲルマニウム原子を含む複素環式化合物から1個以上の水素原子を除いた基
[7]
 前記低分子化合物(SM2)が、式(D-11)で表される化合物である、[1]~[6]6のいずれかに記載の組成物。
Figure JPOXMLDOC01-appb-C000016

[式中、
 E環、F環及びG環は、それぞれ独立に、芳香族炭化水素環又は芳香族複素環を表し、これらの環は置換基を有していてもよい。
 Xは、ホウ素原子、リン原子、P=O、P=S、アルミニウム原子、ガリウム原子、ヒ素原子、Si-Rx又はGe-Rxを表す。Rxは、アリール基又はアルキル基を表し、これらの基は置換基を有していてもよい。
 Yは、N-Ry、硫黄原子又はセレン原子を表す。Y及びYは、それぞれ独立に、酸素原子、N-Ry、硫黄原子又はセレン原子を表す。Ryは、水素原子、アリール基、1価の複素環基、又はアルキル基を表し、これらの基は置換基を有していてもよい。Ryが複数存在する場合、同一であっても異なっていてもよい。Ryは、直接又は連結基を介して、前記E環、前記F環又は前記G環と結合していてもよい。
 n6は、0又は1である。n6が0である場合、-Y-は存在しない。]
[8]
 式(Y)で表される繰り返し単位、及び、最低三重項励起状態のエネルギー準位と最低一重項励起状態のエネルギー準位との差の絶対値が0.50eV以下である低分子化合物(SM1-1)から水素原子を1つ以上除いてなる構成単位(SM1-1)を有する第一の高分子化合物と、
 式(Y)で表される繰り返し単位、及び、最低三重項励起状態のエネルギー準位と最低一重項励起状態のエネルギー準位との差の絶対値が0.50eV以下である低分子化合物(SM1-2)から水素原子を1つ以上除いてなる構成単位(SM1-2)を有する第二の高分子化合物(但し、前記低分子化合物(SM1-1)と前記低分子化合物(SM1-2)とは異なる)と、
を含む組成物であって、
 前記組成物中の前記構成単位(SM1-1)の単位質量当たりの含有数をdSM1a、前記組成物中の前記構成単位(SM1-2)の単位質量当たりの含有数をdSM1bとしたとき、dSM1a+dSM1bが2.0×1019(個/g)以上であり、且つ、dSM1a/dSM1bが0.020以上50以下である、組成物。
Figure JPOXMLDOC01-appb-C000017

[式中、ArY1は、置換基を有していてもよいアリーレン基を表す。]
[9]
 前記低分子化合物(SM1-1)及び前記低分子化合物(SM1-2)が、それぞれ独立に、式(T-1)で表される化合物、又は、D群から選ばれる基を有する化合物である、[8]に記載の組成物。
Figure JPOXMLDOC01-appb-C000018

[式中、
 nT1は、0以上の整数を表す。nT1が複数存在する場合、それらは同一でも異なっていてもよい。
 nT2は、0以上の整数を表す。
 ArT1は、置換アミノ基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。該置換基が複数存在する場合、それらは同一でも異なっていてもよく、互いに結合して、それぞれが結合する原子とともに環を形成していてもよい。ArT1が複数存在する場合、それらは同一でも異なっていてもよい。但し、ArT1における1価の複素環基は、二重結合を形成していない窒素原子を環内に含み、且つ、=N-で表される基、-C(=O)-で表される基、-S(=O)-で表される基、及び、-S(=O)-で表される基を環内に含まない1価の複素環基である。
 LT1は、アルキレン基、シクロアルキレン基、アリーレン基、2価の複素環基、酸素原子又は硫黄原子を表し、これらの基は置換基を有していてもよい。該置換基が複数存在する場合、それらは同一でも異なっていてもよく、互いに結合して、それぞれが結合する原子とともに環を形成していてもよい。LT1が複数存在する場合、それらは同一でも異なっていてもよい。
 ArT2は、A群、B群及びC群から選ばれる基を表す。但し、ArT2がA群から選ばれる場合、nT2は2である。]
 A群:-C(=O)-、-S(=O)-及び-S(=O)
 B群:電子求引性基を有する芳香族炭化水素からnT2個の水素原子を除いた基
 C群:=N-で表される基を環内に含む複素環式化合物からnT2個の水素原子を除いた基、-C(=O)-で表される基を環内に含む複素環式化合物からnT2個の水素原子を除いた基、-S(=O)-で表される基を環内に含む複素環式化合物からnT2個の水素原子を除いた基、及び、-S(=O)-で表される基を環内に含む複素環式化合物からnT2個の水素原子を除いた基
 D群:ホウ素原子を含む複素環式化合物から1個以上の水素原子を除いた基、リン原子を含む複素環式化合物から1個以上の水素原子を除いた基、アルミニウム原子を含む複素環式化合物から1個以上の水素原子を除いた基、ガリウム原子を含む複素環式化合物から1個以上の水素原子を除いた基、シリコン原子を含む複素環式化合物から1個以上の水素原子を除いた基、ヒ素原子を含む複素環式化合物から1個以上の水素原子を除いた基、及び、ゲルマニウム原子を含む複素環式化合物から1個以上の水素原子を除いた基
[10]
 前記低分子化合物(SM1-1)及び前記低分子化合物(SM1-2)が、それぞれ独立に、式(D-1)で表される化合物である、[8]又は[9]に記載の組成物。
Figure JPOXMLDOC01-appb-C000019

[式中、
 A環、B環及びC環は、それぞれ独立に、芳香族炭化水素環又は芳香族複素環を表し、これらの環は置換基を有していてもよい。
 Xは、ホウ素原子、リン原子、P=O、P=S、アルミニウム原子、ガリウム原子、ヒ素原子、Si-Rx又はGe-Rxを表す。Rxは、アリール基又はアルキル基を表し、これらの基は置換基を有していてもよい。
 Yは、N-Ry、硫黄原子又はセレン原子を表す。Y及びYは、それぞれ独立に、酸素原子、N-Ry、硫黄原子又はセレン原子を表す。Ryは、水素原子、アリール基、1価の複素環基、又はアルキル基を表し、これらの基は置換基を有していてもよい。Ryが複数存在する場合、同一であっても異なっていてもよい。Ryは、直接又は連結基を介して、前記A環、前記B環又は前記C環と結合していてもよい。
 n3は、0又は1である。n3が0である場合、-Y-は存在しない。]
[11]
 [1]~[10]のいずれかに記載の組成物と、溶媒と、を含有する、インク。
[12]
 [1]~[10]のいずれかに記載の組成物を含有する、発光素子。
 本発明によれば、発光効率が高い発光素子の製造に有用な組成物、及び、該組成物を含有する発光素子が提供される。
 以下、本発明の好適な実施形態について詳細に説明する。
 [共通する用語の説明]
 本明細書で共通して用いられる用語は、特記しない限り、以下の意味である。
 Meはメチル基、Etはエチル基、Buはブチル基、i-Prはイソプロピル基、t-Buはtert-ブチル基を表す。
 水素原子は、重水素原子であっても、軽水素原子であってもよい。
 金属錯体を表す式中、金属との結合を表す実線は、イオン結合、共有結合又は配位結合を意味する。
 「高分子化合物」とは、分子量分布を有し、ポリスチレン換算の数平均分子量が1×10以上(例えば1×10~1×10)である重合体を意味する。
 高分子化合物は、ブロック共重合体、ランダム共重合体、交互共重合体、グラフト共重合体のいずれであってもよいし、その他の態様であってもよい。
 高分子化合物の末端基は、重合活性基がそのまま残っていると、高分子化合物を発光素子の作製に用いた場合、発光特性又は輝度寿命が低下する可能性があるので、好ましくは安定な基である。高分子化合物の末端基としては、好ましくは主鎖と共役結合している基であり、例えば、炭素-炭素結合を介して高分子化合物の主鎖と結合するアリール基又は1価の複素環基が挙げられる。
 「低分子化合物」とは、分子量分布を有さず、分子量が1×10以下の化合物を意味する。
 「構成単位」とは、高分子化合物中に1個以上存在する単位を意味する。高分子化合物中に2個以上含まれる構成単位は、一般に、「繰り返し単位」とも呼ばれる。
 「アルキル基」は、直鎖及び分岐のいずれでもよい。直鎖のアルキル基の炭素原子数は、置換基の炭素原子数を含めないで、通常1~50であり、好ましくは3~30であり、より好ましくは4~20である。分岐のアルキル基の炭素原子数は、置換基の炭素原子数を含めないで、通常3~50であり、好ましくは3~30であり、より好ましくは4~20である。
 アルキル基は、置換基を有していてもよい。アルキル基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、2-ブチル基、イソブチル基、tert-ブチル基、ペンチル基、イソアミル基、2-エチルブチル基、ヘキシル基、ヘプチル基、オクチル基、2-エチルヘキシル基、3-プロピルヘプチル基、デシル基、3,7-ジメチルオクチル基、2-エチルオクチル基、2-ヘキシルデシル基及びドデシル基が挙げられる。また、アルキル基は、これらの基における水素原子の一部又は全部が、置換基(例えば、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、フッ素原子等)で置換された基(例えば、トリフルオロメチル基、ペンタフルオロエチル基、パーフルオロブチル基、パーフルオロヘキシル基、パーフルオロオクチル基、3-フェニルプロピル基、3-(4-メチルフェニル)プロピル基、3-(3,5-ジ-ヘキシルフェニル)プロピル基、6-エチルオキシヘキシル基)であってもよい。
 「シクロアルキル基」の炭素原子数は、置換基の炭素原子数を含めないで、通常3~50であり、好ましくは3~30であり、より好ましくは4~20である。
 シクロアルキル基は、置換基を有していてもよい。シクロアルキル基としては、例えば、シクロヘキシル基、シクロヘキシルメチル基、シクロヘキシルエチル基、及び、これらの基における水素原子の一部又は全部が置換基(例えば、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、フッ素原子等)で置換された基が挙げられる。
 「芳香族炭化水素基」は、芳香族炭化水素から環を構成する原子に直接結合する水素原子1個以上を除いた基を意味する。芳香族炭化水素から環を構成する原子に直接結合する水素原子1個を除いた基を「アリール基」ともいう。芳香族炭化水素から環を構成する原子に直接結合する水素原子2個を除いた基を「アリーレン基」ともいう。
 芳香族炭化水素基の炭素原子数は、置換基の炭素原子数を含めないで、通常6~60であり、好ましくは6~40であり、より好ましくは6~20である。
 「芳香族炭化水素基」は、例えば、単環式の芳香族炭化水素(例えば、ベンゼンが挙げられる。)、又は、多環式の芳香族炭化水素(例えば、ナフタレン及びインデン等の2環式の芳香族炭化水素;アントラセン、フェナントレン、ジヒドロフェナントレン及びフルオレン等の3環式の芳香族炭化水素;ベンゾアントラセン、ベンゾフェナントレン、ベンゾフルオレン、ピレン及びフルオランテン等の4環式の芳香族炭化水素;ジベンゾアントラセン、ジベンゾフェナントレン、ジベンゾフルオレン、ペリレン及びベンゾフルオランテン等の5環式の芳香族炭化水素;スピロビフルオレン等の6環式の芳香族炭化水素;並びに、ベンゾスピロビフルオレン及びアセナフトフルオランテン等の7環式の芳香族炭化水素が挙げられる。)から、環を構成する原子に直接結合する水素原子1個以上を除いた基が挙げられる。芳香族炭化水素基は、これらの基が複数結合した基を含む。芳香族炭化水素基は、置換基を有していてもよい。
 アリール基の炭素原子数は、置換基の炭素原子数を含めないで、通常6~60であり、好ましくは6~20であり、より好ましくは6~10である。アリール基は、置換基を有していてもよい。アリール基としては、例えば、フェニル基、1-ナフチル基、2-ナフチル基、1-アントラセニル基、2-アントラセニル基、9-アントラセニル基、1-ピレニル基、2-ピレニル基、4-ピレニル基、2-フルオレニル基、3-フルオレニル基、4-フルオレニル基、2-フェニルフェニル基、3-フェニルフェニル基、4-フェニルフェニル基、及び、これらの基における水素原子の一部又は全部が置換基(例えばアルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、フッ素原子等)で置換された基が挙げられる。
 アリーレン基の炭素原子数は、置換基の炭素原子数を含めないで、通常、6~60であり、好ましくは6~30であり、より好ましくは6~18である。アリーレン基は、置換基を有していてもよい。アリーレン基としては、例えば、フェニレン基、ナフタレンジイル基、アントラセンジイル基、フェナントレンジイル基、ジヒドロフェナントレンジイル基、ナフタセンジイル基、フルオレンジイル基、ピレンジイル基、ペリレンジイル基、クリセンジイル基、及び、これらの基における水素原子の一部又は全部が置換基で置換された基が挙げられる。アリーレン基としては、式(A-1)~式(A-20)で表される基が好ましい。アリーレン基としては、これらの基が複数結合した基を含む。
Figure JPOXMLDOC01-appb-C000020

Figure JPOXMLDOC01-appb-C000021

Figure JPOXMLDOC01-appb-C000022

Figure JPOXMLDOC01-appb-C000023
 式中、R及びRは、それぞれ独立に、水素原子、アルキル基、シクロアルキル基、アリール基又は1価の複素環基を表す。複数存在するR及びRは、各々、同一でも異なっていてもよく、R同士は互いに結合して、それぞれが結合する原子と共に環を形成していてもよい。
 「アルコキシ基」は、直鎖及び分岐のいずれでもよい。直鎖のアルコキシ基の炭素原子数は、置換基の炭素原子数を含めないで、通常1~40であり、好ましくは4~10である。分岐のアルコキシ基の炭素原子数は、置換基の炭素原子数を含めないで、通常3~40であり、好ましくは4~10である。
 アルコキシ基は、置換基を有していてもよい。アルコキシ基としては、例えば、メトキシ基、エトキシ基、プロピルオキシ基、イソプロピルオキシ基、ブチルオキシ基、イソブチルオキシ基、tert-ブチルオキシ基、ペンチルオキシ基、ヘキシルオキシ基、ヘプチルオキシ基、オクチルオキシ基、2-エチルヘキシルオキシ基、ノニルオキシ基、デシルオキシ基、3,7-ジメチルオクチルオキシ基、ラウリルオキシ基、及び、これらの基における水素原子の一部又は全部が置換基(例えばシクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、フッ素原子等)で置換された基が挙げられる。
 「シクロアルコキシ基」の炭素原子数は、置換基の炭素原子数を含めないで、通常3~40であり、好ましくは4~10である。
 シクロアルコキシ基は、置換基を有していてもよく、例えば、シクロヘキシルオキシ基が挙げられる。
 「アリールオキシ基」の炭素原子数は、置換基の炭素原子数を含めないで、通常6~60であり、好ましくは6~48である。
 アリールオキシ基は、置換基を有していてもよく、例えば、フェノキシ基、1-ナフチルオキシ基、2-ナフチルオキシ基、1-アントラセニルオキシ基、9-アントラセニルオキシ基、1-ピレニルオキシ基、及び、これらの基における水素原子一部又は全部が置換基(例えばアルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、フッ素原子等)で置換された基が挙げられる。
 「p価の複素環基」(pは、1以上の整数を表す。)とは、複素環式化合物から、環を構成する炭素原子又はヘテロ原子に直接結合している水素原子のうちp個の水素原子を除いた残りの原子団を意味する。p価の複素環基の中でも、芳香族複素環式化合物から、環を構成する炭素原子又はヘテロ原子に直接結合している水素原子のうちp個の水素原子を除いた残りの原子団である「p価の芳香族複素環基」が好ましい。
 「芳香族複素環式化合物」は、オキサジアゾール、チアジアゾール、チアゾール、オキサゾール、チオフェン、ピロール、ホスホール、フラン、ピリジン、ピラジン、ピリミジン、トリアジン、ピリダジン、キノリン、イソキノリン、カルバゾール、ジベンゾホスホール等の複素環自体が芳香族性を示す化合物、及び、フェノキサジン、フェノチアジン、ジベンゾボロール、ジベンゾシロール、ベンゾピラン等の複素環自体は芳香族性を示さなくとも、複素環に芳香環が縮環されている化合物を意味する。
 なお、複素環式化合物及び芳香族複素環式化合物は、低分子化合物(SM1)、低分子化合物(SM1-1)、低分子化合物(SM1-2)及び低分子化合物(SM2)とは異なる化合物であることが好ましい。
 1価の複素環基の炭素原子数は、置換基の炭素原子数を含めないで、通常、2~60であり、好ましくは4~20である。
 1価の複素環基は、置換基を有していてもよく、例えば、チエニル基、ピロリル基、フリル基、ピリジル基、ピペリジニル基、キノリニル基、イソキノリニル基、ピリミジニル基、トリアジニル基、及び、これらの基における水素原子の一部又は全部が置換基(例えばアルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基等)で置換された基が挙げられる。
 2価の複素環基の炭素原子数は、置換基の炭素原子数を含めないで、通常、2~60であり、好ましくは、3~20であり、より好ましくは、4~15である。
 2価の複素環基は、置換基を有していてもよい。2価の複素環基は、例えば、ピリジン、ジアザベンゼン、トリアジン、アザナフタレン、ジアザナフタレン、カルバゾール、ジベンゾフラン、ジベンゾチオフェン、ジベンゾシロール、フェノキサジン、フェノチアジン、アクリジン、ジヒドロアクリジン、フラン、チオフェン、アゾール、ジアゾール又はトリアゾールから、環を構成する炭素原子又はヘテロ原子に直接結合している水素原子のうち2個の水素原子を除いた2価の基が挙げられる。2価の複素環基は、好ましくは、式(AA-1)~式(AA-15)及び式(AA-18)~式(AA-34)で表される基である。2価の複素環基は、これらの基が複数結合した基を含む。
Figure JPOXMLDOC01-appb-C000024

