WO2017099012A1 - 発光素子 - Google Patents

発光素子 Download PDF

Info

Publication number
WO2017099012A1
WO2017099012A1 PCT/JP2016/085886 JP2016085886W WO2017099012A1 WO 2017099012 A1 WO2017099012 A1 WO 2017099012A1 JP 2016085886 W JP2016085886 W JP 2016085886W WO 2017099012 A1 WO2017099012 A1 WO 2017099012A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
atom
ring
light emitting
formula
Prior art date
Application number
PCT/JP2016/085886
Other languages
English (en)
French (fr)
Inventor
敏明 佐々田
浩平 浅田
星一郎 横家
一栄 大内
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Priority to KR1020187018584A priority Critical patent/KR20180091026A/ko
Priority to JP2017555045A priority patent/JP6754774B2/ja
Priority to EP16872910.1A priority patent/EP3389104B1/en
Priority to CN201680071249.9A priority patent/CN108292709B/zh
Priority to US15/781,717 priority patent/US20180375034A1/en
Publication of WO2017099012A1 publication Critical patent/WO2017099012A1/ja

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • H10K85/342Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising iridium
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
    • C07F15/0006Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table compounds of the platinum group
    • C07F15/0033Iridium compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/115Polyfluorene; Derivatives thereof
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/151Copolymers
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/12Copolymers
    • C08G2261/124Copolymers alternating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/14Side-groups
    • C08G2261/141Side-chains having aliphatic units
    • C08G2261/1412Saturated aliphatic units
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/14Side-groups
    • C08G2261/141Side-chains having aliphatic units
    • C08G2261/1414Unsaturated aliphatic units
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/14Side-groups
    • C08G2261/148Side-chains having aromatic units
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/18Definition of the polymer structure conjugated
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/22Molecular weight
    • C08G2261/228Polymers, i.e. more than 10 repeat units
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/31Monomer units or repeat units incorporating structural elements in the main chain incorporating aromatic structural elements in the main chain
    • C08G2261/312Non-condensed aromatic systems, e.g. benzene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/31Monomer units or repeat units incorporating structural elements in the main chain incorporating aromatic structural elements in the main chain
    • C08G2261/314Condensed aromatic systems, e.g. perylene, anthracene or pyrene
    • C08G2261/3142Condensed aromatic systems, e.g. perylene, anthracene or pyrene fluorene-based, e.g. fluorene, indenofluorene, or spirobifluorene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/37Metal complexes
    • C08G2261/374Metal complexes of Os, Ir, Pt, Ru, Rh, Pd
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/50Physical properties
    • C08G2261/51Charge transport
    • C08G2261/512Hole transport
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/50Physical properties
    • C08G2261/52Luminescence
    • C08G2261/524Luminescence phosphorescent
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/90Applications
    • C08G2261/95Use in organic luminescent diodes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1059Heterocyclic compounds characterised by ligands containing three nitrogen atoms as heteroatoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1074Heterocyclic compounds characterised by ligands containing more than three nitrogen atoms as heteroatoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/18Metal complexes
    • C09K2211/185Metal complexes of the platinum group, i.e. Os, Ir, Pt, Ru, Rh or Pd
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/10Triplet emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/125OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers specially adapted for multicolour light emission, e.g. for emitting white light
    • H10K50/13OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers specially adapted for multicolour light emission, e.g. for emitting white light comprising stacked EL layers within one EL unit
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers

Definitions

  • the present invention relates to a light emitting element.
  • Organic electroluminescence elements (hereinafter also referred to as “light-emitting elements”) can be suitably used for display and lighting applications, and research and development are actively conducted.
  • Patent Document 1 discloses a polymer compound including a first light-emitting layer containing a metal complex (M01) represented by the following formula and a structural unit derived from the metal complex (M02) represented by the following formula. A light-emitting element having a second light-emitting layer containing a crosslinked body is described. Note that the metal complex (M01) and the metal complex represented by the formula (1) described later have different structures.
  • Patent Document 2 describes a light-emitting element having a light-emitting layer containing a metal complex (M03) represented by the following formula. Note that this light-emitting element has only one light-emitting layer.
  • M03 metal complex
  • an object of the present invention is to provide a light-emitting element with excellent luminance life.
  • the present invention provides the following [1] to [12].
  • M 1 represents a rhodium atom, a palladium atom, an iridium atom or a platinum atom.
  • n 1 represents an integer of 1 or more
  • n 2 represents an integer of 0 or more
  • n 1 + n 2 is 2 or 3.
  • Ring R 1A represents a triazole ring or a diazole ring composed of a nitrogen atom, E 1 , E 11A , E 12A and a carbon atom.
  • Ring R 2 represents an aromatic hydrocarbon ring or an aromatic heterocyclic ring, and these rings may have a substituent. When a plurality of such substituents are present, they may be the same or different, and may be bonded to each other to form a ring together with the atoms to which each is bonded.
  • E 1 , E 2 , E 11A and E 12A each independently represent a nitrogen atom or a carbon atom. When a plurality of E 1 , E 2 , E 11A and E 12A are present, they may be the same or different. However, at least one of E 1 and E 2 is a carbon atom.
  • R 11A and R 12A each independently represent a hydrogen atom, an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, an aryloxy group, a monovalent heterocyclic group, a substituted amino group, or a halogen atom.
  • R 11A and R 12A may have a substituent.
  • R 11A and R 12A may be bonded to each other to form a ring together with the atoms to which they are bonded.
  • R 11A and the substituent that the ring R 2 may have may be bonded to each other to form a ring together with the atoms to which they are bonded.
  • E 11A is a nitrogen atom
  • R 11A may or may not be present.
  • E 12A is a nitrogen atom
  • R 12A may or may not be present.
  • R 13A represents an aryl group, a monovalent heterocyclic group or a substituted amino group, and these groups optionally have a substituent.
  • R 13A When a plurality of R 13A are present, they may be the same or different. R 12A and R 13A may be bonded to each other to form a ring together with the atoms to which they are bonded.
  • a 1 -G 1 -A 2 represents an anionic bidentate ligand.
  • a 1 and A 2 each independently represent a carbon atom, an oxygen atom or a nitrogen atom, and these atoms may be atoms constituting a ring.
  • G 1 represents a single bond or an atomic group constituting a bidentate ligand together with A 1 and A 2 .
  • a 1 -G 1 -A 2 When a plurality of A 1 -G 1 -A 2 are present, they may be the same or different.
  • [2] 1 in which the second light-emitting layer is directly bonded to a carbon atom or a hetero atom constituting the metal complex from the metal complex represented by the formula (2) or the metal complex represented by the formula (2).
  • the light emission according to [1], comprising at least one selected from the group consisting of a polymer compound containing a structural unit having a group formed by removing one or more hydrogen atoms, and a crosslinked product of the polymer compound. element.
  • M 2 represents a rhodium atom, a palladium atom, an iridium atom or a platinum atom.
  • n 3 represents an integer of 1 or more
  • n 4 represents an integer of 0 or more
  • n 3 + n 4 is 2 or 3.
  • Ring L 1 represents a 6-membered aromatic heterocyclic ring, and this ring may have a substituent. When a plurality of such substituents are present, they may be the same or different, and may be bonded to each other to form a ring together with the atoms to which each is bonded. When a plurality of rings L 1 are present, they may be the same or different.
  • Ring L 2 represents an aromatic hydrocarbon ring or aromatic heterocyclic ring, these rings may have a substituent. When a plurality of such substituents are present, they may be the same or different, and may be bonded to each other to form a ring together with the atoms to which each is bonded. When a plurality of rings L 2 are present, they may be the same or different. The substituent that the ring L 1 may have and the substituent that the ring L 2 may have may be bonded to each other to form a ring together with the atoms to which they are bonded.
  • a 3 -G 2 -A 4 represents an anionic bidentate ligand.
  • a 3 and A 4 each independently represent a carbon atom, an oxygen atom, or a nitrogen atom, and these atoms may be atoms constituting a ring.
  • G 2 represents a single bond or an atomic group constituting a bidentate ligand together with A 3 and A 4 .
  • a 3 -G 2 -A 4 When a plurality of A 3 -G 2 -A 4 are present, they may be the same or different.
  • the structural unit is a structural unit represented by the formula (1B), a structural unit represented by the formula (2B), a structural unit represented by the formula (3B), or a structure represented by the formula (4B).
  • L C represents an oxygen atom, a sulfur atom, —N (R A ) —, —C (R B ) 2 —, —C (R B ) ⁇ C (R B ) —, —C ⁇ C—, an arylene group or It represents a divalent heterocyclic group, and these groups may have a substituent.
  • R A represents a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group, or a monovalent heterocyclic group, and these groups optionally have a substituent.
  • R B represents a hydrogen atom, an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, or a monovalent heterocyclic group, and these groups may have a substituent.
  • a plurality of RBs may be the same or different and may be bonded to each other to form a ring together with the carbon atoms to which they are bonded. When a plurality of LC are present, they may be the same or different.
  • n c1 represents an integer of 0 or more. ] [Where: M 1B represents the same meaning as described above.
  • L d and L e are each independently an oxygen atom, a sulfur atom, —N (R A ) —, —C (R B ) 2 —, —C (R B ) ⁇ C (R B ) —, —C ⁇ C— represents an arylene group or a divalent heterocyclic group, and these groups optionally have a substituent.
  • R A and R B represent the same meaning as described above.
  • n d1 and n e1 each independently represent an integer of 0 or more.
  • a plurality of n d1 may be the same or different.
  • Ar 1M represents an aromatic hydrocarbon group or a heterocyclic group, and these groups optionally have a substituent.
  • M 2B represents a group obtained by removing two hydrogen atoms directly bonded to a carbon atom or a hetero atom constituting the metal complex from the metal complex represented by the formula (2).
  • M 3B represents a group obtained by removing three hydrogen atoms directly bonded to a carbon atom or a hetero atom constituting the metal complex from the metal complex represented by the formula (2).
  • E 11B is a nitrogen atom
  • R 11B does not exist.
  • E 12B is a nitrogen atom
  • R 12B does not exist.
  • E 13B is a nitrogen atom
  • R 13B does not exist.
  • E 14B is a nitrogen atom
  • E 21B is a nitrogen atom
  • E 22B is a nitrogen atom
  • E 23B is a nitrogen atom
  • R 23B does not exist.
  • E 24B is a nitrogen atom, R 24B does not exist.
  • R 11B , R 12B , R 13B , R 14B , R 21B , R 22B , R 23B and R 24B are each independently a hydrogen atom, alkyl group, cycloalkyl group, alkoxy group, cycloalkoxy group, aryl group, aryl An oxy group, a monovalent heterocyclic group, a substituted amino group, or a halogen atom is represented, and these groups may have a substituent.
  • R 11B , R 12B , R 13B , R 14B , R 21B , R 22B , R 23B and R 24B they may be the same or different.
  • Ring L 1B represents a pyridine ring or a pyrimidine ring composed of a nitrogen atom, a carbon atom, E 11B , E 12B , E 13B and E 14B .
  • Ring L 2B represents a benzene ring, a pyridine ring or a pyrimidine ring composed of two carbon atoms, E 21B , E 22B , E 23B and E 24B .
  • the metal complex represented by the formula (2-B) is a metal complex represented by the formula (2-B1), a metal complex represented by the formula (2-B2), a formula (2-B3)
  • M 2 , n 3 , n 4 , A 3 -G 2 -A 4 , R 11B , R 12B , R 13B , R 14B , R 21B , R 22B , R 23B and R 24B represent the same meaning as described above.
  • n 31 and n 32 each independently represent an integer of 1 or more, and n 31 + n 32 is 2 or 3.
  • R 15B , R 16B , R 17B and R 18B are each independently a hydrogen atom, alkyl group, cycloalkyl group, alkoxy group, cycloalkoxy group, aryl group, aryloxy group, monovalent heterocyclic group, substituted amino group Represents a group or a halogen atom, and these groups optionally have a substituent.
  • R 15B , R 16B , R 17B and R 18B When there are a plurality of R 15B , R 16B , R 17B and R 18B , they may be the same or different. R 15B and R 16B , R 16B and R 17B , and R 17B and R 18B may be bonded to each other to form a ring together with the atoms to which they are bonded. ]
  • E 21A , E 22A , E 23A and E 24A each independently represent a nitrogen atom or a carbon atom. When a plurality of E 21A , E 22A , E 23A and E 24A are present, they may be the same or different. When E 21A is a nitrogen atom, R 21A does not exist. When E 22A is a nitrogen atom, R 22A does not exist. When E 23A is a nitrogen atom, R 23A does not exist. When E 24A is a nitrogen atom, R 24A does not exist.
  • R 21A , R 22A , R 23A and R 24A are a hydrogen atom, alkyl group, cycloalkyl group, alkoxy group, cycloalkoxy group, aryl group, aryloxy group, monovalent heterocyclic group, substituted amino group or halogen atom These groups may have a substituent.
  • R 21A , R 22A , R 23A and R 24A they may be the same or different.
  • R 21A and R 22A may be bonded to each other to form a ring together with the atoms to which they are bonded.
  • R 22A and R 23A may be bonded to each other to form a ring together with the atoms to which they are bonded.
  • R 23A and R 24A may be bonded to each other to form a ring together with the atoms to which they are bonded.
  • R 11A and R 21A may be bonded to each other to form a ring together with the atoms to which they are bonded.
  • the metal complex represented by the formula (1-A) is a metal complex represented by the formula (1-A1), a metal complex represented by the formula (1-A2), a formula (1-A3)
  • M 1 , n 1 , n 2 , R 11A , R 12A , R 13A , R 21A , R 22A , R 23A , R 24A and A 1 -G 1 -A 2 represent the same meaning as described above. . ]
  • n H1 and n H2 each independently represent 0 or 1. When a plurality of n H1 are present, they may be the same or different. A plurality of n H2 may be the same or different. n H3 represents an integer of 0 or more.
  • L H1 represents an arylene group, a divalent heterocyclic group, or a group represented by — [C (R H11 ) 2 ] n H11 —, and these groups optionally have a substituent. When a plurality of L H1 are present, they may be the same or different.
  • n H11 represents an integer of 1 or more and 10 or less.
  • R H11 represents a hydrogen atom, an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, or a monovalent heterocyclic group, and these groups may have a substituent.
  • a plurality of R H11 may be the same or different, and may be bonded to each other to form a ring together with the carbon atom to which each is bonded.
  • L H2 represents a group represented by —N (—L H21 —R H21 ) —. When a plurality of L H2 are present, they may be the same or different.
  • L H21 represents a single bond, an arylene group or a divalent heterocyclic group, and these groups may have a substituent.
  • R H21 represents a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group, or a monovalent heterocyclic group, and these groups optionally have a substituent.
  • Me represents a methyl group
  • Et represents an ethyl group
  • Bu represents a butyl group
  • i-Pr represents an isopropyl group
  • t-Bu represents a tert-butyl group.
  • the hydrogen atom may be a deuterium atom or a light hydrogen atom.
  • the solid line representing the bond with the central metal means a covalent bond or a coordinate bond.
  • Polymer compound means a polymer having a molecular weight distribution and having a polystyrene-equivalent number average molecular weight of 1 ⁇ 10 3 to 1 ⁇ 10 8 .
  • the polymer compound may be any of a block copolymer, a random copolymer, an alternating copolymer, and a graft copolymer, or other embodiments.
  • the terminal group of the polymer compound is preferably a stable group because if the polymerization active group remains as it is, there is a possibility that the light emission characteristics may be lowered when the polymer compound is used in the production of a light emitting device.
  • the terminal group is preferably a group conjugated to the main chain, and examples thereof include a group bonded to an aryl group or a monovalent heterocyclic group via a carbon-carbon bond.
  • Low molecular weight compound means a compound having no molecular weight distribution and a molecular weight of 1 ⁇ 10 4 or less.
  • “Structural unit” means one or more units present in a polymer compound.
  • the “alkyl group” may be linear or branched.
  • the number of carbon atoms of the linear alkyl group is usually 1 to 50, preferably 3 to 30, and more preferably 4 to 20, excluding the number of carbon atoms of the substituent.
  • the number of carbon atoms of the branched alkyl group is usually 3 to 50, preferably 3 to 30, and more preferably 4 to 20, excluding the number of carbon atoms of the substituent.
  • the alkyl group may have a substituent, for example, methyl group, ethyl group, propyl group, isopropyl group, butyl group, 2-butyl group, isobutyl group, tert-butyl group, pentyl group, isoamyl group, 2-ethylbutyl, hexyl, heptyl, octyl, 2-ethylhexyl, 3-propylheptyl, decyl, 3,7-dimethyloctyl, 2-ethyloctyl, 2-hexyldecyl, dodecyl And a group in which a hydrogen atom in these groups is substituted with a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, a fluorine atom, etc., for example, a trifluoromethyl group, a pentafluoroethyl group,
  • the number of carbon atoms of the “cycloalkyl group” is usually 3 to 50, preferably 3 to 30, more preferably 4 to 20, excluding the number of carbon atoms of the substituent.
  • the cycloalkyl group may have a substituent, and examples thereof include a cyclohexyl group, a cyclohexylmethyl group, and a cyclohexylethyl group.
  • Aryl group means an atomic group remaining after removing one hydrogen atom directly bonded to a carbon atom constituting a ring from an aromatic hydrocarbon.
  • the number of carbon atoms of the aryl group is usually 6 to 60, preferably 6 to 20, more preferably 6 to 10, not including the number of carbon atoms of the substituent.
  • the “alkoxy group” may be linear or branched.
  • the number of carbon atoms of the straight-chain alkoxy group is usually 1 to 40, preferably 4 to 10, excluding the number of carbon atoms of the substituent.
  • the number of carbon atoms of the branched alkoxy group is usually 3 to 40, preferably 4 to 10, excluding the number of carbon atoms of the substituent.
  • the alkoxy group may have a substituent, for example, methoxy group, ethoxy group, propyloxy group, isopropyloxy group, butyloxy group, isobutyloxy group, tert-butyloxy group, pentyloxy group, hexyloxy group, Heptyloxy group, octyloxy group, 2-ethylhexyloxy group, nonyloxy group, decyloxy group, 3,7-dimethyloctyloxy group, lauryloxy group, and the hydrogen atom in these groups is a cycloalkyl group, an alkoxy group, And a group substituted with a cycloalkoxy group, an aryl group, a fluorine atom, or the like.
  • a substituent for example, methoxy group, ethoxy group, propyloxy group, isopropyloxy group, butyloxy group, isobutyloxy group, tert-buty
  • the number of carbon atoms of the “cycloalkoxy group” is usually 3 to 40, preferably 4 to 10, not including the number of carbon atoms of the substituent.
  • the cycloalkoxy group may have a substituent, and examples thereof include a cyclohexyloxy group.
  • the number of carbon atoms of the “aryloxy group” is usually 6 to 60, preferably 6 to 48, not including the number of carbon atoms of the substituent.
  • the aryloxy group may have a substituent, for example, phenoxy group, 1-naphthyloxy group, 2-naphthyloxy group, 1-anthracenyloxy group, 9-anthracenyloxy group, 1- Examples include a pyrenyloxy group and a group in which a hydrogen atom in these groups is substituted with an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, a fluorine atom, or the like.
  • the “p-valent heterocyclic group” (p represents an integer of 1 or more) is p of hydrogen atoms directly bonded to a carbon atom or a hetero atom constituting a ring from a heterocyclic compound. This means the remaining atomic group excluding the hydrogen atom. Among the p-valent heterocyclic groups, it is the remaining atomic group obtained by removing p hydrogen atoms from the hydrogen atoms directly bonded to the carbon atoms or heteroatoms constituting the ring from the aromatic heterocyclic compound. A “p-valent aromatic heterocyclic group” is preferable.
  • Aromatic heterocyclic compounds '' are oxadiazole, thiadiazole, thiazole, oxazole, thiophene, pyrrole, phosphole, furan, pyridine, pyrazine, pyrimidine, triazine, pyridazine, quinoline, isoquinoline, carbazole, dibenzophosphole, etc.
  • a compound in which the ring itself exhibits aromaticity, and a heterocyclic ring such as phenoxazine, phenothiazine, dibenzoborol, dibenzosilol, benzopyran itself does not exhibit aromaticity, but the aromatic ring is condensed to the heterocyclic ring Means a compound.
  • the number of carbon atoms of the monovalent heterocyclic group is usually 2 to 60, preferably 4 to 20, excluding the number of carbon atoms of the substituent.
  • the monovalent heterocyclic group may have a substituent, for example, thienyl group, pyrrolyl group, furyl group, pyridinyl group, piperidinyl group, quinolinyl group, isoquinolinyl group, pyrimidinyl group, triazinyl group, and these And a group in which the hydrogen atom in the group is substituted with an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, or the like.
  • Halogen atom means a fluorine atom, a chlorine atom, a bromine atom or an iodine atom.
  • the “amino group” may have a substituent, and a substituted amino group is preferable.
  • a substituent which an amino group has an alkyl group, a cycloalkyl group, an aryl group, or a monovalent heterocyclic group is preferable.
  • the substituted amino group include a dialkylamino group, a dicycloalkylamino group, and a diarylamino group.
