WO2015194448A1 - 発光素子 - Google Patents

発光素子 Download PDF

Info

Publication number
WO2015194448A1
WO2015194448A1 PCT/JP2015/066819 JP2015066819W WO2015194448A1 WO 2015194448 A1 WO2015194448 A1 WO 2015194448A1 JP 2015066819 W JP2015066819 W JP 2015066819W WO 2015194448 A1 WO2015194448 A1 WO 2015194448A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
ring
atom
substituent
same
Prior art date
Application number
PCT/JP2015/066819
Other languages
English (en)
French (fr)
Inventor
誠 安立
敏明 佐々田
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Priority to JP2016529282A priority Critical patent/JP6468289B2/ja
Priority to CN201580032714.3A priority patent/CN106463638B/zh
Publication of WO2015194448A1 publication Critical patent/WO2015194448A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers

Definitions

  • the present invention relates to a light emitting element.
  • Light emitting elements such as organic electroluminescence elements (organic EL elements) can be suitably used for display and lighting applications because of their characteristics such as high luminous efficiency and low voltage drive, and have recently been attracting attention.
  • This light-emitting element includes organic layers such as a light-emitting layer and a charge transport layer.
  • Patent Document 1 discloses a light-emitting element having a hole-transporting layer containing a hole-transporting material, a light-emitting layer containing a composition containing the blue phosphorescent compound 1 and the blue phosphorescent compound 2, and a positive electrode.
  • a light-emitting element having a hole transport layer containing a hole transport material and a light-emitting layer containing a composition containing blue phosphorescent compound 1 and blue phosphorescent compound 3 is described.
  • the hole transport material is not a hole transport material having a crosslinking group.
  • the above-described light emitting device does not necessarily have sufficient external quantum efficiency.
  • an object of the present invention is to provide a light-emitting element having excellent external quantum efficiency.
  • the present invention provides the following [1] to [13].
  • a light emitting device having an anode, a cathode, a light emitting layer provided between the anode and the cathode, and a hole transport layer provided between the anode and the light emitting layer,
  • the hole transport layer is a layer obtained using a material having a crosslinking group
  • the light emitting layer has a maximum peak wavelength of an emission spectrum of 400 nm or more and less than 495 nm, a phosphorescent compound (A) represented by the following formula (A), and a maximum peak wavelength of an emission spectrum of 400 nm or more and less than 495 nm, It is a layer obtained using a composition containing a phosphorescent compound (B) represented by the following formula (B), It is composed of at least one ligand skeleton composed of ring R A1 and ring R A2 included in the phosphorescent compound (A), and ring R B1 and ring R B2 included in the phosphorescent compound (B).
  • M represents a ruthenium atom, a rhodium atom, a palladium atom, an iridium atom or a platinum atom.
  • n 1 represents an integer of 1 or more
  • n 2 represents an integer of 0 or more
  • n 1 + n 2 is 2 or 3.
  • M is a ruthenium atom, rhodium atom or iridium atom
  • n 1 + n 2 is 3
  • M is a palladium atom or platinum atom
  • n 1 + n 2 is 2.
  • E A1 and E A2 each independently represent a carbon atom or a nitrogen atom.
  • E A1 and E A2 are a carbon atom.
  • Ring R A1 represents a 5-membered or 6-membered aromatic heterocycle (provided that when ring R A1 is a 6-membered aromatic heterocycle, E A1 is a carbon atom),
  • the ring may have a substituent. When a plurality of such substituents are present, they may be the same or different, and may be bonded to each other to form a ring together with the atoms to which each is bonded. When a plurality of rings R A1 are present, they may be the same or different.
  • Ring R A2 represents a 5-membered or 6-membered aromatic hydrocarbon ring or a 5-membered or 6-membered aromatic heterocyclic ring (provided that Ring R A2 is a 6-membered aromatic heterocyclic ring , E A2 is a carbon atom.), These rings optionally have a substituent. When a plurality of such substituents are present, they may be the same or different, and may be bonded to each other to form a ring together with the atoms to which each is bonded. When a plurality of rings R A2 are present, they may be the same or different. However, when the ring R A1 is a 6-membered aromatic heterocyclic ring, the ring R A2 has an electron withdrawing group.
  • a 1 -G 1 -A 2 represents an anionic bidentate ligand.
  • a 1 and A 2 each independently represent a carbon atom, an oxygen atom or a nitrogen atom, and these atoms may be atoms constituting a ring.
  • G 1 represents a single bond or an atomic group constituting a bidentate ligand together with A 1 and A 2 .
  • a 1 -G 1 -A 2 When a plurality of A 1 -G 1 -A 2 are present, they may be the same or different.
  • M represents a ruthenium atom, a rhodium atom, a palladium atom, an iridium atom or a platinum atom.
  • n 1 represents an integer of 1 or more
  • n 2 represents an integer of 0 or more
  • n 1 + n 2 is 2 or 3.
  • M is a ruthenium atom, rhodium atom or iridium atom
  • n 1 + n 2 is 3
  • M is a palladium atom or platinum atom
  • n 1 + n 2 is 2.
  • E B1 and E B2 each independently represent a carbon atom or a nitrogen atom. Provided that at least one of E B1 and E B2 are carbon atoms.
  • Ring R B1 represents a 5-membered or 6-membered aromatic heterocycle (provided that when ring R B1 is a 6-membered aromatic heterocycle, E B1 is a carbon atom),
  • the ring may have a substituent. When a plurality of such substituents are present, they may be the same or different, and may be bonded to each other to form a ring together with the atoms to which each is bonded. When a plurality of rings R B1 are present, they may be the same or different.
  • Ring R B2 represents a 5-membered or 6-membered aromatic hydrocarbon ring or a 5-membered or 6-membered aromatic heterocycle (provided that Ring R B2 is a 6-membered aromatic heterocycle) , E B2 is a carbon atom.), These rings optionally have a substituent. When a plurality of such substituents are present, they may be the same or different, and may be bonded to each other to form a ring together with the atoms to which each is bonded. When there are a plurality of rings R B2 , they may be the same or different. However, when the ring R B1 is a 6-membered aromatic heterocyclic ring, the ring R B2 has an electron withdrawing group.
  • a 1 -G 1 -A 2 represents an anionic bidentate ligand.
  • a 1 and A 2 each independently represent a carbon atom, an oxygen atom or a nitrogen atom, and these atoms may be atoms constituting a ring.
  • G 1 represents a single bond or an atomic group constituting a bidentate ligand together with A 1 and A 2 .
  • a 1 -G 1 -A 2 When a plurality of A 1 -G 1 -A 2 are present, they may be the same or different.
  • [2] The light emitting device according to [1], wherein the light emitting layer and the hole transport layer are adjacent to each other.
  • the cross-linking structural unit having at least one cross-linking group selected from the cross-linking group A group is a structural unit represented by the formula (Z) or a structural unit represented by the formula (Z ′). 3]. [Where: nA represents an integer of 0 to 5, and n represents 1 or 2.
  • Ar 1 represents an aromatic hydrocarbon group or a heterocyclic group, and these groups optionally have a substituent.
  • L A is an alkylene group, a cycloalkylene group, an arylene group, a divalent heterocyclic group, the group represented by -NR'-, an oxygen atom or a sulfur atom, these groups have a substituent Also good.
  • R ′ represents a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group, or a monovalent heterocyclic group, and these groups may have a substituent. When a plurality of LA are present, they may be the same or different.
  • X represents a crosslinking group selected from the crosslinking group A group.
  • X When two or more X exists, they may be the same or different.
  • mA represents an integer of 0 to 5
  • m represents an integer of 1 to 4
  • c represents 0 or 1.
  • Ar 3 is an aromatic hydrocarbon group, a heterocyclic group, or represents at least one aromatic hydrocarbon ring with at least one heterocyclic ring is directly bonded group, these groups have a substituent It may be.
  • Ar 2 and Ar 4 each independently represent an arylene group or a divalent heterocyclic group, and these groups optionally have a substituent.
  • Ar 2 , Ar 3, and Ar 4 are each bonded to a group other than the group bonded to the nitrogen atom to which the group is bonded, directly or via an oxygen atom or sulfur atom, to form a ring. It may be.
  • K A is an alkylene group, a cycloalkylene group, an arylene group, a divalent heterocyclic group, -NR '' -, a group represented by an oxygen atom or a sulfur atom, these groups have a substituent May be.
  • R ′′ represents a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group or a monovalent heterocyclic group, and these groups optionally have a substituent.
  • X ′ represents a bridging group selected from the bridging group A, a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group or a monovalent heterocyclic group, and these groups may have a substituent. . However, at least one X ′ is a cross-linking group selected from the cross-linking group A group.
  • the low molecular compound having at least one crosslinking group selected from the group A of crosslinking groups is a low molecular compound represented by the formula (Z ′′).
  • n B1 and m B2 each independently represent an integer of 0 or more.
  • a plurality of m B1 may be the same or different.
  • n B1 represents an integer of 0 or more. When a plurality of n B1 are present, they may be the same or different.
  • Ar 5 represents an aromatic hydrocarbon group, a heterocyclic group, or a group in which at least one aromatic hydrocarbon ring and at least one heterocyclic ring are directly bonded, and these groups have a substituent. It may be. When a plurality of Ar 5 are present, they may be the same or different.
  • L B1 represents an alkylene group, a cycloalkylene group, an arylene group, a divalent heterocyclic group, a group represented by —NR ′ ′′ —, an oxygen atom or a sulfur atom, and these groups have a substituent. It may be.
  • R ′ ′′ represents a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group, or a monovalent heterocyclic group, and these groups optionally have a substituent. If L B1 there are a plurality, they may be the same or different.
  • X ′′ represents a bridging group selected from the bridging group A, a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group or a monovalent heterocyclic group, and these groups may have a substituent. Good.
  • a plurality of X ′′ may be the same or different. However, at least one of the plurality of X ′′ is a crosslinking group selected from the crosslinking group A group.
  • the phosphorescent compound (A) is a phosphorescent compound represented by the following formula (A-1): The light emitting device according to any one of [1] to [6], wherein the phosphorescent compound (B) is a phosphorescent compound represented by the following formula (B-1).
  • Ring R A3 represents a 6-membered aromatic heterocyclic ring, and this ring may have a substituent. When a plurality of such substituents are present, they may be the same or different, and may be bonded to each other to form a ring together with the atoms to which each is bonded. When there are a plurality of rings R A3 , they may be the same or different.
  • Ring R A4 represents a 5-membered or 6-membered aromatic hydrocarbon ring, or a 5-membered or 6-membered aromatic heterocyclic ring (provided that Ring R A4 is a 6-membered aromatic heterocyclic ring , E A2 is a carbon atom.), These rings optionally have a substituent. When a plurality of such substituents are present, they may be the same or different, and may be bonded to each other to form a ring together with the atoms to which each is bonded. When a plurality of rings R A4 are present, they may be the same or different. However, the ring R A4 has an electron withdrawing group.
  • Ring R B3 represents an aromatic heterocyclic 5-membered ring, this ring may have a substituent. When a plurality of such substituents are present, they may be the same or different, and may be bonded to each other to form a ring together with the atoms to which each is bonded. When there are a plurality of rings R B3 , they may be the same or different.
  • Ring R B4 represents a 5-membered or 6-membered aromatic hydrocarbon ring or a 5-membered or 6-membered aromatic heterocycle (Ring R B4 is a 6-membered aromatic heterocycle) In this case, E B2 is a carbon atom.), These rings may have a substituent. When a plurality of such substituents are present, they may be the same or different, and may be bonded to each other to form a ring together with the atoms to which each is bonded. When there are a plurality of rings R B4 , they may be the same or different.
  • the phosphorescent compound (A) is a phosphorescent compound represented by the following formula (A-2): The light emitting device according to any one of [1] to [6], wherein the phosphorescent compound (B) is a phosphorescent compound represented by the following formula (B-2).
  • M, n 1 , n 2 , E A2 and A 1 -G 1 -A 2 represent the same meaning as described above.
  • Ring R A5 represents an imidazole ring, and this ring may have a substituent. When a plurality of such substituents are present, they may be the same or different, and may be bonded to each other to form a ring together with the atoms to which each is bonded.
  • Ring R A6 represents a 5-membered or 6-membered aromatic hydrocarbon ring, or a 5-membered or 6-membered aromatic heterocycle (provided that Ring R A6 is a 6-membered aromatic heterocycle) , E A2 is a carbon atom.), These rings optionally have a substituent. When a plurality of such substituents are present, they may be the same or different, and may be bonded to each other to form a ring together with the atoms to which each is bonded. When there are a plurality of rings R A6 , they may be the same or different.
  • Ring R B5 represents a triazole ring, and this ring may have a substituent. When a plurality of such substituents are present, they may be the same or different, and may be bonded to each other to form a ring together with the atoms to which each is bonded. When there are a plurality of rings R B5 , they may be the same or different.
  • Ring R B6 represents a 5-membered or 6-membered aromatic hydrocarbon ring, or a 5-membered or 6-membered aromatic heterocycle (the ring R B6 is a 6-membered aromatic heterocycle) In this case, E B2 is a carbon atom.), These rings may have a substituent. When a plurality of such substituents are present, they may be the same or different, and may be bonded to each other to form a ring together with the atoms to which each is bonded. When there are a plurality of rings R B6 , they may be the same or different.
  • the phosphorescent compound represented by the formula (A-1) is a phosphorescent compound represented by the following formula (A-3):
  • M, n 1 , n 2 and A 1 -G 1 -A 2 represent the same meaning as described above.
  • E A71 , E A72 , E A73 , E A74 , E A81 , E A82 , E A83 and E A84 each independently represent a nitrogen atom or a carbon atom.
  • E A71, E A72, E A73 , E A74, E A81, E A82, E A83 and E A84 there are a plurality, or different in each of them the same.
  • E A71 , E A72 , E A73 , E A74 , E A81 , E A82 , E A83 and E A84 are nitrogen atoms, R A71 , R A72 , R A73 , R A74 , R A81 , R A82 , R A83 and R A84 is not present.
  • R A71 , R A72 , R A73 , R A74 , R A81 , R A82 , R A83 and R A84 are each independently a hydrogen atom, alkyl group, cycloalkyl group, alkoxy group, cycloalkoxy group, aryl group, aryl An oxy group, a monovalent heterocyclic group, a halogen atom, or a substituted amino group is represented, and these groups may have a substituent.
  • R A71 , R A72 , R A73 , R A74 , R A81 , R A82 , R A83 and R A84 they may be the same or different.
  • R A71 and R A72 , R A72 and R A73 , R A73 and R A74 , R A71 and R A81 , R A81 and R A82 , R A82 and R A83 , and R A83 and R A84 are bonded to each other, You may form the ring with the carbon atom to which each couple
  • Ring R A7 represents a pyridine ring or a pyrimidine ring composed of a nitrogen atom, a carbon atom, E A71 , E A72 , E A73 and E A74 .
  • Ring R A8 represents a benzene ring, a pyridine ring or a pyrimidine ring composed of two carbon atoms, E A81 , E A82 , E A83 and E A84 .
  • M, n 1 , n 2 , E B1 and A 1 -G 1 -A 2 represent the same meaning as described above.
  • E B71 , E B72 , E B73 , E B81 , E B82 , E B83 and E B84 each independently represent a nitrogen atom or a carbon atom. When a plurality of E B71 , E B72 , E B73 , E B81 , E B82 , E B83 and E B84 are present, they may be the same or different.
  • E B71 , E B72 and E B73 are nitrogen atoms
  • R B71 , R B72 and R B73 may or may not be present.
  • E B81 , E B82 , E B83, and E B84 are nitrogen atoms, R B81 , R B82 , R B83, and R B84 are not present.
  • R B71 , R B72 , R B73 , R B81 , R B82 , R B83 and R B84 are each independently a hydrogen atom, an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, an aryloxy group, It represents a monovalent heterocyclic group, a halogen atom or a substituted amino group, and these groups may have a substituent.
  • R B71 , R B72 , R B73 , R B81 , R B82 , R B83 and R B84 may be the same or different.
  • R B71 and R B72 , R B72 and R B73 , R B71 and R B81 , R B81 and R B82 , R B82 and R B83 , and R B83 and R B84 are bonded to each other and together with the atoms to which they are bonded A ring may be formed.
  • Ring R B7 represents a triazole ring or an imidazole ring composed of a nitrogen atom, E B1 , E B71 , E B72, and E B73 .
  • Ring R B8 represents a benzene ring, a pyridine ring or a pyrimidine ring composed of two carbon atoms, E B81 , E B82 , E B83 and E B84 .
  • the phosphorescent compound represented by the formula (A-2) is a phosphorescent compound represented by the following formula (A-4):
  • M, n 1 , n 2 and A 1 -G 1 -A 2 represent the same meaning as described above.
  • E A91 , E A92 , E A93 , E A101 , E A102 , E A103 and E A104 each independently represent a nitrogen atom or a carbon atom.
  • E A91 , E A92 , E A93 , E A101 , E A102 , E A103 and E A104 they may be the same or different.
  • E A91 , E A92 and E A93 are nitrogen atoms
  • R A91 , R A92 and R A93 may or may not be present.
  • E A101 , E A102 , E A103, and E A104 are nitrogen atoms, R A101 , R A102 , R A103, and R A104 are not present.
  • R A91 , R A92 , R A93 , R A101 , R A102 , R A103 and R A104 are each independently a hydrogen atom, an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, an aryloxy group, It represents a monovalent heterocyclic group, a halogen atom or a substituted amino group, and these groups may have a substituent.
  • R A91 , R A92 , R A93 , R A101 , R A102 , R A103 and R A104 they may be the same or different.
  • R A91 and R A92 , R A92 and R A93 , R A91 and R A101 , R A101 and R A102 , R A102 and R A103 , and R A103 and R A104 are bonded to each other, together with the atoms to which they are bonded A ring may be formed.
  • Ring R A9 represents an imidazole ring composed of a nitrogen atom, a carbon atom, E A91 , E A92 and E A93 .
  • Ring R A10 represents a benzene ring, a pyridine ring or a pyrimidine ring composed of two carbon atoms, E A101 , E A102 , E A103 and E A104 .
  • E B91 , E B92 , E B93 , E B101 , E B102 , E B103, and E B104 each independently represent a nitrogen atom or a carbon atom.
  • E B91 , E B92 , E B93 , E B101 , E B102 , E B103, and E B104 they may be the same or different.
  • E B91 , E B92 and E B93 are nitrogen atoms, R B91 , R B92 and R B93 may or may not be present.
  • R B101 , E B102 , E B103, and E B104 are nitrogen atoms, R B101 , R B102 , R B103, and R B104 are not present.
  • R B91 , R B92 , R B93 , R B101 , R B102 , R B103 and R B104 are each independently a hydrogen atom, an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, an aryloxy group, It represents a monovalent heterocyclic group, a halogen atom or a substituted amino group, and these groups may have a substituent.
  • R B91 , R B92 , R B93 , R B101 , R B102 , R B103, and R B104 When a plurality of R B91 , R B92 , R B93 , R B101 , R B102 , R B103, and R B104 are present, they may be the same or different.
  • R B91 and R B92, R B92 and R B93, R B91 and R B101, R B101 and R B 102, R B 102 and R B 103, and, R B 103 and R B 104 are bonded to each, together with the atoms bonded thereto A ring may be formed.
  • Ring R B9 represents a triazole ring composed of a nitrogen atom, E B1 , E B91 , E B92, and E B93 .
  • Ring R B10 represents a benzene ring, a pyridine ring or a pyrimidine ring composed of two carbon atoms, E B101 , E B102 , E B103 and E B104 .
  • the phosphorescent compound represented by the formula (A-3) is a phosphorescent compound represented by the following formula (1), (2) or (3): [9]
  • the phosphorescent compound represented by the formula (B-3) is a phosphorescent compound represented by the following formula (4), (5), (6) or (7).
  • Light emitting element [Where: A 1 -G 1 -A 2 represents the same meaning as described above.
  • M 1 represents an iridium atom or a platinum atom.
  • n 3 represents an integer of 1 or more
  • n 4 represents an integer of 0 or more
  • n 3 + n 4 is 2 or 3.
  • M 1 is an iridium atom
  • n 3 + n 4 is 3
  • M 1 is a platinum atom
  • n 3 + n 4 is 2.
  • R 1 , R 2 , R 3 , R 4 , R 11 , R 12 , R 13 and R 14 are each independently a hydrogen atom, alkyl group, cycloalkyl group, alkoxy group, cycloalkoxy group, aryl group, aryl
  • An oxy group, a monovalent heterocyclic group, a halogen atom, or a substituted amino group is represented, and these groups may have a substituent.
  • R 1 , R 2 , R 3 , R 4 , R 11 , R 12 , R 13 and R 14 they may be the same or different.
  • R 1 and R 2 , R 2 and R 3 , R 3 and R 4 , R 1 and R 11 , R 11 and R 12 , R 12 and R 13 , and R 13 and R 14 are bonded to each other, You may form the ring with the carbon atom to which each couple
  • bonds bonds.
  • at least one of R 11 , R 12 , R 13 and R 14 is an electron withdrawing group.
  • M 1 represents an iridium atom or a platinum atom.
  • n 5 represents an integer of 1 or more
  • n 6 represents an integer of 0 or more
  • n 5 + n 6 is 2 or 3.
  • M 1 is an iridium atom
  • n 5 + n 6 is 3
  • M 1 is a platinum atom
  • n 5 + n 6 is 2.
  • R 21 , R 22 , R 23 , R 31 , R 32 , R 33 and R 34 are each independently a hydrogen atom, alkyl group, cycloalkyl group, alkoxy group, cycloalkoxy group, aryl group, aryloxy group, It represents a monovalent heterocyclic group, a halogen atom or a substituted amino group, and these groups may have a substituent.
  • R 21 , R 22 , R 23 , R 31 , R 32 , R 33 and R 34 When there are a plurality of R 21 , R 22 , R 23 , R 31 , R 32 , R 33 and R 34 , they may be the same or different.
  • R 21 and R 22 , R 22 and R 23 , R 21 and R 31 , R 31 and R 32 , R 32 and R 33 , and R 33 and R 34 are bonded to each other together with the atoms to which they are bonded.
  • a ring may be formed.
  • the phosphorescent compound represented by the formula (A-4) is a phosphorescent compound represented by the following formula (4) or (5):
  • a 1 -G 1 -A 2 represents the same meaning as described above.
  • M 1 represents an iridium atom or a platinum atom.
  • n 5 represents an integer of 1 or more
  • n 6 represents an integer of 0 or more
  • n 5 + n 6 is 2 or 3.
  • R 21 , R 22 , R 23 , R 31 , R 32 , R 33 and R 34 are each independently a hydrogen atom, alkyl group, cycloalkyl group, alkoxy group, cycloalkoxy group, aryl group, aryloxy group, It represents a monovalent heterocyclic group, a halogen atom or a substituted amino group, and these groups may have a substituent.
  • R 21 , R 22 , R 23 , R 31 , R 32 , R 33 and R 34 they may be the same or different.
  • n H1 When a plurality of n H1 are present, they may be the same or different.
  • the n H2 presence of a plurality, may be the same or different.
  • n H3 represents an integer of 0 or more.
  • L H1 is an arylene group, a divalent heterocyclic group, or,, - [C (R H11 ) 2]
  • n H11 - represents a group represented by, these groups may have a substituent.
  • n H11 represents an integer of 1 or more and 10 or less.
  • R H11 represents a hydrogen atom, an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group or a monovalent heterocyclic group, and these groups optionally have a substituent.
  • a plurality of R H11 may be the same or different, and may be bonded to each other to form a ring together with the carbon atom to which each is bonded.
  • L H2 represents a group represented by —N (—L H21 —R H21 ) —. When a plurality of L H2 are present, they may be the same or different.
  • L H21 represents a single bond, an arylene group or a divalent heterocyclic group, and these groups optionally have a substituent.
  • R H21 represents a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group, or a monovalent heterocyclic group, and these groups optionally have a substituent.
  • a light emitting device having excellent external quantum efficiency can be provided.
  • Me represents a methyl group
  • Et represents an ethyl group
  • Bu represents a butyl group
  • i-Pr represents an isopropyl group
  • t-Bu represents a tert-butyl group.
  • the hydrogen atom may be a deuterium atom or a light hydrogen atom.
  • the solid line representing the bond with the central metal means a covalent bond or a coordinate bond.
  • the “polymer compound” means a polymer having a molecular weight distribution and having a polystyrene-equivalent number average molecular weight of 1 ⁇ 10 3 to 1 ⁇ 10 8 .
  • the polymer compound may be any of a block copolymer, a random copolymer, an alternating copolymer, and a graft copolymer, or other embodiments.
  • the terminal group of the polymer compound is preferably a stable group because if the polymerization active group remains as it is, there is a possibility that the light emission characteristics or the luminance life may be lowered when the polymer compound is used for the production of a light emitting device. It is.
  • the terminal group is preferably a group that is conjugated to the main chain, and examples thereof include a group that is bonded to an aryl group or a monovalent heterocyclic group via a carbon-carbon bond.
  • Low molecular weight compound means a compound having no molecular weight distribution and a molecular weight of 1 ⁇ 10 4 or less.
  • “Structural unit” means one or more units present in a polymer compound.
  • the “alkyl group” may be linear or branched.
  • the number of carbon atoms of the straight chain alkyl group is usually 1 to 50, preferably 3 to 30, and more preferably 4 to 20, excluding the number of carbon atoms of the substituent.
  • the number of carbon atoms of the branched alkyl group is usually 3 to 50, preferably 3 to 30, more preferably 4 to 20, excluding the number of carbon atoms of the substituent.
  • the alkyl group may have a substituent, for example, methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, tert-butyl group, pentyl group, isoamyl group, 2-ethylbutyl group, Hexyl group, heptyl group, octyl group, 2-ethylhexyl group, 3-propylheptyl group, decyl group, 3,7-dimethyloctyl group, 2-ethyloctyl group, 2-hexyldecyl group, dodecyl group, and these Examples include groups in which a hydrogen atom in the group is substituted with a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, a fluorine atom, etc., for example, a trifluoromethyl group, a pentafluoroe
  • the number of carbon atoms of the “cycloalkyl group” is usually 3 to 50, preferably 3 to 30, and more preferably 4 to 20, excluding the number of carbon atoms of the substituent.
  • the cycloalkyl group may have a substituent, and examples thereof include a cyclohexyl group, a cyclohexylmethyl group, and a cyclohexylethyl group.
  • Aryl group means an atomic group remaining after removing one hydrogen atom directly bonded to a carbon atom constituting a ring from an aromatic hydrocarbon.
  • the number of carbon atoms of the aryl group is usually 6 to 60, preferably 6 to 20, more preferably 6 to 10, not including the number of carbon atoms of the substituent.
  • the “alkoxy group” may be linear or branched.
  • the number of carbon atoms of the straight-chain alkoxy group is usually 1 to 40, preferably 4 to 10, excluding the number of carbon atoms of the substituent.
  • the number of carbon atoms of the branched alkoxy group is usually 3 to 40, preferably 4 to 10, excluding the number of carbon atoms of the substituent.
  • the alkoxy group may have a substituent, for example, methoxy group, ethoxy group, propyloxy group, isopropyloxy group, butyloxy group, isobutyloxy group, tert-butyloxy group, pentyloxy group, hexyloxy group, Heptyloxy group, octyloxy group, 2-ethylhexyloxy group, nonyloxy group, decyloxy group, 3,7-dimethyloctyloxy group, lauryloxy group, and the hydrogen atom in these groups is a cycloalkyl group, an alkoxy group, And a group substituted with a cycloalkoxy group, an aryl group, a fluorine atom, or the like.
  • a substituent for example, methoxy group, ethoxy group, propyloxy group, isopropyloxy group, butyloxy group, isobutyloxy group, tert-buty
  • the number of carbon atoms of the “cycloalkoxy group” is usually 3 to 40, preferably 4 to 10, not including the number of carbon atoms of the substituent.
  • the cycloalkoxy group may have a substituent, and examples thereof include a cyclohexyloxy group.
  • the number of carbon atoms of the “aryloxy group” is usually 6 to 60, preferably 7 to 48, not including the number of carbon atoms of the substituent.
  • the aryloxy group may have a substituent, for example, a phenoxy group, 1-naphthyloxy group, 2-naphthyloxy group, 1-anthracenyloxy group, 9-anthracenyloxy group, 1- Examples include a pyrenyloxy group and a group in which a hydrogen atom in these groups is substituted with an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, a fluorine atom, or the like.
  • P-valent heterocyclic group (p represents an integer of 1 or more) is a p-group of hydrogen atoms directly bonded to a carbon atom or a hetero atom constituting a ring from a heterocyclic compound. This means the remaining atomic group excluding the hydrogen atom.
  • this is an atomic group obtained by removing p hydrogen atoms from an aromatic heterocyclic compound directly bonded to carbon atoms or heteroatoms constituting the ring.
  • a “p-valent aromatic heterocyclic group” is preferable.
  • Aromatic heterocyclic compounds '' are oxadiazole, thiadiazole, thiazole, oxazole, thiophene, pyrrole, phosphole, furan, pyridine, pyrazine, pyrimidine, triazine, pyridazine, quinoline, isoquinoline, carbazole, dibenzophosphole, etc.
  • a compound in which the ring itself exhibits aromaticity and a heterocyclic ring such as phenoxazine, phenothiazine, dibenzoborol, dibenzosilol, and benzopyran itself does not exhibit aromaticity, but the aromatic ring is condensed to the heterocyclic ring.
  • the number of carbon atoms of the monovalent heterocyclic group is usually 2 to 60, preferably 4 to 20, excluding the number of carbon atoms of the substituent.
  • the monovalent heterocyclic group may have a substituent, for example, thienyl group, pyrrolyl group, furyl group, pyridyl group, piperidinyl group, quinolinyl group, isoquinolinyl group, pyrimidinyl group, triazinyl group, and these And a group in which the hydrogen atom in the group is substituted with an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, or the like.
  • Halogen atom means a fluorine atom, a chlorine atom, a bromine atom or an iodine atom.
  • the “amino group” may have a substituent, and a substituted amino group is preferable.
  • a substituent which an amino group has an alkyl group, a cycloalkyl group, an aryl group or a monovalent heterocyclic group is preferable.
  • the substituted amino group include a dialkylamino group, a dicycloalkylamino group, and a diarylamino group.
  • the amino group include dimethylamino group, diethylamino group, diphenylamino group, bis (4-methylphenyl) amino group, bis (4-tert-butylphenyl) amino group, bis (3,5-di-tert- Butylphenyl) amino group.
  • the “alkenyl group” may be linear or branched.
  • the number of carbon atoms of the straight-chain alkenyl group is usually 2-30, preferably 3-20, excluding the number of carbon atoms of the substituent.
  • the number of carbon atoms of the branched alkenyl group is usually 3 to 30, preferably 4 to 20, not including the number of carbon atoms of the substituent.
  • the number of carbon atoms of the “cycloalkenyl group” is usually 3 to 30, preferably 4 to 20, not including the number of carbon atoms of the substituent.
  • the alkenyl group and the cycloalkenyl group may have a substituent, for example, a vinyl group, a 1-propenyl group, a 2-propenyl group, a 2-butenyl group, a 3-butenyl group, a 3-pentenyl group, a 4-pentenyl group, Examples include a pentenyl group, a 1-hexenyl group, a 5-hexenyl group, a 7-octenyl group, and a group in which these groups have a substituent.
  • the “alkynyl group” may be linear or branched.
  • the number of carbon atoms of the alkynyl group is usually 2 to 20, preferably 3 to 20, not including the carbon atom of the substituent.
  • the number of carbon atoms of the branched alkynyl group is usually from 4 to 30, and preferably from 4 to 20, not including the carbon atom of the substituent.
  • the number of carbon atoms of the “cycloalkynyl group” is usually 4 to 30, preferably 4 to 20, not including the carbon atom of the substituent.
  • the alkynyl group and the cycloalkynyl group may have a substituent, for example, an ethynyl group, a 1-propynyl group, a 2-propynyl group, a 2-butynyl group, a 3-butynyl group, a 3-pentynyl group, 4- Examples include a pentynyl group, 1-hexynyl group, 5-hexynyl group, and groups in which these groups have a substituent.
  • the “arylene group” means an atomic group remaining after removing two hydrogen atoms directly bonded to a carbon atom constituting a ring from an aromatic hydrocarbon.
  • the number of carbon atoms of the arylene group is usually 6 to 60, preferably 6 to 30, and more preferably 6 to 18, excluding the number of carbon atoms of the substituent.
  • the arylene group may have a substituent, for example, phenylene group, naphthalenediyl group, anthracenediyl group, phenanthrene diyl group, dihydrophenanthenediyl group, naphthacene diyl group, fluorenediyl group, pyrenediyl group, perylene diyl group, Examples include chrysenediyl groups and groups in which these groups have substituents, and groups represented by formulas (A-1) to (A-20) are preferable.
  • the arylene group includes a group in which a plurality of these groups are bonded.
  • R and R a each independently represents a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group or a monovalent heterocyclic group.
  • a plurality of R and R a may be the same or different, and R a may be bonded to each other to form a ring together with the atoms to which each is bonded.
  • the number of carbon atoms of the divalent heterocyclic group is usually 2 to 60, preferably 3 to 20, and more preferably 4 to 15 excluding the number of carbon atoms of the substituent.
  • the divalent heterocyclic group may have a substituent, for example, pyridine, diazabenzene, triazine, azanaphthalene, diazanaphthalene, carbazole, dibenzofuran, dibenzothiophene, dibenzosilole, phenoxazine, phenothiazine, acridine, Divalent acridine, furan, thiophene, azole, diazole, and triazole include divalent groups obtained by removing two hydrogen atoms from hydrogen atoms directly bonded to carbon atoms or heteroatoms constituting the ring, and preferably Is a group represented by formula (AA-1) to formula (AA-34).
  • the divalent heterocyclic group includes a group in which a plurality of these groups
  • crosslinking group is a group capable of generating a new bond by being subjected to heat treatment, ultraviolet irradiation treatment, radical reaction, etc., preferably, the formula (BX-1) of the crosslinking group A group It is a group represented by any one of-(BX-17). These groups may have a substituent.
  • the substituent may be a crosslinking group.
  • Dendrimer means a group having a regular dendritic branched structure (ie, a dendrimer structure) having an atom or a ring as a branching point.
  • dendrimer examples include, for example, International Publication No. 02/067343, Japanese Patent Application Laid-Open No. 2003-231692, International Publication No. 2003/079736, International Publication No. 2006/097717. And the structure described in the literature.
  • the dendron is preferably a group represented by the formula (D-A) or (D-B).
  • m DA1 , m DA2 and m DA3 each independently represent an integer of 0 or more.
  • GDA represents a nitrogen atom, an aromatic hydrocarbon group or a heterocyclic group, and these groups optionally have a substituent.
  • Ar DA1 , Ar DA2 and Ar DA3 each independently represent an arylene group or a divalent heterocyclic group, and these groups optionally have a substituent.
  • TDA represents an aryl group or a monovalent heterocyclic group, and these groups optionally have a substituent.
  • the plurality of TDAs may be the same or different.
  • m DA1, m DA2, m DA3 , m DA4, m DA5, m DA6 and m DA7 each independently represent an integer of 0 or more.
  • GDA represents a nitrogen atom, an aromatic hydrocarbon group or a heterocyclic group, and these groups optionally have a substituent.
  • a plurality of GDAs may be the same or different.
  • Ar DA1 , Ar DA2 , Ar DA3 , Ar DA4 , Ar DA5 , Ar DA6 and Ar DA7 each independently represent an arylene group or a divalent heterocyclic group, and these groups may have a substituent. Good.
  • TDA represents an aryl group or a monovalent heterocyclic group, and these groups optionally have a substituent.
  • the plurality of TDAs may be the same or different.
  • m DA1 , m DA2 , m DA3 , m DA4 , m DA5 , m DA6 and m DA7 are usually an integer of 10 or less, preferably an integer of 5 or less, more preferably 0 or 1.
  • m DA1 , m DA2 , m DA3 , m DA4 , m DA5 , m DA6 and m DA7 are preferably the same integer.
  • G DA is preferably a group represented by the formula (GDA-11) ⁇ (GDA -15), these groups may have a substituent.
  • R DA represents a hydrogen atom, an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, or a monovalent heterocyclic group, and these groups may further have a substituent. When there are a plurality of RDA , they may be the same or different. ]
  • R DA is preferably a hydrogen atom, an alkyl group, a cycloalkyl group, an alkoxy group or a cycloalkoxy group, more preferably a hydrogen atom, an alkyl group or a cycloalkyl group, and these groups have a substituent. May be.
  • Ar DA1 , Ar DA2 , Ar DA3 , Ar DA4 , Ar DA5 , Ar DA6 and Ar DA7 are preferably groups represented by the formulas (ArDA-1) to (ArDA-3).
  • R DA represents the same meaning as described above.
  • R DB represents a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group or a monovalent heterocyclic group, and these groups may have a substituent. When there are a plurality of RDBs , they may be the same or different. ]
  • R DB is preferably an alkyl group, a cycloalkyl group, an aryl group or a monovalent heterocyclic group, more preferably an aryl group or a monovalent heterocyclic group, and still more preferably an aryl group.
  • T DA is preferably a group represented by the formula (TDA-1) ⁇ (TDA -3).
  • R DA and R DB represent the same meaning as described above.
  • the group represented by the formula (D-A) is preferably a group represented by the formulas (D-A1) to (D-A3).
  • R p1 , R p2 and R p3 each independently represents an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group or a halogen atom.
  • R p1 and R p2 may be the same or different.
  • np1 represents an integer of 0 to 5
  • np2 represents an integer of 0 to 3
  • np3 represents 0 or 1.
  • a plurality of np1 may be the same or different.
  • the group represented by the formula (D-B) is preferably a group represented by the formulas (D-B1) to (D-B3).
  • R p1 , R p2 and R p3 each independently represents an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group or a halogen atom.
  • R p1 and R p2 they may be the same or different.
  • np1 represents an integer of 0 to 5
  • np2 represents an integer of 0 to 3
  • np3 represents 0 or 1.
  • np1 and np2 may be the same or different.
  • Np1 is preferably 0 or 1, more preferably 1.
  • np2 is preferably 0 or 1, more preferably 0.
  • np3 is preferably 0.
  • R p1 , R p2 and R p3 are preferably an alkyl group or a cycloalkyl group.
  • the light emitting device of the present invention is a light emitting device having an anode, a cathode, a light emitting layer provided between the anode and the cathode, and a hole transport layer provided between the anode and the light emitting layer,
  • the hole transport layer is a layer obtained using a material having a crosslinking group
  • the light emitting layer is a layer obtained by using a composition containing the phosphorescent compound (A) represented by the formula (A) and the phosphorescent compound (B) represented by the formula (B).
  • It is composed of at least one ligand skeleton composed of ring R A1 and ring R A2 included in the phosphorescent compound (A), and ring R B1 and ring R B2 included in the phosphorescent compound (B).
  • “Obtained by use” in relation to the relationship between the hole transport layer and the material having a crosslinkable group means that the hole transport layer is formed using a material having a crosslinkable group.
  • the material having a crosslinking group may be contained in the hole transport layer as it is, or the material having the crosslinking group is crosslinked in the molecule, between the molecules, or both (a crosslinked material of the material having the crosslinking group) ) May be contained in the hole transport layer.
  • the phosphorescent compound (A) and the phosphorescent compound (B) contained in the composition may be contained in the light emitting layer as they are, or the phosphorescent compound (A) or phosphorescent compound contained in the composition.
  • the compound (B) is contained in the light emitting layer in a state of being crosslinked in the molecule, between the molecules, or both (a crosslinked product of the phosphorescent compound (A) or a crosslinked product of the phosphorescent compound (B)). It may be.
  • Examples of the method for forming the hole transport layer and the light emitting layer include a vacuum deposition method and a coating method typified by a spin coating method and an ink jet printing method, and a coating method is preferable.
  • the hole transport layer is formed by a coating method, it is preferable to use an ink for a hole transport layer described later.
  • the material having a crosslinking group contained in the hole transport layer can be crosslinked by heating or light irradiation.
  • the hole transporting layer is substantially insolubilized in the solvent. Therefore, the hole transport layer can be suitably used for stacking light emitting elements.
  • the light emitting layer is formed by a coating method, it is preferable to use an ink for the light emitting layer described later.
  • the phosphorescent compound (A) or the phosphorescent compound (B) can be crosslinked by heating or light irradiation.
  • the phosphorescent compound (A) or the phosphorescent compound (B) is crosslinked (phosphorescent compound (A) or phosphorescent compound (B)) and contained in the light emitting layer.
  • the light emitting layer is substantially insoluble in the solvent. Therefore, the light emitting layer can be suitably used for stacking light emitting elements.
  • the heating temperature for crosslinking is usually 25 to 300 ° C, preferably 50 to 250 ° C, more preferably 150 to 200 ° C.
  • the type of light used for light irradiation for crosslinking is, for example, ultraviolet light, near ultraviolet light, or visible light.
  • the form of the hole transport layer (whether the material having a crosslinking group is contained as it is or the crosslinked material of the material having a crosslinking group is contained) and the form of the light-emitting layer (phosphorescent compound (A) and phosphorescent)
  • a crosslinked product of the phosphorescent compound (A) or a crosslinked product of the phosphorescent compound (B) is contained for example, extraction is representative.
  • Chemical analysis, infrared spectroscopy (IR), nuclear magnetic resonance spectroscopy (NMR), mass spectrometry (MS) and other instrumental analysis methods, and chemical separation analysis and instrumental analysis Analytical methods combining methods are listed.
  • a component that is substantially insoluble in the organic solvent (insoluble component)
  • dissolved components components that dissolve in organic solvents
  • the obtained insoluble component can be analyzed by infrared spectroscopy (IR) or nuclear magnetic resonance spectroscopy (NMR), and the obtained dissolved component can be analyzed by nuclear magnetic resonance spectroscopy (NMR) or mass spectrometry. It is possible to analyze by the method (MS).
  • the light emitting layer of the light emitting element of the present invention has a maximum peak wavelength of an emission spectrum of 400 nm or more and less than 495 nm, a phosphorescent compound (A) represented by the formula (A), and a maximum peak wavelength of an emission spectrum of 400 nm. It is a layer obtained by using a composition (hereinafter also referred to as “a composition of a light emitting layer”) containing a phosphorescent compound (B) represented by the formula (B) and having a thickness of less than 495 nm.
  • a composition of a light emitting layer containing a phosphorescent compound (B) represented by the formula (B) and having a thickness of less than 495 nm.
  • the maximum peak wavelength of the emission spectrum of the phosphorescent compound is obtained by dissolving the phosphorescent compound in an organic solvent such as xylene, toluene, chloroform, tetrahydrofuran, and preparing a dilute solution (1 ⁇ 10 ⁇ 6 to 1 ⁇ 10 ⁇ 3 about wt%), it can be evaluated by measuring at room temperature the PL spectra of rare-thin solution.
  • Xylene is preferred as the organic solvent for dissolving the phosphorescent compound.
  • the phosphorescent compound (A) represented by the formula (A) has M as the central metal, a ligand whose number is defined by the subscript n 1 , and its number is defined by the subscript n 2. It is comprised from the ligand currently made.
  • the phosphorescent compound (B) represented by the formula (B) has M as the central metal, a ligand whose number is defined by the subscript n 1 , and its number is defined by the subscript n 2. It is comprised from the ligand currently made.
  • It is composed of at least one ligand skeleton composed of ring R A1 and ring R A2 included in the phosphorescent compound (A), and ring R B1 and ring R B2 included in the phosphorescent compound (B). And at least one of the ligand skeletons.
  • M is preferably an iridium atom or a platinum atom, and more preferably an iridium atom, because the external quantum efficiency of the light emitting device of the present invention is more excellent.
  • n 1 is preferably 2 or 3, and more preferably 3.
  • n 1 is preferably 2.
  • E A1 and E A2 are preferably carbon atoms.
  • E B1 and E B2 are preferably carbon atoms.
  • the ring R A1 is a pyridine ring, a pyrimidine ring is preferably an imidazole ring or a triazole ring, these rings may have a substituent.
  • ring R B1 is preferably a pyridine ring, a pyrimidine ring, an imidazole ring or a triazole ring, and these rings may have a substituent.
  • the ring R A2 is preferably a benzene ring, naphthalene ring, fluorene ring, phenanthrene ring, pyridine ring, diazabenzene ring, triazine ring, pyrrole ring, furan ring or thiophene ring, benzene ring, naphthalene More preferably a ring, a fluorene ring, a phenanthrene ring, a pyridine ring, a diazabenzene ring or a triazine ring, more preferably a benzene ring, a naphthalene ring, a fluorene ring, a pyridine ring or a pyrimidine ring, a benzene ring, a pyridine ring or A pyrimidine ring is particularly preferable, and a benzene ring is particularly preferable, and these rings may have a
  • the ring R B2 is preferably a benzene ring, naphthalene ring, fluorene ring, phenanthrene ring, pyridine ring, diazabenzene ring, triazine ring, pyrrole ring, furan ring or thiophene ring.
  • a ring, a fluorene ring, a phenanthrene ring, a pyridine ring, a diazabenzene ring or a triazine ring more preferably a benzene ring, a naphthalene ring, a fluorene ring, a pyridine ring or a pyrimidine ring, a benzene ring, a pyridine ring or A pyrimidine ring is particularly preferable, and a benzene ring is particularly preferable, and these rings may have a substituent.
  • the substituents that the ring R A1 , ring R A2 , ring R B1 and ring R B2 may have include a halogen atom, an alkyl group, a cycloalkyl group, an aryl group, a monovalent heterocyclic group, an alkoxy group, A cycloalkoxy group, an aryloxy group or a substituted amino group is preferred, a halogen atom, an alkyl group, a cycloalkyl group, an aryl group or a monovalent heterocyclic group is more preferred, an alkyl group, a cycloalkyl group or an aryl group is more preferred, An alkyl group or an aryl group is particularly preferable, and these groups may further have a substituent.
  • the aryl group, monovalent heterocyclic group and substituted amino group are preferably dendrons.
  • the substituent that the ring R A1 , the ring R A2 , the ring R B1, and the ring R B2 may have is preferably an alkyl group or a phenyl group because the external quantum efficiency of the light emitting device of the present invention is more excellent. More preferably an alkyl group or a group represented by the formula (D-A1), (D-B1) or (D-C1) to (D-C4), and still more preferably an alkyl group, or And groups represented by the formula (D-A1), (D-C1) or (D-C2), and these groups may further have a substituent.
  • R p4 , R p5 and R p6 each independently represents an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group or a halogen atom. When there are a plurality of R p4 , R p5 and R p6 , they may be the same or different.
  • np4 represents an integer of 0 to 4
  • np5 represents an integer of 0 to 5
  • np6 represents an integer of 0 to 5.
  • Np4 is preferably 1 or 2, more preferably 2.
  • np5 is preferably an integer of 1 to 3, more preferably 2 or 3.
  • np6 is preferably an integer of 0 to 2, and more preferably 0.
  • R p4 , R p5 and R p6 are preferably an alkyl group or a cycloalkyl group.
  • all of the ligand skeleton composed of the ring R A1 and the ring R A2 of the phosphorescent compound (A), and the phosphorescent compound (B) It is preferable that all of the ligand skeletons composed of ring R B1 and ring R B2 have different from each other.
  • the ring R A2 when the ring R A1 is a 6-membered aromatic heterocyclic ring, the ring R A2 has an electron withdrawing group.
  • the number of electron withdrawing group wherein the ring R A2 has is 10 or less 1 or more typically, for synthesis of phosphorescent compound (A) is easy, and preferably 5 or less 2 or more, more Preferably two or three.
  • the ring R B1 when the ring R B1 is a 6-membered aromatic heterocyclic ring, the ring R B2 has an electron withdrawing group.
  • the number of electron withdrawing groups that the ring R B2 has is usually 1 or more and 10 or less, and since it is easy to synthesize the phosphorescent compound (B), preferably 2 or more and 5 or less. Preferably two or three.
  • Examples of the “electron withdrawing group” include a group represented by —C ( ⁇ X 101 ) —R 101 , a halogen atom, an alkyl group having a halogen atom as a substituent, and a cycloalkyl group having a halogen atom as a substituent.
  • a cyano group and a nitro group preferably a fluorine atom, an alkyl group having a fluorine atom as a substituent, a cycloalkyl group having a fluorine atom as a substituent, or a cyano group, more preferably a fluorine atom, fluorine An alkyl group having an atom as a substituent or a cycloalkyl group having a fluorine atom as a substituent.
  • alkyl group having a halogen atom as a substituent means a group in which at least one hydrogen atom is substituted with a halogen atom among hydrogen atoms of the alkyl group.
  • cycloalkyl group having a halogen atom as a substituent means a group in which at least one hydrogen atom is substituted with a halogen atom among hydrogen atoms of the cycloalkyl group.
  • the halogen atom is preferably a fluorine atom.
  • alkyl group having a fluorine atom examples include a trifluoromethyl group, a pentafluoroethyl group, a perfluorobutyl group, a perfluorohexyl group, and a perfluorooctyl group, and a trifluoromethyl group is preferable.
  • R 101 represents a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group, a monovalent heterocyclic group, an alkoxy group, a cycloalkoxy group, an aryloxy group or a substituted amino group, and these groups have a substituent. It may be.
  • X 101 represents a group represented by ⁇ N—R 102 , an oxygen atom or a sulfur atom, and is preferably an oxygen atom.
  • R 102 represents a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group or a monovalent heterocyclic group, and is preferably an alkyl group, a cycloalkyl group, an aryl group or a monovalent heterocyclic group.
  • the group may have a substituent.
  • R 101 and R 102 are examples and preferred ranges of the substituents that the ring R A1 , ring R A2 , ring R B1 and ring R B2 may have. It is the same.
  • Examples of the anionic bidentate ligand represented by A 1 -G 1 -A 2 include the ligands represented by the following.
  • the HOMO (highest occupied orbital level) of the phosphorescent compound (A) is preferably ⁇ 6.5 eV to ⁇ 4.5 eV.
  • the HOMO of the phosphorescent compound (B) is preferably ⁇ 6.5 eV to ⁇ 4.5 eV. Since the external quantum efficiency of the light emitting device of the present invention is more excellent, HOMO of the phosphorescent compound (A) (hereinafter also referred to as “HOMO (A)”) and HOMO of the phosphorescent compound (B) (hereinafter, referred to as “HOMO”). “HOMO (B)”) preferably satisfies the following formula (HOMO-1). 0.2 ⁇
  • the LUMO (lowest orbital level) of the phosphorescent compound (A) is preferably ⁇ 3.0 eV to ⁇ 1.5 eV.
  • the LUMO of the phosphorescent compound (B) is preferably ⁇ 3.0 eV to ⁇ 1.5 eV. Since the external quantum efficiency of the light emitting device of the present invention is more excellent, the LUMO of the phosphorescent compound (A) (hereinafter also referred to as “LUMO (A)”) and the LUMO of the phosphorescent compound (B) (hereinafter, referred to as “LUMO”) "LUMO (B)”) preferably satisfies the following formula (LUMO-1). 0.2 ⁇
  • the HOMO of the phosphorescent compound (A) and the phosphorescent compound (B) can be measured from the oxidation level of CV measurement (cyclic voltammetry measurement).
  • the HOMO of the phosphorescent compound (A) and the phosphorescent compound (B) can be measured from photoelectron spectroscopy.
  • the LUMO of the phosphorescent compound (A) and the phosphorescent compound (B) can be measured from the reduction level of CV measurement (cyclic voltammetry measurement).
  • the LUMO of the phosphorescent compound (A) and the phosphorescent compound (B) can be calculated by adding Eg (band gap) to HOMO measured from photoelectron spectroscopy.
  • Eg of the phosphorescent compound (A) and the phosphorescent compound (B) is calculated from the absorption edge of the absorption spectrum by measuring the absorption spectrum of the phosphorescent compound (A) and the phosphorescent compound (B). be able to.