Figure JPOXMLDOC01-appb-C000025

Figure JPOXMLDOC01-appb-C000026

Figure JPOXMLDOC01-appb-C000027

Figure JPOXMLDOC01-appb-C000028

Figure JPOXMLDOC01-appb-C000029

Figure JPOXMLDOC01-appb-C000030
 式中、R及びRは、前記と同じ意味を表す。Rは、水素原子、アルキル基、シクロアルキル基、アリール基を表す。複数存在するRは、各々、同一でも異なっていてもよく、R同士は互いに結合して、それぞれが結合する原子と共に環を形成していてもよい。
 「ハロゲン原子」とは、フッ素原子、塩素原子、臭素原子又はヨウ素原子を示す。
 「アミノ基」は、置換基を有していてもよく、置換アミノ基(即ち、第2級アミノ基又は第3級アミノ基、特には第3級アミノ基)が好ましい。アミノ基が有する置換基としては、アルキル基、シクロアルキル基、アリール基又は1価の複素環基が好ましい。アミノ基が有する置換基が複数存在する場合、それらは同一で異なっていてもよく、互いに結合して、それぞれが結合する窒素原子とともに環を形成していてもよい。
 置換アミノ基としては、例えば、ジアルキルアミノ基、ジシクロアルキルアミノ基及びジアリールアミノ基が挙げられる。
 置換アミノ基としては、例えば、ジメチルアミノ基、ジエチルアミノ基、ジフェニルアミノ基、ビス(4-メチルフェニル)アミノ基、ビス(4-tert-ブチルフェニル)アミノ基、ビス(3,5-ジ-tert-ブチルフェニル)アミノ基が挙げられる。
 「アルケニル基」は、直鎖及び分岐のいずれでもよい。直鎖のアルケニル基の炭素原子数は、置換基の炭素原子数を含めないで、通常2~30であり、好ましくは3~20である。分岐のアルケニル基の炭素原子数は、置換基の炭素原子数を含めないで、通常3~30であり、好ましくは4~20である。
 「シクロアルケニル基」の炭素原子数は、置換基の炭素原子数を含めないで、通常3~30であり、好ましくは4~20である。
 アルケニル基及びシクロアルケニル基は、置換基を有していてもよい。アルケニル基としては、例えば、ビニル基、1-プロペニル基、2-プロペニル基、2-ブテニル基、3-ブテニル基、3-ペンテニル基、4-ペンテニル基、1-ヘキセニル基、5-ヘキセニル基、7-オクテニル基、及び、これらの基における水素原子の一部又は全部が置換基で置換された基が挙げられる。シクロアルケニル基としては、例えば、シクロヘキセニル基、シクロヘキサジエニル基、シクロオクタトリエニル基、ノルボルニレニル基、及び、これらの基における水素原子の一部又は全部が置換基で置換された基が挙げられる。
 「アルキニル基」は、直鎖及び分岐のいずれでもよい。アルキニル基の炭素原子数は、置換基の炭素原子を含めないで、通常2~20であり、好ましくは3~20である。分岐のアルキニル基の炭素原子数は、置換基の炭素原子を含めないで、通常4~30であり、好ましくは4~20である。
 「シクロアルキニル基」の炭素原子数は、置換基の炭素原子を含めないで、通常4~30であり、好ましくは4~20である。
 アルキニル基及びシクロアルキニル基は、置換基を有していてもよい。アルキニル基としては、例えば、エチニル基、1-プロピニル基、2-プロピニル基、2-ブチニル基、3-ブチニル基、3-ペンチニル基、4-ペンチニル基、1-ヘキシニル基、5-ヘキシニル基、及び、これらの基における水素原子の一部又は全部が置換基で置換された基が挙げられる。シクロアルキニル基としては、例えば、シクロオクチニル基、及び、この基における水素原子の一部又は全部が置換基で置換された基が挙げられる。
 「架橋基」とは、加熱処理、紫外線照射処理、近紫外線照射処理、可視光照射処理、赤外線照射処理、ラジカル反応等に供することにより、新たな結合を生成することが可能な基であり、好ましくは、架橋基A群の式(XL-1)~式(XL-19)で表される架橋基であり、より好ましくは、式(XL-1)、式(XL-3)、式(XL-9)、式(XL-10)、式(XL-16)又は式(XL-17)~式(XL-19)で表される架橋基であり、更に好ましくは、式(XL-1)、式(XL-16)又は式(XL-17)~式(XL-19)で表される架橋基であり、特に好ましくは、式(XL-1)又は式(XL-17)で表される架橋基である。
(架橋基A群)
Figure JPOXMLDOC01-appb-C000031

[式中、RXLは、メチレン基、酸素原子又は硫黄原子を表し、nXLは、0~5の整数を表す。RXLが複数存在する場合、それらは同一でも異なっていてもよい。nXLが複数存在する場合、それらは同一でも異なっていてもよい。*1は結合位置を表す。これらの架橋基は置換基を有していてもよく、該置換基が複数存在する場合、それらは同一でも異なっていてもよく、互いに結合して、それぞれが結合する炭素原子とともに環を形成していてもよい。]
 「置換基」としては、ハロゲン原子、シアノ基、アルキル基、シクロアルキル基、アリール基、1価の複素環基、アルコキシ基、シクロアルコキシ基、アリールオキシ基、アミノ基、置換アミノ基、アルケニル基、シクロアルケニル基、アルキニル基又はシクロアルキニル基が好ましい。置換基は架橋基であってもよい。
[式(Y)で表される構成単位]
 式(Y)で表される構成単位としては、発光素子の発光効率がより優れるので、好ましくは、式(Y-1)又は式(Y-2)で表される構成単位であり、より好ましくは、式(Y-1)で表される構成単位である。
Figure JPOXMLDOC01-appb-C000032

[式中、
 RY1は、水素原子、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基又はアリール基を表し、これらの基は置換基を有していてもよい。複数存在するRY1は、同一でも異なっていてもよく、隣接するRY1同士は互いに結合して、それぞれが結合する炭素原子と共に環を形成していてもよい。]
Figure JPOXMLDOC01-appb-C000033

[式中、
 RY1は、前記と同じ意味を表す。
 XY1は、-C(RY2-、-C(RY2)=C(RY2)-又は-C(RY2-C(RY2-で表される基を表す。RY2は、水素原子、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基又はアリール基を表し、これらの基は置換基を有していてもよい。複数存在するRY2は、同一でも異なっていてもよく、RY2同士は互いに結合して、それぞれが結合する炭素原子と共に環を形成していてもよい。]
 XY1において、-C(RY2-で表される基中の2個のRY2の組み合わせは、好ましくは両方がアルキル基若しくはシクロアルキル基、両方がアリール基、又は、一方がアルキル基若しくはシクロアルキル基で他方がアリール基であり、これらの基は置換基を有していてもよい。2個存在するRY2は互いに結合して、それぞれが結合する原子と共に環を形成していてもよく、RY2が環を形成する場合、-C(RY2-で表される基としては、好ましくは式(Y-A1)~式(Y-A5)で表される基であり、これらの基は置換基を有していてもよい。
Figure JPOXMLDOC01-appb-C000034
 XY1において、-C(RY2)=C(RY2)-で表される基中の2個のRY2の組み合わせは、好ましくは両方がアルキル基若しくはシクロアルキル基、又は、一方がアルキル基若しくはシクロアルキル基で他方がアリール基であり、これらの基は置換基を有していてもよい。
 XY1において、-C(RY2-C(RY2-で表される基中の4個のRY2は、好ましくは置換基を有していてもよいアルキル基又はシクロアルキル基である。複数あるRY2は互いに結合して、それぞれが結合する原子と共に環を形成していてもよく、RY2が環を形成する場合、-C(RY2-C(RY2-で表される基は、好ましくは式(Y-B1)~式(Y-B5)で表される基であり、これらの基は置換基を有していてもよい。
Figure JPOXMLDOC01-appb-C000035

[式中、RY2は前記と同じ意味を表す。]
 式(Y)におけるArY1としては、好ましくは、式(A-1)、式(A-2)、式(A-6)~(A-10)、式(A-19)又は式(A-20)で表される基であり、これらの基は置換基を有していてもよい。
 ArY1で表される基は置換基を有することが好ましく、ArY1で表される基が有していてもよい置換基は、好ましくは、アルキル基、シクロアルキル基又はアリール基であり、より好ましくは、アルキル基又はシクロアルキル基であり、これらの基は更に置換基を有していてもよい。
 式(Y)で表される構成単位としては、例えば、式(Y-101)~式(Y-108)で表される構成単位が挙げられる。
Figure JPOXMLDOC01-appb-C000036