  • the amino group include dimethylamino group, diethylamino group, diphenylamino group, bis (4-methylphenyl) amino group, bis (4-tert-butylphenyl) amino group, and bis (3,5-di-tert- Butylphenyl) amino group.
  • the “alkenyl group” may be linear or branched.
  • the number of carbon atoms of the straight chain alkenyl group is usually 2 to 30, preferably 3 to 20, not including the carbon atoms of the substituent.
  • the number of carbon atoms of the branched alkenyl group is usually 3 to 30, preferably 4 to 20, not including the carbon atoms of the substituent.
  • the number of carbon atoms in the “cycloalkenyl group” is usually 3 to 30, preferably 4 to 20, not including the carbon atoms of the substituent.
  • the alkenyl group and the cycloalkenyl group may have a substituent, for example, vinyl group, 1-propenyl group, 2-propenyl group, 2-butenyl group, 3-butenyl group, 3-pentenyl group, 4- Examples thereof include a pentenyl group, a 1-hexenyl group, a 5-hexenyl group, a 7-octenyl group, and groups in which these groups have a substituent.
  • the “alkynyl group” may be linear or branched.
  • the number of carbon atoms of the alkynyl group is usually 2 to 20, preferably 3 to 20, not including the carbon atom of the substituent.
  • the number of carbon atoms of the branched alkynyl group is usually from 4 to 30, and preferably from 4 to 20, not including the carbon atom of the substituent.
  • the number of carbon atoms of the “cycloalkynyl group” is usually 4 to 30, preferably 4 to 20, not including the carbon atom of the substituent.
  • the alkynyl group and the cycloalkynyl group may have a substituent, for example, an ethynyl group, a 1-propynyl group, a 2-propynyl group, a 2-butynyl group, a 3-butynyl group, a 3-pentynyl group, 4- Examples thereof include a pentynyl group, 1-hexynyl group, 5-hexynyl group, and groups in which these groups have a substituent.
  • the “arylene group” means an atomic group remaining after removing two hydrogen atoms directly bonded to a carbon atom constituting a ring from an aromatic hydrocarbon.
  • the number of carbon atoms of the arylene group is usually 6 to 60, preferably 6 to 30, and more preferably 6 to 18, excluding the number of carbon atoms of the substituent.
  • the arylene group may have a substituent, for example, phenylene group, naphthalenediyl group, anthracenediyl group, phenanthrene diyl group, dihydrophenanthenediyl group, naphthacene diyl group, fluorenediyl group, pyrenediyl group, perylene diyl group, Examples include chrysenediyl groups and groups in which these groups have substituents, and groups represented by formulas (A-1) to (A-20) are preferable.
  • the arylene group includes a group in which a plurality of these groups are bonded.
  • R and R a each independently represents a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group or a monovalent heterocyclic group.
  • the number of carbon atoms of the divalent heterocyclic group is usually 2 to 60, preferably 3 to 20, and more preferably 4 to 15 excluding the number of carbon atoms of the substituent.
  • the divalent heterocyclic group may have a substituent, for example, pyridine, diazabenzene, triazine, azanaphthalene, diazanaphthalene, carbazole, dibenzofuran, dibenzothiophene, dibenzosilol, phenoxazine, phenothiazine, acridine, Divalent acridine, furan, thiophene, azole, diazole, and triazole include divalent groups obtained by removing two hydrogen atoms from hydrogen atoms directly bonded to carbon atoms or heteroatoms constituting the ring, and preferably Are groups represented by formulas (AA-1) to (AA-34).
  • the divalent heterocyclic group includes a group in which a plurality of these groups are bonded
  • crosslinking group is a group capable of forming a new bond by being subjected to heating, ultraviolet irradiation, near ultraviolet irradiation, visible light irradiation, infrared irradiation, radical reaction, etc.
  • R XL represents a methylene group, an oxygen atom or a sulfur atom
  • n XL represents an integer of 0 to 5.
  • R XL represents a methylene group, an oxygen atom or a sulfur atom
  • * 1 represents a binding position.
  • “Substituent” means a halogen atom, cyano group, alkyl group, cycloalkyl group, aryl group, monovalent heterocyclic group, alkoxy group, cycloalkoxy group, aryloxy group, amino group, substituted amino group, alkenyl group. Represents a cycloalkenyl group, an alkynyl group or a cycloalkynyl group.
  • the substituent may be a crosslinking group.
  • the light emitting device includes an anode, a cathode, a first light emitting layer provided between the anode and the cathode, and a second light emitting layer provided between the anode and the cathode,
  • a 1st light emitting layer is a light emitting element containing the metal complex represented by Formula (1).
  • the first light emitting layer is a layer containing a metal complex represented by the formula (1).
  • the first light-emitting layer may contain the metal complex represented by the formula (1) as it is, or the metal complex represented by the formula (1) may be intramolecular, intermolecular, or both. It may be contained in a crosslinked state. That is, the 1st light emitting layer may contain the metal complex represented by Formula (1) and / or the crosslinked body of this metal complex.
  • the first light emitting layer may contain one kind of metal complex represented by the formula (1), or may contain two or more kinds of metal complexes represented by the formula (1). .
  • the content of the metal complex represented by the formula (1) in the first light emitting layer may be in a range in which the first light emitting layer functions as a light emitting layer.
  • the content of the metal complex represented by the formula (1) may be 0.1 to 50% by mass based on the total amount of the first light emitting layer, and is preferably 1 to 40% by mass. More preferably, it is ⁇ 30% by mass.
  • the first light emitting layer may further contain a metal complex represented by the following formula (2).
  • the content of the metal complex represented by the formula (2) in the first light emitting layer is not particularly limited.
  • the content of the metal complex represented by the formula (2) is, for example, 0.01% based on the total amount of the first light emitting layer. It may be ⁇ 50 mass%, preferably 0.1 to 20 mass%, more preferably 0.5 to 5 mass%.
  • Examples of the method for forming the first light emitting layer include a vacuum deposition method and a coating method typified by a spin coating method and an ink jet printing method, and a coating method is preferable.
  • the metal complex represented by the formula (1) contained in the first light emitting layer can be crosslinked by heating or light irradiation after forming the first light emitting layer.
  • the metal complex represented by the formula (1) is in a crosslinked state (crosslinked product of the metal complex represented by the formula (1)) and contained in the first light emitting layer, the first light emitting layer is a solvent. Is substantially insolubilized. Therefore, the first light emitting layer can be suitably used for stacking light emitting elements.
  • the heating temperature for crosslinking is usually 25 to 300 ° C., preferably 50 to 250 ° C., more preferably 150 to 200 ° C.
  • the heating time is usually 0.1 minutes to 1000 minutes, preferably 1 minute to 500 minutes, more preferably 10 minutes to 100 minutes, and further preferably 50 minutes to 70 minutes.
  • the types of light used for light irradiation for crosslinking are, for example, ultraviolet light, near ultraviolet light, and visible light.
  • the metal complex represented by the formula (1) is usually a metal complex that exhibits phosphorescence at room temperature (25 ° C.), and preferably a metal complex that emits light from a triplet excited state at room temperature.
  • the metal complex represented by formula (1) has a central metal M 1 , a ligand whose number is defined by the subscript n 1 , and a coordination whose number is defined by the subscript n 2 . It is a metal complex composed of a ligand.
  • M 1 is preferably an iridium atom or a platinum atom, and more preferably an iridium atom, because the luminance lifetime of the light emitting device according to this embodiment is more excellent.
  • M 1 is rhodium atom or an iridium atom, preferably n 1 is 2 or 3, more preferably 3.
  • n 1 is preferably 2.
  • E 1 and E 2 are preferably carbon atoms.
  • ring R 1A is a diazole ring
  • an imidazole ring in which E 11A is a nitrogen atom or an imidazole ring in which E 12A is a nitrogen atom is preferable, and an imidazole ring in which E 11A is a nitrogen atom is more preferable.
  • ring R 1A is a triazole ring
  • a triazole ring in which E 11A and E 12A are nitrogen atoms is preferred.
  • R 11A is preferably an alkyl group, a cycloalkyl group, an aryl group, or a monovalent heterocyclic group, and an alkyl group, an aryl group, or a monovalent group
  • the heterocyclic group is more preferably an aryl group or a monovalent heterocyclic group, particularly preferably an aryl group, and these groups may have a substituent.
  • R 11A is preferably a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group or a monovalent heterocyclic group, and is a hydrogen atom, an alkyl group, a cycloalkyl group or an aryl group. More preferably, it is more preferably a hydrogen atom, an alkyl group or a cycloalkyl group, and particularly preferably a hydrogen atom, and these groups may have a substituent.
  • R 12A is preferably an alkyl group, a cycloalkyl group, an aryl group or a monovalent heterocyclic group, and an aryl group or a monovalent heterocyclic ring It is more preferably a group, and further preferably an aryl group, and these groups may have a substituent.
  • R 12A is preferably a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group or a monovalent heterocyclic group, and is a hydrogen atom, an alkyl group, a cycloalkyl group or an aryl group. More preferably, it is more preferably a hydrogen atom, an alkyl group or a cycloalkyl group, and particularly preferably a hydrogen atom, and these groups may have a substituent.
  • a phenyl group, a naphthyl group, an anthracenyl group, a fentrenyl group, a dihydrofentrenyl group, a fluorenyl group, or a pyrenyl group is preferable, and a phenyl group, a naphthyl group, or a fluorenyl group is more preferable.
  • Groups are more preferred, and these groups may have a substituent.
  • Examples of the monovalent heterocyclic group in R 11A and R 12A include pyridyl group, pyrimidinyl group, triazinyl group, quinolinyl group, isoquinolinyl group, dibenzofuranyl group, dibenzothienyl group, carbazolyl group, azacarbazolyl group, diazacarbazolyl group Group, phenoxazinyl group or phenothiazinyl group is preferable, pyridyl group, pyrimidinyl group, triazinyl group, dibenzofuranyl group, carbazolyl group, azacarbazolyl group or diazacarbazolyl group is more preferable, pyridyl group, pyrimidinyl group or triazinyl group is more preferable. More preferably, these groups may have a substituent.
  • the substituent that the amino group has is preferably an aryl group or a monovalent heterocyclic group, and these groups may further have a substituent.
  • Examples and preferred ranges of the aryl group in the substituent that the amino group has are the same as examples and preferred ranges of the aryl group in R 11A and R 12A .
  • Examples and preferred ranges of the monovalent heterocyclic group in the substituent that the amino group has are the same as examples and preferred ranges of the monovalent heterocyclic group in R 11A and R 12A .
  • R 11A and R 12A may have, an alkyl group, a cycloalkyl group, an aryl group, a monovalent heterocyclic group, an alkoxy group, a cycloalkoxy group, an aryloxy group, or a substituted amino group is preferable.
  • An alkyl group, a cycloalkyl group, an aryl group, a monovalent heterocyclic group or a substituted amino group is more preferable
  • an alkyl group, a cycloalkyl group, an aryl group or a monovalent heterocyclic group is more preferable
  • an alkyl group or an aryl group Are particularly preferred, and these groups may further have a substituent.
  • the aryl group, monovalent heterocyclic group or substituted amino group in R 11A and R 12A preferably has the formula (DA) or (DB) because the luminance lifetime of the light emitting device according to this embodiment is more excellent.
  • a group represented by (DC) more preferably a group represented by formula (DA) or (DC), and still more preferably a group represented by formula (DC). It is a group.
  • m DA1 , m DA2 and m DA3 each independently represent an integer of 0 or more.
  • G DA represents a nitrogen atom, an aromatic hydrocarbon group or a heterocyclic group, and these groups optionally have a substituent.
  • Ar DA1, Ar DA2 and Ar DA3 each independently represent an arylene group or a divalent heterocyclic group, and these groups may have a substituent.
  • T DA represents an aryl group or a monovalent heterocyclic group, and these groups optionally have a substituent. The plurality of TDAs may be the same or different.
  • G DA represents a nitrogen atom, an aromatic hydrocarbon group or a heterocyclic group, and these groups optionally have a substituent.
  • a plurality of GDA may be the same or different.
  • Ar DA1 , Ar DA2 , Ar DA3 , Ar DA4 , Ar DA5 , Ar DA6 and Ar DA7 each independently represent an arylene group or a divalent heterocyclic group, and these groups may have a substituent. Good.
  • T DA represents an aryl group or a monovalent heterocyclic group, and these groups optionally have a substituent.
  • the plurality of TDAs may be the same or different.
  • m DA1 represents an integer of 0 or more.
  • Ar DA1 represents an arylene group or a divalent heterocyclic group, and these groups optionally have a substituent.
  • T DA represents an aryl group or a monovalent heterocyclic group, and these groups optionally have a substituent.
  • m DA1 , m DA2 , m DA3 , m DA4 , m DA5 , m DA6 and m DA7 are usually an integer of 10 or less, preferably an integer of 5 or less, more preferably an integer of 2 or less, Preferably 0 or 1.
  • m DA2 , m DA3 , m DA4 , m DA5 , m DA6 and m DA7 are preferably the same integer, and m DA1 , m DA2 , m DA3 , m DA4 , m DA5 , m DA6 and m DA7 are More preferably, they are the same integer.
  • G DA is preferably a group represented by formulas (GDA-11) to (GDA-15), more preferably a group represented by formulas (GDA-11) to (GDA-14), Preferred is a group represented by the formula (GDA-11) or (GDA-14), and particularly preferred is a group represented by the formula (GDA-11).
  • *** is, Ar DA3 in the formula (D-A), Ar DA3 in the formula (D-B), Ar DA5 in the formula (D-B), or, the bond between Ar DA7 in the formula (D-B) To express.
  • R DA represents a hydrogen atom, an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group or a monovalent heterocyclic group, and these groups may further have a substituent. When there are a plurality of RDA , they may be the same or different. ]
  • R DA is preferably a hydrogen atom, an alkyl group, a cycloalkyl group, an alkoxy group or a cycloalkoxy group, more preferably a hydrogen atom, an alkyl group or a cycloalkyl group, and these groups have a substituent. May be.
  • Ar DA1 , Ar DA2 , Ar DA3 , Ar DA4 , Ar DA5 , Ar DA6 and Ar DA7 are preferably a phenylene group, a fluorenediyl group or a carbazolediyl group, and more preferably formulas (A-1) to (A-1)-( A-3), (A-8), (A-9), (AA-10), (AA-11), (AA-33) or a group represented by (AA-34), more preferably Is a group represented by formulas (ArDA-1) to (ArDA-5), particularly preferably a group represented by formulas (ArDA-1) to (ArDA-3), and particularly preferably a group represented by formula (ArDA). -1).
  • R DA represents the same meaning as described above.
  • R DB represents a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group, or a monovalent heterocyclic group, and these groups optionally have a substituent. If R DB there are a plurality, they may be the same or different. ]
  • R DB is preferably an alkyl group, a cycloalkyl group, an aryl group or a monovalent heterocyclic group, more preferably an aryl group or a monovalent heterocyclic group, and still more preferably an aryl group.
  • the group may have a substituent.
  • T DA is preferably a group represented by the formulas (TDA-1) to (TDA-3), and more preferably a group represented by the formula (TDA-1).
  • the group represented by the formula (DA) is preferably a group represented by the formulas (D-A1) to (D-A4), more preferably the formula (D-A1) or (D-A4). And more preferably a group represented by the formula (D-A1).
  • R p1, R p2, R p3 and R p4 each independently represent an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group or a fluorine atom.
  • R p1 , R p2 and R p4 they may be the same or different.
  • np1 represents an integer of 0 to 5
  • np2 represents an integer of 0 to 3
  • np3 represents 0 or 1
  • np4 represents an integer of 0 to 4.
  • a plurality of np1 may be the same or different.
  • the group represented by the formula (DB) is preferably a group represented by the formulas (D-B1) to (D-B3), more preferably a group represented by the formula (D-B1). is there.
  • R p1 , R p2 and R p3 each independently represents an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group or a fluorine atom. If R p1 and R p2 is more, or different in each of them the same. np1 represents an integer of 0 to 5, np2 represents an integer of 0 to 3, and np3 represents 0 or 1. When there are a plurality of np1 and np2, they may be the same or different. ]
  • the group represented by the formula (DC) is preferably a group represented by the formulas (D-C1) to (D-C4), more preferably the formulas (D-C1) to (D-C3). And more preferably a group represented by the formula (D-C1) or (D-C2).
  • R p4, R p5 and R p6 each independently represent an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group or a fluorine atom.
  • R p4 , R p5 and R p6 may be the same or different.
  • np4 represents an integer of 0 to 4
  • np5 represents an integer of 0 to 5
  • np6 represents an integer of 0 to 5.
  • Np1 is preferably 0 or 1, more preferably 1.
  • np2 is preferably 0 or 1, more preferably 0.
  • np3 is preferably 0.
  • np4 is preferably an integer of 0 to 2.
  • np5 is preferably an integer of 1 to 3.
  • np6 is preferably an integer of 0 to 2.
  • R p1 , R p2 , R p3 , R p4 , R p5 and R p6 are preferably alkyl groups or cycloalkyl groups, more preferably methyl groups, ethyl groups, isopropyl groups, tert-butyl groups, hexyl groups, 2-ethylhexyl group, cyclohexyl group, methoxy group, 2-ethylhexyloxy group, tert-octyl group or cyclohexyloxy group, more preferably methyl group, ethyl group, isopropyl group, tert-butyl group, hexyl group, 2 -Ethylhexyl group or tert-octyl group.
  • Examples of the group represented by the formula (DA) include groups represented by the formulas (DA-1) to (DA-12).
  • R D represents a methyl group, an ethyl group, an isopropyl group, a tert-butyl group, a hexyl group, a 2-ethylhexyl group, a tert-octyl group, a cyclohexyl group, a methoxy group, a 2-ethylhexyloxy group, or a cyclohexyloxy group. Represents a group. When two or more RD exists, they may be the same or different. ]
  • Examples of the group represented by the formula (DB) include groups represented by the formulas (DB-1) to (DB-4).
  • Examples of the group represented by the formula (DC) include groups represented by the formulas (DC-1) to (DC-17).
  • RD is preferably a methyl group, an ethyl group, an isopropyl group, a tert-butyl group, a hexyl group, a 2-ethylhexyl group or a tert-octyl group.
  • At least one selected from the group consisting of R 11A and R 12A has an aryl group or a substituent which may have a substituent.
  • a group represented by D—C1) or (D—C2) is particularly preferred, and a group represented by formula (D—C1) is particularly preferred.
  • R 11A and R 12A When at least one selected from the group consisting of R 11A and R 12A is an aryl group which may have a substituent or a monovalent heterocyclic group which may have a substituent, R 11A is substituted. It is preferably an aryl group which may have a group or a monovalent heterocyclic group which may have a substituent, and R 11A may be an aryl group which may have a substituent. More preferred.
  • R 11A and R 12A may be bonded to each other to form a ring together with the atoms to which they are bonded, but the maximum peak wavelength of the emission spectrum of the metal complex represented by formula (1) is longer. Therefore, it is preferable not to form a ring.
  • R 13A is preferably an aryl group or a monovalent heterocyclic group, more preferably an aryl group, and these groups optionally have a substituent.
  • Examples and preferred ranges of the aryl group, monovalent heterocyclic group and substituted amino group in R 13A are examples and preferred ranges of the aryl group, monovalent heterocyclic group and substituted amino group in R 11A and R 12A , respectively. The same.
  • Examples and preferred ranges of the substituent that R 13A may have are the same as examples and preferred ranges of the substituent that R 11A and R 12A may have.
  • Ring R 2 is preferably a 5-membered or 6-membered aromatic hydrocarbon ring, or a 5-membered or 6-membered aromatic heterocycle, and a 6-membered aromatic hydrocarbon ring or a 6-membered aromatic heterocycle More preferably, it is a ring, more preferably a 6-membered aromatic hydrocarbon ring, and these rings may have a substituent.
  • E 2 is preferably a carbon atom.
  • Examples of the ring R 2 include a benzene ring, a naphthalene ring, a fluorene ring, a phenanthrene ring, an indene ring, a pyridine ring, a diazabenzene ring, and a triazine ring, and a benzene ring, a naphthalene ring, a fluorene ring, a pyridine ring, or a pyrimidine ring is preferable.
  • a benzene ring, a pyridine ring or a pyrimidine ring is more preferable, a benzene ring is more preferable, and these rings may have a substituent.
  • the substituent that the ring R 2 may have is preferably a fluorine atom, an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryloxy group, an aryl group, a monovalent heterocyclic group, or a substituent.
  • An amino group more preferably an alkyl group, a cycloalkyl group, an alkoxy group, an aryl group, a monovalent heterocyclic group or a substituted amino group, and still more preferably an alkyl group, a cycloalkyl group, an aryl group, 1
  • a valent heterocyclic group or a substituted amino group particularly preferably an alkyl group or a group represented by the formula (DA), (DB) or (DC), particularly preferably a formula ( DA), (DB) or a group represented by (DC), and most preferably a group represented by the formula (DA) or (DC),
  • these groups may further have a substituent.
