WO2020203209A1 - 発光素子及び発光素子用組成物 - Google Patents

発光素子及び発光素子用組成物 Download PDF

Info

Publication number
WO2020203209A1
WO2020203209A1 PCT/JP2020/011383 JP2020011383W WO2020203209A1 WO 2020203209 A1 WO2020203209 A1 WO 2020203209A1 JP 2020011383 W JP2020011383 W JP 2020011383W WO 2020203209 A1 WO2020203209 A1 WO 2020203209A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
ring
atom
light emitting
substituent
Prior art date
Application number
PCT/JP2020/011383
Other languages
English (en)
French (fr)
Inventor
敏明 佐々田
龍二 松本
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Priority to CN202080025153.5A priority Critical patent/CN113646356B/zh
Priority to US17/442,846 priority patent/US20220173336A1/en
Priority to EP20785387.0A priority patent/EP3950764A4/en
Priority to KR1020217034267A priority patent/KR20210148212A/ko
Publication of WO2020203209A1 publication Critical patent/WO2020203209A1/ja

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • H10K85/342Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising iridium
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D409/00Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms
    • C07D409/02Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings
    • C07D409/04Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/02Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes
    • C08G61/10Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes only aromatic carbon atoms, e.g. polyphenylenes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D165/00Coating compositions based on macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain; Coating compositions based on derivatives of such polymers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/321Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3]
    • H10K85/322Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3] comprising boron
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/658Organoboranes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/12Copolymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/12Copolymers
    • C08G2261/122Copolymers statistical
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/13Morphological aspects
    • C08G2261/135Cross-linked structures
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/14Side-groups
    • C08G2261/141Side-chains having aliphatic units
    • C08G2261/1412Saturated aliphatic units
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/14Side-groups
    • C08G2261/141Side-chains having aliphatic units
    • C08G2261/1414Unsaturated aliphatic units
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/14Side-groups
    • C08G2261/148Side-chains having aromatic units
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/31Monomer units or repeat units incorporating structural elements in the main chain incorporating aromatic structural elements in the main chain
    • C08G2261/314Condensed aromatic systems, e.g. perylene, anthracene or pyrene
    • C08G2261/3142Condensed aromatic systems, e.g. perylene, anthracene or pyrene fluorene-based, e.g. fluorene, indenofluorene, or spirobifluorene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/31Monomer units or repeat units incorporating structural elements in the main chain incorporating aromatic structural elements in the main chain
    • C08G2261/316Monomer units or repeat units incorporating structural elements in the main chain incorporating aromatic structural elements in the main chain bridged by heteroatoms, e.g. N, P, Si or B
    • C08G2261/3162Arylamines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/40Polymerisation processes
    • C08G2261/41Organometallic coupling reactions
    • C08G2261/411Suzuki reactions
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/50Physical properties
    • C08G2261/52Luminescence
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/70Post-treatment
    • C08G2261/76Post-treatment crosslinking
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/90Applications
    • C08G2261/95Use in organic luminescent diodes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1007Non-condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • C09K2211/1033Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom with oxygen
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • C09K2211/104Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom with other heteroatoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1059Heterocyclic compounds characterised by ligands containing three nitrogen atoms as heteroatoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1092Heterocyclic compounds characterised by ligands containing sulfur as the only heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/18Metal complexes
    • C09K2211/185Metal complexes of the platinum group, i.e. Os, Ir, Pt, Ru, Rh or Pd
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/10Triplet emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers

Definitions

  • the present invention relates to a light emitting element and a composition for a light emitting element.
  • a light emitting element such as an organic electroluminescence element can be suitably used for, for example, a display and lighting.
  • a light emitting material used for a light emitting layer of a light emitting device for example, Patent Document 1 proposes a composition containing compound B0 and a metal complex G1 or a metal complex Firpic.
  • Patent Document 2 proposes a composition containing a heat-activated delayed fluorescence (TADF) compound T0 and a metal complex G3.
  • TADF heat-activated delayed fluorescence
  • an object of the present invention is to provide a composition useful for producing a light emitting device having excellent luminous efficiency, and to provide a light emitting device containing the composition.
  • the present inventors have found that it is possible to form a light emitting element having excellent luminous efficiency by combining a specific metal complex and a specific compound (B). , The present invention has been completed.
  • the metal complex G1 of Patent Document 1 is a metal complex having no group represented by the formula (1-T) described later.
  • the compound T0 of Patent Document 2 is a compound which does not have the condensed heterocyclic skeleton (b) described later.
  • the present invention provides the following [1] to [20].
  • [1] With the anode With the cathode An organic layer provided between the anode and the cathode and containing a composition for a light emitting device, and With The composition for a light emitting element
  • M 2 represents a rhodium atom, a palladium atom, an iridium atom or a platinum atom.
  • n 3 represents an integer of 1 or more
  • n 4 represents an integer of 0 or more.
  • ELL represents a carbon atom or a nitrogen atom. If the E L there are a plurality, or different in each of them the same.
  • Ring L 1 represents an aromatic heterocyclic ring containing 6-membered ring, this ring may have a substituent.
  • substituents When a plurality of the substituents are present, they may be the same or different, or they may be bonded to each other to form a ring with the atoms to which each is bonded. When a ring L 1 there are a plurality, they may be the same or different.
  • Ring L 2 represents an aromatic hydrocarbon ring or an aromatic heterocycle, and these rings may have a substituent. When a plurality of the substituents are present, they may be the same or different, or they may be bonded to each other to form a ring with the atoms to which each is bonded. When a plurality of rings L 2 exist, they may be the same or different.
  • the ring L 1 has substituents have the ring L 2 is the substituent which may have, may be the same or different, linked together, form a ring with the atoms bonded thereto You may be doing it.
  • at least one of the ring L 1 and the ring L 2 has a group represented by the formula (1-T) as a substituent.
  • a 3- G 2- A 4 represents an anionic bidentate ligand.
  • a 3 and A 4 independently represent a carbon atom, an oxygen atom or a nitrogen atom, and these atoms may be atoms constituting a ring.
  • G 2 represents a single bond or an atomic group constituting a bidentate ligand together with A 3 and A 4 .
  • a 3- G 2- A 4 When a plurality of A 3- G 2- A 4 exist, they may be the same or different. ]
  • R 1T represents an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryloxy group, an aryl group, a monovalent heterocyclic group or a substituted amino group, and these groups have a substituent. You may be doing it. When a plurality of the substituents are present, they may be the same or different, or they may be bonded to each other to form a ring with the atoms to which each is bonded.
  • ring L 1 is a pyridine ring, a diazabenzene ring, an azanaphthalene ring or a diazanaphthalene ring, and these rings may have a substituent.
  • the ring L 1 is a pyridine ring, a diazabenzene ring, a quinoline ring or a diazanaphthalene ring, and these rings may have a substituent and may have a substituent.
  • the ring L 1 is an isoquinoline ring which may have a substituent and is
  • the fused heterocyclic skeleton (b) contains, in the ring, a boron atom and at least one selected from the group consisting of an oxygen atom, a sulfur atom and a nitrogen atom, according to any one of [1] to [6].
  • the compound (B) is a compound represented by the formula (1-1), a compound represented by the formula (1-2), or a compound represented by the formula (1-3), [1] to [ 6] The light emitting element according to any one of.
  • Ar 1 , Ar 2 and Ar 3 each independently represent an aromatic hydrocarbon group or a heterocyclic group, and these groups may have a substituent. When a plurality of the substituents are present, they may be the same or different, or they may be bonded to each other to form a ring with the atoms to which each is bonded.
  • Y 1 represents an oxygen atom, a sulfur atom, a selenium atom, a group represented by ⁇ N (Ry) ⁇ , an alkylene group or a cycloalkylene group, and these groups may have a substituent.
  • a plurality of the substituents When a plurality of the substituents are present, they may be the same or different, or they may be bonded to each other to form a ring with the atoms to which each is bonded.
  • Y 2 and Y 3 independently represent a single bond, an oxygen atom, a sulfur atom, a selenium atom, a group represented by -N (Ry)-, an alkylene group or a cycloalkylene group, and these groups are substituents. May have.
  • a plurality of the substituents When a plurality of the substituents are present, they may be the same or different, or they may be bonded to each other to form a ring with the atoms to which each is bonded.
  • Ry represents a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group or a monovalent heterocyclic group, and these groups may have a substituent. When a plurality of the substituents are present, they may be the same or different, or they may be bonded to each other to form a ring with the atoms to which each is bonded. When there are a plurality of Ry, they may be the same or different. Ry may be attached directly to Ar 1 , Ar 2 or Ar 3 via a linking group.
  • Ar H1 and Ar H2 each independently represent an aryl group, a monovalent heterocyclic group or a substituted amino group, and these groups may have a substituent. When a plurality of the substituents are present, they may be the same or different, or they may be bonded to each other to form a ring with the atoms to which each is bonded.
  • n H1 represents an integer greater than or equal to 0.
  • L H1 represents an arylene group, a divalent heterocyclic group, an alkylene group or a cycloalkylene group, and these groups may have a substituent.
  • the composition for a light emitting device further contains at least one selected from the group consisting of a hole transport material, a hole injection material, an electron transport material, an electron injection material, a light emitting material, an antioxidant, and a solvent [1]. ] To [13].
  • M 2 represents a rhodium atom, a palladium atom, an iridium atom or a platinum atom.
  • n 3 represents an integer of 1 or more
  • n 4 represents an integer of 0 or more.
  • ELL represents a carbon atom or a nitrogen atom. If the E L there are a plurality, or different in each of them the same.
  • Ring L 1 represents an aromatic heterocyclic ring containing 6-membered ring, this ring may have a substituent.
  • substituents When a plurality of the substituents are present, they may be the same or different, or they may be bonded to each other to form a ring with the atoms to which each is bonded. When a ring L 1 there are a plurality, they may be the same or different.
  • Ring L 2 represents an aromatic hydrocarbon ring or an aromatic heterocycle, and these rings may have a substituent. When a plurality of the substituents are present, they may be the same or different, or they may be bonded to each other to form a ring with the atoms to which each is bonded. When a plurality of rings L 2 exist, they may be the same or different.
  • the ring L 1 has substituents have the ring L 2 is the substituent which may have, may be the same or different, linked together, form a ring with the atoms bonded thereto You may be doing it.
  • at least one of the ring L 1 and the ring L 2 has a group represented by the formula (1-T) as a substituent.
  • a 3- G 2- A 4 represents an anionic bidentate ligand.
  • a 3 and A 4 independently represent a carbon atom, an oxygen atom or a nitrogen atom, and these atoms may be atoms constituting a ring.
  • G 2 represents a single bond or an atomic group constituting a bidentate ligand together with A 3 and A 4 .
  • a 3- G 2- A 4 When a plurality of A 3- G 2- A 4 exist, they may be the same or different. ]
  • R 1T represents an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryloxy group, an aryl group, a monovalent heterocyclic group or a substituted amino group, and these groups have a substituent. You may be doing it. When a plurality of the substituents are present, they may be the same or different, or they may be bonded to each other to form a ring with the atoms to which each is bonded.
  • the ring L 1 is a pyridine ring, a diazabenzene ring, a quinoline ring or a diazanaphthalene ring, and these rings may have a substituent and may have a substituent.
  • the ring L 1 is an isoquinoline ring which may have a substituent
  • the R 1T is an aryl group, a monovalent heterocyclic group or a substituted amino group, and these groups have a substituent.
  • Ar H1 and Ar H2 each independently represent an aryl group, a monovalent heterocyclic group or a substituted amino group, and these groups may have a substituent. When a plurality of the substituents are present, they may be the same or different, or they may be bonded to each other to form a ring with the atoms to which each is bonded.
  • n H1 represents an integer greater than or equal to 0.
  • L H1 represents an arylene group, a divalent heterocyclic group, an alkylene group or a cycloalkylene group, and these groups may have a substituent.
  • any of [15] to [19] further containing at least one selected from the group consisting of a hole transport material, a hole injection material, an electron transport material, an electron injection material, a light emitting material, an antioxidant and a solvent.
  • a hole transport material a hole injection material, an electron transport material, an electron injection material, a light emitting material, an antioxidant and a solvent.
  • the present invention it is possible to provide a composition useful for producing a light emitting device having excellent luminous efficiency. Further, according to the present invention, it is possible to provide a light emitting device containing the composition.
  • Room temperature means 25 ° C.
  • Me represents a methyl group
  • Et represents an ethyl group
  • Bu represents a butyl group
  • i-Pr represents an isopropyl group
  • t-Bu represents a tert-butyl group.
  • the hydrogen atom may be a deuterium atom or a light hydrogen atom.
  • molecular weight means a 1 ⁇ 10 4 or less of the compound.
  • polymer compound means a polymer having a molecular weight distribution and having a polystyrene-equivalent number average molecular weight of 1 ⁇ 10 3 or more (for example, 1 ⁇ 10 3 to 1 ⁇ 10 8 ).
  • the “constituent unit” means a unit existing in one or more in a polymer compound.
  • the polymer compound may be a block copolymer, a random copolymer, an alternate copolymer, a graft copolymer, or any other embodiment.
  • the terminal group of the polymer compound is preferably a stable group because if the polymerization active group remains as it is, the light emission characteristics or the luminance life may be lowered when the polymer compound is used for manufacturing a light emitting element. Is.
  • the terminal group of the polymer compound is preferably a group conjugated to the main chain, for example, an aryl group or a monovalent heterocyclic group bonded to the main chain of the polymer compound via a carbon-carbon bond. Examples include groups that are bound to.
  • the "alkyl group” may be either linear or branched.
  • the number of carbon atoms of the linear alkyl group is usually 1 to 50, preferably 1 to 20, and more preferably 1 to 10, not including the number of carbon atoms of the substituent.
  • the number of carbon atoms of the branched alkyl group is usually 3 to 50, preferably 3 to 20, and more preferably 4 to 10, not including the number of carbon atoms of the substituent.
  • the alkyl group may have a substituent.
  • alkyl group examples include methyl group, ethyl group, propyl group, isopropyl group, butyl group, 2-butyl group, isobutyl group, tert-butyl group, pentyl group, isoamyl group, 2-ethylbutyl group, hexyl group and heptyl.
  • alkyl group examples include a group, an octyl group, a 2-ethylhexyl group, a 3-propylheptyl group, a decyl group, a 3,7-dimethyloctyl group, a 2-ethyloctyl group, a 2-hexyldecyl group and a dodecyl group.
  • the alkyl group may be a group in which a part or all of hydrogen atoms in these groups are substituted with a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, a fluorine atom or the like.
  • Examples of such an alkyl group include a trifluoromethyl group, a pentafluoroethyl group, a perfluorobutyl group, a perfluorohexyl group, a perfluorooctyl group, a 3-phenylpropyl group, and a 3- (4-methylphenyl) propyl group.
  • Groups include 3- (3,5-di-hexylphenyl) propyl group and 6-ethyloxyhexyl group.
  • the number of carbon atoms of the "cycloalkyl group” is usually 3 to 50, preferably 4 to 10, not including the number of carbon atoms of the substituent.
  • the cycloalkyl group may have a substituent. Examples of the cycloalkyl group include a cyclohexyl group and a methylcyclohexyl group.
  • the number of carbon atoms of the "alkylene group” is usually 1 to 20, preferably 1 to 15, and more preferably 1 to 10, not including the number of carbon atoms of the substituent.
  • the alkylene group may have a substituent. Examples of the alkylene group include a methylene group, an ethylene group, a propylene group, a butylene group, a hexylene group and an octylene group.
  • the number of carbon atoms of the "cycloalkylene group” is usually 3 to 20, preferably 4 to 10, not including the number of carbon atoms of the substituent.
  • the cycloalkylene group may have a substituent. Examples of the cycloalkylene group include a cyclohexylene group.
  • Aromatic hydrocarbon group means a group obtained by removing one or more hydrogen atoms directly bonded to an atom constituting a ring from an aromatic hydrocarbon.
  • a group obtained by removing one hydrogen atom directly bonded to an atom constituting a ring from an aromatic hydrocarbon is also referred to as an "aryl group”.
  • a group obtained by removing two hydrogen atoms directly bonded to an atom constituting a ring from an aromatic hydrocarbon is also referred to as an "arylene group”.
  • the number of carbon atoms of the aromatic hydrocarbon group, not including the number of carbon atoms of the substituent is usually 6 to 60, preferably 6 to 40, and more preferably 6 to 20.
  • aromatic hydrocarbon group is, for example, a monocyclic aromatic hydrocarbon (for example, benzene) or a polycyclic aromatic hydrocarbon (for example, bicyclic such as naphthalene and inden).
  • Aromatic hydrocarbons tricyclic aromatic hydrocarbons such as anthracene, phenanthrene, dihydrophenanthrene and fluorene; tetracyclic aromatic hydrocarbons such as benzoanthrene, benzophenanthrene, benzofluorene, pyrene and fluorantene; dibenzoanthrene , Dibenzophenanthrene, dibenzofluorene, perylene and benzofluorentene and other 5-cyclic aromatic hydrocarbons; 6-ring aromatic hydrocarbons such as spirobifluorene; and benzospirobifluolene and acenaftfluorentene.
  • Aromatic hydrocarbons of the 7-ring type such as, etc.
  • Aromatic hydrocarbon groups include groups in which a plurality of these groups are bonded.
  • the aromatic hydrocarbon group may have a substituent.
  • the "alkoxy group” may be either linear or branched.
  • the number of carbon atoms of the linear alkoxy group is usually 1 to 40, preferably 1 to 10, not including the number of carbon atoms of the substituent.
  • the number of carbon atoms of the branched alkoxy group is usually 3 to 40, preferably 4 to 10, not including the number of carbon atoms of the substituent.
  • the alkoxy group may have a substituent.
  • alkoxy group examples include a methoxy group, an ethoxy group, an isopropyloxy group, a butyloxy group, a hexyloxy group, a 2-ethylhexyloxy group, a 3,7-dimethyloctyloxy group, and a lauryloxy group.
  • the number of carbon atoms of the "cycloalkoxy group” is usually 3 to 40, preferably 4 to 10, not including the number of carbon atoms of the substituent.
  • the cycloalkoxy group may have a substituent. Examples of the cycloalkoxy group include a cyclohexyloxy group.
  • the number of carbon atoms of the "aryloxy group” is usually 6 to 60, preferably 6 to 40, and more preferably 6 to 20 without including the number of carbon atoms of the substituent.
  • the aryloxy group may have a substituent. Examples of the aryloxy group include a phenoxy group, a naphthyloxy group, an anthrasenyloxy group, and a pyrenyloxy group.
  • heterocyclic group means a group obtained by removing one or more hydrogen atoms directly bonded to an atom constituting a ring from a heterocyclic compound.
  • an "aromatic heterocyclic group” is preferable, which is a group obtained by removing one or more hydrogen atoms directly bonded to an atom constituting a ring from an aromatic heterocyclic compound.
  • a group obtained by removing p hydrogen atoms (p represents an integer of 1 or more) directly bonded to an atom constituting a ring from a heterocyclic compound is also referred to as a "p-valent heterocyclic group".
  • a group obtained by removing p hydrogen atoms directly bonded to an atom constituting a ring from an aromatic heterocyclic compound is also referred to as a "p-valent aromatic heterocyclic group".
  • aromatic heterocyclic compound examples include compounds in which the heterocycle itself exhibits aromaticity, such as azole, thiophene, furan, pyridine, diazabenzene, triazine, azanaphthalene, diazanaphthalene and carbazole, and phenoxazine. , Phenothiazine, benzopyran and the like, even if the heterocycle itself does not exhibit aromaticity, there are compounds in which the aromatic ring is fused to the heterocycle.
  • the number of carbon atoms of the heterocyclic group is usually 1 to 60, preferably 2 to 40, and more preferably 3 to 20 without including the number of carbon atoms of the substituent.
  • the heteroatom number of the aromatic heterocyclic group is usually 1 to 30, preferably 1 to 10, more preferably 1 to 5, and even more preferably 1 to 30, not including the heteroatom number of the substituent. Is 1 to 3.
  • Examples of the heterocyclic group include a monocyclic heterocyclic compound (for example, furan, thiophene, oxadiazole, pyrrole, diazole, triazole, tetrazole, pyridine, diazabenzene and triazine) or a polycycle.
  • Bicyclic heterocyclic compounds of the formula eg, azanaphthalene, diazanaphthalene, benzofuran, benzothiophene, indol, benzodiazol and benzothiazol; dibenzofuran, dibenzothiophene, dibenzoborol, dibenzo Sirol, dibenzophosphol, dibenzoselenophene, carbazole, azacarbazole, diazacarbazole, phenoxazine, phenothiazine, 9,10-dihydroaclydin, 5,10-dihydrophenazine, phenazaborin, phenophosfazine, phenoselenazine, phenazacillin, Tricyclic heterocyclic compounds such as azaanthracene, diazaanthracene, azaphenanthrene and diazaphenanthrene; tetracyclic heterocyclic compounds such as hexaazatriphenylene, benzo
  • Heterocyclic compounds of the above can be mentioned, except for one or more hydrogen atoms directly bonded to the atoms constituting the ring.
  • the heterocyclic group includes a group in which a plurality of these groups are bonded.
  • the heterocyclic group may have a substituent.
  • halogen atom indicates a fluorine atom, a chlorine atom, a bromine atom or an iodine atom.
  • the "amino group” may have a substituent, and a substituted amino group (that is, a secondary amino group or a tertiary amino group, more preferably a tertiary amino group) is preferable.
  • a substituted amino group that is, a secondary amino group or a tertiary amino group, more preferably a tertiary amino group
  • an alkyl group, a cycloalkyl group, an aryl group or a monovalent heterocyclic group is preferable.
  • substituents having an amino group are present, they may be the same and different, or they may be bonded to each other to form a ring with the nitrogen atom to which each is bonded.
  • the substituted amino group include a dialkylamino group, a dicycloalkylamino group and a diarylamino group.
  • amino group examples include a dimethylamino group, a diethylamino group, a diphenylamino group, a bis (methylphenyl) amino group, and a bis (3,5-di-tert-butylphenyl) amino group.
  • the "alkenyl group” may be either linear or branched.
  • the number of carbon atoms of the linear alkenyl group is usually 2 to 30, preferably 3 to 20, not including the number of carbon atoms of the substituent.
  • the number of carbon atoms of the branched alkenyl group is usually 3 to 30, preferably 4 to 20, not including the number of carbon atoms of the substituent.
  • the number of carbon atoms of the "cycloalkenyl group” is usually 3 to 30, preferably 4 to 20, not including the number of carbon atoms of the substituent.
  • the alkenyl group and the cycloalkenyl group may have a substituent.
  • alkenyl group examples include a vinyl group, a 1-propenyl group, a 2-butenyl group, a 3-butenyl group, a 3-pentenyl group, a 4-pentenyl group, a 1-hexenyl group, a 5-hexenyl group, a 7-octenyl group, and the like.
  • a group in which a part or all of the hydrogen atom in these groups is substituted with a substituent can be mentioned.
  • Examples of the cycloalkenyl group include a cyclohexenyl group, a cyclohexadienyl group, a cyclooctatrienyl group, a norbornylenyl group, and a group in which a part or all of hydrogen atoms in these groups are substituted with a substituent. ..
  • the "alkynyl group” may be either linear or branched.
  • the number of carbon atoms of the alkynyl group is usually 2 to 20, preferably 3 to 20, not including the carbon atom of the substituent.
  • the number of carbon atoms of the branched alkynyl group is usually 4 to 30, preferably 4 to 20, not including the carbon atom of the substituent.
  • the number of carbon atoms of the "cycloalkynyl group” is usually 4 to 30, preferably 4 to 20, without including the carbon atom of the substituent.
  • the alkynyl group and the cycloalkynyl group may have a substituent.
  • alkynyl group examples include ethynyl group, 1-propynyl group, 2-propynyl group, 2-butynyl group, 3-butynyl group, 3-pentynyl group, 4-pentynyl group, 1-hexynyl group and 5-hexynyl group.
  • a group in which a part or all of the hydrogen atom in these groups is substituted with a substituent can be mentioned.
  • cycloalkynyl group examples include a cyclooctynyl group.
  • a “crosslinked group” is a group capable of forming a new bond by subjecting it to heating, ultraviolet irradiation, near-ultraviolet irradiation, visible light irradiation, infrared irradiation, radical reaction, or the like.
  • a cross-linking group selected from the cross-linking group A group that is, a group represented by any of formulas (XL-1) to (XL-19) is preferable.
  • R XL represents a methylene group, an oxygen atom or a sulfur atom
  • n XL represents an integer of 0 to 5.
  • R XLs When a plurality of R XLs exist, they may be the same or different. A plurality of n XLs may be the same or different. * 1 represents the bonding position.
  • These cross-linking groups may have substituents. When a plurality of the substituents are present, they may be the same or different, or they may be bonded to each other to form a ring with the carbon atom to which each is bonded. ]
  • substituted amino group examples include an alkenyl group, a cycloalkenyl group, an alkynyl group and a cycloalkynyl group.
  • the substituent may be a cross-linking group. When a plurality of substituents are present, they may be bonded to each other to form a ring together with the atoms to which they are bonded, but it is preferable not to form a ring.
  • the absolute value of the difference between the energy level of the energy level and the lowest singlet excited state of the lowest triplet excited state (hereinafter, also referred to as "Delta] E ST".)
  • the ground state of the compound is structurally optimized by the density functional theory at the B3LYP level.
  • 6-31G * is used as the basis function.
  • the time-dependent density functional method B3LYP level calculates a Delta] E ST compound.
  • 6-31G * contains an atom that cannot be used
  • LANL2DZ is used for the atom.
  • Gaussian09 is used for calculation.
  • composition for a light emitting device of the present embodiment contains a metal complex represented by the formula (2) and a compound (B) having a condensed heterocyclic skeleton (b).
  • the composition for a light emitting device of the present embodiment may contain only one kind of the metal complex represented by the formula (2) and the compound (B), respectively, or may contain two or more kinds.
  • the metal complex represented by the formula (2) and the compound (B) interact physically, chemically or electrically.
  • the metal complex represented by the formula (2) and the compound (B) interact physically, chemically or electrically.
  • the metal complex represented by the formula (2) and the compound (B) electrically interact with each other, and the formula is derived from the compound (B).
  • the lowest excited triplet state (T 1 ) of the compound (B) is the lowest excited triplet of the metal complex represented by the formula (2). It is preferable that the energy level is higher than the term state (T 1 ).
  • the content of the metal complex represented by the formula (2) is 100 parts by mass in total of the compound (B) and the metal complex represented by the formula (2). In this case, it is usually 0.1 to 99.9 parts by mass, and since the light emitting efficiency of the light emitting element of the present embodiment is more excellent, it is preferably 1 to 99 parts by mass, and preferably 10 to 97 parts by mass. More preferably, it is more preferably 30 to 95 parts by mass, particularly preferably 50 to 90 parts by mass, and particularly preferably 70 to 90 parts by mass.
  • Compound (B) is a boron atom, an oxygen atom, a sulfur atom, a selenium atom, and at least one selected from the group consisting of sp 3 carbon atom and a nitrogen atom, a condensed heterocyclic skeleton (b) including in the ring It is a compound that has.
  • the condensed heterocyclic skeleton (b) contains nitrogen atoms
  • at least one of the nitrogen atoms contained in the condensed heterocyclic skeleton (b) is a nitrogen atom that does not form a double bond. It is preferable that all of the nitrogen atoms contained in the condensed heterocyclic skeleton (b) are nitrogen atoms that do not form a double bond.
  • the number of carbon atoms of the condensed heterocyclic skeleton (b) is usually 1 to 60, preferably 5 to 40, and more preferably 10 to 25, not including the number of carbon atoms of the substituent.
  • the number of heteroatoms of the condensed heterocyclic skeleton (b) is usually 2 to 30, preferably 2 to 15, more preferably 2 to 10, and even more preferably 2 to 30, not including the number of heteroatoms of the substituent. Is 2 to 5, and particularly preferably 2 or 3.
  • the number of boron atoms in the fused heterocyclic skeleton (b) is usually 1 to 10, preferably 1 to 5, more preferably 1 to 3, and further, not including the number of boron atoms of the substituent. It is preferably 1.
  • Oxygen atom of the fused heterocyclic ring skeleton (b), a sulfur atom, a selenium atom, sp 3 total number of carbon atoms and nitrogen atoms, not including the number of atoms in the substituent is usually 1 to 20, preferably 1 to It is 10, more preferably 1 to 5, still more preferably 1 to 3, and particularly preferably 2.