Figure JPOXMLDOC01-appb-C000037
[低分子化合物(SM1)]
 低分子化合物(SM1)の最低励起三重項状態のエネルギー準位と最低励起一重項状態のエネルギー準位との差(ΔESTともいう)は、0.50eV以下である。低分子化合物(SM1)のΔESTは、本実施形態の発光素子の発光効率がより優れるので、好ましくは、0.46eV以下であり、より好ましくは、0.40eV以下であり、更に好ましくは、0.35eV以下であり、特に好ましくは、0.30eV以下であり、とりわけ好ましくは、0.25eV以下であり、とりわけより好ましくは、0.20eV以下である。また、低分子化合物(SM1)のΔESTは、0.001eV以上であってもよく、0.005eV以上であってもよく、0.01eV以上であってもよく、0.05eV以上であってもよい。
 低分子化合物(SM1)としては、熱活性化遅延蛍光(TADF)性を有する化合物が好ましい。
 SM1のΔESTは、量子化学計算プログラムであるGaussian09を用いることができる。例えば、B3LYPレベルの密度汎関数法を用いて、化合物の基底状態を構造最適化した後、B3LYPレベルの時間依存密度汎関数法を用いることで、ΔESTを算出することができる。基底関数としては、通常、6-31G*を使用するが、6-31G*を使用できない原子が化合物に含まれる場合は、該原子に対してLANL2DZを使用することができる。
 低分子化合物(SM1)は、本実施形態の発光素子の発光効率がより優れるので、式(T-1)で表される化合物、又は、D群から選ばれる基を有する化合物であることが好ましい。
[式(T-1)で表される化合物]
 nT1は、通常、0以上10以下の整数であり、本実施形態の発光素子の発光効率がより優れるので、好ましくは0以上5以下の整数であり、より好ましくは0以上3以下の整数であり、更に好ましくは0以上2以下の整数であり、特に好ましくは0又は1である。
 ArT1における1価の複素環基は、1価のドナー型複素環基が好ましい。前記1価のドナー型複素環基は、二重結合を形成していない窒素原子を環内に含み、且つ、=N-で表される基、-C(=O)-で表される基、-S(=O)-で表される基、及び、-S(=O)-で表される基を環内に含まない1価の複素環基である。
 1価のドナー型複素環基の窒素原子の数は、通常、1~10であり、好ましくは1~5であり、より好ましくは1~3であり、更に好ましくは1又は2である。
 1価のドナー型複素環基において、環を構成する炭素原子の数は、通常1~60であり、好ましくは3~50であり、より好ましくは5~40であり、更に好ましくは7~30であり、特に好ましくは10~25である。
 1価のドナー型複素環基において、環を構成するヘテロ原子の数は、通常1~30であり、好ましくは1~10であり、より好ましくは1~5であり、更に好ましくは1~3である。
 1価のドナー型複素環基は、本実施形態の発光素子の発光効率がより優れるので、好ましくは、二重結合を形成していない窒素原子を環内に含み、且つ、=N-で表される基、-C(=O)-で表される基、-S(=O)-で表される基及び-S(=O)-で表される基を環内に含まない、多環式の複素環式化合物から、環を構成する原子(好ましくは炭素原子又は窒素原子、より好ましくは窒素原子)に直接結合する水素原子1個を除いた基であり、より好ましくは、二重結合を形成していない窒素原子を環内に含み、且つ、=N-で表される基、-C(=O)-で表される基、-S(=O)-で表される基及び-S(=O)-で表される基を環内に含まない、3環式~5環式の複素環式化合物から、環を構成する原子(好ましくは炭素原子又は窒素原子、より好ましくは窒素原子)に直接結合する水素原子1個を除いた基であり、更に好ましくは、カルバゾール、フェノキサジン、フェノチアジン、9,10-ジヒドロアクリジン、5,10-ジヒドロフェナジン、ベンゾカルバゾール、ジベンゾカルバゾール、インドロカルバゾール又はインデノカルバゾールから、環を構成する原子(好ましくは炭素原子又は窒素原子、より好ましくは窒素原子)に直接結合する水素原子1個を除いた基であり、特に好ましくは、カルバゾール、インドロカルバゾール又はインデノカルバゾールから、環を構成する原子(好ましくは炭素原子又は窒素原子、より好ましくは窒素原子)に直接結合する水素原子1個を除いた基であり、これらの基は置換基を有していてもよい。
 ArT1における置換アミノ基の例及び好ましい範囲は、後述のArT1が有していてもよい置換基における置換アミノ基の例及び好ましい範囲と同じである。
 ArT1が有していてもよい置換基としては、好ましくは、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、アリールオキシ基、1価の複素環基、置換アミノ基、ハロゲン原子又はシアノ基であり、より好ましくは、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、1価の複素環基又は置換アミノ基であり、更に好ましくは、アルキル基、シクロアルキル基、アリール基、1価の複素環基又は置換アミノ基であり、これらの基は更に置換基を有していてもよい。
 ArT1が有していてもよい置換基におけるアリール基としては、好ましくは、単環式又は2環式~7環式の芳香族炭化水素から、環を構成する原子に直接結合する水素原子1個を除いた基であり、より好ましくは、単環式又は2環式~5環式(好ましくは、単環式、2環式又は3環式)の芳香族炭化水素から、環を構成する原子に直接結合する水素原子1個を除いた基であり、更に好ましくは、ベンゼン、ナフタレン、アントラセン、フェナントレン又はフルオレンから環を構成する原子に直接結合する水素原子1個を除いた基であり、特に好ましくは、フェニル基であり、これらの基は置換基を有していてもよい。
 ArT1が有していてもよい置換基における1価の複素環基は、好ましくは単環式又は2環式~7環式の複素環式化合物から、環を構成する原子に直接結合する水素原子1個を除いた基であり、より好ましくは単環式又は2環式~5環式(好ましくは、単環式、2環式又は3環式)の複素環式化合物から、環を構成する原子に直接結合する水素原子1個以上を除いた基であり、更に好ましくは、ピリジン、ジアザベンゼン、トリアジン、アザナフタレン、ジアザナフタレン、ジベンゾフラン、ジベンゾチオフェン、カルバゾール、フェノキサジン、フェノチアジン、9,10-ジヒドロアクリジン、5,10-ジヒドロフェナジン、ベンゾカルバゾール、ジベンゾカルバゾール、インドロカルバゾール又はインデノカルバゾールから、環を構成する原子に直接結合する水素原子1個以上を除いた基であり、特に好ましくはピリジン、ジアザベンゼン、トリアジン、ジベンゾフラン、ジベンゾチオフェン又はカルバゾールから、環を構成する原子に直接結合する水素原子1個以上を除いた基であり、これらの基は更に置換基を有していてもよい。
 ArT1が有していてもよい置換基における置換アミノ基において、アミノ基が有する置換基としては、アリール基又は1価の複素環基が好ましく、アリール基がより好ましく、これらの基は更に置換基を有していてもよい。アミノ基が有する置換基におけるアリール基の例及び好ましい範囲は、ArT1が有していてもよい置換基におけるアリール基の例及び好ましい範囲と同じである。アミノ基が有する置換基における1価の複素環基の例及び好ましい範囲は、ArT1が有していてもよい置換基における1価の複素環基の例及び好ましい範囲と同じである。
 ArT1が有していてもよい置換基が更に有していてもよい置換基としては、好ましくは、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、アリールオキシ基、1価の複素環基、置換アミノ基、ハロゲン原子又はシアノ基であり、より好ましくは、アルキル基、シクロアルキル基、アリール基、1価の複素環基又は置換アミノ基であり、更に好ましくは、アルキル基又はアリール基であり、これらの基は更に置換基を有していてもよいが、更に置換基を有さないことが好ましい。
 ArT1が有していてもよい置換基が更に有していてもよい置換基におけるアリール基、1価の複素環基及び置換アミノ基の例及び好ましい範囲は、それぞれ、ArT1が有していてもよい置換基におけるアリール基、1価の複素環基及び置換アミノ基の例及び好ましい範囲と同じである。
 nT2が1以上の整数の場合、nT2個のArT1の少なくとも1つは、本実施形態の発光素子の発光効率がより優れるので、好ましくは、置換アミノ基、又は置換基を有していてもよい1価のドナー型複素環基であり、更に好ましくは、1価のドナー型複素環基である。
 LT1は、本実施形態の発光素子の発光効率がより優れるので、好ましくは、アルキレン基、シクロアルキレン基、アリーレン基又は2価の複素環基であり、より好ましくはアリーレン基又は2価の複素環基であり、更に好ましくはアリーレン基であり、これらの基は置換基を有していてもよい。
 LT1におけるアリーレン基としては、好ましくは、単環式又は2環式~6環式の芳香族炭化水素から、環を構成する原子に直接結合する水素原子2個を除いた基であり、より好ましくは、単環式、2環式又は3環式の芳香族炭化水素から、環を構成する原子に直接結合する水素原子2個を除いた基であり、更に好ましくは、ベンゼン、ナフタレン、アントラセン、フェナントレン又はフルオレンから環を構成する原子に直接結合する水素原子2個を除いた基であり、特に好ましくは、フェニレン基であり、これらの基は置換基を有していてもよい。
 LT1における2価の複素環基は、好ましくは、単環式又は2環式~6環式の複素環式化合物から、環を構成する原子(好ましくは炭素原子)に直接結合する水素原子2個を除いた基であり、単環式、2環式又は3環式の複素環式化合物から、環を構成する原子(好ましくは炭素原子)に直接結合する水素原子2個を除いた基であり、更に好ましくは、ピリジン、ジアザベンゼン、トリアジン、アザナフタレン、ジアザナフタレン、カルバゾール、ジベンゾフラン、ジベンゾチオフェン、フェノキサジン又はフェノチアジンから環を構成する原子(好ましくは炭素原子)に直接結合する水素原子2個を除いた基であり、特に好ましくは、ピリジン、ジアザベンゼン又はトリアジンから環を構成する原子(好ましくは炭素原子)に直接結合する水素原子2個を除いた基であり、これらの基は置換基を有していてもよい。
 LT1が有していてもよい置換基の例及び好ましい範囲は、ArT1が有していてもよい置換基の例及び好ましい範囲と同じである。
<B群>
 B群において、電子求引性基を有する芳香族炭化水素とは、電子求引性基を置換基として有する芳香族炭化水素を意味し、該芳香族炭化水素は電子求引性基以外の置換基を有していてもよい。
 電子求引性基を含む芳香族炭化水素において、芳香族炭化水素が有する電子求引性基の数は、通常、1~20個であり、好ましくは1~10個であり、より好ましくは1~7個であり、更に好ましくは1~5個であり、特に好ましくは1~3個である。
 電子求引性基としては、例えば、フッ素原子を置換基として有するアルキル基、フッ素原子、シアノ基、ニトロ基、アシル基及びカルボキシル基が挙げられ、好ましくは、シアノ基、フッ素原子を置換基として有するアルキル基又はフッ素原子であり、より好ましくはシアノ基である。
 フッ素原子を置換基として有するアルキル基としては、好ましくは、トリフルオロメチル基、ペンタフルオロエチル基、パーフルオロブチル基、パーフルオロヘキシル基又はパーフルオロオクチル基である。
 電子求引性基を含む芳香族炭化水素基における芳香族炭化水素基としては、好ましくは、単環式又は2環式~6環式の芳香族炭化水素から、環を構成する原子に直接結合する水素原子1個以上を除いた基であり、より好ましくは、単環式、2環式又は3環式の芳香族炭化水素から、環を構成する原子に直接結合する水素原子1個以上を除いた基であり、更に好ましくは、ベンゼン、ナフタレン、アントラセン、フェナントレン又はフルオレンから環を構成する原子に直接結合する水素原子1個以上を除いた基であり、特に好ましくは、ベンゼンから環を構成する原子に直接結合する水素原子1個以上を除いた基であり、これらの基は、電子求引性基以外の置換基を有していてもよい。
 電子求引性基を有する芳香族炭化水素としては、例えば、以下の化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000038
 B群の基は、後述するC群の基及びD群の基ではない。
<C群>
 -C(=O)-で表される基を環内に含む複素環式化合物における、環を構成する-C(=O)-で表される基の数は、通常1~10であり、好ましくは1~7であり、より好ましくは1~5であり、更に好ましくは1~3である。
 -C(=O)-で表される基を環内に含む複素環式化合物としては、例えば、-C(=O)-で表される基を環内に含む芳香族炭化水素が挙げられ、好ましくは、-C(=O)-で表される基を環内に含む、2環式又は3環式の芳香族炭化水素であり、より好ましくは、ナフトキノン、アントラキノン、フェナントキノン、インデノン、フルオレノン又はテトラロンであり、更に好ましくはアントラキノン、フェナントキノン又はフルオレノンであり、これらの芳香族炭化水素は置換基を有していてもよい。
 =N-で表される基を環内に含む複素環式化合物、-C(=O)-で表される基を環内に含む複素環式化合物、-S(=O)-で表される基を環内に含む複素環式化合物及び-S(=O)-で表される基を環内に含む複素環式化合物(以下、「アクセプター型複素環式化合物」という。)における、環を構成する=N-で表される基、-C(=O)-で表される基、-S(=O)-で表される基及び-S(=O)-で表される基の合計の個数は、通常、1~20であり、好ましくは1~10であり、より好ましくは1~5であり、更に好ましくは1~3である。
 アクセプター型複素環式化合物において、環を構成する炭素原子の数は、通常1~60であり、好ましくは2~40であり、より好ましくは3~20である。
 アクセプター型複素環式化合物において、環を構成するヘテロ原子の数は、通常1~30であり、好ましくは1~10であり、より好ましくは1~5であり、更に好ましくは1~3である。
 アクセプター型複素環式化合物は、本実施形態の発光素子の発光効率がより優れるので、好ましくは、-C(=O)-で表される基を環内に含む複素環式化合物、-S(=O)-で表される基を環内に含む複素環式化合物及び=N-で表される基を環内に含む複素環式化合物からなる群から選ばれる少なくとも1つの複素環式化合物であり、より好ましくは、-C(=O)-で表される基を環内に含む複素環式化合物及び=N-で表される基を環内に含む複素環式化合物からなる群から選ばれる少なくとも1つの複素環式化合物であり、更に好ましくは、=N-で表される基を環内に含む複素環式化合物であり、これらの複素環式化合物は置換基を有していてもよい。
 アクセプター型複素環式化合物は、好ましくは、単環式又は2~5環式の複素環式化合物であり、より好ましくは、オキサジアゾール、チアジアゾール、ピリジン、ジアザベンゼン、トリアジン、アザナフタレン、ジアザナフタレン、ジベンゾチオフェンジオキシド、ジベンゾチオフェンオキシド、ジベンゾピラノン、アザアントラセン、ジアザアントラセン、アザフェナントレン、ジアザフェナントレン、アザカルバゾール、ジアザカルバゾール、又は、アクリドンであり、更に好ましくは、オキサジアゾール、チアジアゾール、ピリジン、ジアザベンゼン、トリアジン、ジベンゾチオフェンジオキシド、ジベンゾチオフェンオキシド又はジベンゾピラノンであり、これらの複素環式化合物は置換基を有していてもよい。
 C群の基は、後述するD群の基ではない。
 ArT2は、好ましくはC群から選ばれる基である。
 ArT2は、式(T-1-1)で表される基以外の置換基を有していてもよい。該置換基としては、好ましくは、アルキル基、シクロアルキル基、アルコキシ基、及びシクロアルコキシ基であり、より好ましくは、アルキル基、シクロアルキル基である。
Figure JPOXMLDOC01-appb-C000039

[式中、LT1、nT1及びArT1の定義は、上記と同じである。]
 nT2は、通常、0以上10以下の整数であり、本実施形態の発光素子の発光効率が優れるので、好ましくは0以上7以下の整数であり、より好ましくは0以上5以下の整数である。更に好ましくは1以上4以下の整数であり、2又は3であってもよい。
[D群から選ばれる基を有する化合物]
 D群から選ばれる基を有する化合物は、D群から選ばれる基と水素原子とが結合した化合物(即ち、ホウ素原子、リン原子、アルミニウム原子、ガリウム原子、シリコン原子、ヒ素原子又はゲルマニウム原子を含む複素環式化合物)であってもよく、D群から選ばれる基と1個以上の式(T-1-1)で表される基とが結合した化合物であってもよく、これらの化合物は置換基を有していてもよい。
 D群から選ばれる基を有する化合物において、D群から選ばれる基に結合する式(T-1-1)で表される基の数は、通常、0以上10以下の整数であり、本実施形態の発光素子の発光効率が優れるので、好ましくは0以上7以下の整数であり、より好ましくは0以上5以下の整数である。更に好ましくは0以上4以下の整数であり、0又は1であってもよい。
 D群のホウ素原子、リン原子、アルミニウム原子、ガリウム原子、シリコン原子、ヒ素原子又はゲルマニウム原子を含む複素環式化合物における、ホウ素原子、リン原子、アルミニウム原子、ガリウム原子、シリコン原子、ヒ素原子又はゲルマニウム原子の合計の個数は、通常、1~20であり、好ましくは1~10であり、より好ましくは1~5であり、更に好ましくは1~3である。
 D群のホウ素原子、リン原子、アルミニウム原子、ガリウム原子、シリコン原子、ヒ素原子又はゲルマニウム原子を含む複素環式化合物における、炭素原子数は、置換基の炭素原子数を含めないで、通常1~60であり、好ましくは5~40であり、より好ましくは10~25である。また、複素環式化合物は、酸素原子、窒素原子、硫黄原子、又はセレン原子等を含んでいてもよい。
 D群のホウ素原子、リン原子、アルミニウム原子、ガリウム原子、シリコン原子、ヒ素原子又はゲルマニウム原子を含む複素環式化合物は、ホウ素原子、リン原子、アルミニウム原子、ガリウム原子、シリコン原子、ヒ素原子及びゲルマニウム原子の群から選ばれる1種以上、及び窒素原子を環内に含む縮合複素環骨格(b)を有する複素環式化合物であることが好ましい。該縮合複素環骨格(b)において、縮合複素環骨格(b)に含まれる窒素原子のうち、少なくとも1つは、二重結合を形成していない窒素原子であることが好ましく、縮合複素環骨格(b)に含まれる窒素原子の全てが二重結合を形成していない窒素原子であることがより好ましい。
 縮合複素環骨格(b)の炭素原子数は、置換基の炭素原子数を含めないで、通常1~60であり、好ましくは5~40であり、より好ましくは10~25である。
 縮合複素環骨格(b)のヘテロ原子数は、置換基のヘテロ原子数を含めないで、通常2~30であり、好ましくは2~15であり、より好ましくは2~10であり、更に好ましくは2~5であり、特に好ましくは2又は3である。
 縮合複素環骨格(b)のホウ素原子、リン原子、アルミニウム原子、ガリウム原子、シリコン原子、ヒ素原子、及びゲルマニウム原子の総数は、置換基に含まれる場合を含めず、通常1~10であり、好ましくは1~5であり、より好ましくは1~3であり、更に好ましくは1である。
 縮合複素環骨格(b)の窒素原子数は、置換基の窒素原子数を含めないで、通常1~20であり、好ましくは1~10であり、より好ましくは1~5であり、更に好ましくは1~3であり、特に好ましくは2である。
 縮合複素環骨格(b)は、本実施形態の発光素子の発光効率がより優れるので、好ましくは3~12環式縮合複素環骨格であり、より好ましくは3~6環式縮合複素環骨格であり、更に好ましくは5環式縮合複素環骨格である。
 「二重結合を形成していない窒素原子」とは、他の3つの原子とそれぞれ単結合で結合する窒素原子を意味する。「環内に二重結合を形成していない窒素原子を含む」とは、環内に-N(-R)-(式中、Rは水素原子又は置換基を表す。)、又は、式:
Figure JPOXMLDOC01-appb-C000040

で表される基を含むことを意味する。
 D群のホウ素原子、リン原子、アルミニウム原子、ガリウム原子、シリコン原子、ヒ素原子又はゲルマニウム原子を含む複素環式化合物としては、式(D-1)で表される化合物が好ましい。
 D群のホウ素原子、リン原子、アルミニウム原子、ガリウム原子、シリコン原子、ヒ素原子又はゲルマニウム原子を含む複素環式化合物としては、ホウ素原子を含む複素環式化合物及びリン原子を含む複素環式化合物が好ましく、ホウ素原子を含む複素環式化合物がより好ましい。
 式(D-1)における、A環、B環及びC環が有していてもよい置換基としては、本実施形態の発光素子の発光効率がより優れるので、好ましくは、アルキル基、アリール基、1価の複素環基、又は置換アミノ基であり、より好ましくは、アルキル基、アリール基、又は置換アミノ基であり、これらの基は置換基を有していてもよい。
 式(D-1)おける、A環、B環及びC環のより詳しい構造(CA、CB及びCC)を以下に説明する。
Figure JPOXMLDOC01-appb-C000041
 A環の詳しい構造(CA)としては、例えば、式(CA01)~式(CA38)で表される構造が挙げられ、本実施形態の発光素子の発光効率がより優れるので、好ましくは、式(CA01)~式(CA19)で表される構造であり、より好ましくは、式(CA01)~式(CA05)で表される構造であり、更に好ましくは、式(CA01)で表される構造である。
Figure JPOXMLDOC01-appb-C000042

Figure JPOXMLDOC01-appb-C000043

Figure JPOXMLDOC01-appb-C000044

Figure JPOXMLDOC01-appb-C000045

[式中、RY2及びRは、前記と同じ意味を表す。
 RY4は、水素原子、アルキル基、シクロアルキル基又はアリール基を表し、これらの基は置換基を有していてもよい。RY4が複数存在する場合、それらは同一でも異なっていてもよい。
 式中の水素原子は、A環が有していてもよい置換基に置き換わっていてもよい。]
 B環の詳しい構造(CB)としては、例えば、式(CB01)~式(CB24)で表される構造が挙げられ、本実施形態の発光素子の発光効率が優れるので、好ましくは、式(CB01)~式(CB13)で表される構造であり、より好ましくは、式(CB01)~式(CB05)で表される構造であり、特に好ましくは、式(CB01)で表される構造である。
Figure JPOXMLDOC01-appb-C000046

Figure JPOXMLDOC01-appb-C000047

Figure JPOXMLDOC01-appb-C000048

[式中、RY2、RY4及びRは、前記と同じ意味を表す。水素原子は、B環が有していてもよい置換基に置き換わっていてもよい。]
 C環の詳しい構造(CC)としては、例えば、式(CC01)~式(CC24)で表される構造が挙げられ、好ましくは、式(CC01)~式(CC13)で表される構造であり、より好ましくは、式(CC01)~式(CC05)で表される構造であり、更に好ましくは、式(CC01)で表される構造である。
Figure JPOXMLDOC01-appb-C000049

Figure JPOXMLDOC01-appb-C000050

Figure JPOXMLDOC01-appb-C000051

[式中、RY2、RY4及びRは、前記と同じ意味を表す。水素原子は、C環が有していてもよい置換基に置き換わっていてもよい。]
 式(CA02)~式(CA05)、式(CB02)~式(CB05)、及び式(CC02)~式(CC05)において、-C(RY2-で表される基中の2個のRY2の組み合わせは、好ましくは両方がアルキル基若しくはシクロアルキル基、両方がアリール基、両方が1価の複素環基、又は、一方がアルキル基若しくはシクロアルキル基で他方がアリール基若しくは1価の複素環基であり、より好ましくは一方がアルキル基若しくはシクロアルキル基で他方がアリール基であり、これらの基は置換基を有していてもよい。-C(RY2-で表される基における2個のRY2が互いに結合して、該炭素原子と共に環を形成する場合、-C(RY2-で表される基としては、好ましくは式(Y-A1)~式(Y-A5)で表される基であり、より好ましくは式(Y-A4)で表される基であり、これらの基は置換基を有していてもよい。
Figure JPOXMLDOC01-appb-C000052
 式(CA09)~式(CA12)、式(CB08)~式(CB10)及び式(CC08)~式(CC10)において、-C(RY2)=C(RY2)-で表される基中の2個のRY2の組み合わせは、好ましくは両方がアルキル基若しくはシクロアルキル基、又は、一方がアルキル基若しくはシクロアルキル基で他方がアリール基であり、これらの基は置換基を有していてもよい。
 式(CA13)~式(CA16)、式(CB11)、式(CB12)、式(CC11)及び式(CC12)において、-C(RY2-C(RY2-で表される基中の4個のRY2は、好ましくは置換基を有していてもよいアルキル基又は置換基を有していてもよいシクロアルキル基である。複数あるRY2は互いに結合して、それぞれが結合する炭素原子と共に環を形成していてもよく、RY2が環を形成する場合、-C(RY2-C(RY2-で表される基は、好ましくは式(Y-B1)~式(Y-B5)で表される基であり、より好ましくは式(Y-B3)で表される基であり、これらの基は置換基を有していてもよい。
Figure JPOXMLDOC01-appb-C000053