  • Examples of the aryl group, monovalent heterocyclic group and substituted amino group in the substituent that the ring R 2 may have are the aryl group and monovalent heterocyclic group in R 11A and R 12A , respectively. And the examples and preferred ranges of the substituted amino group are the same.
  • Examples and preferred ranges of the substituent that the ring R 2 may have further may have the same examples and preferred ranges of the substituent that R 11A and R 12A may have. It is.
  • a 1 -G 1 -A 2 examples of the anionic bidentate ligand represented by A 1 -G 1 -A 2 include the ligands represented by the following.
  • the anionic bidentate ligand represented by A 1 -G 1 -A 2 may be a ligand represented by the following. However, the anionic bidentate ligand represented by A 1 -G 1 -A 2 is different from the ligand whose number is defined by the subscript n 1 .
  • R L1 represents a hydrogen atom, an alkyl group, a cycloalkyl group, or a halogen atom, and these groups optionally have a substituent.
  • a plurality of R L1 may be the same or different.
  • R L2 represents an alkyl group, a cycloalkyl group, an aryl group, a monovalent heterocyclic group, or a halogen atom, and these groups optionally have a substituent.
  • R L1 is preferably a hydrogen atom, an alkyl group, a cycloalkyl group, or a fluorine atom, more preferably a hydrogen atom or an alkyl group, and these groups optionally have a substituent.
  • R L2 is preferably an alkyl group, a cycloalkyl group, an aryl group or a monovalent heterocyclic group, more preferably an aryl group or a monovalent heterocyclic group, still more preferably an aryl group, This group may have a substituent.
  • the metal complex represented by the formula (1) is preferably a metal complex represented by the formula (1-A) because the luminance lifetime of the light emitting device according to this embodiment is more excellent.
  • ring R 2A is a pyridine ring
  • a pyridine ring in which E 21A is a nitrogen atom a pyridine ring in which E 22A is a nitrogen atom, or a pyridine ring in which E 23A is a nitrogen atom is preferable, and E 22A is a nitrogen atom.
  • Some pyridine rings are more preferred.
  • ring R 2A is a pyrimidine ring
  • a pyrimidine ring in which E 21A and E 23A are nitrogen atoms or a pyrimidine ring in which E 22A and E 24A are nitrogen atoms is preferable, and E 22A and E 24A are nitrogen atoms.
  • a pyrimidine ring is more preferred.
  • Ring R 2A is preferably a benzene ring.
  • R 21A , R 22A , R 23A and R 24A are preferably a hydrogen atom, a fluorine atom, an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryloxy group, an aryl group, a monovalent heterocyclic group or A substituted amino group, more preferably a hydrogen atom, an alkyl group, a cycloalkyl group, an alkoxy group, an aryl group, a monovalent heterocyclic group or a substituted amino group, still more preferably a hydrogen atom, an alkyl group, a cyclo An alkyl group, an aryl group, a monovalent heterocyclic group or a substituted amino group, particularly preferably a hydrogen atom, an alkyl group, or a group represented by the formula (DA), (DB) or (DC) And particularly preferably a hydrogen atom or a group represented by the formula (DA), (DB) or (
  • Examples of aryl groups, monovalent heterocyclic groups and substituted amino groups in R 21A , R 22A , R 23A and R 24A and preferred ranges thereof are an aryl group in a substituent that the ring R 2 may have, Examples of the monovalent heterocyclic group and substituted amino group are the same as the preferred range.
  • R 21A , R 22A , R 23A and R 24A are those of the substituent that the ring R 2 may further have. Same as example and preferred range.
  • At least one selected from the group consisting of R 21A , R 22A , R 23A and R 24A is represented by the formula (DA), (DB) or A group represented by (DC) is preferred, a group represented by formula (DA) or (DC) is more preferred, and a group represented by formula (DA) More preferably, it is a group.
  • R 21A , R 22A , R 23A and R 24A is a group represented by the formula (DA), (DB) or (DC)
  • R 22A Or R 23A is preferably a group represented by the formula (DA), (DB) or (DC)
  • R 22A is a group represented by the formula (DA) or (DB). Or, it is more preferably a group represented by (DC).
  • the metal complex represented by the formula (1-A) has a further excellent luminance lifetime of the light emitting device according to the present embodiment. Therefore, the metal complex represented by the formula (1-A1) is represented by the formula (1-A2).
  • the metal complex represented by the formula (1-A3) or the metal complex represented by the formula (1-A4) is preferable, and the metal complex represented by the formula (1-A1) or the formula A metal complex represented by (1-A3) is more preferred, and a metal complex represented by formula (1-A1) is more preferred.
  • Examples of the metal complex represented by the formula (1) include the formulas (Ir-100) to (Ir-133), (Pt-100) to (Pt-104), (Pd-100) or (Rh-100).
  • the metal complex represented by formula (Ir-100) to (Ir-129), (Pt-100) to (Pt-104), (Pd-100) or (Rh-100) is preferable. It is a metal complex represented by these.
  • E A represents a group represented by —CH ⁇ or a group represented by —N ⁇ .
  • the metal complex represented by the formula (1) can be produced, for example, by a method of reacting a ligand compound with a metal compound. You may perform the functional group conversion reaction of the ligand of a metal complex as needed.
  • the metal complex represented by the formula (1) includes, for example, the step A in which the compound represented by the formula (M-1) is reacted with the metal compound or a hydrate thereof, and the compound obtained in the step A (Hereinafter also referred to as “metal complex intermediate (1)”) and a compound represented by the formula (M-1) or a precursor of a ligand represented by A 1 -G 1 -A 2 It can manufacture by the method (henceforth "the manufacturing method 1") including the process B made to react.
  • examples of the metal compound include iridium chloride, tris (acetylacetonato) iridium (III), chloro (cyclooctadiene) iridium (I) dimer, iridium acetate (III) and the like; chloroplatinic acid Platinum compounds such as potassium; palladium compounds such as palladium chloride and palladium acetate; and rhodium compounds such as rhodium chloride.
  • examples of hydrates of metal compounds include iridium chloride trihydrate and rhodium chloride trihydrate.
  • Examples of the metal complex intermediate (1) include a metal complex represented by the formula (M-2).
  • n 1 ′ represents 1 or 2.
  • M 1 is a rhodium atom or an iridium atom
  • n 1 ′ is 2.
  • M 1 is a palladium atom or a platinum atom
  • n 1 ′ is 1.
  • the amount of the compound represented by the formula (M-1) is usually 2 to 20 moles with respect to 1 mole of the metal compound or hydrate thereof.
  • Step B the amount of the compound represented by the formula (M-1) or the precursor of the ligand represented by A 1 -G 1 -A 2 is 1 mol of the metal complex intermediate (1) Usually, it is 1 to 100 mol.
  • step B the reaction is preferably performed in the presence of a silver compound such as silver trifluoromethanesulfonate.
  • a silver compound such as silver trifluoromethanesulfonate.
  • the amount is usually 2 to 20 mol per 1 mol of the metal complex intermediate (1).
  • production method 2 the functional group conversion reaction of the ligand of the metal complex represented by the formula (1) (hereinafter also referred to as “production method 2”) will be described.
  • the functional group conversion reaction includes a known coupling reaction using a transition metal catalyst such as a Suzuki reaction, a Buchwald reaction, a Stille reaction, a Negishi reaction, and a Kumada reaction.
  • a transition metal catalyst such as a Suzuki reaction, a Buchwald reaction, a Stille reaction, a Negishi reaction, and a Kumada reaction.
  • Examples of the production method 2 include a method including a step C in which a metal complex represented by the formula (M-3) and a compound represented by the formula (M-4) are subjected to a coupling reaction.
  • W 1 represents a chlorine atom, a bromine atom or an iodine atom. When a plurality of W 1 are present, they may be the same or different.
  • n W1 represents an integer of 1 or more and 10 or less.
  • Z 1 represents an alkyl group, a cycloalkyl group, an aryl group, or a monovalent heterocyclic group, and these groups may have a substituent.
  • W 2 represents a group selected from the group consisting of the substituent group B.
  • R C2 represents a hydrogen atom, an alkyl group, a cycloalkyl group or an aryl group, these groups may have a substituent.
  • R C2 represents a hydrogen atom, an alkyl group, a cycloalkyl group or an aryl group, these groups may have a substituent.
  • R C2 represents a hydrogen atom, an alkyl group, a cycloalkyl group or an aryl group, these groups may have a substituent.
  • R C2 represents a hydrogen atom, an alkyl group, a cycloalkyl group or an aryl group, these groups may have a substituent.
  • R C2 represents a hydrogen atom, an alkyl group, a cycloalkyl group or an aryl group, these groups may have a substituent.
  • a group represented by BF 3 Q ′ (wherein Q ′ represents Li, Na, K, Rb or Cs); -A group represented by MgY '(wherein Y' represents a chlorine atom, a bromine atom or an iodine atom); A group represented by —ZnY ′′ (wherein Y ′′ represents a chlorine atom, a bromine atom or an iodine atom); -Sn (R C3) 3 (wherein, R C3 represents a hydrogen atom, an alkyl group, a cycloalkyl group or an aryl group, these groups may have a substituent. More existing R C3 is The groups may be the same or different and may be linked to each other to form a ring structure together with the tin atoms to which they are bonded.
  • Examples of the group represented by —B (OR C2 ) 2 include groups represented by formulas (W-1) to (W-10).
  • W 1 is preferably a bromine atom or an iodine atom because the coupling reaction proceeds easily.
  • n W1 is preferably an integer of 1 to 5, more preferably 1 or 2, and still more preferably 1.
  • Z 1 is preferably an aryl group or a monovalent heterocyclic group, more preferably an aryl group, and these groups may have a substituent.
  • Examples and preferred ranges of the aryl group and monovalent heterocyclic group in Z 1 are the same as examples and preferred ranges of the aryl group and monovalent heterocyclic group in the substituent that the ring R 2 may have. .
  • Examples and preferred ranges of the substituent that Z 1 may have are the same as examples and preferred ranges of the substituent that the ring R 2 may further have.
  • W 2 is preferably a group represented by —B (OR C2 ) 2 , more preferably a group represented by the formula (W-7).
  • a catalyst such as a palladium catalyst may be used to accelerate the reaction.
  • the palladium catalyst include palladium acetate, bis (triphenylphosphine) palladium (II) dichloride, tetrakis (triphenylphosphine) palladium (0), [1,1′-bis (diphenylphosphino) ferrocene] dichloropalladium ( II), tris (dibenzylideneacetone) dipalladium (0).
  • the palladium catalyst may be used in combination with a phosphorus compound such as triphenylphosphine, tri (o-tolyl) phosphine, tri (tert-butyl) phosphine, tricyclohexylphosphine, 1,1′-bis (diphenylphosphino) ferrocene. .
  • a phosphorus compound such as triphenylphosphine, tri (o-tolyl) phosphine, tri (tert-butyl) phosphine, tricyclohexylphosphine, 1,1′-bis (diphenylphosphino) ferrocene. .
  • the amount thereof is usually an effective amount with respect to 1 mol of the compound represented by the formula (M-3), preferably 0.00001 in terms of palladium element. ⁇ 10 moles.
  • a palladium catalyst and a base may be used in combination.
  • the metal complex represented by the formula (M-3) can be synthesized, for example, by a method including a step D in which the metal complex represented by the formula (1) and a halogenating agent are reacted.
  • examples of the halogenating agent include N-chlorosuccinimide, N-bromosuccinimide, N-iodosuccinimide, and the like.
  • step D the amount of the halogenating agent is usually 1 to 50 mol with respect to 1 mol of the metal complex represented by the formula (1).
  • Process A, process B, process C and process D are usually performed in a solvent.
  • Solvents include alcohol solvents such as methanol, ethanol, propanol, ethylene glycol, glycerin, 2-methoxyethanol and 2-ethoxyethanol; ether solvents such as diethyl ether, tetrahydrofuran (THF), dioxane, cyclopentyl methyl ether and diglyme Halogen compounds such as methylene chloride and chloroform; nitrile solvents such as acetonitrile and benzonitrile; hydrocarbon solvents such as hexane, decalin, toluene, xylene and mesitylene; N, N-dimethylformamide, N, N-dimethylacetamide Amide solvents such as acetone, dimethyl sulfoxide, water and the like.
  • alcohol solvents such as methanol, ethanol, propanol, ethylene glycol, glycerin, 2-meth
  • step A the reaction time is usually 30 minutes to 200 hours, and the reaction temperature is usually between the melting point and boiling point of the solvent present in the reaction system.
  • the compound, catalyst and solvent used in each reaction described in ⁇ Method for producing metal complex represented by formula (1)> may be used alone or in combination of two or more.
  • the first light emitting layer includes a metal complex represented by the formula (1), a hole injection property, a hole transport property, an electron injection property, and an electron transport property. It is preferable to contain a host material having at least one function selected from the group consisting of: In the first light emitting layer, the host material may be contained singly or in combination of two or more.
  • the content of the metal complex represented by the formula (1) is the metal represented by the formula (1).
  • the total of the complex and the host material is 100 parts by mass, it is usually 0.1 to 50 parts by mass, preferably 1 to 40 parts by mass, and more preferably 10 to 30 parts by mass.
  • the lowest excited triplet state (T 1 ) of the host material is the luminance of the light-emitting element according to this embodiment. Since the lifetime is excellent, it is preferable that the energy level is equal to or higher than T 1 of the metal complex represented by the formula (1).
  • the light emitting device according to the present embodiment can be produced by a solution coating process, and therefore, the host material is soluble in a solvent capable of dissolving the metal complex represented by the formula (1). Is preferred.
  • the host material is classified into a low molecular compound and a high molecular compound, and a low molecular compound is preferable.
  • Low molecular host The low molecular weight compound (hereinafter referred to as “low molecular weight host”) preferable as the host material will be described.
  • the low molecular host is preferably a compound represented by the formula (H-1).
  • Ar H1 and Ar H2 are phenyl group, fluorenyl group, spirobifluorenyl group, pyridyl group, pyrimidinyl group, triazinyl group, quinolinyl group, isoquinolinyl group, thienyl group, benzothienyl group, dibenzothienyl group, furyl group, benzofuryl Group, dibenzofuryl group, pyrrolyl group, indolyl group, azaindolyl group, carbazolyl group, azacarbazolyl group, diazacarbazolyl group, phenoxazinyl group or phenothiazinyl group, phenyl group, spirobifluorenyl group, A pyridyl group, pyrimidinyl group, triazinyl group, dibenzothienyl group, dibenzofuryl group, carbazolyl group or azacarbazolyl group is more prefer
  • Ar H1 and Ar H2 may have, a halogen atom, an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, or a monovalent heterocyclic group is preferable, and an alkyl group, a cyclo An alkyl group, an alkoxy group or a cycloalkoxy group is more preferable, an alkyl group or a cycloalkyl group is further preferable, and these groups may further have a substituent.
  • n H1 is preferably 1.
  • n H2 is preferably 0.
  • n H3 is generally an integer of 0 or more and 10 or less, preferably an integer of 0 or more and 5 or less, more preferably an integer of 1 or more and 3 or less, and particularly preferably 1.
  • n H11 is preferably an integer of 1 or more and 5 or less, more preferably an integer of 1 or more and 3 or less, and even more preferably 1.
  • R H11 is preferably a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group or a monovalent heterocyclic group, more preferably a hydrogen atom, an alkyl group or a cycloalkyl group, and a hydrogen atom or an alkyl group. It is more preferable that these groups may have a substituent.
  • L H1 is preferably an arylene group or a divalent heterocyclic group.
  • L H1 is represented by formulas (A-1) to (A-3), (A-8) to (A-10), (AA-1) to (AA-6), (AA-10) to (AA— 21) or a group represented by (AA-24) to (AA-34), preferably represented by formulas (A-1), (A-2), (A-8), (A-9), A group represented by (AA-1) to (AA-4), (AA-10) to (AA-15) or (AA-29) to (AA-34) is more preferable.
  • L H1 may have, a halogen atom, an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, or a monovalent heterocyclic group is preferable, and an alkyl group, an alkoxy group, an aryl group is preferable.
  • a group or a monovalent heterocyclic group is more preferable, an alkyl group, an aryl group or a monovalent heterocyclic group is further preferable, and these groups may further have a substituent.
  • L H21 is preferably a single bond or an arylene group, more preferably a single bond, and this arylene group may have a substituent.
  • the definition and examples of the arylene group or divalent heterocyclic group represented by L H21 are the same as the definitions and examples of the arylene group or divalent heterocyclic group represented by L H1 .
  • R H21 is preferably an aryl group or a monovalent heterocyclic group, and these groups optionally have a substituent.
  • R H21 The definitions and examples of the aryl group and monovalent heterocyclic group represented by R H21 are the same as the definitions and examples of the aryl group and monovalent heterocyclic group represented by Ar H1 and Ar H2 .
  • the compound represented by the formula (H-1) is preferably a compound represented by the formula (H-2).
  • Examples of the compound represented by the formula (H-1) include compounds represented by the formulas (H-101) to (H-118).
  • Polymer host examples of the polymer compound used for the host material include a polymer compound that is a hole transport material described later and a polymer compound that is an electron transport material described later.
  • polymer host The polymer compound preferable as the host material (hereinafter referred to as “polymer host”) will be described.
  • the polymer host is preferably a polymer compound containing a structural unit represented by the formula (Y).
  • Ar Y1 represents an arylene group, a divalent heterocyclic group, or a divalent group in which at least one arylene group and at least one divalent heterocyclic group are directly bonded, and these groups are substituted It may have a group.
  • the arylene group represented by Ar Y1 is represented by the formula (A-1), (A-2), (A-6) to (A-10), (A-19) or (A-20) And more preferably a group represented by the formula (A-1), (A-2), (A-7), (A-9) or (A-19), These groups may have a substituent.
  • the divalent heterocyclic group represented by Ar Y1 is represented by the formulas (AA-1) to (AA-4), (AA-10) to (AA-15), (AA-18) to (AA AA-21), a group represented by (AA-33) or (AA-34), and more preferably a group represented by the formula (AA-4), (AA-10), (AA-12), (AA- 14) or (AA-33), and these groups optionally have a substituent.
  • the ranges are the same as the more preferable ranges and further preferable ranges of the arylene group and divalent heterocyclic group represented by Ar Y1 described above.
  • divalent group in which at least one arylene group and at least one divalent heterocyclic group are directly bonded examples include groups represented by the following formulas, which have a substituent. You may do it.
  • R XX represents a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group, or a monovalent heterocyclic group, and these groups optionally have a substituent.
  • R XX is preferably an alkyl group, a cycloalkyl group, or an aryl group, and these groups optionally have a substituent.
  • the substituent that the group represented by Ar Y1 may have is preferably an alkyl group, a cycloalkyl group, or an aryl group, and these groups may further have a substituent.
  • Examples of the structural unit represented by the formula (Y) include structural units represented by the formulas (Y-1) to (Y-10), from the viewpoint of the luminance life of the light emitting device according to this embodiment. Is preferably a structural unit represented by formulas (Y-1) to (Y-3), and from the viewpoint of electron transport properties, is preferably represented by formulas (Y-4) to (Y-7). From the viewpoint of hole transportability, structural units represented by formulas (Y-8) to (Y-10) are preferable.
  • R Y1 represents a hydrogen atom, an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, or a monovalent heterocyclic group, and these groups optionally have a substituent.
  • a plurality of R Y1 may be the same or different, and adjacent R Y1 may be bonded to each other to form a ring together with the carbon atom to which each is bonded.
  • R Y1 is preferably a hydrogen atom, an alkyl group, a cycloalkyl group, or an aryl group, and these groups optionally have a substituent.
  • the structural unit represented by the formula (Y-1) is preferably a structural unit represented by the formula (Y-1 ′).
  • R Y11 represents an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, or a monovalent heterocyclic group, and these groups optionally have a substituent.
  • a plurality of R Y11 may be the same or different.
  • R Y11 is preferably an alkyl group, a cycloalkyl group, or an aryl group, more preferably an alkyl group or a cycloalkyl group, and these groups optionally have a substituent.
  • R Y1 represents the same meaning as described above.
  • X Y1 is, -C (R Y2) 2 -
  • R Y2 represents a hydrogen atom, an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, or a monovalent heterocyclic group, and these groups may have a substituent.
  • a plurality of R Y2 may be the same or different, and R Y2 may be bonded to each other to form a ring together with the carbon atom to which each is bonded. ]
  • R Y2 is preferably an alkyl group, a cycloalkyl group, an aryl group or a monovalent heterocyclic group, more preferably an alkyl group, a cycloalkyl group or an aryl group, and these groups have a substituent. You may do it.
  • the combination of two R Y2 in the group represented by —C (R Y2 ) 2 — is preferably such that both are alkyl groups or cycloalkyl groups, both are aryl groups, and both are monovalent complex
  • R Y2 s may be bonded to each other to form a ring together with the atoms to which they are bonded, and when R Y2 forms a ring, the group represented by —C (R Y2 ) 2 — Is preferably a group represented by formulas (Y-A1) to (Y-A5), more preferably a group represented by formula (Y-A4), and these groups have a substituent. It may be.