  • the fused heterocyclic skeleton (b) contains a boron atom and at least one selected from the group consisting of an oxygen atom, a sulfur atom and a nitrogen atom in the ring because the light emitting element of the present embodiment has a higher light emitting efficiency. It is more preferable that a boron atom and a nitrogen atom are contained in the ring, and it is further preferable that a boron atom and a nitrogen atom that does not form a double bond are contained in the ring.
  • the condensed heterocyclic skeleton (b) is preferably a 3 to 12 ring-type condensed heterocyclic skeleton, and more preferably a 3- to 6-ring condensed heterocyclic skeleton because the light emitting element of the present embodiment has more excellent light emission efficiency. Yes, more preferably a pentacyclic condensed heterocyclic skeleton.
  • the condensed heterocyclic skeleton (b) can also be said to be a compound having a heterocyclic group (b') containing the condensed heterocyclic skeleton (b).
  • a Hajime Tamaki (b ') is a boron atom, an oxygen atom, a sulfur atom, a selenium atom, and at least one selected from the group consisting of sp 3 carbon atom and a nitrogen atom in the ring, heterocyclic polycyclic It may be a group obtained by removing one or more hydrogen atoms directly bonded to an atom constituting a ring from a cyclic compound, and the group may have a substituent.
  • the polycyclic heterocyclic compound preferably contains a boron atom and at least one selected from the group consisting of an oxygen atom, a sulfur atom and a nitrogen atom in the ring.
  • the polycyclic heterocyclic compound is preferably a 3 to 12 ring heterocyclic compound, more preferably a 3 to 6 ring heterocyclic compound. More preferably, it is a 5-cyclic heterocyclic compound.
  • the substituents that the heterocyclic group (b') may have include a halogen atom, a cyano group, an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, and a monovalent heterocyclic group or a substituent.
  • Amino groups are preferred, alkyl groups, cycloalkyl groups, alkoxy groups, cycloalkoxy groups, aryl groups, monovalent heterocyclic groups or substituted amino groups are more preferred, alkyl groups, aryl groups or substituted amino groups are even more preferred.
  • the group of may further have a substituent.
  • the aryl group is preferably from a monocyclic or bicyclic to 6-ring aromatic hydrocarbon to an atom constituting the ring.
  • the group of may have a substituent.
  • the monovalent heterocyclic group in the substituent that the heterocyclic group (b') may have is preferably a ring from a monocyclic or bicyclic to 6-cyclic heterocyclic compound.
  • the group is removed, and more preferably, one hydrogen atom directly bonded to an atom constituting a ring from pyridine, diazabenzene, triazine, azanaphthalene, diazanaphthalene, carbazole, dibenzofuran, dibenzothiophene, phenoxazine or phenothiazine is excluded.
  • This group is particularly preferably a group from pyridine, diazabenzene or triazine excluding one hydrogen atom directly bonded to an atom constituting a ring, and these groups may have a substituent.
  • the substituents contained in the amino group are preferably an aryl group or a monovalent heterocyclic group, more preferably an aryl group, and these.
  • the group of may further have a substituent.
  • Examples and preferred ranges of aryl groups and monovalent heterocyclic groups in the substituents of the amino group are the aryl groups and monovalent heterocyclic groups in the substituents that the heterocyclic group (b') may have, respectively. Same as the group example and preferred range.
  • the substituent which the heterocyclic group (b') may have further includes a halogen atom, an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group and 1 Valuable heterocyclic groups or substituted amino groups are preferred, alkyl groups, cycloalkyl groups, aryl groups, monovalent heterocyclic groups or substituted amino groups are more preferred, alkyl or cycloalkyl groups are even more preferred, and these groups are It may have a substituent, but it is preferable that it does not have a substituent.
  • Examples and preferred ranges of aryl groups, monovalent heterocyclic groups and substituted amino groups in the substituents which the substituents which the heterocyclic group (b') may have may further have are complex, respectively. It is the same as the example and preferable range of the aryl group, the monovalent heterocyclic group and the substituted amino group in the substituent which the ring group (b') may have.
  • the "nitrogen atom that does not form a double bond” means a nitrogen atom that is single-bonded to each of the other three atoms.
  • Compound (B) is preferably a thermally activated delayed fluorescence (TADF) compound because the luminous efficiency of the light emitting device of the present embodiment is more excellent.
  • TADF thermally activated delayed fluorescence
  • Delta] E ST of the compound (B) may be not more than 2.0 eV may be less 1.5 eV, may be less 1.0 eV, may be less 0.80 eV, 0 It may be .60 eV or less, but it is preferably 0.50 eV or less because the luminous efficiency of the light emitting element of this embodiment is more excellent. Also, Delta] E ST of compound (B) may be more than 0.001EV may be more than 0.01 eV, may be more than 0.10 eV, it may be more than 0.20eV , 0.30 eV or more, or 0.40 eV or more.
  • the compound (B) is preferably a low molecular weight compound.
  • the molecular weight of compound (B) is preferably 1 ⁇ 10 2 to 5 ⁇ 10 3 , more preferably 2 ⁇ 10 2 to 3 ⁇ 10 3 , and even more preferably 3 ⁇ 10 2 to 1.5 ⁇ 10. It is 3 , and particularly preferably 4 ⁇ 10 2 to 1 ⁇ 10 3 .
  • the compound (B) is preferably a compound represented by the formula (1-1), the formula (1-2) or the formula (1-3) because the luminous efficiency of the light emitting device of the present embodiment is more excellent.
  • the compound represented by the formula (1-2) or the formula (1-3) is more preferable, and the compound represented by the formula (1-2) is further preferable.
  • Ar 1 , Ar 2 and Ar 3 are more excellent in light emitting efficiency of the light emitting element of the present embodiment, monocyclic, bicyclic or tricyclic aromatic hydrocarbons or monocyclic, bicyclic or 3 It is a group obtained by removing one or more hydrogen atoms directly bonded to the atoms constituting the ring from the cyclic heterocyclic compound, more preferably a monocyclic aromatic hydrocarbon or a monocyclic heterocyclic compound.
  • Y 1 is preferably an oxygen atom, a sulfur atom, a group represented by -N (Ry)-or a methylene group, and more preferably an oxygen atom, a sulfur atom or -N (Ry)-. It is a group, more preferably a group represented by -N (Ry)-, and these groups may have a substituent.
  • Y 2 and Y 3 are preferably a single bond, an oxygen atom, a sulfur atom, a group represented by -N (Ry)-or a methylene group, and more preferably a single bond, an oxygen atom, a sulfur atom or-. It is a group represented by N (Ry)-, more preferably a group represented by an oxygen atom, a sulfur atom or -N (Ry)-, and particularly preferably represented by -N (Ry)-. These groups may have a substituent.
  • Y 1 , Y 2 and Y 3 are groups represented by oxygen atom, sulfur atom or ⁇ N (Ry) ⁇ . It is more preferable that all of 1 , Y 2 and Y 3 are groups represented by ⁇ N (Ry) ⁇ .
  • Ry is preferably an alkyl group, a cycloalkyl group, an aryl group or a monovalent heterocyclic group, more preferably an aryl group or a monovalent heterocyclic group, still more preferably an aryl group, and these.
  • the group may have a substituent.
  • Examples and preferred ranges of aryl groups and monovalent heterocyclic groups in Ry include examples of aryl groups and monovalent heterocyclic groups in substituents that the heterocyclic group (b') may have and preferred ranges, respectively. Same as range.
  • the examples and preferred ranges of substituents that Ry may have are the same as the examples and preferred ranges of substituents that the heterocyclic group (b') may have.
  • Ry may be attached directly to Ar 1 , Ar 2 or Ar 3 via a linking group, but is preferably not attached.
  • the linking group include a group represented by -O-, a group represented by -S-, a group represented by -N (Ry)-, an alkylene group, a cycloalkylene group, an arylene group and a divalent group.
  • Examples thereof include a heterocyclic group, preferably a group represented by —O—, a group represented by —S—, a group represented by ⁇ N (Ry) ⁇ or a methylene group, and these groups are substituted. It may have a group.
  • Examples of the compound (B) include compounds represented by the following formulas and compounds B1 to B3 described later.
  • Z 1 represents an oxygen atom or a sulfur atom.
  • Metal complex represented by formula (2) The metal complex represented by the formula (2) is usually a metal complex exhibiting phosphorescence at room temperature, and preferably a metal complex exhibiting light emission from a triplet excited state at room temperature.
  • the maximum peak wavelength of the emission spectrum of the metal complex represented by the formula (2) is preferably 495 nm or more and 750 nm or less, more preferably 500 nm or more and 680 nm or less, and further preferably 505 nm or more and 660 nm or less, particularly. It is preferably 510 nm or more and 640 nm or less.
  • the metal complex is dissolved in an organic solvent such as xylene, toluene, chloroform, tetrahydrofuran, etc. to prepare a dilute solution (1 ⁇ 10 -6 to 1 ⁇ 10 -3 % by mass). , The PL spectrum of the dilute solution can be evaluated by measuring at room temperature.
  • Xylene is preferable as the organic solvent for dissolving the metal complex.
  • M 2 is preferably an iridium atom or a platinum atom, and more preferably an iridium atom, because the luminous efficiency of the light emitting device of the present embodiment is more excellent.
  • n 3 is preferably 2 or 3, and more preferably 3.
  • M 2 is a palladium atom or a platinum atom
  • n 3 is preferably 2.
  • E L is preferably a carbon atom. If the E L there are a plurality, it is preferred that they are identical.
  • Number of carbon atoms of the aromatic heterocyclic ring containing 6-membered ring in the ring L 1 is not including the carbon atom number of substituent is usually 1 to 60, preferably 2 to 30, more preferably 3 to It is 15.
  • the aromatic heterocyclic ring containing 6-membered ring in the ring L 1 for example, in an aromatic heterocycle having aromatic heterocyclic compounds exemplified in the section of the heterocyclic group described above, the nitrogen atom in the ring
  • An aromatic heterocycle having a 6-membered ring and having a 6-membered ring can be mentioned.
  • Ring L 1 has the emission efficiency of the light-emitting device of the present embodiment is more excellent, preferably an aromatic heterocyclic ring containing 6-membered ring having 1 or more 4 or fewer nitrogen atoms as constituent atoms, more preferably Is a pyridine ring, a diazabenzene ring, an azanaphthalene ring or a diazanaphthalene ring, more preferably a pyridine ring, a quinoline ring or an isoquinoline ring, particularly preferably a pyridine ring or a quinoline ring, and particularly preferably. It is a pyridine ring, and these rings may have a substituent.
  • the metal complex represented by formula (2) can be easily synthesized, wherein ring L 1 there are a plurality of ring L 1 there are a plurality of, preferably at least two are the same, rings plurality of L It is more preferable that all of 1 are the same.
  • the number of carbon atoms in the aromatic hydrocarbon ring in the ring L 2 is not including the carbon atom number of substituent is usually 6 to 60, preferably 6 to 30, more preferably from 6 to 18.
  • Examples of the aromatic hydrocarbon ring in the ring L 2 for example, an aromatic hydrocarbon ring within exemplified aromatic hydrocarbons in terms of aromatic hydrocarbon group described above.
  • Aromatic hydrocarbon ring in the ring L 2 is preferably a monocyclic, a bicyclic or tricyclic aromatic hydrocarbon ring, more preferably a benzene ring, a naphthalene ring, a fluorene ring, phenanthrene ring, or It is a dihydrophenanthrene ring, more preferably a benzene ring, a fluorene ring or a dihydrophenanthrene ring, particularly preferably a benzene ring, and these rings may have a substituent.
  • the number of carbon atoms in the aromatic heterocyclic ring in ring L 2 is not including the carbon atom number of substituent is usually 1 to 60, preferably 2 to 30, more preferably 3 to 15.
  • Hetero atoms of an aromatic heterocyclic ring in ring L 2, without including the number of heteroatom substituents is usually 1 to 30, preferably 1 to 10, more preferably 1 to 3.
  • Examples of the aromatic heterocycle in the ring L 2 include the aromatic heterocycle contained in the aromatic heterocyclic compound exemplified in the above-mentioned section of the heterocyclic group.
  • Aromatic heterocyclic ring in ring L 2 is preferably a monocyclic, a bicyclic or tricyclic aromatic heterocycle, more preferably a pyridine ring, Jiazabenzen ring, aza naphthalene ring, diaza naphthalene ring , Indol ring, benzofuran ring, benzothiophene ring, carbazole ring, azacarbazole ring, diazacarbazole ring, dibenzofuran ring or dibenzothiophene ring, more preferably pyridine ring, diazabenzene ring, carbazole ring, dibenzofuran ring or dibenzothiophene.
  • Ring L 2 is preferably a benzene ring, a pyridine ring or a diazabenzene ring, more preferably a benzene ring, because the luminous efficiency of the light emitting device of the present embodiment is more excellent, and these rings have a substituent. You may be doing it. Since the metal complex represented by the formula (2) can be easily synthesized, when a plurality of rings L 2 are present, it is preferable that at least two of the plurality of rings L 2 are the same, and the plurality of rings L 2 are present. It is more preferable that all of 2 are the same.
  • the ring L 1 is a pyridine ring, a Jiazabenzen ring, aza naphthalene ring or diaza naphthalene ring
  • the ring L 2 is a benzene ring
  • pyridine ring or Jiazabenzen ring is preferably in the ring L 1 is a pyridine ring, a quinoline ring or an isoquinoline ring
  • the ring L 2 is a benzene ring
  • ring L 1 is a pyridine ring or a quinoline ring
  • the ring more preferably L 2 is a benzene ring
  • ring L 1 is a pyridine ring
  • it is particularly preferable ring L 2 is a benzene ring.
  • These rings may have substituents.
  • At least one of the ring L 1 and the ring L 2 are as substituents, formula having a group represented by (1-T)" and, atoms constituting the ring L 1 and the ring L 2 (preferably Means that the group represented by the formula (1-T) is directly bonded to at least one of the carbon atom or the nitrogen atom.
  • the metal complex represented by the formula (2) when a plurality of rings L 1 and L 2 are present, at least one of the plurality of rings L 1 and L 2 is represented by the formula (1-T).
  • all of the plurality of rings L 1 , all of the plurality of rings L 2 , or a plurality of the rings L 2 are present. It is preferable that all of the rings L 1 and L 2 have a group represented by the formula (1-T), and all of the plurality of rings L 1 or all of the plurality of rings L 2 are of the formula. It is more preferable to have a group represented by (1-T).
  • the number of groups represented by the formula (1-T) possessed by at least one of the ring L 1 and the ring L 2 is usually 1 to 5, and the formula is. Since the metal complex represented by (2) can be easily synthesized, the number is preferably 1 to 3, more preferably 1 or 2, and even more preferably 1.
  • the total number of groups represented by the formula (1-T) of the rings L 1 and L 2 is usually set. The number is 1 to 30, and the luminous efficiency of the light emitting element of the present embodiment is more excellent. Therefore, the number is preferably 1 to 18, more preferably 2 to 12, and further preferably 3 to 3.
  • the total number of groups represented by the formula (1-T) of the ring L 1 and the ring L 2 is usually The number is 1 to 20, and the luminous efficiency of the light emitting element of the present embodiment is more excellent. Therefore, the number is preferably 1 to 12, more preferably 1 to 8, and further preferably 2 to 2. There are four.
  • Ring L 1 and the substituent which may be ring L 2 optionally has, since the luminous efficiency of the light-emitting device of the present embodiment is more excellent, it is preferably a group represented by the formula (1-T).
  • the ring L 1 and the substituent which may be ring L 2 optionally has, as a substituent other than the group represented by the formula (1-T), a cyano group, an alkenyl group or cycloalkenyl group preferably, these The group may further have a substituent.
  • Examples and preferable ranges of substituents other than the group represented by the formula (1-T) may further include examples of substituents which R 1T may have, which will be described later, and preferred ranges. Is the same as.
  • the aryl group in R1T is preferably a group obtained by removing one hydrogen atom directly bonded to an atom constituting a ring from a monocyclic, bicyclic or tricyclic aromatic hydrocarbon, and more preferably. Is a phenyl group, a naphthyl group or a fluorenyl group, more preferably a phenyl group, and these groups may have a substituent.
  • the monovalent heterocyclic group in R1T is preferably a group obtained by removing one hydrogen atom directly bonded to an atom constituting the ring from a monocyclic, bicyclic or tricyclic heterocyclic compound.
  • Yes more preferably, it is a group from pyridine, diazabenzene, triazine, azanaphthalene, diazanaphthalene, carbazole, dibenzofuran or dibenzothiophene excluding one hydrogen atom directly bonded to an atom constituting a ring, and even more preferably. It is a group obtained by removing one hydrogen atom directly bonded to an atom constituting a ring from pyridine, diazabenzene or triazine, and these groups may have a substituent.
  • the substituent contained in the amino group is preferably an aryl group or a monovalent heterocyclic group, more preferably an aryl group, and these groups may further have a substituent.
  • Examples and preferred ranges of aryl groups, which are substituents of amino groups are the same as examples and preferred ranges of aryl groups in R1T .
  • the example and preferred range of the monovalent heterocyclic group which is the substituent of the amino group is the same as the example and preferred range of the monovalent heterocyclic group in R1T .
  • R 1T is an alkyl group, a cycloalkyl group, an aryl group, or a monovalent heterocycle. It is preferably a group or a substituted amino group, R 1T is an aryl group, more preferably a monovalent heterocyclic group or a substituted amino group, R 1T is, is an aryl group or a monovalent heterocyclic group More preferably, R 1T is particularly preferably an aryl group, and these groups may have a substituent.
  • R 1T is an aryl group and a monovalent group.
  • R 1T is more preferably an aryl group or a monovalent heterocyclic group
  • R 1T is further preferably an aryl group. It may have a substituent.
  • Ring L 1 is an aromatic heterocyclic ring (preferably containing 6-membered ring other than an isoquinoline ring, a pyridine ring, a Jiazabenzen ring, quinoline ring or diaza naphthalene ring, more preferably a pyridine ring or a quinoline ring, further In the case of preferably a pyridine ring), since the light emitting efficiency of the light emitting element of this embodiment is further excellent, at least one of the groups represented by the formula (1-T) has R 1T as an alkyl group.
  • R 1T is an alkyl group, a cycloalkyl group, an aryl group or a monovalent heterocyclic group. It is more preferable that R 1T is an aryl group or a monovalent heterocyclic group, and it is particularly preferable that R 1T is an aryl group, and these groups may have a substituent.
  • R 1T is preferably an alkyl group, a cycloalkyl group, an aryl group, a monovalent heterocyclic group or a substituted amino group, and more preferably an aryl group, because the light emitting element of the present embodiment has more excellent light emitting efficiency. It is a monovalent heterocyclic group or a substituted amino group, more preferably an aryl group or a monovalent heterocyclic group, particularly preferably an aryl group, and these groups have a substituent. May be good.
  • R 1T is preferably an aryl group, a monovalent heterocyclic group or a substituted amino group, more preferably, because the light emitting efficiency of the light emitting element of the present embodiment is further excellent.
  • Aryl group or monovalent heterocyclic group, more preferably aryl group, and these groups may have a substituent.
  • Ring L 1 is an aromatic heterocyclic ring (preferably containing 6-membered ring other than an isoquinoline ring, a pyridine ring, a Jiazabenzen ring, quinoline ring or diaza naphthalene ring, more preferably a pyridine ring or a quinoline ring, further When it is preferably a pyridine ring), R 1T is preferably an alkyl group, a cycloalkyl group, an aryl group, or a monovalent heterocyclic group because the light emitting efficiency of the light emitting element of the present embodiment is further excellent.
  • R 1T may have is preferably an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, a monovalent heterocyclic group, a substituted amino group or a fluorine atom. More preferably, it is an alkyl group, a cycloalkyl group, an aryl group, a monovalent heterocyclic group or a substituted amino group, more preferably an alkyl group, a cycloalkyl group or an aryl group, and these groups are further substituents. May have.
  • Examples and preferred ranges of aryl groups, monovalent heterocyclic groups and substituted amino groups in the substituents that R 1T may have are aryl groups, monovalent heterocyclic groups and substituted amino groups in R 1T , respectively. It is the same as the example and the preferable range.
  • the substituent that R 1T may have may further include an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, and a monovalent heterocyclic group.
  • a substituted amino group or a fluorine atom more preferably an alkyl group, a cycloalkyl group, an aryl group, a monovalent heterocyclic group or a substituted amino group, and even more preferably an alkyl group or a cycloalkyl group.
  • These groups may further have a substituent, but it is preferable that they do not further have a substituent.
  • Examples and preferred ranges of aryl groups, monovalent heterocyclic groups and substituted amino groups in the substituents that the substituents that R 1T may have may further include the aryl groups in R 1T , respectively. It is the same as the example and preferable range of a monovalent heterocyclic group and a substituted amino group.
  • anionic bidentate ligand examples include a ligand represented by the following formula. However, the anionic bidentate ligand represented by A 3- G 2- A 4 is different from the ligand whose number is defined by the subscript n 3 .
  • * represents a site that binds to M 2 .
  • Examples of the metal complex represented by the formula (2) include a metal complex represented by the following formula, metal complexes G2 to G4 described later, and metal complexes R3 to R7 described later.
  • the composition for a light emitting device of the present embodiment has more excellent luminous efficiency of the light emitting device of the present embodiment, it has at least one function selected from hole injection property, hole transport property, electron injection property and electron transport property. It is preferable to further include the host material having.
  • the composition for a light emitting device of the present embodiment may contain only one type of host material, or may contain two or more types of host materials. However, the host material is different from compound (B). Further, the host material is different from the metal complex represented by the formula (2).
  • the content of the host material is 100 parts by mass in total of the metal complex represented by the compound (B) and the formula (2) and the host material. Usually, it is 1 to 99.99 parts by mass, preferably 5 to 99.9 parts by mass, more preferably 10 to 99 parts by mass, still more preferably 30 to 97 parts by mass, and particularly preferably. It is 50 to 95 parts by mass, and particularly preferably 60 to 90 parts by mass.
  • the composition for a light emitting device of the present embodiment further contains a host material
  • the host material, the compound (B), and the metal complex represented by the formula (2) are physically, chemically, or electrically interchangeable. It is preferable to act. By this interaction, for example, it is possible to improve or adjust the light emitting property, the charge transport property, or the charge injection property of the composition for a light emitting device of the present embodiment.
  • the composition for a light emitting element of the present embodiment further contains a host material
  • the light emitting material will be described as an example.
  • the host material, the compound (B), and the metal complex represented by the formula (2) are electrically charged.
  • the metal complex represented by the formula (2) can be made to emit light more efficiently, and the light emitting efficiency of the light emitting element of the present embodiment is more excellent. From the above viewpoint, since the luminous efficiency of the light emitting element of the present embodiment is more excellent, the lowest excited triplet state (T 1 ) of the host material is contained in the metal complex represented by the formula (2) and the compound (B). The energy level is preferably higher than the lowest excited triplet state (T 1 ).
  • the lowest excited singlet state (S 1) having a host material a lowest excited singlet state (S 1) higher energy level of the compound (B) It is preferably a singlet.
  • the host material since the light emitting device of the present embodiment can be produced by a wet method, it exhibits solubility in a solvent capable of dissolving the metal complex represented by the formula (2) and the compound (B). Is preferable.
  • the host material is classified into a low molecular weight compound (low molecular weight host) and a high molecular weight compound (high molecular weight host), and the composition for a light emitting element of the present embodiment may contain any host material.
  • a low molecular weight compound is preferable because the light emitting efficiency of the light emitting device of the present embodiment is more excellent.
  • the polymer host include a polymer compound which is a hole transport material described later and a polymer compound which is an electron transport material described later.
  • the small molecule host is preferably a compound represented by the formula (H-1) because the luminous efficiency of the light emitting device of the present embodiment is more excellent.
  • the compound represented by the formula (H-1) is preferably a compound having no condensed heterocyclic skeleton (b) in the compound.
  • the molecular weight of the compound represented by the formula (H-1) is preferably 1 ⁇ 10 2 to 5 ⁇ 10 3 , more preferably 2 ⁇ 10 2 to 3 ⁇ 10 3 , and even more preferably 3 ⁇ . It is 10 2 to 1.5 ⁇ 10 3 , and particularly preferably 4 ⁇ 10 2 to 1 ⁇ 10 3 .
  • the aryl group in Ar H1 and Ar H2 is preferably a group obtained by removing one hydrogen atom directly bonded to an atom constituting a ring from a monocyclic or 2 to 6 ring aromatic hydrocarbon, and more preferably.
  • the arylene group in L H1 is preferably a monocyclic or 2 to 6 ring aromatic hydrocarbon group obtained by removing two hydrogen atoms directly bonded to the atoms constituting the ring, and more preferably a single ring group. It is a group obtained by removing two hydrogen atoms directly bonded to the atoms constituting the ring from the cyclic or 2 to 4 cyclic aromatic hydrocarbons, and more preferably, the ring is formed from benzene, naphthalene, fluorene, phenanthrene or triphenylene. It is a group excluding two hydrogen atoms that are directly bonded to the constituent atoms, and these groups may have a substituent.