  • the phosphorescent compound (A) Is a phosphorescent compound represented by the formula (A-1), and the phosphorescent compound (B) is a phosphorescent compound represented by the formula (B-1) or a phosphorescent compound A combination in which (A) is a phosphorescent compound represented by the formula (A-2) and the phosphorescent compound (B) is a phosphorescent compound represented by the formula (B-2) is preferable.
  • ring R A3 is preferably a pyridine ring or a pyrimidine ring, more preferably a pyridine ring, and these rings may have a substituent. Examples and preferred ranges of the substituent that the ring R A3 may have are the same as examples and preferred ranges of the substituent that the ring R A1 may have.
  • examples and preferred ranges of ring R A4 are the same as examples and preferred ranges of ring R A2 .
  • Examples and preferred ranges of the substituent that the ring R A4 may have are the same as examples and preferred ranges of the substituent that the ring R A2 may have.
  • the ring R A4 has an electron withdrawing group.
  • the number, examples, and preferred ranges of the electron withdrawing group that the ring R A4 has are the same as the numbers, examples, and preferred ranges of the electron withdrawing group when the ring R A2 has the electron withdrawing group.
  • ring R B3 is preferably an imidazole ring, a pyrazole ring or a triazole ring, more preferably an imidazole ring or a triazole ring, still more preferably a triazole ring,
  • the ring may have a substituent. Examples and preferred ranges of the substituent that the ring R B3 may have are the same as examples and preferred ranges of the substituent that the ring R B1 may have.
  • examples and preferred ranges of ring R B4 are the same as examples and preferred ranges of ring R B2 .
  • Examples and preferred ranges of the substituent that the ring R A4 may have are the same as examples and preferred ranges of the substituent that the ring R A2 may have.
  • ring R B3 or ring R B4 preferably has an aryl group, monovalent heterocyclic group or substituted amino group as a substituent, and is substituted with an aryl group or monovalent heterocyclic group It is more preferable to have it as a group, and these groups may further have a substituent.
  • the aryl group, monovalent heterocyclic group and substituted amino group are preferably dendrons.
  • examples and preferred ranges of ring R A6 are the same as examples and preferred ranges of ring R A2 .
  • Examples and preferred ranges of the substituent that the ring R A6 may have are the same as examples and preferred ranges of the substituent that the ring R A2 may have.
  • ring R A5 or ring R A6 preferably has an aryl group, monovalent heterocyclic group or substituted amino group as a substituent, and is substituted with an aryl group or monovalent heterocyclic group It is more preferable to have as a group, and these groups may further have a substituent.
  • the aryl group, monovalent heterocyclic group and substituted amino group are preferably dendrons.
  • examples and preferred ranges of ring R B6 are the same as examples and preferred ranges of ring R B2 .
  • Examples and preferred ranges of the substituent that the ring R B6 may have are the same as examples and preferred ranges of the substituent that the ring R B2 may have.
  • ring R B5 or ring R B6 preferably has an aryl group, monovalent heterocyclic group or substituted amino group as a substituent, and is substituted with an aryl group or monovalent heterocyclic group It is more preferable to have it as a group, and these groups may further have a substituent.
  • the aryl group, monovalent heterocyclic group and substituted amino group are preferably dendrons.
  • the combination of the phosphorescent compound (A) and the phosphorescent compound (B) contained in the composition of the light emitting layer is a phosphorescent compound in which the phosphorescent compound (A) is represented by the formula (A-1) And the phosphorescent compound (B) is a phosphorescent compound represented by the formula (B-1), the phosphorescent compound represented by the formula (A-1) is represented by the formula (A-).
  • the phosphorescent compound represented by 3) is preferably a combination in which the phosphorescent compound represented by the formula (B-1) is the phosphorescent compound represented by the formula (B-3).
  • ring R A7 is preferably a pyridine ring.
  • R A71 , R A72 , R A73 and R A74 are preferably a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group, a monovalent heterocyclic group or a substituted amino group,
  • a hydrogen atom, an alkyl group, a cycloalkyl group, or an aryl group is more preferable, a hydrogen atom, an alkyl group, or a cycloalkyl group is more preferable, and a hydrogen atom is particularly preferable.
  • the aryl group, monovalent heterocyclic group and substituted amino group are preferably dendrons.
  • E A82 is a pyridine ring having a nitrogen atom
  • E A83 is a pyridine ring having a nitrogen atom
  • E A84 is a pyridine ring having a nitrogen atom.
  • a pyridine ring in which E A82 is a nitrogen atom is more preferable.
  • R A8 is a pyrimidine ring
  • a pyrimidine ring in which E A81 and E A83 are nitrogen atoms, or a pyrimidine ring in which E A82 and E A84 are nitrogen atoms is preferable, and E A82 And a pyrimidine ring in which E A84 is a nitrogen atom is more preferred.
  • ring R A8 is preferably a benzene ring.
  • R A81 , R A82 , R A83 and R A84 represent a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group, a monovalent heterocyclic group, a substituted amino group or a fluorine atom.
  • R A81 , R A82 , R A83 and R A84 represent a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group, a monovalent heterocyclic group, a substituted amino group or a fluorine atom.
  • a hydrogen atom, an alkyl group, a cycloalkyl group, or an aryl group is more preferable, and these groups may have a substituent.
  • the aryl group, monovalent heterocyclic group and substituted amino are preferably dendrons.
  • R A81 , R A82 , R A83 and R A84 is an electron withdrawing group, but at least one of R A81 and R A83 is an electron withdrawing group Is preferred.
  • Examples and preferred ranges of the electron withdrawing group are the same as the examples and preferred ranges of the electron withdrawing group when the ring R A2 has an electron withdrawing group.
  • R A84 is preferably a hydrogen atom.
  • R B71 when E B71 is a nitrogen atom and R B71 is present, R B71 is an alkyl group, a cycloalkyl group, an aryl group, a monovalent heterocyclic group, or a substituted amino group.
  • the alkyl group, the cycloalkyl group or the aryl group is more preferable, and these groups may have a substituent.
  • the aryl group, monovalent heterocyclic group and substituted amino group are preferably dendrons.
  • R B71 is preferably an alkyl group or a phenyl group because the external quantum efficiency of the light-emitting element of the present invention is more excellent. More preferably an alkyl group or a group represented by the formula (D-A1), (D-B1) or (D-C1) to (D-C4), and more preferably an alkyl group Group, or a group represented by the formula (D-C1) or (D-C2), and these groups may further have a substituent.
  • R B71 is preferably a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group, or a monovalent heterocyclic group, It is more preferably a group, a cycloalkyl group or an aryl group, further preferably a hydrogen atom, an alkyl group or a cycloalkyl group, and these groups may have a substituent.
  • R B72 is an alkyl group, a cycloalkyl group, an aryl group, a monovalent heterocyclic group, or a substituted amino group.
  • the alkyl group, the cycloalkyl group or the aryl group is more preferable, and these groups may have a substituent.
  • the aryl group, monovalent heterocyclic group and substituted amino group are preferably dendrons.
  • R B72 is preferably an alkyl group or a phenyl group because the external quantum efficiency of the light emitting device of the present invention is more excellent. More preferably an alkyl group or a group represented by the formula (D-A1), (D-B1) or (D-C1) to (D-C4), and more preferably an alkyl group Group, or a group represented by the formula (D-C1) or (D-C2), and these groups may further have a substituent.
  • R B72 is preferably a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group, or a monovalent heterocyclic group, It is more preferably a group, a cycloalkyl group or an aryl group, further preferably a hydrogen atom, an alkyl group or a cycloalkyl group, and these groups may have a substituent.
  • R B73 is an alkyl group, a cycloalkyl group, an aryl group, a monovalent heterocyclic group, or a substituted amino group.
  • the alkyl group, the cycloalkyl group or the aryl group is more preferable, and these groups may have a substituent.
  • the aryl group, monovalent heterocyclic group and substituted amino group are preferably dendrons.
  • R B73 is preferably a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group, or a monovalent heterocyclic group, It is more preferably a group, a cycloalkyl group or an aryl group, further preferably a hydrogen atom, an alkyl group or a cycloalkyl group, and these groups may have a substituent.
  • R B71 or R B72 is an aryl group, monovalent heterocyclic group or substituted amino group. It is preferred, R B71 is an aryl group, more preferably 1 monovalent heterocyclic group or a substituted amino group, these groups may have a substituent.
  • the aryl group, monovalent heterocyclic group and substituted amino group are preferably dendrons.
  • E B82 is a nitrogen atom
  • E B84 is a nitrogen atom.
  • a pyridine ring in which E B82 is a nitrogen atom is more preferable.
  • ring R B8 is preferably a benzene ring.
  • R B81 , R B82 , R B83 and R B84 are preferably a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group, a monovalent heterocyclic group or a substituted amino group
  • a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group or a monovalent heterocyclic group is more preferable, and a hydrogen atom, an alkyl group, a cycloalkyl group or an aryl group is more preferable, and these groups are substituted. It may have a group.
  • the aryl group, monovalent heterocyclic group and substituted amino are preferably dendrons.
  • R B81 , R B82 , R B83, and R B84 are preferably a hydrogen atom, an alkyl group, or a phenyl group because the external quantum efficiency of the light-emitting device of the present invention is more excellent.
  • it is a hydrogen atom, an alkyl group, or a group represented by the formula (D-A1), (D-B1) or (D-C1) to (D-C4), more preferably a hydrogen atom, Or a group represented by the formula (D-A1), (D-B1) or (D-C1) to (D-C4), particularly preferably a hydrogen atom or a group represented by the formula (D-A1) And these groups may further have a substituent.
  • R B84 is preferably a hydrogen atom.
  • R B82 or R B83 is an aryl group, monovalent heterocyclic group or substituted amino group. It is preferable that R B82 is an aryl group, a monovalent heterocyclic group or a substituted amino group, and these groups may have a substituent.
  • the aryl group, monovalent heterocyclic group and substituted amino group are preferably dendrons.
  • the combination of the phosphorescent compound (A) and the phosphorescent compound (B) contained in the composition of the light emitting layer is a phosphorescent compound in which the phosphorescent compound (A) is represented by the formula (A-2) And the phosphorescent compound (B) is a phosphorescent compound represented by the formula (B-2), the phosphorescent compound represented by the formula (A-2) is represented by the formula (A- The phosphorescent compound represented by 4), and the phosphorescent compound represented by the formula (B-2) is preferably a combination of the phosphorescent compound represented by the formula (B-4).
  • the ring R A9 is an imidazole ring
  • E A91 is a nitrogen atom or an imidazole ring is preferred
  • E A92 is a nitrogen atom, an imidazole ring is more preferably
  • E A91 is a nitrogen atom.
  • R A91 when E A91 is a nitrogen atom and R A91 is present, R A91 is an alkyl group, a cycloalkyl group, an aryl group, a monovalent heterocyclic group, or a substituted amino group. It is preferably an alkyl group, a cycloalkyl group, or an aryl group, more preferably an aryl group, and these groups may have a substituent.
  • the aryl group, monovalent heterocyclic group and substituted amino group are preferably dendrons.
  • R A91 is preferably a phenyl group because the external quantum efficiency of the light-emitting element of the present invention is more excellent. More preferably a group represented by the formula (D-A1), (D-B1) or (D-C1) to (D-C4), and still more preferably a formula (D-C1) or (D -C2), and these groups may further have a substituent.
  • R A91 is a hydrogen atom, an alkyl group, preferably a cycloalkyl group, an aryl group or a monovalent heterocyclic group, a hydrogen atom, an alkyl It is more preferably a group, a cycloalkyl group or an aryl group, further preferably a hydrogen atom, an alkyl group or a cycloalkyl group, and these groups may have a substituent.
  • R A92 is an alkyl group, a cycloalkyl group, an aryl group, a monovalent heterocyclic group, or a substituted amino group.
  • the alkyl group, the cycloalkyl group or the aryl group is more preferable, and these groups may have a substituent.
  • the aryl group, monovalent heterocyclic group and substituted amino group are preferably dendrons.
  • R A92 is preferably a phenyl group because the external quantum efficiency of the light-emitting element of the present invention is more excellent. More preferably a group represented by the formula (D-A1), (D-B1) or (D-C1) to (D-C4), and still more preferably a formula (D-C1) or (D -C2), and these groups may further have a substituent.
  • R A92 is preferably a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group, or a monovalent heterocyclic group, It is more preferably a group, a cycloalkyl group or an aryl group, further preferably a hydrogen atom, an alkyl group or a cycloalkyl group, and these groups may have a substituent.
  • R A93 is preferably a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group or a monovalent heterocyclic group, and is a hydrogen atom, an alkyl group, a cycloalkyl group or an aryl group. More preferably, it is more preferably a hydrogen atom, an alkyl group or a cycloalkyl group, and these groups optionally have a substituent.
  • R A9 when ring R A9 has an aryl group, monovalent heterocyclic group or substituted amino group, R A91 or R A92 is an aryl group, monovalent heterocyclic group or substituted amino group R A91 is preferably an aryl group, a monovalent heterocyclic group or a substituted amino group, and these groups optionally have a substituent.
  • the aryl group, monovalent heterocyclic group and substituted amino group are preferably dendrons.
  • E A102 is a pyridine ring having a nitrogen atom
  • E A103 is a pyridine ring having a nitrogen atom
  • E A104 is a pyridine ring having a nitrogen atom.
  • a pyridine ring in which E A102 is a nitrogen atom is more preferable.
  • ring R A10 is preferably a benzene ring.
  • R A101 , R A102 , R A103 and R A104 are preferably a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group, a monovalent heterocyclic group or a substituted amino group
  • a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group or a monovalent heterocyclic group is more preferable, and a hydrogen atom, an alkyl group, a cycloalkyl group or an aryl group is more preferable, and these groups are substituted. It may have a group.
  • the aryl group, monovalent heterocyclic group and substituted amino are preferably dendrons.
  • R A101 , R A102 , R A103, and R A104 are preferably a hydrogen atom, an alkyl group, or a phenyl group because the external quantum efficiency of the light-emitting device of the present invention is more excellent.
  • it is a hydrogen atom, an alkyl group, or a group represented by the formula (D-A1), (D-B1) or (D-C1) to (D-C4), more preferably a hydrogen atom or An alkyl group, particularly preferably a hydrogen atom, and these groups may further have a substituent.
  • R A104 is preferably a hydrogen atom.
  • R A10 has an aryl group, monovalent heterocyclic group or substituted amino group
  • R A102 or R A103 is an aryl group, monovalent heterocyclic group or substituted amino group
  • R A102 is more preferably an aryl group, a monovalent heterocyclic group or a substituted amino group, and these groups may have a substituent.
  • the aryl group, monovalent heterocyclic group and substituted amino group are preferably dendrons.
  • ring R B9 is preferably a triazole ring in which E B91 and E B92 are nitrogen atoms, or a triazole ring in which E B91 and E B93 are nitrogen atoms, and E B91 and E B92 are nitrogen atoms.
  • the triazole ring which is an atom is more preferable.
  • R B91 when E B91 is a nitrogen atom and R B91 is present, R B91 is an alkyl group, a cycloalkyl group, an aryl group, a monovalent heterocyclic group, or a substituted amino group.
  • the alkyl group, the cycloalkyl group or the aryl group is more preferable, and these groups may have a substituent.
  • the aryl group, monovalent heterocyclic group and substituted amino group are preferably dendrons.
  • R B91 is preferably an alkyl group or a phenyl group because the external quantum efficiency of the light-emitting element of the present invention is more excellent. More preferably an alkyl group or a group represented by the formula (D-A1), (D-B1) or (D-C1) to (D-C4), and more preferably an alkyl group Or a group represented by the formula (D-C1) or (D-C2), particularly preferably an alkyl group, and these groups may further have a substituent.
  • R B91 is preferably a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group, or a monovalent heterocyclic group, It is more preferably a group, a cycloalkyl group or an aryl group, further preferably a hydrogen atom, an alkyl group or a cycloalkyl group, and these groups may have a substituent.
  • R B92 is an alkyl group, a cycloalkyl group, an aryl group, a monovalent heterocyclic group, or a substituted amino group.
  • the alkyl group, the cycloalkyl group or the aryl group is more preferable, and these groups may have a substituent.
  • the aryl group, monovalent heterocyclic group and substituted amino group are preferably dendrons.
  • R B92 is preferably an alkyl group or a phenyl group because the external quantum efficiency of the light emitting device of the present invention is more excellent. More preferably an alkyl group or a group represented by the formula (D-A1), (D-B1) or (D-C1) to (D-C4), and more preferably an alkyl group Or a group represented by the formula (D-C1) or (D-C2), particularly preferably an alkyl group, and these groups may further have a substituent.
  • R B92 is preferably a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group, or a monovalent heterocyclic group, It is more preferably a group, a cycloalkyl group or an aryl group, further preferably a hydrogen atom, an alkyl group or a cycloalkyl group, and these groups may have a substituent.
  • R B93 is an alkyl group, a cycloalkyl group, an aryl group, a monovalent heterocyclic group, or a substituted amino group.
  • the alkyl group, the cycloalkyl group or the aryl group is more preferable, and these groups may have a substituent.
  • the aryl group, monovalent heterocyclic group and substituted amino group are preferably dendrons.
  • R B93 is preferably a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group, or a monovalent heterocyclic group. It is more preferably a group, a cycloalkyl group or an aryl group, further preferably a hydrogen atom, an alkyl group or a cycloalkyl group, and these groups may have a substituent.
  • R B9 when ring R B9 has an aryl group, monovalent heterocyclic group or substituted amino group, R B91 or R B92 is an aryl group, monovalent heterocyclic group or substituted amino group. It is more preferable that R B91 is an aryl group, a monovalent heterocyclic group or a substituted amino group, and these groups may have a substituent.
  • the aryl group, monovalent heterocyclic group and substituted amino group are preferably dendrons.
  • ring R B10 is a pyrimidine ring
  • a pyrimidine ring in which E B101 and E B103 are nitrogen atoms, or a pyrimidine ring in which E B102 and E B104 are nitrogen atoms is preferable, and E B102 And a pyrimidine ring in which E B104 is a nitrogen atom is more preferred.
  • ring R B10 is preferably a benzene ring.
  • R B101 , R B102 , R B103 and R B104 are preferably a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group, a monovalent heterocyclic group or a substituted amino group
  • a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group or a monovalent heterocyclic group is more preferable, and a hydrogen atom, an alkyl group, a cycloalkyl group or an aryl group is more preferable, and these groups are substituted. It may have a group.
  • the aryl group, monovalent heterocyclic group and substituted amino are preferably dendrons.
  • R B101 , R B102 , R B103, and R B104 are preferably a hydrogen atom, an alkyl group, or a phenyl group, because the external quantum efficiency of the light-emitting element of the present invention is more excellent.
  • it is a hydrogen atom, an alkyl group, or a group represented by the formula (D-A1), (D-B1) or (D-C1) to (D-C4), more preferably a hydrogen atom, Or a group represented by the formula (D-A1), (D-B1) or (D-C1) to (D-C4), particularly preferably a hydrogen atom or a group represented by the formula (D-A1) And these groups may further have a substituent.
  • R B104 is preferably a hydrogen atom.
  • R B102 or R B103 is an aryl group, monovalent heterocyclic group or substituted amino group. It is preferable that R B102 is an aryl group, a monovalent heterocyclic group, or a substituted amino group, and these groups may have a substituent.
  • the aryl group, monovalent heterocyclic group and substituted amino group are preferably dendrons.
  • the combination of the phosphorescent compound (A) and the phosphorescent compound (B) contained in the composition of the light emitting layer is a phosphorescent compound in which the phosphorescent compound (A) is represented by the formula (A-3)
  • the phosphorescent compound represented by the formula (A-3) is represented by the formula (1) , (2) or (3)
  • the phosphorescent compound represented by formula (B-3) is represented by formula (4), (5), (6) or (7).
  • the combination which is a phosphorescence-emitting compound represented by these is preferable.
  • the phosphorescent compound represented by the formula (A-3) is preferably a phosphorescent compound represented by the formula (1) or (2), and the phosphorescent compound represented by the formula (1) The compound is more preferable.
  • the phosphorescent compound represented by the formula (B-3) the phosphorescent compound represented by the formula (4), (6) or (7) is preferable, and the formula (4) or (6) Is more preferable, and the phosphorescent compound represented by the formula (6) is more preferable.
  • the combination of the phosphorescent compound (A) and the phosphorescent compound (B) contained in the composition of the light emitting layer is a phosphorescent compound in which the phosphorescent compound (A) is represented by the formula (A-4)
  • the phosphorescent compound represented by the formula (A-4) is represented by the formula (4):
  • a phosphorescent compound represented by formula (5), wherein the phosphorescent compound represented by formula (B-4) is a phosphorescent compound represented by formula (6) or (7): preferable.
  • the phosphorescent compound represented by the formula (A-4) is preferably the phosphorescent compound represented by the formula (4).
  • the phosphorescent compound represented by the formula (B-4) is preferably a phosphorescent compound represented by the formula (6).
  • M 1 is preferably an iridium atom because the external quantum efficiency of the light emitting device of the present invention is more excellent.
  • n 3 is preferably 2 or 3, and more preferably 3.
  • n 3 is preferably 2.
  • R 1 , R 2 , R 3 and R 4 are a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group, a monovalent heterocyclic group or a substituted amino group. More preferably a hydrogen atom, an alkyl group, a cycloalkyl group or an aryl group, still more preferably a hydrogen atom, an alkyl group or a cycloalkyl group, and particularly preferably a hydrogen atom. May have a substituent.
  • the aryl group, monovalent heterocyclic group and substituted amino group are preferably dendrons.
  • R 11 , R 12 , R 13 and R 14 are a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group, a monovalent heterocyclic group, a substituted amino group or a fluorine atom. And more preferably a hydrogen atom, an alkyl group, a cycloalkyl group or an aryl group, and these groups optionally have a substituent.
  • the aryl group, monovalent heterocyclic group and substituted amino group are preferably dendrons.
  • At least one of R 11 , R 12 , R 13 and R 14 is an electron withdrawing group, but at least one of R 11 and R 13 is an electron withdrawing group. It is preferable that Examples and preferred ranges of the electron withdrawing group are the same as the examples and preferred ranges of the electron withdrawing group when the ring R A2 has an electron withdrawing group.
  • R 14 is preferably a hydrogen atom.
  • Examples of the phosphorescent compound represented by the formula (1) include phosphorescent compounds represented by the formulas (1-1) to (1-13), and the formulas (1-1) to (1) The phosphorescent compound represented by -12) is preferred.
  • Examples of the phosphorescent compound represented by the formula (2) include phosphorescent compounds represented by the formulas (2-1) to (2-13), and the formulas (2-1) to (2) The phosphorescent compound represented by -12) is preferred.
  • Examples of phosphorescent compounds represented by formula (3) include phosphorescent compounds represented by formulas (3-1) to (3-13), and include formulas (3-1) to (3 The phosphorescent compound represented by -12) is preferred.
  • M 1 is preferably an iridium atom because the external quantum efficiency of the light emitting device of the present invention is more excellent.
  • n 5 is preferably 2 or 3, and more preferably 3.
  • n 5 is preferably 2.
  • R 21 , R 22 and R 23 are preferably a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group, a monovalent heterocyclic group or a substituted amino group
  • a hydrogen atom, an alkyl group, a cycloalkyl group, or an aryl group is more preferable, and a hydrogen atom, an alkyl group, or a cycloalkyl group is more preferable, and these groups may have a substituent.
  • the aryl group, monovalent heterocyclic group and substituted amino group are preferably dendrons.
  • R 21 or R 22 is an aryl group. It is preferably a monovalent heterocyclic group or a substituted amino group, and R 21 is more preferably an aryl group, a monovalent heterocyclic group or a substituted amino group, and these groups have a substituent. May be.
  • the aryl group, monovalent heterocyclic group and substituted amino group are preferably dendrons.
  • R 21 is preferably an alkyl group or a phenyl group, more preferably an alkyl group, or a formula ( D-A1), (D-B1) or a group represented by (D-C1) to (D-C4), more preferably an alkyl group, or a group represented by the formula (D-C1) or (D-C2) ), And these groups may further have a substituent.
  • R 22 is preferably an alkyl group or a phenyl group, more preferably an alkyl group, or a formula (5) because the external quantum efficiency of the light emitting device of the present invention is more excellent.
  • R 31 , R 32 , R 33 and R 34 are preferably a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group, a monovalent heterocyclic group or a substituted amino group, and a hydrogen atom, an alkyl group, a cycloalkyl group It is more preferably a group or an aryl group, and these groups may have a substituent.
  • the aryl group, monovalent heterocyclic group and substituted amino group are preferably dendrons.
  • R 31 , R 32 , R 33 and R 34 are preferably a hydrogen atom, an alkyl group or a phenyl group, more preferably a hydrogen atom, an alkyl group, because the external quantum efficiency of the light emitting device of the present invention is more excellent.
  • a group represented by the formula (D-A1), (D-B1) or (D-C1) to (D-C4) more preferably a hydrogen atom or the formula (D-A1) , (D-B1) or a group represented by (D-C1) to (D-C4), particularly preferably a hydrogen atom or a group represented by the formula (D-A1),
  • These groups may further have a substituent.
  • R 34 is preferably a hydrogen atom.
  • R 32 or R 33 is an aryl group, monovalent It is preferably a heterocyclic group or a substituted amino group, and R 32 is more preferably an aryl group, a monovalent heterocyclic group or a substituted amino group, and these groups may have a substituent.
  • the aryl group, monovalent heterocyclic group and substituted amino group are preferably dendrons.
  • Examples of the phosphorescent compound represented by the formula (4) include phosphorescent compounds represented by the formulas (4-1) to (4-19), and the formulas (4-1) to (4)
  • the phosphorescent compounds represented by -17) are preferred, and the phosphorescent compounds represented by formulas (4-5) to (4-17) are more preferred.
  • Examples of the phosphorescent compound represented by the formula (5) include phosphorescent compounds represented by the formulas (5-1) to (5-19), and the formulas (5-1) to (5)
  • the phosphorescent compound represented by -17) is preferred, and the phosphorescent compounds represented by formulas (5-5) to (5-17) are more preferred.
  • Examples of the phosphorescent compound represented by the formula (6) include phosphorescent compounds represented by the formulas (6-1) to (6-15), and the formulas (6-1) to (6) The phosphorescent compound represented by -13) is preferred.
  • Examples of the phosphorescent compound represented by the formula (7) include phosphorescent compounds represented by the formulas (7-1) to (7-15), and the formulas (7-1) to (7 The phosphorescent compound represented by -13) is preferred.
  • Examples of the phosphorescent compound (A) and the phosphorescent compound (B) include those represented by the formulas (1-1) to (1-13), (2-1) to (2-13), (3-1) To (3-13), (4-1) to (4-19), (5-1) to (5-19), (6-1) to (6-15), (7-1) to (7-1) 7-15), phosphors represented by COM-9 to COM-13, and COM-16 to COM-21.
  • the phosphorescent compound (A) and the phosphorescent compound (B) can be obtained from Aldrich, Luminescence Technology Corp. Available from the American Dye Source. In addition to the methods described above, “Journal of the American Chemical Society, Vol. 107, 1431-1432 (1985)”, “Journal of the American Chemical Society, Vol. 106, 6647-66, 6664-66”, “Journal of the American Chemical Society, Vol. Publication No. 2002/44189, JP-T 2004-530254, JP-A 2006-188673, JP-T 2007-504272, JP-A 2008-179617, JP-A 2011-105701, International Publication No. It can also be produced by a known method described in documents such as 2011/024761, JP2013-147449A, JP2013-147450A.
  • composition ratio In the composition of the light emitting layer, when the total of the phosphorescent compound (A) and the phosphorescent compound (B) is 100 parts by weight, the content of the phosphorescent compound (B) is usually 1 to 10,000 parts by weight. It is preferably 10 to 1000 parts by weight, and more preferably 20 to 500 parts by weight.
  • the composition of the light emitting layer includes a hole transport material, a hole injection material, an electron transport material, an electron injection material, a light emitting material (different from the phosphorescent compound (A) and the phosphorescent compound (B)), oxidation. It may further contain at least one material selected from the group consisting of an inhibitor and a solvent.
  • the composition of the light emitting layer further contains a host material having at least one function selected from the group consisting of hole injecting property, hole transporting property, electron injecting property, and electron transporting property.
  • the external quantum efficiency of is better.
  • the host material may be contained singly or in combination of two or more.
  • the total content of the phosphorescent compound (A) and the phosphorescent compound (B) is such that the phosphorescent compound (A), the phosphorescent compound (B), and
  • the total amount with the host material is 100 parts by weight, it is usually 0.05 to 80 parts by weight, preferably 0.1 to 50 parts by weight, more preferably 0.5 to 40 parts by weight.
  • the lowest excited triplet state (T 1 ) of the host material is equivalent to T 1 of the phosphorescent compound (A) and the phosphorescent compound (B) since the external quantum efficiency of the light emitting device of the present invention is more excellent. It is preferable that the energy level is higher or higher.
  • the light-emitting element of the present invention can be manufactured by a solution coating process, and therefore exhibits solubility in a solvent capable of dissolving the phosphorescent compound (A) and the phosphorescent compound (B). It is preferable that
  • Host materials are classified into low molecular compounds and high molecular compounds.
  • Low molecular host The low molecular weight compound (hereinafter referred to as “low molecular weight host”) preferable as the host material will be described.
  • the low molecular host is preferably a compound represented by the formula (H-1).
  • Ar H1 and Ar H2 each independently represent an aryl group or a monovalent heterocyclic group, and these groups optionally have a substituent.
  • n H1 and n H2 each independently represent 0 or 1. When a plurality of n H1 are present, they may be the same or different. The n H2 presence of a plurality, may be the same or different.
  • n H3 represents an integer of 0 or more.
  • L H1 is an arylene group, a divalent heterocyclic group, or,, - [C (R H11 ) 2]
  • n H11 - represents a group represented by, these groups may have a substituent. When a plurality of L H1 are present, they may be the same or different.
  • n H11 represents an integer of 1 or more and 10 or less.
  • R H11 represents a hydrogen atom, an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group or a monovalent heterocyclic group, and these groups optionally have a substituent.
  • a plurality of R H11 may be the same or different, and may be bonded to each other to form a ring together with the carbon atom to which each is bonded.
  • L H2 represents a group represented by —N (—L H21 —R H21 ) —. When a plurality of L H2 are present, they may be the same or different.
  • L H21 represents a single bond, an arylene group or a divalent heterocyclic group, and these groups optionally have a substituent.
  • R H21 represents a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group, or a monovalent heterocyclic group, and these groups optionally have a substituent.
  • Ar H1 and Ar H2 are phenyl group, fluorenyl group, spirobifluorenyl group, pyridyl group, pyrimidinyl group, triazinyl group, quinolinyl group, isoquinolinyl group, thienyl group, benzothienyl group, dibenzothienyl group, furyl group, benzofuryl Group, dibenzofuryl group, pyrrolyl group, indolyl group, azaindolyl group, carbazolyl group, azacarbazolyl group, diazacarbazolyl group, phenoxazinyl group or phenothiazinyl group, phenyl group, spirobifluorenyl group, A pyridyl group, pyrimidinyl group, triazinyl group, dibenzothienyl group, dibenzofuryl group, carbazolyl group or azacarbazolyl group is more prefer
  • Ar H1 and Ar H2 may have, a halogen atom, an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, or a monovalent heterocyclic group is preferable, and an alkyl group, a cyclo An alkoxy group, an alkoxy group or a cycloalkoxy group is more preferable, an alkyl group or a cycloalkoxy group is more preferable, and these groups may further have a substituent.
  • n H1 is preferably 1.
  • n H2 is preferably 0.
  • n H3 is generally an integer of 0 or more and 10 or less, preferably an integer of 0 or more and 5 or less, more preferably an integer of 1 or more and 3 or less, and particularly preferably 1.
  • n H11 is preferably an integer of 1 or more and 5 or less, more preferably an integer of 1 or more and 3 or less, and even more preferably 1.
  • R H11 is preferably a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group or a monovalent heterocyclic group, more preferably a hydrogen atom, an alkyl group or a cycloalkyl group, and a hydrogen atom or an alkyl group. It is more preferable that these groups may have a substituent.
  • L H1 is preferably an arylene group or a divalent heterocyclic group.
  • L H1 represents formulas (A-1) to (A-3), formulas (A-8) to (A-10), formulas (AA-1) to (AA-6), formulas (AA-10) to A group represented by formula (AA-21) or formulas (AA-24) to (AA-34) is preferred.
  • Formula (AA-4), Formula (AA-10), Formula (AA-12) or Formula A group represented by (AA-14) is particularly preferred, and is represented by formula (A-1), formula (A-2), formula (AA-2), formula (AA-4) or formula (AA-14). It is especially preferable that it is group represented by.
  • L H1 may have, a halogen atom, an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, or a monovalent heterocyclic group is preferable, and an alkyl group, an alkoxy group, an aryl group A group or a monovalent heterocyclic group is more preferable, an alkyl group, an aryl group or a monovalent heterocyclic group is more preferable, and these groups may further have a substituent.
  • L H21 is preferably a single bond or an arylene group, more preferably a single bond, and this arylene group may have a substituent.
  • the definition and examples of the arylene group or divalent heterocyclic group represented by L H21 are the same as the definitions and examples of the arylene group or divalent heterocyclic group represented by L H1 .
  • R H21 is preferably an aryl group or a monovalent heterocyclic group, and these groups optionally have a substituent.
  • aryl group and monovalent heterocyclic group represented by R H21 are the same as those of the aryl group and monovalent heterocyclic group represented by Ar H1 and Ar H2 .
  • the compound represented by the formula (H-1) is preferably a compound represented by the formula (H-2).
  • Examples of the compound represented by the formula (H-1) include compounds represented by the following formulas (H-101) to (H-118).
  • Examples of the polymer compound used for the host material include a polymer compound that is a hole transport material described later and a polymer compound that is an electron transport material described later.
  • Polymer host A polymer compound preferable as the host compound (hereinafter referred to as “polymer host”) will be described.
  • the polymer host is preferably a polymer compound containing a structural unit represented by the formula (Y).
  • Ar Y1 represents an arylene group, a divalent heterocyclic group, or a divalent group in which at least one arylene group and at least one divalent heterocyclic group are directly bonded, and these This group may have a substituent.
  • the arylene group represented by Ar Y1 is more preferably the formula (A-1), the formula (A-2), the formula (A-6)-(A-10), the formula (A-19) or the formula (A A-20), more preferably a group represented by formula (A-1), formula (A-2), formula (A-7), formula (A-9) or formula (A-19) These groups may have a substituent.
  • the divalent heterocyclic group represented by Ar Y1 is more preferably a formula (AA-1)-(AA-4), a formula (AA-10)-(AA-15), a formula (AA-18) -(AA-21), a group represented by formula (AA-33) or formula (AA-34), and more preferably a group represented by formula (AA-4), formula (AA-10), formula (AA- 12) a group represented by formula (AA-14) or formula (AA-33), and these groups may have a substituent.
  • the ranges are the same as the more preferable ranges and further preferable ranges of the above-mentioned arylene group and divalent heterocyclic group represented by Ar Y1 .
  • divalent group in which at least one arylene group and at least one divalent heterocyclic group are directly bonded examples include groups represented by the following formulas, which have a substituent. You may do it.
  • R XX represents a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group or a monovalent heterocyclic group, and these groups optionally have a substituent.
  • R XX is preferably an alkyl group, a cycloalkyl group, or an aryl group, and these groups optionally have a substituent.
  • the substituent that the group represented by Ar Y1 may have is preferably an alkyl group, a cycloalkyl group, or an aryl group, and these groups may further have a substituent.
  • Examples of the structural unit represented by the formula (Y) include structural units represented by the formulas (Y-1)-(Y-10). From the viewpoint of the luminance life of the light emitting device of the present invention, Preferably, it is a structural unit represented by the formula (Y-1)-(Y-3), and from the viewpoint of electron transport properties of the light emitting device of the present invention, preferably the formula (Y-4)-(Y-7 From the viewpoint of the hole transport property of the light emitting device of the present invention, it is preferably a structural unit represented by the formula (Y-8)-(Y-10).
  • R Y1 represents a hydrogen atom, an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group or a monovalent heterocyclic group, and these groups optionally have a substituent.
  • a plurality of R Y1 may be the same or different, and adjacent R Y1 may be bonded to each other to form a ring together with the carbon atom to which each is bonded.
  • R Y1 is preferably a hydrogen atom, an alkyl group, a cycloalkyl group, or an aryl group, and these groups optionally have a substituent.
  • the structural unit represented by the formula (Y-1) is preferably a structural unit represented by the formula (Y-1 ′).
  • R Y11 represents an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, or a monovalent heterocyclic group, and these groups optionally have a substituent.
  • a plurality of R Y11 may be the same or different.
  • R Y11 is preferably an alkyl group, a cycloalkyl group, or an aryl group, more preferably an alkyl group or a cycloalkyl group, and these groups optionally have a substituent.
  • R Y1 represents the same meaning as described above.
  • X Y1 is, -C (R Y2) 2 -
  • R Y2 represents a hydrogen atom, an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, or a monovalent heterocyclic group, and these groups may have a substituent.
  • a plurality of R Y2 may be the same or different, and R Y2 may be bonded to each other to form a ring together with the carbon atom to which each is bonded. ]
  • R Y2 is preferably an alkyl group, a cycloalkyl group, an aryl group or a monovalent heterocyclic group, more preferably an alkyl group, a cycloalkyl group or an aryl group, and these groups have a substituent. You may do it.
  • the combination of two R Y2 in the group represented by —C (R Y2 ) 2 — is preferably an alkyl group or a cycloalkyl group, both are aryl groups, and both are monovalent complex A cyclic group, or one is an alkyl group or a cycloalkyl group and the other is an aryl group or a monovalent heterocyclic group, more preferably one is an alkyl group or a cycloalkyl group and the other is an aryl group. May have a substituent.
  • Two R Y2 s may be bonded to each other to form a ring together with the atoms to which they are bonded.
  • R Y2 forms a ring
  • the group represented by —C (R Y2 ) 2 — Is preferably a group represented by the formula (Y-A1)-(Y-A5), more preferably a group represented by the formula (Y-A4), and these groups have a substituent. It may be.
  • the combination of two R Y2 in the group represented by —C (R Y2 ) ⁇ C (R Y2 ) — is preferably such that both are alkyl groups or cycloalkyl groups, or one is an alkyl group Alternatively, a cycloalkyl group and the other is an aryl group, and these groups may have a substituent.
  • R Y2 in the group represented by —C (R Y2 ) 2 —C (R Y2 ) 2 — are preferably an alkyl group or a cycloalkyl group which may have a substituent. It is. A plurality of R Y2 may be bonded to each other to form a ring together with the atoms to which each is bonded. When R Y2 forms a ring, —C (R Y2 ) 2 —C (R Y2 ) 2 —
  • the group represented is preferably a group represented by the formula (Y-B1)-(Y-B5), more preferably a group represented by the formula (Y-B3), and these groups are substituted. It may have a group.
  • R Y2 represents the same meaning as described above.
  • the structural unit represented by the formula (Y-2) is preferably a structural unit represented by the formula (Y-2 ′).
  • the structural unit represented by the formula (Y-3) is preferably a structural unit represented by the formula (Y-3 ′).
  • R Y1 represents the same meaning as described above.
  • R Y3 represents a hydrogen atom, an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, or a monovalent heterocyclic group, and these groups may have a substituent.
  • R Y3 is preferably an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group or a monovalent heterocyclic group, more preferably an aryl group, and these groups have a substituent. May be.
  • the structural unit represented by the formula (Y-4) is preferably a structural unit represented by the formula (Y-4 ′), and the structural unit represented by the formula (Y-6) is represented by the formula (Y -6 ′) is preferred.
  • R Y1 represents the same meaning as described above.
  • R Y4 represents a hydrogen atom, an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, or a monovalent heterocyclic group, and these groups optionally have a substituent.
  • R Y4 is preferably an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group or a monovalent heterocyclic group, more preferably an aryl group, and these groups have a substituent. May be.
  • a structural unit represented by the formula (Y) for example, a structural unit comprising an arylene group represented by the formula (Y-101)-(Y-121), a formula (Y-201)-(Y-206)
  • the structural unit represented by the formula (Y), in which Ar Y1 is an arylene group, is excellent in the luminance life of the light-emitting element of the present invention, and therefore is based on the total amount of the structural units contained in the polymer compound. Thus, it is preferably 0.5 to 80 mol%, more preferably 30 to 60 mol%.
  • the structural unit that is a group is preferably 0.5 to 30 mol%, more preferably 3%, based on the total amount of the structural units contained in the polymer compound, because the charge transport property of the light emitting device of the present invention is excellent. ⁇ 20 mol%.
  • the polymer host may further contain a structural unit represented by the following formula (X).
  • a X1 and a X2 each independently represent an integer of 0 or more.
  • Ar X1 and Ar X3 each independently represent an arylene group or a divalent heterocyclic group, and these groups optionally have a substituent.
  • Ar X2 and Ar X4 each independently represent an arylene group, a divalent heterocyclic group, or a divalent group in which at least one arylene group and at least one divalent heterocyclic group are directly bonded to each other. And these groups may have a substituent.
  • R X1 , R X2 and R X3 each independently represent a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group or a monovalent heterocyclic group, and these groups optionally have a substituent.
  • a X1 is preferably 2 or less, more preferably 1 because the luminance life of the light emitting device of the present invention is more excellent.
  • a X2 is preferably 2 or less, more preferably 0, because the luminance lifetime of the light emitting device of the present invention is more excellent.
  • R X1 , R X2 and R X3 are preferably an alkyl group, a cycloalkyl group, an aryl group or a monovalent heterocyclic group, more preferably an aryl group, and these groups have a substituent. Also good.
  • the arylene group represented by Ar X1 and Ar X3 is more preferably a group represented by the formula (A-1) or the formula (A-9), more preferably a formula (A-1). These groups may have a substituent.
  • the divalent heterocyclic group represented by Ar X1 and Ar X3 is more preferably represented by the formula (AA-1), the formula (AA-2) or the formula (AA-7)-(AA-26). These groups may have a substituent.
  • Ar X1 and Ar X3 are preferably an arylene group which may have a substituent.
  • the more preferable range of the divalent heterocyclic group represented by Ar X2 and Ar X4 is the same as the more preferable range of the divalent heterocyclic group represented by Ar X1 and Ar X3 .
  • Further preferred ranges are the same as the more preferred ranges and further preferred ranges of the arylene group and divalent heterocyclic group represented by Ar X1 and Ar X3 , respectively.
  • the divalent group in which at least one arylene group represented by Ar X2 and Ar X4 and at least one divalent heterocyclic group are directly bonded to each other is at least represented by Ar Y1 in the formula (Y) Examples thereof include the same divalent groups in which one kind of arylene group and at least one kind of divalent heterocyclic group are directly bonded.
  • Ar X2 and Ar X4 are preferably an arylene group which may have a substituent.
  • the substituent that the groups represented by Ar X1 to Ar X4 and R X1 to R X3 may have is preferably an alkyl group, a cycloalkyl group or an aryl group, and these groups further have a substituent. You may do it.
  • the structural unit represented by the formula (X) is preferably a structural unit represented by the formula (X-1)-(X-7), more preferably the formula (X-1)-(X-6) And more preferably a structural unit represented by the formula (X-3)-(X-6).
  • R X4 and R X5 each independently represent a hydrogen atom, an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, an aryloxy group, a halogen atom, a monovalent heterocyclic group or cyano. Represents a group, and these groups may have a substituent.
  • a plurality of R X4 may be the same or different.
  • a plurality of R X5 may be the same or different, and adjacent R X5 may be bonded to each other to form a ring together with the carbon atom to which each is bonded.
  • the structural unit represented by the formula (X) has excellent hole transportability, it is preferably 0.1 to 50 mol%, more preferably 1 to It is 40 mol%, more preferably 5 to 30 mol%.
  • Examples of the structural unit represented by the formula (X) include structural units represented by the formula (X1-1)-(X1-11), preferably the formula (X1-3)-(X1-10). ).
  • polymer host examples include polymer compounds (P-1) to (P-6) shown in Table 10.
  • p, q, r, s and t represent the molar ratio of each constituent unit.
  • p + q + r + s + t 100 and 100 ⁇ p + q + r + s ⁇ 70.
  • the other structural unit means a structural unit other than the structural unit represented by the formula (Y) and the structural unit represented by the formula (X). ]
  • the polymer host may be any of a block copolymer, a random copolymer, an alternating copolymer, and a graft copolymer, and may be in other modes.
  • a copolymer obtained by polymerization is preferred.
  • the polymer host can be produced by using a known polymerization method described in Chemical Review (Chem. Rev.), Vol. 109, pp. 897-1091 (2009), etc., and Suzuki reaction, Yamamoto reaction, Buchwald Examples of the polymerization method include a coupling reaction using a transition metal catalyst such as a reaction, Stille reaction, Negishi reaction, and Kumada reaction.
  • a method of charging the monomer a method of charging the entire amount of the monomer into the reaction system at once, a part of the monomer is charged and reacted, and then the remaining monomer is batched, Examples thereof include a method of charging continuously or divided, a method of charging monomer continuously or divided, and the like.
  • transition metal catalysts examples include palladium catalysts and nickel catalysts.
  • Post-treatment of the polymerization reaction is a known method, for example, a method of removing water-soluble impurities by liquid separation, adding the reaction solution after polymerization reaction to a lower alcohol such as methanol, filtering the deposited precipitate, and then drying. These methods are performed alone or in combination.
  • a lower alcohol such as methanol
  • filtering the deposited precipitate and then drying.
  • These methods are performed alone or in combination.
  • the purity of the polymer host is low, it can be purified by a usual method such as recrystallization, reprecipitation, continuous extraction with a Soxhlet extractor, column chromatography, or the like.
  • the composition of the light emitting layer containing a solvent (hereinafter also referred to as “light emitting layer ink”) is suitable for the production of a light emitting element using a printing method such as an ink jet printing method or a nozzle printing method.
  • the viscosity of the ink in the light emitting layer may be adjusted according to the type of printing method. Since it is difficult, it is preferably 1 to 20 mPa ⁇ s at 25 ° C.
  • the solvent contained in the light emitting layer ink is preferably a solvent that can dissolve or uniformly disperse the solid content in the light emitting layer ink.
  • the solvent include chlorine solvents such as 1,2-dichloroethane, 1,1,2-trichloroethane, chlorobenzene and o-dichlorobenzene; ether solvents such as THF, dioxane, anisole and 4-methylanisole; Aromatic hydrocarbon solvents such as xylene, mesitylene, ethylbenzene, n-hexylbenzene, cyclohexylbenzene; cyclohexane, methylcyclohexane, n-pentane, n-hexane, n-heptane, n-octane, n-nonane, n- Aliphatic hydrocarbon solvents such as decane, n-dodecane, and bicyclohexyl; ketone solvent
  • the amount of the solvent is usually 1000 to 100,000 parts by weight, preferably 100 parts by weight when the total of the phosphorescent compound (A) and the phosphorescent compound (B) is 100 parts by weight. Is 2000 to 20000 parts by weight.
  • the hole transport material is classified into a low molecular compound and a high molecular compound, preferably a high molecular compound, and more preferably a high molecular compound having a crosslinking group.
  • polymer compound examples include polyvinyl carbazole and derivatives thereof; polyarylene having an aromatic amine structure in the side chain or main chain and derivatives thereof.
  • the polymer compound may be a compound to which an electron accepting site is bonded. Examples of the electron accepting site include fullerene, tetrafluorotetracyanoquinodimethane, tetracyanoethylene, trinitrofluorenone, and fullerene is preferable.
  • the compounding amount of the hole transport material is usually 1 to 400 parts by weight when the total of the phosphorescent compound (A) and the phosphorescent compound (B) is 100 parts by weight.
  • the amount is 5 to 150 parts by weight.
  • the hole transport material may be used alone or in combination of two or more.
  • Electron transport materials are classified into low molecular compounds and high molecular compounds.
  • the electron transport material may have a crosslinking group.
  • Low molecular weight compounds include, for example, metal complexes having 8-hydroxyquinoline as a ligand, oxadiazole, anthraquinodimethane, benzoquinone, naphthoquinone, anthraquinone, tetracyanoanthraquinodimethane, fluorenone, diphenyldicyanoethylene and diphenoquinone. As well as these derivatives.