  • the combination of two R Y2 in the group represented by —C (R Y2 ) ⁇ C (R Y2 ) — is preferably both an alkyl group or a cycloalkyl group, or one of which is an alkyl group Alternatively, a cycloalkyl group and the other is an aryl group, and these groups optionally have a substituent.
  • R Y2 in the group represented by —C (R Y2 ) 2 —C (R Y2 ) 2 — are preferably an alkyl group or a cycloalkyl group which may have a substituent. It is. A plurality of R Y2 may be bonded to each other to form a ring together with the atoms to which each is bonded. When R Y2 forms a ring, —C (R Y2 ) 2 —C (R Y2 ) 2 —
  • the group represented is preferably a group represented by the formulas (Y-B1) to (Y-B5), more preferably a group represented by the formula (Y-B3). These groups are substituted It may have a group.
  • R Y2 represents the same meaning as described above.
  • the structural unit represented by the formula (Y-2) is preferably a structural unit represented by the formula (Y-2 ′).
  • the structural unit represented by the formula (Y-3) is preferably a structural unit represented by the formula (Y-3 ′).
  • R Y1 represents the same meaning as described above.
  • R Y3 represents a hydrogen atom, an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, or a monovalent heterocyclic group, and these groups may have a substituent.
  • R Y3 is preferably an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group or a monovalent heterocyclic group, more preferably an aryl group, and these groups have a substituent. May be.
  • the structural unit represented by the formula (Y-4) is preferably a structural unit represented by the formula (Y-4 ′), and the structural unit represented by the formula (Y-6) is represented by the formula (Y-4).
  • the structural unit represented by ⁇ 6 ′) is preferred.
  • R Y1 represents the same meaning as described above.
  • R Y4 represents a hydrogen atom, an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, or a monovalent heterocyclic group, and these groups optionally have a substituent.
  • R Y4 is preferably an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group or a monovalent heterocyclic group, more preferably an aryl group, and these groups have a substituent. May be.
  • Examples of the structural unit represented by the formula (Y) include structural units composed of an arylene group represented by the formulas (Y-101) to (Y-121), and the formulas (Y-201) to (Y-206).
  • Examples thereof include structural units composed of a divalent group directly bonded, preferably structural units composed of an arylene group represented by formulas (Y-101) to (Y-121), and formulas (Y-201) to (Y -206), a structural unit consisting of a divalent heterocyclic group, at least one arylene group represented by formulas (Y-301) to (Y-304) and at least one divalent heterocyclic ring It is a structural unit composed of a divalent group directly bonded to a group.
  • the structural unit represented by the formula (Y), in which Ar Y1 is an arylene group, has a higher luminance lifetime of the light-emitting element according to the present embodiment, and thus the total of the structural units included in the polymer host.
  • the amount is preferably 0.5 to 90 mol%, more preferably 30 to 80 mol%, based on the amount.
  • Ar Y1 is a divalent heterocyclic group, or at least one arylene group and at least one divalent heterocyclic group directly bonded to each other.
  • the polymer host is excellent in hole transportability, it is preferable that the polymer host further includes a structural unit represented by the formula (X).
  • a X1 and a X2 each independently represent an integer of 0 or more.
  • Ar X1 and Ar X3 each independently represent an arylene group or a divalent heterocyclic group, and these groups optionally have a substituent.
  • Ar X2 and Ar X4 each independently represent an arylene group, a divalent heterocyclic group, or a divalent group in which at least one arylene group and at least one divalent heterocyclic group are directly bonded to each other. And these groups may have a substituent.
  • Ar X2 and Ar X4 When a plurality of Ar X2 and Ar X4 are present, they may be the same or different.
  • R X1 , R X2 and R X3 each independently represent a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group or a monovalent heterocyclic group, and these groups may have a substituent.
  • R X2 and R X3 may be the same or different.
  • a X1 is preferably 2 or less, more preferably 1, because the luminance lifetime of the light emitting device according to the present embodiment is more excellent.
  • a X2 is preferably 2 or less, more preferably 0, because the luminance lifetime of the light emitting device according to this embodiment is more excellent.
  • R X1 , R X2 and R X3 are preferably an alkyl group, a cycloalkyl group, an aryl group or a monovalent heterocyclic group, more preferably an aryl group, and these groups have a substituent. Also good.
  • the arylene group represented by Ar X1 and Ar X3 is more preferably a group represented by the formula (A-1) or (A-9), and more preferably a group represented by the formula (A-1). And these groups may have a substituent.
  • the divalent heterocyclic group represented by Ar X1 and Ar X3 is more preferably a group represented by the formula (AA-1), (AA-2) or (AA-7) to (AA-26). Yes, these groups may have a substituent.
  • Ar X1 and Ar X3 are preferably an arylene group which may have a substituent.
  • arylene group represented by Ar X2 and Ar X4 more preferably, the formula (A-1), (A-6), (A-7), (A-9) to (A-11) or (A ⁇ 19), and these groups may have a substituent.
  • the more preferable range of the divalent heterocyclic group represented by Ar X2 and Ar X4 is the same as the more preferable range of the divalent heterocyclic group represented by Ar X1 and Ar X3 .
  • Further preferred ranges are the same as the more preferred ranges and further preferred ranges of the arylene group and divalent heterocyclic group represented by Ar X1 and Ar X3 , respectively.
  • At least one arylene group represented by Ar X2 and Ar X4 and at least one divalent heterocyclic group are directly bonded
  • at least represented by Ar Y1 in the formula (Y) examples thereof include the same divalent groups in which one kind of arylene group and at least one kind of divalent heterocyclic group are directly bonded.
  • Ar X2 and Ar X4 are preferably an arylene group which may have a substituent.
  • the substituent represented by the groups represented by Ar X1 to Ar X4 and R X1 to R X3 is preferably an alkyl group, a cycloalkyl group or an aryl group, and these groups further have a substituent. You may do it.
  • the structural unit represented by the formula (X) is preferably a structural unit represented by the formulas (X-1) to (X-7), more preferably the formulas (X-1) to (X-6). And more preferably the structural units represented by the formulas (X-3) to (X-6).
  • R X4 and R X5 each independently represent a hydrogen atom, an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, an aryloxy group, a halogen atom, a monovalent heterocyclic group or cyano. Represents a group, and these groups may have a substituent.
  • a plurality of R X4 may be the same or different.
  • a plurality of R X5 may be the same or different, and adjacent R X5 may be bonded to each other to form a ring together with the carbon atom to which each is bonded.
  • the structural unit represented by the formula (X) has excellent hole transportability, it is preferably 0.1 to 50 mol%, more preferably based on the total amount of the structural units contained in the polymer host. It is 1 to 40 mol%, and more preferably 5 to 30 mol%.
  • Examples of the structural unit represented by the formula (X) include structural units represented by the formulas (X1-1) to (X1-11), preferably the formulas (X1-3) to (X1-10). ).
  • Examples of the polymer host include polymer compounds (P-1) to (P-6) shown in Table 1.
  • p, q, r, s and t represent the molar ratio of each constituent unit.
  • p + q + r + s + t 100 and 100 ⁇ p + q + r + s ⁇ 70.
  • the polymer host may be any of a block copolymer, a random copolymer, an alternating copolymer, and a graft copolymer, and may be in other modes.
  • a copolymer obtained by polymerization is preferred.
  • the polymer host can be produced by using a known polymerization method described in Chemical Review (Chem. Rev.), Vol. 109, pages 897-1091 (2009), etc., and the Suzuki reaction, Yamamoto reaction, Buchwald, etc. Examples thereof include a polymerization method by a coupling reaction using a transition metal catalyst such as a reaction, a Stille reaction, a Negishi reaction, and a Kumada reaction.
  • a method of charging the monomer a method of charging the entire amount of the monomer into the reaction system at once, a part of the monomer is charged and reacted, and then the remaining monomer is batched, Examples thereof include a method of charging continuously or divided, a method of charging monomer continuously or divided, and the like.
  • transition metal catalysts examples include palladium catalysts and nickel catalysts.
  • Post-treatment of the polymerization reaction is a known method, for example, a method of removing water-soluble impurities by liquid separation, adding the reaction solution after polymerization reaction to a lower alcohol such as methanol, filtering the deposited precipitate, and then drying. These methods are performed alone or in combination.
  • a lower alcohol such as methanol
  • filtering the deposited precipitate and then drying.
  • These methods are performed alone or in combination.
  • the purity of the polymer host is low, it can be purified by usual methods such as recrystallization, reprecipitation, continuous extraction with a Soxhlet extractor, column chromatography, and the like.
  • the first light-emitting layer includes the metal complex represented by the formula (1) and the above-described host material, hole transport material, hole injection material, electron transport material, electron injection material, and light-emitting material (in the formula (1) And a composition containing at least one material selected from the group consisting of antioxidants (hereinafter also referred to as “the composition of the first light emitting layer”). It may be a layer formed.
  • the metal complex represented by the formula (1) in the composition of the first light emitting layer may be contained as it is in the first light emitting layer, or in (1) in the composition of the first light emitting layer.
  • the metal complex represented may be contained in the first light emitting layer in a state of being crosslinked in the molecule, between the molecules, or both. That is, the first light emitting layer may contain a composition of the first light emitting layer and / or a crosslinked product of the composition of the first light emitting layer.
  • the hole transport material is classified into a low molecular compound and a high molecular compound, and is preferably a high molecular compound.
  • the hole transport material may have a crosslinking group.
  • Examples of the low molecular weight compound include triphenylamine and derivatives thereof, N, N′-di-1-naphthyl-N, N′-diphenylbenzidine ( ⁇ -NPD), and N, N′-diphenyl-N,
  • An aromatic amine compound such as N′-di (m-tolyl) benzidine (TPD) can be mentioned.
  • polymer compound examples include polyvinyl carbazole and derivatives thereof; polyarylene having an aromatic amine structure in the side chain or main chain and derivatives thereof.
  • the polymer compound may be a compound to which an electron accepting site is bonded. Examples of the electron accepting site include fullerene, tetrafluorotetracyanoquinodimethane, tetracyanoethylene, trinitrofluorenone, and fullerene is preferable.
  • the amount of the hole transport material is usually 1 to 400 when the metal complex represented by the formula (1) is 100 parts by mass. Parts by mass, preferably 5 to 150 parts by mass.
  • the hole transport material may be used alone or in combination of two or more.
  • Electron transport materials are classified into low molecular compounds and high molecular compounds.
  • the electron transport material may have a crosslinking group.
  • low molecular weight compound examples include metal complexes having 8-hydroxyquinoline as a ligand, oxadiazole, anthraquinodimethane, benzoquinone, naphthoquinone, anthraquinone, tetracyanoanthraquinodimethane, fluorenone, diphenyldicyanoethylene, and diphenoquinone. As well as these derivatives.
  • polymer compound examples include polyphenylene, polyfluorene, and derivatives thereof.
  • the polymer compound may be doped with a metal.
  • the amount of the electron transport material is usually 1 to 400 parts by mass when the metal complex represented by the formula (1) is 100 parts by mass. Preferably, the amount is 5 to 150 parts by mass.
  • the electron transport material may be used alone or in combination of two or more.
  • the hole injection material and the electron injection material are classified into a low molecular compound and a high molecular compound, respectively.
  • the hole injection material and the electron injection material may have a crosslinking group.
  • low molecular weight compounds include metal phthalocyanines such as copper phthalocyanine; carbon; metal oxides such as molybdenum and tungsten; and metal fluorides such as lithium fluoride, sodium fluoride, cesium fluoride, and potassium fluoride.
  • metal phthalocyanines such as copper phthalocyanine
  • carbon such as carbon
  • metal oxides such as molybdenum and tungsten
  • metal fluorides such as lithium fluoride, sodium fluoride, cesium fluoride, and potassium fluoride.
  • polymer compound examples include polyaniline, polythiophene, polypyrrole, polyphenylene vinylene, polythienylene vinylene, polyquinoline and polyquinoxaline, and derivatives thereof; conductive polymers such as polymers containing an aromatic amine structure in the main chain or side chain. A functional polymer.
  • the compounding amount of the hole injection material and the electron injection material is 100 masses of the metal complex represented by the formula (1), respectively.
  • the amount is usually 1 to 400 parts by mass, preferably 5 to 150 parts by mass.
  • the electron injection material and the hole injection material may be used alone or in combination of two or more.
  • the electric conductivity of the conductive polymer is preferably 1 ⁇ 10 ⁇ 5 S / cm to 1 ⁇ 10 3 S / cm.
  • the conductive polymer can be doped with an appropriate amount of ions.
  • the kind of ions to be doped is an anion for a hole injection material and a cation for an electron injection material.
  • the anion include polystyrene sulfonate ion, alkylbenzene sulfonate ion, and camphor sulfonate ion.
  • the cation include lithium ion, sodium ion, potassium ion, and tetrabutylammonium ion.
  • the ions to be doped may be used alone or in combination of two or more.
  • the light emitting material (however, different from the metal complex represented by the formula (1)) is classified into a low molecular compound and a high molecular compound.
  • the light emitting material may have a crosslinking group.
  • Examples of the low molecular weight compound include naphthalene and derivatives thereof, anthracene and derivatives thereof, and perylene and derivatives thereof.
  • Examples of the polymer compound include phenylene group, naphthalenediyl group, anthracenediyl group, fluorenediyl group, phenanthrene diyl group, dihydrophenanthenediyl group, group represented by formula (X), carbazole diyl group, phenoxazine diyl. And a polymer compound containing a group, a phenothiazinediyl group, a pyrenediyl group, and the like.
  • the light emitting material preferably contains a metal complex.
  • the metal complex include a metal complex shown below, a metal complex represented by the following formula (2), a polymer compound of a second light-emitting layer described below, and a height of the second light-emitting layer described below.
  • Examples include a crosslinked compound of a molecular compound, preferably a metal complex represented by the following formula (2), a polymer compound of the second light emitting layer described later, or a polymer compound of the second light emitting layer described later. More preferably, it is a metal complex represented by the following formula (2).
  • the amount of the light emitting material is usually 1 to 400 parts by mass when the metal complex represented by the formula (1) is 100 parts by mass.
  • the amount is preferably 5 to 150 parts by mass.
  • Fluorescent materials may be used alone or in combination of two or more.
  • the antioxidant may be any compound that is soluble in the same solvent as the metal complex and does not inhibit light emission and charge transport. Examples thereof include phenol-based antioxidants and phosphorus-based antioxidants.
  • the amount of the antioxidant is usually 0.001 to 10 when the metal complex represented by the formula (1) is 100 parts by mass. Part by mass.
  • Antioxidants may be used alone or in combination of two or more.
  • first light emitting layer ink A composition containing a metal complex represented by the formula (1) and a solvent (hereinafter also referred to as “first light emitting layer ink”) is prepared by spin coating, casting, micro gravure coating, gravure. Coating methods, bar coating methods, roll coating methods, wire bar coating methods, dip coating methods, spray coating methods, screen printing methods, flexographic printing methods, offset printing methods, ink jet printing methods, capillary coating methods, nozzle coating methods, etc. It can be suitably used for the coating method.
  • the viscosity of the ink in the first light-emitting layer may be adjusted depending on the type of coating method. However, when a solution such as an ink jet printing method is applied to a printing method via a discharge device, clogging and flight at the time of discharge are performed. Since bending is difficult to occur, the pressure is preferably 1 to 30 mPa ⁇ s at 25 ° C.
  • the solvent contained in the ink of the first light emitting layer is preferably a solvent that can dissolve or uniformly disperse the solid content in the ink.
  • the solvent include chlorine solvents such as 1,2-dichloroethane, 1,1,2-trichloroethane, chlorobenzene and o-dichlorobenzene; ether solvents such as THF, dioxane, anisole and 4-methylanisole; Aromatic hydrocarbon solvents such as xylene, mesitylene, ethylbenzene, n-hexylbenzene, cyclohexylbenzene; cyclohexane, methylcyclohexane, n-pentane, n-hexane, n-heptane, n-octane, n-nonane, n- Aliphatic hydrocarbon solvents such as decane, n-dodecane, and bicyclohexyl; ketone solvents
  • the amount of the solvent is usually 1000 to 100,000 parts by weight, preferably 2000 to 20000 parts by weight when the metal complex represented by the formula (1) is 100 parts by weight. It is.
  • the ink for the first light emitting layer may contain components other than the metal complex represented by the formula (1) and the solvent.
  • the ink of the first light emitting layer is different from the above-described host material, hole transport material, hole injection material, electron transport material, electron injection material, and light emitting material (the metal complex represented by the formula (1)). .) And at least one material selected from the group consisting of antioxidants.
  • the second light emitting layer is usually formed using a light emitting material.
  • the light emitting material used for the second light emitting layer include a light emitting material that may be contained in the composition of the first light emitting layer described above.
  • the light emitting material used for the second light emitting layer is directly bonded to a carbon atom or a hetero atom constituting the metal complex from the metal complex represented by the formula (2) or the metal complex represented by the formula (2). It is also referred to as a polymer compound (hereinafter referred to as “polymer compound of the second light-emitting layer”) including a structural unit having a group formed by removing one or more hydrogen atoms (hereinafter also referred to as “metal complex structural unit”). ) And a cross-linked product of the polymer compound of the second light-emitting layer, and preferably a polymer compound of the second light-emitting layer and a cross-linked product thereof. Is at least one selected from the group consisting of
  • the second light emitting layer is selected from the group consisting of a metal complex represented by the formula (2), a polymer compound of the second light emitting layer, and a crosslinked product of the polymer compound of the second light emitting layer. It is preferable to contain at least one selected from the group consisting of the polymer compound of the second light-emitting layer and a crosslinked product thereof.
  • the light emitting material may be contained in the second light emitting layer as it is, or the light emitting material may be contained in the second light emitting layer in a state of being crosslinked in the molecule, between the molecules, or both. That is, the second light emitting layer may contain a light emitting material and / or a cross-linked body of the light emitting material.
  • the second light emitting layer may contain one kind of light emitting material, or may contain two or more kinds of light emitting materials.
  • the content of the light emitting material in the second light emitting layer may be in a range in which the second light emitting layer exhibits a function as a light emitting layer.
  • the content of the light emitting material may be 0.01 to 100% by mass based on the total amount of the second light emitting layer, preferably 1 to 100% by mass, and preferably 10 to 100% by mass. More preferred is 50 to 100% by mass.
  • Examples of the method for forming the second light emitting layer include a vacuum deposition method and a coating method represented by a spin coating method and an ink jet printing method, and a coating method is preferable.
  • the second light emitting layer is formed by a coating method, it is preferable to use an ink for the second light emitting layer described later.
  • the light emitting material contained in the second light emitting layer can be crosslinked by heating or light irradiation.
  • the second light emitting layer is substantially insoluble in the solvent. Therefore, the second light emitting layer can be suitably used for stacking light emitting elements.
  • the metal complex represented by the formula (2) has a central metal M 2 , a ligand whose number is defined by the subscript n 3 , and a coordination whose number is defined by the subscript n 4 . It is a metal complex composed of a ligand.
  • M 2 is preferably an iridium atom or a platinum atom, and more preferably an iridium atom, because the luminance lifetime of the light emitting device according to this embodiment is more excellent.
  • n 3 is preferably 2 or 3, and more preferably 3.
  • n 3 is preferably 2.
  • E 4 is preferably a carbon atom.
  • Ring L 1 is preferably a 6-membered aromatic heterocyclic ring having 1 or more and 4 or less nitrogen atoms as a constituent atom, and preferably a 6-membered aromatic having 1 or more and 2 or less nitrogen atoms as a constituent atom. More preferred are group heterocycles, and these rings may have a substituent.
  • Examples of the ring L 1 include a pyridine ring, a diazabenzene ring, a quinoline ring and an isoquinoline ring, a pyridine ring, a pyrimidine ring, a quinoline ring or an isoquinoline ring is preferable, and a pyridine ring, a quinoline ring or an isoquinoline ring is more preferable.
  • the ring of may have a substituent.
  • Ring L 2 is preferably a 5-membered or 6-membered aromatic hydrocarbon ring, or a 5-membered or 6-membered aromatic heterocycle, and a 6-membered aromatic hydrocarbon ring or a 6-membered aromatic heterocycle More preferably, it is a ring, more preferably a 6-membered aromatic hydrocarbon ring, and these rings may have a substituent.
  • E 4 is preferably a carbon atom.
  • Examples of the ring L 2 include a benzene ring, a naphthalene ring, a fluorene ring, a phenanthrene ring, an indene ring, a pyridine ring, a diazabenzene ring, a pyrrole ring, a furan ring, and a thiophene ring.
  • a benzene ring, a naphthalene ring, a fluorene ring, A pyridine ring or a pyrimidine ring is preferable, a benzene ring, a pyridine ring or a pyrimidine ring is more preferable, and a benzene ring is further preferable, and these rings may have a substituent.
  • Examples of the substituent that the ring L 1 and the ring L 2 may have include an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, an aryloxy group, a monovalent heterocyclic group, and a substituted amino group.
  • a halogen atom is preferred, an alkyl group, a cycloalkyl group, an aryl group, a monovalent heterocyclic group or a substituted amino group is more preferred, an alkyl group, a cycloalkyl group, an aryl group or a monovalent heterocyclic group is still more preferred.