  • the monovalent heterocyclic group in Ar H1 and Ar H2 is a group obtained by removing one hydrogen atom directly bonded to an atom constituting the ring from the heterocyclic compound containing no fused heterocyclic skeleton (b). Is preferable, and this group may have a substituent.
  • the monovalent heterocyclic groups in Ar H1 and Ar H2 as the heterocyclic compound not containing the fused heterocyclic skeleton (b), among the heterocyclic compounds described in the above-mentioned heterocyclic group section, boron Examples thereof include heterocyclic compounds containing no atom and nitrogen atom in the ring.
  • the monovalent heterocyclic groups in Ar H1 and Ar H2 are preferably monocyclic or 2- to 6-cyclic heterocyclic compounds (preferably monocyclic or monocyclic or do not contain the fused heterocyclic skeleton (b). It is a group obtained by removing one hydrogen atom directly bonded to an atom constituting a ring from a 2 to 6 cyclic heterocyclic compound), and more preferably a monocyclic, 2-cyclic, 3-cyclic or 5-ring. Directly to the atoms constituting the ring from the heterocyclic compound of the formula (preferably a monocyclic, bicyclic, tricyclic or pentacyclic compound that does not contain the fused heterocyclic skeleton (b)).
  • the divalent heterocyclic group in L H1 is preferably a group obtained by removing two hydrogen atoms directly bonded to the atoms constituting the ring from the heterocyclic compound containing no condensed heterocyclic skeleton (b).
  • the heterocyclic compounds that do not contain the fused heterocyclic skeleton (b) in the divalent heterocyclic group in L H1 include boron atom and nitrogen. Examples thereof include heterocyclic compounds containing no atom in the ring.
  • the divalent heterocyclic group in L H1 is preferably a monocyclic or 2 to 6 cyclic heterocyclic compound (preferably monocyclic or 2 to 6 without the fused heterocyclic skeleton (b)).
  • the substituent contained in the amino group is preferably an aryl group or a monovalent heterocyclic group, more preferably an aryl group, and these groups further have a substituent. May be good.
  • Examples and preferred ranges of aryl groups, which are substituents of amino groups are the same as examples and preferred ranges of aryl groups in Ar H1 and Ar H2 .
  • the example and preferred range of the monovalent heterocyclic group which is the substituent of the amino group is the same as the example and preferred range of the monovalent heterocyclic group in Ar H1 and Ar H2 .
  • At least one of Ar H1 and Ar H2 is preferably an aryl group or a monovalent heterocyclic group, and is preferably a monovalent heterocyclic group. More preferably, it is a carbazolyl group, a dibenzothienyl group or a dibenzofuryl group, more preferably a carbazolyl group, and these groups may have a substituent.
  • Ar H1 and Ar H2 are preferably aryl groups or monovalent heterocyclic groups, and more preferably benzene, fluorene, pyridine, diazabenzene, triazine, because the light emitting element of the present embodiment has more excellent light emitting efficiency.
  • carbazolyl groups which may have substituents.
  • At least one of L H1 is preferably an arylene group or a divalent heterocyclic group, and more preferably a divalent heterocyclic group. It is more preferably a group from which two hydrogen atoms directly bonded to an atom (preferably a carbon atom) forming a ring from carbazole, dibenzofuran or dibenzothiophene are removed, and these groups may further have a substituent. Good.
  • L H1 is preferably an arylene group or a divalent heterocyclic group, and more preferably benzene, naphthalene, fluorene, pyridine, diazabenzene, triazine, and aza. It is a group from naphthalene, diazanaphthalene, carbazole, dibenzofuran or dibenzothiophene excluding two hydrogen atoms directly bonded to an atom (preferably a carbon atom) constituting a ring, and more preferably benzene, fluorene, pyridine or diazabenzene.
  • Triazine, carbazole, dibenzofuran or dibenzothiophene which is a group excluding two hydrogen atoms which are directly bonded to an atom (preferably a carbon atom) constituting the ring, and particularly preferably an atom which constitutes a ring from dibenzofuran or dibenzothiophene. It is a group excluding two hydrogen atoms directly bonded to, and these groups may have a substituent.
  • the substituents that Ar H1 , Ar H2 and L H1 may have are preferably an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, a monovalent heterocyclic group and a substituted amino group.
  • it is a fluorine atom, more preferably an alkyl group, a cycloalkyl group, an aryl group, a monovalent heterocyclic group or a substituted amino group, and further preferably an alkyl group, an aryl group or a monovalent heterocyclic group.
  • these groups may further have substituents.
  • Examples and preferred ranges of aryl groups, monovalent heterocyclic groups and substituted amino groups in the substituents that Ar H1 , Ar H2 and L H1 may have are the aryl groups in Ar H1 and Ar H2 , respectively. It is the same as the example and preferable range of valent heterocyclic groups and substituted amino groups.
  • the substituents that may be further possessed by the substituents Ar H1 , Ar H2 and L H1 may be preferably an alkyl group, a cycloalkyl group, an aryl group, a monovalent heterocyclic group or a monovalent heterocyclic group. It is a substituted amino group, more preferably an alkyl group or a cycloalkyl group, and these groups may further have a substituent, but more preferably no substituent. Examples and preferred ranges of aryl groups, monovalent heterocyclic groups and substituted amino groups in the substituents that the substituents that Ar H1 , Ar H2 and L H1 may have may further have, respectively. It is the same as the example and preferable range of the aryl group, the monovalent heterocyclic group and the substituted amino group in Ar H1 and Ar H2 .
  • n H1 is usually an integer of 0 or more and 10 or less, preferably an integer of 0 or more and 5 or less, more preferably an integer of 1 or more and 3 or less, and particularly preferably 1.
  • Examples of the compound represented by the formula (H-1) include a compound represented by the following formula.
  • Z 1 represents an oxygen atom or a sulfur atom.
  • the composition for a light emitting element of the present embodiment includes a metal complex represented by the formula (2), a compound (B), and the above-mentioned host material, hole transport material, hole injection material, electron transport material, and electron injection.
  • the composition may contain at least one selected from the group consisting of a material, a light emitting material, an antioxidant and a solvent.
  • the hole transport material, the hole injection material, the electron transport material, the electron injection material and the light emitting material are different from the metal complex and the compound (B) represented by the formula (2).
  • the composition containing the metal complex represented by the formula (2), the compound (B), and the solvent is, for example, a spin coating method, a casting method, or a microgravure coating method.
  • Gravure coating method Bar coating method, Roll coating method, Wire bar coating method, Dip coating method, Spray coating method, Screen printing method, Flexo printing method, Offset printing method, Ink printing method, Capillary coating method, Nozzle coating method It is suitable for manufacturing a light emitting element by using a wet method such as.
  • the viscosity of the ink may be adjusted depending on the type of printing method, but is preferably 1 mPa ⁇ s to 20 mPa ⁇ s at 25 ° C.
  • the solvent contained in the ink is preferably a solvent capable of dissolving or uniformly dispersing the solid content in the ink.
  • the solvent include chlorine-based solvents, ether-based solvents, aromatic hydrocarbon-based solvents, aliphatic hydrocarbon-based solvents, ketone-based solvents, ester-based solvents, polyhydric alcohol-based solvents, alcohol-based solvents, sulfoxide-based solvents, and the like.
  • Examples include amide-based solvents.
  • the blending amount of the solvent is usually 1000 parts by mass to 10,000,000 parts by mass when the total of the metal complex represented by the formula (2) and the compound (B) is 100 parts by mass.
  • the solvent may be used alone or in combination of two or more.
  • the hole transport material is classified into a low molecular weight compound and a high molecular weight compound, and is preferably a high molecular weight compound having a cross-linking group.
  • the polymer compound include polyvinylcarbazole and its derivatives; polyarylene having an aromatic amine structure in its side chain or main chain and its derivatives.
  • the polymer compound may be a compound to which an electron accepting site such as fullerene, tetrafluorotetracyanoquinodimethane, tetracyanoethylene and trinitrofluorenone is bound.
  • the blending amount of the hole transporting material is 100 parts by mass of the total of the metal complex represented by the formula (2) and the compound (B). In the case of, it is usually 1 part by mass to 10000 parts by mass.
  • the hole transporting material may be used alone or in combination of two or more.
  • Electron transport materials are classified into low molecular weight compounds and high molecular weight compounds.
  • the electron transport material may have a cross-linking group.
  • low molecular weight compounds include metal complexes having 8-hydroxyquinoline as a ligand, oxadiazole, anthraquinone dimethane, benzoquinone, naphthoquinone, anthraquinone, tetracyanoanthraquinone dimethane, fluorenone, diphenyldicyanoethylene and diphenoquinone. , And these derivatives.
  • the polymer compound include polyphenylene, polyfluorene, and derivatives thereof.
  • the polymeric compound may be metal-doped.
  • the blending amount of the electron transporting material is 100 parts by mass in total of the metal complex represented by the formula (2) and the compound (B). In the case, it is usually 1 part by mass to 10000 parts by mass.
  • the electron transport material may be used alone or in combination of two or more.
  • the hole injection material and electron injection material are classified into low molecular weight compounds and high molecular weight compounds, respectively.
  • the hole injection material and the electron injection material may have a cross-linking group.
  • the low molecular weight compound include metal phthalocyanines such as copper phthalocyanine; carbon; metal oxides such as molybdenum and tungsten; and metal fluorides such as lithium fluoride, sodium fluoride, cesium fluoride and potassium fluoride.
  • the polymer compound examples include polyaniline, polythiophene, polypyrrole, polyphenylene vinylene, polythienylene vinylene, polyquinoline and polyquinoxaline, and derivatives thereof; conductivity of polymers containing an aromatic amine structure in the main chain or side chain.
  • Examples include polypolymers.
  • the hole injection material and / or the electron injection material is included in the composition for a light emitting device of the present embodiment, the blending amounts of the hole injection material and the electron injection material are the metals represented by the formula (2), respectively.
  • the total of the complex and the compound (B) is 100 parts by mass, it is usually 1 part by mass to 10000 parts by mass.
  • the hole injection material and the electron injection material may be used alone or in combination of two or more.
  • the electric conductivity of the conductive polymer is preferably 1 ⁇ 10-5 S / cm to 1 ⁇ 10 3 S / cm. ..
  • an appropriate amount of ions can be doped into the conductive polymer.
  • the type of ion to be doped is an anion in the case of a hole injection material and a cation in the case of an electron injection material.
  • the anion include polystyrene sulfonate ion, alkylbenzene sulfonic acid ion, and cerebral sulfonic acid ion.
  • the cation include lithium ion, sodium ion, potassium ion and tetrabutylammonium ion.
  • the ions to be doped may be used alone or in combination of two or more.
  • Light emitting materials are classified into low molecular weight compounds and high molecular weight compounds.
  • the light emitting material may have a cross-linking group.
  • the low molecular weight compound include naphthalene and its derivatives, anthracene and its derivatives, perylene and its derivatives, and triple-term light emitting complexes having iridium, platinum or europium as a central metal.
  • the triplet luminescent complex include the following metal complexes.
  • polymer compound examples include an arylene group such as a phenylene group, a naphthalenediyl group, a fluorinatedyl group, a phenanthrendyl group, a dihydrophenantrenidyl group, an anthracendyl group and a pyrenedyl group; two hydrogen atoms from an aromatic amine.
  • aromatic amine residues such as a group to be removed; and a polymer compound containing a divalent heterocyclic group such as a carbazolediyl group, a phenoxazidinediyl group and a phenothiazinediyl group.
  • the content of the light emitting material is when the total of the metal complex represented by the formula (2) and the compound (B) is 100 parts by mass. Usually, it is 1 part by mass to 10000 parts by mass.
  • the luminescent material may be used alone or in combination of two or more.
  • the antioxidant may be a compound that is soluble in the same solvent as the metal complex represented by the formula (2) and the compound (B) and does not inhibit light emission and charge transport, and is, for example, a phenolic compound.
  • examples include antioxidants and phosphorus-based antioxidants.
  • the blending amount of the antioxidant is 100 parts by mass in total of the metal complex represented by the formula (2) and the compound (B). In the case, it is usually 0.00001 parts by mass to 10 parts by mass.
  • the antioxidant may be used alone or in combination of two or more.
  • the film of this embodiment contains the above-mentioned composition for a light emitting device.
  • the film of the present embodiment is suitable as a light emitting layer in a light emitting element.
  • the film of the present embodiment can be produced by a wet method using, for example, ink. Further, the film of the present embodiment can be produced by, for example, a dry method such as a vacuum vapor deposition method.
  • a method for producing the film of the present embodiment by a dry method for example, a method of depositing the above-mentioned composition for a light emitting device and a method of co-depositing a metal complex and a compound (B) represented by the formula (2) are co-deposited. The method can be mentioned.
  • the thickness of the film is usually 1 nm to 10 ⁇ m.
  • the light emitting device of the present embodiment contains the above-mentioned composition for a light emitting device.
  • the light emitting device of the present embodiment may include, for example, an anode, a cathode, and an organic layer containing the above-mentioned composition for a light emitting element provided between the anode and the cathode.
  • the layer containing the composition for a light emitting device of the present embodiment is usually one or more layers selected from the group consisting of a light emitting layer, a hole transport layer, a hole injection layer, an electron transport layer, and an electron injection layer. , Preferably a light emitting layer.
  • a light emitting layer Preferably a light emitting layer.
  • Each of these layers contains a light emitting material, a hole transporting material, a hole injecting material, an electron transporting material, and an electron injecting material.
  • Each of these layers can form a light emitting material, a hole transporting material, a hole injecting material, an electron transporting material, and an electron injecting material by the same method as in the above-mentioned film preparation.
  • the light emitting element has a light emitting layer between the anode and the cathode.
  • the light emitting element of the present embodiment preferably has at least one of a hole injection layer and a hole transport layer between the anode and the light emitting layer.
  • the hole transport layer, the electron transport layer, the light emitting layer, the hole injection layer and the electron injection layer in addition to the composition for the light emitting device of the present embodiment, the hole transport material and the electron transport material described above, respectively, examples thereof include light emitting materials, hole injection materials and electron injection materials.
  • the material of the hole transport layer, the material of the electron transport layer, and the material of the light emitting layer are used as a solvent used in forming the hole transport layer, the electron transport layer, and the layer adjacent to the light emitting layer, respectively, in the production of the light emitting element.
  • the material has a cross-linking group in order to prevent the material from dissolving in the solvent. After forming each layer using a material having a cross-linking group, the layer can be insolubilized by cross-linking the cross-linking group.
  • a low molecular weight compound when used as a method for forming each layer such as a light emitting layer, a hole transport layer, an electron transport layer, a hole injection layer, and an electron injection layer, for example, vacuum from a powder
  • a dry method such as a vapor deposition method
  • a wet method such as a method by forming a film from a solution or a molten state.
  • a wet method such as a method by forming a film from a solution or a molten state can be mentioned. Be done.
  • the order, number, and thickness of the layers to be laminated are adjusted in consideration of, for example, luminous efficiency, driving voltage, and luminance life.
  • the substrate in the light emitting element may be a substrate that can form electrodes and does not chemically change when the organic layer is formed, and is, for example, a substrate made of a material such as glass, plastic, or silicon. In the case of an opaque substrate, it is preferable that the electrode farthest from the substrate is transparent or translucent.
  • the material of the anode include conductive metal oxides and translucent metals, preferably indium oxide, zinc oxide, tin oxide; indium tin oxide (ITO), indium zinc oxide and the like.
  • the material of the cathode for example, metals such as lithium, sodium, potassium, rubidium, cesium, beryllium, magnesium, calcium, strontium, barium, aluminum, zinc, indium; two or more alloys among them; one of them. Alloys of more than one species with one or more of silver, copper, manganese, titanium, cobalt, nickel, tungsten and tin; as well as graphite and graphite interlayer compounds.
  • the alloy include magnesium-silver alloy, magnesium-indium alloy, magnesium-aluminum alloy, indium-silver alloy, lithium-aluminum alloy, lithium-magnesium alloy, lithium-indium alloy, and calcium-aluminum alloy.
  • the anode and the cathode may each have a laminated structure of two or more layers.
  • the light emitting element of this embodiment is suitable as a light source for a backlight of a liquid crystal display device, a light source for lighting, an organic EL lighting, a display device for a computer, a television, a mobile terminal, or the like (for example, an organic EL display and an organic EL television). Can be used for.
  • the polystyrene-equivalent number average molecular weight (Mn) and the polystyrene-equivalent weight average molecular weight (Mw) of the polymer compound were determined by the following size exclusion chromatography (SEC) using tetrahydrofuran as the mobile phase. ..
  • SEC size exclusion chromatography
  • the polymer compound to be measured was dissolved in tetrahydrofuran at a concentration of about 0.05% by mass, and 10 ⁇ L was injected into SEC.
  • the mobile phase was flowed at a flow rate of 1.0 mL / min.
  • PLgel MIXED-B manufactured by Polymer Laboratories
  • a UV-VIS detector manufactured by Tosoh, trade name: UV-8320GPC was used as the detector.
  • the maximum peak wavelength of the emission spectrum of the metal complex was measured at room temperature by a spectrophotometer (manufactured by JASCO Corporation, FP-6500).
  • a xylene solution in which the metal complex was dissolved in xylene at a concentration of about 0.8 ⁇ 10 -4 % by mass was used as a sample.
  • the excitation light UV light having a wavelength of 325 nm was used.
  • metal complex G1 to G4 ⁇ Synthesis and acquisition of metal complexes G1 to G4, Firpic and metal complexes R1 to R7>
  • the metal complex G1 the metal complex R2, the metal complex R3, and the metal complex R4, a product manufactured by Luminescence Technology was used.
  • the metal complex G2 was synthesized according to the method described in JP2013-237789A.
  • the metal complex G3 was synthesized according to the method described in International Publication No. 2009/131255.
  • the metal complex G4 was synthesized according to the methods described in JP-A-2014-224101 and WO 2009/131255.
  • the Firpic a product manufactured by Aldrich was used.
  • the metal complex R1 a product manufactured by American Dye Source was used.
  • the metal complex R5 was synthesized according to the method described in JP-A-2006-188673.
  • the metal complex R6 was synthesized according to the method described in JP-A-2011-105701.
  • the metal complex R7 was synthesized according to the method described in JP-A-2008-179617.
  • the maximum peak wavelength of the emission spectrum of the metal complex G1 was 510 nm.
  • the maximum peak wavelength of the emission spectrum of the metal complex G2 was 508 nm.
  • the maximum peak wavelength of the emission spectrum of the metal complex G3 was 514 nm.
  • the maximum peak wavelength of the emission spectrum of the metal complex G4 was 544 nm.
  • the maximum peak wavelength of the Firpic emission spectrum was 470 nm.
  • the maximum peak wavelength of the emission spectrum of the metal complex R1 was 618 nm.
  • the maximum peak wavelength of the emission spectrum of the metal complex R2 was 579 nm.
  • the maximum peak wavelength of the emission spectrum of the metal complex R3 was 620 nm.
  • the maximum peak wavelength of the emission spectrum of the metal complex R4 was 580 nm.
  • the maximum peak wavelength of the emission spectrum of the metal complex R5 was 619 nm.
  • the maximum peak wavelength of the emission spectrum of the metal complex R6 was 611 nm.
  • E ST compound T1 was 0.109EV.
  • E ST of Compound B1 was 0.494EV.
  • E ST of Compound B2 was 0.471EV.
  • E ST of Compound B3 was 0.479EV.
  • Example D1 Fabrication and evaluation of light emitting device D1 (formation of anode and hole injection layer)
  • An anode was formed by attaching an ITO film to a glass substrate to a thickness of 45 nm by a sputtering method.
  • ND-3202 manufactured by Nissan Chemical Industries, Ltd.
  • the substrate on which the hole injection layer was laminated was heated on a hot plate at 50 ° C. for 3 minutes in an air atmosphere, and further heated at 230 ° C. for 15 minutes to form a hole injection layer.
  • the polymer compound HTL-1 was dissolved in xylene at a concentration of 0.7% by mass. Using the obtained xylene solution, a hole was formed on the hole injection layer by a spin coating method to a thickness of 20 nm, and the holes were heated on a hot plate at 180 ° C. for 60 minutes in a nitrogen gas atmosphere. A transport layer was formed.
  • EL light emission was observed by applying a voltage to the light emitting element D1.
  • Luminous efficiency [lm / W] and CIE chromaticity coordinates at 100 cd / m 2 were measured.
  • Table 1 shows the results of Examples D1 to D3 and Comparative Examples CD1 to CD2.
  • the relative values of the luminous efficiencies of the light emitting elements D1 to D3 and CD2 when the luminous efficiency of the light emitting element CD1 is 1.0 are shown.
  • Example D4 to D6 and Comparative Example CD3 Preparation and evaluation of light emitting elements D4 to D6 and CD3 “Compound H1, Compound B1 and Metal Complex G3 (Compound H1 / Compound B1 /” in Example D1 (Formation of light emitting layer)
  • EL light emission was observed by applying a voltage to the light emitting elements D4 to D6 and CD3. Luminous efficiency [lm / W] and CIE chromaticity coordinates at 2000 cd / m 2 were measured.
  • Table 2 shows the results of Examples D4 to D6 and Comparative Example CD3. The relative values of the luminous efficiencies of the light emitting elements D4 to D6 when the luminous efficiency of the light emitting element CD3 is 1.0 are shown.
  • Light emitting elements D7, D8 and CD4 were produced in the same manner as in Example D1 except that "polymer compound HTL-C1" was used instead of "-1". EL light emission was observed by applying a voltage to the light emitting elements D7, D8 and CD4. Luminous efficiency [lm / W] and CIE chromaticity coordinates at 10000 cd / m 2 were measured.
  • Table 3 shows the results of Examples D7 to D8 and Comparative Example CD4. The relative values of the luminous efficiencies of the light emitting elements D7 and D8 when the luminous efficiency of the light emitting element CD4 is 1.0 are shown.
  • Example D9 Fabrication and evaluation of light emitting device D9 (formation of anode and hole injection layer)
  • An anode was formed by attaching an ITO film to a glass substrate to a thickness of 45 nm by a sputtering method.
  • a hole injection material, ND-3202 manufactured by Nissan Chemical Industries, Ltd.
  • the substrate on which the hole injection layer was laminated was heated on a hot plate at 50 ° C. for 3 minutes in an air atmosphere, and further heated at 230 ° C. for 15 minutes to form a hole injection layer.
  • the polymer compound HTL-2 was dissolved in xylene at a concentration of 0.7% by mass. Using the obtained xylene solution, a hole was formed on the hole injection layer by a spin coating method to a thickness of 20 nm, and the holes were heated on a hot plate at 180 ° C. for 60 minutes in a nitrogen gas atmosphere. A transport layer was formed.
  • Examples D10 to D11 and Comparative Example CD5 Preparation and evaluation of light emitting elements D10, D11 and CD5 “Compound H1, Compound B1 and Metal Complex R7 (Compound H1 / Compound B1 /” in (Formation of light emitting layer) of Example D9.
  • EL light emission was observed by applying a voltage to the light emitting elements D10, D11 and CD5. Luminous efficiency [lm / W] and CIE chromaticity coordinates at 1000 cd / m 2 were measured.
  • Table 4 shows the results of Examples D9 to D11 and Comparative Example CD5. The relative values of the luminous efficiencies of the light emitting elements D9 to D11 when the luminous efficiency of the light emitting element CD5 is 1.0 are shown.
  • Examples D12 to D13 and Comparative Example CD6 Preparation and evaluation of light emitting elements D12, D13 and CD6 “Compound H1, Compound B1 and Metal Complex R7 (Compound H1 / Compound B1 /” in (Formation of light emitting layer) of Example D9.
  • EL light emission was observed by applying a voltage to the light emitting elements D12, D13 and CD6.
  • Luminous efficiency [lm / W] and CIE chromaticity coordinates at 2500 cd / m 2 were measured.
  • Table 5 shows the results of Examples D12 to D13 and Comparative Example CD6. The relative values of the luminous efficiencies of the light emitting elements D12 and D13 when the luminous efficiency of the light emitting element CD6 is 1.0 are shown.
  • composition of the present invention is useful for producing a light emitting device having excellent luminous efficiency.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Wood Science & Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Electroluminescent Light Sources (AREA)
  • Plural Heterocyclic Compounds (AREA)