  • polymer compound examples include polyphenylene, polyfluorene, and derivatives thereof.
  • the polymer compound may be doped with a metal.
  • the compounding amount of the electron transport material is usually 1 to 400 parts by weight when the total of the phosphorescent compound (A) and the phosphorescent compound (B) is 100 parts by weight. Yes, preferably 5 to 150 parts by weight.
  • the electron transport material may be used alone or in combination of two or more.
  • the hole injection material and the electron injection material are each classified into a low molecular compound and a high molecular compound.
  • the hole injection material and the electron injection material may have a crosslinking group.
  • low molecular weight compounds include metal phthalocyanines such as copper phthalocyanine; carbon; metal oxides such as molybdenum and tungsten; and metal fluorides such as lithium fluoride, sodium fluoride, cesium fluoride, and potassium fluoride.
  • metal phthalocyanines such as copper phthalocyanine
  • carbon such as carbon
  • metal oxides such as molybdenum and tungsten
  • metal fluorides such as lithium fluoride, sodium fluoride, cesium fluoride, and potassium fluoride.
  • polymer compound examples include polyaniline, polythiophene, polypyrrole, polyphenylene vinylene, polythienylene vinylene, polyquinoline and polyquinoxaline, and derivatives thereof; conductive polymers such as polymers containing an aromatic amine structure in the main chain or side chain. A functional polymer.
  • the compounding amounts of the hole injecting material and the electron injecting material are usually when the total of the phosphorescent compound (A) and the phosphorescent compound (B) is 100 parts by weight, respectively. 1 to 400 parts by weight, preferably 5 to 150 parts by weight.
  • the hole injection material and the electron injection material may be used alone or in combination of two or more.
  • the electrical conductivity of the conductive polymer is preferably 1 ⁇ 10 ⁇ 5 S / cm to 1 ⁇ 10 3 S / cm.
  • the conductive polymer can be doped with an appropriate amount of ions.
  • the kind of ions to be doped is an anion for a hole injection material and a cation for an electron injection material.
  • the anion include polystyrene sulfonate ion, alkylbenzene sulfonate ion, and camphor sulfonate ion.
  • the cation include lithium ion, sodium ion, potassium ion, and tetrabutylammonium ion.
  • the ions to be doped may be used alone or in combination of two or more.
  • Luminescent material Luminescent materials (different from the phosphorescent compound (A) and the phosphorescent compound (B)) are classified into low molecular compounds and high molecular compounds.
  • the light emitting material may have a crosslinking group.
  • low molecular weight compound examples include naphthalene and derivatives thereof, anthracene and derivatives thereof, perylene and derivatives thereof, and triplet light-emitting complexes having iridium, platinum, or europium as a central metal.
  • Examples of the polymer compound include a phenylene group, a naphthalenediyl group, a fluorenediyl group, a phenanthrene diyl group, a dihydrophenanthrene diyl group, a group represented by the formula (X), a carbazole diyl group, a phenoxazine diyl group, and a phenothiazine diyl.
  • the light emitting material preferably contains a triplet light emitting complex and a polymer compound.
  • triplet light-emitting complex examples include the metal complexes shown below.
  • the content of the light emitting material is usually 0.001 to 10 parts by weight when the total of the phosphorescent compound (A) and the phosphorescent compound (B) is 100 parts by weight. .
  • the antioxidant may be any compound that is soluble in the same solvent as the phosphorescent compound (A) and the phosphorescent compound (B) and does not inhibit light emission and charge transport.
  • a phenol-based antioxidant, Phosphorus antioxidant is mentioned.
  • the blending amount of the antioxidant is usually 0.001 to 10 parts by weight when the total of the phosphorescent compound (A) and the phosphorescent compound (B) is 100 parts by weight. is there.
  • Antioxidants may be used alone or in combination of two or more.
  • the hole transport layer included in the light-emitting element of the present invention is a layer obtained using a material having a crosslinking group (hereinafter also referred to as “crosslinking material”).
  • the cross-linking material may be a low-molecular compound or a high-molecular compound, but it has at least one cross-linking group selected from the cross-linking group A group because the external quantum efficiency of the light emitting device of the present invention is more excellent.
  • a low-molecular compound hereinafter also referred to as “low-molecular compound of a hole transport layer” or a polymer compound containing a cross-linking structural unit having at least one cross-linking group selected from the cross-linking group A group (hereinafter “ It is also referred to as a “polymer compound of a hole transport layer”.
  • the bridging group selected from the bridging group A is preferably a bridging group represented by formulas (BX-1) to (BX-13), since the external quantum efficiency of the light emitting device of the present invention is more excellent.
  • Preferred are bridging groups represented by formulas (BX-1), (BX-3) or (BX-9) to (BX-13), and more preferred are formulas (BX-1) or (BX-9) It is a crosslinking group represented by these.
  • the structural unit having at least one crosslinking group selected from the crosslinking group A group contained in the polymer compound of the hole transport layer is represented by the structural unit represented by the formula (Z) or the formula (Z ′) described later. However, it may be a structural unit represented by the following.
  • the structural unit having at least one crosslinking group selected from the crosslinking group A group contained in the polymer compound of the hole transport layer is represented by the structural unit represented by the formula (Z) or the formula (Z ′). It is preferably a structural unit.
  • nA is preferably an integer of 0 to 3, more preferably an integer of 0 to 2, because the external quantum efficiency of the light emitting device of the present invention is more excellent.
  • N is preferably 2 because the external quantum efficiency of the light emitting device of the present invention is more excellent.
  • Ar 1 is preferably an aromatic hydrocarbon group which may have a substituent since the external quantum efficiency of the light-emitting device of the present invention is more excellent.
  • the number of carbon atoms of the aromatic hydrocarbon group represented by Ar 1 is usually 6 to 60, preferably 6 to 30, and more preferably 6 to 18, excluding the number of carbon atoms of the substituent. is there.
  • the arylene group portion excluding n substituents of the aromatic hydrocarbon group represented by Ar 1 is preferably a group represented by the formula (A-1) to the formula (A-20), More preferably, groups represented by formula (A-1), formula (A-2), formula (A-6) to formula (A-10), formula (A-19) or formula (A-20) And more preferably a group represented by formula (A-1), formula (A-2), formula (A-7), formula (A-9) or formula (A-19), This group may have a substituent.
  • the number of carbon atoms of the heterocyclic group represented by Ar 1 is usually 2 to 60, preferably 3 to 30, more preferably 4 to 18, excluding the number of carbon atoms of the substituent.
  • the divalent heterocyclic group moiety obtained by removing n substituents of the heterocyclic group represented by Ar 1, preferably, a group represented by the formula (AA-1) ⁇ formula (AA-34) is there.
  • the aromatic hydrocarbon group and heterocyclic group represented by Ar 1 may have a substituent, and examples of the substituent include an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, and an aryloxy group.
  • substituent include an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, and an aryloxy group.
  • Alkylene group represented by L A is not including the carbon atom number of substituent is usually 1 to 20, preferably 1 to 15, more preferably 1 to 10. Cycloalkylene group represented by L A is not including the carbon atom number of substituent is usually 3 to 20.
  • the alkylene group and the cycloalkylene group may have a substituent, and examples thereof include a methylene group, an ethylene group, a propylene group, a butylene group, a hexylene group, a cyclohexylene group, and an octylene group.
  • Alkylene group and cycloalkylene group represented by L A may have a substituent.
  • substituents that the alkylene group and the cycloalkylene group may have include an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, a halogen atom, and a cyano group.
  • Arylene group represented by L A may have a substituent.
  • the arylene group is preferably a phenylene group or a fluorenediyl group, and more preferably an m-phenylene group, a p-phenylene group, a fluorene-2,7-diyl group, or a fluorene-9,9-diyl group.
  • the substituent that the arylene group may have include, for example, an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, an aryloxy group, a monovalent heterocyclic group, a halogen atom, a cyano group, and a bridge. Examples thereof include a crosslinking group selected from the group A.
  • L A since the preparation of the polymer compound of the hole transport layer is facilitated, preferably, an arylene group or an alkylene group, more preferably a phenylene group, fluorenediyl group or an alkylene group, these The group may have a substituent.
  • the crosslinkable group represented by X is preferably a crosslinkable group represented by the formulas (BX-1) to (BX-13), more preferably the crosslinkability of the polymer compound of the hole transport layer. Is a bridging group represented by the formula (BX-1), (BX-3) or (BX-9) to (BX-13), more preferably in the formula (BX-1) or (BX-9) It is a crosslinking group represented.
  • the total amount of the structural units contained in the polymer compound in the hole transport layer is Preferably, it is 0.5 to 90 mol%, more preferably 3 to 75 mol%, still more preferably 5 to 60 mol%.
  • the structural unit represented by the formula (Z) may be included in the polymer compound of the hole transport layer in only one kind or in two or more kinds.
  • mA is preferably 0 or 1, more preferably 0, since the external quantum efficiency of the light emitting device of the present invention is more excellent.
  • M is preferably 2 because the external quantum efficiency of the light emitting device of the present invention is more excellent.
  • C is preferably 0 because it facilitates the production of the polymer compound of the hole transport layer and the external quantum efficiency of the light emitting device of the present invention is more excellent.
  • Ar 3 is preferably an aromatic hydrocarbon group which may have a substituent because the external quantum efficiency of the light-emitting device of the present invention is more excellent.
  • the definition and example of the arylene group part excluding m substituents of the aromatic hydrocarbon group represented by Ar 3 are the same as the definition and example of the arylene group represented by Ar X2 in the above formula (X). It is.
  • the definition and example of the divalent heterocyclic group part excluding m substituents of the heterocyclic group represented by Ar 3 are the divalent heterocyclic group represented by Ar X2 in the above formula (X). Same as definition and example of part.
  • the definition and examples of the divalent group excluding m substituents of the group in which at least one aromatic hydrocarbon ring represented by Ar 3 and at least one heterocycle are directly bonded are defined by the above formula (
  • the definition and examples of the divalent group in which at least one arylene group represented by Ar X2 in X) and at least one divalent heterocyclic group are directly bonded are the same.
  • Ar 2 and Ar 4 are preferably an arylene group which may have a substituent since the external quantum efficiency of the light emitting device of the present invention is more excellent.
  • the definitions and examples of the arylene group represented by Ar 2 and Ar 4 are the same as the definitions and examples of the arylene group represented by Ar X1 and Ar X3 in the above formula (X).
  • the definitions and examples of the divalent heterocyclic group represented by Ar 2 and Ar 4 are the same as the definitions and examples of the divalent heterocyclic group represented by Ar X1 and Ar X3 in the above formula (X). is there.
  • the groups represented by Ar 2 , Ar 3 and Ar 4 may have a substituent, and examples of the substituent include an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, an aryloxy group, Examples thereof include a halogen atom, a monovalent heterocyclic group, and a cyano group.
  • L A the alkylene group represented by L A
  • a cycloalkylene group an arylene group
  • a divalent heterocyclic The definition and examples of the ring group are the same.
  • a phenylene group or a methylene group since production of the polymer compounds of the hole transport layer is facilitated, it is preferable that a phenylene group or a methylene group.
  • crosslinking group represented by X ′ are the same as the definition and example of the crosslinking group represented by X described above.
  • the structural unit represented by the formula (Z ′) is excellent in stability of the polymer compound in the hole transport layer and in crosslinkability of the polymer compound in the hole transport layer.
  • the amount is preferably 0.5 to 50 mol%, more preferably 3 to 30 mol%, still more preferably 3 to 20 mol%, based on the total amount of structural units contained in the molecular compound.
  • the structural unit represented by the formula (Z ′) may be included in the polymer compound of the hole transport layer in only one kind or in two or more kinds.
  • Examples of the structural unit represented by the formula (Z) include structural units represented by the formula (Z-1) to the formula (Z-30), and examples of the structural unit represented by the formula (Z ′) Examples include structural units represented by the formula (Z′-1) to the formula (Z′-9).
  • the crosslinkability of the polymer compound in the hole transport layer is excellent, it is preferably a structural unit represented by the formula (Z-1) to the formula (Z-30), more preferably the formula (Z- 1) to (Z-15), (Z-19), (Z-20), (Z-23), (Z-25) or (Z-30) And more preferably a structural unit represented by formula (Z-1) to formula (Z-9) or formula (Z-30).
  • the polymer compound of the hole transport layer is excellent in hole transport property, it is preferable that the polymer compound further includes a structural unit represented by the formula (X).
  • the definition and examples of the structural unit represented by the formula (X) that may be contained in the polymer compound of the hole transport layer are the configurations represented by the formula (X) that may be contained in the polymer host described above. Same as unit definition and example.
  • the structural unit represented by the formula (X) may be included in the polymer compound of the hole transport layer in only one kind or in two or more kinds.
  • the polymer compound of the hole transport layer preferably further includes a structural unit represented by the formula (Y) because the external quantum efficiency of the light emitting device of the present invention is more excellent.
  • the definition and examples of the structural unit represented by the formula (Y) that may be contained in the polymer compound of the hole transport layer are the configurations represented by the formula (Y) that may be contained in the polymer host described above. Same as unit definition and example.
  • the structural unit represented by the formula (Y) may be contained in the polymer compound of the hole transport layer in only one kind or in two or more kinds.
  • both the structural unit represented by the formula (X) and the structural unit represented by the formula (Y) It is preferable to include.
  • Examples of the polymer compound for the hole transport layer include polymer compounds P-7 to P-14 shown in Table 11.
  • the “other structural unit” means a structural unit other than the structural units represented by the formula (Z), the formula (Z ′), the formula (X), and the formula (Y).
  • the polymer compound of the hole transport layer may be any of a block copolymer, a random copolymer, an alternating copolymer, and a graft copolymer, and may be in other modes.
  • a copolymer obtained by copolymerizing the raw material monomers is preferable.
  • the polymer compound of the hole transport layer can be produced by the same method as the polymer host production method described above.
  • the low molecular compound of the hole transport layer is preferably a low molecular compound represented by the formula (Z ′′).
  • m B1 is usually an integer of 0 to 10, and is preferably an integer of 0 to 5, more preferably an integer of 0 to 2, because it facilitates the synthesis of a low molecular compound for the hole transport layer. More preferably, it is 0 or 1, particularly preferably 0.
  • m B2 is usually an integer of 0 to 10, preferably from 1 to 5 because it facilitates the synthesis of the low molecular weight compound of the hole transport layer and the external quantum efficiency of the light emitting device of the present invention is superior. It is an integer, more preferably an integer of 1 to 3, more preferably 1 or 2, and particularly preferably 1.
  • n B1 is usually an integer of 0 to 5, and is preferably an integer of 0 to 4, more preferably an integer of 0 to 2, because it facilitates the synthesis of a low molecular compound for the hole transport layer. More preferably, it is 0.
  • the definition and examples of the arylene group part excluding the n B1 substituents of the aromatic hydrocarbon group represented by Ar 5 are the definitions and examples of the arylene group represented by Ar X2 in the above formula (X). The same.
  • the definition and example of the divalent heterocyclic group part excluding the n B1 substituents of the heterocyclic group represented by Ar 5 are the divalent heterocyclic ring represented by Ar X2 in the above formula (X). Same as definition and example of base part.
  • the definition and examples of the divalent group excluding the n B1 substituents of the group in which at least one aromatic hydrocarbon ring represented by Ar 5 and at least one heterocycle are directly bonded are the above-mentioned formulas
  • the definition and example of the divalent group in which at least one kind of arylene group represented by Ar X2 and at least one kind of divalent heterocyclic group in (X) are directly bonded are the same.
  • Ar 5 is preferably an aromatic hydrocarbon group, since the external quantum efficiency of the light emitting device of the present invention is excellent.
  • Alkylene group represented by L B1 a cycloalkylene group, an arylene group, a divalent definitions and examples of the heterocyclic group, respectively, the alkylene group represented by L A, a cycloalkylene group, an arylene group, a divalent heterocyclic
  • the definition and examples of the ring group are the same.
  • L B1 is preferably an alkylene group, an arylene group or an oxygen atom, more preferably an alkylene group or an arylene group, and still more preferably a phenylene group, because it facilitates the synthesis of a low molecular compound for the hole transport layer.
  • X ′′ is preferably a bridging group selected from the bridging group A, an aryl group, or a monovalent heterocyclic group, and more preferably represented by formulas (BX-1) to (BX-13).
  • a bridging group or an aryl group more preferably a bridging group represented by the formula (BX-1), (BX-3) or (BX-9) to (BX-13), a phenyl group, a naphthyl group or a fluorenyl group
  • Examples of the low molecular compound for the hole transport layer include low molecular compounds represented by the formulas (Z ′′ -1) to (Z ′′ -16), and preferably the formula (Z ′′ -1 ) To (Z ′′ -10), more preferably low molecular compounds represented by formulas (Z ′′ -5) to (Z ′′ -9).
  • the hole transport layer is a composition comprising a cross-linking material and at least one material selected from the group consisting of a hole transport material, a hole injection material, an electron transport material, an electron injection material, a light emitting material, and an antioxidant. (Hereinafter also referred to as “hole transport layer composition”).
  • Examples and preferred ranges of the hole transport material, the electron transport material, the hole injection material, the electron injection material, and the light emitting material contained in the composition of the hole transport layer may be further contained in the composition of the light emitting layer.
  • Examples and preferred ranges of good hole transport materials, electron transport materials, hole injection materials, electron injection materials and light emitting materials are the same.
  • the compounding amounts of the hole transport material, the electron transport material, the hole injection material, the electron injection material, and the light emitting material are each usually 1 to 100 parts by weight when the crosslinking material is 100 parts by weight. 400 parts by weight, preferably 5 to 150 parts by weight.
  • the antioxidant contained in the composition of the hole transport layer are the same as examples and preferred ranges of the antioxidant that may be further contained in the composition of the light emitting layer.
  • the blending amount of the antioxidant is usually 0.001 to 10 parts by weight when the crosslinking material is 100 parts by weight.
  • the composition of the hole transport layer containing a solvent (hereinafter also referred to as “hole transport layer ink”) is the same as the ink of the light emitting layer, such as spin coating method, casting method, micro gravure coating method, gravure coating. Coating, bar coating method, roll coating method, wire bar coating method, dip coating method, spray coating method, screen printing method, flexographic printing method, offset printing method, ink jet printing method, capillary coating method, nozzle coating method, etc. It can be suitably used in the method.
  • the preferable range of the viscosity of the ink of the hole transport layer is the same as the preferable range of the viscosity of the ink of the light emitting layer.
  • Examples and preferred ranges of the solvent contained in the ink of the hole transport layer are the same as examples and preferred ranges of the solvent contained in the ink of the light emitting layer.
  • the blending amount of the solvent is usually 1000 to 100,000 parts by weight, preferably 2000 to 20000 parts by weight when the crosslinking material is 100 parts by weight.
  • the light-emitting element of the present invention is a light-emitting element having an anode, a cathode, a light-emitting layer, and a hole transport layer, but may have a layer other than the light-emitting layer and the hole transport layer.
  • the light emitting layer and the hole transport layer are preferably adjacent to each other because the external quantum efficiency of the light emitting device of the present invention is more excellent.
  • the light-emitting device of the present invention preferably further has a hole injection layer between the anode and the hole transport layer from the viewpoint of hole injection, and from the viewpoint of electron injection and electron transport, It is preferable to have at least one layer of an electron injection layer and an electron transport layer between the cathode and the light emitting layer.
  • A Anode-hole transport layer-light emitting layer-cathode
  • b Anode-hole transport layer-light emitting layer-electron transport layer-cathode
  • c Anode-hole transport layer-light emitting layer-electron injection layer-cathode
  • D Anode-hole injection layer-hole transport layer-emission layer-cathode
  • e Anode-hole injection layer-hole transport layer-emission layer-electron transport layer-cathode
  • f Anode-hole injection Layer-hole transport layer-light emitting layer-electron injection layer-cathode
  • g anode-hole injection layer-hole transport layer-light emitting layer-electron transport layer-electron injection layer-cathode
  • the anode, the cathode, the hole injection layer, the electron transport layer, and the electron injection layer may each be provided in two or more layers as necessary.
  • cathodes When there are a plurality of anodes, cathodes, hole injection layers, electron transport layers and electron injection layers, they may be the same or different.
  • the thickness of the anode, cathode, hole injection layer, hole transport layer, light emitting layer, electron transport layer and electron injection layer is usually 1 nm to 1 ⁇ m, preferably 2 nm to 500 nm, more preferably 5 nm to 150 nm.
  • the hole injection layer and the electron injection layer include a hole injection material and an electron injection material, respectively.
  • Each of these layers can be formed by dissolving the hole injecting material and the electron injecting material in the above-described solvent, preparing and using an ink, and using the same method as the above-described film formation.
  • Examples of the material for the hole injection layer and the electron injection layer include the above-described hole injection material and electron injection material.
  • the electron transport layer includes an electron transport material.
  • the electron transport layer can be formed by dissolving the electron transport material in the above-described solvent, preparing and using the ink, and using the same method as the above-described film production.
  • Examples of the material for the electron transport layer include the electron transport materials described above.
  • the electron transport material used for forming the electron transport layer is represented by a structural unit represented by the formula (ET-1) and a formula (ET-2)
  • a polymer compound containing at least one structural unit selected from the group consisting of structural units is preferred.
  • nE1 represents an integer of 1 or more.
  • Ar E1 represents an aromatic hydrocarbon group or a heterocyclic group, and these groups optionally have a substituent other than R E1 .
  • R E1 represents a group represented by the formula (ES-1). When a plurality of R E1 are present, they may be the same or different. ]
  • nE4 represents an integer of 0 or more
  • aE1 represents an integer of 1 or more
  • bE1 represents an integer of 0 or more
  • R E3 represents an arylene group or a divalent heterocyclic group, and these groups optionally have a substituent.
  • Q E1 represents an alkylene group, an arylene group, an oxygen atom or a sulfur atom, and these groups optionally have a substituent. When a plurality of Q E1 are present, they may be the same or different.
  • Y E1 represents —CO 2 ⁇ , —SO 3 ⁇ , —SO 2 — or PO 3 2 ⁇ .
  • M E2 represents a metal cation or an ammonium cation, and this ammonium cation may have a substituent. When a plurality of M E2 are present, they may be the same or different.
  • Z E1 represents F ⁇ , Cl ⁇ , Br ⁇ , I ⁇ , OH ⁇ , R E4 SO 3 ⁇ , R E4 COO ⁇ , ClO ⁇ , ClO 2 ⁇ , ClO 3 ⁇ , ClO 4 ⁇ , SCN ⁇ , CN ⁇ .
  • R E4 represents an alkyl group, a cycloalkyl group or an aryl group, and these groups optionally have a substituent.
  • Z E1 When a plurality of Z E1 are present, they may be the same or different.
  • aE1 and bE1 are selected so that the charge of the group represented by the formula (ES-1) is zero. ]
  • NE1 is preferably an integer of 1 to 4, more preferably 1 or 2.
  • Examples of the aromatic hydrocarbon group or heterocyclic group represented by Ar E1 include 1,4-phenylene group, 1,3-phenylene group, 1,2-phenylene group, 2,6-naphthalenediyl group, 1,4 Hydrogen bonded directly to the atoms constituting the ring from a naphthalenediyl group, a 2,7-fluorenediyl group, a 3,6-fluorenediyl group, a 2,7-phenanthenediyl group or a 2,7-carbazolediyl group
  • the remaining atomic group excluding one atom nE1 is preferable, and may have a substituent other than R E1 .
  • Examples of the substituent other than R E1 that Ar E1 may have include a halogen atom, a cyano group, an alkyl group, a cycloalkyl group, an aryl group, a monovalent heterocyclic group, an alkoxy group, a cycloalkoxy group, and an aryloxy group.
  • CE1 is preferably 0 or 1
  • nE4 is preferably an integer of 0 to 6.
  • R E3 is preferably an arylene group.
  • Q E1 is preferably an alkylene group, an arylene group or an oxygen atom.
  • Y E1 is preferably —CO 2 — or —SO 3 — .
  • Z E1 is preferably F ⁇ , Cl ⁇ , Br ⁇ , I ⁇ , OH ⁇ , R E4 SO 3 — or R E4 COO ⁇ .
  • R E3 may have include an alkyl group, a cycloalkyl group, an aryl group, a monovalent heterocyclic group, and a group represented by the formula (ES-3).
  • R E3 preferably has a group represented by the formula (ES-3) as a substituent because the external quantum efficiency of the light-emitting element of the present invention is excellent.
  • Examples of the group represented by the formula (ES-1) include a group represented by the following formula.
  • M + represents Li + , Na + , K + , Cs + , N (CH 3 ) 4 + , NH (CH 3 ) 3 + , NH 2 (CH 3 ) 2 + or N (C 2 H 5 ) Represents 4 + .
  • nE2 represents an integer of 1 or more.
  • Ar E2 represents an aromatic hydrocarbon group or a heterocyclic group, and these groups may have a substituent other than R E2 .
  • R E2 represents a group represented by the formula (ES-2). When a plurality of R E2 are present, they may be the same or different. ]
  • nE6 represents an integer of 0 or more
  • bE2 represents an integer of 1 or more
  • aE2 represents an integer of 0 or more
  • R E6 represents an arylene group or a divalent heterocyclic group, and these groups optionally have a substituent
  • Q E2 represents an alkylene group, an arylene group, an oxygen atom or a sulfur atom, and these groups optionally have a substituent.
  • Y E2 represents a carbocation, an ammonium cation, a phosphonyl cation or a sulfonyl cation.
  • M E3 represents F ⁇ , Cl ⁇ , Br ⁇ , I ⁇ , OH ⁇ , R E7 SO 3 ⁇ , R E7 COO ⁇ , ClO ⁇ , ClO 2 ⁇ , ClO 3 ⁇ , ClO 4 ⁇ , SCN ⁇ , CN ⁇ .
  • R E7 represents an alkyl group, a perfluoroalkyl group, or an aryl group, and these groups optionally have a substituent.
  • M E3 represents an alkyl group, a perfluoroalkyl group, or an aryl group, and these groups optionally have a substituent.
  • Z E2 represents a metal ion or an ammonium ion, and this ammonium ion may have a substituent. When a plurality of Z E2 are present, they may be the same or different.
  • aE2 and bE2 are selected so that the charge of the group represented by the formula (ES-2) becomes zero. ]
  • NE2 is preferably an integer of 1 to 4, more preferably 1 or 2.
  • Examples of the aromatic hydrocarbon group or heterocyclic group represented by Ar E2 include 1,4-phenylene group, 1,3-phenylene group, 1,2-phenylene group, 2,6-naphthalenediyl group, 1,4 Hydrogen bonded directly to the atoms constituting the ring from a naphthalenediyl group, a 2,7-fluorenediyl group, a 3,6-fluorenediyl group, a 2,7-phenanthenediyl group or a 2,7-carbazolediyl group preferably an atomic group remaining after removing nE2 or atoms and may have a substituent group other than R E2.
  • the substituent group other than Ar E2 is may have R E2, is the same as the substituent other than optionally Ar E1 is have R E1.
  • CE2 is preferably 0 or 1
  • nE6 is preferably an integer of 0 to 6.
  • R E6 is preferably an arylene group.
  • Q E2 is preferably an alkylene group, an arylene group or an oxygen atom.
  • Y E2 is preferably a carbocation or an ammonium cation.
  • R E6 may have include an alkyl group, a cycloalkyl group, an aryl group, a monovalent heterocyclic group, and a group represented by the formula (ES-3).
  • R E6 preferably has a group represented by the formula (ES-3) as a substituent because the external quantum efficiency of the light-emitting element of the present invention is excellent.
  • Examples of the group represented by the formula (ES-2) include a group represented by the following formula.
  • X ⁇ represents F ⁇ , Cl ⁇ , Br ⁇ , I ⁇ , tetraphenyl borate, CF 3 SO 3 ⁇ , or CH 3 COO ⁇ .
  • Examples of the structural units represented by formula (ET-1) and formula (ET-2) include structural units represented by the following formula (ET-31) to formula (ET-34).
  • the material of the hole transport layer, the material of the electron transport layer, and the material of the light emitting layer are used as solvents used in forming the layer adjacent to the hole transport layer, the electron transport layer, and the light emitting layer, respectively, in the production of the light emitting element.
  • the material When dissolved, the material preferably has a cross-linking group in order to avoid dissolution of the material in the solvent. After forming each layer using a material having a crosslinking group, the layer can be insolubilized by crosslinking the crosslinking group.
  • each layer such as a light emitting layer, a hole transport layer, an electron transport layer, a hole injection layer, and an electron injection layer
  • a low molecular compound for example, vacuum deposition from powder
  • a method using a film formation from a solution or a molten state may be used.
  • the order, number and thickness of the layers to be laminated are adjusted in consideration of the external quantum efficiency and the luminance lifetime.
  • the substrate in the light-emitting element may be any substrate that can form electrodes and does not change chemically when the organic layer is formed.
  • the substrate is made of a material such as glass, plastic, or silicon.
  • the electrode farthest from the substrate is preferably transparent or translucent.
  • Examples of the material for the anode include conductive metal oxides and translucent metals, preferably indium oxide, zinc oxide, tin oxide; indium tin oxide (ITO), indium zinc oxide, etc.
  • conductive metal oxides and translucent metals preferably indium oxide, zinc oxide, tin oxide; indium tin oxide (ITO), indium zinc oxide, etc.
  • Examples of the material of the cathode include metals such as lithium, sodium, potassium, rubidium, cesium, beryllium, magnesium, calcium, strontium, barium, aluminum, zinc, indium; two or more kinds of alloys thereof; Alloys of one or more species with one or more of silver, copper, manganese, titanium, cobalt, nickel, tungsten, tin; and graphite and graphite intercalation compounds.
  • the alloy include a magnesium-silver alloy, a magnesium-indium alloy, a magnesium-aluminum alloy, an indium-silver alloy, a lithium-aluminum alloy, a lithium-magnesium alloy, a lithium-indium alloy, and a calcium-aluminum alloy.
  • Each of the anode and the cathode may have a laminated structure of two or more layers.
  • the planar anode and the cathode may be arranged so as to overlap each other.
  • a method of forming an anode or a cathode or both electrodes in a pattern is a method.
  • a segment type display device capable of displaying numbers, characters, and the like can be obtained.
  • both the anode and the cathode may be formed in stripes and arranged orthogonally. Partial color display and multicolor display are possible by a method of separately coating a plurality of types of polymer compounds having different emission colors, or a method using a color filter or a fluorescence conversion filter.
  • the dot matrix display device can be driven passively, or can be driven active in combination with a TFT or the like.
  • These display devices can be used for displays of computers, televisions, portable terminals and the like.
  • the planar light emitting element can be suitably used as a planar light source for backlight of a liquid crystal display device or a planar illumination light source. If a flexible substrate is used, it can also be used as a curved light source and display device.
  • the polystyrene-equivalent number average molecular weight (Mn) and polystyrene-equivalent weight average molecular weight (Mw) of the polymer compound are size exclusion chromatography (SEC) (manufactured by Shimadzu Corporation, trade name: LC-10Avp). Determined by The SEC measurement conditions are as follows.
  • the polymer compound to be measured was dissolved in THF at a concentration of about 0.05% by weight, and 10 ⁇ L was injected into SEC. THF was used as the mobile phase of SEC and flowed at a flow rate of 2.0 mL / min.
  • PLgel MIXED-B manufactured by Polymer Laboratories
  • a UV-VIS detector manufactured by Shimadzu Corporation, trade name: SPD-10Avp was used as the detector.
  • LC-MS Liquid chromatograph mass spectrometry
  • NMR measurement was performed by the following method. About 5 to 10 mg of a measurement sample, about 0.5 mL of heavy chloroform (CDCl 3 ), heavy tetrahydrofuran, heavy dimethyl sulfoxide, heavy acetone, heavy N, N-dimethylformamide, heavy toluene, heavy methanol, heavy ethanol, heavy 2-propanol Alternatively, it was dissolved in methylene chloride and measured using an NMR apparatus (manufactured by Agilent, trade name: INOVA300 or MERCURY 400VX).
  • HPLC high performance liquid chromatography
  • Kaseisorb LC-ODS 2000 manufactured by Tokyo Chemical Industry
  • ODS column having equivalent performance was used as the column.
  • a photodiode array detector manufactured by Shimadzu Corporation, trade name: SPD-M20A was used as the detector.
  • the maximum peak wavelength of the emission spectrum of the phosphorescent compound was measured at room temperature with a spectrophotometer (manufactured by JASCO Corporation, FP-6500).
  • a xylene solution in which a phosphorescent compound was dissolved in xylene at a concentration of about 0.8 ⁇ 10 ⁇ 4 wt% was used as a sample.
  • excitation light UV light having a wavelength of 325 nm was used.
  • the HOMO of the phosphorescent compound was measured at room temperature using an atmospheric photoelectron yield spectrometer (AC-II, manufactured by Riken Keiki Co., Ltd.).
  • AC-II atmospheric photoelectron yield spectrometer
  • a thin film formed by spin coating on a quartz substrate using a xylene solution in which a phosphorescent compound was dissolved in xylene at a concentration of about 2.0% by weight was used as a sample.
  • FIrpic was purchased from Aldrich.
  • the maximum peak wavelength of the emission spectrum of FIrpiq was 470 nm. Further, the FIrpic HOMO was 5.87 eV.
  • the phosphorescent compound G1 was synthesized according to the method described in JP2013-147551A.
  • the maximum peak wavelength of the emission spectrum of the phosphorescent compound G1 was 450 nm. Further, the HOMO of the phosphorescent compound G1 was 5.27 eV.
  • the phosphorescent compound G2 was synthesized according to the method described in JP2013-147551A.
  • the maximum peak wavelength of the emission spectrum of the phosphorescent compound G2 was 475 nm. Moreover, the HOMO of the phosphorescent compound G2 was 5.24 eV.
  • the phosphorescent compound G3 was synthesized according to the method described in International Publication No. 2006/121811.
  • the phosphorescent compound G4 was synthesized according to the methods described in International Publication No. 2006/121811, and JP2013-048190A.
  • the maximum peak wavelength of the emission spectrum of the phosphorescent compound G3 was 469 nm.
  • the HOMO of the phosphorescent compound G3 was 4.89 eV.
  • the maximum peak wavelength of the emission spectrum of the phosphorescent compound G4 was 471 nm. Further, the HOMO of the phosphorescent compound G4 was 5.03 eV.
  • CM1 was synthesized according to the method described in JP 2010-189630 A.
  • Monomer CM2 was synthesized according to the method described in JP-A-2008-106241.
  • Monomer CM3 was synthesized according to the method described in JP 2010-215886 A.
  • Monomer CM4 was synthesized according to the method described in JP-T-2002-539292.
  • Monomer CM5 was synthesized according to the method described in JP2012-33845A.
  • Monomer CM6 was synthesized according to the method described in JP 2012-33845 A.
  • Monomer CM7 was synthesized according to the method described in WO2005 / 049546.
  • Monomer CM8 was synthesized according to the method described in International Publication No. 2013/146806.
  • Monomer CM9 was synthesized according to the synthesis method described in International Publication No. 2009/131255.
  • the compound Ma3 obtained had an HPLC area percentage value (UV254 nm) of 97.5%. By repeating this operation, the required amount of Compound Ma3 was obtained.
  • the obtained organic layer was concentrated under reduced pressure, and the obtained crude product was crystallized with a mixed solution of toluene and ethanol to obtain 51.8 g of Compound Ma4 as a white solid.
  • the HPLC area percentage value (UV254 nm) of the obtained compound Ma4 was 99.5% or more. By repeating this operation, the required amount of Compound Ma4 was obtained.
  • the obtained organic layer was washed twice with water and washed with a saturated aqueous sodium chloride solution, and then magnesium sulfate was added.
  • the obtained mixture was filtered, and the obtained filtrate was concentrated under reduced pressure.
  • the resulting residue was purified using a silica gel column (mixed solvent of chloroform and ethyl acetate) to obtain a crude product.
  • the obtained crude product was dissolved in ethanol (1.4 L), and then activated carbon (5 g) was added and filtered.
  • the obtained filtrate was concentrated under reduced pressure, and the obtained residue was crystallized from hexane to obtain 99.0 g of Compound Mb3 as a white solid.
  • the obtained compound Mb3 had an HPLC area percentage value (UV254 nm) of 99.5% or more. By repeating this operation, the required amount of Compound Mb3 was obtained.
  • the resulting residue was purified using a silica gel column (mixed solvent of chloroform and ethyl acetate) to obtain a crude product.
  • the obtained crude product was crystallized with hexane to obtain 93.4 g of Compound Mb4 as a white solid.
  • the obtained compound Mb4 had an HPLC area percentage value (UV254 nm) of 98.3%.
  • the obtained organic layer was washed with a 10% by weight aqueous sodium thiosulfate solution, and further washed with a saturated aqueous sodium chloride solution and water in this order.
  • Sodium sulfate was added to the obtained organic layer, followed by filtration, and the resulting filtrate was concentrated under reduced pressure.
  • the resulting residue was purified using a silica gel column (hexane) to obtain a crude product.
  • the obtained crude product was crystallized from hexane to obtain 47.0 g of Compound Mb6 as a white solid.
  • the compound Mb6 obtained had an HPLC area percentage value (UV254 nm) of 98.3%.
  • the obtained crude product was purified using a silica gel column (mixed solvent of hexane and toluene). Then, 84.1g of compound Mb8 was obtained as white solid by crystallizing with heptane.
  • the obtained compound Mb8 had an HPLC area percentage value (UV254 nm) of 99.5% or more.
  • Step 1 Synthesis of polymer compound P1 (Step 1) After making the inside of the reaction vessel an inert gas atmosphere, monomer CM1 (0.9950 g), monomer CM2 (0.1064 g), monomer CM3 (0.0924 g), monomer CM4 (0.7364 g), dichlorobis [tris (2-methoxyphenyl) phosphine] palladium (1.8 mg) and toluene (47 ml) were added and heated to 105 ° C. (Step 2) A 20 wt% tetraethylammonium hydroxide aqueous solution (6.6 ml) was added dropwise to the reaction solution, and the mixture was refluxed for 5.5 hours.
  • Step 3 Thereafter, phenylboronic acid (24.4 mg), 20 wt% tetraethylammonium hydroxide aqueous solution (6.6 ml) and dichlorobis [tris (2-methoxyphenyl) phosphine] palladium (1.8 mg) were added thereto. The mixture was refluxed for 14 hours.
  • Step 4 Thereafter, an aqueous sodium diethyldithiacarbamate solution was added thereto, and the mixture was stirred at 80 ° C. for 2 hours.
  • the reaction solution was washed twice with water, twice with a 3% by weight aqueous acetic acid solution and twice with water, and the resulting solution was added dropwise to methanol, resulting in precipitation.
  • the precipitate was dissolved in toluene and purified by passing through an alumina column and a silica gel column in this order.
  • the obtained solution was added dropwise to methanol and stirred, and then the resulting precipitate was collected by filtration and dried to obtain 0.91 g of a polymer compound P1.
  • the Mn of the polymer compound P1 was 5.2 ⁇ 10 4 and the Mw was 2.5 ⁇ 10 5 .
  • the polymer compound P1 has a constitutional unit derived from the monomer CM1, a constitutional unit derived from the monomer CM2, and a constitution derived from the monomer CM3 in terms of theoretical values obtained from the amounts of raw materials charged. It is a copolymer in which the unit and the structural unit derived from the monomer CM4 are configured in a molar ratio of 50: 5: 5: 40.
  • Step 1 Synthesis of polymer compound P2 (Step 1) After making the inside of the reaction vessel an inert gas atmosphere, monomer CM5 (0.55 g), monomer CM6 (0.61 g), triphenylphosphine Palladium (0.01 g), methyltrioctylammonium chloride (manufactured by Aldrich, trade name Aliquat 336 (registered trademark)) (0.20 g) and toluene (10 mL) were added and heated to 105 ° C. (Step 2) A 2M aqueous sodium carbonate solution (6 mL) was added dropwise to the reaction solution and refluxed for 8 hours.
  • Step 3 Thereafter, 4-tert-butylphenylboronic acid (0.01 g) was added thereto and refluxed for 6 hours.
  • Step 4 Thereafter, an aqueous sodium diethyldithiocarbamate solution (10 mL, concentration: 0.05 g / mL) was added thereto and stirred for 2 hours. The resulting reaction solution was added dropwise to methanol (300 mL) and stirred for 1 hour. Thereafter, the deposited precipitate was filtered, dried under reduced pressure for 2 hours, and dissolved in tetrahydrofuran (20 mL).
  • the obtained solution was added dropwise to a mixed solvent of methanol (120 mL) and 3% by weight acetic acid aqueous solution (50 mL), and stirred for 1 hour. Thereafter, the deposited precipitate was filtered and dissolved in tetrahydrofuran (20 mL). (Step 5) The obtained solution was added dropwise to methanol (200 mL) and stirred for 30 minutes. Thereafter, the deposited precipitate was filtered. The obtained solid was dissolved in tetrahydrofuran and then purified by passing through an alumina column and a silica gel column in this order. The obtained solution was added dropwise to methanol and stirred, and then the deposited precipitate was filtered. The obtained solid was dried to obtain 520 mg of polymer compound P2. The Mn of the polymer compound P2 was 5.2 ⁇ 10 4 and the Mw was 1.5 ⁇ 10 5 .
  • the theoretical value obtained from the amount of the raw material used for the polymer compound P2 is that the structural unit derived from the monomer CM5 and the structural unit derived from the monomer CM6 have a molar ratio of 50:50. It is a copolymer obtained.
  • the polymer compound P3 is a copolymer composed of structural units represented by the following in theoretical values determined from the amount of the raw material charged for the polymer compound P2.
  • the polymer compound P4 has a constitutional unit derived from the monomer CM10, a constitutional unit derived from the monomer CM8, and a constitution derived from the monomer CM7 in terms of theoretical values obtained from the amounts of the raw materials charged.
  • a unit is a copolymer composed of a molar ratio of 45: 5: 50.
  • Step 1 Synthesis of Polymer Compound P5 (Step 1) in the synthesis of Polymer Compound P1 was changed to (Step 1-1) below, (Step 2) was changed to (Step 2-1) below, Except that (Step 3) was changed to the following (Step 3-1), 3.00 g of the polymer compound P5 was obtained by the same method as the synthesis of the polymer compound P1.
  • Step 1-1 After setting the inside of the reaction vessel to an inert gas atmosphere, monomer CM1 (1.74 g), monomer CM7 (3.19 g), dichlorobis (triphenylphosphine) palladium (2.5 mg) And toluene (40 mL) was added and heated to 80 ° C.
  • Step 2-1 A 20 wt% tetraethylammonium hydroxide aqueous solution (12 mL) was added dropwise to the reaction solution, and the mixture was refluxed for 8 hours.
  • Step 3-1 After the reaction, phenylboronic acid (0.427 g) and dichlorobis (triphenylphosphine) palladium (2.5 mg) were added thereto and refluxed for 17 hours.
  • the Mn of the polymer compound P5 was 4.5 ⁇ 10 4 and the Mw was 1.5 ⁇ 10 5 .
  • the theoretical value obtained from the amount of raw materials used for the polymer compound P5 is that the structural unit derived from the monomer CM1 and the structural unit derived from the monomer CM7 are configured in a molar ratio of 50:50. Is a copolymer.
  • the Mn of the polymer compound P6 was 4.8 ⁇ 10 4 and the Mw was 1.0 ⁇ 10 5 .
  • the polymer compound P6 has a constitutional unit derived from the monomer CM1, a constitutional unit derived from the monomer CM4, and a constitution derived from the monomer CM9 in terms of theoretical values obtained from the amounts of raw materials charged.
  • a unit is a copolymer composed of a molar ratio of 50:30:20.
  • Compound DCzDBT and compound VNPB were each purchased from Luminescence Technology Corp.
  • Example 1 Production and evaluation of light-emitting element 1 (formation of anode and hole injection layer) An anode was formed by attaching an ITO film with a thickness of 45 nm to the glass substrate by sputtering.
  • AQ-1200 manufactured by Plextronics
  • AQ-1200 which is a polythiophene / sulfonic acid-based hole injecting agent, was formed on the anode in a thickness of 35 nm by a spin coating method, and was 170 ° C. on a hot plate in an air atmosphere.
  • the hole injection layer was formed by heating for 15 minutes.
  • the polymer compound P4 was dissolved in xylene at a concentration of 0.7% by weight. Using the obtained xylene solution, a film having a thickness of 20 nm was formed on the hole injection layer by spin coating, and heated at 180 ° C. for 60 minutes on a hot plate in a nitrogen gas atmosphere. A transport layer was formed. By heating at 180 ° C. for 60 minutes on a hot plate, the polymer compound P4 becomes a crosslinked product of the polymer compound P4.
  • the polymer compound P3 was dissolved in 2,2,3,3,4,4,5,5-octafluoro-1-pentanol at a concentration of 0.25 wt%. Using the obtained 2,2,3,3,4,4,5,5-octafluoro-1-pentanol solution, a film having a thickness of 10 nm was formed on the light-emitting layer by a spin coating method. An electron transport layer was formed by heating at 130 ° C. for 10 minutes in a gas atmosphere.
  • Example 2 Production and Evaluation of Light-Emitting Element 2 (Formation of hole transport layer) in Example 1 was changed to (Formation of hole transport layer-2) below, and (Formation of light-emitting layer) was changed to (Light emission) A light emitting device 2 was produced in the same manner as in Example 1 except that the layer formation was changed to 2).
  • Example 3 Production and Evaluation of Light-Emitting Element 3
  • DCzDBT phosphorescent compound G2 and phosphorescent compound G4
  • DCzDBT / phosphorescent compound G2 / phosphorescent compound G4 90 wt% / 5 wt% / 5 wt%)
  • a light-emitting element 3 was manufactured.
  • Example 4 Production and Evaluation of Light-Emitting Element 4 (Formation of hole transport layer) in Example 1 was changed to (Formation of hole transport layer-4) shown below, and (Formation of light-emitting layer) was changed to (Light emission) A light emitting device 4 was produced in the same manner as in Example 1 except that the formation was changed to 4).
  • Example 5 Production and Evaluation of Light-Emitting Element 5
  • DCzDBT / FIrpic / phosphorescent compound G2 90 wt% / 5 wt% / 5 wt%)
  • the same procedure as in Example 4 was conducted.
  • a light emitting element 5 was manufactured.
  • Example 6 Production and Evaluation of Light-Emitting Element 6 (Formation of hole transport layer) in Example 1 was changed to the following (Formation of hole transport layer-6), and (Formation of light-emitting layer) was changed to the following (Light emission).
  • a light emitting device 6 was produced in the same manner as in Example 1 except that the formation was changed to Layer formation-6).
  • Example 7 Production and Evaluation of Light-Emitting Element 7 A light-emitting element was obtained in the same manner as in Example 6 except that (Formation of light-emitting layer-6) in Example 6 was changed to (Formation of light-emitting layer-7) below. 7 was produced.
  • Example 8 Production and Evaluation of Light-Emitting Element 8
  • DCzDBT / FIrpic / phosphorescent compound G1 90 wt% / 5 wt% / 5 wt%)
  • DCzDBT / FIrpic / phosphorescent compound G2 90 wt% / 5 wt% / 5 wt%)
  • DCzDBT / phosphorescent compound G2 / phosphorescent compound G3 90 wt% / 5 wt% / 5 wt%)
  • Example 9 Production and Evaluation of Light-Emitting Element 9
  • DCzDBT phosphorescent compound G2 and phosphorescent compound G4
  • DCzDBT / phosphorescent compound G2 / phosphorescent compound G4 90 wt% / 5 wt% / 5 wt%)
  • a light-emitting element 9 was produced.
  • Example 10 Fabrication and evaluation of light-emitting element 10 (formation of anode and hole injection layer)
  • An anode was formed by attaching an ITO film with a thickness of 45 nm to the glass substrate by sputtering.
  • AQ-1200 manufactured by Plextronics
  • AQ-1200 which is a polythiophene / sulfonic acid-based hole injecting agent, was formed on the anode in a thickness of 35 nm by a spin coating method, and was 170 ° C. on a hot plate in an air atmosphere.
  • the hole injection layer was formed by heating for 15 minutes.
  • the polymer compound P3 was dissolved in 2,2,3,3,4,4,5,5-octafluoro-1-pentanol at a concentration of 0.25 wt%. Using the obtained 2,2,3,3,4,4,5,5-octafluoro-1-pentanol solution, a film having a thickness of 10 nm was formed on the light-emitting layer by a spin coating method. An electron transport layer was formed by heating at 130 ° C. for 10 minutes in a gas atmosphere.
  • EL light emission was observed by applying a voltage to the light emitting element 10.
  • the driving voltage at 1000 cd / m 2 is 7.9 [V]
  • the external quantum efficiency is 8.7 [%]
  • the peak wavelength of the emission spectrum is 470 [nm]
  • the chromaticity coordinate (x, y) is (0.14). 0.29).
  • Example 11 Production and Evaluation of Light-Emitting Element 11 Chlorobenzene solution (2.0% by weight, compound DCzDBT / FIrpiq / phosphorescent compound G1) in which compound DCzDBT, FIrpiq and phosphorescent compound G1 in Example 10 were dissolved.
  • Example 12 Production and Evaluation of Light-Emitting Element 12 Chlorobenzene solution (2.0% by weight, compound DCzDBT / FIrpiq / phosphorescent compound G1) in which compound DCzDBT, FIrpiq and phosphorescent compound G1 in Example 10 were dissolved.
  • EL light emission was observed by applying a voltage to the light emitting element 12.
  • the driving voltage at 1000 cd / m 2 is 9.2 [V]
  • the external quantum efficiency is 10.0 [%]
  • the peak wavelength of the emission spectrum is 475 [nm]
  • the chromaticity coordinate (x, y) is (0.14). 0.33).
  • Example 5 Fabrication and Evaluation of Light-Emitting Element C5 (Hole Transport Layer Formation) in Example 10 was changed to the following (Hole Transport Layer Formation-C5), and (Light-Emitting Layer Formation) was changed to (Light Emitting) A light emitting device C5 was produced in the same manner as in Example 10 except that the layer formation was changed to C5).
  • a light emitting device having excellent external quantum efficiency can be provided.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