  • An aryl group or a monovalent heterocyclic group is particularly preferred, and these groups may further have a substituent.
  • Examples of the substituent that the substituent that the ring L 1 and the ring L 2 may have may further have and preferred ranges thereof include examples of the substituent that R 11A and R 12A may have and It is the same as a preferable range.
  • substituents that the ring L 1 may have they may be the same or different and may be bonded to each other to form a ring together with the atoms to which they are bonded.
  • substituents that the ring L 2 may have they may be the same or different and may be bonded to each other to form a ring together with the atoms to which they are bonded.
  • the substituent that the ring L 1 may have and the substituent that the ring L 2 may have may be bonded to each other to form a ring together with the atoms to which they are bonded.
  • Examples and preferred ranges of the aryl group in the substituent that the ring L 1 and the ring L 2 may have are the same as the examples and preferred ranges of the aryl group in R 11A and R 12A .
  • Examples and preferred ranges of the monovalent heterocyclic group in the substituent that the ring L 1 and the ring L 2 may have are the same as the examples and preferred ranges of the monovalent heterocyclic group in R 11A and R 12A . is there.
  • Examples and preferred ranges of the substituted amino group in the substituent that the ring L 1 and the ring L 2 may have are the same as the examples and preferred ranges of the substituted amino group in R 11A and R 12A .
  • the substituents that the ring L 1 and the ring L 2 may have are preferably superior in the luminance lifetime of the light emitting device according to this embodiment, and are preferably represented by the formula (DA), (DB) or ( DC), more preferably a group represented by formula (DA) or (DB), and still more preferably a group represented by formula (DA). It is.
  • G DA is preferably a group represented by the formula (GDA-11) to ( GDA-15), more preferably groups represented by formulas (GDA-11) to (GDA-14), and further preferably formula (GDA-11) or (GDA-14). It is group represented by these.
  • the group represented by the formula (DA) is preferably represented by the formulas (DA1) to (DA4). More preferably a group represented by the formula (D-A1), (D-A3) or (D-A4), and still more preferably a group represented by the formula (D-A1) or (D-A3). It is a group represented.
  • the group represented by the formula (DB) is preferably represented by the formulas (DB1) to (DB3). More preferably a group represented by the formula (D-B1) or (D-B3).
  • the groups represented by the formula (DC) are preferably groups represented by the formulas (D-C1) to (D-C4) More preferred are groups represented by formulas (D-C1) to (D-C3), and even more preferred are groups represented by formula (D-C1) or (D-C2).
  • At least one of the ring L 1 and the ring L 2 preferably has a substituent.
  • anionic bidentate ligand examples of the anionic bidentate ligand represented by A 3 -G 2 -A 4 include the ligands represented by the following.
  • the anionic bidentate ligand represented by A 3 -G 2 -A 4 may be a ligand represented by the following.
  • R L1 is preferably a hydrogen atom, an alkyl group, a cycloalkyl group, or a fluorine atom, more preferably a hydrogen atom or an alkyl group, and these groups optionally have a substituent.
  • R L2 is preferably an alkyl group, a cycloalkyl group, an aryl group or a monovalent heterocyclic group, more preferably an aryl group or a monovalent heterocyclic group, still more preferably an aryl group, This group may have a substituent.
  • the metal complex represented by the formula (2) is preferably a metal complex represented by the formula (2-B) because the luminance lifetime of the light emitting device according to this embodiment is more excellent.
  • R 11B , R 12B , R 13B , R 14B , R 21B , R 22B , R 23B and R 24B are a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group, a monovalent heterocyclic group or a substituted amino group. It is preferably a hydrogen atom, an alkyl group, a cycloalkyl group, or a group represented by the formula (DA), (DB) or (DC), more preferably a hydrogen atom, or More preferably a group represented by formula (DA), (DB) or (DC), a hydrogen atom, or a group represented by formula (DA) or (DB). And particularly preferably a hydrogen atom or a group represented by the formula (DA), and these groups may have a substituent.
  • Examples and preferred ranges of the aryl group, monovalent heterocyclic group and substituted amino group in R 11B , R 12B , R 13B , R 14B , R 21B , R 22B , R 23B and R 24B are the ring L 1 and Examples of the aryl group, monovalent heterocyclic group and substituted amino group in the substituent that the ring L 2 may have are the same as the preferred range.
  • R 11B , R 12B , R 13B , R 14B , R 21B , R 22B , R 23B and R 24B may have and preferred ranges thereof have ring L 1 and ring L 2. It is the same as the example and preferable range of the substituent which the substituent which may be further may have.
  • a pyrimidine ring in which E 11B is a nitrogen atom is preferable.
  • Ring L 1B is preferably a pyridine ring.
  • ring L 2B is a pyridine ring
  • a pyridine ring in which E 21B is a nitrogen atom a pyridine ring in which E 22B is a nitrogen atom, or a pyridine ring in which E 23B is a nitrogen atom is preferable, and E 22B is a nitrogen atom.
  • Some pyridine rings are more preferred.
  • ring L 2B is a pyrimidine ring
  • a pyrimidine ring in which E 21B and E 23B are nitrogen atoms or a pyrimidine ring in which E 22B and E 24B are nitrogen atoms is preferable, and E 22B and E 24B are nitrogen atoms.
  • a pyrimidine ring is more preferred.
  • Ring L 2B is preferably a benzene ring.
  • At least one of R 11B , R 12B , R 13B , R 14B , R 21B , R 22B , R 23B and R 24B is an alkyl group, cyclohexane
  • An alkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, an aryloxy group, a monovalent heterocyclic group, a substituted amino group, or a halogen atom is preferable, and an alkyl group, a cycloalkyl group, an aryl group, a monovalent complex is preferable.
  • a cyclic group or a substituted amino group is more preferable, and an alkyl group, a cycloalkyl group, or a group represented by the formula (DA), (DB), or (DC) is further included.
  • a hydrogen atom or a group represented by the formula (DA), (DB) or (DC) is particularly preferable, and a hydrogen atom or the formula (DA) is preferable.
  • a group represented by (DB) is particularly preferred, and a hydrogen atom or a group represented by formula (DA) is particularly preferred, and these groups have substituents. You may have.
  • At least one of R 11B , R 12B , R 13B , R 14B , R 21B , R 22B , R 23B and R 24B is an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, an aryloxy group Group, monovalent heterocyclic group, substituted amino group or halogen atom
  • at least one of R 12B , R 13B , R 22B and R 23B is an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group , Aryl group, aryloxy group, monovalent heterocyclic group, substituted amino group, or halogen atom
  • R 13B or R 22B is an alkyl group, cycloalkyl group, alkoxy group, cycloalkoxy group, aryl group An aryloxy group, a monovalent heterocyclic group, a substituted amino group,
  • the metal complex represented by the formula (2-B) is represented by the metal complex represented by the formula (2-B1), the formula (2-B2).
  • a metal complex represented by the formula (2-B3), a metal complex represented by the formula (2-B4) or a metal complex represented by the formula (2-B5) is represented by the metal complex represented by (2-B1), a metal complex represented by formula (2-B2), or a metal complex represented by formula (2-B3) is more preferred.
  • a metal complex represented by the formula (2-B3) is more preferable.
  • R 15B , R 16B , R 17B and R 18B are preferably a hydrogen atom, an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, a monovalent heterocyclic group or a substituted amino group, It is more preferably an atom, an alkyl group, a cycloalkyl group or an aryl group, further preferably a hydrogen atom or an alkyl group, particularly preferably a hydrogen atom, and these groups have a substituent. Also good.
  • aryl group, monovalent heterocyclic group and substituted amino group in R 15B , R 16B , R 17B and R 18B and preferred ranges thereof are the substituents that ring L 1 and ring L 2 may have, respectively.
  • aryl group, monovalent heterocyclic group and substituted amino group are the substituents that ring L 1 and ring L 2 may have, respectively.
  • Examples and preferred ranges of the substituent that R 15B , R 16B , R 17B and R 18B may have may be further included in the substituent which ring L 1 and ring L 2 may have. Examples of good substituents and preferred ranges are the same.
  • Examples of the metal complex represented by the formula (2) include a metal complex represented by the following formula.
  • triplet light-emitting complex in the metal complex represented by the formula (2) and the composition of the first light-emitting layer described above is described in Aldrich, Luminescence Technology Corp. Available from the American Dye Source.
  • the metal complex constituent unit is preferably a carbon atom constituting the metal complex from the metal complex represented by the formula (2) because the luminance lifetime of the light emitting device according to this embodiment is excellent and the synthesis is easy.
  • the metal complex is composed of a metal complex represented by the formula (2)
  • a structural unit containing a group formed by removing 1 or more and 3 or less hydrogen atoms directly bonded to a carbon atom or a hetero atom more preferably a structural unit represented by the formula (1B), represented by the formula (2B)
  • a structural unit represented by the formula (3B) And the especially preferred is a structural unit represented by the formula (3B).
  • R A is preferably an aryl group or a monovalent heterocyclic group, more preferably an aryl group, and these groups optionally have a substituent.
  • R B is preferably a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group or a monovalent heterocyclic group, more preferably a hydrogen atom, an alkyl group, a cycloalkyl group or an aryl group, and a hydrogen atom or an alkyl group. Is more preferable, and a hydrogen atom is particularly preferable, and these groups may have a substituent.
  • L C is preferably —C (R B ) 2 —, an arylene group or a divalent heterocyclic group, more preferably —C (R B ) 2 — or an arylene group, and an arylene group.
  • the group represented by formula (A-1) or (A-2) is particularly preferable, and these groups may have a substituent.
  • Examples and preferred ranges of the arylene group and divalent heterocyclic group represented by L C are the same as the examples and preferred ranges of the arylene group and divalent heterocyclic group represented by Ar Y1 described above, respectively. .
  • Examples and preferred ranges of the substituents that R A , R B and L C may have are the same as the examples and preferred ranges of the substituents which the group represented by Ar Y1 may have, respectively. It is.
  • n c1 is usually an integer of 0 to 10, preferably an integer of 0 to 5, more preferably an integer of 0 to 2, still more preferably 0 or 1, and particularly preferably 0. .
  • the polymer compound of the second light emitting layer is a polymer compound containing a structural unit represented by the formula (1B)
  • the structural unit represented by the formula (1B) is a terminal structural unit.
  • terminal structural unit means a terminal structural unit of the polymer compound, and the terminal structural unit is preferably a structural unit derived from a terminal blocking agent in the production of the polymer compound. .
  • M 1B is more preferably a group represented by the formula (BM-1).
  • Ring L 11 represents a 6-membered aromatic heterocyclic ring, and these rings may have a substituent. When a plurality of such substituents are present, they may be the same or different, and may be bonded to each other to form a ring together with the atoms to which each is bonded.
  • Ring L 12 represents an aromatic hydrocarbon ring or aromatic heterocyclic ring, these rings may have a substituent. When a plurality of such substituents are present, they may be the same or different, and may be bonded to each other to form a ring together with the atoms to which each is bonded.
  • n 11 and n 12 each independently represent an integer of 0 or more. However, n 11 + n 12 is 1 or 2.
  • M 2 is a rhodium atom or an iridium atom
  • n 11 + n 12 is 2
  • M 2 is a palladium atom or a platinum atom
  • n 11 + n 12 is 1.
  • n 11 is more preferably 2.
  • n 11 is preferably 1.
  • ring L 12 does not have a bond
  • the definition, examples and preferred ranges of ring L 12 are the same as the definitions, examples and preferred ranges of ring L 2 described above.
  • the definitions, examples and preferred ranges of the substituents that the ring L 11 and the ring L 12 may have are the definitions, examples and preferred ranges of the substituents which the aforementioned ring L 1 and ring L 2 may have. It is the same.
  • L d is preferably —C (R B ) 2 —, an arylene group or a divalent heterocyclic group, more preferably an arylene group or a divalent heterocyclic group, and preferably an arylene group. More preferred is a group represented by the formula (A-1) or (A-2), and these groups may have a substituent.
  • Le is preferably —C (R B ) 2 —, an arylene group or a divalent heterocyclic group, more preferably —C (R B ) 2 — or an arylene group, and an arylene group.
  • the group represented by formula (A-1) or (A-2) is particularly preferable, and these groups may have a substituent.
  • n d1 and n e1 are usually an integer of 0 to 10, preferably an integer of 0 to 5, more preferably an integer of 0 to 2, still more preferably 0 or 1, particularly preferably. 0.
  • Ar 1M is a benzene ring, a naphthalene ring, a fluorene ring, a phenanthrene ring, a dihydrophenanthrene ring, a pyridine ring, a diazabenzene ring, a triazine ring, a carbazole ring, a phenoxazine ring, or a phenothiazine ring.
  • the group is preferably a group in which three hydrogen atoms directly bonded are removed, and three hydrogen atoms directly bonded to carbon atoms constituting the ring are excluded from a benzene ring, naphthalene ring, fluorene ring, phenanthrene ring or dihydrophenanthrene ring. More preferably a group obtained by removing three hydrogen atoms directly bonded to the carbon atoms constituting the ring from the benzene ring or fluorene ring, and the carbon constituting the ring from the benzene ring. Particularly preferred is a group excluding three hydrogen atoms directly bonded to the atom. Preferably, these groups may have a substituent.
  • Examples and preferred ranges of the substituents that L d , Le and Ar 1M may have are the same as the examples and preferred ranges of the substituents which the group represented by Ar Y1 may have, respectively. It is.
  • M 2B is more preferably a group represented by the formula (BM-2) or (BM-3), and even more preferably a group represented by the formula (BM-2).
  • n 13 and n 14 each independently represent an integer of 0 or more. However, n 13 + n 14 is 0 or 1. When M 2 is a rhodium atom or an iridium atom, n 13 + n 14 is 1, and when M 2 is a palladium atom or a platinum atom, n 13 + n 14 is 0. ]
  • n 13 is preferably 1.
  • Ring L 13 represents a 6-membered aromatic heterocyclic ring, and these rings optionally have a substituent. When a plurality of such substituents are present, they may be the same or different, and may be bonded to each other to form a ring together with the atoms to which each is bonded.
  • Ring L 14 represents an aromatic hydrocarbon ring or an aromatic heterocyclic ring, and these rings optionally have a substituent.
  • substituents When a plurality of such substituents are present, they may be the same or different, and may be bonded to each other to form a ring together with the atoms to which each is bonded. However, one of the ring L 13 and the ring L 14 has two bonds, or each of the ring L 13 and the ring L 14 has one bond. ]
  • ring L 14 does not have a bond
  • the definition, examples and preferred ranges of ring L 14 are the same as the definitions, examples and preferred ranges of ring L 2 described above.
  • the definitions, examples and preferred ranges of the substituents that the ring L 13 and the ring L 14 may have are the definitions, examples and preferred ranges of the substituents which the aforementioned ring L 1 and ring L 2 may have. It is the same.
  • Each of the ring L 13 and the ring L 14 preferably has one bond.
  • M 3B is preferably a group represented by the formula (BM-4).
  • n 15 represents 0 or 1.
  • n 16 represents 1 or 3.
  • M 2 is a rhodium atom or an iridium atom
  • n 15 is 0 and n 16 is 3.
  • M 2 is a palladium atom or a platinum atom
  • n 15 is 1 and n 16 is 1.
  • Examples of the metal complex constituent unit include formulas (1G-1) to (1G-13), (2G-1) to (2G-16), (3G-1) to (3G-23) or (4G-1). ) To (4G-6).
  • RD represents the same meaning as described above.
  • De represents a group represented by the formula (DA), (DB) or (DC). ]
  • the metal complex constituent unit has an excellent luminance lifetime of the light emitting device according to the present embodiment, it is preferably 0.01 to 50 mol% with respect to the total amount of constituent units contained in the polymer compound of the second light emitting layer. More preferably, it is 0.1 to 30 mol%, further preferably 0.5 to 10 mol%, and particularly preferably 1 to 5 mol%.
  • the polymer compound of the second light emitting layer is excellent in hole transport property, it is preferable that the polymer compound further contains a structural unit represented by the formula (X).
  • the definition, examples, and preferred ranges of the structural unit represented by the formula (X) that the polymer compound of the second light emitting layer may contain are those represented by the formula (X) that the polymer host described above may contain.
  • the definition, examples, and preferred ranges of the structural unit represented are the same.
  • the structural unit represented by the formula (X) contained in the polymer compound of the second light emitting layer is a hole. Since transportability is more excellent, it is preferably 1 to 80 mol%, more preferably 10 to 60 mol%, based on the total amount of structural units contained in the polymer compound of the second light emitting layer, Preferably, it is 20 to 40 mol%.
  • the structural unit represented by the formula (X) may be contained in the polymer compound of the second light emitting layer only in one kind, or in two or more kinds.
  • the polymer compound of the second light emitting layer further includes a structural unit represented by the formula (Y) because the luminance life of the light emitting device according to this embodiment is excellent.
  • the definition, examples, and preferred ranges of the structural unit represented by the formula (Y) that the polymer compound of the second light emitting layer may contain are those represented by the formula (Y) that the polymer host may contain.
  • the definition, examples, and preferred ranges of the structural unit represented are the same.
  • the polymer compound of the second light emitting layer contains a structural unit represented by the formula (Y) and Ar Y1 is an arylene group
  • the polymer compound of the second light emitting layer is represented by the formula (Y) contained in the polymer compound of the second light emitting layer.
  • the structural unit is preferably 0.5 to 90 moles relative to the total amount of the structural units contained in the polymer compound of the second light emitting layer because the luminance life of the light emitting device according to the present embodiment is more excellent. %, More preferably 30 to 80 mol%.
  • the polymer compound of the second light-emitting layer includes a structural unit represented by the formula (Y), and Ar Y1 is a divalent heterocyclic group, or at least one arylene group and at least one divalent complex.
  • the structural unit represented by the formula (Y) contained in the polymer compound of the second light emitting layer is the charge transport property of the light emitting device according to this embodiment. Therefore, it is preferably 0.5 to 40 mol%, more preferably 3 to 30 mol%, based on the total amount of structural units contained in the polymer compound of the second light emitting layer.
  • the structural unit represented by the formula (Y) may be included in the polymer compound of the second light emitting layer, or may be included in two or more types.
  • the polymer compound of the second light-emitting layer preferably further includes a cross-linking structural unit having a cross-linking group because the light-emitting element according to this embodiment can be formed by a coating method and the light-emitting element can be laminated.
  • cross-linking structural unit having a cross-linking group may be included in the polymer compound of the second light emitting layer, or two or more types may be included.
  • the polymer compound of the second light-emitting layer is selected from the group consisting of a cross-linking structural unit having a cross-linking group, a structural unit represented by the formula (X), and a structural unit represented by the formula (Y). It is preferable to further include at least one structural unit, and at least 2 selected from the group consisting of a cross-linking structural unit having a cross-linking group, a structural unit represented by formula (X), and a structural unit represented by formula (Y). It is more preferable to further include a seed structural unit, and it is more preferable to further include a cross-linking structural unit having a cross-linking group, a structural unit represented by the formula (X), and a structural unit represented by the formula (Y).
  • the crosslinking group is preferably a crosslinking group selected from the group A of crosslinking groups, and more preferably, the formula (XL -1), (XL-3), (XL-9), (XL-16) or (XL-17), and more preferably a formula (XL-1), (XL- 16) or a crosslinking group represented by (XL-17), particularly preferably a crosslinking group represented by the formula (XL-1) or (XL-17).
  • the crosslinked structural unit having a crosslinking group that may be contained in the polymer compound of the second light emitting layer is a structural unit represented by the following formula (3) and a structural unit represented by the formula (4). Although it is preferable, the structural unit represented by the following may be sufficient.
  • the crosslinked structural unit having a crosslinking group that may be contained in the polymer compound of the second light emitting layer is preferably a structural unit represented by the formula (3) or a structural unit represented by the formula (4). .
  • nA represents an integer of 0 to 5, and n represents an integer of 1 to 4.
  • Ar 1 represents an aromatic hydrocarbon group or a heterocyclic group, and these groups optionally have a substituent.
  • L A is an alkylene group, a cycloalkylene group, an arylene group, a divalent heterocyclic group, the group represented by -NR'-, an oxygen atom or a sulfur atom, these groups have a substituent Also good.
  • R ′ represents a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group, or a monovalent heterocyclic group, and these groups optionally have a substituent.
  • X represents a crosslinking group represented by any one of formulas (XL-1) to (XL-17). When two or more X exists, they may be the same or different. ]
  • nA is preferably an integer of 0 to 3, more preferably an integer of 0 to 2, even more preferably 0 or 1, and particularly preferably because the luminance life of the light emitting device according to this embodiment is excellent. 1.
  • N is preferably 1 or 2 and more preferably 2 because the luminance lifetime of the light emitting device according to this embodiment is excellent.
  • Ar 1 is preferably an aromatic hydrocarbon group which may have a substituent since the luminance lifetime of the light emitting device according to this embodiment is excellent.
  • the number of carbon atoms of the aromatic hydrocarbon group represented by Ar 1 is usually 6 to 60, preferably 6 to 30, and more preferably 6 to 18, excluding the number of carbon atoms of the substituent. is there.