[式中、RY2は前記と同じ意味を表す。]
 式(CA20)~式(CA26)、式(CB14)~式(CB18)及び式(CC14)~式(CC18)において、RY4は、好ましくはアルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基又は1価の複素環基であり、より好ましくはアリール基であり、これらの基は置換基を有していてもよい。
 化合物(B)において、A環、B環及びC環の組み合わせとしては、本実施形態の発光素子の発光効率がより優れるので、好ましくは、A環が式(CA01)~式(CA05)で表される構造であり、B環が式(CB01)~式(CB05)で表される構造であり、且つ、C環が式(CC01)~式(CC05)で表される構造であり、より好ましくは、A環が式(CA01)で表される構造であり、B環が式(CB01)~式(CB05)で表される構造であり、且つ、C環が式(CC01)~式(CC05)で表される構造であり、更に好ましくは、A環が式(CA01)で表される構造であり、B環が式(CB01)で表される構造であり、且つ、C環が式(CC01)で表される構造である。
 n3は、本実施形態の発光素子の外部量子効率がより優れるので、好ましくは0である。
 Y及びYは、好ましくは、-N(-Ry)-又は硫黄原子であり、より好ましくは、-N(-Ry)-である。
 Y及びYの少なくとも一つは、本実施形態の発光効率がより優れるので、-N(-Ry)-であることが好ましく、Y及びYの双方が-N(-Ry)-であることがより好ましい。但し、n3が0である場合、Yは、-N(-Ry)-が好ましい。
 Ryは、本実施形態の発光素子の発光効率がより優れるので、好ましくは、水素原子、置換基を有していてもよいアリール基、又は、置換基を有していてもよい1価の複素環基であり、より好ましくは、水素原子、又は、置換基を有していてもよいアリール基であり、更に好ましくは、置換基を有していてもよいアリール基である。
 Ryが連結基を介して、A環、B環又はC環と結合している場合、連結基としては、例えば、-O-、-S-、-CH-等の2価の基、ホウ素原子等の3価の基が挙げられる。
 Ryが3価の基を介してA環、B環又はC環と結合する場合、通常、A環とA環上の置換基と連結するか、B環とB環上の置換基と連結するか、C環とC環上の置換基と連結する。
 低分子化合物(SM1)の分子量は、好ましくは1×10~5×10であり、より好ましくは2×10~3×10であり、更に好ましくは3×10~1.5×10であり、特に好ましくは4×10~1×10である。
 低分子化合物(SM1)としては、例えば、下記式で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000054

Figure JPOXMLDOC01-appb-C000055

Figure JPOXMLDOC01-appb-C000056

Figure JPOXMLDOC01-appb-C000057

Figure JPOXMLDOC01-appb-C000058

Figure JPOXMLDOC01-appb-C000059

[式中、
 Zは、-N=で表される基、又は、-CH=で表される基を表す。
 Zは、酸素原子又は硫黄原子を表す。
 複数存在するZ及びZは、各々、同一でも異なっていてもよい。]
 Zは-N=で表される基であることが好ましい。Zは酸素原子であることが好ましい。
 低分子化合物(SM1)は、Aldrich、Luminescence Technology Corp.等から入手可能である。その他には、例えば、国際公開第2007/063754号、国際公開第2008/056746号、国際公開第2011/032686号、国際公開第2012/096263号、特開2009-227663号公報、特開2010-275255号公報、Advanced Materials,26巻,7931-7958頁,2014年に記載されている方法に従って合成することができる。
 低分子化合物(SM1)から水素原子を除いてなる基からなる構成単位としては、例えば、式(MC1-1)~式(MC1-3)、式(MC2-1)~式(MC2-8)、及び式(MC3-1)~式(MC3-5)で表される構成単位が挙げられる。
Figure JPOXMLDOC01-appb-C000060

Figure JPOXMLDOC01-appb-C000061

Figure JPOXMLDOC01-appb-C000062

[式中、
 nT1、LT1、ArT1及びArT2は、前記と同じ意味である。
 ArL2は、アリーレン基又は2価の複素環基を表し、これらの基は置換基を有していてもよい。
 ArL3は、芳香族炭化水素環又は芳香族複素環から3個の水素原子を除いた基である。
 ArT1’は、ArT1から水素原子を1個除いた基である。
 ArT2’は、ArT2から水素原子を1個除いた基若しくは水素原子を2個除いた基、又は、D群から選ばれる基である。
 ArT2’’は、D群から選ばれる基である]
 式(MC1-1)~式(MC1-3)、式(MC2-1)~式(MC2-7)、及び式(MC3-1)~式(MC3-5)における好ましい構造として、次の構造が例示される。
Figure JPOXMLDOC01-appb-C000063

Figure JPOXMLDOC01-appb-C000064

Figure JPOXMLDOC01-appb-C000065

Figure JPOXMLDOC01-appb-C000066

Figure JPOXMLDOC01-appb-C000067

Figure JPOXMLDOC01-appb-C000068
 式(MC2-8)における好ましい構造として、次の構造が例示される。
Figure JPOXMLDOC01-appb-C000069

[式中、
 RY2及びZは前記と同じ意味を表す。
 Zは、-CH-、又は=N-を表す。
 R1Tは、水素原子、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、ハロゲン原子、シアノ基、又は、式(T1-1-1)で表される基を表し、これらの基は置換基を有していてもよい。
 RTSは、水素原子、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、アリールオキシ基、1価の複素環基、置換アミノ基、ハロゲン原子又はシアノ基であり、これらの基は更に置換基を有していてもよい。複数存在するRTSは、同一でも異なっていてもよい。]
 RTSは、水素原子、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、1価の複素環基、置換アミノ基又はシアノ基であることが好ましく、水素原子、アルキル基又は1価の複素環基であることがより好ましい。
 RTSで表されるアリール基、1価の複素環基及び置換アミノ基の例及び好ましい範囲は、それぞれ、ArT1が有していてもよい置換基におけるアリール基、1価の複素環基及び置換アミノ基の例及び好ましい範囲と同じである。
 RTSが有していてもよい置換基の例及び好ましい範囲は、それぞれ、ArT1が有していてもよい置換基が更に有していてもよい置換基の例及び好ましい範囲と同じである。
[式(X)で表される構成単位]
 aX1は、本実施形態の発光素子の発光効率がより優れるので、好ましくは2以下であり、より好ましくは0又は1であり、更に好ましくは0である。
 aX2は、本実施形態の発光素子の発光効率がより優れるので、好ましくは2以下であり、より好ましくは0である。
 RX1、RX2及びRX3は、好ましくはアルキル基、シクロアルキル基、アリール基又は1価の複素環基であり、より好ましくはアリール基であり、これらの基は置換基を有していてもよい。
 ArX1、ArX2、ArX3及びArX4で表されるアリーレン基及び2価の複素環基の例及び好ましい範囲は、それぞれ、ArY1で表されるアリーレン基の好ましい範囲、及び、[共通する用語の説明]に記載の2価の複素環基の好ましい範囲である。
 ArX2及びArX4で表される少なくとも1種のアリーレン基と少なくとも1種の2価の複素環基とが直接結合した2価の基における、アリーレン基及び2価の複素環基の例及び好ましい範囲は、それぞれ、ArY1で表されるアリーレン基の好ましい範囲、及び、[共通する用語の説明]に記載の2価の複素環基の好ましい範囲である。
 ArX2及びArX4で表される少なくとも1種のアリーレン基と少なくとも1種の2価の複素環基とが直接結合した2価の基としては、式(A-1)~式(A-20)から選ばれる少なくとも1種と、式(AA-1)~式(AA-15)及び式(AA-18)~式(AA-34)から選ばれる少なくとも1種が結合した基が挙げられる。
 ArX1、ArX2、ArX3及びArX4は、好ましくは置換基を有していてもよいアリーレン基である。
 ArX1~ArX4及びRX1~RX3で表される基が有してもよい置換基の例及び好ましい範囲は、ArY1で表される基が有してもよい置換基の例及び好ましい範囲と同じである。
 式(X)で表される構成単位としては、好ましくは式(X-1)~式(X-7)で表される構成単位である。
Figure JPOXMLDOC01-appb-C000070

Figure JPOXMLDOC01-appb-C000071

Figure JPOXMLDOC01-appb-C000072

Figure JPOXMLDOC01-appb-C000073

[式中、RX4及びRX5は、それぞれ独立に、水素原子、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、アリールオキシ基、ハロゲン原子、1価の複素環基又はシアノ基を表し、これらの基は置換基を有していてもよい。複数存在するRX4は、同一でも異なっていてもよく、互いに結合して、それぞれが結合する炭素原子と共に環を形成していてもよい。複数存在するRX5は、同一でも異なっていてもよく、互いに結合して、それぞれが結合する炭素原子と共に環を形成していてもよい。]
 式(X)で表される構成単位としては、例えば、式(X1-1)~式(X1-15)で表される構成単位が挙げられる。
Figure JPOXMLDOC01-appb-C000074

Figure JPOXMLDOC01-appb-C000075

Figure JPOXMLDOC01-appb-C000076

Figure JPOXMLDOC01-appb-C000077

Figure JPOXMLDOC01-appb-C000078

Figure JPOXMLDOC01-appb-C000079
 式(Y)で表される繰り返し単位、及び、低分子化合物(SM1)から水素原子を1つ以上除いてなる基からなる構成単位(SM1)を有する高分子化合物において、構成単位(SM1)の合計量は、本実施形態の発光素子の発光効率が優れるので、高分子化合物に含まれる構成単位の合計量に対して、好ましくは0.01~50モル%であり、より好ましくは0.1~30モル%であり、更に好ましくは0.5~15モル%であり、特に好ましくは1~15モル%である。
 高分子化合物は、更に式(Y-2)で表される繰り返し単位を有していてもよい。
Figure JPOXMLDOC01-appb-C000080

[式中、ArY2は、置換基を有していてもよい2価の複素環基である。]
 式(Y-2)における2価の複素環基の好ましくは、式(AA-1)~式(AA-15)及び式(AA-18)~式(AA-34)で表される基である。2価の複素環基は、これらの基が複数結合した基を含む。
 高分子化合物としては、下記の高分子化合物P-1~P-4が挙げられる。ここで、「その他」の構成単位とは、構成単位(SM1)、式(X)で表される構成単位、式(Y)で表される構成単位及び式(Y-2)で表される構成単位以外の構成単位を意味する。
Figure JPOXMLDOC01-appb-T000081

[表1においてr’、s’、t’、u’及びv’は、各構成単位のモル比率(モル%)を表す。r’+s’+t’+u’+v’=100であり、且つ、70≦r’+u’+s’≦100である。]
 高分子化合物は、ブロック共重合体、ランダム共重合体、交互共重合体、グラフト共重合体のいずれであってもよいし、その他の態様であってもよいが、複数種の原料モノマーを共重合してなる共重合体であることが好ましい。
 高分子化合物のポリスチレン換算の重量平均分子量は、好ましくは5×10~1×10であり、より好ましくは1.5×10~1×10である。
 [高分子化合物の製造方法]
 次に、高分子化合物の製造方法について説明する。
 高分子化合物は、例えば、式(M-1)で表される化合物と、式(M-2)で表される化合物と、式(MT-1)~式(MT-4)で表される化合物の少なくとも1種と、を縮合重合させることにより製造することができる。
Figure JPOXMLDOC01-appb-C000082