 外部量子効率に優れる発光素子を提供する。 陽極と、陰極と、陽極および陰極の間に設けられた発光層と、陽極および発光層の間に設けられた正孔輸送層とを有する発光素子であって、正孔輸送層が、架橋基を有する材料を用いて得られる層であり、発光層が、発光スペクトルの最大ピーク波長が400nm以上495nm未満である燐光発光性化合物(A)と、発光スペクトルの最大ピーク波長が400nm以上495nm未満である燐光発光性化合物(B)とを含有する組成物を用いて得られる層であり、燐光発光性化合物(A)が有する配位子骨格の少なくとも1つと、燐光発光性化合物(B)が有する配位子骨格の少なくとも1つとが、互いに異なる、発光素子。

Description

発光素子
 本発明は、発光素子に関する。
 有機エレクトロルミネッセンス素子(有機EL素子)等の発光素子は、高発光効率、低電圧駆動等の特性のため、ディスプレイおよび照明の用途に好適に使用することが可能であり、近年、注目されている。この発光素子は、発光層、電荷輸送層等の有機層を備える。
 特許文献1には、正孔輸送材料を含有する正孔輸送層と、青色燐光発光性化合物1および青色燐光発光性化合物2を含む組成物を含有する発光層とを有する発光素子、並びに、正孔輸送材料を含有する正孔輸送層と、青色燐光発光性化合物1および青色燐光発光性化合物3を含む組成物を含有する発光層とを有する発光素子が記載されている。なお、該正孔輸送材料は、架橋基を有する正孔輸送材料ではない。
Figure JPOXMLDOC01-appb-C000019
国際公開第2013/058087号
 しかしながら、上記の発光素子は、その外部量子効率が必ずしも十分でなかった。
 そこで、本発明は、外部量子効率に優れる発光素子を提供することを目的とする。
 本発明は、以下の[1]~[13]を提供する。
[1]陽極と、陰極と、陽極および陰極の間に設けられた発光層と、陽極および発光層の間に設けられた正孔輸送層とを有する発光素子であって、
 正孔輸送層が、架橋基を有する材料を用いて得られる層であり、
 発光層が、発光スペクトルの最大ピーク波長が400nm以上495nm未満であり、下記式(A)で表される燐光発光性化合物(A)と、発光スペクトルの最大ピーク波長が400nm以上495nm未満であり、下記式(B)で表される燐光発光性化合物(B)とを含有する組成物を用いて得られる層であり、
 燐光発光性化合物(A)が有する環RA1と環RA2とで構成される配位子骨格の少なくとも1つと、燐光発光性化合物(B)が有する環RB1と環RB2とで構成される配位子骨格の少なくとも1つとが、互いに異なる、発光素子。
Figure JPOXMLDOC01-appb-C000020
[式中、
 Mは、ルテニウム原子、ロジウム原子、パラジウム原子、イリジウム原子または白金原子を表す。
 nは1以上の整数を表し、nは0以上の整数を表し、n+nは2または3である。Mがルテニウム原子、ロジウム原子またはイリジウム原子の場合、n+nは3であり、Mがパラジウム原子または白金原子の場合、n+nは2である。
 EA1およびEA2は、それぞれ独立に、炭素原子または窒素原子を表す。但し、EA1およびEA2の少なくとも一方は炭素原子である。
 環RA1は、5員環または6員環の芳香族複素環を表し(但し、環RA1が6員環の芳香族複素環である場合、EA1は炭素原子である。)、これらの環は置換基を有していてもよい。該置換基が複数存在する場合、それらは同一でも異なっていてもよく、互いに結合して、それぞれが結合する原子とともに環を形成していてもよい。環RA1が複数存在する場合、それらは同一でも異なっていてもよい。
 環RA2は、5員環もしくは6員環の芳香族炭化水素環、または、5員環もしくは6員環の芳香族複素環を表し(但し、環RA2が6員環の芳香族複素環である場合、EA2は炭素原子である。)、これらの環は置換基を有していてもよい。該置換基が複数存在する場合、それらは同一でも異なっていてもよく、互いに結合して、それぞれが結合する原子とともに環を形成していてもよい。環RA2が複数存在する場合、それらは同一でも異なっていてもよい。但し、環RA1が6員環の芳香族複素環である場合、環RA2は電子求引基を有する。
 A-G-Aは、アニオン性の2座配位子を表す。AおよびAは、それぞれ独立に、炭素原子、酸素原子または窒素原子を表し、これらの原子は環を構成する原子であってもよい。Gは、単結合、または、AおよびAとともに2座配位子を構成する原子団を表す。A-G-Aが複数存在する場合、それらは同一でも異なっていてもよい。]
Figure JPOXMLDOC01-appb-C000021
[式中、
 Mは、ルテニウム原子、ロジウム原子、パラジウム原子、イリジウム原子または白金原子を表す。
 nは1以上の整数を表し、nは0以上の整数を表し、n+nは2または3である。Mがルテニウム原子、ロジウム原子またはイリジウム原子の場合、n+nは3であり、Mがパラジウム原子または白金原子の場合、n+nは2である。
 EB1およびEB2は、それぞれ独立に、炭素原子または窒素原子を表す。但し、EB1およびEB2の少なくとも一方は炭素原子である。
 環RB1は、5員環または6員環の芳香族複素環を表し(但し、環RB1が6員環の芳香族複素環である場合、EB1は炭素原子である。)、これらの環は置換基を有していてもよい。該置換基が複数存在する場合、それらは同一でも異なっていてもよく、互いに結合して、それぞれが結合する原子とともに環を形成していてもよい。環RB1が複数存在する場合、それらは同一でも異なっていてもよい。
 環RB2は、5員環もしくは6員環の芳香族炭化水素環、または、5員環もしくは6員環の芳香族複素環を表し(但し、環RB2が6員環の芳香族複素環である場合、EB2は炭素原子である。)、これらの環は置換基を有していてもよい。該置換基が複数存在する場合、それらは同一でも異なっていてもよく、互いに結合して、それぞれが結合する原子とともに環を形成していてもよい。環RB2が複数存在する場合、それらは同一でも異なっていてもよい。但し、環RB1が6員環の芳香族複素環である場合、環RB2は電子求引基を有する。
 A-G-Aは、アニオン性の2座配位子を表す。AおよびAは、それぞれ独立に、炭素原子、酸素原子または窒素原子を表し、これらの原子は環を構成する原子であってもよい。Gは、単結合、または、AおよびAとともに2座配位子を構成する原子団を表す。A-G-Aが複数存在する場合、それらは同一でも異なっていてもよい。]
[2]前記発光層と、前記正孔輸送層とが、隣接している、[1]に記載の発光素子。
[3]前記架橋基を有する材料が、架橋基A群から選ばれる少なくとも1種の架橋基を有する低分子化合物、または、架橋基A群から選ばれる少なくとも1種の架橋基を有する架橋構成単位を含む高分子化合物である、[1]または[2]に記載の発光素子。
(架橋基A群)
Figure JPOXMLDOC01-appb-C000022
[4]前記架橋基A群から選ばれる少なくとも1種の架橋基を有する架橋構成単位が、式(Z)で表される構成単位または式(Z’)で表される構成単位である、[3]に記載の発光素子。
Figure JPOXMLDOC01-appb-C000023
[式中、
 nAは0~5の整数を表し、nは1または2を表す。
 Arは、芳香族炭化水素基または複素環基を表し、これらの基は置換基を有していてもよい。
 Lは、アルキレン基、シクロアルキレン基、アリーレン基、2価の複素環基、-NR’-で表される基、酸素原子または硫黄原子を表し、これらの基は置換基を有していてもよい。R’は、水素原子、アルキル基、シクロアルキル基、アリール基または1価の複素環基を表し、これらの基は置換基を有していてもよい。Lが複数存在する場合、それらは同一でも異なっていてもよい。
 Xは、前記架橋基A群から選ばれる架橋基を表す。Xが複数存在する場合、それらは同一でも異なっていてもよい。]
Figure JPOXMLDOC01-appb-C000024
[式中、
 mAは0~5の整数を表し、mは1~4の整数を表し、cは0または1を表す。mAが複数存在する場合、それらは同一でも異なっていてもよい。
 Arは、芳香族炭化水素基、複素環基、または、少なくとも1種の芳香族炭化水素環と少なくとも1種の複素環とが直接結合した基を表し、これらの基は置換基を有していてもよい。
 ArおよびArは、それぞれ独立に、アリーレン基または2価の複素環基を表し、これらの基は置換基を有していてもよい。
 Ar、ArおよびArはそれぞれ、当該基が結合している窒素原子に結合している当該基以外の基と、直接または酸素原子もしくは硫黄原子を介して結合して、環を形成していてもよい。
 Kは、アルキレン基、シクロアルキレン基、アリーレン基、2価の複素環基、-NR’’-で表される基、酸素原子または硫黄原子を表し、これらの基は置換基を有していてもよい。R’’は、水素原子、アルキル基、シクロアルキル基、アリール基または1価の複素環基を表し、これらの基は置換基を有していてもよい。Kが複数存在する場合、それらは同一でも異なっていてもよい。
 X’は、前記架橋基A群から選ばれる架橋基、水素原子、アルキル基、シクロアルキル基、アリール基または1価の複素環基を表し、これらの基は置換基を有していてもよい。但し、少なくとも1つのX’は、前記架橋基A群から選ばれる架橋基である。]
[5]前記架橋基A群から選ばれる少なくとも1種の架橋基を有する低分子化合物が、式(Z'')で表される低分子化合物である、[3]に記載の発光素子。
Figure JPOXMLDOC01-appb-C000025
[式中、
 mB1およびmB2は、それぞれ独立に、0以上の整数を表す。複数存在するmB1は、同一でも異なっていてもよい。
 nB1は0以上の整数を表す。nB1が複数存在する場合、それらは同一でも異なっていてもよい。
 Arは、芳香族炭化水素基、複素環基、または、少なくとも1種の芳香族炭化水素環と少なくとも1種の複素環とが直接結合した基を表し、これらの基は置換基を有していてもよい。Arが複数存在する場合、それらは同一でも異なっていてもよい。
 LB1は、アルキレン基、シクロアルキレン基、アリーレン基、2価の複素環基、-NR’’’-で表される基、酸素原子または硫黄原子を表し、これらの基は置換基を有していてもよい。R’’’は、水素原子、アルキル基、シクロアルキル基、アリール基または1価の複素環基を表し、これらの基は置換基を有していてもよい。LB1が複数存在する場合、それらは同一でも異なっていてもよい。
 X’’は、前記架橋基A群から選ばれる架橋基、水素原子、アルキル基、シクロアルキル基、アリール基または1価の複素環基を表し、これらの基は置換基を有していてもよい。複数存在するX’’は、同一でも異なっていてもよい。但し、複数存在するX’’のうち、少なくとも1つは、前記架橋基A群から選ばれる架橋基である。]
[6]前記燐光発光性化合物(A)が有する環RA1と環RA2とで構成される配位子骨格の全てと、燐光発光性化合物(B)が有する環RB1と環RB2とで構成される配位子骨格の全てとが、互いに異なる、[1]~[5]のいずれかに記載の発光素子。
[7]前記燐光発光性化合物(A)が、下記式(A-1)で表される燐光発光性化合物であり、
 前記燐光発光性化合物(B)が、下記式(B-1)で表される燐光発光性化合物である、[1]~[6]のいずれかに記載の発光素子。
Figure JPOXMLDOC01-appb-C000026
[式中、
 M、n、n、EA2およびA-G-Aは、前記と同じ意味を表す。
 環RA3は、6員環の芳香族複素環を表し、この環は置換基を有していてもよい。該置換基が複数存在する場合、それらは同一でも異なっていてもよく、互いに結合して、それぞれが結合する原子とともに環を形成していてもよい。環RA3が複数存在する場合、それらは同一でも異なっていてもよい。
 環RA4は、5員環もしくは6員環の芳香族炭化水素環、または、5員環もしくは6員環の芳香族複素環を表し(但し、環RA4が6員環の芳香族複素環である場合、EA2は炭素原子である。)、これらの環は置換基を有していてもよい。該置換基が複数存在する場合、それらは同一でも異なっていてもよく、互いに結合して、それぞれが結合する原子とともに環を形成していてもよい。環RA4が複数存在する場合、それらは同一でも異なっていてもよい。但し、環RA4は電子求引基を有する。]
Figure JPOXMLDOC01-appb-C000027
[式中、
 M、n、n、EB1、EB2およびA-G-Aは、前記と同じ意味を表す。
 環RB3は、5員環の芳香族複素環を表し、この環は置換基を有していてもよい。該置換基が複数存在する場合、それらは同一でも異なっていてもよく、互いに結合して、それぞれが結合する原子とともに環を形成していてもよい。環RB3が複数存在する場合、それらは同一でも異なっていてもよい。
 環RB4は、5員環もしくは6員環の芳香族炭化水素環、または、5員環もしくは6員環の芳香族複素環を表し(環RB4が6員環の芳香族複素環である場合、EB2は炭素原子である。)、これらの環は置換基を有していてもよい。該置換基が複数存在する場合、それらは同一でも異なっていてもよく、互いに結合して、それぞれが結合する原子とともに環を形成していてもよい。環RB4が複数存在する場合、それらは同一でも異なっていてもよい。]
[8]前記燐光発光性化合物(A)が、下記式(A-2)で表される燐光発光性化合物であり、
 前記燐光発光性化合物(B)が、下記式(B-2)で表される燐光発光性化合物である、[1]~[6]のいずれかに記載の発光素子。
Figure JPOXMLDOC01-appb-C000028
[式中、
 M、n、n、EA2およびA-G-Aは、前記と同じ意味を表す。
 環RA5は、イミダゾール環を表し、この環は置換基を有していてもよい。該置換基が複数存在する場合、それらは同一でも異なっていてもよく、互いに結合して、それぞれが結合する原子とともに環を形成していてもよい。環RA5が複数存在する場合、それらは同一でも異なっていてもよい。
 環RA6は、5員環もしくは6員環の芳香族炭化水素環、または、5員環もしくは6員環の芳香族複素環を表し(但し、環RA6が6員環の芳香族複素環である場合、EA2は炭素原子である。)、これらの環は置換基を有していてもよい。該置換基が複数存在する場合、それらは同一でも異なっていてもよく、互いに結合して、それぞれが結合する原子とともに環を形成していてもよい。環RA6が複数存在する場合、それらは同一でも異なっていてもよい。]
Figure JPOXMLDOC01-appb-C000029
[式中、
 M、n、n、EB1、EB2およびA-G-Aは、前記と同じ意味を表す。
 環RB5は、トリアゾール環を表し、この環は置換基を有していてもよい。該置換基が複数存在する場合、それらは同一でも異なっていてもよく、互いに結合して、それぞれが結合する原子とともに環を形成していてもよい。環RB5が複数存在する場合、それらは同一でも異なっていてもよい。
 環RB6は、5員環もしくは6員環の芳香族炭化水素環、または、5員環もしくは6員環の芳香族複素環を表し(環RB6が6員環の芳香族複素環である場合、EB2は炭素原子である。)、これらの環は置換基を有していてもよい。該置換基が複数存在する場合、それらは同一でも異なっていてもよく、互いに結合して、それぞれが結合する原子とともに環を形成していてもよい。環RB6が複数存在する場合、それらは同一でも異なっていてもよい。]
[9]前記式(A-1)で表される燐光発光性化合物が、下記式(A-3)で表される燐光発光性化合物であり、
 前記式(B-1)で表される燐光発光性化合物が、下記式(B-3)で表される燐光発光性化合物である、[7]に記載の発光素子。
Figure JPOXMLDOC01-appb-C000030
[式中、
 M、n、nおよびA-G-Aは、前記と同じ意味を表す。
 EA71、EA72、EA73、EA74、EA81、EA82、EA83およびEA84は、それぞれ独立に、窒素原子または炭素原子を表す。EA71、EA72、EA73、EA74、EA81、EA82、EA83およびEA84が複数存在する場合、それらはそれぞれ同一でも異なっていてもよい。EA71、EA72、EA73、EA74、EA81、EA82、EA83およびEA84が窒素原子の場合、RA71、RA72、RA73、RA74、RA81、RA82、RA83およびRA84は、存在しない。
 RA71、RA72、RA73、RA74、RA81、RA82、RA83およびRA84は、それぞれ独立に、水素原子、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、アリールオキシ基、1価の複素環基、ハロゲン原子または置換アミノ基を表し、これらの基は置換基を有していてもよい。RA71、RA72、RA73、RA74、RA81、RA82、RA83およびRA84が複数存在する場合、それらはそれぞれ同一でも異なっていてもよい。RA71とRA72、RA72とRA73、RA73とRA74、RA71とRA81、RA81とRA82、RA82とRA83、および、RA83とRA84は、それぞれ結合して、それぞれが結合する炭素原子とともに環を形成していてもよい。但し、RA81、RA82、RA83およびRA84の少なくとも1つは、電子求引基である。
 環RA7は、窒素原子、炭素原子、EA71、EA72、EA73およびEA74とで構成されるピリジン環またはピリミジン環を表す。
 環RA8は、2つの炭素原子、EA81、EA82、EA83およびEA84とで構成されるベンゼン環、ピリジン環またはピリミジン環を表す。]
Figure JPOXMLDOC01-appb-C000031
[式中、
 M、n、n、EB1およびA-G-Aは、前記と同じ意味を表す。
 EB71、EB72、EB73、EB81、EB82、EB83およびEB84は、それぞれ独立に、窒素原子または炭素原子を表す。EB71、EB72、EB73、EB81、EB82、EB83およびEB84が複数存在する場合、それらはそれぞれ同一でも異なっていてもよい。EB71、EB72およびEB73が窒素原子の場合、RB71、RB72およびRB73は、存在しても存在しなくてもよい。EB81、EB82、EB83およびEB84が窒素原子の場合、RB81、RB82、RB83およびRB84は、存在しない。
 RB71、RB72、RB73、RB81、RB82、RB83およびRB84は、それぞれ独立に、水素原子、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、アリールオキシ基、1価の複素環基、ハロゲン原子または置換アミノ基を表し、これらの基は置換基を有していてもよい。RB71、RB72、RB73、RB81、RB82、RB83およびRB84が複数存在する場合、それらはそれぞれ同一でも異なっていてもよい。RB71とRB72、RB72とRB73、RB71とRB81、RB81とRB82、RB82とRB83、および、RB83とRB84は、それぞれ結合して、それぞれが結合する原子とともに環を形成していてもよい。
 環RB7は、窒素原子、EB1、EB71、EB72およびEB73とで構成されるトリアゾール環またはイミダゾール環を表す。
 環RB8は、2つの炭素原子、EB81、EB82、EB83およびEB84とで構成されるベンゼン環、ピリジン環またはピリミジン環を表す。]
[10]前記式(A-2)で表される燐光発光性化合物が、下記式(A-4)で表される燐光発光性化合物であり、
 前記式(B-2)で表される燐光発光性化合物が、下記式(B-4)で表される燐光発光性化合物である、[8]に記載の発光素子。
Figure JPOXMLDOC01-appb-C000032
[式中、
 M、n、nおよびA-G-Aは、前記と同じ意味を表す。
 EA91、EA92、EA93、EA101、EA102、EA103およびEA104は、それぞれ独立に、窒素原子または炭素原子を表す。EA91、EA92、EA93、EA101、EA102、EA103およびEA104が複数存在する場合、それらはそれぞれ同一でも異なっていてもよい。EA91、EA92およびEA93が窒素原子の場合、RA91、RA92およびRA93は、存在しても存在しなくてもよい。EA101、EA102、EA103およびEA104が窒素原子の場合、RA101、RA102、RA103およびRA104は、存在しない。
 RA91、RA92、RA93、RA101、RA102、RA103およびRA104は、それぞれ独立に、水素原子、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、アリールオキシ基、1価の複素環基、ハロゲン原子または置換アミノ基を表し、これらの基は置換基を有していてもよい。RA91、RA92、RA93、RA101、RA102、RA103およびRA104が複数存在する場合、それらはそれぞれ同一でも異なっていてもよい。RA91とRA92、RA92とRA93、RA91とRA101、RA101とRA102、RA102とRA103、および、RA103とRA104は、それぞれ結合して、それぞれが結合する原子とともに環を形成していてもよい。
 環RA9は、窒素原子、炭素原子、EA91、EA92およびEA93とで構成されるイミダゾール環を表す。
 環RA10は、2つの炭素原子、EA101、EA102、EA103およびEA104とで構成されるベンゼン環、ピリジン環またはピリミジン環を表す。]
Figure JPOXMLDOC01-appb-C000033
[式中、
 M、n、n、EB1およびA-G-Aは、前記と同じ意味を表す。
 EB91、EB92、EB93、EB101、EB102、EB103およびEB104は、それぞれ独立に、窒素原子または炭素原子を表す。EB91、EB92、EB93、EB101、EB102、EB103およびEB104が複数存在する場合、それらはそれぞれ同一でも異なっていてもよい。EB91、EB92およびEB93が窒素原子の場合、RB91、RB92およびRB93は、存在しても存在しなくてもよい。EB101、EB102、EB103およびEB104が窒素原子の場合、RB101、RB102、RB103およびRB104は、存在しない。
 RB91、RB92、RB93、RB101、RB102、RB103およびRB104は、それぞれ独立に、水素原子、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、アリールオキシ基、1価の複素環基、ハロゲン原子または置換アミノ基を表し、これらの基は置換基を有していてもよい。RB91、RB92、RB93、RB101、RB102、RB103およびRB104が複数存在する場合、それらはそれぞれ同一でも異なっていてもよい。RB91とRB92、RB92とRB93、RB91とRB101、RB101とRB102、RB102とRB103、および、RB103とRB104は、それぞれ結合して、それぞれが結合する原子とともに環を形成していてもよい。
 環RB9は、窒素原子、EB1、EB91、EB92およびEB93とで構成されるトリアゾール環を表す。
 環RB10は、2つの炭素原子、EB101、EB102、EB103およびEB104とで構成されるベンゼン環、ピリジン環またはピリミジン環を表す。]
[11]前記式(A-3)で表される燐光発光性化合物が、下記式(1)、(2)または(3)で表される燐光発光性化合物であり、
 前記式(B-3)で表される燐光発光性化合物が、下記式(4)、(5)、(6)または(7)で表される燐光発光性化合物である、[9]に記載の発光素子。
Figure JPOXMLDOC01-appb-C000034
[式中、
 A-G-Aは、前記と同じ意味を表す。
 Mは、イリジウム原子または白金原子を表す。
 nは1以上の整数を表し、nは0以上の整数を表し、n+nは2または3である。Mがイリジウム原子の場合、n+nは3であり、Mが白金原子の場合、n+nは2である。
 R、R、R、R、R11、R12、R13およびR14は、それぞれ独立に、水素原子、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、アリールオキシ基、1価の複素環基、ハロゲン原子または置換アミノ基を表し、これらの基は置換基を有していてもよい。R、R、R、R、R11、R12、R13およびR14が複数存在する場合、それらはそれぞれ同一でも異なっていてもよい。RとR、RとR、RとR、RとR11、R11とR12、R12とR13、および、R13とR14は、それぞれ結合して、それぞれが結合する炭素原子とともに環を形成していてもよい。但し、R11、R12、R13およびR14の少なくとも1つは、電子求引基である。]
Figure JPOXMLDOC01-appb-C000035
[式中、
 A-G-Aは、前記と同じ意味を表す。
 Mは、イリジウム原子または白金原子を表す。
 nは1以上の整数を表し、nは0以上の整数を表し、n+nは2または3である。Mがイリジウム原子の場合、n+nは3であり、Mが白金原子の場合、n+nは2である。
 R21、R22、R23、R31、R32、R33およびR34は、それぞれ独立に、水素原子、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、アリールオキシ基、1価の複素環基、ハロゲン原子または置換アミノ基を表し、これらの基は置換基を有していてもよい。R21、R22、R23、R31、R32、R33およびR34が複数存在する場合、それらはそれぞれ同一でも異なっていてもよい。R21とR22、R22とR23、R21とR31、R31とR32、R32とR33、および、R33とR34は、それぞれ結合して、それぞれが結合する原子とともに環を形成していてもよい。]
[12]前記式(A-4)で表される燐光発光性化合物が、下記式(4)または(5)で表される燐光発光性化合物であり、
 前記式(B-4)で表される燐光発光性化合物が、下記式(6)または(7)で表される燐光発光性化合物である、[10]に記載の発光素子。
Figure JPOXMLDOC01-appb-C000036
[式中、
 A-G-Aは、前記と同じ意味を表す。
 Mは、イリジウム原子または白金原子を表す。
 nは1以上の整数を表し、nは0以上の整数を表し、n+nは2または3である。Mがイリジウム原子の場合、n+nは3であり、Mが白金原子の場合、n+nは2である。
 R21、R22、R23、R31、R32、R33およびR34は、それぞれ独立に、水素原子、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、アリールオキシ基、1価の複素環基、ハロゲン原子または置換アミノ基を表し、これらの基は置換基を有していてもよい。R21、R22、R23、R31、R32、R33およびR34が複数存在する場合、それらはそれぞれ同一でも異なっていてもよい。R21とR22、R22とR23、R21とR31、R31とR32、R32とR33、および、R33とR34は、それぞれ結合して、それぞれが結合する原子とともに環を形成していてもよい。]
[13]前記発光層が、下記式(H-1)で表される化合物を更に含有する組成物を用いて得られる層である、[1]~[12]のいずれかに記載の発光素子。
Figure JPOXMLDOC01-appb-C000037
[式中、
 ArH1およびArH2は、それぞれ独立に、アリール基または1価の複素環基を表し、これらの基は置換基を有していてもよい。
 nH1およびnH2は、それぞれ独立に、0または1を表す。nH1が複数存在する場合、それらは同一でも異なっていてもよい。複数存在するnH2は、同一でも異なっていてもよい。
 nH3は、0以上の整数を表す。
 LH1は、アリーレン基、2価の複素環基、または、-[C(RH11]nH11-で表される基を表し、これらの基は置換基を有していてもよい。LH1が複数存在する場合、それらは同一でも異なっていてもよい。
 nH11は、1以上10以下の整数を表す。RH11は、水素原子、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基または1価の複素環基を表し、これらの基は置換基を有していてもよい。複数存在するRH11は、同一でも異なっていてもよく、互いに結合して、それぞれが結合する炭素原子とともに環を形成していてもよい。
 LH2は、-N(-LH21-RH21)-で表される基を表す。LH2が複数存在する場合、それらは同一でも異なっていてもよい。
 LH21は、単結合、アリーレン基または2価の複素環基を表し、これらの基は置換基を有していてもよい。RH21は、水素原子、アルキル基、シクロアルキル基、アリール基または1価の複素環基を表し、これらの基は置換基を有していてもよい。]
 本発明によれば、外部量子効率に優れる発光素子を提供することができる。
 以下、本発明の好適な実施形態について詳細に説明する。
 <共通する用語の説明>
 本明細書で共通して用いられる用語は、特記しない限り、以下の意味である。
 Meはメチル基、Etはエチル基、Buはブチル基、i-Prはイソプロピル基、t-Buはtert-ブチル基を表す。
 水素原子は、重水素原子であっても、軽水素原子であってもよい。
 金属錯体を表す式中、中心金属との結合を表す実線は、共有結合または配位結合を意味する。
 「高分子化合物」とは、分子量分布を有し、ポリスチレン換算の数平均分子量が1×103~1×108である重合体を意味する。
 高分子化合物は、ブロック共重合体、ランダム共重合体、交互共重合体、グラフト共重合体のいずれであってもよいし、その他の態様であってもよい。
 高分子化合物の末端基は、重合活性基がそのまま残っていると、高分子化合物を発光素子の作製に用いた場合に発光特性または輝度寿命が低下する可能性があるので、好ましくは安定な基である。この末端基としては、好ましくは主鎖と共役結合している基であり、例えば、炭素-炭素結合を介してアリール基または1価の複素環基と結合している基が挙げられる。
 「低分子化合物」とは、分子量分布を有さず、分子量が1×104以下の化合物を意味する。
 「構成単位」とは、高分子化合物中に1個以上存在する単位を意味する。
 「アルキル基」は、直鎖および分岐のいずれでもよい。直鎖のアルキル基の炭素原子数は、置換基の炭素原子数を含めないで、通常1~50であり、好ましくは3~30であり、より好ましくは4~20である。分岐のアルキル基の炭素原子数は、置換基の炭素原子数を含めないで、通常3~50であり、好ましくは3~30であり、より好ましくは4~20である。
 アルキル基は、置換基を有していてもよく、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、tert-ブチル基、ペンチル基、イソアミル基、2-エチルブチル基、ヘキシル基、ヘプチル基、オクチル基、2-エチルヘキシル基、3-プロピルヘプチル基、デシル基、3,7-ジメチルオクチル基、2-エチルオクチル基、2-ヘキシルデシル基、ドデシル基、および、これらの基における水素原子が、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、フッ素原子等で置換された基が挙げられ、例えば、トリフルオロメチル基、ペンタフルオロエチル基、パーフルオロブチル基、パーフルオロヘキシル基、パーフルオロオクチル基、3-フェニルプロピル基、3-(4-メチルフェニル)プロピル基、3-(3,5-ジ-ヘキシルフェニル)プロピル基、6-エチルオキシヘキシル基が挙げられる。
 「シクロアルキル基」の炭素原子数は、置換基の炭素原子数を含めないで、通常3~50であり、好ましくは3~30であり、より好ましくは4~20である。
 シクロアルキル基は、置換基を有していてもよく、例えば、シクロヘキシル基、シクロヘキシルメチル基、シクロヘキシルエチル基が挙げられる。
 「アリール基」は、芳香族炭化水素から環を構成する炭素原子に直接結合する水素原子1個を除いた残りの原子団を意味する。アリール基の炭素原子数は、置換基の炭素原子数を含めないで、通常6~60であり、好ましくは6~20であり、より好ましくは6~10である。
 アリール基は、置換基を有していてもよく、例えば、フェニル基、1-ナフチル基、2-ナフチル基、1-アントラセニル基、2-アントラセニル基、9-アントラセニル基、1-ピレニル基、2-ピレニル基、4-ピレニル基、2-フルオレニル基、3-フルオレニル基、4-フルオレニル基、2-フェニルフェニル基、3-フェニルフェニル基、4-フェニルフェニル基、および、これらの基における水素原子が、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、フッ素原子等で置換された基が挙げられる。
 「アルコキシ基」は、直鎖および分岐のいずれでもよい。直鎖のアルコキシ基の炭素原子数は、置換基の炭素原子数を含めないで、通常1~40であり、好ましくは4~10である。分岐のアルコキシ基の炭素原子数は、置換基の炭素原子数を含めないで、通常3~40であり、好ましくは4~10である。
 アルコキシ基は、置換基を有していてもよく、例えば、メトキシ基、エトキシ基、プロピルオキシ基、イソプロピルオキシ基、ブチルオキシ基、イソブチルオキシ基、tert-ブチルオキシ基、ペンチルオキシ基、ヘキシルオキシ基、ヘプチルオキシ基、オクチルオキシ基、2-エチルヘキシルオキシ基、ノニルオキシ基、デシルオキシ基、3,7-ジメチルオクチルオキシ基、ラウリルオキシ基、および、これらの基における水素原子が、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、フッ素原子等で置換された基が挙げられる。
 「シクロアルコキシ基」の炭素原子数は、置換基の炭素原子数を含めないで、通常3~40であり、好ましくは4~10である。
 シクロアルコキシ基は、置換基を有していてもよく、例えば、シクロヘキシルオキシ基が挙げられる。
 「アリールオキシ基」の炭素原子数は、置換基の炭素原子数を含めないで、通常6~60であり、好ましくは7~48である。
 アリールオキシ基は、置換基を有していてもよく、例えば、フェノキシ基、1-ナフチルオキシ基、2-ナフチルオキシ基、1-アントラセニルオキシ基、9-アントラセニルオキシ基、1-ピレニルオキシ基、および、これらの基における水素原子が、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、フッ素原子等で置換された基が挙げられる。
 「p価の複素環基」(pは、1以上の整数を表す。)とは、複素環式化合物から、環を構成する炭素原子またはヘテロ原子に直接結合している水素原子のうちp個の水素原子を除いた残りの原子団を意味する。p価の複素環基の中でも、芳香族複素環式化合物から、環を構成する炭素原子またはヘテロ原子に直接結合している水素原子のうちp個の水素原子を除いた残りの原子団である「p価の芳香族複素環基」が好ましい。
 「芳香族複素環式化合物」は、オキサジアゾール、チアジアゾール、チアゾール、オキサゾール、チオフェン、ピロール、ホスホール、フラン、ピリジン、ピラジン、ピリミジン、トリアジン、ピリダジン、キノリン、イソキノリン、カルバゾール、ジベンゾホスホール等の複素環自体が芳香族性を示す化合物、および、フェノキサジン、フェノチアジン、ジベンゾボロール、ジベンゾシロール、ベンゾピラン等の複素環自体は芳香族性を示さなくとも、複素環に芳香環が縮環されている化合物を意味する。
 1価の複素環基の炭素原子数は、置換基の炭素原子数を含めないで、通常、2~60であり、好ましくは4~20である。
 1価の複素環基は、置換基を有していてもよく、例えば、チエニル基、ピロリル基、フリル基、ピリジル基、ピペリジニル基、キノリニル基、イソキノリニル基、ピリミジニル基、トリアジニル基、および、これらの基における水素原子が、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基等で置換された基が挙げられる。
 「ハロゲン原子」とは、フッ素原子、塩素原子、臭素原子またはヨウ素原子を示す。
 「アミノ基」は、置換基を有していてもよく、置換アミノ基が好ましい。アミノ基が有する置換基としては、アルキル基、シクロアルキル基、アリール基または1価の複素環基が好ましい。
 置換アミノ基としては、例えば、ジアルキルアミノ基、ジシクロアルキルアミノ基およびジアリールアミノ基が挙げられる。
 アミノ基としては、例えば、ジメチルアミノ基、ジエチルアミノ基、ジフェニルアミノ基、ビス(4-メチルフェニル)アミノ基、ビス(4-tert-ブチルフェニル)アミノ基、ビス(3,5-ジ-tert-ブチルフェニル)アミノ基が挙げられる。
 「アルケニル基」は、直鎖および分岐のいずれでもよい。直鎖のアルケニル基の炭素原子数は、置換基の炭素原子数を含めないで、通常2~30であり、好ましくは3~20である。分岐のアルケニル基の炭素原子数は、置換基の炭素原子数を含めないで、通常3~30であり、好ましくは4~20である。
 「シクロアルケニル基」の炭素原子数は、置換基の炭素原子数を含めないで、通常3~30であり、好ましくは4~20である。
 アルケニル基およびシクロアルケニル基は、置換基を有していてもよく、例えば、ビニル基、1-プロペニル基、2-プロペニル基、2-ブテニル基、3-ブテニル基、3-ペンテニル基、4-ペンテニル基、1-ヘキセニル基、5-ヘキセニル基、7-オクテニル基、および、これらの基が置換基を有する基が挙げられる。
 「アルキニル基」は、直鎖および分岐のいずれでもよい。アルキニル基の炭素原子数は、置換基の炭素原子を含めないで、通常2~20であり、好ましくは3~20である。分岐のアルキニル基の炭素原子数は、置換基の炭素原子を含めないで、通常4~30であり、好ましくは4~20である。
 「シクロアルキニル基」の炭素原子数は、置換基の炭素原子を含めないで、通常4~30であり、好ましくは4~20である。
 アルキニル基およびシクロアルキニル基は、置換基を有していてもよく、例えば、エチニル基、1-プロピニル基、2-プロピニル基、2-ブチニル基、3-ブチニル基、3-ペンチニル基、4-ペンチニル基、1-ヘキシニル基、5-ヘキシニル基、および、これらの基が置換基を有する基が挙げられる。
 「アリーレン基」は、芳香族炭化水素から環を構成する炭素原子に直接結合する水素原子2個を除いた残りの原子団を意味する。アリーレン基の炭素原子数は、置換基の炭素原子数を含めないで、通常、6~60であり、好ましくは6~30であり、より好ましくは6~18である。
 アリーレン基は、置換基を有していてもよく、例えば、フェニレン基、ナフタレンジイル基、アントラセンジイル基、フェナントレンジイル基、ジヒドロフェナントレンジイル基、ナフタセンジイル基、フルオレンジイル基、ピレンジイル基、ペリレンジイル基、クリセンジイル基、および、これらの基が置換基を有する基が挙げられ、好ましくは、式(A-1)~式(A-20)で表される基である。アリーレン基は、これらの基が複数結合した基を含む。
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000040
Figure JPOXMLDOC01-appb-C000041
[式中、RおよびRaは、それぞれ独立に、水素原子、アルキル基、シクロアルキル基、アリール基または1価の複素環基を表す。複数存在するRおよびRaは、各々、同一でも異なっていてもよく、Ra同士は互いに結合して、それぞれが結合する原子と共に環を形成していてもよい。]
 2価の複素環基の炭素原子数は、置換基の炭素原子数を含めないで、通常、2~60であり、好ましくは、3~20であり、より好ましくは、4~15である。
 2価の複素環基は、置換基を有していてもよく、例えば、ピリジン、ジアザベンゼン、トリアジン、アザナフタレン、ジアザナフタレン、カルバゾール、ジベンゾフラン、ジベンゾチオフェン、ジベンゾシロール、フェノキサジン、フェノチアジン、アクリジン、ジヒドロアクリジン、フラン、チオフェン、アゾール、ジアゾール、トリアゾールから、環を構成する炭素原子またはヘテロ原子に直接結合している水素原子のうち2個の水素原子を除いた2価の基が挙げられ、好ましくは、式(AA-1)~式(AA-34)で表される基である。2価の複素環基は、これらの基が複数結合した基を含む。
Figure JPOXMLDOC01-appb-C000042
Figure JPOXMLDOC01-appb-C000043
Figure JPOXMLDOC01-appb-C000044
Figure JPOXMLDOC01-appb-C000045
Figure JPOXMLDOC01-appb-C000046
Figure JPOXMLDOC01-appb-C000047
Figure JPOXMLDOC01-appb-C000048
[式中、RおよびRaは、前記と同じ意味を表す。]
 「架橋基」とは、加熱処理、紫外線照射処理、ラジカル反応等に供することにより、新たな結合を生成することが可能な基であり、好ましくは、架橋基A群の式(BX-1)-(BX-17)のいずれかで表される基である。これらの基は、置換基を有していてもよい。
(架橋基A群)
Figure JPOXMLDOC01-appb-C000049
 「置換基」とは、ハロゲン原子、シアノ基、ニトロ基、後述する-C(=X101)-R101で表される基、アルキル基、シクロアルキル基、アリール基、1価の複素環基、アルコキシ基、シクロアルコキシ基、アリールオキシ基、アミノ基、置換アミノ基、アルケニル基、シクロアルケニル基、アルキニル基またはシクロアルキニル基を表す。置換基は架橋基であってもよい。
 「デンドロン」とは、原子または環を分岐点とする規則的な樹枝状分岐構造(即ち、デンドリマー構造)を有する基を意味する。デンドロンを有する化合物(以下、「デンドリマー」と言う。)としては、例えば、国際公開第02/067343号、特開2003-231692号公報、国際公開第2003/079736号、国際公開第2006/097717号等の文献に記載の構造が挙げられる。
 デンドロンとしては、好ましくは、式(D-A)または(D-B)で表される基である。
Figure JPOXMLDOC01-appb-C000050
[式中、
 mDA1、mDA2およびmDA3は、それぞれ独立に、0以上の整数を表す。
 GDAは、窒素原子、芳香族炭化水素基または複素環基を表し、これらの基は置換基を有していてもよい。
 ArDA1、ArDA2およびArDA3は、それぞれ独立に、アリーレン基または2価の複素環基を表し、これらの基は置換基を有していてもよい。ArDA1、ArDA2およびArDA3が複数ある場合、それらはそれぞれ同一でも異なっていてもよい。
 TDAは、アリール基または1価の複素環基を表し、これらの基は置換基を有していてもよい。複数あるTDAは、同一でも異なっていてもよい。]
Figure JPOXMLDOC01-appb-C000051
[式中、
 mDA1、mDA2、mDA3、mDA4、mDA5、mDA6およびmDA7は、それぞれ独立に、0以上の整数を表す。
 GDAは、窒素原子、芳香族炭化水素基または複素環基を表し、これらの基は置換基を有していてもよい。複数あるGDAは、同一でも異なっていてもよい。
 ArDA1、ArDA2、ArDA3、ArDA4、ArDA5、ArDA6およびArDA7は、それぞれ独立に、アリーレン基または2価の複素環基を表し、これらの基は置換基を有していてもよい。ArDA1、ArDA2、ArDA3、ArDA4、ArDA5、ArDA6およびArDA7が複数ある場合、それらはそれぞれ同一でも異なっていてもよい。
 TDAは、アリール基または1価の複素環基を表し、これらの基は置換基を有していてもよい。複数あるTDAは、同一でも異なっていてもよい。]
 mDA1、mDA2、mDA3、mDA4、mDA5、mDA6およびmDA7は、通常10以下の整数であり、好ましくは5以下の整数であり、より好ましくは0または1である。mDA1、mDA2、mDA3、mDA4、mDA5、mDA6およびmDA7は、同一の整数であることが好ましい。
 GDAは、好ましくは式(GDA-11)~(GDA-15)で表される基であり、これらの基は置換基を有していてもよい。
Figure JPOXMLDOC01-appb-C000052
[式中、
 *は、式(D-A)におけるArDA1、式(D-B)におけるArDA1、式(D-B)におけるArDA2、または、式(D-B)におけるArDA3との結合を表す。
 **は、式(D-A)におけるArDA2、式(D-B)におけるArDA2、式(D-B)におけるArDA4、または、式(D-B)におけるArDA6との結合を表す。
 ***は、式(D-A)におけるArDA3、式(D-B)におけるArDA3、式(D-B)におけるArDA5、または、式(D-B)におけるArDA7との結合を表す。
 RDAは、水素原子、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基または1価の複素環基を表し、これらの基は更に置換基を有していてもよい。RDAが複数ある場合、それらは同一でも異なっていてもよい。]
 RDAは、好ましくは水素原子、アルキル基、シクロアルキル基、アルコキシ基またはシクロアルコキシ基であり、より好ましくは水素原子、アルキル基またはシクロアルキル基であり、これらの基は置換基を有していてもよい。
 ArDA1、ArDA2、ArDA3、ArDA4、ArDA5、ArDA6およびArDA7は、好ましくは式(ArDA-1)~(ArDA-3)で表される基である。
Figure JPOXMLDOC01-appb-C000053
[式中、
 RDAは前記と同じ意味を表す。
 RDBは、水素原子、アルキル基、シクロアルキル基、アリール基または1価の複素環基を表し、これらの基は置換基を有していてもよい。RDBが複数ある場合、それらは同一でも異なっていてもよい。]
 RDBは、好ましくはアルキル基、シクロアルキル基、アリール基または1価の複素環基であり、より好ましくはアリール基または1価の複素環基であり、更に好ましくはアリール基である。
 TDAは、好ましくは式(TDA-1)~(TDA-3)で表される基である。
Figure JPOXMLDOC01-appb-C000054
[式中、RDAおよびRDBは前記と同じ意味を表す。]
 式(D-A)で表される基は、好ましくは式(D-A1)~(D-A3)で表される基である。
Figure JPOXMLDOC01-appb-C000055
[式中、
 Rp1、Rp2およびRp3は、それぞれ独立に、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基またはハロゲン原子を表す。Rp1およびRp2が複数ある場合、それらはそれぞれ同一であっても異なっていてもよい。
 np1は、0~5の整数を表し、np2は0~3の整数を表し、np3は0または1を表す。複数あるnp1は、同一でも異なっていてもよい。]
 式(D-B)で表される基は、好ましくは式(D-B1)~(D-B3)で表される基である。
Figure JPOXMLDOC01-appb-C000056
[式中、
 Rp1、Rp2およびRp3は、それぞれ独立に、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基またはハロゲン原子を表す。Rp1およびRp2が複数ある場合、それらはそれぞれ同一でも異なっていてもよい。
 np1は0~5の整数を表し、np2は0~3の整数を表し、np3は0または1を表す。np1およびnp2が複数ある場合、それらはそれぞれ同一でも異なっていてもよい。]
 np1は、好ましくは0または1であり、より好ましくは1である。np2は、好ましくは0または1であり、より好ましくは0である。np3は好ましくは0である。
 Rp1、Rp2およびRp3は、好ましくはアルキル基またはシクロアルキル基である。
 <発光素子>
 本発明の発光素子は、陽極と、陰極と、陽極および陰極の間に設けられた発光層と、陽極および発光層の間に設けられた正孔輸送層とを有する発光素子であって、
 正孔輸送層が、架橋基を有する材料を用いて得られる層であり、
 発光層が、式(A)で表される燐光発光性化合物(A)と、式(B)で表される燐光発光性化合物(B)とを含有する組成物を用いて得られる層であり、
 燐光発光性化合物(A)が有する環RA1と環RA2とで構成される配位子骨格の少なくとも1つと、燐光発光性化合物(B)が有する環RB1と環RB2とで構成される配位子骨格の少なくとも1つとが、互いに異なる、発光素子である。
 正孔輸送層と、架橋基を有する材料との関係についていう「用いて得られる」とは、架橋基を有する材料を用いて正孔輸送層が形成されていることを意味する。架橋基を有する材料がそのまま正孔輸送層に含有されていてもよいし、架橋基を有する材料が分子内、分子間、または、それらの両方で架橋した状態(架橋基を有する材料の架橋体)で正孔輸送層に含有されていてもよい。
 発光層と組成物との関係についていう「用いて得られる」とは、組成物を用いて発光層が形成されていることを意味する。組成物に含有される燐光発光性化合物(A)および燐光発光性化合物(B)がそのまま発光層に含有されていてもよいし、組成物に含有される燐光発光性化合物(A)または燐光発光性化合物(B)が分子内、分子間、または、それらの両方で架橋した状態(燐光発光性化合物(A)の架橋体または燐光発光性化合物(B)の架橋体)で発光層に含有されていてもよい。
 正孔輸送層および発光層の形成方法としては、例えば、真空蒸着法、並びに、スピンコート法およびインクジェット印刷法に代表される塗布法が挙げられ、塗布法が好ましい。
 正孔輸送層を塗布法により形成する場合、後述する正孔輸送層のインクを用いることが好ましい。正孔輸送層を形成後、加熱または光照射することで、正孔輸送層に含有される架橋基を有する材料を架橋させることができる。架橋基を有する材料が架橋した状態(架橋基を有する材料の架橋体)で、正孔輸送層に含有されている場合、正孔輸送層は溶媒に対して実質的に不溶化されている。そのため、該正孔輸送層は、発光素子の積層化に好適に使用することができる。
 発光層を塗布法により形成する場合、後述する発光層のインクを用いることが好ましい。発光層を形成後、加熱または光照射することで、燐光発光性化合物(A)または燐光発光性化合物(B)を架橋させることができる。燐光発光性化合物(A)または燐光発光性化合物(B)が架橋した状態(燐光発光性化合物(A)の架橋体または燐光発光性化合物(B)の架橋体)で、発光層に含有されている場合、発光層は溶媒に対して実質的に不溶化されている。そのため、該発光層は、発光素子の積層化に好適に使用することができる。
 架橋させるための加熱の温度は、通常、25~300℃であり、好ましくは50~250℃であり、より好ましくは150~200℃である。
 架橋させるための光照射に用いられる光の種類は、例えば、紫外光、近紫外光、可視光である。
 正孔輸送層の形態(架橋基を有する材料がそのまま含有されているか、架橋基を有する材料の架橋体が含有されているか)および発光層の形態(燐光発光性化合物(A)および燐光発光性化合物(B)がそのまま含有されているか、燐光発光性化合物(A)の架橋体または燐光発光性化合物(B)の架橋体が含有されているか)の分析方法としては、例えば、抽出等に代表される化学的分離分析法、赤外分光法(IR)、核磁気共鳴分光法(NMR)、質量分析法(MS)等に代表される機器分析法、並びに、化学的分離分析法および機器分析法を組み合わせた分析法が挙げられる。
 正孔輸送層または発光層に対して、トルエン、キシレン、クロロホルム、テトラヒドロフラン等に代表される有機溶媒を用いた固液抽出を行うことで、有機溶媒に対して実質的に不溶な成分(不溶成分)と、有機溶媒に対して溶解する成分(溶解成分)とに分離することが可能である。得られた不溶成分は、赤外分光法(IR)または核磁気共鳴分光法(NMR)により分析することが可能であり、得られた溶解成分は、核磁気共鳴分光法(NMR)または質量分析法(MS)により分析することが可能である。
 <発光層>
 本発明の発光素子が有する発光層は、発光スペクトルの最大ピーク波長が400nm以上495nm未満であり、式(A)で表される燐光発光性化合物(A)と、発光スペクトルの最大ピーク波長が400nm以上495nm未満であり、式(B)で表される燐光発光性化合物(B)とを含有する組成物(以下、「発光層の組成物」ともいう。)を用いて得られる層である。
 燐光発光性化合物の発光スペクトルの最大ピーク波長は、燐光発光性化合物を、キシレン、トルエン、クロロホルム、テトラヒドロフラン等の有機溶媒に溶解させ、希薄溶液を調製し(1×10-6~1×10-3wt%程度)、該希薄溶液のPLスペクトルを室温で測定することで評価することができる。燐光発光性化合物を溶解させる有機溶媒としては、キシレンが好ましい。
 <燐光発光性化合物(A)および燐光発光性化合物(B)>
 式(A)で表される燐光発光性化合物(A)は、中心金属であるMと、添え字nでその数を規定されている配位子と、添え字nでその数を規定されている配位子とから構成されている。
 式(B)で表される燐光発光性化合物(B)は、中心金属であるMと、添え字nでその数を規定されている配位子と、添え字nでその数を規定されている配位子とから構成されている。
 燐光発光性化合物(A)が有する環RA1と環RA2とで構成される配位子骨格の少なくとも1つと、燐光発光性化合物(B)が有する環RB1と環RB2とで構成される配位子骨格の少なくとも1つとは、互いに異なる。
 式(A)および式(B)中、Mは、本発明の発光素子の外部量子効率がより優れるので、イリジウム原子または白金原子であることが好ましく、イリジウム原子であることがより好ましい。
 式(A)および式(B)中、Mがルテニウム原子、ロジウム原子またはイリジウム原子の場合、nは2または3であることが好ましく、3であることがより好ましい。
 式(A)および式(B)中、Mがパラジウム原子または白金原子の場合の場合、nは2であることが好ましい。
 式(A)中、EA1およびEA2は、炭素原子であることが好ましい。
 式(B)中、EB1およびEB2は、炭素原子であることが好ましい。
 式(A)中、環RA1は、ピリジン環、ピリミジン環、イミダゾール環またはトリアゾール環であることが好ましく、これらの環は置換基を有していてもよい。
 式(B)中、環RB1は、ピリジン環、ピリミジン環、イミダゾール環またはトリアゾール環であることが好ましく、これらの環は置換基を有していてもよい。
 式(A)中、環RA2は、ベンゼン環、ナフタレン環、フルオレン環、フェナントレン環、ピリジン環、ジアザベンゼン環、トリアジン環、ピロール環、フラン環またはチオフェン環であることが好ましく、ベンゼン環、ナフタレン環、フルオレン環、フェナントレン環、ピリジン環、ジアザベンゼン環またはトリアジン環であることがより好ましく、ベンゼン環、ナフタレン環、フルオレン環、ピリジン環またはピリミジン環であることが更に好ましく、ベンゼン環、ピリジン環またはピリミジン環であることが特に好ましく、ベンゼン環であることがとりわけ好ましく、これらの環は置換基を有していてもよい。
 式(B)中、環RB2は、ベンゼン環、ナフタレン環、フルオレン環、フェナントレン環、ピリジン環、ジアザベンゼン環、トリアジン環、ピロール環、フラン環またはチオフェン環であることが好ましく、ベンゼン環、ナフタレン環、フルオレン環、フェナントレン環、ピリジン環、ジアザベンゼン環またはトリアジン環であることがより好ましく、ベンゼン環、ナフタレン環、フルオレン環、ピリジン環またはピリミジン環であることが更に好ましく、ベンゼン環、ピリジン環またはピリミジン環であることが特に好ましく、ベンゼン環であることがとりわけ好ましく、これらの環は置換基を有していてもよい。
 環RA1、環RA2、環RB1および環RB2が有していてもよい置換基としては、ハロゲン原子、アルキル基、シクロアルキル基、アリール基、1価の複素環基、アルコキシ基、シクロアルコキシ基、アリールオキシ基または置換アミノ基が好ましく、ハロゲン原子、アルキル基、シクロアルキル基、アリール基または1価の複素環基がより好ましく、アルキル基、シクロアルキル基またはアリール基が更に好ましく、アルキル基またはアリール基が特に好ましく、これらの基は更に置換基を有していてもよい。アリール基、1価の複素環基および置換アミノ基は、デンドロンであることが好ましい。
 環RA1、環RA2、環RB1および環RB2が有していてもよい置換基は、本発明の発光素子の外部量子効率がより優れるので、好ましくは、アルキル基またはフェニル基であり、より好ましくは、アルキル基、または、式(D-A1)、(D-B1)若しくは(D-C1)~(D-C4)で表される基であり、更に好ましくは、アルキル基、または、式(D-A1)、(D-C1)若しくは(D-C2)で表される基であり、これらの基は更に置換基を有していてもよい。
Figure JPOXMLDOC01-appb-C000057
[式中、
 Rp4、Rp5およびRp6は、それぞれ独立に、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基またはハロゲン原子を表す。Rp4、Rp5およびRp6が複数ある場合、それらはそれぞれ同一であっても異なっていてもよい。
 np4は、0~4の整数を表し、np5は0~5の整数を表し、np6は0~5の整数を表す。]
 np4は、好ましくは1または2であり、より好ましくは2である。np5は、好ましくは1~3の整数であり、より好ましくは2または3である。np6は、好ましくは0~2の整数であり、より好ましくは0である。
 Rp4、Rp5およびRp6は、好ましくはアルキル基またはシクロアルキル基である。
 本発明の発光素子の外部量子効率がより優れるので、燐光発光性化合物(A)が有する環RA1と環RA2とで構成される配位子骨格の全てと、燐光発光性化合物(B)が有する環RB1と環RB2とで構成される配位子骨格の全てとは、互いに異なることが好ましい。
 式(A)中、環RA1が6員環の芳香族複素環である場合、環RA2は電子求引基を有する。環RA2が有する電子求引基の個数は、通常1個以上10個以下であり、燐光発光性化合物(A)の合成が容易であるため、好ましくは2個以上5個以下であり、より好ましくは2個または3個である。式(B)中、環RB1が6員環の芳香族複素環である場合、環RB2は電子求引基を有する。環RB2が有する電子求引基の個数は、通常1個以上10個以下であり、燐光発光性化合物(B)の合成が容易であるため、好ましくは2個以上5個以下であり、より好ましくは2個または3個である。
 「電子求引基」としては、例えば、-C(=X101)-R101で表される基、ハロゲン原子、ハロゲン原子を置換基として有するアルキル基、ハロゲン原子を置換基として有するシクロアルキル基、シアノ基およびニトロ基が挙げられ、好ましくは、フッ素原子、フッ素原子を置換基として有するアルキル基、フッ素原子を置換基として有するシクロアルキル基またはシアノ基であり、より好ましくは、フッ素原子、フッ素原子を置換基として有するアルキル基またはフッ素原子を置換基として有するシクロアルキル基である。
 「ハロゲン原子を置換基として有するアルキル基」とは、アルキル基が有する水素原子のうち、少なくとも1つの水素原子がハロゲン原子で置換された基を意味する。また、「ハロゲン原子を置換基として有するシクロアルキル基」とは、シクロアルキル基が有する水素原子のうち、少なくとも1つの水素原子がハロゲン原子で置換された基を意味する。ハロゲン原子としては、フッ素原子であることが好ましい。
 フッ素原子を有するアルキル基としては、例えば、トリフルオロメチル基、ペンタフルオロエチル基、パーフルオロブチル基、パーフルオロヘキシル基およびパーフルオロオクチル基が挙げられ、トリフルオロメチル基であることが好ましい。
 R101は、水素原子、アルキル基、シクロアルキル基、アリール基、1価の複素環基、アルコキシ基、シクロアルコキシ基、アリールオキシ基または置換アミノ基を表し、これらの基は置換基を有していてもよい。
 X101は、=N-R102で表される基、酸素原子または硫黄原子を表し、酸素原子であることが好ましい。
 R102は、水素原子、アルキル基、シクロアルキル基、アリール基または1価の複素環基を表し、アルキル基、シクロアルキル基、アリール基または1価の複素環基であることが好ましく、これらの基は置換基を有していてもよい。
 R101およびR102が有していてもよい置換基の例および好ましい範囲は、環RA1、環RA2、環RB1および環RB2が有していてもよい置換基の例および好ましい範囲と同様である。
 A-G-Aで表されるアニオン性の2座配位子としては、例えば、下記で表される配位子が挙げられる。
Figure JPOXMLDOC01-appb-C000058
Figure JPOXMLDOC01-appb-C000059
[式中、*は、Mと結合する部位を示す。]
 燐光発光性化合物(A)のHOMO(最高被占軌道準位)は、-6.5eV~-4.5eVであることが好ましい。燐光発光性化合物(B)のHOMOは、-6.5eV~-4.5eVであることが好ましい。本発明の発光素子の外部量子効率がより優れるので、燐光発光性化合物(A)のHOMO(以下、「HOMO(A)」ともいう。)と、燐光発光性化合物(B)のHOMO(以下、「HOMO(B)」ともいう。)とは、下記式(HOMO-1)を満たすことが好ましい。