  • the arylene group portion excluding n substituents of the aromatic hydrocarbon group represented by Ar 1 is preferably a group represented by formulas (A-1) to (A-20), and more Preferred is a group represented by the formula (A-1), (A-2), (A-6) to (A-10), (A-19) or (A-20), and more preferred A group represented by formula (A-1), (A-2), (A-7), (A-9) or (A-19), and these groups have a substituent. Also good.
  • the number of carbon atoms of the heterocyclic group represented by Ar 1 is usually 2 to 60, preferably 3 to 30, more preferably 4 to 18, excluding the number of carbon atoms of the substituent.
  • the divalent heterocyclic group moiety excluding n substituents of the heterocyclic group represented by Ar 1 is preferably a group represented by the formulas (AA-1) to (AA-34). .
  • the aromatic hydrocarbon group and heterocyclic group represented by Ar 1 may have a substituent, and examples of the substituent include an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, and an aryloxy group.
  • substituent include an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, and an aryloxy group.
  • Group, halogen atom, monovalent heterocyclic group and cyano group are preferred.
  • Alkylene group represented by L A is not including the carbon atom number of substituent is usually 1 to 20, preferably 1 to 15, more preferably 1 to 10. Cycloalkylene group represented by L A is not including the carbon atom number of substituent is usually 3 to 20.
  • the alkylene group and the cycloalkylene group may have a substituent, and examples thereof include a methylene group, an ethylene group, a propylene group, a butylene group, a hexylene group, a cyclohexylene group, and an octylene group.
  • Alkylene group and cycloalkylene group represented by L A may have a substituent.
  • the substituent that the alkylene group and the cycloalkylene group may have, an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, a halogen atom, and a cyano group are preferable.
  • Arylene group represented by L A may have a substituent.
  • the arylene group is preferably a phenylene group or a fluorenediyl group, more preferably an m-phenylene group, a p-phenylene group, a fluorene-2,7-diyl group, or a fluorene-9,9-diyl group.
  • the substituent that the arylene group may have include an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, an aryloxy group, a monovalent heterocyclic group, a halogen atom, a cyano group, and a bridging group A.
  • a crosslinking group selected from the group is preferred.
  • an arylene group or an alkylene group preferably a phenylene group, fluorenediyl group or an alkylene group, these This group may have a substituent.
  • the crosslinkable group represented by X is preferably a compound of the formula (XL-1), (XL-3), (XL-7) to (XL-) because the crosslinkability of the polymer compound of the second light emitting layer is excellent. 10), (XL-16) or (XL-17), and more preferably a crosslinking group represented by the formula (XL-1), (XL-3), (XL-9), (XL-16) ) Or (XL-17), more preferably a crosslinking group represented by the formula (XL-1), (XL-16) or (XL-17), particularly preferably And a crosslinking group represented by the formula (XL-1) or (XL-17).
  • the structural unit represented by the formula (3) is preferable with respect to the total amount of the structural units contained in the polymer compound of the second light emitting layer because the crosslinkability of the polymer compound of the second light emitting layer is excellent. Is 0.5 to 80 mol%, more preferably 1 to 60 mol%, still more preferably 3 to 40 mol%, particularly preferably 5 to 20 mol%.
  • the structural unit represented by Formula (3) may be included in the polymer compound of the second light emitting layer, or may be included in two or more types.
  • mA represents an integer of 0 to 5
  • m represents an integer of 1 to 4
  • c represents 0 or 1.
  • Ar 3 represents an aromatic hydrocarbon group, a heterocyclic group, or a group in which at least one aromatic hydrocarbon ring and at least one heterocyclic ring are directly bonded, and these groups have a substituent. It may be.
  • Ar 2 and Ar 4 each independently represent an arylene group or a divalent heterocyclic group, and these groups optionally have a substituent.
  • Ar 2 , Ar 3 and Ar 4 are each bonded to a group other than the group bonded to the nitrogen atom to which the group is bonded, directly or via an oxygen atom or a sulfur atom, to form a ring. It may be.
  • K A is an alkylene group, a cycloalkylene group, an arylene group, a divalent heterocyclic group, -NR '' - represents a group represented by an oxygen atom or a sulfur atom in these groups have a substituent May be.
  • R ′′ represents a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group, or a monovalent heterocyclic group, and these groups optionally have a substituent.
  • X ′ represents a bridging group represented by any one of formulas (XL-1) to (XL-17), a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group, or a monovalent heterocyclic group, and The group may have a substituent. However, at least one X ′ is a bridging group represented by any one of formulas (XL-1) to (XL-17). ]
  • MA is preferably 0 or 1, more preferably 0, because the luminance lifetime of the light emitting device according to this embodiment is excellent.
  • M is preferably 0 because the luminance lifetime of the light emitting device according to this embodiment is excellent.
  • C is preferably 0 because it facilitates the synthesis of the polymer compound of the second light emitting layer and the luminance life of the light emitting device according to this embodiment is excellent.
  • Ar 3 is preferably an aromatic hydrocarbon group which may have a substituent since the luminance lifetime of the light emitting device according to this embodiment is excellent.
  • the definition and example of the arylene group part excluding m substituents of the aromatic hydrocarbon group represented by Ar 3 are the same as the definition and example of the arylene group represented by Ar X2 in the above formula (X). It is.
  • the definition and example of the divalent heterocyclic group part excluding m substituents of the heterocyclic group represented by Ar 3 are the divalent heterocyclic group represented by Ar X2 in the above formula (X). Same as definition and example of part.
  • the definition and examples of the divalent group excluding m substituents of the group in which at least one aromatic hydrocarbon ring represented by Ar 3 and at least one heterocycle are directly bonded are defined by the above formula (
  • the definition and examples of the divalent group in which at least one kind of arylene group represented by Ar X2 and at least one kind of divalent heterocyclic group in X) are directly bonded are the same.
  • Ar 2 and Ar 4 are preferably an arylene group which may have a substituent since the luminance lifetime of the light emitting device according to this embodiment is excellent.
  • the definitions and examples of the arylene group represented by Ar 2 and Ar 4 are the same as the definitions and examples of the arylene group represented by Ar X1 and Ar X3 in the above formula (X).
  • the definitions and examples of the divalent heterocyclic group represented by Ar 2 and Ar 4 are the same as the definitions and examples of the divalent heterocyclic group represented by Ar X1 and Ar X3 in the aforementioned formula (X). is there.
  • the groups represented by Ar 2 , Ar 3 and Ar 4 may have a substituent, and examples of the substituent include an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, an aryloxy group, A halogen atom, a monovalent heterocyclic group and a cyano group are preferred.
  • L A the alkylene group represented by L A
  • a cycloalkylene group an arylene group
  • a divalent heterocyclic The definition and examples of the ring group are the same.
  • K A since the synthesis of the polymer compound of the second light-emitting layer is facilitated is preferably a phenylene group or methylene group, and these groups may have a substituent.
  • crosslinking group represented by X ′ are the same as the definition and example of the crosslinking group represented by X described above.
  • the structural unit represented by the formula (4) is excellent in the hole transport property of the polymer compound of the second light emitting layer and the crosslinkability of the polymer compound of the second light emitting layer.
  • it is 0.5 to 80 mol%, more preferably 1 to 60 mol%, still more preferably 3 to 40 mol%, based on the total amount of structural units contained in the polymer compound of the light emitting layer. It is particularly preferably 5 to 20 mol%.
  • the structural unit represented by the formula (4) may be included in the polymer compound of the second light emitting layer, or may be included in two or more types.
  • Examples of the structural unit represented by the formula (3) include structural units represented by the formulas (3-1) to (3-30).
  • Examples thereof include structural units represented by formulas (4-1) to (4-9).
  • it is preferably a structural unit represented by the formulas (3-1) to (3-30), more preferably the formula ( (3-1) to (3-15), (3-19), (3-20), (3-23), (3-25), or a structural unit represented by (3-30), and Preferred are structural units represented by formulas (3-1) to (3-13) or (3-30), and particularly preferred are formulas (3-1) to (3-9) or (3- 30).
  • polymer compound for the second light emitting layer examples include polymer compounds P-7 to P-20 shown in Table 1.
  • “other” means a structural unit other than the structural units represented by the metal complex structural unit, Formula (3), Formula (4), Formula (X), and Formula (Y).
  • p ′, q ′, r ′, s ′, t ′ and u ′ represent the molar ratio (mol%) of each structural unit.
  • p ′ + q ′ + r ′ + s ′ + t ′ + u ′ 100 and 70 ⁇ p ′ + q ′ + r ′ + s ′ + t ′ ⁇ 100.
  • the polymer compound of the second light-emitting layer may be any of a block copolymer, a random copolymer, an alternating copolymer, and a graft copolymer, and may be in other modes.
  • a copolymer obtained by copolymerizing seed raw material monomers is preferable.
  • the polymer compound of the second light emitting layer can be produced by a method similar to the method for producing the polymer host described above. Further, as production methods other than the above, for example, Japanese Patent Application Laid-Open No. 2003-171659, International Publication No. 2006/003000, Japanese Patent Application Laid-Open No. 2010-43243, Japanese Patent Application Laid-Open No. 2011-105701, International Publication No. 2013/021180. Can be synthesized according to the methods described in JP-A-2015-174931 and JP-A-2015-174932.
  • the second light emitting layer contains a light emitting material and at least one material selected from the group consisting of a host material, a hole transport material, a hole injection material, an electron transport material, an electron injection material, and an antioxidant.
  • a layer formed using a composition hereinafter also referred to as “composition of a second light emitting layer” may be used.
  • the second light-emitting layer is formed using the composition of the second light-emitting layer.
  • the light emitting material in the composition of the second light emitting layer may be contained in the second light emitting layer as it is, and the light emitting material in the composition of the second light emitting layer is intramolecular, intermolecular, or those Both of them may be contained in the second light emitting layer in a crosslinked state. That is, the second light emitting layer may contain a composition of the second light emitting layer and / or a crosslinked product of the composition of the second light emitting layer.
  • Examples and preferred ranges of the host material, hole transport material, electron transport material, hole injection material, and electron injection material in the composition of the second light emitting layer include the host material, positive electrode, and the like in the composition of the first light emitting layer.
  • the examples and preferred ranges of the hole transport material, electron transport material, hole injection material and electron injection material are the same.
  • the compounding amount of the host material is usually 50 to 99.9 parts by mass, preferably 60 to 99, when the total of the light emitting material and the host material is 100 parts by mass. Part by mass, more preferably 70 to 95 parts by mass.
  • the compounding amounts of the hole transport material, the electron transport material, the hole injection material, and the electron injection material are each usually 1 to 400 masses when the light emitting material is 100 parts by mass. Part, preferably 5 to 150 parts by weight.
  • examples and preferred ranges of the antioxidant are the same as examples and preferred ranges of the antioxidant in the composition of the first light emitting layer.
  • the blending amount of the antioxidant is usually 0.001 to 10 parts by mass when the light emitting material is 100 parts by mass.
  • a composition containing a light emitting material and a solvent (hereinafter, also referred to as “second light emitting layer ink”) is formed by spin coating, casting, or microgravure coating, as with the first light emitting layer ink.
  • Gravure coating method, bar coating method, roll coating method, wire bar coating method, dip coating method, spray coating method, screen printing method, flexographic printing method, offset printing method, inkjet printing method, capillary coating method, nozzle coating method It can use suitably for coating methods, such as.
  • the preferable range of the viscosity of the ink of the second light emitting layer is the same as the preferable range of the viscosity of the ink of the first light emitting layer.
  • Examples and preferred ranges of the solvent contained in the ink of the second light emitting layer are the same as examples and preferred ranges of the solvent contained in the ink of the first light emitting layer.
  • the amount of the solvent is usually 1000 to 100,000 parts by weight, preferably 2000 to 20000 parts by weight when the polymer compound of the second light emitting layer is 100 parts by weight. is there.
  • the ink of the second light emitting layer may contain components other than the light emitting material and the solvent.
  • the ink of the second light emitting layer further includes at least one material selected from the group consisting of a host material, a hole transport material, a hole injection material, an electron transport material, an electron injection material, and an antioxidant. May be.
  • the light emitting device includes an anode, a cathode, a first light emitting layer provided between the anode and the cathode, and a second light emitting layer provided between the anode and the cathode.
  • the light emitting device may have a layer other than the anode, the cathode, the first light emitting layer, and the second light emitting layer.
  • the first light emitting layer and the second light emitting layer are preferably adjacent to each other because the luminance life of the light emitting device according to this embodiment is more excellent.
  • the second light emitting layer is preferably a layer provided between the anode and the first light emitting layer because the luminance life of the light emitting device according to this embodiment is more excellent. .
  • the content of the metal complex represented by the formula (1) used for forming the first light emitting layer and the content of the light emitting material used for forming the second light emitting layer By adjusting the ratio, it is possible to adjust the emission color, and it is also possible to adjust the emission color to white.
  • the light emission color of the light emitting element can be confirmed by measuring the light emission chromaticity of the light emitting element and obtaining the chromaticity coordinates (CIE chromaticity coordinates).
  • the white emission color is, for example, a chromaticity coordinate X in the range of 0.20 to 0.55 and a chromaticity coordinate Y in the range of 0.20 to 0.55.
  • the degree coordinate X is in the range of 0.25 to 0.51
  • the chromaticity coordinate Y is in the range of 0.25 to 0.51.
  • the maximum peak wavelength of the emission spectrum of the metal complex represented by the formula (1) is usually 380 nm or more. It is less than 495 nm, preferably 400 nm or more and 490 nm or less, more preferably 420 nm or more and 485 nm or less, and further preferably 450 nm or more and 480 nm or less.
  • the emission spectrum of the light-emitting material used for forming the second light-emitting layer is usually 495 nm or more and less than 750 nm.
  • Has a maximum wavelength preferably 500 nm or more and 700 nm or less, more preferably 570 nm or more and 680 nm or less, and still more preferably 590 nm or more and 640 nm or less.
  • the maximum peak wavelength of the emission spectrum of the metal complex represented by the formula (2) is usually 495 nm or more. It is less than 750 nm, preferably 500 nm or more and 700 nm or less.
  • the light emitting material contained in the second light emitting layer is a metal complex represented by the formula (2).
  • the maximum peak wavelength of the emission spectrum of the metal complex represented by the formula (2) is usually from 495 nm to less than 750 nm, preferably from 500 nm to 700 nm, more preferably from 570 nm to 680 nm, More preferably, it is 590 nm or more and 640 nm or less.
  • the light emitting material contained in the second light emitting layer is a polymer compound of the second light emitting layer.
  • the maximum peak wavelength of the emission spectrum of the metal complex represented by the formula (2) contained in the polymer compound of the second light emitting layer is usually from 495 nm to less than 750 nm, preferably from 500 nm to 700 nm. Yes, more preferably from 570 nm to 680 nm, and even more preferably from 590 nm to 640 nm.
  • the light emitting material contained in the second light emitting layer is a polymer compound of the second light emitting layer.
  • the maximum peak wavelength of the emission spectrum of the metal complex represented by the formula (2) contained in the crosslinked body of the polymer compound of the second light emitting layer is usually 495 nm or more and less than 750 nm, preferably Is 500 nm to 700 nm, more preferably 570 nm to 680 nm, and still more preferably 590 nm to 640 nm.
  • the first light emitting layer of the light emitting element according to this embodiment has a maximum wavelength of the emission spectrum of 380 nm.
  • the layer is preferably formed using a composition further containing a light-emitting material having a thickness of less than 750 nm (hereinafter also referred to as “third light-emitting material”).
  • Examples and preferred ranges of the third light emitting material are the same as examples and preferred ranges of the light emitting material that may be contained in the composition of the first light emitting layer.
  • the emission spectrum of the third light emitting material preferably has a maximum wavelength at 495 nm or more and less than 750 nm. More preferably, the maximum wavelength is 500 nm or more and 700 nm or less, still more preferably 500 nm or more and less than 570 nm, and particularly preferably 505 nm or more and 560 nm or less.
  • the third light emitting material is a metal complex represented by the formula (2)
  • the maximum peak wavelength of the emission spectrum of the metal complex represented by) is usually from 495 nm to less than 750 nm, preferably from 500 nm to 700 nm, more preferably from 500 nm to less than 570 nm, still more preferably from 505 nm to 560 nm. It is as follows.
  • the third light emitting material is a polymer compound of the second light emitting layer
  • the second light emission The maximum peak wavelength of the emission spectrum of the metal complex represented by the formula (2) contained in the polymer compound in the layer is usually 495 nm or more and less than 750 nm, preferably 500 nm or more and 700 nm or less, more preferably 500 nm or more. It is less than 570 nm, more preferably 505 nm or more and 560 nm or less.
  • the maximum peak wavelength of the emission spectrum of the metal complex represented by the formula (2) contained in the crosslinked polymer compound of the light emitting layer of 2 is usually from 495 nm to less than 750 nm, preferably from 500 nm to 700 nm. More preferably, it is 500 nm or more and less than 570 nm, More preferably, it is 505 nm or more and 560 nm or less.
  • the second light emitting layer of the light emitting device includes two or more types of light emitting materials. It is preferable that it is a layer formed by using.
  • the second light emitting layer is a layer formed using two or more kinds of light emitting materials, from the viewpoint of adjusting the emission color of the light emitting element according to this embodiment (particularly, adjusting the emission color to white).
  • the maximum wavelengths of the emission spectra of at least two kinds of luminescent materials are preferably different from each other, and the difference is preferably 10 to 200 nm, more preferably 20 to 150 nm, and still more preferably 40 to 120 nm.
  • the light emission of the light emitting element is a light emitting material having a maximum wavelength at 500 nm or more and less than 570 nm and a light emission having a maximum wavelength at 570 nm or more and 680 nm or less.
  • a combination with a material is preferable, and a combination of a light emitting material having a maximum wavelength at 505 nm to 560 nm and a light emitting material having a maximum wavelength at 590 nm to 640 nm is more preferable.
  • the maximum peak wavelength and the maximum wavelength of the emission spectrum of the metal complex and the light emitting material are prepared by dissolving the metal complex or the light emitting material in an organic solvent such as xylene, toluene, chloroform, tetrahydrofuran, etc. to prepare a dilute solution (1 ⁇ 10 ⁇ 6 ⁇ 1 ⁇ 10 ⁇ 3 mass%), and the PL spectrum of the diluted solution can be evaluated by measuring at room temperature.
  • an organic solvent such as xylene, toluene, chloroform, tetrahydrofuran, etc.
  • xylene is preferable.
  • the luminance life of the light-emitting device according to this embodiment is more excellent. It is preferable to further include at least one layer selected from the group consisting of a hole injection layer and a hole transport layer between the second light emitting layer. Further, when the second light emitting layer is a layer provided between the anode and the first light emitting layer, the luminance life of the light emitting device according to the present embodiment is more excellent, and therefore the cathode and the first light emitting layer It is preferable to further include at least one layer selected from the group consisting of an electron injection layer and an electron transport layer.
  • the luminance life of the light-emitting device according to this embodiment is more excellent. It is preferable to further include at least one layer selected from the group consisting of a hole injection layer and a hole transport layer between the first light emitting layer. In addition, when the second light emitting layer is a layer provided between the cathode and the first light emitting layer, the luminance life of the light emitting device according to the present embodiment is more excellent. It is preferable to further include at least one layer selected from the group consisting of an electron injection layer and an electron transport layer.
  • the layer configuration of the light emitting device according to this embodiment include the layer configurations represented by the following (D1) to (D18).
  • the light emitting device according to this embodiment usually has a substrate, but may be laminated from the anode on the substrate, or may be laminated from the cathode on the substrate.
  • “/” means that the layers before and after are stacked adjacent to each other.
  • “second light-emitting layer / first light-emitting layer” means that the second light-emitting layer and the first light-emitting layer are stacked adjacent to each other.
  • the layer structure represented by the above (D3) to (D16) is preferable because the luminance life of the light emitting device according to this embodiment is more excellent.
  • an insulating layer may be provided adjacent to the electrode in order to improve the adhesion between the electrode and other layers and to improve the charge injection from the electrode.
  • the hole transport layer, the electron transport layer, the first light emitting layer, or the second light emitting layer is used to improve the adhesion of the interface and prevent the mixing of two adjacent layers.
  • a thin buffer layer may be inserted at the interface of the layers. The order and number of layers to be stacked, and the thickness of each layer may be adjusted in consideration of external quantum efficiency and device lifetime.
  • the light emitting device may have a substrate on the side opposite to the light emitting layer side of the anode or on the side opposite to the light emitting layer side of the cathode.
  • the substrate forms an electrode and chemically forms an organic layer (for example, a first light emitting layer, a second light emitting layer, a hole transport layer, a hole injection layer, an electron transport layer, an electron injection layer, etc.).
  • an organic layer for example, a first light emitting layer, a second light emitting layer, a hole transport layer, a hole injection layer, an electron transport layer, an electron injection layer, etc.
  • a substrate made of glass, plastic, polymer film, metal film, silicon, or the like, and a substrate in which these are laminated are used.
  • two or more layers of the anode, the hole injection layer, the hole transport layer, the electron transport layer, the electron injection layer, and the cathode may be provided as necessary.