Abstract

発光効率が優れる発光素子の製造に有用な組成物を提供すること、及び、当該組成物を含有する発光素子を提供すること。 陽極と、陰極と、陽極及び陰極の間に設けられ、発光素子用組成物を含む有機層と、を備え、発光素子用組成物が、式(2)で表される金属錯体と、ホウ素原子と、酸素原子、硫黄原子、セレン原子、sp3炭素原子及び窒素原子からなる群より選ばれる少なくとも1種とを環内に含む縮合複素環骨格(b)を有する化合物(B)と、を含有する、発光素子。

Description

発光素子及び発光素子用組成物
 本発明は、発光素子及び発光素子用組成物に関する。
 有機エレクトロルミネッセンス素子等の発光素子は、例えば、ディスプレイ及び照明に好適に使用することが可能である。発光素子の発光層に用いられる発光材料として、例えば、特許文献1では、化合物B0と、金属錯体G1又は金属錯体Firpicとを含有する組成物が提案されている。
Figure JPOXMLDOC01-appb-C000008
 また、発光素子の発光層に用いられる発光材料として、例えば、特許文献2では、熱活性化遅延蛍光(TADF)性化合物T0及び金属錯体G3を含有する組成物が提案されている。
Figure JPOXMLDOC01-appb-C000009
特開2018-043984号公報 国際公報第2017/154884号
 しかし、上記の組成物を用いて作製される発光素子は、発光効率が必ずしも十分ではなかった。
 そこで、本発明は、発光効率が優れる発光素子の製造に有用な組成物を提供すること、及び、当該組成物を含有する発光素子を提供することを目的とする。
 本発明者らは、上記課題を解決するために鋭意検討を行った結果、特定の金属錯体及び特定の化合物(B)の組み合わせによって、発光効率が優れる発光素子の形成が可能となることを見出し、本発明を完成するに至った。なお、特許文献1の金属錯体G1は後述の式(1-T)で表される基を有さない金属錯体である。また、特許文献2の化合物T0は後述の縮合複素環骨格(b)を有さない化合物である。
 すなわち、本発明は、以下の[1]~[20]を提供する。
[1]
 陽極と、
 陰極と、
 前記陽極及び前記陰極の間に設けられ、発光素子用組成物を含む有機層と、
を備え、
 前記発光素子用組成物が、
  式(2)で表される金属錯体と、
  ホウ素原子と、酸素原子、硫黄原子、セレン原子、sp炭素原子及び窒素原子からなる群より選ばれる少なくとも1種とを環内に含む縮合複素環骨格(b)を有する化合物(B)と、
を含有する、発光素子。
Figure JPOXMLDOC01-appb-C000010
[式中、
 Mは、ロジウム原子、パラジウム原子、イリジウム原子又は白金原子を表す。
 nは1以上の整数を表し、nは0以上の整数を表す。但し、Mがロジウム原子又はイリジウム原子の場合、n+nは3であり、Mがパラジウム原子又は白金原子の場合、n+nは2である。
 Eは、炭素原子又は窒素原子を表す。Eが複数存在する場合、それらはそれぞれ同一でも異なっていてもよい。
 環Lは、6員環を含む芳香族複素環を表し、この環は置換基を有していてもよい。該置換基が複数存在する場合、それらは同一でも異なっていてもよく、互いに結合して、それぞれが結合する原子とともに環を形成していてもよい。環Lが複数存在する場合、それらは同一でも異なっていてもよい。
 環Lは、芳香族炭化水素環又は芳香族複素環を表し、これらの環は置換基を有していてもよい。該置換基が複数存在する場合、それらは同一でも異なっていてもよく、互いに結合して、それぞれが結合する原子とともに環を形成していてもよい。環Lが複数存在する場合、それらは同一でも異なっていてもよい。
 環Lが有していてもよい置換基と環Lが有していてもよい置換基とは、同一でも異なっていてもよく、互いに結合して、それぞれが結合する原子とともに環を形成していてもよい。
 但し、環L及び環Lのうちの少なくとも1つは、置換基として、式(1-T)で表される基を有する。式(1-T)で表される基が複数存在する場合、それらは同一でも異なっていてもよい。
 A-G-Aは、アニオン性の2座配位子を表す。A及びAは、それぞれ独立に、炭素原子、酸素原子又は窒素原子を表し、これらの原子は環を構成する原子であってもよい。Gは、単結合、又は、A及びAとともに2座配位子を構成する原子団を表す。A-G-Aが複数存在する場合、それらは同一でも異なっていてもよい。]
Figure JPOXMLDOC01-appb-C000011
[式中、R1Tは、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリールオキシ基、アリール基、1価の複素環基又は置換アミノ基を表し、これらの基は置換基を有していてもよい。該置換基が複数存在する場合、それらは同一でも異なっていてもよく、互いに結合して、それぞれが結合する原子とともに環を形成していてもよい。]
[2]
 前記環Lが、ピリジン環、ジアザベンゼン環、アザナフタレン環又はジアザナフタレン環であり、これらの環は置換基を有していてもよい、[1]に記載の発光素子。
[3]
 前記環Lが、ピリジン環、ジアザベンゼン環、キノリン環又はジアザナフタレン環であり、これらの環は置換基を有していてもよく、且つ、
 前記R1Tが、アルキル基、シクロアルキル基、アリール基、1価の複素環基又は置換アミノ基であり、これらの基は置換基を有していてもよい、[2]に記載の発光素子。
[4]
 前記環Lが、置換基を有していてもよいイソキノリン環であり、且つ、
 前記R1Tが、アリール基、1価の複素環基又は置換アミノ基であり、これらの基は置換基を有していてもよい、[2]に記載の発光素子。
[5]
 前記環Lが、ベンゼン環、ピリジン環又はジアザベンゼン環であり、これらの環は置換基を有していてもよい、[1]~[4]のいずれかに記載の発光素子。
[6]
 前記R1Tが、置換基を有していてもよいアリール基又は置換基を有していてもよい1価の複素環基である、[1]~[5]のいずれかに記載の発光素子。
[7]
 前記縮合複素環骨格(b)が、ホウ素原子と、酸素原子、硫黄原子及び窒素原子からなる群より選ばれる少なくとも1種と、を環内に含む、[1]~[6]のいずれかに記載の発光素子。
[8]
 前記縮合複素環骨格(b)が、ホウ素原子及び窒素原子を環内に含む、[7]に記載の発光素子。
[9]
 前記化合物(B)が、式(1-1)で表される化合物、式(1-2)で表される化合物又は式(1-3)で表される化合物である、[1]~[6]のいずれかに記載の発光素子。
Figure JPOXMLDOC01-appb-C000012
[式中、
 Ar、Ar及びArは、それぞれ独立に、芳香族炭化水素基又は複素環基を表し、これらの基は置換基を有していてもよい。該置換基が複数存在する場合、それらは同一でも異なっていてもよく、互いに結合して、それぞれが結合する原子とともに環を形成していてもよい。
 Yは、酸素原子、硫黄原子、セレン原子、-N(Ry)-で表される基、アルキレン基又はシクロアルキレン基を表し、これらの基は置換基を有していてもよい。該置換基が複数存在する場合、それらは同一でも異なっていてもよく、互いに結合して、それぞれが結合する原子とともに環を形成していてもよい。
 Y及びYは、それぞれ独立に、単結合、酸素原子、硫黄原子、セレン原子、-N(Ry)-で表される基、アルキレン基又はシクロアルキレン基を表し、これらの基は置換基を有していてもよい。該置換基が複数存在する場合、それらは同一でも異なっていてもよく、互いに結合して、それぞれが結合する原子とともに環を形成していてもよい。Ryは、水素原子、アルキル基、シクロアルキル基、アリール基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。該置換基が複数存在する場合、それらは同一でも異なっていてもよく、互いに結合して、それぞれが結合する原子とともに環を形成していてもよい。Ryが複数存在する場合、同一であっても異なっていてもよい。Ryは、直接結合して又は連結基を介して、Ar、Ar又はArと結合していてもよい。]
[10]
 前記Y、前記Y及び前記Yが、酸素原子、硫黄原子又は-N(Ry)-で表される基である、[9]に記載の発光素子。
[11]
 前記Y、前記Y及び前記Yが、-N(Ry)-で表される基である、[10]に記載の発光素子。
[12]
 前記化合物(B)の最低三重項励起状態のエネルギー準位と前記化合物(B)の最低一重項励起状態のエネルギー準位との差の絶対値が0.50eV以下である、[1]~[11]のいずれかに記載の発光素子。
[13]
 前記発光素子用組成物が、式(H-1)で表される化合物を更に含有する、[1]~[12]のいずれかに記載の発光素子。
Figure JPOXMLDOC01-appb-C000013
[式中、
 ArH1及びArH2は、それぞれ独立に、アリール基、1価の複素環基又は置換アミノ基を表し、これらの基は置換基を有していてもよい。該置換基が複数存在する場合、それらは同一でも異なっていてもよく、互いに結合して、それぞれが結合する原子とともに環を形成していてもよい。
 nH1は、0以上の整数を表す。
 LH1は、アリーレン基、2価の複素環基、アルキレン基又はシクロアルキレン基を表し、これらの基は置換基を有していてもよい。該置換基が複数存在する場合、それらは同一でも異なっていてもよく、互いに結合して、それぞれが結合する原子とともに環を形成していてもよい。LH1が複数存在する場合、それらは同一でも異なっていてもよい。]
[14]
 前記発光素子用組成物が、正孔輸送材料、正孔注入材料、電子輸送材料、電子注入材料、発光材料、酸化防止剤及び溶媒からなる群より選ばれる少なくとも1種を更に含有する、[1]~[13]のいずれかに記載の発光素子。
[15]
 式(2)で表される金属錯体と、
 ホウ素原子と、酸素原子、硫黄原子、セレン原子、sp炭素原子及び窒素原子からなる群より選ばれる少なくとも1種とを環内に含む縮合複素環骨格(b)を有する化合物(B)と、
を含有する、発光素子用組成物。
Figure JPOXMLDOC01-appb-C000014
[式中、
 Mは、ロジウム原子、パラジウム原子、イリジウム原子又は白金原子を表す。
 nは1以上の整数を表し、nは0以上の整数を表す。但し、Mがロジウム原子又はイリジウム原子の場合、n+nは3であり、Mがパラジウム原子又は白金原子の場合、n+nは2である。
 Eは、炭素原子又は窒素原子を表す。Eが複数存在する場合、それらはそれぞれ同一でも異なっていてもよい。
 環Lは、6員環を含む芳香族複素環を表し、この環は置換基を有していてもよい。該置換基が複数存在する場合、それらは同一でも異なっていてもよく、互いに結合して、それぞれが結合する原子とともに環を形成していてもよい。環Lが複数存在する場合、それらは同一でも異なっていてもよい。
 環Lは、芳香族炭化水素環又は芳香族複素環を表し、これらの環は置換基を有していてもよい。該置換基が複数存在する場合、それらは同一でも異なっていてもよく、互いに結合して、それぞれが結合する原子とともに環を形成していてもよい。環Lが複数存在する場合、それらは同一でも異なっていてもよい。
 環Lが有していてもよい置換基と環Lが有していてもよい置換基とは、同一でも異なっていてもよく、互いに結合して、それぞれが結合する原子とともに環を形成していてもよい。
 但し、環L及び環Lのうちの少なくとも1つは、置換基として、式(1-T)で表される基を有する。式(1-T)で表される基が複数存在する場合、それらは同一でも異なっていてもよい。
 A-G-Aは、アニオン性の2座配位子を表す。A及びAは、それぞれ独立に、炭素原子、酸素原子又は窒素原子を表し、これらの原子は環を構成する原子であってもよい。Gは、単結合、又は、A及びAとともに2座配位子を構成する原子団を表す。A-G-Aが複数存在する場合、それらは同一でも異なっていてもよい。]
Figure JPOXMLDOC01-appb-C000015
[式中、R1Tは、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリールオキシ基、アリール基、1価の複素環基又は置換アミノ基を表し、これらの基は置換基を有していてもよい。該置換基が複数存在する場合、それらは同一でも異なっていてもよく、互いに結合して、それぞれが結合する原子とともに環を形成していてもよい。]
[16]
 前記環Lが、ピリジン環、ジアザベンゼン環、キノリン環又はジアザナフタレン環であり、これらの環は置換基を有していてもよく、且つ、
 前記R1Tが、アルキル基、シクロアルキル基、アリール基、1価の複素環基又は置換アミノ基であり、これらの基は置換基を有していてもよい、[15]に記載の発光素子用組成物。
[17]
 前記環Lが、置換基を有していてもよいイソキノリン環であり、且つ、前記R1Tが、アリール基、1価の複素環基又は置換アミノ基であり、これらの基は置換基を有していてもよい、[15]に記載の発光素子用組成物。
[18]
 前記縮合複素環骨格(b)が、ホウ素原子及び窒素原子を環内に含む、[15]~[17]のいずれかに記載の発光素子用組成物。
[19]
 式(H-1)で表される化合物を更に含有する、[15]~[18]のいずれかに記載の発光素子用組成物。
Figure JPOXMLDOC01-appb-C000016
[式中、
 ArH1及びArH2は、それぞれ独立に、アリール基、1価の複素環基又は置換アミノ基を表し、これらの基は置換基を有していてもよい。該置換基が複数存在する場合、それらは同一でも異なっていてもよく、互いに結合して、それぞれが結合する原子とともに環を形成していてもよい。
 nH1は、0以上の整数を表す。
 LH1は、アリーレン基、2価の複素環基、アルキレン基又はシクロアルキレン基を表し、これらの基は置換基を有していてもよい。該置換基が複数存在する場合、それらは同一でも異なっていてもよく、互いに結合して、それぞれが結合する原子とともに環を形成していてもよい。LH1が複数存在する場合、それらは同一でも異なっていてもよい。]
[20]
 正孔輸送材料、正孔注入材料、電子輸送材料、電子注入材料、発光材料、酸化防止剤及び溶媒からなる群より選ばれる少なくとも1種を更に含有する、[15]~[19]のいずれかに記載の発光素子用組成物。
 本発明によれば、発光効率が優れる発光素子の製造に有用な組成物を提供することができる。また、本発明によれば、当該組成物を含有する発光素子を提供することができる。
 以下、本発明の好適な実施形態について詳細に説明する。
 <共通する用語の説明>
 本明細書で共通して用いられる用語は、特記しない限り、以下の意味である。
 「室温」とは、25℃を意味する。
 Meはメチル基、Etはエチル基、Buはブチル基、i-Prはイソプロピル基、t-Buはtert-ブチル基を表す。
 水素原子は、重水素原子であっても、軽水素原子であってもよい。
 「低分子化合物」とは、分子量分布を有さず、分子量が1×10以下の化合物を意味する。
 「高分子化合物」とは、分子量分布を有し、ポリスチレン換算の数平均分子量が1×10以上(例えば1×10~1×10)である重合体を意味する。
 「構成単位」とは、高分子化合物中に1個以上存在する単位を意味する。
 高分子化合物は、ブロック共重合体、ランダム共重合体、交互共重合体、グラフト共重合体のいずれであってもよいし、その他の態様であってもよい。
 高分子化合物の末端基は、重合活性基がそのまま残っていると、高分子化合物を発光素子の作製に用いた場合、発光特性又は輝度寿命が低下する可能性があるので、好ましくは安定な基である。高分子化合物の末端基としては、好ましくは主鎖と共役結合している基であり、例えば、炭素-炭素結合を介して高分子化合物の主鎖と結合するアリール基又は1価の複素環基と結合している基が挙げられる。
 「アルキル基」は、直鎖及び分岐のいずれでもよい。直鎖のアルキル基の炭素原子数は、置換基の炭素原子数を含めないで、通常1~50であり、好ましくは1~20であり、より好ましくは1~10である。分岐のアルキル基の炭素原子数は、置換基の炭素原子数を含めないで、通常3~50であり、好ましくは3~20であり、より好ましくは4~10である。
 アルキル基は、置換基を有していてもよい。アルキル基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、2-ブチル基、イソブチル基、tert-ブチル基、ペンチル基、イソアミル基、2-エチルブチル基、ヘキシル基、ヘプチル基、オクチル基、2-エチルヘキシル基、3-プロピルヘプチル基、デシル基、3,7-ジメチルオクチル基、2-エチルオクチル基、2-ヘキシルデシル基及びドデシル基が挙げられる。また、アルキル基は、これらの基における水素原子の一部又は全部が、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、フッ素原子等で置換された基であってもよい。このようなアルキル基としては、例えば、トリフルオロメチル基、ペンタフルオロエチル基、パーフルオロブチル基、パーフルオロヘキシル基、パーフルオロオクチル基、3-フェニルプロピル基、3-(4-メチルフェニル)プロピル基、3-(3,5-ジ-ヘキシルフェニル)プロピル基及び6-エチルオキシヘキシル基が挙げられる。
 「シクロアルキル基」の炭素原子数は、置換基の炭素原子数を含めないで、通常3~50であり、好ましくは4~10である。シクロアルキル基は、置換基を有していてもよい。シクロアルキル基としては、例えば、シクロヘキシル基及びメチルシクロヘキシル基が挙げられる。
 「アルキレン基」の炭素原子数は、置換基の炭素原子数を含めないで、通常1~20であり、好ましくは1~15であり、より好ましくは1~10である。アルキレン基は、置換基を有していてもよい。アルキレン基としては、例えば、メチレン基、エチレン基、プロピレン基、ブチレン基、ヘキシレン基及びオクチレン基が挙げられる。
 「シクロアルキレン基」の炭素原子数は、置換基の炭素原子数を含めないで、通常3~20であり、好ましくは4~10である。シクロアルキレン基は、置換基を有していてもよい。シクロアルキレン基としては、例えば、シクロヘキシレン基が挙げられる。
 「芳香族炭化水素基」は、芳香族炭化水素から環を構成する原子に直接結合する水素原子1個以上を除いた基を意味する。芳香族炭化水素から環を構成する原子に直接結合する水素原子1個を除いた基を「アリール基」ともいう。芳香族炭化水素から環を構成する原子に直接結合する水素原子2個を除いた基を「アリーレン基」ともいう。
 芳香族炭化水素基の炭素原子数は、置換基の炭素原子数を含めないで、通常6~60であり、好ましくは6~40であり、より好ましくは6~20である。
 「芳香族炭化水素基」は、例えば、単環式の芳香族炭化水素(例えば、ベンゼンが挙げられる。)、又は、多環式の芳香族炭化水素(例えば、ナフタレン及びインデン等の2環式の芳香族炭化水素;アントラセン、フェナントレン、ジヒドロフェナントレン及びフルオレン等の3環式の芳香族炭化水素;ベンゾアントラセン、ベンゾフェナントレン、ベンゾフルオレン、ピレン及びフルオランテン等の4環式の芳香族炭化水素;ジベンゾアントラセン、ジベンゾフェナントレン、ジベンゾフルオレン、ペリレン及びベンゾフルオランテン等の5環式の芳香族炭化水素;スピロビフルオレン等の6環式の芳香族炭化水素;並びに、ベンゾスピロビフルオレン及びアセナフトフルオランテン等の7環式の芳香族炭化水素が挙げられる。)から、環を構成する原子に直接結合する水素原子1個以上を除いた基が挙げられる。芳香族炭化水素基は、これらの基が複数結合した基を含む。芳香族炭化水素基は、置換基を有していてもよい。
 「アルコキシ基」は、直鎖及び分岐のいずれでもよい。直鎖のアルコキシ基の炭素原子数は、置換基の炭素原子数を含めないで、通常1~40であり、好ましくは1~10である。分岐のアルコキシ基の炭素原子数は、置換基の炭素原子数を含めないで、通常3~40であり、好ましくは4~10である。
 アルコキシ基は、置換基を有していてもよい。アルコキシ基としては、例えば、メトキシ基、エトキシ基、イソプロピルオキシ基、ブチルオキシ基、ヘキシルオキシ基、2-エチルヘキシルオキシ基、3,7-ジメチルオクチルオキシ基、及びラウリルオキシ基が挙げられる。
 「シクロアルコキシ基」の炭素原子数は、置換基の炭素原子数を含めないで、通常3~40であり、好ましくは4~10である。シクロアルコキシ基は、置換基を有していてもよい。シクロアルコキシ基としては、例えば、シクロヘキシルオキシ基が挙げられる。
 「アリールオキシ基」の炭素原子数は、置換基の炭素原子数を含めないで、通常6~60であり、好ましくは6~40であり、より好ましくは6~20である。アリールオキシ基は、置換基を有していてもよい。アリールオキシ基としては、例えば、フェノキシ基、ナフチルオキシ基、アントラセニルオキシ基、及びピレニルオキシ基が挙げられる。
 「複素環基」とは、複素環式化合物から環を構成する原子に直接結合する水素原子1個以上を除いた基を意味する。複素環基の中でも、芳香族複素環式化合物から環を構成する原子に直接結合する水素原子1個以上を除いた基である「芳香族複素環基」が好ましい。複素環式化合物から環を構成する原子に直接結合する水素原子p個(pは、1以上の整数を表す。)を除いた基を「p価の複素環基」ともいう。芳香族複素環式化合物から環を構成する原子に直接結合する水素原子p個を除いた基を「p価の芳香族複素環基」ともいう。
 「芳香族複素環式化合物」としては、例えば、アゾール、チオフェン、フラン、ピリジン、ジアザベンゼン、トリアジン、アザナフタレン、ジアザナフタレン及びカルバゾール等の複素環自体が芳香族性を示す化合物、並びに、フェノキサジン、フェノチアジン及びベンゾピラン等の複素環自体は芳香族性を示さなくとも、複素環に芳香環が縮環されている化合物が挙げられる。
 複素環基の炭素原子数は、置換基の炭素原子数を含めないで、通常1~60であり、好ましくは2~40であり、より好ましくは3~20である。芳香族複素環基のヘテロ原子数は、置換基のヘテロ原子数を含めないで、通常1~30であり、好ましくは、1~10であり、より好ましくは、1~5であり、更に好ましくは1~3である。
 複素環基としては、例えば、単環式の複素環式化合物(例えば、フラン、チオフェン、オキサジアゾール、ピロール、ジアゾール、トリアゾール、テトラゾール、ピリジン、ジアザベンゼン及びトリアジンが挙げられる。)、又は、多環式の複素環式化合物(例えば、アザナフタレン、ジアザナフタレン、ベンゾフラン、ベンゾチオフェン、インドール、ベンゾジアゾール及びベンゾチアジアゾール等の2環式の複素環式化合物;ジベンゾフラン、ジベンゾチオフェン、ジベンゾボロール、ジベンゾシロール、ジベンゾホスホール、ジベンゾセレノフェン、カルバゾール、アザカルバゾール、ジアザカルバゾール、フェノキサジン、フェノチアジン、9,10-ジヒドロアクリジン、5,10-ジヒドロフェナジン、フェナザボリン、フェノホスファジン、フェノセレナジン、フェナザシリン、アザアントラセン、ジアザアントラセン、アザフェナントレン及びジアザフェナントレン等の3環式の複素環式化合物;ヘキサアザトリフェニレン、ベンゾカルバゾール、ベンゾナフトフラン及びベンゾナフトチオフェン等の4環式の複素環式化合物;ジベンゾカルバゾール、インドロカルバゾール及びインデノカルバゾール等の5環式の複素環式化合物;カルバゾロカルバゾール、ベンゾインドロカルバゾール及びベンゾインデノカルバゾール等の6環式の複素環式化合物;並びに、ジベンゾインドロカルバゾール等の7環式の複素環式化合物が挙げられる。)から、環を構成する原子に直接結合する水素原子1個以上を除いた基が挙げられる。複素環基は、これらの基が複数結合した基を含む。複素環基は置換基を有していてもよい。
 「ハロゲン原子」とは、フッ素原子、塩素原子、臭素原子又はヨウ素原子を示す。
 「アミノ基」は、置換基を有していてもよく、置換アミノ基(即ち、第2級アミノ基又は第3級アミノ基、より好ましくは第3級アミノ基)が好ましい。アミノ基が有する置換基としては、アルキル基、シクロアルキル基、アリール基又は1価の複素環基が好ましい。アミノ基が有する置換基が複数存在する場合、それらは同一で異なっていてもよく、互いに結合して、それぞれが結合する窒素原子とともに環を形成していてもよい。
 置換アミノ基としては、例えば、ジアルキルアミノ基、ジシクロアルキルアミノ基及びジアリールアミノ基が挙げられる。
 アミノ基としては、例えば、ジメチルアミノ基、ジエチルアミノ基、ジフェニルアミノ基、ビス(メチルフェニル)アミノ基、及びビス(3,5-ジ-tert-ブチルフェニル)アミノ基が挙げられる。
 「アルケニル基」は、直鎖及び分岐のいずれでもよい。直鎖のアルケニル基の炭素原子数は、置換基の炭素原子数を含めないで、通常2~30であり、好ましくは3~20である。分岐のアルケニル基の炭素原子数は、置換基の炭素原子数を含めないで、通常3~30であり、好ましくは4~20である。
 「シクロアルケニル基」の炭素原子数は、置換基の炭素原子数を含めないで、通常3~30であり、好ましくは4~20である。
 アルケニル基及びシクロアルケニル基は、置換基を有していてもよい。アルケニル基としては、例えば、ビニル基、1-プロペニル基、2-ブテニル基、3-ブテニル基、3-ペンテニル基、4-ペンテニル基、1-ヘキセニル基、5-ヘキセニル基、7-オクテニル基、及び、これらの基における水素原子の一部又は全部が置換基で置換された基が挙げられる。シクロアルケニル基としては、例えば、シクロヘキセニル基、シクロヘキサジエニル基、シクロオクタトリエニル基、ノルボルニレニル基、及び、これらの基における水素原子の一部又は全部が置換基で置換された基が挙げられる。
 「アルキニル基」は、直鎖及び分岐のいずれでもよい。アルキニル基の炭素原子数は、置換基の炭素原子を含めないで、通常2~20であり、好ましくは3~20である。分岐のアルキニル基の炭素原子数は、置換基の炭素原子を含めないで、通常4~30であり、好ましくは4~20である。
 「シクロアルキニル基」の炭素原子数は、置換基の炭素原子を含めないで、通常4~30であり、好ましくは4~20である。
 アルキニル基及びシクロアルキニル基は、置換基を有していてもよい。アルキニル基としては、例えば、エチニル基、1-プロピニル基、2-プロピニル基、2-ブチニル基、3-ブチニル基、3-ペンチニル基、4-ペンチニル基、1-ヘキシニル基、5-ヘキシニル基、及び、これらの基における水素原子の一部又は全部が置換基で置換された基が挙げられる。シクロアルキニル基としては、例えば、シクロオクチニル基が挙げられる。
 「架橋基」とは、加熱、紫外線照射、近紫外線照射、可視光照射、赤外線照射、ラジカル反応等に供することにより、新たな結合を生成することが可能な基である。架橋基としては、架橋基A群から選ばれる架橋基(即ち、式(XL-1)~式(XL-19)のいずれかで表される基)が好ましい。
(架橋基A群)
Figure JPOXMLDOC01-appb-C000017
[式中、RXLは、メチレン基、酸素原子又は硫黄原子を表し、nXLは、0~5の整数を表す。RXLが複数存在する場合、それらは同一でも異なっていてもよい。複数存在するnXLは、同一でも異なっていてもよい。*1は結合位置を表す。これらの架橋基は置換基を有していてもよい。該置換基が複数存在する場合、それらは同一でも異なっていてもよく、互いに結合して、それぞれが結合する炭素原子とともに環を形成していてもよい。]
 「置換基」としては、例えば、ハロゲン原子、シアノ基、アルキル基、シクロアルキル基、アリール基、1価の複素環基、アルコキシ基、シクロアルコキシ基、アリールオキシ基、アミノ基、置換アミノ基、アルケニル基、シクロアルケニル基、アルキニル基及びシクロアルキニル基が挙げられる。置換基は架橋基であってもよい。なお、置換基が複数存在する場合、それらは互いに結合して、それぞれが結合する原子とともに環を形成していてもよいが、環を形成しないことが好ましい。
 本明細書中、最低三重項励起状態のエネルギー準位と最低一重項励起状態のエネルギー準位との差の絶対値(以下、「ΔEST」ともいう。)の値の算出は、以下の方法で求められる。まず、B3LYPレベルの密度汎関数法により、化合物の基底状態を構造最適化する。その際、基底関数としては、6-31G*を用いる。そして、得られた構造最適化された構造を用いて、B3LYPレベルの時間依存密度汎関数法により、化合物のΔESTを算出する。但し、6-31G*が使用できない原子を含む場合は、該原子に対してはLANL2DZを用いる。なお、量子化学計算プログラムとしては、Gaussian09を用いて計算する。
<発光素子用組成物>
 本実施形態の発光素子用組成物は、式(2)で表される金属錯体と、縮合複素環骨格(b)を有する化合物(B)と、を含有する。
 本実施形態の発光素子用組成物は、式(2)で表される金属錯体及び化合物(B)を、それぞれ、1種のみ含有していてもよく、2種以上含有していてもよい。
 本実施形態の発光素子用組成物において、式(2)で表される金属錯体と化合物(B)とは、物理的、化学的又は電気的に相互作用することが好ましい。この相互作用により、例えば、本実施形態の発光素子用組成物の発光特性、電荷輸送特性又は電荷注入特性を向上又は調整することが可能となる。
 本実施形態の発光素子用組成物において、発光材料を一例として説明すれば、式(2)で表される金属錯体と化合物(B)とが電気的に相互作用し、化合物(B)から式(2)で表される金属錯体へ効率的に電気エネルギーを渡すことで、式(2)で表される金属錯体をより効率的に発光させることができ、本実施形態の発光素子の発光効率がより優れる。
 上記観点から、本実施形態の発光素子の発光効率がより優れるので、化合物(B)の有する最低励起三重項状態(T)は、式(2)で表される金属錯体の有する最低励起三重項状態(T)より高いエネルギー準位であることが好ましい。
 本実施形態の発光素子用組成物において、式(2)で表される金属錯体の含有量は、化合物(B)と式(2)で表される金属錯体との合計を100質量部とした場合、通常、0.1~99.9質量部であり、本実施形態の発光素子の発光効率がより優れるので、1~99質量部であることが好ましく、10~97質量部であることがより好ましく、30~95質量部であることが更に好ましく、50~90質量部であることが特に好ましく、70~90質量部であることがとりわけ好ましい。
[化合物(B)]
 化合物(B)は、ホウ素原子と、酸素原子、硫黄原子、セレン原子、sp炭素原子及び窒素原子からなる群より選ばれる少なくとも1種と、を環内に含む縮合複素環骨格(b)を有する化合物である。
 化合物(B)において、縮合複素環骨格(b)が窒素原子を含む場合、縮合複素環骨格(b)に含まれる窒素原子のうち、少なくとも1つは二重結合を形成していない窒素原子であることが好ましく、縮合複素環骨格(b)に含まれる窒素原子の全てが二重結合を形成していない窒素原子であることがより好ましい。
 縮合複素環骨格(b)の炭素原子数は、置換基の炭素原子数を含めないで、通常1~60であり、好ましくは5~40であり、より好ましくは10~25である。
 縮合複素環骨格(b)のヘテロ原子数は、置換基のヘテロ原子数を含めないで、通常2~30であり、好ましくは2~15であり、より好ましくは2~10であり、更に好ましくは2~5であり、特に好ましくは2又は3である。
 縮合複素環骨格(b)のホウ素原子数は、置換基のホウ素原子数を含めないで、通常1~10であり、好ましくは、1~5であり、より好ましくは1~3であり、更に好ましくは1である。