Figure JPOXMLDOC01-appb-C000083

[式中、
 Ar、ArT1、ArT2、ArT1’、ArT2’、ArL2、LT1及びnT1は、前記と同じ意味を表す。
 ZC1~ZC4及びZC9~ZC11は、それぞれ独立に、置換基A群及び置換基B群からなる群から選ばれる基を表す。]
 例えば、ZC1及びZC2が置換基A群から選ばれる基である場合、ZC3、ZC4及びZC9~ZC11は、それぞれ、置換基B群から選ばれる基を選択する。
 例えば、ZC1及びZC2が置換基B群から選ばれる基である場合、ZC3、ZC4及びZC9~ZC11は、置換基A群から選ばれる基を選択する。
 <置換基A群>
 塩素原子、臭素原子、ヨウ素原子、-O-S(=O)C1(式中、RC1は、アルキル基、シクロアルキル基又はアリール基を表し、これらの基は置換基を有していてもよい。)で表される基。
 <置換基B群>
 -B(ORC2(式中、RC2は、水素原子、アルキル基、シクロアルキル基又はアリール基を表し、これらの基は置換基を有していてもよい。複数存在するRC2は同一でも異なっていてもよく、互いに連結して、それぞれが結合する酸素原子とともに環構造を形成していてもよい。)で表される基;
 -BFQ’(式中、Q’は、Li、Na、K、Rb又はCsを表す。)で表される基;
 -MgY’(式中、Y’は、塩素原子、臭素原子又はヨウ素原子を表す。)で表される基;
 -ZnY’’(式中、Y’’は、塩素原子、臭素原子又はヨウ素原子を表す。)で表される基;及び、
 -Sn(RC3(式中、RC3は、水素原子、アルキル基、シクロアルキル基又はアリール基を表し、これらの基は置換基を有していてもよい。複数存在するRC3は同一でも異なっていてもよく、互いに連結して、それぞれが結合するスズ原子とともに環構造を形成していてもよい。)で表される基。
 -B(ORC2で表される基としては、下記式で表される基が例示される。
Figure JPOXMLDOC01-appb-C000084
 置換基A群から選ばれる基を有する化合物と置換基B群から選ばれる基を有する化合物とは、公知のカップリング反応により縮合重合して、置換基A群から選ばれる基及び置換基B群から選ばれる基と結合する炭素原子同士が結合する。そのため、置換基A群から選ばれる基を2個有する化合物と、置換基B群から選ばれる基を2個有する化合物を公知のカップリング反応に供すれば、縮合重合により、これらの化合物の縮合重合体を得ることができる。
 縮合重合は、通常、触媒、塩基及び溶媒の存在下で行われるが、必要に応じて、相間移動触媒を共存させて行ってもよい。
 触媒としては、例えば、ビス(トリフェニルホスフィン)パラジウム(II)ジクロリド、ビス(トリス-o-メトキシフェニルホスフィン)パラジウム(II)ジクロリド、テトラキス(トリフェニルホスフィン)パラジウム(0)、トリス(ジベンジリデンアセトン)ジパラジウム(0)、酢酸パラジウム等のパラジウム錯体、テトラキス(トリフェニルホスフィン)ニッケル(0)、[1,3-ビス(ジフェニルホスフィノ)プロパン)ニッケル(II)ジクロリド、ビス(1,4-シクロオクタジエン)ニッケル(0)等のニッケル錯体等の遷移金属錯体;これらの遷移金属錯体が、更にトリフェニルホスフィン、トリ(o-トリル)ホスフィン、トリ(tert-ブチル)ホスフィン、トリシクロヘキシルホスフィン、1,3-ビス(ジフェニルホスフィノ)プロパン、ビピリジル等の配位子を有する錯体が挙げられる。触媒は、1種単独で用いても2種以上を併用してもよい。
 触媒の使用量は、原料モノマーのモル数の合計に対する遷移金属の量として、通常、0.00001~3モル当量である。
 塩基及び相間移動触媒としては、例えば、炭酸ナトリウム、炭酸カリウム、炭酸セシウム、フッ化カリウム、フッ化セシウム、リン酸三カリウム等の無機塩基;フッ化テトラブチルアンモニウム、水酸化テトラエチルアンモニウム、水酸化テトラブチルアンモニウム等の有機塩基;塩化テトラブチルアンモニウム、臭化テトラブチルアンモニウム等の相間移動触媒が挙げられる。塩基及び相間移動触媒は、それぞれ、1種単独で用いても2種以上を併用してもよい。
 塩基及び相間移動触媒の使用量は、それぞれ、原料モノマーの合計モル数に対して、通常0.001~100モル当量である。
 溶媒としては、例えば、トルエン、キシレン、メシチレン、テトラヒドロフラン、1,4-ジオキサン、ジメトキシエタン、N,N-ジメチルアセトアミド、N,N-ジメチルホルムアミド等の有機溶媒、水が挙げられる。溶媒は、1種単独で用いても2種以上を併用してもよい。
 溶媒の使用量は、通常、原料モノマーの合計100質量部に対して、10~100000質量部である。
 縮合重合の反応温度は、通常-100~200℃である。縮合重合の反応時間は、通常1時間以上である。
 重合反応の後処理は、公知の方法、例えば、分液により水溶性不純物を除去する方法、メタノール等の低級アルコールに重合反応後の反応液を加えて、析出させた沈殿を濾過した後、乾燥させる方法等を単独、又は組み合わせて行う。高分子化合物の純度が低い場合、例えば、晶析、再沈殿、ソックスレー抽出器による連続抽出、カラムクロマトグラフィー等の通常の方法にて精製することができる。
[低分子化合物(SM2)]
 低分子化合物(SM2)の最低励起三重項状態のエネルギー準位と最低励起一重項状態のエネルギー準位との差(ΔESTともいう)は、0.50eV以下である。低分子化合物(SM2)のΔESTは、本実施形態の発光素子の発光効率がより優れるので、好ましくは、0.46eV以下であり、より好ましくは、0.40eV以下であり、更に好ましくは、0.35eV以下であり、特に好ましくは、0.30eV以下であり、とりわけ好ましくは、0.25eV以下であり、とりわけより好ましくは、0.20eV以下である。また、SM2のΔESTは、0.001eV以上であってもよく、0.005eV以上であってもよく、0.01eV以上であってもよく、0.05eV以上であってもよい。
 低分子化合物(SM2)は、熱活性化遅延蛍光(TADF)性を有する化合物が好ましい。
 低分子化合物(SM2)のΔESTは、量子化学計算プログラムであるGaussian09を用いることができる。例えば、B3LYPレベルの密度汎関数法を用いて、化合物の基底状態を構造最適化した後、B3LYPレベルの時間依存密度汎関数法を用いることで、ΔESTを算出することができる。基底関数としては、通常、6-31G*を使用するが、6-31G*を使用できない原子が化合物に含まれる場合は、該原子に対してLANL2DZを使用することができる。
 低分子化合物(SM2)は、本実施形態の発光素子の発光効率がより優れるので、式(T-11)で表される化合物、又は、G群から選ばれる基を有する化合物であることが好ましい。
 式(T-11)におけるArT3の好ましい範囲、及び例示は、式(T-1)におけるArT1の好ましい範囲、及び例示と同じである。
 式(T-11)におけるArT4の好ましい範囲、及び例示は、式(T-1)におけるArT2の好ましい範囲、及び例示と同じである。また、E群は、F群、及びG群ではなく、F群は、G群ではない。
 式(T-11)におけるLT2の好ましい範囲、及び例示は、式(T-1)におけるLT1の好ましい範囲、及び例示と同じである。
 式(T-11)におけるnT3の好ましい範囲は、式(T-1)におけるnT1の好ましい範囲と同じである。
 式(T-11)におけるnT4の好ましい範囲は、式(T-1)におけるnT2の好ましい範囲と同じである。
 式(T-11)で表される化合物の好ましい範囲、及び例示は、式(T-1)で表される化合物の好ましい範囲、及び例示と同じである。
 G群から選ばれる基の好ましい範囲、及び例示は、D群から選ばれる基の好ましい範囲、及び例示と同じである。
 G群から選ばれる基を有する化合物の好ましい範囲、及び例示は、D群から選ばれる基を有する化合物の好ましい範囲、及び例示と同じである。
 低分子化合物(SM2)は、本実施形態の発光素子の発光効率がより優れるので、式(D-11)で表される化合物であることが好ましい。
 式(D-11)におけるE環の好ましい範囲、及び例示は、式(D-1)におけるA環の好ましい範囲、及び例示と同じである。
 式(D-11)におけるF環の好ましい範囲、及び例示は、式(D-1)におけるB環の好ましい範囲、及び例示と同じである。
 式(D-11)におけるG環の好ましい範囲、及び例示は、式(D-1)におけるC環の好ましい範囲、及び例示と同じである。
 式(D-11)におけるXの好ましい範囲は、式(D-1)におけるXの好ましい範囲と同じである。
 式(D-11)におけるYの好ましい範囲は、式(D-1)におけるYの好ましい範囲と同じである。
 式(D-11)におけるYの好ましい範囲は、式(D-1)におけるYの好ましい範囲と同じである。
 式(D-11)におけるYの好ましい範囲は、式(D-1)におけるYの好ましい範囲と同じである。
 式(D-11)において、n6は、好ましくは0である。
 式(D-11)で表される化合物の好ましい範囲、及び例示は、式(D-1)で表される化合物の好ましい範囲、及び例示と同じである。
[組成物]
 本実施形態の組成物は、高分子化合物を含んでおり、且つ、組成物中に、最低三重項励起状態のエネルギー準位と最低一重項励起状態のエネルギー準位との差の絶対値が0.50eV以下である低分子化合物から水素原子を1つ以上除いてなる構造(SM0)が2種以上存在している。すなわち、本実施形態の組成物中には、高分子化合物中の構成単位(SM1)として、及び、低分子化合物(SM2)として、構造(SM0)が存在していてよい(以下、このような組成物を、組成物の第一の形態という。)。また、本実施形態の組成物中には、第一の高分子化合物中の構成単位(SM1-1)、及び、第二の高分子化合物中の構成単位(SM1-2)として、構造(SM0)が存在していてもよい(以下、このような組成物を、組成物の第二の形態という。)。
 本実施形態の組成物によれば、2種の構造(SM0)の物理的、化学的又は電気的な相互作用によって、発光素子の優れた発光効率が実現される。本発明者は、2種の構造(SM0)が、効率的に、物理的、化学的又は電気的に相互作用するような設計(特に、効率的に電気的に相互作用するような設計)を検討した。より効率的に電気的な相互作用を得るためには、2種の構造(SM0)の一方と、2種の構造(SM0)の他方との分子間距離が重要と考え、2種の構造(SM0)の単位質量当たりの含有数と、その比率と、に着目した。より詳細には、単位質量当たりの含有数とその比率とが、後述に示す関係となるよう設計することで、電気エネルギーが、2種の構造(SM0)のうちのいずれか一方へと速やかに移動するため、その結果、発光素子の発光特性(特に発光効率)がより優れると推測される。
 なお、構成単位(SM1-1)は、低分子化合物(SM1-1)から水素原子を1つ以上除いてなる構成単位であり、低分子化合物(SM1-1)の好ましい範囲及び例示は、低分子化合物(SM1)の好ましい範囲及び例示と同じである。また、構成単位(SM1-2)は、低分子化合物(SM1-2)から水素原子を1つ以上除いてなる構成単位であり、低分子化合物(SM1-2)の好ましい範囲及び例示は、低分子化合物(SM1)の好ましい範囲及び例示と同じである。但し、低分子化合物(SM1-1)と低分子化合物(SM1-2)とは異なる。
 組成物の第一の形態において、組成物中の構成単位(SM1)の単位質量当たりの含有数をdSM1(個/g)、組成物中の低分子化合物(SM2)の単位質量当たりの含有数をdSM2(個/g)としたとき、dSM1及びdSM2の合計値(dSM1+dSM2)は、2.0×1019(個/g)以上であり、3.0×1019(個/g)以上であってもよく、5.0×1019(個/g)以上であってもよく、7.0×1019(個/g)以上であってもよい。また、dSM1+dSM2は、通常、4.0×1020(個/g)以下であり、3.0×1020(個/g)以下であってもよく、2.5×1020(個/g)以下であってもよい。
 また、dSM1(個/g)とdSM2(個/g)との比率は、特定の範囲内であることが好ましい。これにより構成単位(SM1)と低分子化合物(SM2)とが、より効率的に、物理的、化学的又は電気的に相互作用しやすくなり、本実施形態の組成物を用いた発光素子の発光効率がより優れる。上記観点から、dSM1/dSM2は、0.020以上であり、0.033以上であってもよく、0.050以上であってもよく、0.077以上であってもよく、0.083以上であってもよい。また、上記観点から、dSM1/dSM2は、50以下であり、30以下であってもよく、20以下であってもよく、13以下であってもよく、12以下あってもよい。
 また、構成単位(SM1)と低分子化合物(SM2)との比率は、少なくとも一方が他方に対して多くなる比率であることが好ましい。構成単位(SM1)が低分子化合物(SM2)より組成物中に多く存在する場合、dSM1/dSM2は、例えば、1.1~50であり、好ましくは1.2~20、より好ましくは1.3~13、更に好ましくは1.7~12.7であってよい。また、低分子化合物(SM2)が構成単位(SM1)より組成物中に多く存在する場合、dSM1/dSM2は、例えば、0.020~0.91であり、好ましくは0.050~0.83、より好ましくは0.077~0.77、更に好ましくは0.079~0.59であってよい。このような関係を有することで、構成単位(SM1)と低分子化合物(SM2)とが、より効率的に、物理的、化学的又は電気的に相互作用しやすくなり、本実施形態の組成物を用いた発光素子の発光効率がより優れる。
 組成物の第二の形態において、組成物中の構成単位(SM1-1)の単位質量当たりの含有数をdSM1a(個/g)、組成物中の構成単位(SM1-2)の単位質量当たりの含有数をdSM1b(個/g)としたとき、dSM1a及びdSM1bの合計数(dSM1a+dSM1b)は、2.0×1019(個/g)以上であり、3.0×1019(個/g)以上であってもよく、5.0×1019(個/g)以上であってもよく、7.0×1019(個/g)以上であってもよい。また、dSM1a+dSM1bは、通常、4.0×1020(個/g)以下であり、3.0×1020(個/g)以下であってもよく、2.5×1020(個/g)以下であってもよい。
 また、dSM1a(個/g)とdSM1b(個/g)との比率は、特定の範囲内であることが好ましい。これにより構成単位(SM1-1)と構成単位(SM1-2)とが、より効率的に、物理的、化学的又は電気的に相互作用しやすくなり、本実施形態の組成物を用いた発光素子の発光効率がより優れる。上記観点から、dSM1a/dSM1bは、0.020以上であり、0.033以上であってもよく、0.050以上であってもよく、0.077以上であってもよく、0.083以上であってもよい。また、上記観点から、dSM1a/dSM1bは、50以下であり、30以下であってもよく、20以下であってもよく、13以下であってもよく、12以下であってもよい。
 また、構成単位(SM1-1)と構成単位(SM1-2)と比率は、少なくとも一方が他方に対して多くなる比率であることが好ましい。構成単位(SM1-1)が構成単位(SM1-2)より組成物中に多く存在する場合、dSM1a/dSM1bは、例えば、1.1~50であり、好ましくは1.2~20、より好ましくは1.3~13、更に好ましくは1.7~12.7であってよい。また、構成単位(SM1-2)が構成単位(SM1-1)より組成物中に多く存在する場合、dSM1/dSM2は、例えば、0.020~0.91であり、好ましくは0.050~0.83、より好ましくは0.077~0.77、更に好ましくは0.079~0.59であってよい。このような関係を有することで、構成単位(SM1-1)と構成単位(SM1-2)とが、より効率的に、物理的、化学的又は電気的に相互作用しやすくなり、本実施形態の組成物を用いた発光素子の発光効率がより優れる。
 本実施形態の組成物は、上記以外の他の材料を更に含んでいてもよい。例えば、本実施形態の組成物は、正孔輸送材料、正孔注入材料、電子輸送材料、電子注入材料、発光材料及び酸化防止剤からなる群から選ばれる少なくとも1種の材料を更に含んでいてもよい。
 [正孔輸送材料]
 正孔輸送材料は、低分子化合物と高分子化合物とに分類される。
 高分子化合物としては、例えば、ポリビニルカルバゾール及びその誘導体;側鎖又は主鎖に芳香族アミン構造を有するポリアリーレン及びその誘導体、及び、式(X)で表される構成単位を含む高分子化合物が挙げられる。高分子化合物は、電子受容性部位が結合された化合物でもよい。電子受容性部位としては、例えば、フラーレン、テトラフルオロテトラシアノキノジメタン、テトラシアノエチレン、トリニトロフルオレノンが挙げられ、好ましくはフラーレンである。
 組成物の第一の形態において、正孔輸送材料の配合量は、本実施形態における高分子化合物を100質量部とした場合、通常、1~400質量部であり、好ましくは5~150質量部である。
 また、組成物の第二の形態において、正孔輸送材料の配合量は、本実施形態における高分子化合物の総量を100質量部とした場合、通常、1~400質量部であり、好ましくは5~150質量部である。
 正孔輸送材料は、1種単独で用いても2種以上を併用してもよい。
 [電子輸送材料]
 電子輸送材料は、低分子化合物と高分子化合物とに分類される。
 低分子化合物としては、例えば、8-ヒドロキシキノリンを配位子とする金属錯体、オキサジアゾール、アントラキノジメタン、ベンゾキノン、ナフトキノン、アントラキノン、テトラシアノアントラキノジメタン、フルオレノン、ジフェニルジシアノエチレン及びジフェノキノン、並びに、これらの誘導体が挙げられる。
 高分子化合物としては、例えば、式(Y)で表される構成単位及び式(Y-2)で表される構成単位からなる群より選ばれる1種以上の構成単位を含む高分子化合物が挙げられ、その例としては、ポリフェニレン、ポリフルオレン、及び、これらの誘導体が挙げられる。高分子化合物は、金属でドープされていてもよい。
 電子輸送材料の配合量は、高分子化合物(TP)を100質量部とした場合、通常、1~400質量部であり、好ましくは5~150質量部である。
 電子輸送材料は、1種単独で用いても2種以上を併用してもよい。
 [正孔注入材料及び電子注入材料]
 正孔注入材料及び電子注入材料は、各々、低分子化合物と高分子化合物とに分類される。
 低分子化合物としては、例えば、銅フタロシアニン等の金属フタロシアニン;カーボン;モリブデン、タングステン等の金属酸化物;フッ化リチウム、フッ化ナトリウム、フッ化セシウム、フッ化カリウム等の金属フッ化物が挙げられる。
 高分子化合物としては、例えば、ポリアニリン、ポリチオフェン、ポリピロール、ポリフェニレンビニレン、ポリチエニレンビニレン、ポリキノリン及びポリキノキサリン、並びに、これらの誘導体;芳香族アミン構造を主鎖又は側鎖に含む重合体等の導電性高分子が挙げられる。
 正孔注入材料及び電子注入材料の配合量は、各々、高分子化合物を100質量部とした場合、通常、1~400質量部であり、好ましくは5~150質量部である。
 電子注入材料及び正孔注入材料は、各々、1種単独で用いても2種以上を併用してもよい。
 正孔注入材料又は電子注入材料が導電性高分子を含む場合、導電性高分子の電気伝導度は、好ましくは、1×10-5S/cm~1×10S/cmである。導電性高分子の電気伝導度をかかる範囲とするために、導電性高分子に適量のイオンをドープすることができる。
 ドープするイオンの種類は、正孔注入材料であればアニオン、電子注入材料であればカチオンである。アニオンとしては、例えば、ポリスチレンスルホン酸イオン、アルキルベンゼンスルホン酸イオン、樟脳スルホン酸イオンが挙げられる。カチオンとしては、例えば、リチウムイオン、ナトリウムイオン、カリウムイオン、テトラブチルアンモニウムイオンが挙げられる。
 ドープするイオンは、1種単独で用いても2種以上を併用してもよい。
 [発光材料]
 発光材料は、低分子化合物と高分子化合物とに分類され、本実施形態の発光素子の発光効率がより優れるので、発光材料は低分子化合物であることが好ましい。
 低分子化合物としては、例えば、ナフタレン及びその誘導体、アントラセン及びその誘導体、ペリレン及びその誘導体に代表される蛍光発光性化合物、並びに、イリジウム、白金又はユーロピウムを中心金属とする燐光発光性化合物が挙げられる。
 高分子化合物としては、例えば、フェニレン基、ナフタレンジイル基、フルオレンジイル基、フェナントレンジイル基、ジヒドロフェナントレンジイル基、カルバゾールジイル基、フェノキサジンジイル基、フェノチアジンジイル基、アントラセンジイル基、ピレンジイル基等を含む高分子化合物が挙げられる。
 [酸化防止剤]
 酸化防止剤は、高分子化合物と同じ溶媒に可溶であり、発光及び電荷輸送を阻害しない化合物であればよく、例えば、フェノール系酸化防止剤、リン系酸化防止剤が挙げられる。
 組成物の第一の形態において、酸化防止剤の配合量は、高分子化合物を100質量部とした場合、通常、0.001~10質量部である。
 酸化防止剤は、1種単独で用いても2種以上を併用してもよい。
 [溶媒を含有する組成物]
 本実施形態の組成物は、溶媒と混合することで、溶媒を含有する組成物(以下、「第1のインク」ともいう。)を製造することができ、該組成物は、スピンコート法、インクジェット法等の湿式成膜法に好適に使用することができる。
 第1のインクの粘度は、湿式法の種類によって調整すればよいが、インクジェット法等の溶液が吐出装置を経由する印刷法に適用する場合には、吐出時の目づまりと飛行曲がりが起こりづらいので、好ましくは25℃において1~20mPa・sである。
 第1のインクに含有される溶媒は、好ましくは、インク中の固形分を溶解又は均一に分散できる溶媒である。溶媒としては、例えば、1,2-ジクロロエタン、1,1,2-トリクロロエタン、クロロベンゼン、o-ジクロロベンゼン等の塩素系溶媒;テトラヒドロフラン、ジオキサン、アニソール、4-メチルアニソール等のエーテル系溶媒;トルエン、キシレン、メシチレン、エチルベンゼン、n-ヘキシルベンゼン、シクロヘキシルベンゼン等の芳香族炭化水素系溶媒;シクロヘキサン、メチルシクロヘキサン、n-ペンタン、n-ヘキサン、n-へプタン、n-オクタン、n-ノナン、n-デカン、n-ドデカン、ビシクロヘキシル等の脂肪族炭化水素系溶媒;アセトン、メチルエチルケトン、シクロヘキサノン、アセトフェノン等のケトン系溶媒;酢酸エチル、酢酸ブチル、エチルセルソルブアセテート、安息香酸メチル、酢酸フェニル等のエステル系溶媒;エチレングリコール、グリセリン、1,2-ヘキサンジオール等の多価アルコール系溶媒;イソプロピルアルコール、シクロヘキサノール等のアルコール系溶媒;ジメチルスルホキシド等のスルホキシド系溶媒;N-メチル-2-ピロリドン、N,N-ジメチルホルムアミド等のアミド系溶媒が挙げられる。溶媒は、1種単独で用いても2種以上を併用してもよい。
 第1のインクにおいて、溶媒の配合量は、本実施形態の組成物を100質量部とした場合、通常、1000~100000質量部である。
 <発光素子>
 本実施形態の組成物は、例えば、陽極と、陰極と、陽極及び陰極の間に設けられた有機層とを有する発光素子に利用できる。
 [層構成]
 本実施形態の組成物を含有する層は、通常、発光層、正孔輸送層、正孔注入層、電子輸送層、電子注入層の1種以上の層であり、好ましくは、発光層である。これらの層は、各々、発光材料、正孔輸送材料、正孔注入材料、電子輸送材料、電子注入材料を含有する。これらの層は、各々、発光材料、正孔輸送材料、正孔注入材料、電子輸送材料、電子注入材料を、上述した溶媒に溶解させ、インクを調製して用い、例えば、スピンコート法、キャスティング法、マイクログラビアコート法、グラビアコート法、バーコート法、ロールコート法、ワイヤーバーコート法、ディップコート法、スプレーコート法、スクリーン印刷法、フレキソ印刷法、オフセット印刷法、インクジェット印刷法、キャピラリ-コート法、ノズルコート法により形成することができる。
(D1)陽極/正孔注入層/正孔輸送層/発光層/陰極
(D2)陽極/正孔注入層/正孔輸送層/発光層/電子注入層/陰極
(D3)陽極/正孔注入層/正孔輸送層/発光層/電子輸送層/電子注入層/陰極
 上記の(D1)~(D3)中、「/」は、その前後の層が隣接して積層していることを意味する。本実施形態の発光素子の発光効率がより優れるので、好ましくは、(D1)~(D2)である。
 発光素子において、発光層、正孔輸送層、電子輸送層、正孔注入層、電子注入層等の各層の形成方法としては、低分子化合物を用いる場合、例えば、粉末からの真空蒸着法、溶液又は溶融状態からの成膜による方法が挙げられ、高分子化合物を用いる場合、例えば、溶液又は溶融状態からの成膜による方法が挙げられる。
 積層する層の順番、数、及び、厚さは、発光効率及び素子寿命を勘案して調整すればよい。
 [基板/電極]
 発光素子における基板は、電極を形成することができ、かつ、有機層を形成する際に化学的に変化しない基板であればよく、例えば、ガラス、プラスチック、シリコン等の材料からなる基板である。不透明な基板の場合には、基板から最も遠くにある電極が透明又は半透明であることが好ましい。
 陽極の材料としては、例えば、導電性の金属酸化物、半透明の金属が挙げられ、好ましくは、酸化インジウム、酸化亜鉛、酸化スズ;インジウム・スズ・オキサイド(ITO)、インジウム・亜鉛・オキサイド等の導電性化合物;銀とパラジウムと銅との複合体(APC);NESA、金、白金、銀、銅である。
 陰極の材料としては、例えば、リチウム、ナトリウム、カリウム、ルビジウム、セシウム、ベリリウム、マグネシウム、カルシウム、ストロンチウム、バリウム、アルミニウム、亜鉛、インジウム等の金属;それらのうち2種以上の合金;それらのうち1種以上と、銀、銅、マンガン、チタン、コバルト、ニッケル、タングステン、錫のうち1種以上との合金;並びに、グラファイト及びグラファイト層間化合物が挙げられる。合金としては、例えば、マグネシウム-銀合金、マグネシウム-インジウム合金、マグネシウム-アルミニウム合金、インジウム-銀合金、リチウム-アルミニウム合金、リチウム-マグネシウム合金、リチウム-インジウム合金、カルシウム-アルミニウム合金が挙げられる。
 陽極及び陰極は、各々、2層以上の積層構造としてもよい。
 [用途]
 本実施形態の発光素子は、例えば、ディスプレイ、照明に有用である。
 以下、実施例によって本発明を更に詳細に説明するが、本発明はこれらの実施例に限定されるものではない。
 実施例において、高分子化合物のポリスチレン換算の数平均分子量(Mn)及びポリスチレン換算の重量平均分子量(Mw)は、移動相にテトラヒドロフランを用い、下記のサイズエクスクルージョンクロマトグラフィー(SEC)により求めた。
 測定する高分子化合物を約0.05質量%の濃度でテトラヒドロフランに溶解させ、SECに10μL注入した。移動相は、1.0mL/分の流量で流した。カラムとして、PLgel MIXED-B(ポリマーラボラトリーズ製)を用いた。検出器にはUV-VIS検出器(東ソー製、商品名:UV-8320GPC)を用いた。
 <合成例> 化合物M1~M17、及び化合物M101~M104の入手方法
 化合物M1は、国際公開第2002/045184号に記載の方法に従って合成した。
 化合物M2は、特表2002-539292号公報に記載の方法に従って合成した。
 化合物M3は、国際公開第2011/049241号に記載の方法に従って合成した。
 化合物M4は、国際公開第2015/014871号に記載の方法に従って合成した。
 化合物M5は、国際公開第2013/146806号に記載の方法に従って合成した。
 化合物M6は、特表2007-512249号公報に記載の方法に従って合成した。
 化合物M7及びM11は、市販品を用いた。
 化合物M8は、国際公開第2019/004247号に記載の方法に従って合成した。尚、化合物M8は、化合物M8a、M8b、M8c、及びM8dの混合物を用いた。
 化合物M9は、国際公開第2012/086671号に記載の方法に従って合成した。
 化合物M10及びM14は、特開2010-189630号公報に記載の方法に従って合成した。
 化合物M12は、国際公開第2013/191086号に記載の方法に従って合成した。
 化合物M13及びM16は、国際公開第2013/191088号に記載の方法に従って合成した。
 化合物M15は、国際公開第2019/004247号に記載の方法に従って合成した。
 化合物M17は、特開2010-196040号公報に記載の方法に従って合成した。
 化合物M101は、国際公開第2010/136109号に記載の方法に従って合成した。
 化合物M102は、Amadis Chemical社製を用いた。
 化合物M103及びM104は、国際公開第2015/102118号に記載の方法に従って合成した。
Figure JPOXMLDOC01-appb-C000085