  • hole injection layers When there are a plurality of anodes, hole injection layers, hole transport layers, electron transport layers, electron injection layers and cathodes, they may be the same or different.
  • the thickness of the anode, hole injection layer, hole transport layer, second light emitting layer, first light emitting layer, electron transport layer, electron injection layer and cathode is usually 1 nm to 1 ⁇ m, preferably 2 nm to It is 500 nm, more preferably 5 nm to 150 nm.
  • the electron transport layer is a layer containing an electron transport material.
  • the electron transport material include an electron transport material that may be contained in the composition of the first light-emitting layer, a structural unit represented by the formula (ET-1), and a formula (ET-2).
  • a polymer compound containing at least one structural unit selected from the group consisting of structural units hereinafter also referred to as “polymer compound of the electron transport layer”
  • a polymer compound of the electron transport layer is preferable. .
  • nE1 represents an integer of 1 or more.
  • Ar E1 represents an aromatic hydrocarbon group or a heterocyclic group, and these groups may have a substituent other than R E1 .
  • R E1 represents a group represented by the formula (ES-1). When a plurality of R E1 are present, they may be the same or different. ]
  • nE3 represents an integer of 0 or more
  • aE1 represents an integer of 1 or more
  • bE1 represents an integer of 0 or more
  • mE1 represents an integer of 1 or more.
  • R E3 is a single bond
  • mE1 is 1.
  • aE1 and bE1 are selected so that the charge of the group represented by the formula (ES-1) becomes zero.
  • R E3 represents a single bond, a hydrocarbon group, a heterocyclic group or O—R E3 ′ (R E3 ′ represents a hydrocarbon group or a heterocyclic group), and these groups have a substituent.
  • Q E1 represents an alkylene group, a cycloalkylene group, an arylene group, an oxygen atom or a sulfur atom, and these groups optionally have a substituent. When a plurality of Q E1 are present, they may be the same or different.
  • Y E1 represents —CO 2 ⁇ , —SO 3 ⁇ , —SO 2 — or PO 3 2 ⁇ . When a plurality of Y E1 are present, they may be the same or different.
  • M E1 represents an alkali metal cation, an alkaline earth metal cation or an ammonium cation, and this ammonium cation may have a substituent. When a plurality of M E1 are present, they may be the same or different.
  • Z E1 is F ⁇ , Cl ⁇ , Br ⁇ , I ⁇ , OH ⁇ , B (R E4 ) 4 ⁇ , R E4 SO 3 ⁇ , R E4 COO ⁇ , NO 3 ⁇ , SO 4 2 ⁇ , HSO 4 ⁇ . , PO 4 3 ⁇ , HPO 4 2 ⁇ , H 2 PO 4 ⁇ , BF 4 ⁇ or PF 6 ⁇ .
  • R E4 represents an alkyl group, a cycloalkyl group or an aryl group, and these groups optionally have a substituent. When a plurality of Z E1 are present, they may be the same or different. ]
  • NE1 is usually an integer of 1 to 4, preferably 1 or 2.
  • Examples of the aromatic hydrocarbon group or heterocyclic group represented by Ar E1 include 1,4-phenylene group, 1,3-phenylene group, 1,2-phenylene group, 2,6-naphthalenediyl group, 1,4 Hydrogen bonded directly to the atoms constituting the ring from a naphthalenediyl group, a 2,7-fluorenediyl group, a 3,6-fluorenediyl group, a 2,7-phenanthenediyl group or a 2,7-carbazolediyl group
  • a group excluding n1 atoms is preferable, and may have a substituent other than R E1 .
  • Examples of the substituent other than R E1 that Ar E1 may have include a halogen atom, a cyano group, an alkyl group, a cycloalkyl group, an aryl group, a monovalent heterocyclic group, an alkoxy group, a cycloalkoxy group, and an aryloxy group.
  • a halogen atom a cyano group
  • an alkyl group a cycloalkyl group
  • an aryl group a monovalent heterocyclic group
  • an alkoxy group a cycloalkoxy group
  • an aryloxy group aryloxy group.
  • n ′, m ′ and nx each independently represents an integer of 1 or more.
  • NE3 is usually an integer of 0 to 10, preferably an integer of 0 to 8, more preferably an integer of 0 to 2.
  • AE1 is usually an integer of 1 to 10, preferably an integer of 1 to 5, and more preferably 1 or 2.
  • BE1 is usually an integer of 0 to 10, preferably an integer of 0 to 4, and more preferably 0 or 1.
  • ME1 is usually an integer of 1 to 5, preferably 1 or 2, and more preferably 1.
  • R E3 is —O—R E3 ′
  • the group represented by the formula (ES-1) is a group represented by the following. -O-R E3 '- ⁇ (Q E1 ) nE3 -Y E1 (M E1 ) aE1 (Z E1 ) bE1 ⁇ mE1
  • R E3 is preferably a hydrocarbon group or a heterocyclic group, more preferably an aromatic hydrocarbon group or an aromatic heterocyclic group, and still more preferably an aromatic hydrocarbon group.
  • R E3 may have include an alkyl group, a cycloalkyl group, an aryl group, a monovalent heterocyclic group, and a group represented by the formula (ES-3).
  • the group represented by 3) is preferred.
  • Q E1 is preferably an alkylene group, an arylene group, or an oxygen atom, and more preferably an alkylene group or an oxygen atom.
  • Y E1 is preferably —CO 2 ⁇ , —SO 2 — or PO 3 2- , and more preferably —CO 2 — .
  • Examples of the alkali metal cation represented by M E1 include Li + , Na + , K + , Rb + , and Cs + , and K + , Rb +, and Cs + are preferable, and Cs + is more preferable.
  • Examples of the alkaline earth metal cation represented by M E1 include Be 2+ , Mg 2+ , Ca 2+ , Sr 2+ , and Ba 2+ , with Mg 2+ , Ca 2+ , Sr 2+, and Ba 2+ being preferred, and Ba 2+. Is more preferable.
  • M E1 is preferably an alkali metal cation or an alkaline earth metal cation, more preferably an alkali metal cation.
  • Z E1 is preferably F ⁇ , Cl ⁇ , Br ⁇ , I ⁇ , OH ⁇ , B (R E4 ) 4 ⁇ , R E4 SO 3 ⁇ , R E4 COO ⁇ or NO 3 ⁇ , and F ⁇ , Cl ⁇ . , Br ⁇ , I ⁇ , OH ⁇ , R E4 SO 3 — or R E4 COO — are preferred.
  • R E4 is preferably an alkyl group.
  • Examples of the group represented by the formula (ES-1) include a group represented by the following formula.
  • M + represents Li + , Na + , K + , Cs + or N (CH 3 ) 4 + .
  • M + represents Li + , Na + , K + , Cs + or N (CH 3 ) 4 + .
  • M + may be the same or different.
  • nE2 represents an integer of 1 or more.
  • Ar E2 represents an aromatic hydrocarbon group or a heterocyclic group, and these groups may have a substituent other than R E2 .
  • R E2 represents a group represented by the formula (ES-2). When a plurality of R E2 are present, they may be the same or different. ]
  • nE4 represents an integer of 0 or more
  • aE2 represents an integer of 1 or more
  • bE2 represents an integer of 0 or more
  • mE2 represents an integer of 1 or more.
  • nE4 represents an integer of 0 or more
  • aE2 represents an integer of 1 or more
  • bE2 represents an integer of 0 or more
  • mE2 represents an integer of 1 or more.
  • R E5 represents a single bond, a hydrocarbon group, a heterocyclic group, or O—R E5 ′ (R E5 ′ represents a hydrocarbon group or a heterocyclic group), and these groups have a substituent.
  • Q E2 represents an alkylene group, a cycloalkylene group, an arylene group, an oxygen atom or a sulfur atom, and these groups optionally have a substituent. When a plurality of Q E2 are present, they may be the same or different.
  • Y E2 represents -C + R E6 2 , -N + R E6 3 , -P + R E6 3 , -S + R E6 2 or I + R E6 2 .
  • R E6 represents a hydrogen atom, an alkyl group, a cycloalkyl group, or an aryl group, and these groups optionally have a substituent.
  • a plurality of R E6 may be the same or different.
  • Y E2 When a plurality of Y E2 are present, they may be the same or different.
  • M E2 represents F ⁇ , Cl ⁇ , Br ⁇ , I ⁇ , OH ⁇ , B (R E7 ) 4 ⁇ , R E7 SO 3 ⁇ , R E7 COO ⁇ , BF 4 ⁇ , SbCl 6 ⁇ or SbF 6 ⁇ .
  • R E7 represents an alkyl group, a cycloalkyl group, or an aryl group, and these groups optionally have a substituent.
  • M E2 represents an alkali metal cation or an alkaline earth metal cation.
  • Z E2 represents an alkali metal cation or an alkaline earth metal cation.
  • NE2 is usually an integer of 1 to 4, preferably 1 or 2.
  • Examples of the aromatic hydrocarbon group or heterocyclic group represented by Ar E2 include 1,4-phenylene group, 1,3-phenylene group, 1,2-phenylene group, 2,6-naphthalenediyl group, 1,4 Hydrogen bonded directly to the atoms constituting the ring from a naphthalenediyl group, a 2,7-fluorenediyl group, a 3,6-fluorenediyl group, a 2,7-phenanthenediyl group or a 2,7-carbazolediyl group
  • a group excluding nE2 atoms is preferable, and may have a substituent other than R E2 .
  • the substituent group other than Ar E2 is may have R E2, is the same as the substituent other than optionally Ar E1 is have R E1.
  • NE4 is generally an integer of 0 to 10, preferably an integer of 0 to 8, and more preferably an integer of 0 to 2.
  • AE2 is usually an integer of 1 to 10, preferably an integer of 1 to 5, and more preferably 1 or 2.
  • BE2 is usually an integer of 0 to 10, preferably an integer of 0 to 4, more preferably 0 or 1.
  • ME2 is usually an integer of 1 to 5, preferably 1 or 2, and more preferably 1.
  • R E5 is —O—R E5 ′
  • the group represented by the formula (ES-2) is a group represented by the following. -O-R E5 '- ⁇ (Q E1 ) nE3 -Y E1 (M E1 ) aE1 (Z E1 ) bE1 ⁇ mE1
  • R E5 is preferably a hydrocarbon group or a heterocyclic group, more preferably an aromatic hydrocarbon group or an aromatic heterocyclic group, and still more preferably an aromatic hydrocarbon group.
  • R E5 may have include an alkyl group, a cycloalkyl group, an aryl group, a monovalent heterocyclic group, and a group represented by the formula (ES-3).
  • the group represented by 3) is preferred.
  • Q E2 is preferably an alkylene group, an arylene group or an oxygen atom, more preferably an alkylene group or an oxygen atom.
  • Y E2 is preferably -C + R E6 2 , -N + R E6 3 , -P + R E6 3 or S + R E6 2, and more preferably -N + R E6 3 .
  • R E6 is preferably a hydrogen atom, an alkyl group or an aryl group, more preferably a hydrogen atom or an alkyl group.
  • M E2 is preferably F ⁇ , Cl ⁇ , Br ⁇ , I ⁇ , B (R E7 ) 4 ⁇ , R E7 SO 3 ⁇ , R E7 COO ⁇ , BF 4 ⁇ or SbF 6 ⁇ , and Br ⁇ , I -, B (R E7) 4 -, R E7 COO - or SbF 6- is more preferable.
  • R E7 is preferably an alkyl group.
  • Examples of the alkali metal cation represented by Z E2 include Li + , Na + , K + , Rb + , and Cs + , and Li + , Na +, or K + is preferable.
  • alkaline earth metal cation represented by Z E2 for example, Be 2+, Mg 2+, Ca 2+, Sr 2+, Ba 2+ are mentioned, Mg 2+ or Ca 2+ are preferred.
  • Z E2 is preferably an alkali metal cation.
  • Examples of the group represented by the formula (ES-2) include a group represented by the following formula.
  • X ⁇ represents F ⁇ , Cl ⁇ , Br ⁇ , I ⁇ , B (C 6 H 5 ) 4 ⁇ , CH 3 COO ⁇ or CF 3 SO 3 ⁇ .
  • X ⁇ represents F ⁇ , Cl ⁇ , Br ⁇ , I ⁇ , B (C 6 H 5 ) 4 ⁇ , CH 3 COO ⁇ or CF 3 SO 3 ⁇ .
  • X ⁇ represents F ⁇ , Cl ⁇ , Br ⁇ , I ⁇ , B (C 6 H 5 ) 4 ⁇ , CH 3 COO ⁇ or CF 3 SO 3 ⁇ .
  • X ⁇ represents F ⁇ , Cl ⁇ , Br ⁇ , I ⁇ , B (C 6 H 5 ) 4 ⁇ , CH 3 COO ⁇ or CF 3 SO 3 ⁇ .
  • Examples of the structural unit represented by the formula (ET-1) or (ET-2) include structural units represented by the formulas (ET-31) to (ET-38).
  • Examples of the polymer compound for the electron transport layer include, for example, JP2009-239279A, JP2012-033845A, JP2012-216281A, JP2012-216822A, and JP2012-216815A. It can be synthesized according to the method described in 1.
  • Materials used for forming the hole injection layer described later, materials used for forming the hole transport layer described later, materials used for forming the second light emitting layer, materials used for forming the first light emitting layer, A material used for forming and a material used for forming an electron injection layer, which will be described later, are a hole injection layer, a hole transport layer, a second light emitting layer, a first light emitting layer, and an electron transport layer, respectively, in manufacturing a light emitting element. And when it melt
  • a method for avoiding dissolution of the material i) a method using a material having a crosslinking group, or ii) a method of providing a difference in solubility between adjacent layers is preferable.
  • the layer after forming a layer using a material having a crosslinking group, the layer can be insolubilized by crosslinking the crosslinking group.
  • the electron transport layer When an electron transport layer is stacked on the first light-emitting layer using a difference in solubility, the electron transport layer can be stacked by using a solution having low solubility with respect to the first light-emitting layer. it can.
  • the electron transport layer When the electron transport layer is stacked on the second light emitting layer by utilizing the difference in solubility, the electron transport layer may be stacked by using a solution having low solubility with respect to the second light emitting layer. it can.
  • a solvent used when an electron transport layer is laminated on the first light-emitting layer or the second light-emitting layer using a difference in solubility water, alcohol, ether, ester, nitrile compound, nitro compound, Fluorinated alcohols, thiols, sulfides, sulfoxides, thioketones, amides and carboxylic acids are preferred.
  • the solvent examples include methanol, ethanol, 2-propanol, 1-butanol, tert-butyl alcohol, acetonitrile, 1,2-ethanediol, N, N-dimethylformamide, dimethyl sulfoxide, acetic acid, nitromethane, propylene carbonate , Pyridine, carbon disulfide, and a mixed solvent of these solvents.
  • a mixed solvent at least one solvent selected from water, alcohol, ether, ester, nitrile compound, nitro compound, fluorinated alcohol, thiol, sulfide, sulfoxide, thioketone, amide, and carboxylic acid, a chlorinated solvent,
  • a mixed solvent with at least one solvent selected from an aromatic hydrocarbon solvent, an aliphatic hydrocarbon solvent, and a ketone solvent may be used.
  • the hole injection layer is a layer containing a hole injection material.
  • a hole injection material the hole injection material which the composition of the 1st light emitting layer may contain is mentioned, for example.
  • the hole injection material may be contained singly or in combination of two or more.
  • the electron injection layer is a layer containing an electron injection material.
  • an electron injection material the electron injection material which the composition of a 1st light emitting layer may contain is mentioned, for example.
  • the electron injection material may be contained singly or in combination of two or more.
  • the hole transport layer is a layer containing a hole transport material.
  • a hole transport material the hole transport material which the composition of the 1st light emitting layer may contain is mentioned, for example.
  • the hole transport material may be contained singly or in combination of two or more.
  • Examples of the material for the anode include conductive metal oxides and translucent metals, preferably indium oxide, zinc oxide, tin oxide; indium tin oxide (ITO), indium zinc oxide, etc.
  • conductive metal oxides and translucent metals preferably indium oxide, zinc oxide, tin oxide; indium tin oxide (ITO), indium zinc oxide, etc.
  • ITO indium tin oxide
  • Examples of the material of the cathode include metals such as lithium, sodium, potassium, rubidium, cesium, beryllium, magnesium, calcium, strontium, barium, aluminum, zinc, indium; two or more kinds of alloys thereof; Alloys of at least one species and at least one of silver, copper, manganese, titanium, cobalt, nickel, tungsten, and tin; and graphite and graphite intercalation compounds.
  • Examples of the alloy include a magnesium-silver alloy, a magnesium-indium alloy, a magnesium-aluminum alloy, an indium-silver alloy, a lithium-aluminum alloy, a lithium-magnesium alloy, a lithium-indium alloy, and a calcium-aluminum alloy.
  • At least one of the anode and the cathode is usually transparent or translucent, but the anode is preferably transparent or translucent.
  • Examples of the method for forming the anode and the cathode include a vacuum deposition method, a sputtering method, an ion plating method, a plating method, and a laminating method.
  • a method for forming each layer such as the first light emitting layer, the second light emitting layer, the hole transporting layer, the electron transporting layer, the hole injecting layer, and the electron injecting layer is a low molecular compound.
  • a vacuum deposition method from a powder a method by film formation from a solution or a molten state
  • a polymer compound for example, a method by film formation from a solution or a molten state can be mentioned.
  • the first light-emitting layer uses the ink of the first light-emitting layer
  • the second light-emitting layer uses the ink of the second light-emitting layer
  • the hole transport layer, the electron transport layer, the hole injection layer, and the electron injection can be formed by a coating method typified by a spin coating method and an ink jet printing method, using inks each containing the above-described hole transport material, electron transport material, hole injection material, and electron injection material. .
  • the light emitting device according to this embodiment can be manufactured by sequentially laminating each layer on a substrate.
  • the light emitting device when the second light emitting layer is a layer provided between the anode and the first light emitting layer, the light emitting device according to this embodiment forms, for example, an anode on a substrate. Then, if necessary, a hole injection layer and / or a hole transport layer is formed on the anode, a second light emitting layer is formed on the anode, the hole injection layer, or the hole transport layer, and the second A first light-emitting layer is formed on the first light-emitting layer, and an electron transport layer and / or an electron injection layer is formed on the first light-emitting layer as necessary, and the first light-emitting layer, the electron transport layer, or It can be manufactured by forming a cathode on the electron injection layer.
  • the light-emitting device when the second light-emitting layer is a layer provided between the anode and the first light-emitting layer, the light-emitting device according to this embodiment includes, for example, a cathode on a substrate. If necessary, an electron injection layer and / or an electron transport layer is formed on the cathode, a first light emitting layer is formed on the cathode, the electron injection layer, or the electron transport layer, and the first light emission is performed. A second light emitting layer is formed on the layer, and a hole transport layer and / or a hole injection layer is formed on the second light emitting layer as necessary, and the second light emitting layer and the hole transport layer are formed. Or it can manufacture by forming an anode on a positive hole injection layer.
  • the light emitting device when the second light emitting layer is a layer provided between the cathode and the first light emitting layer, the light emitting device according to this embodiment forms, for example, an anode on a substrate. Then, if necessary, a hole injection layer and / or a hole transport layer is formed on the anode, a first light emitting layer is formed on the anode, the hole injection layer, or the hole transport layer, and the first A second light-emitting layer is formed on the light-emitting layer, and an electron transport layer and / or an electron injection layer is formed on the second light-emitting layer as necessary, and the second light-emitting layer, the electron transport layer, or It can be manufactured by forming a cathode on the electron injection layer.
  • the light-emitting device when the second light-emitting layer is a layer provided between the cathode and the first light-emitting layer, the light-emitting device according to this embodiment includes, for example, a cathode on a substrate. If necessary, an electron injection layer and / or an electron transport layer is formed on the cathode, a second light emitting layer is formed on the cathode, the electron injection layer, or the electron transport layer, and the second light emission A first light emitting layer is formed on the layer, and a hole transport layer and / or a hole injection layer is formed on the first light emitting layer as necessary, and the first light emitting layer and the hole transport layer are formed. Or it can manufacture by forming an anode on a positive hole injection layer.
  • planar anode and the cathode may be arranged so as to overlap each other.
  • pattern-like light emission a method in which a mask having a pattern-like window is provided on the surface of a planar light-emitting element, a layer that is desired to be a non-light-emitting portion is formed extremely thick and substantially non-light-emitting. There is a method, a method of forming an anode or a cathode, or both electrodes in a pattern.
  • a segment type display device capable of displaying numbers, characters, and the like can be obtained.
  • both the anode and the cathode may be formed in stripes and arranged orthogonally. Partial color display and multicolor display are possible by a method of separately coating a plurality of types of polymer compounds having different emission colors, or a method using a color filter or a fluorescence conversion filter.
  • the dot matrix display device can be driven passively or can be driven actively in combination with TFTs. These display devices can be used for displays of computers, televisions, portable terminals and the like.
  • the planar light emitting element can be suitably used as a planar light source for backlight of a liquid crystal display device or a planar illumination light source. If a flexible substrate is used, it can be used as a curved light source and display device.