 縮合複素環骨格(b)の酸素原子、硫黄原子、セレン原子、sp炭素原子及び窒素原子の合計個数は、置換基の原子数を含めないで、通常1~20であり、好ましくは1~10であり、より好ましくは1~5であり、更に好ましくは1~3であり、特に好ましくは2である。
 縮合複素環骨格(b)は、本実施形態の発光素子の発光効率がより優れるので、ホウ素原子と、酸素原子、硫黄原子及び窒素原子からなる群より選ばれる少なくとも1種とを環内に含むことが好ましく、ホウ素原子及び窒素原子を環内に含むことがより好ましく、ホウ素原子と二重結合を形成していない窒素原子とを環内に含むことが更に好ましい。
 縮合複素環骨格(b)は、本実施形態の発光素子の発光効率がより優れるので、好ましくは3~12環式縮合複素環骨格であり、より好ましくは3~6環式縮合複素環骨格であり、更に好ましくは5環式縮合複素環骨格である。
 縮合複素環骨格(b)は、縮合複素環骨格(b)を含む複素環基(b’)を有する化合物ということもできる。
 複素環基(b’)は、ホウ素原子と、酸素原子、硫黄原子、セレン原子、sp炭素原子及び窒素原子からなる群より選ばれる少なくとも1種とを環内に含む、多環式の複素環式化合物から、環を構成する原子に直接結合する水素原子1個以上を除いた基であってよく、該基は置換基を有していてもよい。複素環基(b’)において、多環式の複素環式化合物は、好ましくは、ホウ素原子と、酸素原子、硫黄原子及び窒素原子からなる群より選ばれる少なくとも1種とを環内に含む、多環式の複素環式化合物であり、より好ましくは、ホウ素原子及び窒素原子を環内に含む、多環式の複素環式化合物であり、更に好ましくは、ホウ素原子と二重結合を形成していない窒素原子とを環内に含む、多環式の複素環式化合物である。複素環基(b’)において、多環式の複素環式化合物は、好ましくは3~12環式の複素環式化合物であり、より好ましくは3~6環式の複素環式化合物であり、更に好ましくは5環式の複素環式化合物である。
 複素環基(b’)が有していてもよい置換基としては、ハロゲン原子、シアノ基、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、1価の複素環基又は置換アミノ基が好ましく、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、1価の複素環基又は置換アミノ基がより好ましく、アルキル基、アリール基又は置換アミノ基が更に好ましく、これらの基は更に置換基を有していてもよい。
 複素環基(b’)が有していてもよい置換基における、アリール基としては、好ましくは、単環式又は2環式~6環式の芳香族炭化水素から、環を構成する原子に直接結合する水素原子1個を除いた基であり、より好ましくは、単環式、2環式又は3環式の芳香族炭化水素から、環を構成する原子に直接結合する水素原子1個を除いた基であり、更に好ましくは、ベンゼン、ナフタレン、アントラセン、フェナントレン又はフルオレンから環を構成する原子に直接結合する水素原子1個を除いた基であり、特に好ましくは、フェニル基であり、これらの基は置換基を有していてもよい。
 複素環基(b’)が有していてもよい置換基における、1価の複素環基としては、好ましくは、単環式又は2環式~6環式の複素環式化合物から、環を構成する原子に直接結合する水素原子1個を除いた基であり、単環式、2環式又は3環式の複素環式化合物から、環を構成する原子に直接結合する水素原子1個を除いた基であり、更に好ましくは、ピリジン、ジアザベンゼン、トリアジン、アザナフタレン、ジアザナフタレン、カルバゾール、ジベンゾフラン、ジベンゾチオフェン、フェノキサジン又はフェノチアジンから環を構成する原子に直接結合する水素原子1個を除いた基であり、特に好ましくは、ピリジン、ジアザベンゼン又はトリアジンから環を構成する原子に直接結合する水素原子1個を除いた基であり、これらの基は置換基を有していてもよい。
 複素環基(b’)が有していてもよい置換基における置換アミノ基において、アミノ基が有する置換基としては、アリール基又は1価の複素環基が好ましく、アリール基がより好ましく、これらの基は更に置換基を有していてもよい。アミノ基が有する置換基におけるアリール基及び1価の複素環基の例及び好ましい範囲は、それぞれ、複素環基(b’)が有していてもよい置換基におけるアリール基及び1価の複素環基の例及び好ましい範囲と同じである。
 複素環基(b’)が有していてもよい置換基が更に有していてもよい置換基としては、ハロゲン原子、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、1価の複素環基又は置換アミノ基が好ましく、アルキル基、シクロアルキル基、アリール基、1価の複素環基又は置換アミノ基がより好ましく、アルキル基又はシクロアルキル基が更に好ましく、これらの基は更に置換基を有していてもよいが、更に置換基を有さないことが好ましい。
 複素環基(b’)が有していてもよい置換基が更に有していてもよい置換基におけるアリール基、1価の複素環基及び置換アミノ基の例及び好ましい範囲は、それぞれ、複素環基(b’)が有していてもよい置換基におけるアリール基、1価の複素環基及び置換アミノ基の例及び好ましい範囲と同じである。
 「二重結合を形成していない窒素原子」とは、他の3つの原子とそれぞれ単結合で結合する窒素原子を意味する。
 「環内に二重結合を形成していない窒素原子を含む」とは、環内に-N(-R)-(式中、Rは水素原子又は置換基を表す。)又は式:
Figure JPOXMLDOC01-appb-C000018
で表される基を含むことを意味する。
 化合物(B)は、本実施形態の発光素子の発光効率がより優れるので、熱活性化遅延蛍光(TADF)性化合物であることが好ましい。
 化合物(B)のΔESTは、2.0eV以下であってもよく、1.5eV以下であってもよく、1.0eV以下であってもよく、0.80eV以下であってもよく、0.60eV以下であってもよいが、本実施形態の発光素子の発光効率がより優れるので、好ましくは0.50eV以下である。また、化合物(B)のΔESTは、0.001eV以上であってもよく、0.01eV以上であってもよく、0.10eV以上であってもよく、0.20eV以上であってもよく、0.30eV以上であってもよく、0.40eV以上であってもよい。
 化合物(B)は、低分子化合物であることが好ましい。
 化合物(B)の分子量は、好ましくは1×10~5×10であり、より好ましくは2×10~3×10であり、更に好ましくは3×10~1.5×10であり、特に好ましくは4×10~1×10である。
 化合物(B)は、本実施形態の発光素子の発光効率がより優れるので、式(1-1)、式(1-2)又は式(1-3)で表される化合物であることが好ましく、式(1-2)又は式(1-3)で表される化合物であることがより好ましく、式(1-2)で表される化合物であることが更に好ましい。
 Ar、Ar及びArは、本実施形態の発光素子の発光効率がより優れるので、単環式、2環式若しくは3環式の芳香族炭化水素又は単環式、2環式若しくは3環式の複素環式化合物から、環を構成する原子に直接結合する水素原子1個以上を除いた基であり、より好ましくは、単環式の芳香族炭化水素又は単環式の複素環式化合物から、環を構成する原子に直接結合する水素原子1個以上を除いた基であり、更に好ましくは、ベンゼン、ピリジン又はジアザベンゼンから、環を構成する原子に直接結合する水素原子1個以上を除いた基であり、特に好ましくは、ベンゼンから、環を構成する原子に直接結合する水素原子1個以上を除いた基であり、これらの基は置換基を有していてもよい。
 Ar、Ar及びArが有していてもよい置換基の例及び好ましい範囲は、複素環基(b’)が有していてもよい置換基の例及び好ましい範囲と同じである。
 Yは、好ましくは、酸素原子、硫黄原子、-N(Ry)-で表される基又はメチレン基であり、より好ましくは、酸素原子、硫黄原子又は-N(Ry)-で表される基であり、更に好ましくは、-N(Ry)-で表される基であり、これらの基は置換基を有していてもよい。
 Y及びYは、好ましくは、単結合、酸素原子、硫黄原子、-N(Ry)-で表される基又はメチレン基であり、より好ましくは、単結合、酸素原子、硫黄原子又は-N(Ry)-で表される基であり、更に好ましくは、酸素原子、硫黄原子又は-N(Ry)-で表される基であり、特に好ましくは、-N(Ry)-で表される基であり、これらの基は置換基を有していてもよい。
 本実施形態の発光素子の発光効率がより優れるので、Y、Y及びYの全てが、酸素原子、硫黄原子又は-N(Ry)-で表される基であることが好ましく、Y、Y及びYの全てが、-N(Ry)-で表される基であることがより好ましい。
 Y、Y及びYが有していてもよい置換基の例及び好ましい範囲は、複素環基(b’)が有していてもよい置換基の例及び好ましい範囲と同じである。
 Ryは、好ましくは、アルキル基、シクロアルキル基、アリール基又は1価の複素環基であり、より好ましくはアリール基又は1価の複素環基であり、更に好ましくはアリール基であり、これらの基は置換基を有していてもよい。
 Ryにおけるアリール基及び1価の複素環基の例及び好ましい範囲は、それぞれ、複素環基(b’)が有していてもよい置換基におけるアリール基及び1価の複素環基の例及び好ましい範囲と同じである。
 Ryが有していてもよい置換基の例及び好ましい範囲は、複素環基(b’)が有していてもよい置換基の例及び好ましい範囲と同じである。
 Ryは、直接結合して又は連結基を介して、Ar、Ar又はArと結合していてもよいが、結合していないことが好ましい。連結基としては、例えば、-O-で表される基、-S-で表される基、-N(Ry)-で表される基、アルキレン基、シクロアルキレン基、アリーレン基及び2価の複素環基が挙げられ、好ましくは、-O-で表される基、-S-で表される基、-N(Ry)-で表される基又はメチレン基であり、これらの基は置換基を有していてもよい。
 化合物(B)としては、下記式で表される化合物及び後述の化合物B1~B3が例示される。
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020
 式中、Zは、酸素原子又は硫黄原子を表す。
[式(2)で表される金属錯体]
 式(2)で表される金属錯体は、通常、室温で燐光発光性を示す金属錯体であり、好ましくは、室温で三重項励起状態からの発光を示す金属錯体である。
 式(2)で表される金属錯体の発光スペクトルの最大ピーク波長は、好ましくは、495nm以上750nm以下であり、より好ましくは500nm以上680nm以下であり、更に好ましくは505nm以上660nm以下であり、特に好ましくは510nm以上640nm以下である。
 金属錯体の発光スペクトルの最大ピーク波長は、金属錯体を、キシレン、トルエン、クロロホルム、テトラヒドロフラン等の有機溶媒に溶解させ、希薄溶液を調製し(1×10-6~1×10-3質量%)、該希薄溶液のPLスペクトルを室温で測定することで評価することができる。金属錯体を溶解させる有機溶媒としては、キシレンが好ましい。
 Mは、本実施形態の発光素子の発光効率がより優れるので、イリジウム原子又は白金原子であることが好ましく、イリジウム原子であることがより好ましい。
 Mがロジウム原子又はイリジウム原子の場合、nは2又は3であることが好ましく、3であることがより好ましい。
 Mがパラジウム原子又は白金原子の場合、nは2であることが好ましい。
 Eは、炭素原子であることが好ましい。Eが複数存在する場合、それらは同一であることが好ましい。
 環Lにおける6員環を含む芳香族複素環の炭素原子数は、置換基の炭素原子数を含めないで、通常1~60であり、好ましくは2~30であり、更に好ましくは3~15である。環Lにおける6員環を含む芳香族複素環としては、例えば、前述の複素環基の項で例示した芳香族複素環式化合物が有する芳香族複素環の中で、環内に窒素原子を有し、且つ、6員環を含む芳香族複素環が挙げられる。
 環Lは、本実施形態の発光素子の発光効率がより優れるので、好ましくは、1つ以上4つ以下の窒素原子を構成原子として有する6員環を含む芳香族複素環であり、より好ましくは、ピリジン環、ジアザベンゼン環、アザナフタレン環又はジアザナフタレン環であり、更に好ましくは、ピリジン環、キノリン環又はイソキノリン環であり、特に好ましくは、ピリジン環又はキノリン環であり、とりわけ好ましくは、ピリジン環であり、これらの環は置換基を有していてもよい。
 式(2)で表される金属錯体を容易に合成できるので、環Lが複数存在する場合、複数存在する環Lのうち、少なくとも2つが同一であることが好ましく、複数存在する環Lのすべてが同一であることがより好ましい。
 環Lにおける芳香族炭化水素環の炭素原子数は、置換基の炭素原子数を含めないで、通常6~60であり、好ましくは6~30であり、更に好ましくは6~18である。
 環Lにおける芳香族炭化水素環としては、例えば、前述の芳香族炭化水素基の項で例示した芳香族炭化水素が有する芳香族炭化水素環が挙げられる。
 環Lにおける芳香族炭化水素環は、好ましくは、単環式、2環式又は3環式の芳香族炭化水素環であり、より好ましくは、ベンゼン環、ナフタレン環、フルオレン環、フェナントレン環又はジヒドロフェナントレン環であり、更に好ましくは、ベンゼン環、フルオレン環又はジヒドロフェナントレン環であり、特に好ましくは、ベンゼン環であり、これらの環は置換基を有していてもよい。
 環Lにおける芳香族複素環の炭素原子数は、置換基の炭素原子数を含めないで、通常1~60であり、好ましくは2~30であり、より好ましくは3~15である。環Lにおける芳香族複素環のヘテロ原子数は、置換基のヘテロ原子数を含めないで、通常1~30であり、好ましくは、1~10であり、より好ましくは1~3である。
 環Lにおける芳香族複素環としては、例えば、前述の複素環基の項で例示した芳香族複素環式化合物が有する芳香族複素環が挙げられる。
 環Lにおける芳香族複素環は、好ましくは、単環式、2環式又は3環式の芳香族複素環であり、より好ましくは、ピリジン環、ジアザベンゼン環、アザナフタレン環、ジアザナフタレン環、インドール環、ベンゾフラン環、ベンゾチオフェン環、カルバゾール環、アザカルバゾール環、ジアザカルバゾール環、ジベンゾフラン環又はジベンゾチオフェン環であり、更に好ましくは、ピリジン環、ジアザベンゼン環、カルバゾール環、ジベンゾフラン環又はジベンゾチオフェン環であり、特に好ましくは、ピリジン環又はジアザベンゼン環であり、これらの環は置換基を有していてもよい。
 環Lは、本実施形態の発光素子の発光効率がより優れるので、好ましくは、ベンゼン環、ピリジン環又はジアザベンゼン環であり、より好ましくは、ベンゼン環であり、これらの環は置換基を有していてもよい。
 式(2)で表される金属錯体を容易に合成できるので、環Lが複数存在する場合、複数存在する環Lのうち、少なくとも2つが同一であることが好ましく、複数存在する環Lのすべてが同一であることがより好ましい。
 本実施形態の発光素子の発光効率がより優れるので、環Lがピリジン環、ジアザベンゼン環、アザナフタレン環又はジアザナフタレン環であり、且つ、環Lがベンゼン環、ピリジン環又はジアザベンゼン環であることが好ましく、環Lがピリジン環、キノリン環又はイソキノリン環であり、且つ、環Lがベンゼン環であることがより好ましく、環Lがピリジン環又はキノリン環であり、且つ、環Lがベンゼン環であることが更に好ましく、環Lがピリジン環であり、且つ、環Lがベンゼン環であることが特に好ましい。これらの環は置換基を有していてもよい。
 「環L及び環Lのうちの少なくとも1つは、置換基として、式(1-T)で表される基を有する」とは、環L及び環Lを構成する原子(好ましくは炭素原子又は窒素原子)の少なくとも1つに式(1-T)で表される基が直接結合していることを意味する。
 式(2)で表される金属錯体において、環L及び環Lが複数存在する場合、複数存在する環L及び環Lのうちの少なくとも1つの環が式(1-T)で表される基を有していればよいが、本実施形態の発光素子の発光効率がより優れるので、複数存在する環Lの全て、複数存在する環Lの全て、又は、複数存在する環L及び環Lの全てが、式(1-T)で表される基を有することが好ましく、複数存在する環Lの全て、又は、複数存在する環Lの全てが、式(1-T)で表される基を有することがより好ましい。
 式(2)で表される金属錯体において、環L及び環Lの少なくとも1つが有する式(1-T)で表される基の個数は、通常、1個~5個であり、式(2)で表される金属錯体を容易に合成できるので、好ましくは1個~3個であり、より好ましくは1個又は2個であり、更に好ましくは1個である。
 式(2)で表される金属錯体において、Mがロジウム原子又はイリジウム原子の場合、環L及び環Lが有する式(1-T)で表される基の合計の個数は、通常、1個~30個であり、本実施形態の発光素子の発光効率がより優れるので、好ましくは1個~18個であり、より好ましくは2個~12個であり、更に好ましくは3個~6個である。
 式(2)で表される金属錯体において、Mがパラジウム原子又は白金原子の場合、環L及び環Lが有する式(1-T)で表される基の合計の個数は、通常、1個~20個であり、本実施形態の発光素子の発光効率がより優れるので、好ましくは1個~12個であり、より好ましくは1個~8個であり、更に好ましくは2個~4個である。
 環L及び環Lが有していてもよい置換基は、本実施形態の発光素子の発光効率がより優れるので、好ましくは、式(1-T)で表される基である。
 環L及び環Lが有していてもよい置換基において、式(1-T)で表される基以外の置換基としては、シアノ基、アルケニル基又はシクロアルケニル基が好ましく、これらの基は更に置換基を有していてもよい。式(1-T)で表される基以外の置換基が更に有していてもよい置換基の例及び好ましい範囲は、後述のR1Tが有していてもよい置換基の例及び好ましい範囲と同じである。
 [式(1-T)で表される基]
 R1Tにおけるアリール基としては、好ましくは、単環式、2環式又は3環式の芳香族炭化水素から環を構成する原子に直接結合する水素原子1個を除いた基であり、より好ましくは、フェニル基、ナフチル基又はフルオレニル基であり、更に好ましくは、フェニル基であり、これらの基は置換基を有していてもよい。
 R1Tにおける1価の複素環基としては、好ましくは、単環式、2環式又は3環式の複素環式化合物から環を構成する原子に直接結合する水素原子1個を除いた基であり、より好ましくは、ピリジン、ジアザベンゼン、トリアジン、アザナフタレン、ジアザナフタレン、カルバゾール、ジベンゾフラン又はジベンゾチオフェンから環を構成する原子に直接結合する水素原子1個を除いた基であり、更に好ましくは、ピリジン、ジアザベンゼン又はトリアジンから環を構成する原子に直接結合する水素原子1個を除いた基であり、これらの基は置換基を有していてもよい。
 R1Tにおける置換アミノ基において、アミノ基が有する置換基としては、アリール基又は1価の複素環基が好ましく、アリール基がより好ましく、これらの基は更に置換基を有していてもよい。アミノ基が有する置換基であるアリール基の例及び好ましい範囲は、R1Tにおけるアリール基の例及び好ましい範囲と同じである。アミノ基が有する置換基である1価の複素環基の例及び好ましい範囲は、R1Tにおける1価の複素環基の例及び好ましい範囲と同じである。
 式(1-T)で表される基の少なくとも1つは、本実施形態の発光素子の発光効率がより優れるので、R1Tが、アルキル基、シクロアルキル基、アリール基、1価の複素環基又は置換アミノ基であることが好ましく、R1Tが、アリール基、1価の複素環基又は置換アミノ基であることがより好ましく、R1Tが、アリール基又は1価の複素環基であることが更に好ましく、R1Tがアリール基であることが特に好ましく、これらの基は置換基を有していてもよい。
 環Lがイソキノリン環である場合、式(1-T)で表される基の少なくとも1つは、本実施形態の発光素子の発光効率が更に優れるので、R1Tが、アリール基、1価の複素環基又は置換アミノ基であることが好ましく、R1Tが、アリール基又は1価の複素環基であることがより好ましく、R1Tがアリール基であることが更に好ましく、これらの基は置換基を有していてもよい。
 環Lがイソキノリン環以外の6員環を含む芳香族複素環(好ましくは、ピリジン環、ジアザベンゼン環、キノリン環又はジアザナフタレン環であり、より好ましくは、ピリジン環又はキノリン環であり、更に好ましくはピリジン環である。)である場合、本実施形態の発光素子の発光効率が更に優れるので、式(1-T)で表される基の少なくとも1つは、R1Tが、アルキル基、シクロアルキル基、アリール基、1価の複素環基又は置換アミノ基であることが好ましく、R1Tが、アルキル基、シクロアルキル基、アリール基又は1価の複素環基であることがより好ましく、R1Tがアリール基又は1価の複素環基であることが更に好ましく、R1Tがアリール基であることが特に好ましく、これらの基は置換基を有していてもよい。
 R1Tは、本実施形態の発光素子の発光効率がより優れるので、好ましくは、アルキル基、シクロアルキル基、アリール基、1価の複素環基又は置換アミノ基であり、より好ましくは、アリール基、1価の複素環基又は置換アミノ基であり、更に好ましくは、アリール基又は1価の複素環基であり、特に好ましくは、アリール基であり、これらの基は置換基を有していてもよい。
 環Lがイソキノリン環である場合、R1Tは、本実施形態の発光素子の発光効率が更に優れるので、好ましくは、アリール基、1価の複素環基又は置換アミノ基であり、より好ましくは、アリール基又は1価の複素環基であり、更に好ましくは、アリール基であり、これらの基は置換基を有していてもよい。
 環Lがイソキノリン環以外の6員環を含む芳香族複素環(好ましくは、ピリジン環、ジアザベンゼン環、キノリン環又はジアザナフタレン環であり、より好ましくは、ピリジン環又はキノリン環であり、更に好ましくはピリジン環である。)である場合、R1Tは、本実施形態の発光素子の発光効率が更に優れるので、好ましくは、アルキル基、シクロアルキル基、アリール基、1価の複素環基又は置換アミノ基であり、より好ましくは、アルキル基、シクロアルキル基、アリール基又は1価の複素環基であり、更に好ましくは、アリール基又は1価の複素環基であり、特に好ましくは、アリール基であり、これらの基は置換基を有していてもよい。
 R1Tが有していてもよい置換基としては、好ましくは、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、1価の複素環基、置換アミノ基又はフッ素原子であり、より好ましくは、アルキル基、シクロアルキル基、アリール基、1価の複素環基又は置換アミノ基であり、更に好ましくは、アルキル基、シクロアルキル基又はアリール基であり、これらの基は更に置換基を有していてもよい。
 R1Tが有していてもよい置換基におけるアリール基、1価の複素環基及び置換アミノ基の例及び好ましい範囲は、それぞれ、R1Tにおけるアリール基、1価の複素環基及び置換アミノ基の例及び好ましい範囲と同じである。
 R1Tが有していてもよい置換基が更に有していてもよい置換基としては、好ましくは、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、1価の複素環基、置換アミノ基又はフッ素原子であり、より好ましくは、アルキル基、シクロアルキル基、アリール基、1価の複素環基又は置換アミノ基であり、更に好ましくは、アルキル基又はシクロアルキル基であり、これらの基は更に置換基を有していてもよいが、更に置換基を有さないことが好ましい。
 R1Tが有していてもよい置換基が更に有していてもよい置換基におけるアリール基、1価の複素環基及び置換アミノ基の例及び好ましい範囲は、それぞれ、R1Tにおけるアリール基、1価の複素環基及び置換アミノ基の例及び好ましい範囲と同じである。
 [アニオン性の2座配位子]
 A-G-Aで表されるアニオン性の2座配位子としては、例えば、下記式で表される配位子が挙げられる。但し、A-G-Aで表されるアニオン性の2座配位子は、添え字nでその数を定義されている配位子とは異なる。
Figure JPOXMLDOC01-appb-C000021
 式中、*は、Mと結合する部位を表す。
 式(2)で表される金属錯体としては、例えば、下記式で表される金属錯体、後述の金属錯体G2~G4及び後述の金属錯体R3~R7が挙げられる。
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000023
 [ホスト材料]
 本実施形態の発光素子用組成物は、本実施形態の発光素子の発光効率がより優れるので、正孔注入性、正孔輸送性、電子注入性及び電子輸送性から選ばれる少なくとも1つの機能を有するホスト材料を更に含むことが好ましい。本実施形態の発光素子用組成物は、ホスト材料を、1種のみ含有していてもよく、2種以上含有していてもよい。但し、ホスト材料は、化合物(B)とは異なる。また、ホスト材料は、式(2)で表される金属錯体とは異なる。
 本実施形態の発光素子用組成物が、ホスト材料を更に含む場合、ホスト材料の含有量は、化合物(B)、式(2)で表される金属錯体及びホスト材料の合計を100質量部として、通常、1~99.99質量部であり、好ましくは5~99.9質量部であり、より好ましくは10~99質量部であり、更に好ましくは30~97質量部であり、特に好ましくは50~95質量部であり、とりわけ好ましくは60~90質量部である。
 本実施形態の発光素子用組成物がホスト材料を更に含む場合、ホスト材料と、化合物(B)と、式(2)で表される金属錯体とは、物理的、化学的又は電気的に相互作用することが好ましい。この相互作用により、例えば、本実施形態の発光素子用組成物の発光特性、電荷輸送特性又は電荷注入特性を向上又は調整することが可能となる。
 本実施形態の発光素子用組成物がホスト材料を更に含む場合について、発光材料を一例として説明すれば、ホスト材料と、化合物(B)と、式(2)で表される金属錯体とが電気的に相互作用し、ホスト材料から、化合物(B)へ効率的に電気エネルギーを渡し、更に、化合物(B)から式(2)で表される金属錯体へ効率的に電気エネルギーを渡すことで、式(2)で表される金属錯体をより効率的に発光させることができ、本実施形態の発光素子の発光効率がより優れる。
 上記観点から、本実施形態の発光素子の発光効率がより優れるので、ホスト材料の有する最低励起三重項状態(T)は、式(2)で表される金属錯体及び化合物(B)の有する最低励起三重項状態(T)より高いエネルギー準位であることが好ましい。また、本実施形態の発光素子の発光効率がより優れるので、ホスト材料の有する最低励起一重項状態(S)は、化合物(B)の有する最低励起一重項状態(S)より高いエネルギー準位であることが好ましい。
 ホスト材料としては、本実施形態の発光素子を湿式法で作製できるので、式(2)で表される金属錯体及び化合物(B)を溶解することが可能な溶媒に対して溶解性を示すものが好ましい。
 ホスト材料は、低分子化合物(低分子ホスト)と高分子化合物(高分子ホスト)とに分類され、本実施形態の発光素子用組成物はいずれのホスト材料を含有していてもよい。本実施形態の発光素子用組成物に含有されていてもよいホスト材料としては、本実施形態の発光素子の発光効率がより優れるので、低分子化合物が好ましい。
 高分子ホストとしては、例えば、後述の正孔輸送材料である高分子化合物、後述の電子輸送材料である高分子化合物が挙げられる。
 低分子ホストは、本実施形態の発光素子の発光効率がより優れるので、好ましくは、式(H-1)で表される化合物である。ここで、式(H-1)で表される化合物は、化合物中に、縮合複素環骨格(b)を有さない化合物であることが好ましい。
 式(H-1)で表される化合物の分子量は、好ましくは、1×10~5×10であり、より好ましくは2×10~3×10であり、更に好ましくは3×10~1.5×10であり、特に好ましくは4×10~1×10である。
 ArH1及びArH2におけるアリール基は、好ましくは、単環式又は2~6環式の芳香族炭化水素から環を構成する原子に直接結合する水素原子1個を除いた基であり、より好ましくは、単環式又は2~4環式の芳香族炭化水素から環を構成する原子に直接結合する水素原子1個を除いた基であり、更に好ましくは、ベンゼン、ナフタレン、フルオレン、フェナントレン又はトリフェニレンから環を構成する原子に直接結合する水素原子1個を除いた基であり、これらの基は置換基を有していてもよい。
 LH1におけるアリーレン基は、好ましくは、単環式又は2~6環式の芳香族炭化水素から環を構成する原子に直接結合する水素原子2個を除いた基であり、より好ましくは、単環式又は2~4環式の芳香族炭化水素から環を構成する原子に直接結合する水素原子2個を除いた基であり、更に好ましくは、ベンゼン、ナフタレン、フルオレン、フェナントレン又はトリフェニレンから環を構成する原子に直接結合する水素原子2個を除いた基であり、これらの基は置換基を有していてもよい。
 ArH1及びArH2における1価の複素環基は、縮合複素環骨格(b)を含まない複素環式化合物から、環を構成する原子に直接結合する水素原子1個を除いた基であることが好ましく、この基は置換基を有していてもよい。ArH1及びArH2における1価の複素環基において、縮合複素環骨格(b)を含まない複素環式化合物としては、前述の複素環基の項で説明した複素環式化合物の中で、ホウ素原子及び窒素原子を環内に含まない複素環式化合物が挙げられる。ArH1及びArH2における1価の複素環基は、好ましくは、単環式又は2~6環式の複素環式化合物(好ましくは、縮合複素環骨格(b)を含まない、単環式又は2~6環式の複素環式化合物)から環を構成する原子に直接結合する水素原子1個を除いた基であり、より好ましくは、単環式、2環式、3環式又は5環式の複素環式化合物(好ましくは、縮合複素環骨格(b)を含まない、単環式、2環式、3環式又は5環式の複素環式化合物)から環を構成する原子に直接結合する水素原子1個を除いた基であり、更に好ましくは、ピリジン、ジアザベンゼン、トリアジン、アザナフタレン、ジアザナフタレン、カルバゾール、ジベンゾフラン、ジベンゾチオフェン、フェノキサジン、フェノチアジン、ジベンゾカルバゾール、インドロカルバゾール又はインデノカルバゾールから環を構成する原子に直接結合する水素原子1個を除いた基であり、特に好ましくは、ピリジン、ジアザベンゼン、トリアジン、アザナフタレン、ジアザナフタレン、カルバゾール、ジベンゾフラン又はジベンゾチオフェンから環を構成する原子に直接結合する水素原子1個を除いた基であり、これらの基は置換基を有していてもよい。
 LH1における2価の複素環基は、縮合複素環骨格(b)を含まない複素環式化合物から、環を構成する原子に直接結合する水素原子2個を除いた基であることが好ましい。LH1における2価の複素環基において、縮合複素環骨格(b)を含まない複素環式化合物としては、前述の複素環基の項で説明した複素環式化合物の中で、ホウ素原子及び窒素原子を環内に含まない複素環式化合物が挙げられる。LH1における2価の複素環基は、好ましくは、単環式又は2~6環式の複素環式化合物(好ましくは、縮合複素環骨格(b)を含まない、単環式又は2~6環式の複素環式化合物)から環を構成する原子に直接結合する水素原子2個を除いた基であり、より好ましくは、単環式、2環式、3環式又は5環式の複素環式化合物(好ましくは、縮合複素環骨格(b)を含まない、単環式、2環式、3環式又は5環式の複素環式化合物)から環を構成する原子に直接結合する水素原子2個を除いた基であり、更に好ましくは、ピリジン、ジアザベンゼン、トリアジン、アザナフタレン、ジアザナフタレン、カルバゾール、ジベンゾフラン、ジベンゾチオフェン、フェノキサジン、フェノチアジン、ジベンゾカルバゾール、インドロカルバゾール又はインデノカルバゾールから環を構成する原子に直接結合する水素原子2個を除いた基であり、特に好ましくは、ピリジン、ジアザベンゼン、トリアジン、アザナフタレン、ジアザナフタレン、カルバゾール、ジベンゾフラン又はジベンゾチオフェンから環を構成する原子に直接結合する水素原子2個を除いた基であり、これらの基は置換基を有していてもよい。