  0.2≦ |HOMO(A)-HOMO(B)|  (HOMO-1)
 燐光発光性化合物(A)のLUMO(最低空軌道準位)は、-3.0eV~-1.5eVであることが好ましい。燐光発光性化合物(B)のLUMOは、-3.0eV~-1.5eVであることが好ましい。本発明の発光素子の外部量子効率がより優れるので、燐光発光性化合物(A)のLUMO(以下、「LUMO(A)」ともいう。)と、燐光発光性化合物(B)のLUMO(以下、「LUMO(B)」ともいう。)とは、下記式(LUMO-1)を満たすことが好ましい。

  0.2≦ |LUMO(A)-LUMO(B)|  (LUMO-1)
 燐光発光性化合物(A)および燐光発光性化合物(B)のHOMOは、CV測定(サイクリックボルタンメトリ測定)の酸化準位から測定することができる。また、燐光発光性化合物(A)および燐光発光性化合物(B)のHOMOは、光電子分光測定から測定することができる。
 燐光発光性化合物(A)および燐光発光性化合物(B)のLUMOは、CV測定(サイクリックボルタンメトリ測定)の還元準位から測定することができる。また、燐光発光性化合物(A)および燐光発光性化合物(B)のLUMOは、光電子分光測定から測定したHOMOに、Eg(バンドギャップ)を加算することにより算出することができる。燐光発光性化合物(A)および燐光発光性化合物(B)のEgは、燐光発光性化合物(A)および燐光発光性化合物(B)の吸収スペクトルを測定し、該吸収スペクトルの吸収端から算出することができる。
 発光層の組成物に含有される燐光発光性化合物(A)および燐光発光性化合物(B)の組み合わせとしては、本発明の発光素子の外部量子効率がより優れるので、燐光発光性化合物(A)が式(A-1)で表される燐光発光性化合物であり、燐光発光性化合物(B)が式(B-1)で表される燐光発光性化合物である組み合わせ、または、燐光発光性化合物(A)が式(A-2)で表される燐光発光性化合物であり、燐光発光性化合物(B)が式(B-2)で表される燐光発光性化合物である組み合わせが好ましい。
 [式(A-1)で表される燐光発光性化合物]
 式(A-1)中、環RA3は、ピリジン環またはピリミジン環であることが好ましく、ピリジン環であることがより好ましく、これらの環は置換基を有していてもよい。環RA3が有していてもよい置換基の例および好ましい範囲は、環RA1が有していてもよい置換基の例および好ましい範囲と同様である。
 式(A-1)中、環RA4の例および好ましい範囲は、環RA2の例および好ましい範囲と同様である。環RA4が有していてもよい置換基の例および好ましい範囲は、環RA2が有していてもよい置換基の例および好ましい範囲と同様である。但し、環RA4は電子求引基を有する。
 環RA4が有する電子求引基の個数、例および好ましい範囲は、環RA2が電子求引基を有する場合の電子求引基の個数、例および好ましい範囲と同様である。
 [式(B-1)で表される燐光発光性化合物]
 式(B-1)中、環RB3は、イミダゾール環、ピラゾール環またはトリアゾール環であることが好ましく、イミダゾール環またはトリアゾール環であることがより好ましく、トリアゾール環であることが更に好ましく、これらの環は置換基を有していてもよい。環RB3が有していてもよい置換基の例および好ましい範囲は、環RB1が有していてもよい置換基の例および好ましい範囲と同様である。
 式(B-1)中、環RB4の例および好ましい範囲は、環RB2の例および好ましい範囲と同様である。環RA4が有していてもよい置換基の例および好ましい範囲は、環RA2が有していてもよい置換基の例および好ましい範囲と同様である。
 式(B-1)中、環RB3または環RB4は、アリール基、1価の複素環基または置換アミノ基を置換基として有することが好ましく、アリール基または1価の複素環基を置換基として有することがより好ましく、これらの基は更に置換基を有していてもよい。アリール基、1価の複素環基および置換アミノ基は、デンドロンであることが好ましい。
 [式(A-2)で表される燐光発光性化合物]
 式(A-2)中、環RA5が有していてもよい置換基の例および好ましい範囲は、環RA1が有していてもよい置換基が有していてもよい置換基の例および好ましい範囲と同様である。
 式(A-2)中、環RA6の例および好ましい範囲は、環RA2の例および好ましい範囲と同様である。環RA6が有していてもよい置換基の例および好ましい範囲は、環RA2が有していてもよい置換基の例および好ましい範囲と同様である。
 式(A-2)中、環RA5または環RA6は、アリール基、1価の複素環基または置換アミノ基を置換基として有することが好ましく、アリール基または1価の複素環基を置換基として有することがより好ましく、これらの基は更に置換基を有していてもよい。アリール基、1価の複素環基および置換アミノ基は、デンドロンであることが好ましい。
 [式(B-2)で表される燐光発光性化合物]
 式(B-2)中、環RB5が有していてもよい置換基の例および好ましい範囲は、環RB1が有していてもよい置換基の例および好ましい範囲と同様である。
 式(B-2)中、環RB6の例および好ましい範囲は、環RB2の例および好ましい範囲と同様である。環RB6が有していてもよい置換基の例および好ましい範囲は、環RB2が有していてもよい置換基の例および好ましい範囲と同様である。
 式(B-2)中、環RB5または環RB6は、アリール基、1価の複素環基または置換アミノ基を置換基として有することが好ましく、アリール基または1価の複素環基を置換基として有することがより好ましく、これらの基は更に置換基を有していてもよい。アリール基、1価の複素環基および置換アミノ基は、デンドロンであることが好ましい。
 発光層の組成物に含有される燐光発光性化合物(A)および燐光発光性化合物(B)の組み合わせが、燐光発光性化合物(A)が式(A-1)で表される燐光発光性化合物であり、燐光発光性化合物(B)が式(B-1)で表される燐光発光性化合物である組み合わせの場合、式(A-1)で表される燐光発光性化合物が式(A-3)で表される燐光発光性化合物であり、式(B-1)で表される燐光発光性化合物が式(B-3)で表される燐光発光性化合物である組み合わせが好ましい。
 [式(A-3)で表される燐光発光性化合物]
 式(A-3)中、環RA7がピリミジン環である場合、EA71が窒素原子であるピリミジン環、または、EA73が窒素原子であるピリミジン環が好ましく、EA71が窒素原子であるピリミジン環がより好ましい。
 式(A-3)中、環RA7は、ピリジン環が好ましい。
 式(A-3)中、RA71、RA72、RA73およびRA74は、水素原子、アルキル基、シクロアルキル基、アリール基、1価の複素環基または置換アミノ基であることが好ましく、水素原子、アルキル基、シクロアルキル基またはアリール基であることがより好ましく、水素原子、アルキル基またはシクロアルキル基であることが更に好ましく、水素原子であることが特に好ましく、これらの基は置換基を有していてもよい。アリール基、1価の複素環基および置換アミノ基は、デンドロンであることが好ましい。
 式(A-3)中、環RA8がピリジン環である場合、EA82が窒素原子であるピリジン環、EA83が窒素原子であるピリジン環、または、EA84が窒素原子であるピリジン環が好ましく、EA82が窒素原子であるピリジン環がより好ましい。
 環式(A-3)中、RA8がピリミジン環である場合、EA81およびEA83が窒素原子であるピリミジン環、または、EA82およびEA84が窒素原子であるピリミジン環が好ましく、EA82およびEA84が窒素原子であるピリミジン環がより好ましい。
 式(A-3)中、環RA8は、ベンゼン環であることが好ましい。
 式(A-3)中、RA81、RA82、RA83およびRA84は、水素原子、アルキル基、シクロアルキル基、アリール基、1価の複素環基、置換アミノ基またはフッ素原子であることが好ましく、水素原子、アルキル基、シクロアルキル基またはアリール基であることがより好ましく、これらの基は置換基を有していてもよい。アリール基、1価の複素環基および置換アミノは、デンドロンであることが好ましい。
 式(A-3)中、RA81、RA82、RA83およびRA84の少なくとも1つは、電子求引基であるが、RA81およびRA83の少なくとも1つが、電子求引基であることが好ましい。電子求引基の例および好ましい範囲は、環RA2が電子求引基を有する場合の電子求引基の例および好ましい範囲と同様である。
 式(A-3)中、RA84は、水素原子であることが好ましい。
 [式(B-3)で表される燐光発光性化合物]
 式(B-3)中、環RB7がイミダゾ―ル環である場合、EB71が窒素原子であるイミダゾール環、または、EB72が窒素原子であるイミダゾール環が好ましく、EB71が窒素原子であるイミダゾール環がより好ましい。
 式(B-3)中、環RB7がトリアゾール環である場合、EB71およびEB72が窒素原子であるトリアゾール環、または、EB71およびEB73が窒素原子であるトリアゾール環が好ましく、EB71およびEB72が窒素原子であるトリアゾール環がより好ましい。
 式(B-3)中、EB71が窒素原子であり、且つ、RB71が存在する場合、RB71はアルキル基、シクロアルキル基、アリール基、1価の複素環基または置換アミノ基であることが好ましく、アルキル基、シクロアルキル基またはアリール基であることがより好ましく、これらの基は置換基を有していてもよい。アリール基、1価の複素環基および置換アミノ基は、デンドロンであることが好ましい。
 式(B-3)中、EB71が窒素原子であり、且つ、RB71が存在する場合、RB71は、本発明の発光素子の外部量子効率がより優れるので、好ましくは、アルキル基またはフェニル基であり、より好ましくは、アルキル基、または、式(D-A1)、(D-B1)若しくは(D-C1)~(D-C4)で表される基であり、更に好ましくは、アルキル基、または、式(D-C1)若しくは(D-C2)で表される基であり、これらの基は更に置換基を有していてもよい。
 式(B-3)中、EB71が炭素原子である場合、RB71は、水素原子、アルキル基、シクロアルキル基、アリール基または1価の複素環基であることが好ましく、水素原子、アルキル基、シクロアルキル基またはアリール基であることがより好ましく、水素原子、アルキル基またはシクロアルキル基であることが更に好ましく、これらの基は置換基を有していてもよい。
 式(B-3)中、EB72が窒素原子であり、且つ、RB72が存在する場合、RB72はアルキル基、シクロアルキル基、アリール基、1価の複素環基または置換アミノ基であることが好ましく、アルキル基、シクロアルキル基またはアリール基であることがより好ましく、これらの基は置換基を有していてもよい。アリール基、1価の複素環基および置換アミノ基は、デンドロンであることが好ましい。
 式(B-3)中、EB72が窒素原子であり、且つ、RB72が存在する場合、RB72は、本発明の発光素子の外部量子効率がより優れるので、好ましくは、アルキル基またはフェニル基であり、より好ましくは、アルキル基、または、式(D-A1)、(D-B1)若しくは(D-C1)~(D-C4)で表される基であり、更に好ましくは、アルキル基、または、式(D-C1)若しくは(D-C2)で表される基であり、これらの基は更に置換基を有していてもよい。
 式(B-3)中、EB72が炭素原子である場合、RB72は、水素原子、アルキル基、シクロアルキル基、アリール基または1価の複素環基であることが好ましく、水素原子、アルキル基、シクロアルキル基またはアリール基であることがより好ましく、水素原子、アルキル基またはシクロアルキル基であることが更に好ましく、これらの基は置換基を有していてもよい。
 式(B-3)中、EB73が窒素原子であり、且つ、RB73が存在する場合、RB73はアルキル基、シクロアルキル基、アリール基、1価の複素環基または置換アミノ基であることが好ましく、アルキル基、シクロアルキル基またはアリール基であることがより好ましく、これらの基は置換基を有していてもよい。アリール基、1価の複素環基および置換アミノ基は、デンドロンであることが好ましい。
 式(B-3)中、EB73が炭素原子である場合、RB73は、水素原子、アルキル基、シクロアルキル基、アリール基または1価の複素環基であることが好ましく、水素原子、アルキル基、シクロアルキル基またはアリール基であることがより好ましく、水素原子、アルキル基またはシクロアルキル基であることが更に好ましく、これらの基は置換基を有していてもよい。
 式(B-3)中、環RB7がアリール基、1価の複素環基または置換アミノ基を有する場合、RB71またはRB72がアリール基、1価の複素環基または置換アミノ基であることが好ましく、RB71がアリール基、1価の複素環基または置換アミノ基であることがより好ましく、これらの基は置換基を有していてもよい。アリール基、1価の複素環基および置換アミノ基は、デンドロンであることが好ましい。
 式(B-3)中、環RB8がピリジン環である場合、EB82が窒素原子であるピリジン環、EB83が窒素原子であるピリジン環、または、EB84が窒素原子であるピリジン環が好ましく、EB82が窒素原子であるピリジン環がより好ましい。
 式(B-3)中、環RB8がピリミジン環である場合、EB81およびEB83が窒素原子であるピリミジン環、または、EB82およびEB84が窒素原子であるピリミジン環が好ましく、EB82およびEB84が窒素原子であるピリミジン環がより好ましい。
 式(B-3)中、環RB8は、ベンゼン環であることが好ましい。
 式(B-3)中、RB81、RB82、RB83およびRB84は、水素原子、アルキル基、シクロアルキル基、アリール基、1価の複素環基または置換アミノ基であることが好ましく、水素原子、アルキル基、シクロアルキル基、アリール基または1価の複素環基であることがより好ましく、水素原子、アルキル基、シクロアルキル基またはアリール基であることが更に好ましく、これらの基は置換基を有していてもよい。アリール基、1価の複素環基および置換アミノは、デンドロンであることが好ましい。
 式(B-3)中、RB81、RB82、RB83およびRB84は、本発明の発光素子の外部量子効率がより優れるので、好ましくは、水素原子、アルキル基またはフェニル基であり、より好ましくは、水素原子、アルキル基、または、式(D-A1)、(D-B1)若しくは(D-C1)~(D-C4)で表される基であり、更に好ましくは、水素原子、または、式(D-A1)、(D-B1)若しくは(D-C1)~(D-C4)で表される基であり、特に好ましくは、水素原子、または、式(D-A1)で表される基であり、これらの基は更に置換基を有していてもよい。
 式(B-3)中、RB84は、水素原子であることが好ましい。
 式(B-3)中、環RB8がアリール基、1価の複素環基または置換アミノ基を有する場合、RB82またはRB83がアリール基、1価の複素環基または置換アミノ基であることが好ましく、RB82がアリール基、1価の複素環基または置換アミノ基であることがより好ましく、これらの基は置換基を有していてもよい。アリール基、1価の複素環基および置換アミノ基は、デンドロンであることが好ましい。
 発光層の組成物に含有される燐光発光性化合物(A)および燐光発光性化合物(B)の組み合わせが、燐光発光性化合物(A)が式(A-2)で表される燐光発光性化合物であり、燐光発光性化合物(B)が式(B-2)で表される燐光発光性化合物である組み合わせの場合、式(A-2)で表される燐光発光性化合物が式(A-4)で表される燐光発光性化合物であり、式(B-2)で表される燐光発光性化合物が式(B-4)で表される燐光発光性化合物である組み合わせが好ましい。
 [式(A-4)で表される燐光発光性化合物]
 式(A-4)中、環RA9は、EA91が窒素原子であるイミダゾール環、または、EA92が窒素原子であるイミダゾール環が好ましく、EA91が窒素原子であるイミダゾール環がより好ましい。
 式(A-4)中、EA91が窒素原子であり、且つ、RA91が存在する場合、RA91はアルキル基、シクロアルキル基、アリール基、1価の複素環基または置換アミノ基であることが好ましく、アルキル基、シクロアルキル基またはアリール基であることがより好ましく、アリール基であることが更に好ましく、これらの基は置換基を有していてもよい。アリール基、1価の複素環基および置換アミノ基は、デンドロンであることが好ましい。
 式(A-4)中、EA91が窒素原子であり、且つ、RA91が存在する場合、RA91は、本発明の発光素子の外部量子効率がより優れるので、好ましくは、フェニル基であり、より好ましくは、式(D-A1)、(D-B1)または(D-C1)~(D-C4)で表される基であり、更に好ましくは、式(D-C1)または(D-C2)で表される基であり、これらの基は更に置換基を有していてもよい。
 式(A-4)中、EA91が炭素原子である場合、RA91は、水素原子、アルキル基、シクロアルキル基、アリール基または1価の複素環基であることが好ましく、水素原子、アルキル基、シクロアルキル基またはアリール基であることがより好ましく、水素原子、アルキル基またはシクロアルキル基であることが更に好ましく、これらの基は置換基を有していてもよい。
 式(A-4)中、EA92が窒素原子であり、且つ、RA92が存在する場合、RA92はアルキル基、シクロアルキル基、アリール基、1価の複素環基または置換アミノ基であることが好ましく、アルキル基、シクロアルキル基またはアリール基であることがより好ましく、これらの基は置換基を有していてもよい。アリール基、1価の複素環基および置換アミノ基は、デンドロンであることが好ましい。
 式(A-4)中、EA92が窒素原子であり、且つ、RA92が存在する場合、RA92は、本発明の発光素子の外部量子効率がより優れるので、好ましくは、フェニル基であり、より好ましくは、式(D-A1)、(D-B1)または(D-C1)~(D-C4)で表される基であり、更に好ましくは、式(D-C1)または(D-C2)で表される基であり、これらの基は更に置換基を有していてもよい。
 式(A-4)中、EA92が炭素原子である場合、RA92は、水素原子、アルキル基、シクロアルキル基、アリール基または1価の複素環基であることが好ましく、水素原子、アルキル基、シクロアルキル基またはアリール基であることがより好ましく、水素原子、アルキル基またはシクロアルキル基であることが更に好ましく、これらの基は置換基を有していてもよい。
 式(A-4)中、RA93は、水素原子、アルキル基、シクロアルキル基、アリール基または1価の複素環基であることが好ましく、水素原子、アルキル基、シクロアルキル基またはアリール基であることがより好ましく、水素原子、アルキル基またはシクロアルキル基であることが更に好ましく、これらの基は置換基を有していてもよい。
 式(A-4)中、環RA9がアリール基、1価の複素環基または置換アミノ基を有する場合、RA91またはRA92がアリール基、1価の複素環基または置換アミノ基であることが好ましく、RA91がアリール基、1価の複素環基または置換アミノ基であることがより好ましく、これらの基は置換基を有していてもよい。アリール基、1価の複素環基および置換アミノ基は、デンドロンであることが好ましい。
 式(A-4)中、環RA10がピリジン環である場合、EA102が窒素原子であるピリジン環、EA103が窒素原子であるピリジン環、または、EA104が窒素原子であるピリジン環が好ましく、EA102が窒素原子であるピリジン環がより好ましい。
 式(A-4)中、環RA10がピリミジン環である場合、EA101およびEA103が窒素原子であるピリミジン環、または、EA102およびEA104が窒素原子であるピリミジン環が好ましく、EA102およびEA104が窒素原子であるピリミジン環がより好ましい。
 式(A-4)中、環RA10は、ベンゼン環であることが好ましい。
 式(A-4)中、RA101、RA102、RA103およびRA104は、水素原子、アルキル基、シクロアルキル基、アリール基、1価の複素環基または置換アミノ基であることが好ましく、水素原子、アルキル基、シクロアルキル基、アリール基または1価の複素環基であることがより好ましく、水素原子、アルキル基、シクロアルキル基またはアリール基であることが更に好ましく、これらの基は置換基を有していてもよい。アリール基、1価の複素環基および置換アミノは、デンドロンであることが好ましい。
 式(A-4)中、RA101、RA102、RA103およびRA104は、本発明の発光素子の外部量子効率がより優れるので、好ましくは、水素原子、アルキル基またはフェニル基であり、より好ましくは、水素原子、アルキル基、または、式(D-A1)、(D-B1)若しくは(D-C1)~(D-C4)で表される基であり、更に好ましくは、水素原子またはアルキル基であり、特に好ましくは水素原子であり、これらの基は更に置換基を有していてもよい。
 式(A-4)中、RA104は、水素原子であることが好ましい。
 式(A-4)中、環RA10がアリール基、1価の複素環基または置換アミノ基を有する場合、RA102またはRA103がアリール基、1価の複素環基または置換アミノ基であることが好ましく、RA102がアリール基、1価の複素環基または置換アミノ基であることがより好ましく、これらの基は置換基を有していてもよい。アリール基、1価の複素環基および置換アミノ基は、デンドロンであることが好ましい。
 [式(B-4)で表される燐光発光性化合物]
 式(B-4)中、環RB9は、EB91およびEB92が窒素原子であるトリアゾール環、または、EB91およびEB93が窒素原子であるトリアゾール環が好ましく、EB91およびEB92が窒素原子であるトリアゾール環がより好ましい。
 式(B-4)中、EB91が窒素原子であり、且つ、RB91が存在する場合、RB91はアルキル基、シクロアルキル基、アリール基、1価の複素環基または置換アミノ基であることが好ましく、アルキル基、シクロアルキル基またはアリール基であることがより好ましく、これらの基は置換基を有していてもよい。アリール基、1価の複素環基および置換アミノ基は、デンドロンであることが好ましい。
 式(B-4)中、EB91が窒素原子であり、且つ、RB91が存在する場合、RB91は、本発明の発光素子の外部量子効率がより優れるので、好ましくは、アルキル基またはフェニル基であり、より好ましくは、アルキル基、または、式(D-A1)、(D-B1)若しくは(D-C1)~(D-C4)で表される基であり、更に好ましくは、アルキル基、または、式(D-C1)若しくは(D-C2)で表される基であり、特に好ましくはアルキル基であり、これらの基は更に置換基を有していてもよい。
 式(B-4)中、EB91が炭素原子である場合、RB91は、水素原子、アルキル基、シクロアルキル基、アリール基または1価の複素環基であることが好ましく、水素原子、アルキル基、シクロアルキル基またはアリール基であることがより好ましく、水素原子、アルキル基またはシクロアルキル基であることが更に好ましく、これらの基は置換基を有していてもよい。
 式(B-4)中、EB92が窒素原子であり、且つ、RB92が存在する場合、RB92はアルキル基、シクロアルキル基、アリール基、1価の複素環基または置換アミノ基であることが好ましく、アルキル基、シクロアルキル基またはアリール基であることがより好ましく、これらの基は置換基を有していてもよい。アリール基、1価の複素環基および置換アミノ基は、デンドロンであることが好ましい。
 式(B-4)中、EB92が窒素原子であり、且つ、RB92が存在する場合、RB92は、本発明の発光素子の外部量子効率がより優れるので、好ましくは、アルキル基またはフェニル基であり、より好ましくは、アルキル基、または、式(D-A1)、(D-B1)若しくは(D-C1)~(D-C4)で表される基であり、更に好ましくは、アルキル基、または、式(D-C1)若しくは(D-C2)で表される基であり、特に好ましくはアルキル基であり、これらの基は更に置換基を有していてもよい。
 式(B-4)中、EB92が炭素原子である場合、RB92は、水素原子、アルキル基、シクロアルキル基、アリール基または1価の複素環基であることが好ましく、水素原子、アルキル基、シクロアルキル基またはアリール基であることがより好ましく、水素原子、アルキル基またはシクロアルキル基であることが更に好ましく、これらの基は置換基を有していてもよい。
 式(B-4)中、EB93が窒素原子であり、且つ、RB93が存在する場合、RB93はアルキル基、シクロアルキル基、アリール基、1価の複素環基または置換アミノ基であることが好ましく、アルキル基、シクロアルキル基またはアリール基であることがより好ましく、これらの基は置換基を有していてもよい。アリール基、1価の複素環基および置換アミノ基は、デンドロンであることが好ましい。
 式(B-4)中、EB93が炭素原子である場合、RB93は、水素原子、アルキル基、シクロアルキル基、アリール基または1価の複素環基であることが好ましく、水素原子、アルキル基、シクロアルキル基またはアリール基であることがより好ましく、水素原子、アルキル基またはシクロアルキル基であることが更に好ましく、これらの基は置換基を有していてもよい。
 式(B-4)中、環RB9がアリール基、1価の複素環基または置換アミノ基を有する場合、RB91またはRB92がアリール基、1価の複素環基または置換アミノ基であることが好ましく、RB91がアリール基、1価の複素環基または置換アミノ基であることがより好ましく、これらの基は置換基を有していてもよい。アリール基、1価の複素環基および置換アミノ基は、デンドロンであることが好ましい。
 式(B-4)中、環RB10がピリジン環である場合、EB102が窒素原子であるピリジン環、EB103が窒素原子であるピリジン環、または、EB104が窒素原子であるピリジン環が好ましく、EB102が窒素原子であるピリジン環がより好ましい。
 式(B-4)中、環RB10がピリミジン環である場合、EB101およびEB103が窒素原子であるピリミジン環、または、EB102およびEB104が窒素原子であるピリミジン環が好ましく、EB102およびEB104が窒素原子であるピリミジン環ことがより好ましい。
 式(B-4)中、環RB10は、ベンゼン環であることが好ましい。
 式(B-4)中、RB101、RB102、RB103およびRB104は、水素原子、アルキル基、シクロアルキル基、アリール基、1価の複素環基または置換アミノ基であることが好ましく、水素原子、アルキル基、シクロアルキル基、アリール基または1価の複素環基であることがより好ましく、水素原子、アルキル基、シクロアルキル基またはアリール基であることが更に好ましく、これらの基は置換基を有していてもよい。アリール基、1価の複素環基および置換アミノは、デンドロンであることが好ましい。
 式(B-4)中、RB101、RB102、RB103およびRB104は、本発明の発光素子の外部量子効率がより優れるので、好ましくは、水素原子、アルキル基またはフェニル基であり、より好ましくは、水素原子、アルキル基、または、式(D-A1)、(D-B1)若しくは(D-C1)~(D-C4)で表される基であり、更に好ましくは、水素原子、または、式(D-A1)、(D-B1)若しくは(D-C1)~(D-C4)で表される基であり、特に好ましくは、水素原子、または、式(D-A1)で表される基であり、これらの基は更に置換基を有していてもよい。
 式(B-4)中、RB104は、水素原子であることが好ましい。
 式(B-4)中、環RB10がアリール基、1価の複素環基または置換アミノ基を有する場合、RB102またはRB103がアリール基、1価の複素環基または置換アミノ基であることが好ましく、RB102がアリール基、1価の複素環基または置換アミノ基であることがより好ましく、これらの基は置換基を有していてもよい。アリール基、1価の複素環基および置換アミノ基は、デンドロンであることが好ましい。
 発光層の組成物に含有される燐光発光性化合物(A)および燐光発光性化合物(B)の組み合わせが、燐光発光性化合物(A)が式(A-3)で表される燐光発光性化合物であり、燐光発光性化合物(B)が式(B-3)で表される燐光発光性化合物である組み合わせの場合、式(A-3)で表される燐光発光性化合物が式(1)、(2)または(3)で表される燐光発光性化合物であり、式(B-3)で表される燐光発光性化合物が式(4)、(5)、(6)または(7)で表される燐光発光性化合物である組み合わせが好ましい。
 これらの中でも、式(A-3)で表される燐光発光性化合物としては、式(1)または(2)で表される燐光発光性化合物が好ましく、式(1)で表される燐光発光性化合物がより好ましい。また、式(B-3)で表される燐光発光性化合物としては、式(4)、(6)または(7)で表される燐光発光性化合物が好ましく、式(4)または(6)で表される燐光発光性化合物がより好ましく、式(6)で表される燐光発光性化合物がさらに好ましい。
 発光層の組成物に含有される燐光発光性化合物(A)および燐光発光性化合物(B)の組み合わせが、燐光発光性化合物(A)が式(A-4)で表される燐光発光性化合物であり、燐光発光性化合物(B)が式(B-4)で表される燐光発光性化合物である組み合わせの場合、式(A-4)で表される燐光発光性化合物が式(4)または(5)で表される燐光発光性化合物であり、式(B-4)で表される燐光発光性化合物が式(6)または(7)で表される燐光発光性化合物である組み合わせが好ましい。
 これらの中でも、式(A-4)で表される燐光発光性化合物としては、式(4)で表される燐光発光性化合物が好ましい。また、式(B-4)で表される燐光発光性化合物としては、式(6)で表される燐光発光性化合物が好ましい。
 [式(1)~(3)で表される燐光発光性化合物]
 式(1)~式(3)中、Mは、本発明の発光素子の外部量子効率がより優れるため、イリジウム原子であることが好ましい。
 式(1)~式(3)中、Mがイリジウム原子の場合、nは2または3であることが好ましく、3であることがより好ましい。
 式(1)~式(3)中、Mが白金原子の場合の場合、nは2であることが好ましい。
 式(1)~式(3)中、R、R、RおよびRは、水素原子、アルキル基、シクロアルキル基、アリール基、1価の複素環基または置換アミノ基であることが好ましく、水素原子、アルキル基、シクロアルキル基またはアリール基であることがより好ましく、水素原子、アルキル基またはシクロアルキル基であることが更に好ましく、水素原子であることが特に好ましく、これらの基は置換基を有していてもよい。アリール基、1価の複素環基および置換アミノ基は、デンドロンであることが好ましい。
 式(1)~式(3)中、R11、R12、R13およびR14は、水素原子、アルキル基、シクロアルキル基、アリール基、1価の複素環基、置換アミノ基またはフッ素原子であることが好ましく、水素原子、アルキル基、シクロアルキル基またはアリール基であることがより好ましく、これらの基は置換基を有していてもよい。アリール基、1価の複素環基および置換アミノ基としては、デンドロンであることが好ましい。
 式(1)~式(3)中、R11、R12、R13およびR14の少なくとも1つは、電子求引基であるが、R11およびR13の少なくとも1つが、電子求引基であることが好ましい。電子求引基の例および好ましい範囲は、環RA2が電子求引基を有する場合の電子求引基の例および好ましい範囲と同様である。
 式(1)~式(3)中、R14は、水素原子であることが好ましい。
 式(1)で表される燐光発光性化合物としては、例えば、式(1-1)~(1-13)で表される燐光発光性化合物が挙げられ、式(1-1)~(1-12)で表される燐光発光性化合物が好ましい。
Figure JPOXMLDOC01-appb-T000060
 式(2)で表される燐光発光性化合物としては、例えば、式(2-1)~(2-13)で表される燐光発光性化合物が挙げられ、式(2-1)~(2-12)で表される燐光発光性化合物が好ましい。
Figure JPOXMLDOC01-appb-T000061
 式(3)で表される燐光発光性化合物としては、例えば、式(3-1)~(3-13)で表される燐光発光性化合物が挙げられ、式(3-1)~(3-12)で表される燐光発光性化合物が好ましい。
Figure JPOXMLDOC01-appb-T000062
 [式(4)~(7)で表される燐光発光性化合物]
 式(4)~式(7)中、Mは、本発明の発光素子の外部量子効率がより優れるため、イリジウム原子であることが好ましい。
 式(4)~式(7)中、Mがイリジウム原子の場合、nは2または3であることが好ましく、3であることがより好ましい。
 式(4)~式(7)中、Mが白金原子の場合の場合、nは2であることが好ましい。
 式(4)~式(7)中、R21、R22およびR23は、水素原子、アルキル基、シクロアルキル基、アリール基、1価の複素環基または置換アミノ基であることが好ましく、水素原子、アルキル基、シクロアルキル基またはアリール基であることがより好ましく、水素原子、アルキル基またはシクロアルキル基であることが更に好ましく、これらの基は置換基を有していてもよい。アリール基、1価の複素環基および置換アミノ基は、デンドロンであることが好ましい。
 式(4)~式(7)中、配位子骨格を形成するイミダゾール環またはトリアゾール環ががアリール基、1価の複素環基または置換アミノ基を有する場合、R21またはR22がアリール基、1価の複素環基または置換アミノ基であることが好ましく、R21がアリール基、1価の複素環基または置換アミノ基であることがより好ましく、これらの基は置換基を有していてもよい。アリール基、1価の複素環基および置換アミノ基は、デンドロンであることが好ましい。
 式(4)および(6)中、R21は、本発明の発光素子の外部量子効率がより優れるので、好ましくは、アルキル基またはフェニル基であり、より好ましくは、アルキル基、または、式(D-A1)、(D-B1)若しくは(D-C1)~(D-C4)で表される基であり、更に好ましくは、アルキル基、または、式(D-C1)若しくは(D-C2)で表される基であり、これらの基は更に置換基を有していてもよい。
 式(5)および(7)中、R22は、本発明の発光素子の外部量子効率がより優れるので、好ましくは、アルキル基またはフェニル基であり、より好ましくは、アルキル基、または、式(D-A1)、(D-B1)若しくは(D-C1)~(D-C4)で表される基であり、更に好ましくは、アルキル基、または、式(D-C1)若しくは(D-C2)で表される基であり、これらの基は更に置換基を有していてもよい。
 R31、R32、R33およびR34は、水素原子、アルキル基、シクロアルキル基、アリール基、1価の複素環基または置換アミノ基であることが好ましく、水素原子、アルキル基、シクロアルキル基またはアリール基であることがより好ましく、これらの基は置換基を有していてもよい。アリール基、1価の複素環基および置換アミノ基は、デンドロンであることが好ましい。
 R31、R32、R33およびR34は、本発明の発光素子の外部量子効率がより優れるので、好ましくは、水素原子、アルキル基またはフェニル基であり、より好ましくは、水素原子、アルキル基、または、式(D-A1)、(D-B1)若しくは(D-C1)~(D-C4)で表される基であり、更に好ましくは、水素原子、または、式(D-A1)、(D-B1)若しくは(D-C1)~(D-C4)で表される基であり、特に好ましくは、水素原子、または、式(D-A1)で表される基であり、これらの基は更に置換基を有していてもよい。
 式(4)~式(7)中、R34は、水素原子であることが好ましい。
 式(4)~式(7)中、配位子骨格を形成するベンゼン環がアリール基、1価の複素環基または置換アミノ基を有する場合、R32またはR33がアリール基、1価の複素環基または置換アミノ基であることが好ましく、R32がアリール基、1価の複素環基または置換アミノ基であることがより好ましく、これらの基は置換基を有していてもよい。アリール基、1価の複素環基および置換アミノ基は、デンドロンであることが好ましい。
 式(4)で表される燐光発光性化合物としては、例えば、式(4-1)~(4-19)で表される燐光発光性化合物が挙げられ、式(4-1)~(4-17)で表される燐光発光性化合物が好ましく、式(4-5)~(4-17)で表される燐光発光性化合物がより好ましい。
Figure JPOXMLDOC01-appb-T000063
Figure JPOXMLDOC01-appb-T000064
 式(5)で表される燐光発光性化合物としては、例えば、式(5-1)~(5-19)で表される燐光発光性化合物が挙げられ、式(5-1)~(5-17)で表される燐光発光性化合物が好ましく、式(5-5)~(5-17)で表される燐光発光性化合物がより好ましい。
Figure JPOXMLDOC01-appb-T000065
Figure JPOXMLDOC01-appb-T000066
 式(6)で表される燐光発光性化合物としては、例えば、式(6-1)~(6-15)で表される燐光発光性化合物が挙げられ、式(6-1)~(6-13)で表される燐光発光性化合物が好ましい。
Figure JPOXMLDOC01-appb-T000067
 式(7)で表される燐光発光性化合物としては、例えば、式(7-1)~(7-15)で表される燐光発光性化合物が挙げられ、式(7-1)~(7-13)で表される燐光発光性化合物が好ましい。
Figure JPOXMLDOC01-appb-T000068
 燐光発光性化合物(A)および燐光発光性化合物(B)としては、例えば、式(1-1)~(1-13)、(2-1)~(2-13)、(3-1)~(3-13)、(4-1)~(4-19)、(5-1)~(5-19)、(6-1)~(6-15)、(7-1)~(7-15)、COM-9~COM-13、および、COM-16~COM-21で表される燐光発光性化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000069
Figure JPOXMLDOC01-appb-C000070
 燐光発光性化合物(A)および燐光発光性化合物(B)は、Aldrich、Luminescence Technology Corp.、American Dye Source等から入手可能である。
 また、上記以外の入手方法として、「Journal of the American Chemical Society,Vol.107,1431-1432(1985)」、「Journal of the American Chemical Society,Vol.106,6647-6653(1984)」、国際公開第2002/44189号、特表2004-530254号公報、特開2006-188673号公報、特表2007-504272号公報、特開2008-179617号公報、特開2011-105701号公報、国際公開第2011/024761号、特開2013-147449号公報、特開2013-147450号公報等の文献に記載の公知の方法により製造することも可能である。
 [組成比]
 発光層の組成物において、燐光発光性化合物(A)と燐光発光性化合物(B)の合計を100重量部とした場合、燐光発光性化合物(B)の含有量は、通常1~10000重量部であり、好ましくは10~1000重量部であり、さらに好ましくは20重量部~500重量部である。
 <その他の成分>
 発光層の組成物は、正孔輸送材料、正孔注入材料、電子輸送材料、電子注入材料、発光材料(燐光発光性化合物(A)および燐光発光性化合物(B)とは異なる。)、酸化防止剤および溶媒からなる群から選ばれる少なくとも1種の材料をさらに含有していてもよい。
 [ホスト材料]
 発光層の組成物は、正孔注入性、正孔輸送性、電子注入性および電子輸送性からなる群から選ばれる少なくとも1つの機能を有するホスト材料をさらに含有することにより、本発明の発光素子の外部量子効率がより優れたものとなる。発光層の組成物において、ホスト材料は、1種単独で含有されていても、2種以上含有されていてもよい。
 ホスト材料を含有する発光層の組成物において、燐光発光性化合物(A)と燐光発光性化合物(B)との合計含有量は、燐光発光性化合物(A)と燐光発光性化合物(B)とホスト材料との合計を100重量部とした場合、通常、0.05~80重量部であり、好ましくは0.1~50重量部であり、より好ましくは0.5~40重量部である。
 ホスト材料の有する最低励起三重項状態(T1)は、本発明の発光素子の外部量子効率がより優れるので、燐光発光性化合物(A)および燐光発光性化合物(B)の有するT1と同等のエネルギー準位、または、より高いエネルギー準位であることが好ましい。
 ホスト材料としては、本発明の発光素子を溶液塗布プロセスで作製できるので、燐光発光性化合物(A)および燐光発光性化合物(B)を溶解することが可能な溶媒に対して溶解性を示すものであることが好ましい。
 ホスト材料は、低分子化合物と高分子化合物とに分類される。
 [低分子ホスト]
 ホスト材料として好ましい低分子化合物(以下、「低分子ホスト」と言う。)に関して説明する。
 低分子ホストは、好ましくは、式(H-1)で表される化合物である。
Figure JPOXMLDOC01-appb-C000071
[式中、
 ArH1およびArH2は、それぞれ独立に、アリール基または1価の複素環基を表し、これらの基は置換基を有していてもよい。
 nH1およびnH2は、それぞれ独立に、0または1を表す。nH1が複数存在する場合、それらは同一でも異なっていてもよい。複数存在するnH2は、同一でも異なっていてもよい。
 nH3は、0以上の整数を表す。
 LH1は、アリーレン基、2価の複素環基、または、-[C(RH11]nH11-で表される基を表し、これらの基は置換基を有していてもよい。LH1が複数存在する場合、それらは同一でも異なっていてもよい。
 nH11は、1以上10以下の整数を表す。RH11は、水素原子、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基または1価の複素環基を表し、これらの基は置換基を有していてもよい。複数存在するRH11は、同一でも異なっていてもよく、互いに結合して、それぞれが結合する炭素原子とともに環を形成していてもよい。
 LH2は、-N(-LH21-RH21)-で表される基を表す。LH2が複数存在する場合、それらは同一でも異なっていてもよい。
 LH21は、単結合、アリーレン基または2価の複素環基を表し、これらの基は置換基を有していてもよい。RH21は、水素原子、アルキル基、シクロアルキル基、アリール基または1価の複素環基を表し、これらの基は置換基を有していてもよい。]
 ArH1およびArH2は、フェニル基、フルオレニル基、スピロビフルオレニル基、ピリジル基、ピリミジニル基、トリアジニル基、キノリニル基、イソキノリニル基、チエニル基、ベンゾチエニル基、ジベンゾチエニル基、フリル基、ベンゾフリル基、ジベンゾフリル基、ピロリル基、インドリル基、アザインドリル基、カルバゾリル基、アザカルバゾリル基、ジアザカルバゾリル基、フェノキサジニル基またはフェノチアジニル基であることが好ましく、フェニル基、スピロビフルオレニル基、ピリジル基、ピリミジニル基、トリアジニル基、ジベンゾチエニル基、ジベンゾフリル基、カルバゾリル基またはアザカルバゾリル基であることがより好ましく、フェニル基、ピリジル基、カルバゾリル基またはアザカルバゾリル基であることが更に好ましく、上記式(TDA-1)または(TDA-3)で表される基であることが特に好ましく、上記式(TDA-3)で表される基であることがとりわけ好ましく、これらの基は置換基を有していてもよい。
 ArH1およびArH2が有していてもよい置換基としては、ハロゲン原子、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基または1価の複素環基が好ましく、アルキル基、シクロアルコキシ基、アルコキシ基またはシクロアルコキシ基がより好ましく、アルキル基またはシクロアルコキシ基が更に好ましく、これらの基は更に置換基を有していてもよい。
 nH1は、好ましくは1である。nH2は、好ましくは0である。
 nH3は、通常、0以上10以下の整数であり、好ましくは0以上5以下の整数であり、更に好ましくは1以上3以下の整数であり、特に好ましくは1である。
 nH11は、好ましくは1以上5以下の整数であり、より好ましく1以上3以下の整数であり、更に好ましく1である。
 RH11は、水素原子、アルキル基、シクロアルキル基、アリール基または1価の複素環基であることが好ましく、水素原子、アルキル基またはシクロアルキル基であることがより好ましく、水素原子またはアルキル基であることが更に好ましく、これらの基は置換基を有していてもよい。
 LH1は、アリーレン基または2価の複素環基であることが好ましい。
 LH1は、式(A-1)~(A-3)、式(A-8)~(A-10)、式(AA-1)~(AA-6)、式(AA-10)~(AA-21)または式(AA-24)~(AA-34)で表される基であることが好ましく、式(A-1)、式(A-2)、式(A-8)、式(A-9)、式(AA-1)~(AA-4)、式(AA-10)~(AA-15)または式(AA-29)~(AA-34)で表される基であることがより好ましく、式(A-1)、式(A-2)、式(A-8)、式(A-9)、式(AA-2)、式(AA-4)、式(AA-10)~(AA-15)で表される基であることが更に好ましく、式(A-1)、式(A-2)、式(A-8)、式(AA-2)、式(AA-4)、式(AA-10)、式(AA-12)または式(AA-14)で表される基であることが特に好ましく、式(A-1)、式(A-2)、式(AA-2)、式(AA-4)または式(AA-14)で表される基であることがとりわけ好ましい。
 LH1が有していてもよい置換基としては、ハロゲン原子、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基または1価の複素環基が好ましく、アルキル基、アルコキシ基、アリール基または1価の複素環基がより好ましく、アルキル基、アリール基または1価の複素環基が更に好ましく、これらの基は更に置換基を有していてもよい。
 LH21は、単結合またはアリーレン基であることが好ましく、単結合であることがより好ましく、このアリーレン基は置換基を有していてもよい。
 LH21で表されるアリーレン基または2価の複素環基の定義および例は、LH1で表されるアリーレン基または2価の複素環基の定義および例と同様である。
 RH21は、アリール基または1価の複素環基であることが好ましく、これらの基は置換基を有していてもよい。
 RH21で表されるアリール基および1価の複素環基の定義および例は、ArH1およびArH2で表されるアリール基および1価の複素環基の定義および例と同様である。
 RH21が有していてもよい置換基の定義および例は、ArH1およびArH2が有していてもよい置換基の定義および例と同様である。
 式(H-1)で表される化合物は、式(H-2)で表される化合物であることが好ましい。
Figure JPOXMLDOC01-appb-C000072
[式中、ArH1、ArH2、nH3およびLH1は、前記と同じ意味を表す。]
 式(H-1)で表される化合物としては、下記式(H-101)~(H-118)で表される化合物が例示される。
Figure JPOXMLDOC01-appb-C000073
Figure JPOXMLDOC01-appb-C000074
Figure JPOXMLDOC01-appb-C000075
Figure JPOXMLDOC01-appb-C000076
 ホスト材料に用いられる高分子化合物としては、例えば、後述の正孔輸送材料である高分子化合物、後述の電子輸送材料である高分子化合物が挙げられる。
 [高分子ホスト]
 ホスト化合物として好ましい高分子化合物(以下、「高分子ホスト」と言う。)に関して説明する。
 高分子ホストは、好ましくは、式(Y)で表される構成単位を含む高分子化合物である。
Figure JPOXMLDOC01-appb-C000077
[式中、ArY1は、アリーレン基、2価の複素環基、または、少なくとも1種のアリーレン基と少なくとも1種の2価の複素環基とが直接結合した2価の基を表し、これらの基は置換基を有していてもよい。]
 ArY1で表されるアリーレン基は、より好ましくは、式(A-1)、式(A-2)、式(A-6)-(A-10)、式(A-19)または式(A-20)で表される基であり、更に好ましくは、式(A-1)、式(A-2)、式(A-7)、式(A-9)または式(A-19)で表される基であり、これらの基は置換基を有していてもよい。
 ArY1で表される2価の複素環基は、より好ましくは、式(AA-1)-(AA-4)、式(AA-10)-(AA-15)、式(AA-18)-(AA-21)、式(AA-33)または式(AA-34)で表される基であり、更に好ましくは、式(AA-4)、式(AA-10)、式(AA-12)、式(AA-14)または式(AA-33)で表される基であり、これらの基は置換基を有していてもよい。
 ArY1で表される少なくとも1種のアリーレン基と少なくとも1種の2価の複素環基とが直接結合した2価の基における、アリーレン基および2価の複素環基のより好ましい範囲、更に好ましい範囲は、それぞれ、前述のArY1で表されるアリーレン基および2価の複素環基のより好ましい範囲、更に好ましい範囲と同様である。
 「少なくとも1種のアリーレン基と少なくとも1種の2価の複素環基とが直接結合した2価の基」としては、例えば、下記式で表される基が挙げられ、これらは置換基を有していてもよい。
Figure JPOXMLDOC01-appb-C000078
[式中、RXXは、水素原子、アルキル基、シクロアルキル基、アリール基または1価の複素環基を表し、これらの基は置換基を有していてもよい。]
 RXXは、好ましくは、アルキル基、シクロアルキル基またはアリール基であり、これらの基は置換基を有していてもよい。
 ArY1で表される基が有してもよい置換基は、好ましくは、アルキル基、シクロアルキル基またはアリール基であり、これらの基は更に置換基を有していてもよい。
 式(Y)で表される構成単位としては、例えば、式(Y-1)-(Y-10)で表される構成単位が挙げられ、本発明の発光素子の輝度寿命の観点からは、好ましくは式(Y-1)-(Y-3)で表される構成単位であり、本発明の発光素子の電子輸送性の観点からは、好ましくは式(Y-4)-(Y-7)で表される構成単位であり、本発明の発光素子の正孔輸送性の観点からは、好ましくは式(Y-8)-(Y-10)で表される構成単位である。
Figure JPOXMLDOC01-appb-C000079
[式中、RY1は、水素原子、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基または1価の複素環基を表し、これらの基は置換基を有していてもよい。複数存在するRY1は、同一でも異なっていてもよく、隣接するRY1同士は互いに結合して、それぞれが結合する炭素原子と共に環を形成していてもよい。]
 RY1は、好ましくは、水素原子、アルキル基、シクロアルキル基またはアリール基であり、これらの基は置換基を有していてもよい。
 式(Y-1)で表される構成単位は、好ましくは、式(Y-1')で表される構成単位である。
Figure JPOXMLDOC01-appb-C000080
[式中、RY11は、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基または1価の複素環基を表し、これらの基は置換基を有していてもよい。複数存在するRY11は、同一でも異なっていてもよい。]
 RY11は、好ましくは、アルキル基、シクロアルキル基またはアリール基であり、より好ましくは、アルキル基またはシクロアルキル基であり、これらの基は置換基を有していてもよい。
Figure JPOXMLDOC01-appb-C000081
[式中、RY1は前記と同じ意味を表す。XY1は、-C(RY2)2-、-C(RY2)=C(RY2)-またはC(RY2)2-C(RY2)2-で表される基を表す。RY2は、水素原子、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基または1価の複素環基を表し、これらの基は置換基を有していてもよい。複数存在するRY2は、同一でも異なっていてもよく、RY2同士は互いに結合して、それぞれが結合する炭素原子と共に環を形成していてもよい。]
 RY2は、好ましくは、アルキル基、シクロアルキル基、アリール基または1価の複素環基であり、より好ましくは、アルキル基、シクロアルキル基またはアリール基であり、これらの基は置換基を有していてもよい。
 XY1において、-C(RY2)2-で表される基中の2個のRY2の組み合わせは、好ましくは両方がアルキル基もしくはシクロアルキル基、両方がアリール基、両方が1価の複素環基、または、一方がアルキル基もしくはシクロアルキル基で他方がアリール基若しくは1価の複素環基であり、より好ましくは一方がアルキル基もしくはシクロアルキル基で他方がアリール基であり、これらの基は置換基を有していてもよい。2個存在するRY2は互いに結合して、それぞれが結合する原子と共に環を形成していてもよく、RY2が環を形成する場合、-C(RY2)2-で表される基としては、好ましくは式(Y-A1)-(Y-A5)で表される基であり、より好ましくは式(Y-A4)で表される基であり、これらの基は置換基を有していてもよい。
Figure JPOXMLDOC01-appb-C000082
 XY1において、-C(RY2)=C(RY2)-で表される基中の2個のRY2の組み合わせは、好ましくは両方がアルキル基もしくはシクロアルキル基、または、一方がアルキル基もしくはシクロアルキル基で他方がアリール基であり、これらの基は置換基を有していてもよい。
 XY1において、-C(RY2)2-C(RY2)2-で表される基中の4個のRY2は、好ましくは置換基を有していてもよいアルキル基またはシクロアルキル基である。複数あるRY2は互いに結合して、それぞれが結合する原子と共に環を形成していてもよく、RY2が環を形成する場合、-C(RY2)2-C(RY2)2-で表される基は、好ましくは式(Y-B1)-(Y-B5)で表される基であり、より好ましくは式(Y-B3)で表される基であり、これらの基は置換基を有していてもよい。
Figure JPOXMLDOC01-appb-C000083
[式中、RY2は前記と同じ意味を表す。]
 式(Y-2)で表される構成単位は、式(Y-2')で表される構成単位であることが好ましい。
Figure JPOXMLDOC01-appb-C000084
[式中、RY11およびXY1は前記と同じ意味を表す。]
Figure JPOXMLDOC01-appb-C000085
[式中、RY1およびXY1は前記と同じ意味を表す。]
 式(Y-3)で表される構成単位は、式(Y-3')で表される構成単位であることが好ましい。
Figure JPOXMLDOC01-appb-C000086
[式中、RY11およびXY1は前記と同じ意味を表す。]
Figure JPOXMLDOC01-appb-C000087
Figure JPOXMLDOC01-appb-C000088
[式中、RY1は前記と同じ意味を表す。RY3は、水素原子、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基または1価の複素環基を表し、これらの基は置換基を有していてもよい。]
 RY3は、好ましくはアルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基または1価の複素環基であり、より好ましくはアリール基であり、これらの基は置換基を有していてもよい。
 式(Y-4)で表される構成単位は、式(Y-4')で表される構成単位であることが好ましく、式(Y-6)で表される構成単位は、式(Y-6')で表される構成単位であることが好ましい。
Figure JPOXMLDOC01-appb-C000089
[式中、RY11およびRY3は前記と同じ意味を表す。]
Figure JPOXMLDOC01-appb-C000090
[式中、RY1は前記を同じ意味を表す。RY4は、水素原子、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基または1価の複素環基を表し、これらの基は置換基を有していてもよい。]
 RY4は、好ましくはアルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基または1価の複素環基であり、より好ましくはアリール基であり、これらの基は置換基を有していてもよい。
 式(Y)で表される構成単位としては、例えば、式(Y-101)-(Y-121)で表されるアリーレン基からなる構成単位、式(Y-201)-(Y-206)で表される2価の複素環基からなる構成単位、式(Y-301)-(Y-304)で表される少なくとも1種のアリーレン基と少なくとも1種の2価の複素環基とが直接結合した2価の基からなる構成単位が挙げられる。
Figure JPOXMLDOC01-appb-C000091
Figure JPOXMLDOC01-appb-C000092
Figure JPOXMLDOC01-appb-C000093
Figure JPOXMLDOC01-appb-C000094
Figure JPOXMLDOC01-appb-C000095
Figure JPOXMLDOC01-appb-C000096
Figure JPOXMLDOC01-appb-C000097
Figure JPOXMLDOC01-appb-C000098
Figure JPOXMLDOC01-appb-C000099
 式(Y)で表される構成単位であって、ArY1がアリーレン基である構成単位は、本発明の発光素子の輝度寿命が優れるので、高分子化合物に含まれる構成単位の合計量に対して、好ましくは0.5~80モル%であり、より好ましくは30~60モル%である。
 式(Y)で表される構成単位であって、ArY1が2価の複素環基、または、少なくとも1種のアリーレン基と少なくとも1種の2価の複素環基とが直接結合した2価の基である構成単位は、本発明の発光素子の電荷輸送性が優れるので、高分子化合物に含まれる構成単位の合計量に対して、好ましくは0.5~30モル%であり、より好ましくは3~20モル%である。
 式(Y)で表される構成単位は、高分子ホスト中に、1種のみ含まれていてもよく、2種以上含まれていてもよい。
 高分子ホストは、正孔輸送性が優れるので、更に、下記式(X)で表される構成単位を含んでいてもよい。
Figure JPOXMLDOC01-appb-C000100
[式中、
 aX1およびaX2は、それぞれ独立に、0以上の整数を表す。
 ArX1およびArX3は、それぞれ独立に、アリーレン基または2価の複素環基を表し、これらの基は置換基を有していてもよい。
 ArX2およびArX4は、それぞれ独立に、アリーレン基、2価の複素環基、または、少なくとも1種のアリーレン基と少なくとも1種の2価の複素環基とが直接結合した2価の基を表し、これらの基は置換基を有していてもよい。
 RX1、RX2およびRX3は、それぞれ独立に、水素原子、アルキル基、シクロアルキル基、アリール基または1価の複素環基を表し、これらの基は置換基を有していてもよい。]
 aX1は、本発明の発光素子の輝度寿命がより優れるので、好ましくは2以下であり、より好ましくは1である。
 aX2は、本発明の発光素子の輝度寿命がより優れるので、好ましくは2以下であり、より好ましくは0である。
 RX1、RX2およびRX3は、好ましくはアルキル基、シクロアルキル基、アリール基または1価の複素環基であり、より好ましくはアリール基であり、これらの基は置換基を有していてもよい。
 ArX1およびArX3で表されるアリーレン基は、より好ましくは式(A-1)または式(A-9)で表される基であり、更に好ましくは式(A-1)で表される基であり、これらの基は置換基を有していてもよい。
 ArX1およびArX3で表される2価の複素環基は、より好ましくは式(AA-1)、式(AA-2)または式(AA-7)-(AA-26)で表される基であり、これらの基は置換基を有していてもよい。
 ArX1およびArX3は、好ましくは置換基を有していてもよいアリーレン基である。
 ArX2およびArX4で表されるアリーレン基としては、より好ましくは式(A-1)、式(A-6)、式(A-7)、式(A-9)-(A-11)または式(A-19)で表される基であり、これらの基は置換基を有していてもよい。
 ArX2およびArX4で表される2価の複素環基のより好ましい範囲は、ArX1およびArX3で表される2価の複素環基のより好ましい範囲と同じである。
 ArX2およびArX4で表される少なくとも1種のアリーレン基と少なくとも1種の2価の複素環基とが直接結合した2価の基における、アリーレン基および2価の複素環基のより好ましい範囲、更に好ましい範囲は、それぞれ、ArX1およびArX3で表されるアリーレン基および2価の複素環基のより好ましい範囲、更に好ましい範囲と同様である。
 ArX2およびArX4で表される少なくとも1種のアリーレン基と少なくとも1種の2価の複素環基とが直接結合した2価の基としては、式(Y)のArY1で表される少なくとも1種のアリーレン基と少なくとも1種の2価の複素環基とが直接結合した2価の基と同様のものが挙げられる。
 ArX2およびArX4は、好ましくは置換基を有していてもよいアリーレン基である。
 ArX1~ArX4およびRX1~RX3で表される基が有してもよい置換基としては、好ましくはアルキル基、シクロアルキル基またはアリール基であり、これらの基は更に置換基を有していてもよい。
 式(X)で表される構成単位は、好ましくは式(X-1)-(X-7)で表される構成単位であり、より好ましくは式(X-1)-(X-6)で表される構成単位であり、更に好ましくは式(X-3)-(X-6)で表される構成単位である。
Figure JPOXMLDOC01-appb-C000101
Figure JPOXMLDOC01-appb-C000102
Figure JPOXMLDOC01-appb-C000103
Figure JPOXMLDOC01-appb-C000104
[式中、RX4およびRX5は、それぞれ独立に、水素原子、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、アリールオキシ基、ハロゲン原子、1価の複素環基またはシアノ基を表し、これらの基は置換基を有していてもよい。複数存在するRX4は、同一でも異なっていてもよい。複数存在するRX5は、同一でも異なっていてもよく、隣接するRX5同士は互いに結合して、それぞれが結合する炭素原子と共に環を形成していてもよい。]
 式(X)で表される構成単位は、正孔輸送性が優れるので、高分子ホストに含まれる構成単位の合計量に対して、好ましくは0.1~50モル%であり、より好ましくは1~40モル%であり、更に好ましくは5~30モル%である。
 式(X)で表される構成単位としては、例えば、式(X1-1)-(X1-11)で表される構成単位が挙げられ、好ましくは式(X1-3)-(X1-10)で表される構成単位である。
Figure JPOXMLDOC01-appb-C000105
Figure JPOXMLDOC01-appb-C000106
Figure JPOXMLDOC01-appb-C000107
Figure JPOXMLDOC01-appb-C000108
Figure JPOXMLDOC01-appb-C000109
 高分子ホストにおいて、式(X)で表される構成単位は、1種のみ含まれていても、2種以上含まれていてもよい。
 高分子ホストとしては、例えば、表10の高分子化合物(P-1)~(P-6)が挙げられる。
Figure JPOXMLDOC01-appb-T000110