Figure JPOXMLDOC01-appb-C000086

Figure JPOXMLDOC01-appb-C000087

Figure JPOXMLDOC01-appb-C000088

Figure JPOXMLDOC01-appb-C000089

Figure JPOXMLDOC01-appb-C000090

Figure JPOXMLDOC01-appb-C000091

Figure JPOXMLDOC01-appb-C000092
 化合物M101、化合物M102、化合物M103、及び化合物M104のΔEstは、それぞれ、0.13eV、0.12eV、0.46eV、及び0.46eVであった。
<合成例1> 化合物M105の合成
Figure JPOXMLDOC01-appb-C000093
 反応容器内を窒素ガス雰囲気とした後、Angew. Chem. Int. Ed. 2018, 57, 11316-11320に記載の方法で合成した化合物A105(22.5g)とクロロベンゼンを加え攪拌したところに、三ヨウ化ホウ素(16.4g)を加え、90℃で6時間加熱撹拌した。その後、室温(25℃)まで冷却し、N,N-ジイソプロピルエチルアミン(14.3mL)を滴下し、室温で15分攪拌を継続した。得られた溶液に10質量%亜硫酸ナトリウム水溶液(70mL)を加えた。以上の操作を二度繰り返し、得られた有機層を合一し、10質量%亜硫酸ナトリウム水溶液及びイオン交換で洗浄した。得られた洗浄液を分液し、得られた有機層を硫酸マグネシウムで乾燥させた後、フロリジル45gを積んだ濾過器でろ過した。得られたろ液を濃縮した後、そこにアセトニトリル(340mL)を加え、1時間撹拌し、得られた固体を濾過した。得られた固体をトルエン(790mL)に溶解させた。得られた溶液にカルボラフィン(33g)を加えて1時間攪拌した後、セライトを敷いた濾過器で濾過をする操作を3回行った。得られた溶液を減圧濃縮し、得られた固体をトルエン及びアセトニトリルの混合溶媒、トルエン及びエタノールの混合溶媒を用いて複数回再結晶し、50℃で減圧乾燥させることで化合物M105(30.9g、黄色固体)を得た。化合物M105のHPLC面積百分率値は99.5%以上であった。
 LC-MS(APCI,positive):「M+H」 922.
 H-NMR(CDCl,400MHz)δ(ppm):9.05(d,1H),9.00(d,1H),8.32(d,1H),8.15(d,1H),7.52(td,2H),7.43(d,1H)7.38(d,1H),7.32-7.22(m,6H),7.20(td,2H)7.13(td,4H),6.65(d,1H),6.16(d,1H),1.62(s,9H),1.48(s,9H),1.43(s,9H),1.36(s,18H),1.34(s,9H).
 化合物M105のΔEstは、0.43eVであった。
<合成例2> 高分子化合物PC1の合成
 高分子化合物PC1は、化合物M1、化合物M2及び化合物M3を用いて、国際公開第2011/049241号に記載の方法に準じて合成した。高分子化合物PC1のMnは8.9×10であり、Mwは4.2×10であった。
 高分子化合物PC1は、仕込み原料の量から求めた理論値では、化合物M1から誘導される構成単位と、化合物M2から誘導される構成単位と、化合物M3から誘導される構成単位とが、50:42.5:7.5のモル比で構成されてなる共重合体である。
<合成例3> 高分子化合物PC2~高分子化合物PC8の合成
 高分子化合物PC2~高分子化合物PC8は、高分子化合物PC1における、「化合物M1、化合物M2及び化合物M3」を、次の表に記載のモノマー、及びモル分率に変更したことを除き、高分子化合物PC1同様の手順で合成した。表2に、得られた高分子化合物のMn、Mw、モル分率、及び合成方法を示す。
Figure JPOXMLDOC01-appb-T000094
 高分子化合物PC3におけるM8のH体のΔEstは、0.44eVであった。高分子化合物PC4、及び高分子化合物PC5におけるM15のH体のΔEstは、0.06eVであった。高分子化合物PC8におけるM17のH体のΔEstは、0.16eVであった。なお、高分子化合物PC6及び高分子化合物PC7は、ΔEstが0.50eV以下である化合物から水素原子を1つ以上除いてなる構成単位を有さなかった。
Figure JPOXMLDOC01-appb-C000095
 高分子化合物PC3について、高分子化合物PC3中の低分子化合物(SM1)から水素原子を1つ以上除いてなる構成単位(SM1)の単位質量当たりの含有数(個/g)は、アボガドロ数(N)を用いて、次のように計算される。
 化合物M7から得られる繰り返し単位の分子量:388.64、
 化合物M8から得られる繰り返し単位の分子量:795.92、
 化合物M9から得られる繰り返し単位の分子量:484.73、
より、
 0.05×N/(388.64×0.45+795.92×0.05+484.73×0.5)=6.56×1019(個/g)
 高分子化合物PC4について、高分子化合物PC4中の低分子化合物(SM1)から水素原子を1つ以上除いてなる構成単位(SM1)の単位質量当たりの含有数(個/g)を、同様に算出すると、
 化合物M10から得られる繰り返し単位の分子量:244.42、
 化合物M11から得られる繰り返し単位の分子量:388.64、
 化合物M15から得られる繰り返し単位の分子量:1443.98、
より、
 0.1×N/(244.42×0.5+388.64×0.4+1443.98×0.1)=1.42×1020(個/g)
 高分子化合物PC5について、高分子化合物PC5中の低分子化合物(SM1)から水素原子を1つ以上除いてなる構成単位(構成単位SM1)の単位質量当たりの含有数(個/g)を、同様に算出すると、
 化合物M12から得られる繰り返し単位の分子量:416.69、
より、
 0.1×N/(244.42×0.5+416.69×0.4+1443.98×0.1)=1.38×1020(個/g)
 高分子化合物PC8について、高分子化合物PC8中の低分子化合物(SM1)から水素原子を1つ以上除いてなる構成単位(構成単位SM1)の単位質量当たりの含有数(個/g)を、同様に算出すると、
 化合物M17から得られる繰り返し単位の分子量:606.86、
より、
 0.1×N/(244.42×0.5+388.64×0.4+606.86×0.1)=1.77×1020(個/g)
<実施例D1> 発光素子D1の作製
 <ITO基板及び正孔注入層>
 ガラス基板に、ITO膜をスパッタ法により45nmの厚みで形成することで陽極を形成した。正孔注入材料であるND-3202(日産化学工業製)を陽極の上にスピンコート法により50nmの厚さで成膜し、大気雰囲気下において、ホットプレート上で240℃、15分間加熱した。これにより正孔注入層を形成した。
 <正孔輸送層>
 高分子化合物PC1をキシレンに0.6質量%の濃度で溶解させた。得られたキシレン溶液を用いて、正孔注入層の上にスピンコート法により20nmの厚さで成膜し、窒素ガス雰囲気下において、ホットプレート上で200℃、30分間加熱した。これにより、正孔輸送層が形成された。
 <発光層>
 高分子化合物PC3、及び化合物M101(高分子化合物PC3:化合物M101=85質量%:15質量%)をキシレンに1.4質量%の濃度で溶解させた。得られたキシレン溶液を用いて、正孔輸送層の上にスピンコート法により70nmの厚さで成膜し、窒素ガス雰囲気下において、ホットプレート上で150℃、10分間加熱した。これにより、発光層が形成された。
 <陰極の形成>
 発光層を形成した基板を蒸着機内において、1.0×10-4Pa以下にまで減圧した後、陰極として、発光層の上にフッ化ナトリウムを約4nm、次いで、フッ化ナトリウム層の上にアルミニウムを約80nm蒸着した。蒸着後、陰極を形成した基板をガラス基板で封止することにより、発光素子D1を作製した。
<実施例D2~実施例D6、及び比較例CD1> 発光素子D2~発光素子D6、及び発光素子CD1の作製
 発光素子D1における、「高分子化合物PC3、及び化合物M101(高分子化合物PC3:化合物M101=85質量%:15質量%)」を、表3に記載の材料に変更したこと以外は、発光素子D1と同様の手順で作製した。
<実施例D7>発光素子D7の作製
 ITO陽極、正孔注入層、正孔輸送層及び陰極は、発光素子D1と同様の手順で作製した。
 <発光層>
 高分子化合物PC4、及び化合物M102(高分子化合物PC4:化合物M102=85質量%:15質量%)をクロロベンゼンに1.2質量%の濃度で溶解させた。得られたキシレン溶液を用いて、正孔輸送層の上にスピンコート法により70nmの厚さで成膜し、窒素ガス雰囲気下において、ホットプレート上で150℃、10分間加熱した。これにより、発光層が形成された。
 <陰極の形成>
 発光素子D1と同様の手順で作製した。
<実施例D8~実施例D10、及び比較例CD2>発光素子D8~実施例D10、及び発光素子CD2の作製
 発光素子D7における、「高分子化合物PC4、及び化合物M102(高分子化合物PC4:化合物M102=85質量%:15質量%)」を、表4に記載の材料に変更したこと以外は、発光素子D7と同様の手順で作製した。
<実施例D11>発光素子D11の作製
 <ITO基板及び正孔注入層>
 ガラス基板に、ITO膜をスパッタ法により45nmの厚みで形成することで陽極を形成した。正孔注入材料であるND-3202(日産化学工業製)を陽極の上にスピンコート法により35nmの厚さで成膜し、大気雰囲気下において、ホットプレート上で240℃、15分間加熱した。これにより正孔注入層を形成した。
 <正孔輸送層>
 高分子化合物PC2をキシレンに0.6質量%の濃度で溶解させた。得られたキシレン溶液を用いて、正孔注入層の上にスピンコート法により20nmの厚さで成膜し、窒素ガス雰囲気下において、ホットプレート上で200℃、30分間加熱した。これにより、正孔輸送層が形成された。
 <発光層>
 高分子化合物PC8、及び化合物M103(高分子化合物PC8:化合物M103=98質量%:2質量%)をキシレンに1.2質量%の濃度で溶解させた。得られたキシレン溶液を用いて、正孔輸送層の上にスピンコート法により60nmの厚さで成膜し、窒素ガス雰囲気下において、ホットプレート上で150℃、10分間加熱した。これにより、発光層が形成された。
 <陰極の形成>
 発光素子D1と同様の手順で作製した。
<実施例D12~実施例D19、及び比較例CD3>発光素子D12~発光素子D19、及び発光素子CD3の作製
 発光素子D11における、「高分子化合物PC8、及び化合物M103(高分子化合物PC8:化合物M103=98質量%:2質量%)」を、表5に記載の材料に変更したこと以外は、発光素子D11と同様の手順で作製した。
<実施例D20>発光素子D20の作製
 ITO陽極、正孔注入層、正孔輸送層及び陰極は、発光素子D20と同様の手順で作製した。
 <発光層>
 高分子化合物PC3、及び化合物M105(高分子化合物PC3:化合物M105=98質量%:2質量%)をキシレンに1.2質量%の濃度で溶解させた。得られたキシレン溶液を用いて、正孔輸送層の上にスピンコート法により60nmの厚さで成膜し、窒素ガス雰囲気下において、ホットプレート上で150℃、10分間加熱した。これにより、発光層が形成された。
<比較例CD4>発光素子CD4の作製
 ITO陽極、正孔注入層、正孔輸送層及び陰極は、発光素子D11と同様の手順で作製した。
 <発光層>
 高分子化合物PC3をキシレンに1.2質量%の濃度で溶解させた。得られたキシレン溶液を用いて、正孔輸送層の上にスピンコート法により60nmの厚さで成膜し、窒素ガス雰囲気下において、ホットプレート上で150℃、10分間加熱した。これにより、発光層が形成された。
<実施例D21>発光素子D21の作製
 ITO陽極、正孔注入層、正孔輸送層及び陰極は、発光素子D1と同様の手順で作製した。
 <発光層>
 高分子化合物PC3、及び高分子化合物PC4(高分子化合物PC3:高分子化合物PC4=50質量%:50質量%)をキシレンに1.2質量%の濃度で溶解させた。得られたキシレン溶液を用いて、正孔輸送層の上にスピンコート法により70nmの厚さで成膜し、窒素ガス雰囲気下において、ホットプレート上で150℃、10分間加熱した。これにより、発光層が形成された。
<実施例D22>発光素子D22の作製
 ITO陽極、正孔注入層、正孔輸送層及び陰極は、発光素子D1と同様の手順で作製した。
 <発光層>
 高分子化合物PC3、及び高分子化合物PC5(高分子化合物PC3:高分子化合物PC5=50質量%:50質量%)をキシレンに1.2質量%の濃度で溶解させた。得られたキシレン溶液を用いて、正孔輸送層の上にスピンコート法により70nmの厚さで成膜し、窒素ガス雰囲気下において、ホットプレート上で150℃、10分間加熱した。これにより、発光層が形成された。
<比較例CD5>発光素子CD5の作製
 ITO陽極、正孔注入層、正孔輸送層及び陰極は、発光素子D1と同様の手順で作製した。
 <発光層>
 高分子化合物PC3をキシレンに1.2質量%の濃度で溶解させた。得られたキシレン溶液を用いて、正孔輸送層の上にスピンコート法により70nmの厚さで成膜し、窒素ガス雰囲気下において、ホットプレート上で150℃、10分間加熱した。これにより、発光層が形成された。
<発光素子D1~発光素子D6、及び発光素子CD1の発光特性>
 発光素子D1~発光素子D6、及び発光素子CD1に電圧を印加することによりEL発光が観測された。5mA/cmにおける発光効率[単位:Lm/W、以下同様]を測定した。
 実施例D1~D6及び比較例CD1の結果を表3に示す。発光素子CD1の発光効率を1.0としたときの発光素子D1~D6の発光効率の相対値を示す。尚、ΔEst1は、低分子化合物(SM1)のΔESTを表し、ΔEst2は、低分子化合物(SM2)のΔESTを表す。
 また、実施例D1の発光層の組成物において、dSM1とdSM2との和、及び配合比率は、高分子化合物PC3における構成単位(SM1)の単位質量当たりの含有数と、化合物M101の分子量:971.22を用いて、次のように算出される。
 dSM1+dSM2=0.85×6.56×1019+0.15×N/(971.22)=1.48×1020[個/g]
 dSM1/dSM2=(0.85×6.56×1019)/(0.15×N/(971.22))=0.60[-]
 実施例D2~D6における発光層の組成物においても、同様の手順でdSM1、dSM2の和、及び配合比率が計算できる。結果を表3に示す。
Figure JPOXMLDOC01-appb-T000096
<発光素子D7~発光素子D10、及び発光素子CD2の発光特性>
 発光素子D7~発光素子D10、及び発光素子CD2に電圧を印加することによりEL発光が観測された。5mA/cmにおける発光効率を測定した。
 発光素子D7~発光素子D10、及び発光素子CD2の結果を表4に示す。発光素子CD2の発光効率を1.0としたときの発光素子D7~発光素子D10の発光効率の相対値を示す。
Figure JPOXMLDOC01-appb-T000097
<発光素子D11~発光素子D19、及び発光素子CD3の発光特性>
 発光素子D11~発光素子D19、及び発光素子CD3に電圧を印加することによりEL発光が観測された。5mA/cmにおける発光効率を測定した。
 発光素子D11~発光素子D19、及び発光素子CD3の結果を表5に示す。発光素子CD3の発光効率を1.0としたときの発光素子D11~発光素子D19の発光効率の相対値を示す。
Figure JPOXMLDOC01-appb-T000098
<発光素子D20、及び発光素子CD4の発光特性>
 発光素子D20、及び発光素子CD4に電圧を印加することによりEL発光が観測された。5mA/cmにおける発光効率を測定した。
 発光素子D20及び発光素子CD4の結果を表6に示す。発光素子CD4の発光効率を1.0としたときの発光素子D20の発光効率の相対値を示す。
Figure JPOXMLDOC01-appb-T000099
<発光素子D21、発光素子D22、及び発光素子CD5の発光特性>
 発光素子D21、発光素子D22、及び発光素子CD5に電圧を印加することによりEL発光が観測された。5mA/cmにおける発光効率を測定した。
 発光素子D21、発光素子D22、及び発光素子CD5の結果を表7に示す。発光素子CD5の発光効率を1.0としたときの発光素子D21及び発光素子D22の発光効率の相対値を示す。
 なお、2種の高分子化合物のうち、1種目の高分子化合物における低分子化合物(SM1)に相当する化合物をSM1-1とし、2種目の高分子化合物における低分子化合物(SM1)に相当する化合物をSM1-2とした。SM1-1のΔEst及びSM1-2のΔEstを、それぞれΔEst1(a)及びΔEst1(b)とした。
Figure JPOXMLDOC01-appb-T000100