 ArH1及びArH2における置換アミノ基において、アミノ基が有する置換基としては、アリール基又は1価の複素環基が好ましく、アリール基がより好ましく、これらの基は更に置換基を有していてもよい。アミノ基が有する置換基であるアリール基の例及び好ましい範囲は、ArH1及びArH2におけるアリール基の例及び好ましい範囲と同じである。アミノ基が有する置換基である1価の複素環基の例及び好ましい範囲は、ArH1及びArH2における1価の複素環基の例及び好ましい範囲と同じである。
 本実施形態の発光素子の発光効率がより優れるので、ArH1及びArH2の少なくとも1つは、アリール基又は1価の複素環基であることが好ましく、1価の複素環基であることがより好ましく、カルバゾリル基、ジベンゾチエニル基又はジベンゾフリル基であることが更に好ましく、カルバゾリル基であることが特に好ましく、これらの基は置換基を有していてもよい。
 本実施形態の発光素子の発光効率がより優れるので、ArH1及びArH2は、好ましくは、アリール基又は1価の複素環基であり、より好ましくは、ベンゼン、フルオレン、ピリジン、ジアザベンゼン、トリアジン、カルバゾール、ジベンゾフラン又はジベンゾチオフェンから環を構成する原子に直接結合する水素原子1個を除いた基であり、更に好ましくは、フェニル基、フルオレニル基、ジベンゾチエニル基、ジベンゾフリル基又はカルバゾリル基であり、特に好ましくは、カルバゾリル基であり、これらの基は置換基を有していてもよい。
 本実施形態の発光素子の発光効率がより優れるので、LH1の少なくとも1つは、アリーレン基又は2価の複素環基であることが好ましく、2価の複素環基であることがより好ましく、カルバゾール、ジベンゾフラン又はジベンゾチオフェンから環を構成する原子(好ましくは炭素原子)に直接結合する水素原子2個を除いた基であることが更に好ましく、これらの基は更に置換基を有していてもよい。
 本実施形態の発光素子の発光効率がより優れるので、LH1は、好ましくは、アリーレン基又は2価の複素環基であり、より好ましくは、ベンゼン、ナフタレン、フルオレン、ピリジン、ジアザベンゼン、トリアジン、アザナフタレン、ジアザナフタレン、カルバゾール、ジベンゾフラン又はジベンゾチオフェンから環を構成する原子(好ましくは炭素原子)に直接結合する水素原子2個を除いた基であり、更に好ましくは、ベンゼン、フルオレン、ピリジン、ジアザベンゼン、トリアジン、カルバゾール、ジベンゾフラン又はジベンゾチオフェンから環を構成する原子(好ましくは炭素原子)に直接結合する水素原子2個を除いた基であり、特に好ましくは、ジベンゾフラン又はジベンゾチオフェンから環を構成する原子に直接結合する水素原子2個を除いた基であり、これらの基は置換基を有していてもよい。
 ArH1、ArH2及びLH1が有していてもよい置換基としては、好ましくは、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、1価の複素環基、置換アミノ基又はフッ素原子であり、より好ましくは、アルキル基、シクロアルキル基、アリール基、1価の複素環基又は置換アミノ基であり、更に好ましくは、アルキル基、アリール基又は1価の複素環基であり、これらの基は更に置換基を有していてもよい。
 ArH1、ArH2及びLH1が有していてもよい置換基におけるアリール基、1価の複素環基及び置換アミノ基の例及び好ましい範囲は、それぞれ、ArH1及びArH2におけるアリール基、1価の複素環基及び置換アミノ基の例及び好ましい範囲と同じである。
 ArH1、ArH2及びLH1が有していてもよい置換基が更に有していてもよい置換基としては、好ましくは、アルキル基、シクロアルキル基、アリール基、1価の複素環基又は置換アミノ基であり、より好ましくは、アルキル基又はシクロアルキル基であり、これらの基は更に置換基を有していてもよいが、更に置換基を有さないことが好ましい。
 ArH1、ArH2及びLH1が有していてもよい置換基が更に有していてもよい置換基におけるアリール基、1価の複素環基及び置換アミノ基の例及び好ましい範囲は、それぞれ、ArH1及びArH2におけるアリール基、1価の複素環基及び置換アミノ基の例及び好ましい範囲と同じである。
 nH1は、通常、0以上10以下の整数であり、好ましくは0以上5以下の整数であり、更に好ましくは1以上3以下の整数であり、特に好ましくは1である。
 式(H-1)で表される化合物としては、例えば、下記式で表される化合物が挙げられる。なお、式中、Zは、酸素原子又は硫黄原子を表す。式中、Zは、-CH=で表される基又は-N=で表される基を表す。
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000025
[その他の成分]
 本実施形態の発光素子用組成物は、式(2)で表される金属錯体と、化合物(B)と、前述のホスト材料、正孔輸送材料、正孔注入材料、電子輸送材料、電子注入材料、発光材料、酸化防止剤及び溶媒からなる群より選ばれる少なくとも1種とを含有する組成物であってもよい。但し、正孔輸送材料、正孔注入材料、電子輸送材料、電子注入材料及び発光材料は、式(2)で表される金属錯体及び化合物(B)とは異なる。
[インク]
 式(2)で表される金属錯体と、化合物(B)と、溶媒とを含有する組成物(以下、「インク」と言う。)は、例えば、スピンコート法、キャスティング法、マイクログラビアコート法、グラビアコート法、バーコート法、ロールコート法、ワイヤーバーコート法、ディップコート法、スプレーコート法、スクリーン印刷法、フレキソ印刷法、オフセット印刷法、インクジェット印刷法、キャピラリ-コート法、ノズルコート法等の湿式法を用いた発光素子の作製に好適である。インクの粘度は、印刷法の種類によって調整すればよいが、好ましくは25℃において1mPa・s~20mPa・sである。
 インクに含まれる溶媒は、好ましくは、インク中の固形分を溶解又は均一に分散できる溶媒である。溶媒としては、例えば、塩素系溶媒、エーテル系溶媒、芳香族炭化水素系溶媒、脂肪族炭化水素系溶媒、ケトン系溶媒、エステル系溶媒、多価アルコール系溶媒、アルコール系溶媒、スルホキシド系溶媒、アミド系溶媒が挙げられる。
 インクにおいて、溶媒の配合量は、式(2)で表される金属錯体及び化合物(B)の合計を100質量部とした場合、通常、1000質量部~10000000質量部である。
 溶媒は、一種単独で用いても二種以上を併用してもよい。
 ・正孔輸送材料
 正孔輸送材料は、低分子化合物と高分子化合物とに分類され、好ましくは架橋基を有する高分子化合物である。
 高分子化合物としては、例えば、ポリビニルカルバゾール及びその誘導体;側鎖又は主鎖に芳香族アミン構造を有するポリアリーレン及びその誘導体が挙げられる。高分子化合物は、フラーレン、テトラフルオロテトラシアノキノジメタン、テトラシアノエチレン及びトリニトロフルオレノン等の電子受容性部位が結合された化合物でもよい。
 本実施形態の発光素子用組成物において、正孔輸送材料が含まれる場合、正孔輸送材料の配合量は、式(2)で表される金属錯体及び化合物(B)の合計を100質量部とした場合、通常、1質量部~10000質量部である。
 正孔輸送材料は、一種単独で用いても二種以上を併用してもよい。
 ・電子輸送材料
 電子輸送材料は、低分子化合物と高分子化合物とに分類される。電子輸送材料は、架橋基を有していてもよい。
 低分子化合物としては、例えば、8-ヒドロキシキノリンを配位子とする金属錯体、オキサジアゾール、アントラキノジメタン、ベンゾキノン、ナフトキノン、アントラキノン、テトラシアノアントラキノジメタン、フルオレノン、ジフェニルジシアノエチレン及びジフェノキノン、並びに、これらの誘導体が挙げられる。
 高分子化合物としては、例えば、ポリフェニレン、ポリフルオレン、及び、これらの誘導体が挙げられる。高分子化合物は、金属でドープされていてもよい。
 本実施形態の発光素子用組成物において、電子輸送材料が含まれる場合、電子輸送材料の配合量は、式(2)で表される金属錯体及び化合物(B)の合計を100質量部とした場合、通常、1質量部~10000質量部である。
 電子輸送材料は、一種単独で用いても二種以上を併用してもよい。
 ・正孔注入材料及び電子注入材料
 正孔注入材料及び電子注入材料は、各々、低分子化合物と高分子化合物とに分類される。正孔注入材料及び電子注入材料は、架橋基を有していてもよい。
 低分子化合物としては、例えば、銅フタロシアニン等の金属フタロシアニン;カーボン;モリブデン、タングステン等の金属酸化物;フッ化リチウム、フッ化ナトリウム、フッ化セシウム、フッ化カリウム等の金属フッ化物が挙げられる。
 高分子化合物としては、例えば、ポリアニリン、ポリチオフェン、ポリピロール、ポリフェニレンビニレン、ポリチエニレンビニレン、ポリキノリン及びポリキノキサリン、並びに、これらの誘導体;芳香族アミン構造を主鎖又は側鎖に含む重合体等の導電性高分子が挙げられる。
 本実施形態の発光素子用組成物において、正孔注入材料及び/又は電子注入材料が含まれる場合、正孔注入材料及び電子注入材料の配合量は、各々、式(2)で表される金属錯体及び化合物(B)の合計を100質量部とした場合、通常、1質量部~10000質量部である。
 正孔注入材料及び電子注入材料は、各々、一種単独で用いても二種以上を併用してもよい。
 ・イオンドープ
 正孔注入材料又は電子注入材料が導電性高分子を含む場合、導電性高分子の電気伝導度は、好ましくは1×10-5S/cm~1×10S/cmである。導電性高分子の電気伝導度をかかる範囲とするために、導電性高分子に適量のイオンをドープすることができる。ドープするイオンの種類は、正孔注入材料であればアニオン、電子注入材料であればカチオンである。アニオンとしては、例えば、ポリスチレンスルホン酸イオン、アルキルベンゼンスルホン酸イオン、樟脳スルホン酸イオンが挙げられる。カチオンとしては、例えば、リチウムイオン、ナトリウムイオン、カリウムイオン、テトラブチルアンモニウムイオンが挙げられる。
 ドープするイオンは、一種単独で用いても二種以上を併用してもよい。
 ・発光材料
 発光材料は、低分子化合物と高分子化合物とに分類される。発光材料は、架橋基を有していてもよい。
 低分子化合物としては、例えば、ナフタレン及びその誘導体、アントラセン及びその誘導体、ペリレン及びその誘導体、並びに、イリジウム、白金又はユーロピウムを中心金属とする三重項発光錯体が挙げられる。
 三重項発光錯体としては、例えば、以下に示す金属錯体が挙げられる。
Figure JPOXMLDOC01-appb-C000026
 高分子化合物としては、例えば、フェニレン基、ナフタレンジイル基、フルオレンジイル基、フェナントレンジイル基、ジヒドロフェナントレンジイル基、アントラセンジイル基及びピレンジイル基等のアリーレン基;芳香族アミンから2個の水素原子を取り除いてなる基等の芳香族アミン残基;並びに、カルバゾールジイル基、フェノキサジンジイル基及びフェノチアジンジイル基等の2価の複素環基を含む高分子化合物が挙げられる。
 本実施形態の発光素子用組成物において、発光材料が含まれる場合、発光材料の含有量は、式(2)で表される金属錯体及び化合物(B)の合計を100質量部とした場合、通常、1質量部~10000質量部である。
 発光材料は、一種単独で用いても二種以上を併用してもよい。
 ・酸化防止剤
 酸化防止剤は、式(2)で表される金属錯体及び化合物(B)と同じ溶媒に可溶であり、発光及び電荷輸送を阻害しない化合物であればよく、例えば、フェノール系酸化防止剤、リン系酸化防止剤が挙げられる。
 本実施形態の発光素子用組成物において、酸化防止剤が含まれる場合、酸化防止剤の配合量は、式(2)で表される金属錯体及び化合物(B)の合計を100質量部とした場合、通常、0.00001質量部~10質量部である。
 酸化防止剤は、一種単独で用いても二種以上を併用してもよい。
 <膜>
 本実施形態の膜は、上述の発光素子用組成物を含有する。本実施形態の膜は、発光素子における発光層として好適である。本実施形態の膜は、例えば、インクを用いて、湿式法により作製することができる。また、本実施形態の膜は、例えば、真空蒸着法等の乾式法により作製することができる。本実施形態の膜を乾式法により作製する方法としては、例えば、上述の発光素子用組成物を蒸着する方法、及び、式(2)で表される金属錯体及び化合物(B)を共蒸着する方法が挙げられる。
 膜の厚さは、通常、1nm~10μmである。
 <発光素子>
 本実施形態の発光素子は、上述の発光素子用組成物を含有する。
 本実施形態の発光素子は、例えば、陽極と、陰極と、陽極及び陰極の間に設けられた上述の発光素子用組成物を含有する有機層と、を備えるものであってよい。
 [層構成]
 本実施形態の発光素子用組成物を含有する層は、通常、発光層、正孔輸送層、正孔注入層、電子輸送層及び電子注入層からなる群から選ばれる1種以上の層であり、好ましくは、発光層である。これらの層は、各々、発光材料、正孔輸送材料、正孔注入材料、電子輸送材料、電子注入材料を含む。これらの層は、各々、発光材料、正孔輸送材料、正孔注入材料、電子輸送材料、電子注入材料を、上述した膜の作製と同様の方法を用いて形成することができる。
 発光素子は、陽極と陰極の間に発光層を有する。本実施形態の発光素子は、正孔注入性及び正孔輸送性の観点からは、陽極と発光層との間に、正孔注入層及び正孔輸送層の少なくとも1層を有することが好ましく、電子注入性及び電子輸送性の観点からは、陰極と発光層の間に、電子注入層及び電子輸送層の少なくとも1層を有することが好ましい。
 正孔輸送層、電子輸送層、発光層、正孔注入層及び電子注入層の材料としては、本実施形態の発光素子用組成物の他、各々、上述した正孔輸送材料、電子輸送材料、発光材料、正孔注入材料及び電子注入材料等が挙げられる。
 正孔輸送層の材料、電子輸送層の材料及び発光層の材料は、発光素子の作製において、各々、正孔輸送層、電子輸送層及び発光層に隣接する層の形成時に使用される溶媒に溶解する場合、該溶媒に該材料が溶解することを回避するために、該材料が架橋基を有することが好ましい。架橋基を有する材料を用いて各層を形成した後、該架橋基を架橋させることにより、該層を不溶化させることができる。
 本実施形態の発光素子において、発光層、正孔輸送層、電子輸送層、正孔注入層、電子注入層等の各層の形成方法としては、低分子化合物を用いる場合、例えば、粉末からの真空蒸着法等の乾式法、溶液又は溶融状態からの成膜による方法等の湿式法が挙げられ、高分子化合物を用いる場合、例えば、溶液又は溶融状態からの成膜による方法等の湿式法が挙げられる。積層する層の順番、数及び厚さは、例えば、発光効率、駆動電圧及び輝度寿命を勘案して調整する。
 [基板/電極]
 発光素子における基板は、電極を形成することができ、かつ、有機層を形成する際に化学的に変化しない基板であればよく、例えば、ガラス、プラスチック、シリコン等の材料からなる基板である。不透明な基板の場合には、基板から最も遠くにある電極が透明又は半透明であることが好ましい。
 陽極の材料としては、例えば、導電性の金属酸化物、半透明の金属が挙げられ、好ましくは、酸化インジウム、酸化亜鉛、酸化スズ;インジウム・スズ・オキサイド(ITO)、インジウム・亜鉛・オキサイド等の導電性化合物;銀とパラジウムと銅との複合体(APC);NESA、金、白金、銀、銅である。
 陰極の材料としては、例えば、リチウム、ナトリウム、カリウム、ルビジウム、セシウム、ベリリウム、マグネシウム、カルシウム、ストロンチウム、バリウム、アルミニウム、亜鉛、インジウム等の金属;それらのうち2種以上の合金;それらのうち1種以上と、銀、銅、マンガン、チタン、コバルト、ニッケル、タングステン、錫のうち1種以上との合金;並びに、グラファイト及びグラファイト層間化合物が挙げられる。合金としては、例えば、マグネシウム-銀合金、マグネシウム-インジウム合金、マグネシウム-アルミニウム合金、インジウム-銀合金、リチウム-アルミニウム合金、リチウム-マグネシウム合金、リチウム-インジウム合金、カルシウム-アルミニウム合金が挙げられる。
 陽極及び陰極は、各々、2層以上の積層構造としてもよい。
 [用途]
 本実施形態の発光素子は、液晶表示装置のバックライト用の光源、照明用の光源、有機EL照明、コンピュータ、テレビ及び携帯端末等の表示装置(例えば、有機ELディスプレイ及び有機ELテレビ)として好適に用いることができる。
 以上、本発明の好適な実施形態について説明したが、本発明はこれに限定されるものではない。
 以下、実施例によって本発明を更に詳細に説明するが、本発明はこれらの実施例に限定されるものではない。
 実施例において、高分子化合物のポリスチレン換算の数平均分子量(Mn)及びポリスチレン換算の重量平均分子量(Mw)は、移動相にテトラヒドロフランを用い、下記のサイズエクスクルージョンクロマトグラフィー(SEC)により求めた。
 測定する高分子化合物を約0.05質量%の濃度でテトラヒドロフランに溶解させ、SECに10μL注入した。移動相は、1.0mL/分の流量で流した。カラムとして、PLgel MIXED-B(ポリマーラボラトリーズ製)を用いた。検出器にはUV-VIS検出器(東ソー製、商品名:UV-8320GPC)を用いた。
 実施例において、化合物のΔESTの値の算出は、B3LYPレベルの密度汎関数法により、化合物の基底状態を構造最適化し、その際、基底関数としては、6-31G*を用いた。そして、量子化学計算プログラムとしてGaussian09を用いて、B3LYPレベルの時間依存密度汎関数法により、化合物のΔESTを算出した。
 実施例において、金属錯体の発光スペクトルの最大ピーク波長は、分光光度計(日本分光株式会社製、FP-6500)により室温にて測定した。金属錯体をキシレンに、約0.8×10-4質量%の濃度で溶解させたキシレン溶液を試料として用いた。励起光としては、波長325nmのUV光を用いた。
 <合成例M> 化合物M1~M7の合成
 化合物M1は、国際公開第2015/145871号に記載の方法に従って合成した。
 化合物M2は、国際公開第2013/146806号に記載の方法に従って合成した。
 化合物M3は、国際公開第2005/049546号に記載の方法に従って合成した。
 化合物M4は、特開2010-189630号公報に記載の方法に従って合成した。
 化合物M5及び化合物M7は、国際公開第2002/045184号に記載の方法に従って合成した。
 化合物M6は、国際公開第2011/049241号に記載の方法に従って合成した。
Figure JPOXMLDOC01-appb-C000027
 <合成例HTL-1> 高分子化合物HTL-1の合成
 高分子化合物HTL-1は、化合物M1、化合物M2及び化合物M3を用いて、国際公開第2015/145871号に記載の方法に従って合成した。高分子化合物HTL-1のMnは2.3×10であり、Mwは1.2×10であった。
 高分子化合物HTL-1は、仕込み原料の量から求めた理論値では、化合物M1から誘導される構成単位と、化合物M2から誘導される構成単位と、化合物M3から誘導される構成単位とを45:5:50のモル比で有する共重合体である。
 <合成例HTL-C1> 高分子化合物HTL-C1の合成
 高分子化合物HTL-C1は、化合物M4及び化合物M3を用いて、国際公開第2015/194448号に記載の方法に従って合成した。高分子化合物HTL-C1のMnは4.5×10であり、Mwは1.5×10であった。
 高分子化合物HTL-C1は、仕込み原料の量から求めた理論値では、化合物M4から誘導される構成単位と、化合物M3から誘導される構成単位とを、50:50のモル比で有する共重合体である。
 <合成例HTL-2> 高分子化合物HTL-2の合成
 高分子化合物HTL-2は、化合物M7、化合物M5及び化合物M6を用いて、国際公開第2011/049241号に記載の方法に従って合成した。高分子化合物HTL-2のMnは8.9×10であり、Mwは4.2×10であった。
 高分子化合物HTL-2は、仕込み原料の量から求めた理論値では、化合物M7から誘導される構成単位と、化合物M5から誘導される構成単位と、化合物M6から誘導される構成単位とを、50:42.5:7.5のモル比で有する共重合体である。
 <金属錯体G1~G4、Firpic及び金属錯体R1~R7の合成及び入手>
 金属錯体G1、金属錯体R2、金属錯体R3及び金属錯体R4は、Luminescence Technology社製を用いた。
 金属錯体G2は、特開2013-237789号公報に記載の方法に従って合成した。
 金属錯体G3は、国際公開第2009/131255号に記載の方法に準じて合成した。
 金属錯体G4は、特開2014-224101号公報及び国際公開第2009/131255号に記載の方法に準じて合成した。
 Firpicは、Aldrich社製を用いた。
 金属錯体R1は、American Dye Source社製を用いた。
 金属錯体R5は、特開2006-188673号公報に記載の方法に準じて合成した。
 金属錯体R6は、特開2011-105701号公報に記載の方法に従って合成した。
 金属錯体R7は、特開2008-179617号公報に記載の方法に従って合成した。
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000030
 金属錯体G1の発光スペクトルの最大ピーク波長は510nmであった。
 金属錯体G2の発光スペクトルの最大ピーク波長は508nmであった。
 金属錯体G3の発光スペクトルの最大ピーク波長は514nmであった。
 金属錯体G4の発光スペクトルの最大ピーク波長は544nmであった。
 Firpicの発光スペクトルの最大ピーク波長は470nmであった。
 金属錯体R1の発光スペクトルの最大ピーク波長は618nmであった。
 金属錯体R2の発光スペクトルの最大ピーク波長は579nmであった。
 金属錯体R3の発光スペクトルの最大ピーク波長は620nmであった。
 金属錯体R4の発光スペクトルの最大ピーク波長は580nmであった。
 金属錯体R5の発光スペクトルの最大ピーク波長は619nmであった。
 金属錯体R6の発光スペクトルの最大ピーク波長は611nmであった。
 金属錯体R7の発光スペクトルの最大ピーク波長は594nmであった。
 <化合物H1、T1及びB1~B3の入手及び合成>
 化合物H1及び化合物B1は、Luminescence Technology社製を用いた。
 化合物T1は、国際公開第2018/062278号に記載の方法に従って合成した。
 化合物B2及び化合物B3は、国際公開第2015/102118号に記載の方法に準じて合成した。
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000032
 化合物T1のΔESTは、0.109eVであった。
 化合物B1のΔESTは、0.494eVであった。
 化合物B2のΔESTは、0.471eVであった。
 化合物B3のΔESTは、0.479eVであった。
 <実施例D1> 発光素子D1の作製と評価
(陽極及び正孔注入層の形成)
 ガラス基板にスパッタ法により45nmの厚さでITO膜を付けることにより、陽極を形成した。該陽極上に、正孔注入材料であるND-3202(日産化学工業製)をスピンコート法により35nmの厚さで成膜した。正孔注入層を積層した基板を大気雰囲気下において、ホットプレート上で50℃、3分間加熱し、更に230℃、15分間加熱することにより正孔注入層を形成した。
(正孔輸送層の形成)
 キシレンに高分子化合物HTL-1を0.7質量%の濃度で溶解させた。得られたキシレン溶液を用いて、正孔注入層の上にスピンコート法により20nmの厚さで成膜し、窒素ガス雰囲気下において、ホットプレート上で180℃、60分間加熱させることにより正孔輸送層を形成した。
(発光層の形成)
 トルエンに、化合物H1、化合物B1及び金属錯体G3(化合物H1/化合物B1/金属錯体G3=66質量%/4質量%/30質量%)を2質量%の濃度で溶解させた。得られたトルエン溶液を用いて、正孔輸送層の上にスピンコート法により60nmの厚さで成膜し、窒素ガス雰囲気下において、130℃、10分間加熱させることにより発光層を形成した。
(陰極の形成)
 発光層を形成した基板を蒸着機内において、1.0×10-4Pa以下にまで減圧した後、陰極として、発光層の上にフッ化ナトリウムを約4nm、次いで、フッ化ナトリウム層の上にアルミニウムを約80nm蒸着した。蒸着後、陰極を形成した基板をガラス基板で封止することにより、発光素子D1を作製した。
(発光素子の評価)
 発光素子D1に電圧を印加することによりEL発光が観測された。100cd/mにおける発光効率[lm/W]及びCIE色度座標を測定した。
 <実施例D2~D3及び比較例CD1~CD2> 発光素子D2、D3、CD1及びCD2の作製と評価
 実施例D1の(発光層の形成)における「化合物H1、化合物B1及び金属錯体G3(化合物H1/化合物B1/金属錯体G3=66質量%/4質量%/30質量%)」に代えて、表1に記載の材料を用いた以外は、実施例D1と同様にして、発光素子D2、D3、CD1及びCD2を作製した。
 発光素子D2、D3、CD1及びCD2に電圧を印加することによりEL発光が観測された。100cd/mにおける発光効率[lm/W]及びCIE色度座標を測定した。
 実施例D1~D3及び比較例CD1~CD2の結果を表1に示す。発光素子CD1の発光効率を1.0としたときの発光素子D1~D3及びCD2の発光効率の相対値を示す。
Figure JPOXMLDOC01-appb-T000033
 <実施例D4~D6及び比較例CD3> 発光素子D4~D6及びCD3の作製と評価
 実施例D1の(発光層の形成)における「化合物H1、化合物B1及び金属錯体G3(化合物H1/化合物B1/金属錯体G3=66質量%/4質量%/30質量%)」に代えて、表2に記載の材料を用いた以外は、実施例D1と同様にして、発光素子D4~D6及びCD3を作製した。
 発光素子D4~D6及びCD3に電圧を印加することによりEL発光が観測された。2000cd/mにおける発光効率[lm/W]及びCIE色度座標を測定した。
 実施例D4~D6及び比較例CD3の結果を表2に示す。発光素子CD3の発光効率を1.0としたときの発光素子D4~D6の発光効率の相対値を示す。
Figure JPOXMLDOC01-appb-T000034
 <実施例D7~D8及び比較例CD4> 発光素子D7、D8及びCD4の作製と評価
 実施例D1の(発光層の形成)における「化合物H1、化合物B1及び金属錯体G3(化合物H1/化合物B1/金属錯体G3=66質量%/4質量%/30質量%)」に代えて、表3に記載の材料を用い、更に、実施例D1の(正孔輸送層の形成)における「高分子化合物HTL-1」に代えて、「高分子化合物HTL-C1」を用いた以外は、実施例D1と同様にして、発光素子D7、D8及びCD4を作製した。
 発光素子D7、D8及びCD4に電圧を印加することによりEL発光が観測された。10000cd/mにおける発光効率[lm/W]及びCIE色度座標を測定した。
 実施例D7~D8及び比較例CD4の結果を表3に示す。発光素子CD4の発光効率を1.0としたときの発光素子D7及びD8の発光効率の相対値を示す。
Figure JPOXMLDOC01-appb-T000035
 <実施例D9> 発光素子D9の作製と評価
(陽極及び正孔注入層の形成)
 ガラス基板にスパッタ法により45nmの厚さでITO膜を付けることにより、陽極を形成した。該陽極上に、正孔注入材料であるND-3202(日産化学工業製)をスピンコート法により50nmの厚さで成膜した。正孔注入層を積層した基板を大気雰囲気下において、ホットプレート上で50℃、3分間加熱し、更に230℃、15分間加熱することにより正孔注入層を形成した。
(正孔輸送層の形成)
 キシレンに高分子化合物HTL-2を0.7質量%の濃度で溶解させた。得られたキシレン溶液を用いて、正孔注入層の上にスピンコート法により20nmの厚さで成膜し、窒素ガス雰囲気下において、ホットプレート上で180℃、60分間加熱させることにより正孔輸送層を形成した。
(発光層の形成)
 トルエンに、化合物H1、化合物B1及び金属錯体R7(化合物H1/化合物B1/金属錯体R7=81質量%/4質量%/15質量%)を2質量%の濃度で溶解させた。得られたトルエン溶液を用いて、正孔輸送層の上にスピンコート法により60nmの厚さで成膜し、窒素ガス雰囲気下において、130℃、10分間加熱させることにより発光層を形成した。
(陰極の形成)
 発光層を形成した基板を蒸着機内において、1.0×10-4Pa以下にまで減圧した後、陰極として、発光層の上にフッ化ナトリウムを約4nm、次いで、フッ化ナトリウム層の上にアルミニウムを約80nm蒸着した。蒸着後、陰極を形成した基板をガラス基板で封止することにより、発光素子D9を作製した。
(発光素子の評価)
 発光素子D9に電圧を印加することによりEL発光が観測された。1000cd/mにおける発光効率[lm/W]及びCIE色度座標を測定した。
 <実施例D10~D11及び比較例CD5> 発光素子D10、D11及びCD5の作製と評価
 実施例D9の(発光層の形成)における「化合物H1、化合物B1及び金属錯体R7(化合物H1/化合物B1/金属錯体R7=81質量%/4質量%/15質量%)」に代えて、表4に記載の材料を用いた以外は、実施例D9と同様にして、発光素子D10、D11及びCD5を作製した。
 発光素子D10、D11及びCD5に電圧を印加することによりEL発光が観測された。1000cd/mにおける発光効率[lm/W]及びCIE色度座標を測定した。
 実施例D9~D11及び比較例CD5の結果を表4に示す。発光素子CD5の発光効率を1.0としたときの発光素子D9~D11の発光効率の相対値を示す。
Figure JPOXMLDOC01-appb-T000036
 <実施例D12~D13及び比較例CD6> 発光素子D12、D13及びCD6の作製と評価
 実施例D9の(発光層の形成)における「化合物H1、化合物B1及び金属錯体R7(化合物H1/化合物B1/金属錯体R7=81質量%/4質量%/15質量%)」に代えて、表5に記載の材料を用いた以外は、実施例D9と同様にして、発光素子D12、D13及びCD6を作製した。
 発光素子D12、D13及びCD6に電圧を印加することによりEL発光が観測された。2500cd/mにおける発光効率[lm/W]及びCIE色度座標を測定した。
 実施例D12~D13及び比較例CD6の結果を表5に示す。発光素子CD6の発光効率を1.0としたときの発光素子D12及びD13の発光効率の相対値を示す。
Figure JPOXMLDOC01-appb-T000037
 本発明の組成物は、発光効率が優れる発光素子の製造に有用である。