[表中、p、q、r、sおよびtは、各構成単位のモル比率を示す。p+q+r+s+t=100であり、かつ、100≧p+q+r+s≧70である。その他の構成単位とは、式(Y)で表される構成単位、式(X)で表される構成単位以外の構成単位を意味する。]
 高分子ホストは、ブロック共重合体、ランダム共重合体、交互共重合体、グラフト共重合体のいずれであってもよいし、その他の態様であってもよいが、複数種の原料モノマーを共重合してなる共重合体であることが好ましい。
 [高分子ホストの製造方法]
 高分子ホストは、ケミカルレビュー(Chem. Rev.),第109巻,897-1091頁(2009年)等に記載の公知の重合方法を用いて製造することができ、Suzuki反応、Yamamoto反応、Buchwald反応、Stille反応、Negishi反応およびKumada反応等の遷移金属触媒を用いるカップリング反応により重合させる方法が例示される。
 前記重合方法において、単量体を仕込む方法としては、単量体全量を反応系に一括して仕込む方法、単量体の一部を仕込んで反応させた後、残りの単量体を一括、連続または分割して仕込む方法、単量体を連続または分割して仕込む方法等が挙げられる。
 遷移金属触媒としては、パラジウム触媒、ニッケル触媒等が挙げられる。
 重合反応の後処理は、公知の方法、例えば、分液により水溶性不純物を除去する方法、メタノール等の低級アルコールに重合反応後の反応液を加えて、析出させた沈殿を濾過した後、乾燥させる方法等を単独または組み合わせて行う。高分子ホストの純度が低い場合、例えば、再結晶、再沈殿、ソックスレー抽出器による連続抽出、カラムクロマトグラフィー等の通常の方法にて精製することができる。
 溶媒を含有する発光層の組成物(以下、「発光層のインク」ともいう。)は、インクジェットプリント法、ノズルプリント法等の印刷法を用いた発光素子の作製に好適である。
 発光層のインクの粘度は、印刷法の種類によって調整すればよいが、インクジェットプリント法等の溶液が吐出装置を経由する印刷法に適用する場合には、吐出時の目づまりと飛行曲がりが起こりづらいので、好ましくは25℃において1~20mPa・sである。
 発光層のインクに含まれる溶媒は、好ましくは、発光層のインク中の固形分を溶解または均一に分散できる溶媒である。溶媒としては、例えば、1,2-ジクロロエタン、1,1,2-トリクロロエタン、クロロベンゼン、o-ジクロロベンゼン等の塩素系溶媒;THF、ジオキサン、アニソール、4-メチルアニソール等のエーテル系溶媒;トルエン、キシレン、メシチレン、エチルベンゼン、n-ヘキシルベンゼン、シクロヘキシルベンゼン等の芳香族炭化水素系溶媒;シクロヘキサン、メチルシクロヘキサン、n-ペンタン、n-ヘキサン、n-へプタン、n-オクタン、n-ノナン、n-デカン、n-ドデカン、ビシクロヘキシル等の脂肪族炭化水素系溶媒;アセトン、メチルエチルケトン、シクロヘキサノン、アセトフェノン等のケトン系溶媒;酢酸エチル、酢酸ブチル、エチルセルソルブアセテート、安息香酸メチル、酢酸フェニル等のエステル系溶媒;エチレングリコール、グリセリン、1,2-ヘキサンジオール等の多価アルコール系溶媒;イソプロピルアルコール、シクロヘキサノール等のアルコール系溶媒;ジメチルスルホキシド等のスルホキシド系溶媒;N-メチル-2-ピロリドン、N,N-ジメチルホルムアミド等のアミド系溶媒が挙げられる。溶媒は、一種単独で用いても二種以上を併用してもよい。
 発光層のインクにおいて、溶媒の配合量は、燐光発光性化合物(A)と、燐光発光性化合物(B)との合計を100重量部とした場合、通常、1000~100000重量部であり、好ましくは2000~20000重量部である。
 [正孔輸送材料]
 正孔輸送材料は、低分子化合物と高分子化合物とに分類され、好ましくは高分子化合物であり、より好ましくは架橋基を有する高分子化合物である。
 高分子化合物としては、例えば、ポリビニルカルバゾールおよびその誘導体;側鎖または主鎖に芳香族アミン構造を有するポリアリーレンおよびその誘導体が挙げられる。高分子化合物は、電子受容性部位が結合された化合物でもよい。電子受容性部位としては、例えば、フラーレン、テトラフルオロテトラシアノキノジメタン、テトラシアノエチレン、トリニトロフルオレノン等が挙げられ、好ましくはフラーレンである。
 発光層の組成物において、正孔輸送材料の配合量は、燐光発光性化合物(A)と、燐光発光性化合物(B)との合計を100重量部とした場合、通常、1~400重量部であり、好ましくは5~150重量部である。
 正孔輸送材料は、一種単独で用いても二種以上を併用してもよい。
 [電子輸送材料]
 電子輸送材料は、低分子化合物と高分子化合物とに分類される。電子輸送材料は、架橋基を有していてもよい。
 低分子化合物としては、例えば、8-ヒドロキシキノリンを配位子とする金属錯体、オキサジアゾール、アントラキノジメタン、ベンゾキノン、ナフトキノン、アントラキノン、テトラシアノアントラキノジメタン、フルオレノン、ジフェニルジシアノエチレンおよびジフェノキノン、並びに、これらの誘導体が挙げられる。
 高分子化合物としては、例えば、ポリフェニレン、ポリフルオレン、および、これらの誘導体が挙げられる。高分子化合物は、金属でドープされていてもよい。
 発光層の組成物において、電子輸送材料の配合量は、燐光発光性化合物(A)と、燐光発光性化合物(B)との合計を100重量部とした場合、通常、1~400重量部であり、好ましくは5~150重量部である。
 電子輸送材料は、一種単独で用いても二種以上を併用してもよい。
 [正孔注入材料および電子注入材料]
 正孔注入材料および電子注入材料は、各々、低分子化合物と高分子化合物とに分類される。正孔注入材料および電子注入材料は、架橋基を有していてもよい。
 低分子化合物としては、例えば、銅フタロシアニン等の金属フタロシアニン;カーボン;モリブデン、タングステン等の金属酸化物;フッ化リチウム、フッ化ナトリウム、フッ化セシウム、フッ化カリウム等の金属フッ化物が挙げられる。
 高分子化合物としては、例えば、ポリアニリン、ポリチオフェン、ポリピロール、ポリフェニレンビニレン、ポリチエニレンビニレン、ポリキノリンおよびポリキノキサリン、並びに、これらの誘導体;芳香族アミン構造を主鎖または側鎖に含む重合体等の導電性高分子が挙げられる。
 発光層の組成物において、正孔注入材料および電子注入材料の配合量は、各々、燐光発光性化合物(A)と、燐光発光性化合物(B)との合計を100重量部とした場合、通常、1~400重量部であり、好ましくは5~150重量部である。
 正孔注入材料および電子注入材料は、各々、一種単独で用いても二種以上を併用してもよい。
 [イオンドープ]
 正孔注入材料または電子注入材料が導電性高分子を含む場合、導電性高分子の電気伝導度は、好ましくは、1×10-5S/cm~1×103S/cmである。導電性高分子の電気伝導度をかかる範囲とするために、導電性高分子に適量のイオンをドープすることができる。
 ドープするイオンの種類は、正孔注入材料であればアニオン、電子注入材料であればカチオンである。アニオンとしては、例えば、ポリスチレンスルホン酸イオン、アルキルベンゼンスルホン酸イオン、樟脳スルホン酸イオンが挙げられる。カチオンとしては、例えば、リチウムイオン、ナトリウムイオン、カリウムイオン、テトラブチルアンモニウムイオンが挙げられる。
 ドープするイオンは、一種単独で用いても二種以上を併用してもよい。
 [発光材料]
 発光材料(燐光発光性化合物(A)および燐光発光性化合物(B)とは異なる。)は、低分子化合物と高分子化合物とに分類される。発光材料は、架橋基を有していてもよい。
 低分子化合物としては、例えば、ナフタレンおよびその誘導体、アントラセンおよびその誘導体、ペリレンおよびその誘導体、並びに、イリジウム、白金またはユーロピウムを中心金属とする三重項発光錯体が挙げられる。
 高分子化合物としては、例えば、フェニレン基、ナフタレンジイル基、フルオレンジイル基、フェナントレンジイル基、ジヒドロフェナントレンジイル基、式(X)で表される基、カルバゾールジイル基、フェノキサジンジイル基、フェノチアジンジイル基、アントラセンジイル基、ピレンジイル基等を含む高分子化合物が挙げられる。
 発光材料は、好ましくは、三重項発光錯体および高分子化合物を含む。
 三重項発光錯体としては、例えば、以下に示す金属錯体が挙げられる。
Figure JPOXMLDOC01-appb-C000111
Figure JPOXMLDOC01-appb-C000112
Figure JPOXMLDOC01-appb-C000113
 発光層の組成物において、発光材料の含有量は、燐光発光性化合物(A)と、燐光発光性化合物(B)との合計を100重量部とした場合、通常、0.001~10重量部である。
 [酸化防止剤]
 酸化防止剤は、燐光発光性化合物(A)および燐光発光性化合物(B)と同じ溶媒に可溶であり、発光および電荷輸送を阻害しない化合物であればよく、例えば、フェノール系酸化防止剤、リン系酸化防止剤が挙げられる。
 発光層の組成物において、酸化防止剤の配合量は、燐光発光性化合物(A)と、燐光発光性化合物(B)との合計を100重量部とした場合、通常、0.001~10重量部である。
 酸化防止剤は、一種単独で用いても二種以上を併用してもよい。
 <正孔輸送層>
 本発明の発光素子が有する正孔輸送層は、架橋基を有する材料(以下、「架橋材料」ともいう。)を用いて得られる層である。
 <架橋材料>
 架橋材料は、低分子化合物であっても高分子化合物であってもよいが、本発明の発光素子の外部量子効率がより優れるので、架橋基A群から選ばれる少なくとも1種の架橋基を有する低分子化合物(以下、「正孔輸送層の低分子化合物」ともいう。)、または、架橋基A群から選ばれる少なくとも1種の架橋基を有する架橋構成単位を含む高分子化合物(以下、「正孔輸送層の高分子化合物」ともいう。)であることが好ましい。
 架橋基A群から選ばれる架橋基としては、本発明の発光素子の外部量子効率がより優れるので、好ましくは式(BX-1)~(BX-13)で表される架橋基であり、より好ましくは式(BX-1)、(BX-3)または(BX-9)~(BX-13)で表される架橋基であり、更に好ましくは式(BX-1)または(BX-9)で表される架橋基である。
 [正孔輸送層の高分子化合物]
 正孔輸送層の高分子化合物に含まれる、架橋基A群から選ばれる少なくとも一種の架橋基を有する構成単位は、後述する式(Z)で表される構成単位または式(Z’)で表される構成単位であることが好ましいが、下記で表される構成単位であってもよい。
Figure JPOXMLDOC01-appb-C000114
 正孔輸送層の高分子化合物に含まれる、架橋基A群から選ばれる少なくとも一種の架橋基を有する構成単位は、式(Z)で表される構成単位または式(Z’)で表される構成単位であることが好ましい。
 [式(Z)で表される構成単位]
 nAは、本発明の発光素子の外部量子効率がより優れるので、好ましくは0~3の整数であり、より好ましくは0~2の整数である。
 nは、本発明の発光素子の外部量子効率がより優れるので、好ましくは2である。
 Arは、本発明の発光素子の外部量子効率がより優れるので、好ましくは置換基を有していてもよい芳香族炭化水素基である。
 Arで表される芳香族炭化水素基の炭素原子数は、置換基の炭素原子数を含めないで、通常6~60であり、好ましくは6~30であり、より好ましくは6~18である。
 Arで表される芳香族炭化水素基のn個の置換基を除いたアリーレン基部分としては、好ましくは、式(A-1)~式(A-20)で表される基であり、より好ましくは、式(A-1)、式(A-2)、式(A-6)~式(A-10)、式(A-19)または式(A-20)で表される基であり、さらに好ましくは、式(A-1)、式(A-2)、式(A-7)、式(A-9)または式(A-19)で表される基であり、これらの基は置換基を有していてもよい。
 Arで表される複素環基の炭素原子数は、置換基の炭素原子数を含めないで、通常2~60であり、好ましくは3~30であり、より好ましくは4~18である。
 Arで表される複素環基のn個の置換基を除いた2価の複素環基部分としては、好ましくは、式(AA-1)~式(AA-34)で表される基である。
 Arで表される芳香族炭化水素基および複素環基は置換基を有していてもよく、置換基としては、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、アリールオキシ基、ハロゲン原子、1価の複素環基およびシアノ基が挙げられる。
 Lで表されるアルキレン基は、置換基の炭素原子数を含めないで、通常1~20であり、好ましくは1~15であり、より好ましくは1~10である。Lで表されるシクロアルキレン基は、置換基の炭素原子数を含めないで、通常3~20である。
 アルキレン基およびシクロアルキレン基は、置換基を有していてもよく、例えば、メチレン基、エチレン基、プロピレン基、ブチレン基、ヘキシレン基、シクロヘキシレン基、オクチレン基が挙げられる。
 Lで表されるアルキレン基およびシクロアルキレン基は、置換基を有していてもよい。アルキレン基およびシクロアルキレン基が有していてもよい置換基としては、例えば、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、ハロゲン原子およびシアノ基が挙げられる。
 Lで表されるアリーレン基は、置換基を有していてもよい。アリーレン基としては、フェニレン基またはフルオレンジイル基が好ましく、m-フェニレン基、p-フェニレン基、フルオレン-2,7-ジイル基、フルオレン-9,9-ジイル基がより好ましい。アリーレン基が有してもよい置換基としては、例えば、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、アリールオキシ基、1価の複素環基、ハロゲン原子、シアノ基および架橋基A群から選ばれる架橋基が挙げられる。
 Lは、正孔輸送層の高分子化合物の製造が容易になるため、好ましくは、アリーレン基またはアルキレン基であり、より好ましくは、フェニレン基、フルオレンジイル基またはアルキレン基であり、これらの基は置換基を有していてもよい。
 Xで表される架橋基としては、正孔輸送層の高分子化合物の架橋性が優れるので、好ましくは式(BX-1)~(BX-13)で表される架橋基であり、より好ましくは式(BX-1)、(BX-3)または(BX-9)~(BX-13)で表される架橋基であり、更に好ましくは式(BX-1)または(BX-9)で表される架橋基である。
 式(Z)で表される構成単位は、正孔輸送層の高分子化合物の安定性および架橋性が優れるので、正孔輸送層の高分子化合物に含まれる構成単位の合計量に対して、好ましくは0.5~90モル%であり、より好ましくは3~75モル%であり、更に好ましくは5~60モル%である。
 式(Z)で表される構成単位は、正孔輸送層の高分子化合物中に、1種のみ含まれていてもよく、2種以上含まれていてもよい。
 [式(Z’)で表される構成単位]
 mAは、本発明の発光素子の外部量子効率がより優れるので、好ましくは0または1であり、より好ましくは0である。
 mは、本発明の発光素子の外部量子効率がより優れるので、好ましくは2である。
 cは、正孔輸送層の高分子化合物の製造が容易になり、かつ、本発明の発光素子の外部量子効率がより優れるので、好ましくは0である。
 Arは、本発明の発光素子の外部量子効率がより優れるので、好ましくは置換基を有していてもよい芳香族炭化水素基である。
 Arで表される芳香族炭化水素基のm個の置換基を除いたアリーレン基部分の定義や例は、前述の式(X)におけるArX2で表されるアリーレン基の定義や例と同じである。
 Arで表される複素環基のm個の置換基を除いた2価の複素環基部分の定義や例は、前述の式(X)におけるArX2で表される2価の複素環基部分の定義や例と同じである。
 Arで表される少なくとも1種の芳香族炭化水素環と少なくとも1種の複素環が直接結合した基のm個の置換基を除いた2価の基の定義や例は、前述の式(X)におけるArX2で表される少なくとも1種のアリーレン基と少なくとも1種の2価の複素環基とが直接結合した2価の基の定義や例と同じである。
 ArおよびArは、本発明の発光素子の外部量子効率がより優れるので、好ましくは置換基を有していてもよいアリーレン基である。
 ArおよびArで表されるアリーレン基の定義や例は、前述の式(X)におけるArX1およびArX3で表されるアリーレン基の定義や例と同じである。
 ArおよびArで表される2価の複素環基の定義や例は、前述の式(X)におけるArX1およびArX3で表される2価の複素環基の定義や例と同じである。
 Ar、ArおよびArで表される基は置換基を有していてもよく、置換基としては、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、アリールオキシ基、ハロゲン原子、1価の複素環基およびシアノ基が挙げられる。
 Kで表されるアルキレン基、シクロアルキレン基、アリーレン基、2価の複素環基の定義や例は、それぞれ、Lで表されるアルキレン基、シクロアルキレン基、アリーレン基、2価の複素環基の定義や例と同じである。
 Kは、正孔輸送層の高分子化合物の製造が容易になるので、フェニレン基またはメチレン基であることが好ましい。
 X’で表される架橋基の定義や例は、前述のXで表される架橋基の定義や例と同じである。
 式(Z’)で表される構成単位は、正孔輸送層の高分子化合物の安定性が優れ、かつ、正孔輸送層の高分子化合物の架橋性が優れるので、正孔輸送層の高分子化合物に含まれる構成単位の合計量に対して、好ましくは0.5~50モル%であり、より好ましくは3~30モル%であり、更に好ましくは3~20モル%である。
 式(Z’)で表される構成単位は、正孔輸送層の高分子化合物中に、1種のみ含まれていてもよく、2種以上含まれていてもよい。
 [式(Z)または(Z’)で表される構成単位の好ましい態様]
 式(Z)で表される構成単位としては、例えば、式(Z-1)~式(Z-30)で表される構成単位が挙げられ、式(Z’)で表される構成単位としては、例えば、式(Z'-1)~式(Z'-9)で表される構成単位が挙げられる。これらの中でも、正孔輸送層の高分子化合物の架橋性が優れるので、好ましくは式(Z-1)~式(Z-30)で表される構成単位であり、より好ましくは式(Z-1)~式(Z-15)、式(Z-19)、式(Z-20)、式(Z-23)、式(Z-25)または式(Z-30)で表される構成単位であり、更に好ましくは式(Z-1)~式(Z-9)または式(Z-30)で表される構成単位である。
Figure JPOXMLDOC01-appb-C000115
Figure JPOXMLDOC01-appb-C000116
Figure JPOXMLDOC01-appb-C000117
 正孔輸送層の高分子化合物は、正孔輸送性が優れるので、更に、式(X)で表される構成単位を含むことが好ましい。
 正孔輸送層の高分子化合物が含んでいてもよい式(X)で表される構成単位の定義および例は、前述の高分子ホストが含んでいてもよい式(X)で表される構成単位の定義および例と同じである。
 式(X)で表される構成単位は、正孔輸送層の高分子化合物中に、1種のみ含まれていてもよく、2種以上含まれていてもよい。
 正孔輸送層の高分子化合物は、本発明の発光素子の外部量子効率がより優れるので、更に、式(Y)で表される構成単位を含むことが好ましい。
 正孔輸送層の高分子化合物が含んでいてもよい式(Y)で表される構成単位の定義および例は、前述の高分子ホストが含んでいてもよい式(Y)で表される構成単位の定義および例と同じである。
 式(Y)で表さされる構成単位は、正孔輸送層の高分子化合物中に、1種のみ含まれていてもよく、2種以上含まれていてもよい。
 正孔輸送層の高分子化合物は、本発明の発光素子の外部量子効率がより優れるので、更に、式(X)で表される構成単位および式(Y)で表される構成単位の双方を含むことが好ましい。
 正孔輸送層の高分子化合物としては、例えば、表11に示す高分子化合物P-7~P-14が挙げられる。ここで、「その他の構成単位」とは、式(Z)、式(Z’)、式(X)および式(Y)で表される構成単位以外の構成単位を意味する。
Figure JPOXMLDOC01-appb-T000118