Claims (12)

  1.  式(Y)で表される繰り返し単位、及び、最低三重項励起状態のエネルギー準位と最低一重項励起状態のエネルギー準位との差の絶対値が0.50eV以下である低分子化合物(SM1)から水素原子を1つ以上除いてなる構成単位(SM1)を有する高分子化合物と、
     最低三重項励起状態のエネルギー準位と最低一重項励起状態のエネルギー準位との差の絶対値が0.50eV以下である低分子化合物(SM2)と、
    を含む組成物であって
     前記組成物中の前記構成単位(SM1)の単位質量当たりの含有数をdSM1、前記組成物中の前記低分子化合物(SM2)の単位質量当たりの含有数をdSM2としたとき、dSM1+dSM2が2.0×1019(個/g)以上であり、且つ、dSM1/dSM2が0.020以上50以下である、組成物。
    Figure JPOXMLDOC01-appb-C000001

    [式中、ArY1は、置換基を有していてもよいアリーレン基を表す。]
  2.  前記低分子化合物(SM1)が、式(T-1)で表される化合物、又は、D群から選ばれる基を有する化合物である、請求項1に記載の組成物。
    Figure JPOXMLDOC01-appb-C000002

    [式中、
     nT1は、0以上の整数を表す。nT1が複数存在する場合、それらは同一でも異なっていてもよい。
     nT2は、0以上の整数を表す。
     ArT1は、置換アミノ基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。該置換基が複数存在する場合、それらは同一でも異なっていてもよく、互いに結合して、それぞれが結合する原子とともに環を形成していてもよい。ArT1が複数存在する場合、それらは同一でも異なっていてもよい。但し、ArT1における1価の複素環基は、二重結合を形成していない窒素原子を環内に含み、且つ、=N-で表される基、-C(=O)-で表される基、-S(=O)-で表される基、及び、-S(=O)-で表される基を環内に含まない1価の複素環基である。
     LT1は、アルキレン基、シクロアルキレン基、アリーレン基、2価の複素環基、酸素原子又は硫黄原子を表し、これらの基は置換基を有していてもよい。該置換基が複数存在する場合、それらは同一でも異なっていてもよく、互いに結合して、それぞれが結合する原子とともに環を形成していてもよい。LT1が複数存在する場合、それらは同一でも異なっていてもよい。
     ArT2は、A群、B群及びC群から選ばれる基を表す。但し、ArT2がA群から選ばれる場合、nT2は2である。]
     A群:-C(=O)-、-S(=O)-及び-S(=O)
     B群:電子求引性基を有する芳香族炭化水素からnT2個の水素原子を除いた基
     C群:=N-で表される基を環内に含む複素環式化合物からnT2個の水素原子を除いた基、-C(=O)-で表される基を環内に含む複素環式化合物からnT2個の水素原子を除いた基、-S(=O)-で表される基を環内に含む複素環式化合物からnT2個の水素原子を除いた基、及び、-S(=O)-で表される基を環内に含む複素環式化合物からnT2個の水素原子を除いた基
     D群:ホウ素原子を含む複素環式化合物から1個以上の水素原子を除いた基、リン原子を含む複素環式化合物から1個以上の水素原子を除いた基、アルミニウム原子を含む複素環式化合物から1個以上の水素原子を除いた基、ガリウム原子を含む複素環式化合物から1個以上の水素原子を除いた基、シリコン原子を含む複素環式化合物から1個以上の水素原子を除いた基、ヒ素原子を含む複素環式化合物から1個以上の水素原子を除いた基、及び、ゲルマニウム原子を含む複素環式化合物から1個以上の水素原子を除いた基
  3.  dSM1/dSM2が、0.077~0.77、又は、1.3~13である、請求項1又は2に記載の組成物。
  4.  前記低分子化合物(SM1)が、式(D-1)で表される化合物である、請求項1~3のいずれか一項に記載の組成物。
    Figure JPOXMLDOC01-appb-C000003

    [式中、
     A環、B環及びC環は、それぞれ独立に、芳香族炭化水素環又は芳香族複素環を表し、これらの環は置換基を有していてもよい。
     Xは、ホウ素原子、リン原子、P=O、P=S、アルミニウム原子、ガリウム原子、ヒ素原子、Si-Rx又はGe-Rxを表す。Rxは、アリール基又はアルキル基を表し、これらの基は置換基を有していてもよい。
     Yは、N-Ry、硫黄原子又はセレン原子を表す。Y及びYは、それぞれ独立に、酸素原子、N-Ry、硫黄原子又はセレン原子を表す。Ryは、水素原子、アリール基、1価の複素環基、又はアルキル基を表し、これらの基は置換基を有していてもよい。Ryが複数存在する場合、同一であっても異なっていてもよい。Ryは、直接又は連結基を介して、前記A環、前記B環又は前記C環と結合していてもよい。
     n3は、0又は1である。n3が0である場合、-Y-は存在しない。]
  5.  前記高分子化合物が、式(X)で表される構成単位(但し、前記構成単位(SM1)と異なる)を更に含む、請求項1~4のいずれか一項に記載の組成物。
    Figure JPOXMLDOC01-appb-C000004

    [式中、
     aX1及びaX2は、それぞれ独立に、0以上の整数を表す。
     ArX1及びArX3は、それぞれ独立に、アリーレン基又は2価の複素環基を表し、これらの基は置換基を有していてもよい。該置換基が複数存在する場合、それらは同一でも異なっていてもよく、互いに結合して、それぞれが結合する原子とともに環を形成していてもよい。
     ArX2及びArX4は、それぞれ独立に、アリーレン基、2価の複素環基、又は、少なくとも1種のアリーレン基と少なくとも1種の2価の複素環基とが直接結合した2価の基を表し、これらの基は置換基を有していてもよい。該置換基が複数存在する場合、それらは同一でも異なっていてもよく、互いに結合して、それぞれが結合する原子とともに環を形成していてもよい。ArX2及びArX4が複数存在する場合、それらは同一でも異なっていてもよい。
     RX1、RX2及びRX3は、それぞれ独立に、水素原子、アルキル基、シクロアルキル基、アリール基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。該置換基が複数存在する場合、それらは同一でも異なっていてもよく、互いに結合して、それぞれが結合する原子とともに環を形成していてもよい。RX2及びRX3が複数存在する場合、それらは同一でも異なっていてもよい。]
  6.  前記低分子化合物(SM2)が、式(T-11)で表される化合物、又は、G群から選ばれる基を有する化合物である、請求項1~5のいずれか一項に記載の組成物。
    Figure JPOXMLDOC01-appb-C000005

    [式中、
     nT3は、0以上の整数を表す。nT3が複数存在する場合、それらは同一でも異なっていてもよい。
     nT4は、1以上の整数を表す。
     ArT3は、置換アミノ基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。該置換基が複数存在する場合、それらは同一でも異なっていてもよく、互いに結合して、それぞれが結合する原子とともに環を形成していてもよい。ArT3が複数存在する場合、それらは同一でも異なっていてもよい。但し、ArT3における1価の複素環基は、二重結合を形成していない窒素原子を環内に含み、且つ、=N-で表される基、-C(=O)-で表される基、-S(=O)-で表される基、及び、-S(=O)-で表される基を環内に含まない1価の複素環基である。
     LT2は、アルキレン基、シクロアルキレン基、アリーレン基、2価の複素環基、酸素原子又は硫黄原子を表し、これらの基は置換基を有していてもよい。該置換基が複数存在する場合、それらは同一でも異なっていてもよく、互いに結合して、それぞれが結合する原子とともに環を形成していてもよい。LT2が複数存在する場合、それらは同一でも異なっていてもよい。
     ArT4は、A群、E群及びF群から選ばれる基を表す。但し、ArT4がA群から選ばれる基である場合、nT4は2である。]
     A群:-C(=O)-、-S(=O)-及び-S(=O)
     E群:電子求引性基を有する芳香族炭化水素からnT4個の水素原子を除いた基
     F群:=N-で表される基を環内に含む複素環式化合物からnT4個の水素原子を除いた基、-C(=O)-で表される基を環内に含む複素環式化合物からnT4個の水素原子を除いた基、-S(=O)-で表される基を環内に含む複素環式化合物からnT4個の水素原子を除いた基、及び、-S(=O)-で表される基を環内に含む複素環式化合物からnT4個の水素原子を除いた基
     G群:ホウ素原子を含む複素環式化合物から1個以上の水素原子を除いた基、リン原子を含む複素環式化合物から1個以上の水素原子を除いた基、アルミニウム原子を含む複素環式化合物から1個以上の水素原子を除いた基、ガリウム原子を含む複素環式化合物から1個以上の水素原子を除いた基、シリコン原子を含む複素環式化合物から1個以上の水素原子を除いた基、ヒ素原子を含む複素環式化合物から1個以上の水素原子を除いた基、及び、ゲルマニウム原子を含む複素環式化合物から1個以上の水素原子を除いた基
  7.  前記低分子化合物(SM2)が、式(D-11)で表される化合物である、請求項1~6のいずれか一項に記載の組成物。
    Figure JPOXMLDOC01-appb-C000006