Claims (20)

  1.  陽極と、
     陰極と、
     前記陽極及び前記陰極の間に設けられ、発光素子用組成物を含む有機層と、
    を備え、
     前記発光素子用組成物が、
      式(2)で表される金属錯体と、
      ホウ素原子と、酸素原子、硫黄原子、セレン原子、sp炭素原子及び窒素原子からなる群より選ばれる少なくとも1種とを環内に含む縮合複素環骨格(b)を有する化合物(B)と、
    を含有する、発光素子。
    Figure JPOXMLDOC01-appb-C000001
    [式中、
     Mは、ロジウム原子、パラジウム原子、イリジウム原子又は白金原子を表す。
     nは1以上の整数を表し、nは0以上の整数を表す。但し、Mがロジウム原子又はイリジウム原子の場合、n+nは3であり、Mがパラジウム原子又は白金原子の場合、n+nは2である。
     Eは、炭素原子又は窒素原子を表す。Eが複数存在する場合、それらはそれぞれ同一でも異なっていてもよい。
     環Lは、6員環を含む芳香族複素環を表し、この環は置換基を有していてもよい。該置換基が複数存在する場合、それらは同一でも異なっていてもよく、互いに結合して、それぞれが結合する原子とともに環を形成していてもよい。環Lが複数存在する場合、それらは同一でも異なっていてもよい。
     環Lは、芳香族炭化水素環又は芳香族複素環を表し、これらの環は置換基を有していてもよい。該置換基が複数存在する場合、それらは同一でも異なっていてもよく、互いに結合して、それぞれが結合する原子とともに環を形成していてもよい。環Lが複数存在する場合、それらは同一でも異なっていてもよい。
     環Lが有していてもよい置換基と環Lが有していてもよい置換基とは、同一でも異なっていてもよく、互いに結合して、それぞれが結合する原子とともに環を形成していてもよい。
     但し、環L及び環Lのうちの少なくとも1つは、置換基として、式(1-T)で表される基を有する。式(1-T)で表される基が複数存在する場合、それらは同一でも異なっていてもよい。
     A-G-Aは、アニオン性の2座配位子を表す。A及びAは、それぞれ独立に、炭素原子、酸素原子又は窒素原子を表し、これらの原子は環を構成する原子であってもよい。Gは、単結合、又は、A及びAとともに2座配位子を構成する原子団を表す。A-G-Aが複数存在する場合、それらは同一でも異なっていてもよい。]
    Figure JPOXMLDOC01-appb-C000002
    [式中、R1Tは、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリールオキシ基、アリール基、1価の複素環基又は置換アミノ基を表し、これらの基は置換基を有していてもよい。該置換基が複数存在する場合、それらは同一でも異なっていてもよく、互いに結合して、それぞれが結合する原子とともに環を形成していてもよい。]
  2.  前記環Lが、ピリジン環、ジアザベンゼン環、アザナフタレン環又はジアザナフタレン環であり、これらの環は置換基を有していてもよい、請求項1に記載の発光素子。
  3.  前記環Lが、ピリジン環、ジアザベンゼン環、キノリン環又はジアザナフタレン環であり、これらの環は置換基を有していてもよく、且つ、
     前記R1Tが、アルキル基、シクロアルキル基、アリール基、1価の複素環基又は置換アミノ基であり、これらの基は置換基を有していてもよい、請求項2に記載の発光素子。
  4.  前記環Lが、置換基を有していてもよいイソキノリン環であり、且つ、
     前記R1Tが、アリール基、1価の複素環基又は置換アミノ基であり、これらの基は置換基を有していてもよい、請求項2に記載の発光素子。
  5.  前記環Lが、ベンゼン環、ピリジン環又はジアザベンゼン環であり、これらの環は置換基を有していてもよい、請求項1~4のいずれか一項に記載の発光素子。
  6.  前記R1Tが、置換基を有していてもよいアリール基又は置換基を有していてもよい1価の複素環基である、請求項1~5のいずれか一項に記載の発光素子。
  7.  前記縮合複素環骨格(b)が、ホウ素原子と、酸素原子、硫黄原子及び窒素原子からなる群より選ばれる少なくとも1種と、を環内に含む、請求項1~6のいずれか一項に記載の発光素子。
  8.  前記縮合複素環骨格(b)が、ホウ素原子及び窒素原子を環内に含む、請求項7に記載の発光素子。
  9.  前記化合物(B)が、式(1-1)で表される化合物、式(1-2)で表される化合物又は式(1-3)で表される化合物である、請求項1~6のいずれか一項に記載の発光素子。
    Figure JPOXMLDOC01-appb-C000003
    [式中、
     Ar、Ar及びArは、それぞれ独立に、芳香族炭化水素基又は複素環基を表し、これらの基は置換基を有していてもよい。該置換基が複数存在する場合、それらは同一でも異なっていてもよく、互いに結合して、それぞれが結合する原子とともに環を形成していてもよい。
     Yは、酸素原子、硫黄原子、セレン原子、-N(Ry)-で表される基、アルキレン基又はシクロアルキレン基を表し、これらの基は置換基を有していてもよい。該置換基が複数存在する場合、それらは同一でも異なっていてもよく、互いに結合して、それぞれが結合する原子とともに環を形成していてもよい。
     Y及びYは、それぞれ独立に、単結合、酸素原子、硫黄原子、セレン原子、-N(Ry)-で表される基、アルキレン基又はシクロアルキレン基を表し、これらの基は置換基を有していてもよい。該置換基が複数存在する場合、それらは同一でも異なっていてもよく、互いに結合して、それぞれが結合する原子とともに環を形成していてもよい。Ryは、水素原子、アルキル基、シクロアルキル基、アリール基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。該置換基が複数存在する場合、それらは同一でも異なっていてもよく、互いに結合して、それぞれが結合する原子とともに環を形成していてもよい。Ryが複数存在する場合、同一であっても異なっていてもよい。Ryは、直接結合して又は連結基を介して、Ar、Ar又はArと結合していてもよい。]
  10.  前記Y、前記Y及び前記Yが、酸素原子、硫黄原子又は-N(Ry)-で表される基である、請求項9に記載の発光素子。
  11.  前記Y、前記Y及び前記Yが、-N(Ry)-で表される基である、請求項10に記載の発光素子。
  12.  前記化合物(B)の最低三重項励起状態のエネルギー準位と前記化合物(B)の最低一重項励起状態のエネルギー準位との差の絶対値が0.50eV以下である、請求項1~11のいずれか一項に記載の発光素子。
  13.  前記発光素子用組成物が、式(H-1)で表される化合物を更に含有する、請求項1~12のいずれか一項に記載の発光素子。
    Figure JPOXMLDOC01-appb-C000004
    [式中、
     ArH1及びArH2は、それぞれ独立に、アリール基、1価の複素環基又は置換アミノ基を表し、これらの基は置換基を有していてもよい。該置換基が複数存在する場合、それらは同一でも異なっていてもよく、互いに結合して、それぞれが結合する原子とともに環を形成していてもよい。
     nH1は、0以上の整数を表す。
     LH1は、アリーレン基、2価の複素環基、アルキレン基又はシクロアルキレン基を表し、これらの基は置換基を有していてもよい。該置換基が複数存在する場合、それらは同一でも異なっていてもよく、互いに結合して、それぞれが結合する原子とともに環を形成していてもよい。LH1が複数存在する場合、それらは同一でも異なっていてもよい。]
  14.  前記発光素子用組成物が、正孔輸送材料、正孔注入材料、電子輸送材料、電子注入材料、発光材料、酸化防止剤及び溶媒からなる群より選ばれる少なくとも1種を更に含有する、請求項1~13のいずれか一項に記載の発光素子。
  15.  式(2)で表される金属錯体と、
     ホウ素原子と、酸素原子、硫黄原子、セレン原子、sp炭素原子及び窒素原子からなる群より選ばれる少なくとも1種とを環内に含む縮合複素環骨格(b)を有する化合物(B)と、
    を含有する、発光素子用組成物。
    Figure JPOXMLDOC01-appb-C000005
    [式中、
     Mは、ロジウム原子、パラジウム原子、イリジウム原子又は白金原子を表す。
     nは1以上の整数を表し、nは0以上の整数を表す。但し、Mがロジウム原子又はイリジウム原子の場合、n+nは3であり、Mがパラジウム原子又は白金原子の場合、n+nは2である。
     Eは、炭素原子又は窒素原子を表す。Eが複数存在する場合、それらはそれぞれ同一でも異なっていてもよい。
     環Lは、6員環を含む芳香族複素環を表し、この環は置換基を有していてもよい。該置換基が複数存在する場合、それらは同一でも異なっていてもよく、互いに結合して、それぞれが結合する原子とともに環を形成していてもよい。環Lが複数存在する場合、それらは同一でも異なっていてもよい。
     環Lは、芳香族炭化水素環又は芳香族複素環を表し、これらの環は置換基を有していてもよい。該置換基が複数存在する場合、それらは同一でも異なっていてもよく、互いに結合して、それぞれが結合する原子とともに環を形成していてもよい。環Lが複数存在する場合、それらは同一でも異なっていてもよい。
     環Lが有していてもよい置換基と環Lが有していてもよい置換基とは、同一でも異なっていてもよく、互いに結合して、それぞれが結合する原子とともに環を形成していてもよい。
     但し、環L及び環Lのうちの少なくとも1つは、置換基として、式(1-T)で表される基を有する。式(1-T)で表される基が複数存在する場合、それらは同一でも異なっていてもよい。
     A-G-Aは、アニオン性の2座配位子を表す。A及びAは、それぞれ独立に、炭素原子、酸素原子又は窒素原子を表し、これらの原子は環を構成する原子であってもよい。Gは、単結合、又は、A及びAとともに2座配位子を構成する原子団を表す。A-G-Aが複数存在する場合、それらは同一でも異なっていてもよい。]
    Figure JPOXMLDOC01-appb-C000006
    [式中、R1Tは、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリールオキシ基、アリール基、1価の複素環基又は置換アミノ基を表し、これらの基は置換基を有していてもよい。該置換基が複数存在する場合、それらは同一でも異なっていてもよく、互いに結合して、それぞれが結合する原子とともに環を形成していてもよい。]
  16.  前記環Lが、ピリジン環、ジアザベンゼン環、キノリン環又はジアザナフタレン環であり、これらの環は置換基を有していてもよく、且つ、
     前記R1Tが、アルキル基、シクロアルキル基、アリール基、1価の複素環基又は置換アミノ基であり、これらの基は置換基を有していてもよい、請求項15に記載の発光素子用組成物。
  17.  前記環Lが、置換基を有していてもよいイソキノリン環であり、且つ、前記R1Tが、アリール基、1価の複素環基又は置換アミノ基であり、これらの基は置換基を有していてもよい、請求項15に記載の発光素子用組成物。
  18.  前記縮合複素環骨格(b)が、ホウ素原子及び窒素原子を環内に含む、請求項15~17のいずれか一項に記載の発光素子用組成物。
  19.  式(H-1)で表される化合物を更に含有する、請求項15~18のいずれか一項に記載の発光素子用組成物。
    Figure JPOXMLDOC01-appb-C000007
    [式中、
     ArH1及びArH2は、それぞれ独立に、アリール基、1価の複素環基又は置換アミノ基を表し、これらの基は置換基を有していてもよい。該置換基が複数存在する場合、それらは同一でも異なっていてもよく、互いに結合して、それぞれが結合する原子とともに環を形成していてもよい。
     nH1は、0以上の整数を表す。
     LH1は、アリーレン基、2価の複素環基、アルキレン基又はシクロアルキレン基を表し、これらの基は置換基を有していてもよい。該置換基が複数存在する場合、それらは同一でも異なっていてもよく、互いに結合して、それぞれが結合する原子とともに環を形成していてもよい。LH1が複数存在する場合、それらは同一でも異なっていてもよい。]
  20.  正孔輸送材料、正孔注入材料、電子輸送材料、電子注入材料、発光材料、酸化防止剤及び溶媒からなる群より選ばれる少なくとも1種を更に含有する、請求項15~19のいずれか一項に記載の発光素子用組成物。
PCT/JP2020/011383 2019-03-29 2020-03-16 発光素子及び発光素子用組成物 WO2020203209A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202080025153.5A CN113646356B (zh) 2019-03-29 2020-03-16 发光元件和发光元件用组合物
US17/442,846 US20220173336A1 (en) 2019-03-29 2020-03-16 Light emitting device and composition for light emitting device
EP20785387.0A EP3950764A4 (en) 2019-03-29 2020-03-16 ELECTROLUMINESCENT ELEMENT AND COMPOSITION FOR ELECTROLUMINESCENT ELEMENT
KR1020217034267A KR20210148212A (ko) 2019-03-29 2020-03-16 발광 소자 및 발광 소자용 조성물

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-066177 2019-03-29
JP2019066177 2019-03-29

Publications (1)

Publication Number Publication Date
WO2020203209A1 true WO2020203209A1 (ja) 2020-10-08

Family

ID=72668870

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/011383 WO2020203209A1 (ja) 2019-03-29 2020-03-16 発光素子及び発光素子用組成物

Country Status (7)

Country Link
US (1) US20220173336A1 (ja)
EP (1) EP3950764A4 (ja)
JP (1) JP6934967B2 (ja)
KR (1) KR20210148212A (ja)
CN (1) CN113646356B (ja)
TW (1) TW202102513A (ja)
WO (1) WO2020203209A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021199948A1 (ja) * 2020-03-31 2021-10-07 住友化学株式会社 組成物及びそれを含有する発光素子
EP4079743A1 (en) * 2021-04-23 2022-10-26 Universal Display Corporation Organic electroluminescent materials and devices
WO2023054110A1 (ja) * 2021-09-29 2023-04-06 住友化学株式会社 発光素子
WO2023054109A1 (ja) * 2021-09-29 2023-04-06 住友化学株式会社 組成物及びそれを含有する発光素子

Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002045184A1 (en) 2000-11-28 2002-06-06 Avecia Limited Field effect transistors and materials and methods for their manufacture
WO2005049546A1 (en) 2003-11-14 2005-06-02 Sumitomo Chemical Company, Limited Halogenated bisdiarylaminopolycylic aromatic compounds and polymers thereof
JP2006188673A (ja) 2004-12-07 2006-07-20 Sumitomo Chemical Co Ltd 高分子材料およびそれを用いた素子
JP2008524848A (ja) * 2004-12-17 2008-07-10 イーストマン コダック カンパニー エキシトン阻止層を有するリン光oled
JP2008179617A (ja) 2006-12-27 2008-08-07 Sumitomo Chemical Co Ltd 金属錯体、高分子化合物及びこれらを含む素子
WO2009131255A1 (ja) 2008-04-25 2009-10-29 住友化学株式会社 含窒素複素環式化合物の残基を有する高分子化合物
JP2010189630A (ja) 2009-01-20 2010-09-02 Sumitomo Chemical Co Ltd メタフェニレン系高分子化合物及びそれを用いた発光素子
WO2011049241A1 (ja) 2009-10-22 2011-04-28 住友化学株式会社 有機エレクトロルミネッセンス素子
JP2011105701A (ja) 2009-10-19 2011-06-02 Sumitomo Chemical Co Ltd 金属錯体、高分子化合物及びそれを用いた素子
WO2013146806A1 (ja) 2012-03-27 2013-10-03 住友化学株式会社 高分子化合物およびそれを用いた発光素子
JP2013237789A (ja) 2012-05-16 2013-11-28 Sumitomo Chemical Co Ltd 高分子化合物およびそれを用いた発光素子
JP2014224101A (ja) 2013-04-15 2014-12-04 住友化学株式会社 金属錯体およびそれを用いた発光素子
WO2015102118A1 (ja) 2014-02-18 2015-07-09 学校法人関西学院 多環芳香族化合物
WO2015145871A1 (ja) 2014-03-25 2015-10-01 住友化学株式会社 高分子化合物およびそれを用いた発光素子
WO2015194448A1 (ja) 2014-06-19 2015-12-23 住友化学株式会社 発光素子
WO2016143624A1 (ja) * 2015-03-09 2016-09-15 学校法人関西学院 多環芳香族化合物および発光層形成用組成物
WO2017154884A1 (ja) 2016-03-10 2017-09-14 住友化学株式会社 発光素子
JP2018043984A (ja) 2016-09-07 2018-03-22 学校法人関西学院 多環芳香族化合物
WO2018062278A1 (ja) 2016-09-29 2018-04-05 住友化学株式会社 発光素子及び該発光素子の製造に有用な組成物
WO2018198975A1 (ja) * 2017-04-27 2018-11-01 住友化学株式会社 発光素子

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006080419A (ja) * 2004-09-13 2006-03-23 Takasago Internatl Corp イリジウム錯体を含有する発光素子
US9073948B2 (en) * 2010-05-14 2015-07-07 Universal Display Corporation Azaborine compounds as host materials and dopants for PHOLEDs
EP3023477B1 (en) * 2013-07-17 2019-02-06 Sumitomo Chemical Company Limited Composition, and light-emitting element using same
US10374166B2 (en) * 2014-02-18 2019-08-06 Kwansei Gakuin Educational Foundation Polycyclic aromatic compound
EP3136462A4 (en) * 2014-04-25 2017-12-20 Sumitomo Chemical Company Limited Light-emitting element
CN107078224B (zh) * 2014-07-29 2020-02-28 保土谷化学工业株式会社 有机电致发光器件
JP6747293B2 (ja) * 2014-09-17 2020-08-26 住友化学株式会社 金属錯体およびそれを用いた発光素子
US10497885B2 (en) * 2015-04-24 2019-12-03 Sumitomo Chemical Company, Limited Light emitting device and composition used for this light emitting device
KR20180108604A (ko) * 2016-02-10 2018-10-04 가꼬우 호징 관세이 가쿠잉 지연 형광 유기 전계 발광 소자
JP6835078B2 (ja) * 2016-05-13 2021-02-24 コニカミノルタ株式会社 有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子、表示装置及び照明装置
JP6809426B2 (ja) * 2016-09-29 2021-01-06 住友化学株式会社 発光素子
JP6822363B2 (ja) * 2016-09-29 2021-01-27 住友化学株式会社 発光素子
CN109792002B (zh) * 2016-11-23 2020-11-20 广州华睿光电材料有限公司 有机混合物、组合物及有机电子器件和应用
CN108346756B (zh) * 2017-01-24 2020-03-20 中节能万润股份有限公司 一种有机电致发光器件
US11021568B2 (en) * 2017-06-30 2021-06-01 Sumitomo Chemical Company, Limited Polymer compound and light emitting device using the same
JP2019050371A (ja) * 2017-09-06 2019-03-28 住友化学株式会社 発光素子
JP7346015B2 (ja) * 2017-09-06 2023-09-19 住友化学株式会社 発光素子
CN109411634B (zh) * 2018-08-31 2019-12-24 昆山国显光电有限公司 一种有机电致发光器件和显示装置

Patent Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002045184A1 (en) 2000-11-28 2002-06-06 Avecia Limited Field effect transistors and materials and methods for their manufacture
WO2005049546A1 (en) 2003-11-14 2005-06-02 Sumitomo Chemical Company, Limited Halogenated bisdiarylaminopolycylic aromatic compounds and polymers thereof
JP2006188673A (ja) 2004-12-07 2006-07-20 Sumitomo Chemical Co Ltd 高分子材料およびそれを用いた素子
JP2008524848A (ja) * 2004-12-17 2008-07-10 イーストマン コダック カンパニー エキシトン阻止層を有するリン光oled
JP2008179617A (ja) 2006-12-27 2008-08-07 Sumitomo Chemical Co Ltd 金属錯体、高分子化合物及びこれらを含む素子
WO2009131255A1 (ja) 2008-04-25 2009-10-29 住友化学株式会社 含窒素複素環式化合物の残基を有する高分子化合物
JP2010189630A (ja) 2009-01-20 2010-09-02 Sumitomo Chemical Co Ltd メタフェニレン系高分子化合物及びそれを用いた発光素子
JP2011105701A (ja) 2009-10-19 2011-06-02 Sumitomo Chemical Co Ltd 金属錯体、高分子化合物及びそれを用いた素子
WO2011049241A1 (ja) 2009-10-22 2011-04-28 住友化学株式会社 有機エレクトロルミネッセンス素子
WO2013146806A1 (ja) 2012-03-27 2013-10-03 住友化学株式会社 高分子化合物およびそれを用いた発光素子
JP2013237789A (ja) 2012-05-16 2013-11-28 Sumitomo Chemical Co Ltd 高分子化合物およびそれを用いた発光素子
JP2014224101A (ja) 2013-04-15 2014-12-04 住友化学株式会社 金属錯体およびそれを用いた発光素子
WO2015102118A1 (ja) 2014-02-18 2015-07-09 学校法人関西学院 多環芳香族化合物
WO2015145871A1 (ja) 2014-03-25 2015-10-01 住友化学株式会社 高分子化合物およびそれを用いた発光素子
WO2015194448A1 (ja) 2014-06-19 2015-12-23 住友化学株式会社 発光素子
WO2016143624A1 (ja) * 2015-03-09 2016-09-15 学校法人関西学院 多環芳香族化合物および発光層形成用組成物
WO2017154884A1 (ja) 2016-03-10 2017-09-14 住友化学株式会社 発光素子
JP2018043984A (ja) 2016-09-07 2018-03-22 学校法人関西学院 多環芳香族化合物
WO2018062278A1 (ja) 2016-09-29 2018-04-05 住友化学株式会社 発光素子及び該発光素子の製造に有用な組成物
WO2018198975A1 (ja) * 2017-04-27 2018-11-01 住友化学株式会社 発光素子

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3950764A4

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021199948A1 (ja) * 2020-03-31 2021-10-07 住友化学株式会社 組成物及びそれを含有する発光素子
JP2021163964A (ja) * 2020-03-31 2021-10-11 住友化学株式会社 組成物及びそれを含有する発光素子
JP7216754B2 (ja) 2020-03-31 2023-02-01 住友化学株式会社 組成物及びそれを含有する発光素子
EP4079743A1 (en) * 2021-04-23 2022-10-26 Universal Display Corporation Organic electroluminescent materials and devices
WO2023054110A1 (ja) * 2021-09-29 2023-04-06 住友化学株式会社 発光素子
WO2023054109A1 (ja) * 2021-09-29 2023-04-06 住友化学株式会社 組成物及びそれを含有する発光素子

Also Published As

Publication number Publication date
US20220173336A1 (en) 2022-06-02
JP6934967B2 (ja) 2021-09-15
KR20210148212A (ko) 2021-12-07
JP2020167388A (ja) 2020-10-08
EP3950764A4 (en) 2022-12-07
CN113646356B (zh) 2023-07-25
EP3950764A1 (en) 2022-02-09
TW202102513A (zh) 2021-01-16
CN113646356A (zh) 2021-11-12

Similar Documents

Publication Publication Date Title
JP6934967B2 (ja) 発光素子及び発光素子用組成物
JP6894025B2 (ja) 発光素子及びその製造方法並びに発光素子用組成物及びその製造方法
JP6641069B1 (ja) 発光素子及びその製造方法並びに発光素子用組成物及びその製造方法
JP6915114B2 (ja) 発光素子及びその製造方法並びに発光素子用組成物及びその製造方法
JP7015406B1 (ja) 発光素子及び組成物
JP6923692B2 (ja) 発光素子の製造方法
JP2022052727A (ja) 発光素子
JP6902640B2 (ja) 発光素子及びその製造方法並びに発光素子用組成物及びその製造方法
JP6827135B2 (ja) 発光素子及び発光素子用組成物
JP7086259B2 (ja) 発光素子及び組成物
JP6672518B1 (ja) 発光素子
WO2023054107A1 (ja) 発光素子
JP2023050129A (ja) 発光素子
WO2023054108A1 (ja) 発光素子
JP2023050134A (ja) 発光素子及び組成物
KR20230074202A (ko) 발광 소자 및 조성물
JP2020167377A (ja) 発光素子及びその製造方法並びに発光素子用組成物及びその製造方法
JP2023050131A (ja) 発光素子
JP2023050132A (ja) 発光素子
JP2022053497A (ja) 発光素子及び組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20785387

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20217034267

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020785387

Country of ref document: EP

Effective date: 20211029