[表中、p’、q’、r’、s’およびt’は、各構成単位のモル比率を表す。p’+q’+r’+s’+t’=100であり、かつ、70≦p’+q’+r’+s’≦100である。]
 正孔輸送層の高分子化合物は、ブロック共重合体、ランダム共重合体、交互共重合体、グラフト共重合体のいずれであってもよいし、その他の態様であってもよいが、複数種の原料モノマーを共重合してなる共重合体であることが好ましい。
 [正孔輸送層の高分子化合物の製造方法]
 正孔輸送層の高分子化合物は、前述の高分子ホストの製造方法と同様の方法で製造することができる。
 [正孔輸送層の低分子化合物]
 正孔輸送層の低分子化合物は、式(Z'')で表される低分子化合物が好ましい。
 mB1は、通常、0~10の整数であり、正孔輸送層の低分子化合物の合成が容易になるため、好ましくは0~5の整数であり、より好ましくは0~2の整数であり、更に好ましくは0または1であり、特に好ましくは0である。
 mB2は、通常、0~10の整数であり、正孔輸送層の低分子化合物の合成が容易となり、かつ、本発明の発光素子の外部量子効率がより優れるため、好ましくは1~5の整数であり、より好ましくは1~3の整数であり、更に好ましくは1または2であり、特に好ましくは1である。
 nB1は、通常、0~5の整数であり、正孔輸送層の低分子化合物の合成が容易になるため、好ましくは0~4の整数であり、より好ましくは0~2の整数であり、更に好ましくは0である。
 Arで表される芳香族炭化水素基のnB1個の置換基を除いたアリーレン基部分の定義や例は、前述の式(X)におけるArX2で表されるアリーレン基の定義や例と同じである。
 Arで表される複素環基のnB1個の置換基を除いた2価の複素環基部分の定義や例は、前述の式(X)におけるArX2で表される2価の複素環基部分の定義や例と同じである。
 Arで表される少なくとも1種の芳香族炭化水素環と少なくとも1種の複素環が直接結合した基のnB1個の置換基を除いた2価の基の定義や例は、前述の式(X)におけるArX2で表される少なくとも1種のアリーレン基と少なくとも1種の2価の複素環基とが直接結合した2価の基の定義や例と同じである。
 Arは、本発明の発光素子の外部量子効率が優れるので、好ましくは芳香族炭化水素基であり
 LB1で表されるアルキレン基、シクロアルキレン基、アリーレン基、2価の複素環基の定義や例は、それぞれ、Lで表されるアルキレン基、シクロアルキレン基、アリーレン基、2価の複素環基の定義や例と同じである。
 LB1は、正孔輸送層の低分子化合物の合成が容易になるため、好ましくは、アルキレン基、アリーレン基または酸素原子であり、より好ましくはアルキレン基またはアリーレン基であり、更に好ましくはフェニレン基、フルオレンジイル基またはアルキレン基であり、特に好ましくはフェニレン基またはアルキレン基であり、これらの基は置換基を有していてもよい。
 X’’は、好ましくは、架橋基A群から選ばれる架橋基、アリール基または1価の複素環基であり、より好ましくは、式(BX-1)~(BX-13)で表される架橋基またはアリール基であり、更に好ましくは、式(BX-1)、(BX-3)または(BX-9)~(BX-13)で表される架橋基、フェニル基、ナフチル基またはフルオレニル基であり、特に好ましくは、式(BX-1)または(BX-9)で表される架橋基、フェニル基またはナフチル基であり、これらの基は置換基を有していてもよい。
 正孔輸送層の低分子化合物としては、例えば、式(Z''-1)~(Z''-16)で表される低分子化合物が挙げられ、好ましくは、式(Z''-1)~(Z''-10)で表される低分子化合物であり、より好ましくは、式(Z''-5)~(Z''-9)で表される低分子化合物である。
Figure JPOXMLDOC01-appb-C000119
Figure JPOXMLDOC01-appb-C000120
Figure JPOXMLDOC01-appb-C000121
Figure JPOXMLDOC01-appb-C000122
Figure JPOXMLDOC01-appb-C000123
 正孔輸送層の低分子化合物は、Aldrich、Luminescence Technology Corp.、American Dye Source等から入手可能である。
 また、上記以外の入手方法として、例えば、国際公開第1997/033193号、国際公開第2005/035221号、国際公開第2005/049548に記載されている方法に従って合成することができる。
 [正孔輸送層の組成物]
 正孔輸送層は、架橋材料と、正孔輸送材料、正孔注入材料、電子輸送材料、電子注入材料、発光材料および酸化防止剤からなる群から選ばれる少なくとも1種の材料とを含む組成物(以下、「正孔輸送層の組成物」ともいう。)を用いて得られる層であってもよい。
 正孔輸送層の組成物に含有される正孔輸送材料、電子輸送材料、正孔注入材料、電子注入材料および発光材料の例および好ましい範囲は、発光層の組成物が更に含有していてもよい正孔輸送材料、電子輸送材料、正孔注入材料、電子注入材料および発光材料の例および好ましい範囲と同じである。正孔輸送層の組成物において、正孔輸送材料、電子輸送材料、正孔注入材料、電子注入材料および発光材料の配合量は、各々、架橋材料を100重量部とした場合、通常、1~400重量部であり、好ましくは5~150重量部である。
 正孔輸送層の組成物に含有される酸化防止剤の例および好ましい範囲は、発光層の組成物が更に含有していてもよい酸化防止剤の例および好ましい範囲と同じである。第2の有機層の組成物において、酸化防止剤の配合量は、架橋材料を100重量部とした場合、通常、0.001~10重量部である。
 [正孔輸送層のインク]
 溶媒を含有する正孔輸送層の組成物(以下、「正孔輸送層のインク」ともいう。)は、発光層のインクと同様に、スピンコート法、キャスティング法、マイクログラビアコート法、グラビアコート法、バーコート法、ロールコート法、ワイヤーバーコート法、ディップコート法、スプレーコート法、スクリーン印刷法、フレキソ印刷法、オフセット印刷法、インクジェット印刷法、キャピラリ-コート法、ノズルコート法等の塗布法に好適に使用することができる。
 正孔輸送層のインクの粘度の好ましい範囲は、発光層のインクの粘度の好ましい範囲と同じである。
 正孔輸送層のインクに含有される溶媒の例および好ましい範囲は、発光層のインクに含有される溶媒の例および好ましい範囲と同じである。
 正孔輸送層のインクにおいて、溶媒の配合量は、架橋材料を100重量部とした場合、通常、1000~100000重量部であり、好ましくは2000~20000重量部である。
 <発光素子の層構成>
 本発明の発光素子は、陽極と、陰極と、発光層と、正孔輸送層とを有する発光素子であるが、発光層および正孔輸送層以外の層を有していてもよい。
 本発明の発光素子において、発光層と正孔輸送層とは、本発明の発光素子の外部量子効率がより優れるので、隣接していることが好ましい。
 本発明の発光素子は、正孔注入性の観点からは、陽極と正孔輸送層との間に、正孔注入層を更に有することが好ましく、電子注入性および電子輸送性の観点からは、陰極と発光層の間に、電子注入層および電子輸送層の少なくとも1層を有することが好ましい。
 本発明の発光素子の好ましい層構成としては、例えば、下記の構成が挙げられる。
(a)陽極-正孔輸送層-発光層-陰極
(b)陽極-正孔輸送層-発光層-電子輸送層-陰極
(c)陽極-正孔輸送層-発光層-電子注入層-陰極
(d)陽極-正孔注入層-正孔輸送層-発光層-陰極
(e)陽極-正孔注入層-正孔輸送層-発光層-電子輸送層-陰極
(f)陽極-正孔注入層-正孔輸送層-発光層-電子注入層-陰極
(g)陽極-正孔注入層-正孔輸送層-発光層-電子輸送層-電子注入層-陰極
 本発明の発光素子において、陽極、陰極、正孔注入層、電子輸送層および電子注入層は、それぞれ、必要に応じて、2層以上設けられていてもよい。
 陽極、陰極、正孔注入層、電子輸送層および電子注入層が複数存在する場合、それらはそれぞれ同一でも異なっていてもよい。
 陽極、陰極、正孔注入層、正孔輸送層、発光層、電子輸送層および電子注入層の厚さは、通常、1nm~1μmであり、好ましくは2nm~500nmであり、更に好ましくは5nm~150nmである。
 [正孔注入層および電子注入層]
 正孔注入層および電子注入層は、各々、正孔注入材料および電子注入材料を含む。これらの層は、各々、正孔注入材料および電子注入材料を、上述した溶媒に溶解させ、インクを調製して用い、上述した膜の作製と同じ方法を用いて形成することができる。
 正孔注入層および電子注入層の材料としては、各々、上述した正孔注入材料および電子注入材料等が挙げられる。
 [電子輸送層]
 電子輸送層は、電子輸送材料を含む。電子輸送層は、電子輸送材料を、上述した溶媒に溶解させ、インクを調製して用い、上述した膜の作製と同じ方法を用いて形成することができる。
 電子輸送層の材料としては、上述した電子輸送材料等が挙げられる。
 本発明の発光素子が、電子輸送層を有する場合、電子輸送層の形成に用いる電子輸送材料としては、式(ET-1)で表される構成単位および式(ET-2)で表される構成単位からなる群から選ばれる少なくとも1種の構成単位を含む高分子化合物が好ましい。
Figure JPOXMLDOC01-appb-C000124
[式中、
 nE1は、1以上の整数を表す。
 ArE1は、芳香族炭化水素基または複素環基を表し、これらの基はRE1以外の置換基を有していてもよい。
 RE1は、式(ES-1)で表される基を表す。RE1が複数存在する場合、それらは同一でも異なっていてもよい。]
  -(RE3cE1-(QE1nE4-YE1(ME2aE1(ZE1bE1  (ES-1)
[式中、
 cE1は0または1を表し、nE4は0以上の整数を表し、aE1は1以上の整数を表し、bE1は0以上の整数を表す。
 RE3は、アリーレン基または2価の複素環基を表し、これらの基は置換基を有していてもよい。
 QE1は、アルキレン基、アリーレン基、酸素原子または硫黄原子を表し、これらの基は置換基を有していてもよい。QE1が複数存在する場合、それらは同一でも異なっていてもよい。
 YE1は、-CO 、-SO 、-SO またはPO 2-を表す。
 ME2は、金属カチオンまたはアンモニウムカチオンを表し、このアンモニウムカチオンは置換基を有していてもよい。ME2が複数存在する場合、それらは同一でも異なっていてもよい。
 ZE1は、F、Cl、Br、I、OH、RE4SO 、RE4COO、ClO、ClO 、ClO 、ClO 、SCN、CN、NO 、SO 2-、HSO 、PO 3-、HPO 2-、HPO 、BF またはPF を表す。RE4は、アルキル基、シクロアルキル基またはアリール基を表し、これらの基は置換基を有していてもよい。ZE1が複数存在する場合、それらは同一でも異なっていてもよい。
 aE1およびbE1は、式(ES-1)で表される基の電荷が0となるように選択される。]
 nE1は、好ましくは、1~4の整数であり、より好ましくは1または2である。
 ArE1で表される芳香族炭化水素基または複素環基としては、1,4-フェニレン基、1,3-フェニレン基、1,2-フェニレン基、2,6-ナフタレンジイル基、1,4-ナフタレンジイル基、2、7-フルオレンジイル基、3,6-フルオレンジイル基、2,7-フェナントレンジイル基または2,7-カルバゾールジイル基から、環を構成する原子に直接結合する水素原子nE1個を除いた残りの原子団が好ましく、RE1以外の置換基を有していてもよい。
 ArE1が有していてもよいRE1以外の置換基としては、ハロゲン原子、シアノ基、アルキル基、シクロアルキル基、アリール基、1価の複素環基、アルコキシ基、シクロアルコキシ基、アリールオキシ基、アミノ基、置換アミノ基、アルケニル基、シクロアルケニル基、アルキニル基、シクロアルキニル基、カルボキシル基、式(ES-3)で表される基が挙げられる。
  -O(Cn’2n’O)nxm’2m’+1  (ES-3)
[式中、n’、m’およびnxは、1以上の整数を表す。]
 cE1は、0または1であることが好ましく、nE4は、0~6の整数であることが好ましい。
 RE3としては、アリーレン基が好ましい。
 QE1としては、アルキレン基、アリーレン基または酸素原子が好ましい。
 YE1としては、-CO または-SO が好ましい。
 ME2としては、Li、Na、K、Cs、N(CH 、NH(CH 、NH(CH またはN(C が好ましい。
 ZE1としては、F、Cl、Br、I、OH、RE4SO またはRE4COOが好ましい。
 RE3が有していてもよい置換基としては、アルキル基、シクロアルキル基、アリール基、1価の複素環基および式(ES-3)で表される基が挙げられる。RE3は、本発明の発光素子の外部量子効率が優れるため、式(ES-3)で表される基を置換基として有していることが好ましい。
 式(ES-1)で表される基としては、例えば、下記式で表される基が挙げられる。
Figure JPOXMLDOC01-appb-C000125
[式中、Mは、Li、Na、K、Cs、N(CH 、NH(CH 、NH(CH またはN(C を表す。]
Figure JPOXMLDOC01-appb-C000126
[式中、
 nE2は1以上の整数を表す。
 ArE2は、芳香族炭化水素基または複素環基を表し、これらの基はRE2以外の置換基を有していてもよい。
 RE2は、式(ES-2)で表される基を表す。RE2が複数存在する場合、それらは同一でも異なっていてもよい。]
  -(RE6cE2-(QE2nE6-YE2(ME3bE2(ZE2aE2  (ES-2)
[式中、
 cE2は0または1を表し、nE6は0以上の整数を表し、bE2は1以上の整数を表し、aE2は0以上の整数を表す。
 RE6は、アリーレン基または2価の複素環基を表し、これらの基は置換基を有していてもよい。
 QE2は、アルキレン基、アリーレン基、酸素原子または硫黄原子を表し、これらの基は置換基を有していてもよい。QE2が複数存在する場合、それらは同一でも異なっていてもよい。
 YE2は、カルボカチオン、アンモニウムカチオン、ホスホニルカチオンまたはスルホニルカチオンを表す。
 ME3は、F、Cl、Br、I、OH、RE7SO 、RE7COO、ClO、ClO 、ClO 、ClO 、SCN、CN、NO 、SO 2-、HSO 、PO 3-、HPO 2-、HPO 、テトラフェニルボレート、BF またはPF を表す。RE7は、アルキル基、パーフルオロアルキル基、またはアリール基を表し、これらの基は置換基を有していてもよい。ME3が複数存在する場合、それらは同一でも異なっていてもよい。
 ZE2は、金属イオンまたはアンモニウムイオンを表し、このアンモニウムイオンは置換基を有していてもよい。ZE2が複数存在する場合、それらは同一でも異なっていてもよい。
 aE2およびbE2は、式(ES-2)で表される基の電荷が0となるように選択される。]
 nE2は、好ましくは、1~4の整数であり、より好ましくは1または2である。
 ArE2で表される芳香族炭化水素基または複素環基としては、1,4-フェニレン基、1,3-フェニレン基、1,2-フェニレン基、2,6-ナフタレンジイル基、1,4-ナフタレンジイル基、2、7-フルオレンジイル基、3,6-フルオレンジイル基、2,7-フェナントレンジイル基または2,7-カルバゾールジイル基から、環を構成する原子に直接結合する水素原子nE2個を除いた残りの原子団が好ましく、RE2以外の置換基を有していてもよい。
 ArE2が有していてもよいRE2以外の置換基としては、ArE1が有していてもよいRE1以外の置換基と同様である。
 cE2は、0または1であることが好ましく、nE6は、0~6の整数であることが好ましい。
 RE6としては、アリーレン基が好ましい。
 QE2としては、アルキレン基、アリーレン基または酸素原子が好ましい。
 YE2としては、カルボカチオンまたはアンモニウムカチオンが好ましい。
 ME3としては、F、Cl、Br、I、テトラフェニルボレート、CFSO またはCHCOOが好ましい。
 ZE2としては、Li、Na、K、Cs、N(CH 、NH(CH 、NH(CH またはN(C が好ましい。
 RE6が有していてもよい置換基としては、アルキル基、シクロアルキル基、アリール基、1価の複素環基および式(ES-3)で表される基が挙げられる。RE6は、本発明の発光素子の外部量子効率が優れるため、式(ES-3)で表される基を置換基として有していることが好ましい。
 式(ES-2)で表される基としては、例えば、下記式で表される基が挙げられる。
Figure JPOXMLDOC01-appb-C000127
[式中、Xは、F、Cl、Br、I、テトラフェニルボレート、CFSO 、またはCHCOOを表す。]
 式(ET-1)および式(ET-2)で表される構造単位としては、例えば、下記式(ET-31)~式(ET-34)で表される構造単位が挙げられる。
Figure JPOXMLDOC01-appb-C000128
Figure JPOXMLDOC01-appb-C000129
 正孔輸送層の材料、電子輸送層の材料および発光層の材料は、発光素子の作製において、各々、正孔輸送層、電子輸送層および発光層に隣接する層の形成時に使用される溶媒に溶解する場合、該溶媒に該材料が溶解することを回避するために、該材料が架橋基を有することが好ましい。架橋基を有する材料を用いて各層を形成した後、該架橋基を架橋させることにより、該層を不溶化させることができる。
 本発明の発光素子において、発光層、正孔輸送層、電子輸送層、正孔注入層、電子注入層等の各層の形成方法としては、低分子化合物を用いる場合、例えば、粉末からの真空蒸着法、溶液または溶融状態からの成膜による方法が挙げられ、高分子化合物を用いる場合、例えば、溶液または溶融状態からの成膜による方法が挙げられる。
 積層する層の順番、数および厚さは、外部量子効率および輝度寿命を勘案して調整する。
 [基板/電極]
 発光素子における基板は、電極を形成することができ、かつ、有機層を形成する際に化学的に変化しない基板であればよく、例えば、ガラス、プラスチック、シリコン等の材料からなる基板である。不透明な基板の場合には、基板から最も遠くにある電極が透明または半透明であることが好ましい。
 陽極の材料としては、例えば、導電性の金属酸化物、半透明の金属が挙げられ、好ましくは、酸化インジウム、酸化亜鉛、酸化スズ;インジウム・スズ・オキサイド(ITO)、インジウム・亜鉛・オキサイド等の導電性化合物;銀とパラジウムと銅との複合体(APC);NESA、金、白金、銀、銅である。
 陰極の材料としては、例えば、リチウム、ナトリウム、カリウム、ルビジウム、セシウム、ベリリウム、マグネシウム、カルシウム、ストロンチウム、バリウム、アルミニウム、亜鉛、インジウム等の金属;それらのうち2種以上の合金;それらのうち1種以上と、銀、銅、マンガン、チタン、コバルト、ニッケル、タングステン、錫のうち1種以上との合金;並びに、グラファイトおよびグラファイト層間化合物が挙げられる。合金としては、例えば、マグネシウム-銀合金、マグネシウム-インジウム合金、マグネシウム-アルミニウム合金、インジウム-銀合金、リチウム-アルミニウム合金、リチウム-マグネシウム合金、リチウム-インジウム合金、カルシウム-アルミニウム合金が挙げられる。
 陽極および陰極は、各々、2層以上の積層構造としてもよい。
 [用途]
 発光素子を用いて面状の発光を得るためには、面状の陽極と陰極が重なり合うように配置すればよい。パターン状の発光を得るためには、面状の発光素子の表面にパターン状の窓を設けたマスクを設置する方法、非発光部にしたい層を極端に厚く形成し実質的に非発光とする方法、陽極もしくは陰極、または、両方の電極をパターン状に形成する方法がある。これらのいずれかの方法でパターンを形成し、いくつかの電極を独立にON/OFFできるように配置することにより、数字、文字等を表示できるセグメントタイプの表示装置が得られる。ドットマトリックス表示装置とするためには、陽極と陰極を共にストライプ状に形成して直交するように配置すればよい。複数の種類の発光色の異なる高分子化合物を塗り分ける方法、カラーフィルターまたは蛍光変換フィルターを用いる方法により、部分カラー表示、マルチカラー表示が可能となる。ドットマトリックス表示装置は、パッシブ駆動も可能であるし、TFT等と組み合わせてアクティブ駆動も可能である。これらの表示装置は、コンピュータ、テレビ、携帯端末等のディスプレイに用いることができる。面状の発光素子は、液晶表示装置のバックライト用の面状光源、または、面状の照明用光源として好適に用いることができる。フレキシブルな基板を用いれば、曲面状の光源および表示装置としても使用できる。
 以下、実施例によって本発明を更に詳細に説明するが、本発明はこれらの実施例に限定されるものではない。
 実施例において、高分子化合物のポリスチレン換算の数平均分子量(Mn)およびポリスチレン換算の重量平均分子量(Mw)は、サイズエクスクルージョンクロマトグラフィー(SEC)(島津製作所製、商品名:LC-10Avp)により求めた。なお、SECの測定条件は、次のとおりである。
 [測定条件]
 測定する高分子化合物を約0.05重量%の濃度でTHFに溶解させ、SECに10μL注入した。SECの移動相としてTHFを用い、2.0mL/分の流量で流した。カラムとして、PLgel MIXED-B(ポリマーラボラトリーズ製)を用いた。検出器にはUV-VIS検出器(島津製作所製、商品名:SPD-10Avp)を用いた。
 液体クロマトグラフ質量分析(LC-MS)は、下記の方法で行った。
 測定試料を約2mg/mLの濃度になるようにクロロホルムまたはTHFに溶解させ、LC-MS(アジレントテクノロジー製、商品名:1100LCMSD)に約1μL注入した。LC-MSの移動相には、アセトニトリルおよびTHFの比率を変化させながら用い、0.2mL/分の流量で流した。カラムは、L-column 2 ODS(3μm)(化学物質評価研究機構製、内径:2.1mm、長さ:100mm、粒径3μm)を用いた。
 NMRの測定は、下記の方法で行った。
 5~10mgの測定試料を約0.5mLの重クロロホルム(CDCl3)、重テトラヒドロフラン、重ジメチルスルホキシド、重アセトン、重N,N-ジメチルホルムアミド、重トルエン、重メタノール、重エタノール、重2-プロパノールまたは重塩化メチレンに溶解させ、NMR装置(Agilent製、商品名:INOVA300またはMERCURY 400VX)を用いて測定した。
 化合物の純度の指標として、高速液体クロマトグラフィー(HPLC)面積百分率の値を用いた。この値は、特に記載がない限り、HPLC(島津製作所製、商品名:LC-20A)での254nmにおける値とする。この際、測定する化合物は、0.01~0.2重量%の濃度になるようにTHFまたはクロロホルムに溶解させ、HPLCに、濃度に応じて1~10μL注入した。HPLCの移動相には、アセトニトリルおよびTHFを用い、1mL/分の流速で、アセトニトリル/THF=100/0~0/100(容積比)のグラジエント分析で流した。カラムは、Kaseisorb LC ODS 2000(東京化成工業製)または同等の性能を有するODSカラムを用いた。検出器には、フォトダイオードアレイ検出器(島津製作所製、商品名:SPD-M20A)を用いた。
 本実施例において、燐光発光性化合物の発光スペクトルの最大ピーク波長は、分光光度計(日本分光株式会社製、FP-6500)により室温にて測定した。燐光発光性化合物をキシレンに、約0.8×10-4重量%の濃度で溶解させたキシレン溶液を試料として用いた。励起光としては、波長325nmのUV光を用いた。
 本実施例において、燐光発光性化合物のHOMOは、大気中光電子収率分光装置(理研計器株式会社製、AC-II)により室温にて測定した。燐光発光性化合物をキシレンに、約2.0重量%の濃度で溶解させたキシレン溶液を用いて、石英基板上にスピンコート法により成膜した薄膜を試料として用いた。
<測定例1> FIrpiqの発光スペクトルおよびHOMOの測定
 FIrpicは、Aldrich社より購入した。
Figure JPOXMLDOC01-appb-C000130
 FIrpiqの発光スペクトルの最大ピーク波長は470nmであった。また、FIrpicのHOMOは5.87eVであった。
<合成例1> 燐光発光性化合物G1の合成
 燐光発光性化合物G1は、特開2013-147551号公報に記載の方法に従って合成した。
Figure JPOXMLDOC01-appb-C000131
 燐光発光性化合物G1の発光スペクトルの最大ピーク波長は450nmであった。また、燐光発光性化合物G1のHOMOは5.27eVであった。
<合成例2> 燐光発光性化合物G2の合成
 燐光発光性化合物G2は、特開2013-147551号公報に記載の方法に従って合成した。
Figure JPOXMLDOC01-appb-C000132
 燐光発光性化合物G2の発光スペクトルの最大ピーク波長は475nmであった。また、燐光発光性化合物G2のHOMOは5.24eVであった。
<合成例3> 燐光発光性化合物G3およびG4の合成
 燐光発光性化合物G3は、国際公開第2006/121811号に記載の方法に準じて合成した。
 燐光発光性化合物G4は、国際公開第2006/121811号および特開2013-048190号公報に記載の方法に準じて合成した。
Figure JPOXMLDOC01-appb-C000133
 燐光発光性化合物G3の発光スペクトルの最大ピーク波長は469nmであった。また燐光発光性化合物G3のHOMOは4.89eVであった。
 燐光発光性化合物G4の発光スペクトルの最大ピーク波長は471nmであった。また、燐光発光性化合物G4のHOMOは5.03eVであった。
<合成例4> 単量体CM1~CM9の合成
 単量体CM1は特開2010-189630号公報に記載の方法に従って合成した。
 単量体CM2は特開2008-106241号公報に記載の方法に従って合成した。
 単量体CM3は特開2010-215886号公報に記載の方法に従って合成した。
 単量体CM4は特表2002-539292号公報に記載の方法に従って合成した。
 単量体CM5は特開2012-33845号公報に記載の方法に従って合成した。
 単量体CM6は特開2012-33845号公報に記載の方法に従って合成した。
 単量体CM7は国際公開第2005/049546号に記載の方法に従って合成した。
 単量体CM8は国際公開第2013/146806号に記載の方法に従って合成した。
 単量体CM9は国際公開第2009/131255号記載の合成法に従い合成した。
Figure JPOXMLDOC01-appb-C000134
Figure JPOXMLDOC01-appb-C000135
Figure JPOXMLDOC01-appb-C000136
<合成例5> 単量体CM10の合成
(合成例5-1) 化合物Ma4の合成
Figure JPOXMLDOC01-appb-C000137
(化合物Ma3の合成)
 撹拌器を備えたフラスコ内の気体を窒素ガスで置換した後、化合物Ma2(64.6g)およびテトラヒドロフラン(615ml)を加え、-70℃に冷却した。そこへ、n-ブチルリチウムヘキサン溶液(1.6M、218ml)を1時間かけて滴下した後、-70℃で2時間撹拌した。そこへ、化合物Ma1(42.1g)を数回に分けて加えた後、-70℃で2時間撹拌した。そこへ、メタノール(40ml)を1時間かけて滴下した後、室温まで昇温した。その後、減圧濃縮して溶媒を留去し、トルエンおよび水を加えた。その後、水層を分離し、得られた有機層をさらに水で洗浄した。得られた有機層を減圧濃縮して、得られた残渣をシリカゲルカラム(ヘキサンおよび酢酸エチルの混合溶媒)を用いて精製することで、無色油状物として化合物Ma3を71g得た。得られた化合物Ma3のHPLC面積百分率値(UV254nm)は97.5%であった。この操作を繰り返し行うことで、化合物Ma3の必要量を得た。
 1H-NMR(CDCl3, 300MHz) δ(ppm):2.43 (1H, s), 3.07-3.13 (4H, m), 6.95 (1H, d),7.07 (1H. s), 7.18-7.28 (3H, m), 7.28-7.40 (4H, m), 7.66 (2H, s).
(化合物Ma4の合成)
 撹拌器を備えたフラスコ内の気体を窒素ガスで置換した後、化合物Ma3(72.3g)、トルエン(723ml)およびトリエチルシラン(118.0g)を加え、70℃に昇温した。そこへ、メタンスルホン酸(97.7g)を1.5時間かけて滴下した後、70℃で0.5時間撹拌した。その後、室温まで冷却し、トルエン(1L)および水(1L)を加えた後、水層を分離した。得られた有機層を、水、5重量%炭酸水素ナトリウム水、水の順番で洗浄した。得られた有機層を減圧濃縮して、得られた粗生成物をトルエンおよびエタノールの混合溶液で晶析することで、白色固体として化合物Ma4を51.8g得た。得られた化合物Ma4のHPLC面積百分率値(UV254nm)は99.5%以上であった。この操作を繰り返し行うことで、化合物Ma4の必要量を得た。
 1H-NMR(CDCl3, 300MHz) δ(ppm):3.03-3.14 (4H, m), 4.99 (1H, s), 6.68 (1H, s), 6.92-7.01 (2H, m), 7.20-7.28 (2H, m), 7.29-7.38 (4H, m), 7.78 (2H, d).
(合成例5-2) 化合物Mb7の合成
Figure JPOXMLDOC01-appb-C000138
(化合物Mb3の合成)
 撹拌器を備えたフラスコ内の気体を窒素ガスで置換した後、化合物Mb1(185.0g)、化合物Mb2(121.1g)、ヨウ化銅(I)(CuI、3.2g)、ジクロロメタン(185ml)およびトリエチルアミン(2.59L)を加え、還流温度に昇温した。その後、還流温度で0.5時間撹拌し、室温まで冷却した。そこへ、ジクロロメタン(1.85L)を加えた後、セライトを敷き詰めたろ過器でろ過した。得られたろ液に10重量%炭酸水素ナトリウム水溶液を加えた後、水層を分離した。得られた有機層を水で2回洗浄し、飽和塩化ナトリウム水溶液で洗浄した後、硫酸マグネシウムを加えた。得られた混合物をろ過し、得られたろ液を減圧濃縮した。得られた残渣をシリカゲルカラム(クロロホルムおよび酢酸エチルの混合溶媒)を用いて精製することで、粗生成物を得た。得られた粗生成物をエタノール(1.4L)に溶解させた後、活性炭(5g)を加え、ろ過した。得られたろ液を減圧濃縮して、得られた残渣をヘキサンで晶析することで、白色固体として化合物Mb3を99.0g得た。得られた化合物Mb3のHPLC面積百分率値(UV254nm)は99.5%以上であった。この操作を繰り返し行うことで、化合物Mb3の必要量を得た。
 1H-NMR(DMSO-d6, 300MHz) δ(ppm):1.52-1.55 (8H, m), 2.42 (4H, t), 3.38-3.44 (4H, m), 4.39-4.43(2H, m), 7.31 (4H, s).
(化合物Mb4の合成)
 撹拌器を備えたフラスコ内の気体を窒素ガスで置換した後、化合物Mb3(110.0g)、エタノール(1.65L)およびパラジウム/炭素(Pd重量10%)(11.0g)を加え、30℃まで昇温した。その後、フラスコ内の気体を水素ガスで置換した。その後、フラスコ内に水素ガスを供給しながら、30℃で3時間撹拌した。その後、フラスコ内の気体を窒素ガスで置換した。得られた混合物をろ過し、得られたろ液を減圧濃縮した。得られた残渣をシリカゲルカラム(クロロホルムおよび酢酸エチルの混合溶媒)を用いて精製することで、粗生成物を得た。得られた粗生成物をヘキサンで晶析することで、白色固体として化合物Mb4を93.4g得た。得られた化合物Mb4のHPLC面積百分率値(UV254nm)は98.3%であった。
 1H-NMR(CDCl3, 300MHz) δ(ppm):1.30-1.40 (8H, m), 1.55-1.65 (8H, m), 2.58 (4H, t), 3.64 (4H, t), 7.09 (4H, s).
 13C-NMR(CDCl3, 75MHz) δ(ppm):25.53, 28.99, 31.39, 32.62, 35.37, 62.90, 128.18, 139.85.
(化合物Mb5の合成)
 撹拌器を備えたフラスコ内の気体を窒素ガスで置換した後、化合物Mb4(61.0g)、ピリジン(0.9g)およびトルエン(732ml)を加え、60℃に昇温した。そこへ、塩化チオニル(91.4g)を1.5時間かけて滴下した後、60℃で5時間撹拌した。得られた混合物を室温まで冷却した後、減圧濃縮した。得られた残渣をシリカゲルカラム(ヘキサンおよび酢酸エチルの混合溶媒)を用いて精製することで、無色油状物として化合物Mb5を64.3g得た。得られた化合物Mb5のHPLC面積百分率値(UV254nm)は97.2%であった。
 1H-NMR(CDCl3, 300MHz) δ(ppm):1.35-1.40 (4H, m), 1.41-1.50 (4H, m), 1.60-1.68 (4H, m), 1.75-1.82 (4H, m), 2.60 (4H, t), 3.55 (4H, t), 7.11 (4H, s).
(化合物Mb6の合成)
 撹拌器を備えたフラスコ内の気体を窒素ガスで置換した後、化合物Mb5(42.0g)、鉄粉(1.7g)、ヨウ素(0.3g)およびジクロロメタン(800ml)を加えた。その後、フラスコ全体を遮光し、0~5℃に冷却した。そこへ、臭素(44.7g)およびジクロロメタン(200ml)の混合液を1時間かけて滴下した後、0~5℃にて一晩撹拌した。得られた混合液を、0~5℃に冷却した水(1.2L)に加えた後、有機層を分離した。得られた有機層を10重量%チオ硫酸ナトリウム水溶液で洗浄し、さらに、飽和塩化ナトリウム水、水の順番で洗浄した。得られた有機層に硫酸ナトリウムを加えた後、ろ過し、得られたろ液を減圧濃縮した。得られた残渣をシリカゲルカラム(ヘキサン)を用いて精製することで、粗生成物を得た。得られた粗生成物をヘキサンで晶析することで、白色固体として化合物Mb6を47.0g得た。得られた化合物Mb6のHPLC面積百分率値(UV254nm)は98.3%であった。
 1H-NMR(CDCl3, 300MHz) δ(ppm):1.38-1.45 (4H, m), 1.47-1.55 (4H, m), 1.57-1.67 (4H, m), 1.77-1.84(4H, m), 2.66 (4H, t), 3.55 (4H, t), 7.36 (2H, s).
(化合物Mb7の合成)
 撹拌器を備えたフラスコ内の気体を窒素ガスで置換した後、ヨウ化ナトリウム(152.1g)およびアセトン(600ml)を加え、室温で0.5時間撹拌した。そこへ、Mb6(40.0g)を加えた後、還流温度まで昇温し、還流温度で24時間撹拌した。その後、室温まで冷却し、得られた混合液を水(1.2L)に加えた。析出した固体をろ別した後、水で洗浄することで粗生成物を得た。得られた粗生成物をトルエンおよびメタノールの混合液で晶析することで、白色固体として化合物Mb7を46.0g得た。得られた化合物Mb7のHPLC面積百分率値(UV254nm)は99.4%であった。この操作を繰り返し行うことで、化合物Mb7の必要量を得た。
 1H-NMR(CDCl3, 300MHz) δ(ppm):1.35-1.50 (8H, m), 1.57-1.65 (4H, m), 1.80-1.89 (4H, m), 2.65 (4H, t), 3.20 (4H, t), 7.36 (2H, s).
(合成例5-3) 単量体CM10の合成
Figure JPOXMLDOC01-appb-C000139
(化合物Mb8の合成)
 撹拌器を備えたフラスコ内の気体を窒素ガスで置換した後、水素化ナトリウム(60重量%、流動パラフィンに分散)(9.4g)、テトラヒドロフラン(110ml)および化合物Mb7(63.2g)を加えた。そこへ、化合物Ma4(55.0g)を数回に分けて加えた後、12時間撹拌した。そこへ、トルエン(440ml)および水(220ml)を加えた後、水層を分離した。得られた有機層を水で洗浄した後、硫酸マグネシウムを加えた。得られた混合液をろ過して、得られたろ液を減圧濃縮することで粗生成物を得た。得られた粗生成物をシリカゲルカラム(ヘキサンおよびトルエンの混合溶媒)を用いて精製した。その後、ヘプタンで晶析することで、白色固体として化合物Mb8を84.1g得た。得られた化合物Mb8のHPLC面積百分率値(UV254nm)は99.5%以上であった。
 1H-NMR(CDCl3, 300MHz) δ(ppm):0.70-0.76 (4H, m), 1.10-1.21 (8H, m), 1.32-1.44 (4H, m), 2.39-2.58 (8H, m), 3.00-3.12 (8H, m), 6.82-6.94 (4H, m), 7.00-7.05 (2H, m), 7.17-7.28 (10H, m), 7.30-7.38 (4H, m), 7.71-7.77 (4H, m).
(単量体CM10の合成)
 撹拌器を備えたフラスコ内の気体を窒素ガスで置換した後、化合物Mb8(84.0g)、[1,1’-ビス(ジフェニルホスフィノ)フェロセン]パラジウム(II)ジクロリド ジクロロメタン付加物(PdCl(dppf)・CHCl、2.2g)、ビスピナコラートジボロン(68.3g)、酢酸カリウム(52.8g)およびシクロペンチルメチルエーテル(840ml)を加え、還流温度まで昇温した後、還流温度で5時間撹拌した。その後、室温まで冷却し、トルエン(500ml)および水(300ml)を加えた後、水層を分離した。得られた有機層を水で洗浄した後、活性炭(18.5g)を加えた。得られた混合液をろ過し、得られたろ液を減圧濃縮することで粗生成物を得た。得られた粗生成物をシリカゲルカラム(ヘキサンおよびトルエンの混合溶媒)を用いて精製した。その後、トルエンおよびアセトニトリルの混合液で晶析する操作を繰り返すことで、白色固体として単量体CM10を45.8g得た。得られた単量体CM10のHPLC面積百分率値(UV254nm)は99.4%であった。
 1H-NMR(CDCl3, 300MHz) δ(ppm):0.70-0.76 (4H, m), 1.24-1.40 (36H, m), 2.39-2.48 (4H, m), 2.66-2.75 (4H, m), 3.00-3.10 (8H, m), 6.76-6.90 (4H, m), 7.00-7.05 (2H, m), 7.19-7.30 (8H, m), 7.30-7.36 (4H, m), 7.43 (2H, s), 7.72 (4H, d).
<合成例6> 高分子化合物P1の合成
(工程1)反応容器内を不活性ガス雰囲気とした後、単量体CM1(0.9950g)、単量体CM2(0.1064g)、単量体CM3(0.0924g)、単量体CM4(0.7364g)、ジクロロビス〔トリス(2-メトキシフェニル)ホスフィン〕パラジウム(1.8mg)およびトルエン(47ml)を加え、105℃に加熱した。
(工程2)反応液に、20重量%水酸化テトラエチルアンモニウム水溶液(6.6ml)を滴下し、5.5時間還流させた。
(工程3)その後、そこに、フェニルボロン酸(24.4mg)、20重量%水酸化テトラエチルアンモニウム水溶液(6.6ml)およびジクロロビス〔トリス(2-メトキシフェニル)ホスフィン〕パラジウム(1.8mg)を加え、14時間還流させた。
(工程4)その後、そこに、ジエチルジチアカルバミン酸ナトリウム水溶液を加え、80℃で2時間撹拌した。冷却後、反応液を、水で2回、3重量%酢酸水溶液で2回、水で2回洗浄し、得られた溶液をメタノールに滴下したところ、沈殿が生じた。沈殿物をトルエンに溶解させ、アルミナカラム、シリカゲルカラムの順番で通すことにより精製した。得られた溶液をメタノールに滴下し、撹拌した後、得られた沈殿物をろ取し、乾燥させることにより、高分子化合物P1を0.91g得た。高分子化合物P1のMnは5.2×10であり、Mwは2.5×10であった。
 高分子化合物P1は、仕込み原料の量から求めた理論値では、単量体CM1から誘導される構成単位と、単量体CM2から誘導される構成単位と、単量体CM3から誘導される構成単位と、単量体CM4から誘導される構成単位とが、50:5:5:40のモル比で構成されてなる共重合体である。
<合成例7> 高分子化合物P2の合成
(工程1)反応容器内を不活性ガス雰囲気とした後、単量体CM5(0.55g)、単量体CM6(0.61g)、トリフェニルホスフィンパラジウム(0.01g)、メチルトリオクチルアンモニウムクロライド(アルドリッチ製、商品名Aliquat336(登録商標))(0.20g)およびトルエン(10mL)を加え、105℃に加熱した。
(工程2)反応液に、2M炭酸ナトリウム水溶液(6mL)を滴下し、8時間還流させた。
(工程3)その後、そこに、4-tert-ブチルフェニルボロン酸(0.01g)を加え、6時間還流させた。
(工程4)その後、そこに、ジエチルジチオカルバミン酸ナトリウム水溶液(10mL、濃度:0.05g/mL)を加え、2時間撹拌した。得られた反応溶液をメタノール(300mL)に滴下し、1時間攪拌した。その後、析出した沈殿をろ過し、2時間減圧乾燥させ、テトラヒドロフラン(20mL)に溶解させた。得られた溶液を、メタノール(120mL)および3重量%酢酸水溶液(50mL)の混合溶媒に滴下し、1時間攪拌した。その後、析出した沈殿をろ過し、テトラヒドロフラン(20mL)に溶解させた。
(工程5)得られた溶液を、メタノール(200mL)に滴下し、30分攪拌した。その後、析出した沈殿をろ過した。得られた固体をテトラヒドロフランに溶解させた後、アルミナカラム、シリカゲルカラムに順に通液することにより精製した。得られた溶液をメタノールに滴下し、撹拌した後、析出した沈殿をろ過した。得られた固体を乾燥させることにより、高分子化合物P2を520mg得た。高分子化合物P2のMnは5.2×10であり、Mwは1.5×10であった。
 高分子化合物P2は、仕込み原料の量から求めた理論値では、単量体CM5から誘導される構成単位と、単量体CM6から誘導される構成単位とが、50:50のモル比で構成されてなる共重合体である。
 <合成例8> 高分子化合物P3の合成
 高分子化合物P2(200mg)を反応容器に加えた後、反応容器内を窒素ガス雰囲気とした。その後、そこへ、テトラヒドロフラン(20mL)およびエタノール(20mL)を加え、55℃に昇温した。その後、そこに、水酸化セシウム(200mg)を水(2mL)に溶解させた水酸化セシウム水溶液を加え、55℃で6時間撹拌した。得られた反応混合物を室温まで冷却した後、溶媒を減圧留去した。得られた固体を水で洗浄した後、減圧乾燥させることにより、高分子化合物P3(150mg)を得た。高分子化合物P3のH-NMR解析により、高分子化合物P2中のエチルエステル部位のシグナルが消失し、反応が完了したことを確認した。
 高分子化合物P3は、高分子化合物P2の仕込み原料の量から求めた理論値では、下記で表される構成単位からなる共重合体である。
Figure JPOXMLDOC01-appb-C000140
<合成例9> 高分子化合物P4の合成
 高分子化合物P1の合成における(工程1)を、「反応容器内を不活性ガス雰囲気とした後、単量体CM10(0.923g)、単量体CM8(0.0496g)、単量体CM7(0.917g)、ジクロロビス(トリス-o-メトキシフェニルホスフィン)パラジウム(1.76mg)およびトルエン(34mL)を加え、105℃に加熱した。」とする以外は、高分子化合物P1の合成と同様にすることで、高分子化合物P4を1.23g得た。高分子化合物P4のMnは2.3×10であり、Mwは1.2×10であった。
 高分子化合物P4は、仕込み原料の量から求めた理論値では、単量体CM10から誘導される構成単位と、単量体CM8から誘導される構成単位と、単量体CM7から誘導される構成単位とが、45:5:50のモル比で構成されてなる共重合体である。
<合成例10> 高分子化合物P5の合成
 高分子化合物P1の合成における(工程1)を下記(工程1-1)に変更し、(工程2)を下記(工程2-1)に変更し、(工程3)を下記(工程3-1)に変更したこと以外は、高分子化合物P1の合成と同様の方法により、高分子化合物P5を3.00g得た。
(工程1-1)反応容器内を不活性ガス雰囲気とした後、単量体CM1(1.74g)、単量体CM7(3.19g)、ジクロロビス(トリフェニルホスフィン)パラジウム(2.5mg)およびトルエン(40mL)を加え、80℃に加熱した。
(工程2-1)反応液に、20重量%水酸化テトラエチルアンモニウム水溶液(12mL)を滴下し、8時間還流させた。
(工程3-1)反応後、そこに、フェニルボロン酸(0.427g)およびジクロロビス(トリフェニルホスフィン)パラジウム(2.5mg)を加え、17時間還流させた。
 高分子化合物P5のMnは4.5×10であり、Mwは1.5×10であった。
 高分子化合物P5は、仕込み原料の量から求めた理論値では、単量体CM1から誘導される構成単位と、単量体CM7から誘導される構成単位が、50:50のモル比で構成されてなる共重合体である。
<合成例11> 高分子化合物P6の合成
 高分子化合物P6は、単量体CM1、単量体CM4および単量体CM9を用いて、国際公開第WO2011/013795号に記載の方法に準じて合成した。
 高分子化合物P6のMnは4.8×10であり、Mwは1.0×10であった。
 高分子化合物P6は、仕込み原料の量から求めた理論値では、単量体CM1から誘導される構成単位と、単量体CM4から誘導される構成単位と、単量体CM9から誘導される構成単位とが、50:30:20のモル比で構成されてなる共重合体である。
 化合物DCzDBTおよび化合物VNPBは、それぞれ、Luminescence Technology Corp社より購入した。
Figure JPOXMLDOC01-appb-C000141
<実施例1> 発光素子1の作製と評価
(陽極および正孔注入層の形成)
 ガラス基板にスパッタ法により45nmの厚みでITO膜を付けることにより陽極を形成した。該陽極上に、ポリチオフェン・スルホン酸系の正孔注入剤であるAQ-1200(Plextronics社製)をスピンコート法により35nmの厚さで成膜し、大気雰囲気下において、ホットプレート上で170℃、15分間加熱することにより正孔注入層を形成した。
(正孔輸送層の形成)
 キシレンに、高分子化合物P4を0.7重量%の濃度で溶解させた。得られたキシレン溶液を用いて、正孔注入層の上にスピンコート法により20nmの厚さで成膜し、窒素ガス雰囲気下において、ホットプレート上で180℃、60分間加熱させることにより正孔輸送層を形成した。ホットプレート上で180℃、60分間加熱させることにより、高分子化合物P4は、高分子化合物P4の架橋体となる。
(発光層の形成)
 トルエンに、化合物DCzDBT、燐光発光性化合物G1および燐光発光性化合物G3(化合物DCzDBT/燐光発光性化合物G1/燐光発光性化合物G3=90重量%/5重量%/5重量%)を2.0重量%の濃度で溶解させた。得られたトルエン溶液を用いて、正孔輸送層の上にスピンコート法により60nmの厚さで成膜し、窒素ガス雰囲気下において、130℃、10分間加熱させることにより発光層を形成した。
(電子輸送層の形成)
 2,2,3,3,4,4,5,5-オクタフルオロ-1-ペンタノールに、高分子化合物P3を0.25重量%の濃度で溶解させた。得られた2,2,3,3,4,4,5,5-オクタフルオロ-1-ペンタノール溶液を用いて、発光層の上にスピンコート法により10nmの厚さで成膜し、窒素ガス雰囲気下において、130℃、10分加熱させることにより電子輸送層を形成した。
(陰極の形成)
 電子輸送層を形成した基板を蒸着機内において、1.0×10-4Pa以下にまで減圧した後、陰極として、電子輸送層の上にフッ化ナトリウムを約4nm、次いで、フッ化ナトリウム層の上にアルミニウムを約80nm蒸着した。蒸着後、ガラス基板を用いて封止することにより、発光素子1を作製した。
(発光素子の評価)
 発光素子1に電圧を印加することによりEL発光が観測された。1000cd/mにおける駆動電圧は5.4[V]、外部量子効率は4.4[%]、色度座標(x,y)は(0.18,0.38)であった。
<実施例2> 発光素子2の作製と評価
 実施例1における(正孔輸送層の形成)を下記(正孔輸送層の形成-2)に変更し、(発光層の形成)を下記(発光層の形成-2)に変更した以外は、実施例1と同様にして、発光素子2を作製した。
(正孔輸送層の形成-2)
 クロロベンゼンに、高分子化合物P4を0.7重量%の濃度で溶解させた。得られたクロロベンゼン溶液を用いて、正孔注入層の上にスピンコート法により20nmの厚さで成膜し、窒素ガス雰囲気下において、ホットプレート上で180℃、60分間加熱させることにより正孔輸送層を形成した。ホットプレート上で180℃、60分間加熱させることにより、高分子化合物P4は、高分子化合物P4の架橋体となる。
(発光層の形成-2)
 クロロホルムに、化合物DCzDBT、FIrpicおよび燐光発光性化合物G3(DCzDBT/FIrpic/燐光発光性化合物G3=90重量%/5重量%/5重量%)を0.5重量%の濃度で溶解させた。得られたクロロホルム溶液を用いて、正孔輸送層の上にスピンコート法により60nmの厚さで成膜し、窒素ガス雰囲気下において、130℃、10分間加熱させることにより発光層を形成した。
(発光素子の評価)
 発光素子2に電圧を印加することによりEL発光が観測された。1000cd/mにおける駆動電圧は7.8[V]、外部量子効率は6.0[%]、色度座標(x,y)は(0.18,0.38)であった。
<実施例3> 発光素子3の作製と評価
 実施例2における、化合物DCzDBT、FIrpicおよび燐光発光性化合物G3(DCzDBT/FIrpic/燐光発光性化合物G3=90重量%/5重量%/5重量%)に代えて、化合物DCzDBT、燐光発光性化合物G2および燐光発光性化合物G4(DCzDBT/燐光発光性化合物G2/燐光発光性化合物G4=90重量%/5重量%/5重量%)を用いた以外は、実施例2と同様にして、発光素子3を作製した。
(発光素子の評価)
 発光素子3に電圧を印加することによりEL発光が観測された。1000cd/mにおける駆動電圧は4.3[V]、外部量子効率は3.5[%]、色度座標(x,y)は(0.18,0.37)であった。
<比較例1> 発光素子C1の作製と評価
 実施例2における、化合物DCzDBT、FIrpicおよび燐光発光性化合物G3(DCzDBT/FIrpic/燐光発光性化合物G3=90重量%/5重量%/5重量%)に代えて、化合物DCzDBT、燐光発光性化合物G3および燐光発光性化合物G4(DCzDBT/燐光発光性化合物G3/燐光発光性化合物G4=90重量%/5重量%/5重量%)を用いた以外は、実施例2と同様にして、発光素子C1を作製した。
(発光素子の評価)
 発光素子C1に電圧を印加することによりEL発光が観測された。1000cd/mにおける駆動電圧は4.9[V]、外部量子効率は1.6[%]、色度座標(x,y)は(0.19,0.39)であった。
<比較例2> 発光素子C2の作製と評価
 実施例2における、化合物DCzDBT、FIrpicおよび燐光発光性化合物G3(DCzDBT/FIrpic/燐光発光性化合物G3=90重量%/5重量%/5重量%)に代えて、化合物DCzDBT、燐光発光性化合物G1および燐光発光性化合物G2(DCzDBT/燐光発光性化合物G1/燐光発光性化合物G2=90重量%/5重量%/5重量%)を用いた以外は、実施例2と同様にして、発光素子C2を作製した。
(発光素子の評価)
 発光素子C2に電圧を印加することによりEL発光が観測された。1000cd/mにおける駆動電圧は4.6[V]、外部量子効率は1.9[%]、色度座標(x,y)は(0.15,0.25)であった。
<比較例3> 発光素子C3の作製と評価
 実施例1における(正孔輸送層の形成)を下記(正孔輸送層の形成-C3)に変更し、(発光層の形成)を下記(発光層の形成-C3)に変更した以外は、実施例1と同様にして、発光素子C3を作製した。
(正孔輸送層の形成-C3)
 クロロベンゼンに、高分子化合物P5を0.5重量%の濃度で溶解させた。得られたクロロベンゼン溶液を用いて、正孔注入層の上にスピンコート法により20nmの厚さで成膜し、窒素ガス雰囲気下において、ホットプレート上で180℃、60分間加熱させることにより正孔輸送層を形成した。
(発光層の形成-C3)
 クロロホルムに、化合物DCzDBT、燐光発光性化合物G1および燐光発光性化合物G3(化合物DCzDBT/燐光発光性化合物G1/燐光発光性化合物G3=90重量%/5重量%/5重量%)を0.5重量%の濃度で溶解させた。得られたクロロホルム溶液を用いて、正孔輸送層の上にスピンコート法により60nmの厚さで成膜し、窒素ガス雰囲気下において、130℃、10分間加熱させることにより発光層を形成した。
(発光素子の評価)
 発光素子C3に電圧を印加することによりEL発光が観測された。1000cd/mにおける駆動電圧は4.6[V]、外部量子効率は1.0[%]、色度座標(x,y)は(0.18,0.37)であった。
Figure JPOXMLDOC01-appb-T000142
<実施例4> 発光素子4の作製と評価
 実施例1における(正孔輸送層の形成)を下記(正孔輸送層の形成-4)に変更し、(発光層の形成)を下記(発光層の形成-4)に変更した以外は、実施例1と同様にして、発光素子4を作製した。
(正孔輸送層の形成-4)
 クロロベンゼンに、化合物VNPBを0.7重量%の濃度で溶解させた。得られたクロロベンゼン溶液を用いて、正孔注入層の上にスピンコート法により20nmの厚さで成膜し、窒素ガス雰囲気下において、ホットプレート上で180℃、60分間加熱させることにより正孔輸送層を形成した。ホットプレート上で180℃、60分間加熱させることにより、化合物VNPBは、化合物VNPBの架橋体となる。
(発光層の形成-4)
 クロロホルムに、化合物DCzDBT、FIrpicおよび燐光発光性化合物G1(DCzDBT/FIrpic/燐光発光性化合物G1=90重量%/5重量%/5重量%)を0.5重量%の濃度で溶解させた。得られたクロロホルム溶液を用いて、正孔輸送層の上にスピンコート法により60nmの厚さで成膜し、窒素ガス雰囲気下において、130℃、10分間加熱させることにより発光層を形成した。
(発光素子の評価)
 発光素子4に電圧を印加することによりEL発光が観測された。1000cd/mにおける駆動電圧は7.4[V]、外部量子効率は11.0[%]、色度座標(x,y)は(0.15,0.33)であった。
<実施例5> 発光素子5の作製と評価
 実施例4における、化合物DCzDBT、FIrpicおよび燐光発光性化合物G1(DCzDBT/FIrpic/燐光発光性化合物G1=90重量%/5重量%/5重量%)に代えて、化合物DCzDBT、FIrpicおよび燐光発光性化合物G2(DCzDBT/FIrpic/燐光発光性化合物G2=90重量%/5重量%/5重量%)を用いた以外は、実施例4と同様にして、発光素子5を作製した。
(発光素子の評価)
 発光素子5に電圧を印加することによりEL発光が観測された。1000cd/mにおける駆動電圧は7.7[V]、外部量子効率は9.6[%]、色度座標(x,y)は(0.15,0.32)であった。
<実施例6> 発光素子6の作製と評価
 実施例1における(正孔輸送層の形成)を下記(正孔輸送層の形成-6)に変更し、(発光層の形成)を下記(発光層の形成-6)に変更した以外は、実施例1と同様にして、発光素子6を作製した。
(正孔輸送層の形成-6)
 クロロベンゼンに、化合物VNPBを0.8重量%の濃度で溶解させた。得られたクロロベンゼン溶液を用いて、正孔注入層の上にスピンコート法により20nmの厚さで成膜し、窒素ガス雰囲気下において、ホットプレート上で180℃、60分間加熱させることにより正孔輸送層を形成した。ホットプレート上で180℃、60分間加熱させることにより、化合物VNPBは、化合物VNPBの架橋体となる。
(発光層の形成-6)
 クロロベンゼンに、化合物DCzDBT、FIrpicおよび燐光発光性化合物G2(DCzDBT/FIrpic/燐光発光性化合物G2=70重量%/15重量%/15重量%)を2.0重量%の濃度で溶解させた。得られたクロロベンゼン溶液を用いて、正孔輸送層の上にスピンコート法により60nmの厚さで成膜し、窒素ガス雰囲気下において、130℃、10分間加熱させることにより発光層を形成した。
(発光素子の評価)
 発光素子6に電圧を印加することによりEL発光が観測された。1000cd/mにおける駆動電圧は7.3[V]、外部量子効率は13.2[%]、色度座標(x,y)は(0.15,0.35)であった。
<実施例7> 発光素子7の作製と評価
 実施例6における(発光層の形成-6)を下記(発光層の形成-7)に変更した以外は、実施例6と同様にして、発光素子7を作製した。
(発光層の形成-7)
 トルエンに、化合物DCzDBT、燐光発光性化合物G1および燐光発光性化合物G3(DCzDBT/燐光発光性化合物G1/燐光発光性化合物G3=90重量%/5重量%/5重量%)を2.0重量%の濃度で溶解させた。得られたトルエン溶液を用いて、正孔輸送層の上にスピンコート法により60nmの厚さで成膜し、窒素ガス雰囲気下において、130℃、10分間加熱させることにより発光層を形成した。
(発光素子の評価)
 発光素子7に電圧を印加することによりEL発光が観測された。1000cd/mにおける駆動電圧は5.4[V]、外部量子効率は5.2[%]、色度座標(x,y)は(0.19,0.40)であった。
<実施例8> 発光素子8の作製と評価
 実施例4における、化合物DCzDBT、FIrpicおよび燐光発光性化合物G1(DCzDBT/FIrpic/燐光発光性化合物G1=90重量%/5重量%/5重量%)に代えて、化合物DCzDBT、燐光発光性化合物G2および燐光発光性化合物G3(DCzDBT/燐光発光性化合物G2/燐光発光性化合物G3=90重量%/5重量%/5重量%)を用いた以外は、実施例4と同様にして、発光素子8を作製した。
(発光素子の評価)
 発光素子8に電圧を印加することによりEL発光が観測された。1000cd/mにおける駆動電圧は4.9[V]、外部量子効率は2.3[%]、色度座標(x,y)は(0.21,0.44)であった。
<実施例9> 発光素子9の作製と評価
 実施例4における、化合物DCzDBT、FIrpicおよび燐光発光性化合物G1(DCzDBT/FIrpic/燐光発光性化合物G1=90重量%/5重量%/5重量%)に代えて、化合物DCzDBT、燐光発光性化合物G2および燐光発光性化合物G4(DCzDBT/燐光発光性化合物G2/燐光発光性化合物G4=90重量%/5重量%/5重量%)を用いた以外は、実施例4と同様にして、発光素子9を作製した。
(発光素子の評価)
 発光素子9に電圧を印加することによりEL発光が観測された。1000cd/mにおける駆動電圧は4.4[V]、外部量子効率は2.8[%]、色度座標(x,y)は(0.18,0.39)であった。
<比較例4> 発光素子C4の作製と評価
 実施例4における、化合物DCzDBT、FIrpicおよび燐光発光性化合物G1(DCzDBT/FIrpic/燐光発光性化合物G1=90重量%/5重量%/5重量%)に代えて、化合物DCzDBT、燐光発光性化合物G1および燐光発光性化合物G2(DCzDBT/燐光発光性化合物G1/燐光発光性化合物G2=90重量%/5重量%/5重量%)を用いた以外は、実施例4と同様にして、発光素子C4を作製した。
(発光素子の評価)
 発光素子C4に電圧を印加することによりEL発光が観測された。1000cd/mにおける駆動電圧は5.1[V]、外部量子効率は1.2[%]、色度座標(x,y)は(0.17,0.27)であった。
Figure JPOXMLDOC01-appb-T000143
<実施例10> 発光素子10の作製と評価
(陽極および正孔注入層の形成)
 ガラス基板にスパッタ法により45nmの厚みでITO膜を付けることにより陽極を形成した。該陽極上に、ポリチオフェン・スルホン酸系の正孔注入剤であるAQ-1200(Plextronics社製)をスピンコート法により35nmの厚さで成膜し、大気雰囲気下において、ホットプレート上で170℃、15分間加熱することにより正孔注入層を形成した。
(正孔輸送層の形成)
 キシレンに、高分子化合物P1を0.6重量%の濃度で溶解させた。得られたキシレン溶液を用いて、正孔注入層の上にスピンコート法により20nmの厚さで成膜し、窒素ガス雰囲気下において、ホットプレート上で180℃、60分間加熱させることにより正孔輸送層を形成した。ホットプレート上で180℃、60分間加熱させることにより、高分子化合物P1は、高分子化合物P1の架橋体となる。
(発光層の形成)
 クロロベンゼンに、化合物DCzDBT、FIrpicおよび燐光発光性化合物G1(化合物DCzDBT/FIrpic/燐光発光性化合物G1=90重量%/5重量%/5重量%)を2.0重量%の濃度で溶解させた。得られたクロロベンゼン溶液を用いて、正孔輸送層の上にスピンコート法により60nmの厚さで成膜し、窒素ガス雰囲気下において、130℃、10分間加熱させることにより発光層を形成した。
(電子輸送層の形成)
 2,2,3,3,4,4,5,5-オクタフルオロ-1-ペンタノールに、高分子化合物P3を0.25重量%の濃度で溶解させた。得られた2,2,3,3,4,4,5,5-オクタフルオロ-1-ペンタノール溶液を用いて、発光層の上にスピンコート法により10nmの厚さで成膜し、窒素ガス雰囲気下において、130℃、10分加熱させることにより電子輸送層を形成した。
(陰極の形成)
 電子輸送層を形成した基板を蒸着機内において、1.0×10-4Pa以下にまで減圧した後、陰極として、電子輸送層の上にフッ化ナトリウムを約4nm、次いで、フッ化ナトリウム層の上にアルミニウムを約80nm蒸着した。蒸着後、ガラス基板を用いて封止することにより、発光素子10を作製した。
(発光素子の評価)
 発光素子10に電圧を印加することによりEL発光が観測された。1000cd/mにおける駆動電圧は7.9[V]、外部量子効率は8.7[%]、発光スペクトルのピーク波長は470[nm]、色度座標(x,y)は(0.14,0.29)であった。
<実施例11> 発光素子11の作製と評価
 実施例10における、化合物DCzDBT、FIrpiqおよび燐光発光性化合物G1を溶解させたクロロベンゼン溶液(2.0重量%、化合物DCzDBT/FIrpiq/燐光発光性化合物G1=90重量%/5重量%/5重量%)に代えて、化合物DCzDBT、FIrpiqおよび燐光発光性化合物G2を溶解させたクロロベンゼン溶液(2.0重量%、化合物DCzDBT/FIrpiq/燐光発光性化合物G2=90重量%/5重量%/5重量%)を用いた以外は、実施例10と同様にして、発光素子11を作製した。
 (発光素子の評価)
 発光素子11に電圧を印加することによりEL発光が観測された。1000cd/mにおける駆動電圧は7.9[V]、外部量子効率は9.2[%]、発光スペクトルのピーク波長は470[nm]、色度座標(x,y)は(0.14,0.30)であった。
<実施例12> 発光素子12の作製と評価
 実施例10における、化合物DCzDBT、FIrpiqおよび燐光発光性化合物G1を溶解させたクロロベンゼン溶液(2.0重量%、化合物DCzDBT/FIrpiq/燐光発光性化合物G1=90重量%/5重量%/5重量%)に代えて、化合物DCzDBT、FIrpiqおよび燐光発光性化合物G2を溶解させたクロロベンゼン溶液(2.0重量%、化合物DCzDBT/FIrpiq/燐光発光性化合物G2=70重量%/15重量%/15重量%)を用いた以外は、実施例1と同様にして、発光素子12を作製した。
 (発光素子の評価)
 発光素子12に電圧を印加することによりEL発光が観測された。1000cd/mにおける駆動電圧は9.2[V]、外部量子効率は10.0[%]、発光スペクトルのピーク波長は475[nm]、色度座標(x,y)は(0.14,0.33)であった。
<比較例5> 発光素子C5の作製と評価
 実施例10における(正孔輸送層の形成)を下記(正孔輸送層の形成-C5)に変更し、(発光層の形成)を下記(発光層の形成-C5)に変更した以外は、実施例10と同様にして、発光素子C5を作製した。
(正孔輸送層の形成-C5)
 クロロベンゼンに、高分子化合物P5を0.5重量%の濃度で溶解させた。得られたクロロベンゼン溶液を用いて、正孔注入層の上にスピンコート法により20nmの厚さで成膜し、窒素ガス雰囲気下において、ホットプレート上で180℃、60分間加熱させることにより正孔輸送層を形成した。
(発光層の形成-C5)
 クロロホルムに、化合物DCzDBT、FIrpicおよび燐光発光性化合物G1(DCzDBT/FIrpic/燐光発光性化合物G1=90重量%/5重量%/5重量%)を0.5重量%の濃度で溶解させた。得られたクロロホルム溶液を用いて、正孔輸送層の上にスピンコート法により60nmの厚さで成膜し、窒素ガス雰囲気下において、130℃、10分間加熱させることにより発光層を形成した。
(発光素子の評価)
 発光素子C5に電圧を印加することによりEL発光が観測された。1000cd/mにおける駆動電圧は7.2[V]、外部量子効率は1.3[%]、色度座標(x,y)は(0.15,0.29)であった。
Figure JPOXMLDOC01-appb-T000144
 本発明によれば、外部量子効率に優れる発光素子を提供することができる。