    [式中、
     E環、F環及びG環は、それぞれ独立に、芳香族炭化水素環又は芳香族複素環を表し、これらの環は置換基を有していてもよい。
     Xは、ホウ素原子、リン原子、P=O、P=S、アルミニウム原子、ガリウム原子、ヒ素原子、Si-Rx又はGe-Rxを表す。Rxは、アリール基又はアルキル基を表し、これらの基は置換基を有していてもよい。
     Yは、N-Ry、硫黄原子又はセレン原子を表す。Y及びYは、それぞれ独立に、酸素原子、N-Ry、硫黄原子又はセレン原子を表す。Ryは、水素原子、アリール基、1価の複素環基、又はアルキル基を表し、これらの基は置換基を有していてもよい。Ryが複数存在する場合、同一であっても異なっていてもよい。Ryは、直接又は連結基を介して、前記E環、前記F環又は前記G環と結合していてもよい。
     n6は、0又は1である。n6が0である場合、-Y-は存在しない。]
  8.  式(Y)で表される繰り返し単位、及び、最低三重項励起状態のエネルギー準位と最低一重項励起状態のエネルギー準位との差の絶対値が0.50eV以下である低分子化合物(SM1-1)から水素原子を1つ以上除いてなる構成単位(SM1-1)を有する第一の高分子化合物と、
     式(Y)で表される繰り返し単位、及び、最低三重項励起状態のエネルギー準位と最低一重項励起状態のエネルギー準位との差の絶対値が0.50eV以下である低分子化合物(SM1-2)から水素原子を1つ以上除いてなる構成単位(SM1-2)を有する第二の高分子化合物(但し、前記低分子化合物(SM1-1)と前記低分子化合物(SM1-2)とは異なる)と、
    を含む組成物であって、
     前記組成物中の前記構成単位(SM1-1)の単位質量当たりの含有数をdSM1a、前記組成物中の前記構成単位(SM1-2)の単位質量当たりの含有数をdSM1bとしたとき、dSM1a+dSM1bが2.0×1019(個/g)以上であり、且つ、dSM1a/dSM1bが0.020以上50以下である、組成物。
    Figure JPOXMLDOC01-appb-C000007

    [式中、ArY1は、置換基を有していてもよいアリーレン基を表す。]
  9.  前記低分子化合物(SM1-1)及び前記低分子化合物(SM1-2)が、それぞれ独立に、式(T-1)で表される化合物、又は、D群から選ばれる基を有する化合物である、請求項8に記載の組成物。
    Figure JPOXMLDOC01-appb-C000008

    [式中、
     nT1は、0以上の整数を表す。nT1が複数存在する場合、それらは同一でも異なっていてもよい。
     nT2は、0以上の整数を表す。
     ArT1は、置換アミノ基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。該置換基が複数存在する場合、それらは同一でも異なっていてもよく、互いに結合して、それぞれが結合する原子とともに環を形成していてもよい。ArT1が複数存在する場合、それらは同一でも異なっていてもよい。但し、ArT1における1価の複素環基は、二重結合を形成していない窒素原子を環内に含み、且つ、=N-で表される基、-C(=O)-で表される基、-S(=O)-で表される基、及び、-S(=O)-で表される基を環内に含まない1価の複素環基である。
     LT1は、アルキレン基、シクロアルキレン基、アリーレン基、2価の複素環基、酸素原子又は硫黄原子を表し、これらの基は置換基を有していてもよい。該置換基が複数存在する場合、それらは同一でも異なっていてもよく、互いに結合して、それぞれが結合する原子とともに環を形成していてもよい。LT1が複数存在する場合、それらは同一でも異なっていてもよい。
     ArT2は、A群、B群及びC群から選ばれる基を表す。但し、ArT2がA群から選ばれる場合、nT2は2である。]
     A群:-C(=O)-、-S(=O)-及び-S(=O)
     B群:電子求引性基を有する芳香族炭化水素からnT2個の水素原子を除いた基
     C群:=N-で表される基を環内に含む複素環式化合物からnT2個の水素原子を除いた基、-C(=O)-で表される基を環内に含む複素環式化合物からnT2個の水素原子を除いた基、-S(=O)-で表される基を環内に含む複素環式化合物からnT2個の水素原子を除いた基、及び、-S(=O)-で表される基を環内に含む複素環式化合物からnT2個の水素原子を除いた基
     D群:ホウ素原子を含む複素環式化合物から1個以上の水素原子を除いた基、リン原子を含む複素環式化合物から1個以上の水素原子を除いた基、アルミニウム原子を含む複素環式化合物から1個以上の水素原子を除いた基、ガリウム原子を含む複素環式化合物から1個以上の水素原子を除いた基、シリコン原子を含む複素環式化合物から1個以上の水素原子を除いた基、ヒ素原子を含む複素環式化合物から1個以上の水素原子を除いた基、及び、ゲルマニウム原子を含む複素環式化合物から1個以上の水素原子を除いた基
  10.  前記低分子化合物(SM1-1)及び前記低分子化合物(SM1-2)が、それぞれ独立に、式(D-1)で表される化合物である、請求項8又は9に記載の組成物。
    Figure JPOXMLDOC01-appb-C000009

    [式中、
     A環、B環及びC環は、それぞれ独立に、芳香族炭化水素環又は芳香族複素環を表し、これらの環は置換基を有していてもよい。
     Xは、ホウ素原子、リン原子、P=O、P=S、アルミニウム原子、ガリウム原子、ヒ素原子、Si-Rx又はGe-Rxを表す。Rxは、アリール基又はアルキル基を表し、これらの基は置換基を有していてもよい。
     Yは、N-Ry、硫黄原子又はセレン原子を表す。Y及びYは、それぞれ独立に、酸素原子、N-Ry、硫黄原子又はセレン原子を表す。Ryは、水素原子、アリール基、1価の複素環基、又はアルキル基を表し、これらの基は置換基を有していてもよい。Ryが複数存在する場合、同一であっても異なっていてもよい。Ryは、直接又は連結基を介して、前記A環、前記B環又は前記C環と結合していてもよい。
     n3は、0又は1である。n3が0である場合、-Y-は存在しない。]
  11.  請求項1~10のいずれか一項に記載の組成物と、溶媒と、を含有する、インク。
  12.  請求項1~10のいずれか一項に記載の組成物を含有する、発光素子。
PCT/JP2021/025092 2020-07-28 2021-07-02 組成物及び発光素子 WO2022024664A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020237005861A KR20230043907A (ko) 2020-07-28 2021-07-02 조성물 및 발광 소자
CN202180059390.8A CN116134112A (zh) 2020-07-28 2021-07-02 组合物以及发光元件
EP21851004.8A EP4190879A1 (en) 2020-07-28 2021-07-02 Composition and light-emitting element
US18/016,815 US20230295449A1 (en) 2020-07-28 2021-07-02 Composition and light emitting device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-127510 2020-07-28
JP2020127510A JP2022024744A (ja) 2020-07-28 2020-07-28 組成物及び発光素子

Publications (1)

Publication Number Publication Date
WO2022024664A1 true WO2022024664A1 (ja) 2022-02-03

Family

ID=80035441

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/025092 WO2022024664A1 (ja) 2020-07-28 2021-07-02 組成物及び発光素子

Country Status (6)

Country Link
US (1) US20230295449A1 (ja)
EP (1) EP4190879A1 (ja)
JP (1) JP2022024744A (ja)
KR (1) KR20230043907A (ja)
CN (1) CN116134112A (ja)
WO (1) WO2022024664A1 (ja)

Citations (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002045184A1 (en) 2000-11-28 2002-06-06 Avecia Limited Field effect transistors and materials and methods for their manufacture
JP2002539292A (ja) 1999-03-12 2002-11-19 ケンブリッジ ディスプレイ テクノロジー リミテッド 重合体およびその調製方法と使用方法
JP2007512249A (ja) 2003-11-14 2007-05-17 住友化学株式会社 ハロゲン化ビスジアリールアミノ多環式芳香族化合物及びそのポリマー
WO2007063754A1 (ja) 2005-12-01 2007-06-07 Nippon Steel Chemical Co., Ltd. 有機電界発光素子用化合物及び有機電界発光素子
WO2008056746A1 (fr) 2006-11-09 2008-05-15 Nippon Steel Chemical Co., Ltd. Composé pour un dispositif électroluminescent organique et dispositif électroluminescent organique
JP2009227663A (ja) 2008-02-25 2009-10-08 Mitsubishi Chemicals Corp キノリン系化合物、有機電界発光素子用材料、有機電界発光素子用組成物、有機電界発光素子、有機elディスプレイおよび有機el照明
JP2010189630A (ja) 2009-01-20 2010-09-02 Sumitomo Chemical Co Ltd メタフェニレン系高分子化合物及びそれを用いた発光素子
JP2010196040A (ja) 2009-01-29 2010-09-09 Sumitomo Chemical Co Ltd 高分子化合物及びそれを用いる発光素子
WO2010136109A1 (de) 2009-05-29 2010-12-02 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
JP2010275255A (ja) 2009-05-29 2010-12-09 Mitsubishi Chemicals Corp 含窒素複素環化合物、有機電界発光素子材料、有機電界発光素子用組成物、有機電界発光素子、有機elディスプレイ及び有機el照明
WO2011032686A1 (de) 2009-09-16 2011-03-24 Merck Patent Gmbh Formulierungen zur herstellung von elektronischen vorrichtungen
WO2011049241A1 (ja) 2009-10-22 2011-04-28 住友化学株式会社 有機エレクトロルミネッセンス素子
WO2012086671A1 (ja) 2010-12-21 2012-06-28 住友化学株式会社 高分子化合物及びそれを用いた有機el素子
WO2012096263A1 (ja) 2011-01-11 2012-07-19 三菱化学株式会社 有機電界発光素子用組成物、有機電界発光素子、表示装置及び照明装置
WO2013146806A1 (ja) 2012-03-27 2013-10-03 住友化学株式会社 高分子化合物およびそれを用いた発光素子
WO2013191086A1 (ja) 2012-06-19 2013-12-27 住友化学株式会社 高分子化合物およびそれを用いた発光素子
WO2013191088A1 (ja) 2012-06-19 2013-12-27 住友化学株式会社 高分子化合物およびそれを用いた発光素子
WO2015014871A1 (en) 2013-07-31 2015-02-05 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods and kits for identifying effector treg cells
WO2015102118A1 (ja) 2014-02-18 2015-07-09 学校法人関西学院 多環芳香族化合物
WO2018062276A1 (ja) 2016-09-29 2018-04-05 住友化学株式会社 発光素子
WO2018062278A1 (ja) 2016-09-29 2018-04-05 住友化学株式会社 発光素子及び該発光素子の製造に有用な組成物
JP2018061029A (ja) * 2016-09-29 2018-04-12 住友化学株式会社 発光素子
JP2018061030A (ja) * 2016-09-29 2018-04-12 住友化学株式会社 発光素子
JP2018061028A (ja) * 2016-09-29 2018-04-12 住友化学株式会社 発光素子
WO2019004247A1 (ja) 2017-06-30 2019-01-03 住友化学株式会社 発光素子及びその製造に有用な高分子化合物
WO2019004248A1 (ja) * 2017-06-30 2019-01-03 住友化学株式会社 高分子化合物及びそれを用いた発光素子
JP2019050369A (ja) * 2017-09-06 2019-03-28 住友化学株式会社 発光素子
WO2019240080A1 (ja) * 2018-06-11 2019-12-19 学校法人関西学院 多環芳香族化合物およびその多量体
WO2020040298A1 (ja) * 2018-08-23 2020-02-27 学校法人関西学院 有機電界発光素子、表示装置、照明装置、発光層形成用組成物、および化合物

Patent Citations (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002539292A (ja) 1999-03-12 2002-11-19 ケンブリッジ ディスプレイ テクノロジー リミテッド 重合体およびその調製方法と使用方法
WO2002045184A1 (en) 2000-11-28 2002-06-06 Avecia Limited Field effect transistors and materials and methods for their manufacture
JP2007512249A (ja) 2003-11-14 2007-05-17 住友化学株式会社 ハロゲン化ビスジアリールアミノ多環式芳香族化合物及びそのポリマー
WO2007063754A1 (ja) 2005-12-01 2007-06-07 Nippon Steel Chemical Co., Ltd. 有機電界発光素子用化合物及び有機電界発光素子
WO2008056746A1 (fr) 2006-11-09 2008-05-15 Nippon Steel Chemical Co., Ltd. Composé pour un dispositif électroluminescent organique et dispositif électroluminescent organique
JP2009227663A (ja) 2008-02-25 2009-10-08 Mitsubishi Chemicals Corp キノリン系化合物、有機電界発光素子用材料、有機電界発光素子用組成物、有機電界発光素子、有機elディスプレイおよび有機el照明
JP2010189630A (ja) 2009-01-20 2010-09-02 Sumitomo Chemical Co Ltd メタフェニレン系高分子化合物及びそれを用いた発光素子
JP2010196040A (ja) 2009-01-29 2010-09-09 Sumitomo Chemical Co Ltd 高分子化合物及びそれを用いる発光素子
WO2010136109A1 (de) 2009-05-29 2010-12-02 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
JP2010275255A (ja) 2009-05-29 2010-12-09 Mitsubishi Chemicals Corp 含窒素複素環化合物、有機電界発光素子材料、有機電界発光素子用組成物、有機電界発光素子、有機elディスプレイ及び有機el照明
WO2011032686A1 (de) 2009-09-16 2011-03-24 Merck Patent Gmbh Formulierungen zur herstellung von elektronischen vorrichtungen
WO2011049241A1 (ja) 2009-10-22 2011-04-28 住友化学株式会社 有機エレクトロルミネッセンス素子
WO2012086671A1 (ja) 2010-12-21 2012-06-28 住友化学株式会社 高分子化合物及びそれを用いた有機el素子
WO2012096263A1 (ja) 2011-01-11 2012-07-19 三菱化学株式会社 有機電界発光素子用組成物、有機電界発光素子、表示装置及び照明装置
WO2013146806A1 (ja) 2012-03-27 2013-10-03 住友化学株式会社 高分子化合物およびそれを用いた発光素子
WO2013191086A1 (ja) 2012-06-19 2013-12-27 住友化学株式会社 高分子化合物およびそれを用いた発光素子
WO2013191088A1 (ja) 2012-06-19 2013-12-27 住友化学株式会社 高分子化合物およびそれを用いた発光素子
WO2015014871A1 (en) 2013-07-31 2015-02-05 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods and kits for identifying effector treg cells
WO2015102118A1 (ja) 2014-02-18 2015-07-09 学校法人関西学院 多環芳香族化合物
WO2018062276A1 (ja) 2016-09-29 2018-04-05 住友化学株式会社 発光素子
WO2018062278A1 (ja) 2016-09-29 2018-04-05 住友化学株式会社 発光素子及び該発光素子の製造に有用な組成物
JP2018061029A (ja) * 2016-09-29 2018-04-12 住友化学株式会社 発光素子
JP2018061030A (ja) * 2016-09-29 2018-04-12 住友化学株式会社 発光素子
JP2018061028A (ja) * 2016-09-29 2018-04-12 住友化学株式会社 発光素子
WO2019004247A1 (ja) 2017-06-30 2019-01-03 住友化学株式会社 発光素子及びその製造に有用な高分子化合物
WO2019004248A1 (ja) * 2017-06-30 2019-01-03 住友化学株式会社 高分子化合物及びそれを用いた発光素子
JP2019050369A (ja) * 2017-09-06 2019-03-28 住友化学株式会社 発光素子
WO2019240080A1 (ja) * 2018-06-11 2019-12-19 学校法人関西学院 多環芳香族化合物およびその多量体
WO2020040298A1 (ja) * 2018-08-23 2020-02-27 学校法人関西学院 有機電界発光素子、表示装置、照明装置、発光層形成用組成物、および化合物

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ADVANCED MATERIALS, vol. 26, 2014, pages 7931 - 7958
ANGEW. CHEM. INT. ED., vol. 57, 2018, pages 11316 - 11320

Also Published As

Publication number Publication date
EP4190879A1 (en) 2023-06-07
KR20230043907A (ko) 2023-03-31
US20230295449A1 (en) 2023-09-21
JP2022024744A (ja) 2022-02-09
CN116134112A (zh) 2023-05-16

Similar Documents

Publication Publication Date Title
KR102361349B1 (ko) 발광 소자
JP7216754B2 (ja) 組成物及びそれを含有する発光素子
JP2019050369A (ja) 発光素子
JP6399243B2 (ja) 発光素子
JP6708214B2 (ja) 組成物及びそれを用いた発光素子
JP2022052727A (ja) 発光素子
JP7319251B2 (ja) 発光素子
WO2022024664A1 (ja) 組成物及び発光素子
JP2021163871A (ja) 発光素子及び組成物
JP7086259B2 (ja) 発光素子及び組成物
JPWO2019208647A1 (ja) ブロック共重合体及びそれを用いた発光素子
JP7079883B2 (ja) 発光素子及び組成物
JP7086258B2 (ja) 発光素子及び組成物
JP7365869B2 (ja) 高分子化合物を含む組成物、該高分子化合物の製造方法及び該高分子化合物を用いてなる発光素子の製造方法
JP6600110B1 (ja) 発光素子
WO2023054110A1 (ja) 発光素子
WO2023054109A1 (ja) 組成物及びそれを含有する発光素子
WO2022181077A1 (ja) 高分子化合物、組成物及び発光素子
JP2022013757A (ja) 組成物、高分子化合物及び発光素子
JP2023060817A (ja) 組成物及びそれを用いた発光素子
JP2023050137A (ja) 組成物及びそれを含有する発光素子
JP2019186576A (ja) 発光素子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21851004

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20237005861

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2021851004

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2021851004

Country of ref document: EP

Effective date: 20230228

NENP Non-entry into the national phase

Ref country code: DE