Claims (13)

  1.  陽極と、
     陰極と、
     陽極および陰極の間に設けられた発光層と、
     陽極および発光層の間に設けられた正孔輸送層とを有する発光素子であって、
     正孔輸送層が、架橋基を有する材料を用いて得られる層であり、
     発光層が、発光スペクトルの最大ピーク波長が400nm以上495nm未満であり、下記式(A)で表される燐光発光性化合物(A)と、
     発光スペクトルの最大ピーク波長が400nm以上495nm未満であり、下記式(B)で表される燐光発光性化合物(B)とを含有する組成物を用いて得られる層であり、
     燐光発光性化合物(A)が有する環RA1と環RA2とで構成される配位子骨格の少なくとも1つと、燐光発光性化合物(B)が有する環RB1と環RB2とで構成される配位子骨格の少なくとも1つとが、互いに異なる、発光素子。
    Figure JPOXMLDOC01-appb-C000001
    [式中、
     Mは、ルテニウム原子、ロジウム原子、パラジウム原子、イリジウム原子または白金原子を表す。
     nは1以上の整数を表し、nは0以上の整数を表し、n+nは2または3である。Mがルテニウム原子、ロジウム原子またはイリジウム原子の場合、n+nは3であり、Mがパラジウム原子または白金原子の場合、n+nは2である。
     EA1およびEA2は、それぞれ独立に、炭素原子または窒素原子を表す。但し、EA1およびEA2の少なくとも一方は炭素原子である。
     環RA1は、5員環または6員環の芳香族複素環を表し(但し、環RA1が6員環の芳香族複素環である場合、EA1は炭素原子である。)、これらの環は置換基を有していてもよい。該置換基が複数存在する場合、それらは同一でも異なっていてもよく、互いに結合して、それぞれが結合する原子とともに環を形成していてもよい。環RA1が複数存在する場合、それらは同一でも異なっていてもよい。
     環RA2は、5員環もしくは6員環の芳香族炭化水素環、または、5員環もしくは6員環の芳香族複素環を表し(但し、環RA2が6員環の芳香族複素環である場合、EA2は炭素原子である。)、これらの環は置換基を有していてもよい。該置換基が複数存在する場合、それらは同一でも異なっていてもよく、互いに結合して、それぞれが結合する原子とともに環を形成していてもよい。環RA2が複数存在する場合、それらは同一でも異なっていてもよい。但し、環RA1が6員環の芳香族複素環である場合、環RA2は電子求引基を有する。
     A-G-Aは、アニオン性の2座配位子を表す。AおよびAは、それぞれ独立に、炭素原子、酸素原子または窒素原子を表し、これらの原子は環を構成する原子であってもよい。Gは、単結合、または、AおよびAとともに2座配位子を構成する原子団を表す。A-G-Aが複数存在する場合、それらは同一でも異なっていてもよい。]
    Figure JPOXMLDOC01-appb-C000002
    [式中、
     Mは、ルテニウム原子、ロジウム原子、パラジウム原子、イリジウム原子または白金原子を表す。
     nは1以上の整数を表し、nは0以上の整数を表し、n+nは2または3である。Mがルテニウム原子、ロジウム原子またはイリジウム原子の場合、n+nは3であり、Mがパラジウム原子または白金原子の場合、n+nは2である。
     EB1およびEB2は、それぞれ独立に、炭素原子または窒素原子を表す。但し、EB1およびEB2の少なくとも一方は炭素原子である。
     環RB1は、5員環または6員環の芳香族複素環を表し(但し、環RB1が6員環の芳香族複素環である場合、EB1は炭素原子である。)、これらの環は置換基を有していてもよい。該置換基が複数存在する場合、それらは同一でも異なっていてもよく、互いに結合して、それぞれが結合する原子とともに環を形成していてもよい。環RB1が複数存在する場合、それらは同一でも異なっていてもよい。
     環RB2は、5員環もしくは6員環の芳香族炭化水素環、または、5員環もしくは6員環の芳香族複素環を表し(但し、環RB2が6員環の芳香族複素環である場合、EB2は炭素原子である。)、これらの環は置換基を有していてもよい。該置換基が複数存在する場合、それらは同一でも異なっていてもよく、互いに結合して、それぞれが結合する原子とともに環を形成していてもよい。環RB2が複数存在する場合、それらは同一でも異なっていてもよい。但し、環RB1が6員環の芳香族複素環である場合、環RB2は電子求引基を有する。
     A-G-Aは、アニオン性の2座配位子を表す。AおよびAは、それぞれ独立に、炭素原子、酸素原子または窒素原子を表し、これらの原子は環を構成する原子であってもよい。Gは、単結合、または、AおよびAとともに2座配位子を構成する原子団を表す。A-G-Aが複数存在する場合、それらは同一でも異なっていてもよい。]
  2.  前記発光層と、前記正孔輸送層とが、隣接している、請求項1に記載の発光素子。
  3.  前記架橋基を有する材料が、
     架橋基A群から選ばれる少なくとも1種の架橋基を有する低分子化合物、または、架橋基A群から選ばれる少なくとも1種の架橋基を有する架橋構成単位を含む高分子化合物である、請求項1または2に記載の発光素子。
    (架橋基A群)
    Figure JPOXMLDOC01-appb-C000003
  4.  前記架橋基A群から選ばれる少なくとも1種の架橋基を有する架橋構成単位が、式(Z)で表される構成単位または式(Z’)で表される構成単位である、請求項3に記載の発光素子。
    Figure JPOXMLDOC01-appb-C000004
    [式中、
     nAは0~5の整数を表し、nは1または2を表す。
     Arは、芳香族炭化水素基または複素環基を表し、これらの基は置換基を有していてもよい。
     Lは、アルキレン基、シクロアルキレン基、アリーレン基、2価の複素環基、-NR’-で表される基、酸素原子または硫黄原子を表し、これらの基は置換基を有していてもよい。R’は、水素原子、アルキル基、シクロアルキル基、アリール基または1価の複素環基を表し、これらの基は置換基を有していてもよい。Lが複数存在する場合、それらは同一でも異なっていてもよい。
     Xは、前記架橋基A群から選ばれる架橋基を表す。Xが複数存在する場合、それらは同一でも異なっていてもよい。]
    Figure JPOXMLDOC01-appb-C000005
    [式中、
     mAは0~5の整数を表し、mは1~4の整数を表し、cは0または1を表す。mAが複数存在する場合、それらは同一でも異なっていてもよい。
     Arは、芳香族炭化水素基、複素環基、または、少なくとも1種の芳香族炭化水素環と少なくとも1種の複素環とが直接結合した基を表し、これらの基は置換基を有していてもよい。
     ArおよびArは、それぞれ独立に、アリーレン基または2価の複素環基を表し、これらの基は置換基を有していてもよい。
     Ar、ArおよびArはそれぞれ、当該基が結合している窒素原子に結合している当該基以外の基と、直接または酸素原子もしくは硫黄原子を介して結合して、環を形成していてもよい。
     Kは、アルキレン基、シクロアルキレン基、アリーレン基、2価の複素環基、-NR’’-で表される基、酸素原子または硫黄原子を表し、これらの基は置換基を有していてもよい。R’’は、水素原子、アルキル基、シクロアルキル基、アリール基または1価の複素環基を表し、これらの基は置換基を有していてもよい。Kが複数存在する場合、それらは同一でも異なっていてもよい。
     X’は、前記架橋基A群から選ばれる架橋基、水素原子、アルキル基、シクロアルキル基、アリール基または1価の複素環基を表し、これらの基は置換基を有していてもよい。但し、少なくとも1つのX’は、前記架橋基A群から選ばれる架橋基である。]
  5.  前記架橋基A群から選ばれる少なくとも1種の架橋基を有する低分子化合物が、式(Z'')で表される低分子化合物である、請求項3に記載の発光素子。
    Figure JPOXMLDOC01-appb-C000006
    [式中、
     mB1およびmB2は、それぞれ独立に、0以上の整数を表す。複数存在するmB1は、同一でも異なっていてもよい。
     nB1は0以上の整数を表す。nB1が複数存在する場合、それらは同一でも異なっていてもよい。
     Arは、芳香族炭化水素基、複素環基、または、少なくとも1種の芳香族炭化水素環と少なくとも1種の複素環とが直接結合した基を表し、これらの基は置換基を有していてもよい。Arが複数存在する場合、それらは同一でも異なっていてもよい。
     LB1は、アルキレン基、シクロアルキレン基、アリーレン基、2価の複素環基、-NR’’’-で表される基、酸素原子または硫黄原子を表し、これらの基は置換基を有していてもよい。R’’’は、水素原子、アルキル基、シクロアルキル基、アリール基または1価の複素環基を表し、これらの基は置換基を有していてもよい。LB1が複数存在する場合、それらは同一でも異なっていてもよい。
     X’’は、前記架橋基A群から選ばれる架橋基、水素原子、アルキル基、シクロアルキル基、アリール基または1価の複素環基を表し、これらの基は置換基を有していてもよい。複数存在するX’’は、同一でも異なっていてもよい。但し、複数存在するX’’のうち、少なくとも1つは、前記架橋基A群から選ばれる架橋基である。]
  6.  前記燐光発光性化合物(A)が有する環RA1と環RA2とで構成される配位子骨格の全てと、燐光発光性化合物(B)が有する環RB1と環RB2とで構成される配位子骨格の全てとが、互いに異なる、請求項1~5のいずれか一項に記載の発光素子。
  7.  前記燐光発光性化合物(A)が、下記式(A-1)で表される燐光発光性化合物であり、
     前記燐光発光性化合物(B)が、下記式(B-1)で表される燐光発光性化合物である、請求項1~6のいずれか一項に記載の発光素子。
    Figure JPOXMLDOC01-appb-C000007
    [式中、
     M、n、n、EA2およびA-G-Aは、前記と同じ意味を表す。
     環RA3は、6員環の芳香族複素環を表し、この環は置換基を有していてもよい。該置換基が複数存在する場合、それらは同一でも異なっていてもよく、互いに結合して、それぞれが結合する原子とともに環を形成していてもよい。環RA3が複数存在する場合、それらは同一でも異なっていてもよい。
     環RA4は、5員環もしくは6員環の芳香族炭化水素環、または、5員環もしくは6員環の芳香族複素環を表し(但し、環RA4が6員環の芳香族複素環である場合、EA2は炭素原子である。)、これらの環は置換基を有していてもよい。該置換基が複数存在する場合、それらは同一でも異なっていてもよく、互いに結合して、それぞれが結合する原子とともに環を形成していてもよい。環RA4が複数存在する場合、それらは同一でも異なっていてもよい。但し、環RA4は電子求引基を有する。]
    Figure JPOXMLDOC01-appb-C000008
    [式中、
     M、n、n、EB1、EB2およびA-G-Aは、前記と同じ意味を表す。
     環RB3は、5員環の芳香族複素環を表し、この環は置換基を有していてもよい。該置換基が複数存在する場合、それらは同一でも異なっていてもよく、互いに結合して、それぞれが結合する原子とともに環を形成していてもよい。環RB3が複数存在する場合、それらは同一でも異なっていてもよい。
     環RB4は、5員環もしくは6員環の芳香族炭化水素環、または、5員環もしくは6員環の芳香族複素環を表し(環RB4が6員環の芳香族複素環である場合、EB2は炭素原子である。)、これらの環は置換基を有していてもよい。該置換基が複数存在する場合、それらは同一でも異なっていてもよく、互いに結合して、それぞれが結合する原子とともに環を形成していてもよい。環RB4が複数存在する場合、それらは同一でも異なっていてもよい。]
  8.  前記燐光発光性化合物(A)が、下記式(A-2)で表される燐光発光性化合物であり、
     前記燐光発光性化合物(B)が、下記式(B-2)で表される燐光発光性化合物である、請求項1~6のいずれか一項に記載の発光素子。
    Figure JPOXMLDOC01-appb-C000009
    [式中、
     M、n、n、EA2およびA-G-Aは、前記と同じ意味を表す。
     環RA5は、イミダゾール環を表し、この環は置換基を有していてもよい。該置換基が複数存在する場合、それらは同一でも異なっていてもよく、互いに結合して、それぞれが結合する原子とともに環を形成していてもよい。環RA5が複数存在する場合、それらは同一でも異なっていてもよい。
     環RA6は、5員環もしくは6員環の芳香族炭化水素環、または、5員環もしくは6員環の芳香族複素環を表し(但し、環RA6が6員環の芳香族複素環である場合、EA2は炭素原子である。)、これらの環は置換基を有していてもよい。該置換基が複数存在する場合、それらは同一でも異なっていてもよく、互いに結合して、それぞれが結合する原子とともに環を形成していてもよい。環RA6が複数存在する場合、それらは同一でも異なっていてもよい。]
    Figure JPOXMLDOC01-appb-C000010
    [式中、
     M、n、n、EB1、EB2およびA-G-Aは、前記と同じ意味を表す。
     環RB5は、トリアゾール環を表し、この環は置換基を有していてもよい。該置換基が複数存在する場合、それらは同一でも異なっていてもよく、互いに結合して、それぞれが結合する原子とともに環を形成していてもよい。環RB5が複数存在する場合、それらは同一でも異なっていてもよい。
     環RB6は、5員環もしくは6員環の芳香族炭化水素環、または、5員環もしくは6員環の芳香族複素環を表し(環RB6が6員環の芳香族複素環である場合、EB2は炭素原子である。)、これらの環は置換基を有していてもよい。該置換基が複数存在する場合、それらは同一でも異なっていてもよく、互いに結合して、それぞれが結合する原子とともに環を形成していてもよい。環RB6が複数存在する場合、それらは同一でも異なっていてもよい。]
  9.  前記式(A-1)で表される燐光発光性化合物が、下記式(A-3)で表される燐光発光性化合物であり、
     前記式(B-1)で表される燐光発光性化合物が、下記式(B-3)で表される燐光発光性化合物である、請求項7に記載の発光素子。
    Figure JPOXMLDOC01-appb-C000011
    [式中、
     M、n、nおよびA-G-Aは、前記と同じ意味を表す。
     EA71、EA72、EA73、EA74、EA81、EA82、EA83およびEA84は、それぞれ独立に、窒素原子または炭素原子を表す。EA71、EA72、EA73、EA74、EA81、EA82、EA83およびEA84が複数存在する場合、それらはそれぞれ同一でも異なっていてもよい。EA71、EA72、EA73、EA74、EA81、EA82、EA83およびEA84が窒素原子の場合、RA71、RA72、RA73、RA74、RA81、RA82、RA83およびRA84は、存在しない。
     RA71、RA72、RA73、RA74、RA81、RA82、RA83およびRA84は、それぞれ独立に、水素原子、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、アリールオキシ基、1価の複素環基、ハロゲン原子または置換アミノ基を表し、これらの基は置換基を有していてもよい。RA71、RA72、RA73、RA74、RA81、RA82、RA83およびRA84が複数存在する場合、それらはそれぞれ同一でも異なっていてもよい。RA71とRA72、RA72とRA73、RA73とRA74、RA71とRA81、RA81とRA82、RA82とRA83、および、RA83とRA84は、それぞれ結合して、それぞれが結合する炭素原子とともに環を形成していてもよい。但し、RA81、RA82、RA83およびRA84の少なくとも1つは、電子求引基である。
     環RA7は、窒素原子、炭素原子、EA71、EA72、EA73およびEA74とで構成されるピリジン環またはピリミジン環を表す。
     環RA8は、2つの炭素原子、EA81、EA82、EA83およびEA84とで構成されるベンゼン環、ピリジン環またはピリミジン環を表す。]
    Figure JPOXMLDOC01-appb-C000012
    [式中、
     M、n、n、EB1およびA-G-Aは、前記と同じ意味を表す。
     EB71、EB72、EB73、EB81、EB82、EB83およびEB84は、それぞれ独立に、窒素原子または炭素原子を表す。EB71、EB72、EB73、EB81、EB82、EB83およびEB84が複数存在する場合、それらはそれぞれ同一でも異なっていてもよい。EB71、EB72およびEB73が窒素原子の場合、RB71、RB72およびRB73は、存在しても存在しなくてもよい。EB81、EB82、EB83およびEB84が窒素原子の場合、RB81、RB82、RB83およびRB84は、存在しない。
     RB71、RB72、RB73、RB81、RB82、RB83およびRB84は、それぞれ独立に、水素原子、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、アリールオキシ基、1価の複素環基、ハロゲン原子または置換アミノ基を表し、これらの基は置換基を有していてもよい。RB71、RB72、RB73、RB81、RB82、RB83およびRB84が複数存在する場合、それらはそれぞれ同一でも異なっていてもよい。RB71とRB72、RB72とRB73、RB71とRB81、RB81とRB82、RB82とRB83、および、RB83とRB84は、それぞれ結合して、それぞれが結合する原子とともに環を形成していてもよい。
     環RB7は、窒素原子、EB1、EB71、EB72およびEB73とで構成されるトリアゾール環またはイミダゾール環を表す。
     環RB8は、2つの炭素原子、EB81、EB82、EB83およびEB84とで構成されるベンゼン環、ピリジン環またはピリミジン環を表す。]
  10.  前記式(A-2)で表される燐光発光性化合物が、下記式(A-4)で表される燐光発光性化合物であり、
     前記式(B-2)で表される燐光発光性化合物が、下記式(B-4)で表される燐光発光性化合物である、請求項8に記載の発光素子。
    Figure JPOXMLDOC01-appb-C000013
    [式中、
     M、n、nおよびA-G-Aは、前記と同じ意味を表す。
     EA91、EA92、EA93、EA101、EA102、EA103およびEA104は、それぞれ独立に、窒素原子または炭素原子を表す。EA91、EA92、EA93、EA101、EA102、EA103およびEA104が複数存在する場合、それらはそれぞれ同一でも異なっていてもよい。EA91、EA92およびEA93が窒素原子の場合、RA91、RA92およびRA93は、存在しても存在しなくてもよい。EA101、EA102、EA103およびEA104が窒素原子の場合、RA101、RA102、RA103およびRA104は、存在しない。
     RA91、RA92、RA93、RA101、RA102、RA103およびRA104は、それぞれ独立に、水素原子、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、アリールオキシ基、1価の複素環基、ハロゲン原子または置換アミノ基を表し、これらの基は置換基を有していてもよい。RA91、RA92、RA93、RA101、RA102、RA103およびRA104が複数存在する場合、それらはそれぞれ同一でも異なっていてもよい。RA91とRA92、RA92とRA93、RA91とRA101、RA101とRA102、RA102とRA103、および、RA103とRA104は、それぞれ結合して、それぞれが結合する原子とともに環を形成していてもよい。
     環RA9は、窒素原子、炭素原子、EA91、EA92およびEA93とで構成されるイミダゾール環を表す。
     環RA10は、2つの炭素原子、EA101、EA102、EA103およびEA104とで構成されるベンゼン環、ピリジン環またはピリミジン環を表す。]
    Figure JPOXMLDOC01-appb-C000014
    [式中、
     M、n、n、EB1およびA-G-Aは、前記と同じ意味を表す。
     EB91、EB92、EB93、EB101、EB102、EB103およびEB104は、それぞれ独立に、窒素原子または炭素原子を表す。EB91、EB92、EB93、EB101、EB102、EB103およびEB104が複数存在する場合、それらはそれぞれ同一でも異なっていてもよい。EB91、EB92およびEB93が窒素原子の場合、RB91、RB92およびRB93は、存在しても存在しなくてもよい。EB101、EB102、EB103およびEB104が窒素原子の場合、RB101、RB102、RB103およびRB104は、存在しない。
     RB91、RB92、RB93、RB101、RB102、RB103およびRB104は、それぞれ独立に、水素原子、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、アリールオキシ基、1価の複素環基、ハロゲン原子または置換アミノ基を表し、これらの基は置換基を有していてもよい。RB91、RB92、RB93、RB101、RB102、RB103およびRB104が複数存在する場合、それらはそれぞれ同一でも異なっていてもよい。RB91とRB92、RB92とRB93、RB91とRB101、RB101とRB102、RB102とRB103、および、RB103とRB104は、それぞれ結合して、それぞれが結合する原子とともに環を形成していてもよい。
     環RB9は、窒素原子、EB1、EB91、EB92およびEB93とで構成されるトリアゾール環を表す。
     環RB10は、2つの炭素原子、EB101、EB102、EB103およびEB104とで構成されるベンゼン環、ピリジン環またはピリミジン環を表す。]
  11.  前記式(A-3)で表される燐光発光性化合物が、下記式(1)、(2)または(3)で表される燐光発光性化合物であり、
     前記式(B-3)で表される燐光発光性化合物が、下記式(4)、(5)、(6)または(7)で表される燐光発光性化合物である、請求項9に記載の発光素子。
    Figure JPOXMLDOC01-appb-C000015
    [式中、
     A-G-Aは、前記と同じ意味を表す。
     Mは、イリジウム原子または白金原子を表す。
     nは1以上の整数を表し、nは0以上の整数を表し、n+nは2または3である。Mがイリジウム原子の場合、n+nは3であり、Mが白金原子の場合、n+nは2である。
     R、R、R、R、R11、R12、R13およびR14は、それぞれ独立に、水素原子、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、アリールオキシ基、1価の複素環基、ハロゲン原子または置換アミノ基を表し、これらの基は置換基を有していてもよい。R、R、R、R、R11、R12、R13およびR14が複数存在する場合、それらはそれぞれ同一でも異なっていてもよい。RとR、RとR、RとR、RとR11、R11とR12、R12とR13、および、R13とR14は、それぞれ結合して、それぞれが結合する炭素原子とともに環を形成していてもよい。但し、R11、R12、R13およびR14の少なくとも1つは、電子求引基である。]
    Figure JPOXMLDOC01-appb-C000016
    [式中、
     A-G-Aは、前記と同じ意味を表す。
     Mは、イリジウム原子または白金原子を表す。
     nは1以上の整数を表し、nは0以上の整数を表し、n+nは2または3である。Mがイリジウム原子の場合、n+nは3であり、Mが白金原子の場合、n+nは2である。
     R21、R22、R23、R31、R32、R33およびR34は、それぞれ独立に、水素原子、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、アリールオキシ基、1価の複素環基、ハロゲン原子または置換アミノ基を表し、これらの基は置換基を有していてもよい。R21、R22、R23、R31、R32、R33およびR34が複数存在する場合、それらはそれぞれ同一でも異なっていてもよい。R21とR22、R22とR23、R21とR31、R31とR32、R32とR33、および、R33とR34は、それぞれ結合して、それぞれが結合する原子とともに環を形成していてもよい。]
  12.  前記式(A-4)で表される燐光発光性化合物が、下記式(4)または(5)で表される燐光発光性化合物であり、
     前記式(B-4)で表される燐光発光性化合物が、下記式(6)または(7)で表される燐光発光性化合物である、請求項10に記載の発光素子。
    Figure JPOXMLDOC01-appb-C000017
    [式中、
     A-G-Aは、前記と同じ意味を表す。
     Mは、イリジウム原子または白金原子を表す。
     nは1以上の整数を表し、nは0以上の整数を表し、n+nは2または3である。Mがイリジウム原子の場合、n+nは3であり、Mが白金原子の場合、n+nは2である。
     R21、R22、R23、R31、R32、R33およびR34は、それぞれ独立に、水素原子、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、アリールオキシ基、1価の複素環基、ハロゲン原子または置換アミノ基を表し、これらの基は置換基を有していてもよい。R21、R22、R23、R31、R32、R33およびR34が複数存在する場合、それらはそれぞれ同一でも異なっていてもよい。R21とR22、R22とR23、R21とR31、R31とR32、R32とR33、および、R33とR34は、それぞれ結合して、それぞれが結合する原子とともに環を形成していてもよい。]
  13.  前記発光層が、下記式(H-1)で表される化合物を更に含有する組成物を用いて得られる層である、請求項1~12のいずれか一項に記載の発光素子。
    Figure JPOXMLDOC01-appb-C000018
    [式中、
     ArH1およびArH2は、それぞれ独立に、アリール基または1価の複素環基を表し、これらの基は置換基を有していてもよい。
     nH1およびnH2は、それぞれ独立に、0または1を表す。nH1が複数存在する場合、それらは同一でも異なっていてもよい。複数存在するnH2は、同一でも異なっていてもよい。
     nH3は、0以上の整数を表す。
     LH1は、アリーレン基、2価の複素環基、または、-[C(RH11]nH11-で表される基を表し、これらの基は置換基を有していてもよい。LH1が複数存在する場合、それらは同一でも異なっていてもよい。
     nH11は、1以上10以下の整数を表す。RH11は、水素原子、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基または1価の複素環基を表し、これらの基は置換基を有していてもよい。複数存在するRH11は、同一でも異なっていてもよく、互いに結合して、それぞれが結合する炭素原子とともに環を形成していてもよい。
     LH2は、-N(-LH21-RH21)-で表される基を表す。LH2が複数存在する場合、それらは同一でも異なっていてもよい。
     LH21は、単結合、アリーレン基または2価の複素環基を表し、これらの基は置換基を有していてもよい。RH21は、水素原子、アルキル基、シクロアルキル基、アリール基または1価の複素環基を表し、これらの基は置換基を有していてもよい。]
PCT/JP2015/066819 2014-06-19 2015-06-11 発光素子 WO2015194448A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016529282A JP6468289B2 (ja) 2014-06-19 2015-06-11 発光素子
CN201580032714.3A CN106463638B (zh) 2014-06-19 2015-06-11 发光元件

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014126011 2014-06-19
JP2014-126011 2014-06-19

Publications (1)

Publication Number Publication Date
WO2015194448A1 true WO2015194448A1 (ja) 2015-12-23

Family

ID=54935435

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/066819 WO2015194448A1 (ja) 2014-06-19 2015-06-11 発光素子

Country Status (3)

Country Link
JP (1) JP6468289B2 (ja)
CN (1) CN106463638B (ja)
WO (1) WO2015194448A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016106384A (ja) * 2009-09-04 2016-06-16 株式会社半導体エネルギー研究所 発光素子、発光装置
WO2017170313A1 (ja) 2016-03-29 2017-10-05 住友化学株式会社 発光素子
JP2017183723A (ja) * 2016-03-29 2017-10-05 住友化学株式会社 発光素子
WO2018062278A1 (ja) 2016-09-29 2018-04-05 住友化学株式会社 発光素子及び該発光素子の製造に有用な組成物
JP2018061028A (ja) * 2016-09-29 2018-04-12 住友化学株式会社 発光素子
JP2019068061A (ja) * 2017-09-29 2019-04-25 住友化学株式会社 発光素子
WO2020084923A1 (ja) 2018-10-25 2020-04-30 住友化学株式会社 発光素子
WO2020084924A1 (ja) 2018-10-25 2020-04-30 住友化学株式会社 発光素子
WO2020203209A1 (ja) 2019-03-29 2020-10-08 住友化学株式会社 発光素子及び発光素子用組成物
EP3428989B1 (en) * 2016-03-10 2021-04-21 Sumitomo Chemical Company Limited Light-emitting element

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112952014B (zh) * 2021-04-14 2024-04-19 北京京东方技术开发有限公司 发光二极管及其制备方法、显示面板及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007189002A (ja) * 2006-01-12 2007-07-26 Konica Minolta Holdings Inc 有機エレクトロルミネッセンス素子および有機エレクトロルミネッセンスディスプレイ
WO2009157477A1 (ja) * 2008-06-26 2009-12-30 コニカミノルタホールディングス株式会社 有機エレクトロルミネッセンス素子の製造方法及び白色発光有機エレクトロルミネッセンス素子
JP2011105676A (ja) * 2009-11-19 2011-06-02 Mitsubishi Chemicals Corp 有機金属錯体、発光材料、有機電界発光素子材料、有機電界発光素子用組成物、有機電界発光素子、有機el表示装置及び有機el照明
WO2013058087A1 (ja) * 2011-10-21 2013-04-25 コニカミノルタ株式会社 有機エレクトロルミネッセンス素子
WO2013146806A1 (ja) * 2012-03-27 2013-10-03 住友化学株式会社 高分子化合物およびそれを用いた発光素子

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5403679B2 (ja) * 2009-11-19 2014-01-29 大和製罐株式会社 太陽電池裏面封止用ポリエステルフィルム

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007189002A (ja) * 2006-01-12 2007-07-26 Konica Minolta Holdings Inc 有機エレクトロルミネッセンス素子および有機エレクトロルミネッセンスディスプレイ
WO2009157477A1 (ja) * 2008-06-26 2009-12-30 コニカミノルタホールディングス株式会社 有機エレクトロルミネッセンス素子の製造方法及び白色発光有機エレクトロルミネッセンス素子
JP2011105676A (ja) * 2009-11-19 2011-06-02 Mitsubishi Chemicals Corp 有機金属錯体、発光材料、有機電界発光素子材料、有機電界発光素子用組成物、有機電界発光素子、有機el表示装置及び有機el照明
WO2013058087A1 (ja) * 2011-10-21 2013-04-25 コニカミノルタ株式会社 有機エレクトロルミネッセンス素子
WO2013146806A1 (ja) * 2012-03-27 2013-10-03 住友化学株式会社 高分子化合物およびそれを用いた発光素子

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016106384A (ja) * 2009-09-04 2016-06-16 株式会社半導体エネルギー研究所 発光素子、発光装置
EP3428989B1 (en) * 2016-03-10 2021-04-21 Sumitomo Chemical Company Limited Light-emitting element
CN108780850B (zh) * 2016-03-29 2020-08-18 住友化学株式会社 发光元件
WO2017170313A1 (ja) 2016-03-29 2017-10-05 住友化学株式会社 発光素子
JP2017183723A (ja) * 2016-03-29 2017-10-05 住友化学株式会社 発光素子
JP7033397B2 (ja) 2016-03-29 2022-03-10 住友化学株式会社 発光素子
CN108780850A (zh) * 2016-03-29 2018-11-09 住友化学株式会社 发光元件
JPWO2017170313A1 (ja) * 2016-03-29 2019-02-14 住友化学株式会社 発光素子
WO2018062278A1 (ja) 2016-09-29 2018-04-05 住友化学株式会社 発光素子及び該発光素子の製造に有用な組成物
JP2018061028A (ja) * 2016-09-29 2018-04-12 住友化学株式会社 発光素子
JP2019068061A (ja) * 2017-09-29 2019-04-25 住友化学株式会社 発光素子
JP7192339B2 (ja) 2017-09-29 2022-12-20 住友化学株式会社 発光素子
WO2020084924A1 (ja) 2018-10-25 2020-04-30 住友化学株式会社 発光素子
WO2020084923A1 (ja) 2018-10-25 2020-04-30 住友化学株式会社 発光素子
WO2020203209A1 (ja) 2019-03-29 2020-10-08 住友化学株式会社 発光素子及び発光素子用組成物

Also Published As

Publication number Publication date
CN106463638B (zh) 2018-08-28
JP6468289B2 (ja) 2019-02-13
CN106463638A (zh) 2017-02-22
JPWO2015194448A1 (ja) 2017-04-20

Similar Documents

Publication Publication Date Title
JP6468289B2 (ja) 発光素子
JP5867580B2 (ja) 発光素子
WO2018062278A1 (ja) 発光素子及び該発光素子の製造に有用な組成物
WO2017130977A1 (ja) 組成物、燐光発光性化合物及び発光素子
JP5842989B2 (ja) 組成物およびそれを用いた発光素子
WO2017170313A1 (ja) 発光素子
JP6256630B2 (ja) 発光素子および該発光素子に用いる組成物
JP2018061028A (ja) 発光素子
WO2015145871A1 (ja) 高分子化合物およびそれを用いた発光素子
WO2018198975A1 (ja) 発光素子
JP2018061030A (ja) 発光素子
WO2016125560A1 (ja) 組成物およびそれを用いた発光素子
WO2015156235A1 (ja) 発光素子およびそれに用いる組成物
JP2018061029A (ja) 発光素子
JP6695919B2 (ja) 発光素子
WO2016009908A1 (ja) 発光素子の製造方法
JP6296208B2 (ja) 発光素子
JP2018078286A (ja) 組成物及びそれを用いた発光素子
WO2017099012A1 (ja) 発光素子
JP6399243B2 (ja) 発光素子
WO2016052337A1 (ja) 発光素子
JP6296209B2 (ja) 発光素子
JP6596918B2 (ja) 発光素子
JP2016064998A (ja) 金属錯体およびそれを用いた発光素子
JP2018078295A (ja) 発光素子および該発光素子に用いる組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15809021

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016529282

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15809021

Country of ref document: EP

Kind code of ref document: A1