  • the polystyrene-equivalent number average molecular weight (Mn) and polystyrene-equivalent weight average molecular weight (Mw) of the polymer compound are any of the following size exclusion chromatography (SEC) using tetrahydrofuran as the moving bed. Determined by In addition, each measurement condition of SEC is as follows.
  • the polymer compound to be measured was dissolved in tetrahydrofuran at a concentration of about 0.05% by mass, and 10 ⁇ L was injected into SEC. The mobile phase was run at a flow rate of 0.6 mL / min.
  • As the column one TSK guard column Super AW-H, one TSK gel Super AWM-H, and one TSK gel Super AW 3000 (all manufactured by Tosoh Corporation) were used in series.
  • a UV-VIS detector manufactured by Tosoh, trade name: UV-8320GPC was used as the detector.
  • LC-MS was measured by the following method.
  • the measurement sample was dissolved in chloroform or tetrahydrofuran to a concentration of about 2 mg / mL, and about 1 ⁇ L was injected into LC-MS (manufactured by Agilent, trade name: 1100LCMSD).
  • the mobile phase of LC-MS was used while changing the ratio of acetonitrile and tetrahydrofuran, and was allowed to flow at a flow rate of 0.2 mL / min.
  • the column used was L-column 2 ODS (3 ⁇ m) (manufactured by Chemicals Evaluation and Research Institute, inner diameter: 2.1 mm, length: 100 mm, particle size: 3 ⁇ m).
  • TLC-MS was measured by the following method. A measurement sample is dissolved in any solvent of toluene, tetrahydrofuran or chloroform at an arbitrary concentration, and applied on a TLC plate for DART (trade name: YSK5-100, manufactured by Techno Applications), and TLC-MS (JEOL Ltd.) (Trade name: JMS-T100TD (The AccuTOF TLC)). The helium gas temperature during measurement was adjusted in the range of 200 to 400 ° C.
  • NMR NMR was measured by the following method. About 5 to 10 mg of a measurement sample, about 0.5 mL of heavy chloroform (CDCl 3 ), heavy tetrahydrofuran, heavy dimethyl sulfoxide, heavy acetone, heavy N, N-dimethylformamide, heavy toluene, heavy methanol, heavy ethanol, heavy 2-propanol Alternatively, it was dissolved in methylene chloride and measured using an NMR apparatus (manufactured by Agilent, trade name: INOVA300 or MERCURY 400VX).
  • HPLC high performance liquid chromatography
  • Kaseisorb LC ODS 2000 manufactured by Tokyo Chemical Industry
  • ODS column As the column, Kaseisorb LC ODS 2000 (manufactured by Tokyo Chemical Industry) or an ODS column having equivalent performance was used.
  • the detector a photodiode array detector (manufactured by Shimadzu Corporation, trade name: SPD-M20A) was used.
  • the maximum peak wavelength and maximum wavelength of the emission spectra of metal complexes and compounds were measured at room temperature with a spectrophotometer (manufactured by JASCO Corporation, FP-6500).
  • a xylene solution in which a metal complex or compound was dissolved in xylene at a concentration of about 0.8 ⁇ 10 ⁇ 4 mass% was used as a sample.
  • excitation light UV light having a wavelength of 325 nm was used.
  • CM1 was synthesized according to the method described in JP 2010-189630 A.
  • Compound CM2 was synthesized according to the method described in JP-A-2008-106241.
  • Compound CM3 was synthesized according to the method described in JP 2010-215886 A.
  • Compound CM4 was synthesized according to the method described in International Publication No. 2002/045184.
  • Compound CM5 was synthesized according to the method described in International Publication No. 2011/049241.
  • Compounds CM6, CM7 and CM8 were synthesized according to the method described in International Publication No. 2013/146806.
  • Compound HM-1 was purchased from Luminescence Technology.
  • Metal complex RM1 was synthesized according to the method described in International Publication No. 2009/157424.
  • the metal complex RM2 and the metal complex RM4 were synthesized according to the method described in JP2011-105701A.
  • the metal complex RM3 was synthesized according to the method described in Japanese Patent Application Laid-Open No. 2008-179617.
  • the maximum peak wavelength of the emission spectrum of the metal complex RM3 was 594 nm.
  • the maximum peak wavelength of the emission spectrum of the metal complex RM4 was 611 nm.
  • the maximum peak wavelength of the emission spectrum of the metal complex GM1 was 514 nm.
  • the maximum peak wavelength of the emission spectrum of the metal complex MC3 was 450 nm.
  • the maximum peak wavelength of the emission spectrum of the metal complex MC6 was 475 nm.
  • reaction vessel The inside of a separately prepared reaction vessel was filled with an argon gas atmosphere, and then compound MC1-d (52.0 g) and chloroform (925 mL) were added, and the reaction vessel was placed in an ice bath and cooled. Then, the toluene solution obtained above was added there. Thereafter, the reaction vessel was stirred for 7 hours while being cooled in an ice bath, and then stirred at room temperature for 100 hours. Ion exchange water (500 mL) was added to the obtained reaction solution, the organic layer was extracted, and the obtained organic layer was concentrated under reduced pressure.
  • compound MC1-d 52.0 g
  • chloroform 9 mL
  • the obtained residue was purified by silica gel column chromatography (a mixed solvent of chloroform and hexane), and then recrystallized using a mixed solvent of chloroform and heptane. Then, it was dried under reduced pressure at 50 ° C. to obtain compound MC1-f (17.6 g, yield 22%) as a white solid.
  • the HPLC area percentage value of the compound MC1-f was 99.5% or more.
  • the obtained organic layer was washed twice with ion-exchanged water (100 mL), dried over anhydrous magnesium sulfate, filtered, and the obtained filtrate was concentrated under reduced pressure to obtain an oil.
  • Toluene and activated carbon were added to the obtained oil and stirred at 50 ° C. for 30 minutes. Then, it filtered with the filter which spread silica gel and celite, and obtained the solid by concentrating the obtained filtrate under reduced pressure.
  • the obtained solid was purified by silica gel column chromatography (a mixed solvent of hexane and ethyl acetate), and then recrystallized using methanol. Then, it was dried at 50 ° C. under reduced pressure to obtain Compound MC1-g (12.1 g, yield 69%) as a white solid.
  • the HPLC area percentage value of the compound MC1-g was 99.5% or more.
  • the obtained solid was purified by silica gel column chromatography (a mixed solvent of hexane and toluene), and then recrystallized using a mixed solvent of ethyl acetate and ethanol. Then, it dried under reduced pressure at 50 degreeC, and obtained metal complex MC1 (2.32g, yield 35%) as yellow solid.
  • the HPLC area percentage value of the metal complex MC1 was 99.5% or more.
  • the maximum peak wavelength of the emission spectrum of the metal complex MC1 was 453 nm.
  • metal complex MC1 (0.50 g), dichloromethane (25 mL) and N-bromosuccinimide (203 mg) were added, and the mixture was stirred at room temperature for 27.5 hours. Then, 10 mass% sodium sulfite aqueous solution (4.20g) was added there, then ion-exchange water (8.40mL) was added, and it stirred at room temperature for 30 minutes. The organic layer was extracted from the obtained reaction solution, and the obtained organic layer was filtered with a filter covered with silica gel. A precipitate was precipitated by adding methanol to the obtained filtrate. The obtained precipitate was filtered and then vacuum-dried at 50 ° C. to obtain a metal complex MC1TBR (0.55 g, yield 95%) as a yellow solid. The HPLC area percentage value of the metal complex MC1TBR was 99.5% or more.
  • metal complex MC1TBR (0.50 g), compound MC2-a (0.44 g), toluene (30 mL), tris (dibenzylideneacetone) dipalladium (0) (7.9 mg)
  • 2-dicyclohexylphosphino-2 ′, 6′-dimethoxybiphenyl (8.5 mg) were added, and the temperature was raised to 80 ° C.
  • 20 mass% tetraethylammonium hydroxide aqueous solution (4.2 mL) was added there, and it stirred under heating-refluxing for 6 hours.
  • toluene was added there and the organic layer was extracted.
  • the obtained organic layer was washed with ion-exchanged water, dried over anhydrous magnesium sulfate, filtered through a filter with silica gel and celite, and the obtained filtrate was concentrated under reduced pressure to obtain a solid.
  • the obtained solid was purified by silica gel column chromatography (mixed solvent of hexane and toluene) to obtain a metal complex MC2 (0.54 g, yield 74%) as a yellow solid.
  • the HPLC area percentage value of the metal complex MC2 was 99.5% or more.
  • the maximum peak wavelength of the emission spectrum of the metal complex MC2 was 470 nm.
  • reaction vessel The inside of a separately prepared reaction vessel was filled with an argon gas atmosphere, compound MC1-d (11.0 g) and chloroform (220 mL) were added, and the reaction vessel was placed in an ice bath and cooled. Thereafter, the tert-butyl methyl ether solution obtained above was added thereto. Thereafter, the reaction vessel was stirred for 7 hours while being cooled in an ice bath, and then stirred at room temperature for 110 hours. Ion exchange water (330 mL) was added to the resulting reaction solution, the organic layer was extracted, and the obtained organic layer was concentrated under reduced pressure.
  • compound MC1-d (11.0 g) and chloroform (220 mL) were added, and the reaction vessel was placed in an ice bath and cooled. Thereafter, the tert-butyl methyl ether solution obtained above was added thereto. Thereafter, the reaction vessel was stirred for 7 hours while being cooled in an ice bath, and then stirred at room temperature for 110 hours. Ion exchange water (
  • the obtained residue was purified by silica gel column chromatography (a mixed solvent of chloroform and hexane), and then recrystallized using a mixed solvent of chloroform and heptane. Then, it dried under reduced pressure at 50 degreeC, and obtained compound MC4-b (10.2g, 55% of yield) as white solid.
  • the HPLC area percentage value of the compound MC4-b was 99.5% or more.
  • the obtained organic layer was dried over anhydrous sodium sulfate, then silica gel (10 g) was added and filtered, and the obtained filtrate was concentrated under reduced pressure to obtain a solid.
  • the obtained solid was recrystallized using a mixed solvent of heptane and chloroform. Then, it was dried under reduced pressure at 50 ° C. to obtain compound MC4-c (8.55 g, yield 84%) as a white solid.
  • the HPLC area percentage value of the compound MC4-c was 99.5% or more.
  • the obtained organic layer was dried over anhydrous magnesium sulfate, then silica gel (18.6 g) was added and filtered, and the resulting filtrate was concentrated under reduced pressure to obtain a solid.
  • the obtained solid was purified by silica gel column chromatography (mixed solvent of cyclohexane and dichloromethane), and then recrystallized using a mixed solvent of toluene and acetonitrile. Then, it dried under reduced pressure at 50 degreeC, and obtained metal complex MC4 (1.9g, yield 24%) as yellow solid.
  • the HPLC area percentage value of the metal complex MC4 was 98.9%.
  • metal complex MC4 (0.70 g), dichloromethane (35 mL) and N-bromosuccinimide (825 mg) were added and stirred at room temperature for 40 hours. Then, 10 mass% sodium sulfite aqueous solution (7.7g) was added there, then ion-exchange water (15mL) was added, and it stirred at room temperature for 30 minutes. The organic layer was extracted from the obtained reaction solution, and the obtained organic layer was filtered with a filter covered with silica gel. A precipitate was deposited by adding ethanol to the obtained filtrate. The obtained precipitate was filtered and then vacuum-dried at 50 ° C.
  • metal complex MC4TBR (0.73 g, yield 91%) as a yellow solid.
  • HPLC area percentage value of the metal complex MC4TBR was 96%.
  • the metal complex MC4TBR (0.60 g), the compound MC5-a (0.52 g), toluene (18 mL) and bis (di-tert-butyl (4-dimethylaminophenyl) phosphine ) Dichloropalladium (II) (6.8 mg) was added, and the temperature was raised to 90 ° C. Then, 20 mass% tetraethylammonium hydroxide aqueous solution (9.1 mL) was added there, and it stirred under heating-refluxing for 19 hours. Then, toluene was added there and the organic layer was extracted.
  • the obtained organic layer was washed with ion exchange water, dried over anhydrous magnesium sulfate, filtered through a filter covered with silica gel, and the obtained filtrate was concentrated under reduced pressure to obtain a solid.
  • the obtained solid was purified by silica gel column chromatography (mixed solvent of cyclohexane and dichloromethane), and then recrystallized using a mixed solvent of toluene and acetonitrile. Then, it dried under reduced pressure at 50 degreeC, and obtained metal complex MC5 (0.30g, 47% of yield) as yellow solid.
  • the HPLC area percentage value of the metal complex MC5 was 97.5%.
  • the maximum peak wavelength of the emission spectrum of the metal complex MC5 was 462 nm.
  • the metal complex MC4TBR (0.31 g), the compound MC2-a (0.31 g), toluene (9.3 mL) and bis (di-tert-butyl (4-dimethylaminophenyl) ) Phosphine) dichloropalladium (II) (3.5 mg) was added and the temperature was raised to 90 ° C. Then, 20 mass% tetraethylammonium hydroxide aqueous solution (2.7 mL) was added there, and it stirred under heating-refluxing for 5 hours. Then, toluene was added there and the organic layer was extracted.
  • the obtained organic layer was washed with ion exchange water, dried over anhydrous magnesium sulfate, filtered through a filter covered with silica gel, and the obtained filtrate was concentrated under reduced pressure to obtain a solid.
  • the obtained solid was purified by silica gel column chromatography (mixed solvent of cyclohexane and dichloromethane), and then recrystallized using a mixed solvent of dichloromethane and hexane. Then, it dried under reduced pressure at 50 degreeC, and obtained metal complex MC7 (0.26g, 60% of yield) as yellow solid.
  • the HPLC area percentage value of the metal complex MC7 was 99.5% or more.
  • the maximum peak wavelength of the emission spectrum of the metal complex MC7 was 469 nm.
  • the obtained organic layer was washed twice with ion-exchanged water (85 mL), dried over anhydrous magnesium sulfate, filtered, and the obtained filtrate was concentrated under reduced pressure to obtain an oil.
  • Toluene and silica gel were added to the obtained oil and stirred at room temperature for 30 minutes. Then, it filtered with the filter which spread Celite, and obtained the solid by concentrating the obtained filtrate under reduced pressure.
  • the obtained solid was recrystallized using acetonitrile. Then, it was dried under reduced pressure at 50 ° C. to obtain Compound MC8-a (13.7 g, yield 80%) as a white solid.
  • the HPLC area percentage value of Compound MC8-a was 99.5% or more.
  • the obtained solid was purified by silica gel column chromatography (a mixed solvent of dichloromethane and cyclohexane), and then recrystallized using a mixed solvent of toluene and methanol. Thereafter, it was dried under reduced pressure at 50 ° C. to obtain a metal complex MC8-b (1.47 g, yield 14%) as a yellow solid.
  • the HPLC area percentage value of the metal complex MC8-b was 99.4%.
  • metal complex MC8-b (1.36 g), dichloromethane (68 mL) and N-bromosuccinimide (1.23 g) were added, and the mixture was stirred at room temperature for 32 hours. Then, 10 mass% sodium sulfite aqueous solution (8.71g) was added there, then ion-exchange water (70mL) was added, and it stirred at room temperature for 30 minutes. The organic layer was extracted from the obtained reaction solution, and the obtained organic layer was filtered with a filter covered with silica gel. The obtained filtrate was concentrated under reduced pressure to obtain a solid.
  • the obtained solid was dissolved in toluene, and then methanol was added to precipitate a precipitate.
  • the resulting precipitate was filtered and then vacuum dried at 50 ° C. to obtain a metal complex MC8-c (1.47 g, yield 95%) as a yellow solid.
  • the HPLC area percentage value of the metal complex MC8-c was 99.5% or more.
  • the metal complex MC8-c (1.30 g), compound MC8-d (0.44 g), toluene (65 mL) and (di-tert-butyl (4-dimethylaminophenyl)) Phosphine) dichloropalladium (II) (16 mg) was added, and the temperature was raised to 80 ° C. Then, 20 mass% tetrabutylammonium hydroxide aqueous solution (23 mL) was added there, and it stirred under heating-refluxing for 36 hours. Then, it cooled to room temperature, toluene was added, and the organic layer was extracted.
  • the obtained organic layer was washed with ion-exchanged water, dried over anhydrous magnesium sulfate, filtered through a filter with silica gel and celite, and the obtained filtrate was concentrated under reduced pressure to obtain a solid.
  • the obtained solid was purified by silica gel column chromatography (a mixed solvent of dichloromethane and cyclohexane), and then recrystallized using a mixed solvent of ethyl acetate and acetonitrile. Then, it dried under reduced pressure at 50 degreeC, and obtained metal complex MC8 (0.93g, 72% of yield) as yellow solid.
  • the HPLC area percentage value of the metal complex MC8 was 99.5% or more.
  • the maximum peak wavelength of the emission spectrum of the metal complex MC8 was 469 nm.
  • the obtained organic layer was washed with ion-exchanged water, dried over anhydrous magnesium sulfate, filtered through a filter covered with silica gel, and the obtained filtrate was concentrated under reduced pressure to obtain an oil.
  • the obtained oil was purified by silica gel column chromatography (mixed solvent of heptane and ethyl acetate) and then dried under reduced pressure at 45 ° C. to give compound MC9-c (117 g, yield 94%) as a colorless oil. Obtained.
  • the HPLC area percentage value of Compound MC9-c was 99.5% or more. By repeating this work, the required amount of compound MC9-c was obtained.
  • the obtained organic layer was washed with ion-exchanged water and dried over anhydrous magnesium sulfate, and the resulting solution was concentrated under reduced pressure to obtain an oily substance.
  • the obtained oil was purified several times by silica gel column chromatography (mixed solvent of toluene and ethyl acetate), and then dried under reduced pressure at 45 ° C. to give compound MC9-e (63.2 g, yield 39%). Obtained as a colorless oil.
  • the HPLC area percentage value of compound MC9-e was 99.5% or more.
  • the obtained organic layer was washed with ion-exchanged water and dried over anhydrous magnesium sulfate, and the resulting solution was concentrated under reduced pressure to obtain an oily substance.
  • the obtained oil was purified by silica gel column chromatography (mixed solvent of heptane and ethyl acetate) and then dried under reduced pressure at 45 ° C. to give compound MC9-g (26.5 g, yield 99%) as a colorless oil Obtained as a thing.
  • the HPLC area percentage value of compound MC9-g was 99.5% or more.
  • the solid MC9 ′ (1.0 g) obtained above, silver trifluoromethanesulfonate (0.58 g), compound MC9-g (1.16 g) and 2 , 6-lutidine (0.9 mL) was added, and the mixture was stirred with heating at 160 ° C. for 12 hours. Thereafter, dichloromethane was added thereto, followed by filtration with a filter laid with celite, and when the obtained filtrate was added to acetonitrile, precipitation occurred. The resulting precipitate was filtered to obtain a solid. The obtained solid was dissolved in dichloromethane, and silica gel was added and filtered.
  • the maximum peak wavelength of the emission spectrum of the metal complex MC9 was 469 nm.
  • the obtained solid was purified by silica gel column chromatography (a mixed solvent of hexane and ethyl acetate), and then recrystallized using a mixed solvent of toluene and acetonitrile. Then, it was dried under reduced pressure at 50 ° C. to obtain compound MC10-e (85 g, yield 97%) as a white solid.
  • the HPLC area percentage value of Compound MC10-e was 99.5% or more.
  • the obtained solid was dissolved in dichloromethane (5 mL), filtered through a filter covered with silica gel (3 g), and the obtained filtrate was concentrated under reduced pressure to obtain a solid.
  • the obtained solid was recrystallized using ethyl acetate, and further recrystallized using a mixed solvent of toluene and acetonitrile.
  • metal complex MC10 (0.40 g, yield 65%) was obtained as a yellow solid by drying at 50 ° C. under reduced pressure.
  • the HPLC area percentage value of the metal complex MC10 was 97.9%.
  • the maximum peak wavelength of the emission spectrum of the metal complex MC10 was 472 nm.
  • Step 2 A 20% by mass aqueous tetraethylammonium hydroxide solution (10.6 g) was added dropwise to the resulting reaction solution and refluxed for 7 hours.
  • Step 3 phenylboronic acid (73.9 mg), 20 mass% tetraethylammonium hydroxide aqueous solution (10.6 g) and dichlorobis [tris (2-methoxyphenyl) phosphine] palladium (2.7 mg) were added thereto. The mixture was refluxed for 18 hours.
  • Step 4 Thereafter, an aqueous sodium diethyldithiacarbamate solution was added thereto, and the mixture was stirred at 80 ° C. for 2 hours.
  • the obtained reaction solution was cooled, washed successively with 3.6% by mass hydrochloric acid twice, 2.5% by mass ammonia water twice, and ion-exchanged water six times, and the resulting solution was added dropwise to methanol. However, precipitation occurred.
  • the obtained precipitate was dissolved in toluene and purified by passing through an alumina column and a silica gel column in this order. When the obtained solution was added dropwise to methanol and stirred, precipitation occurred.
  • the obtained precipitate was collected by filtration and dried to obtain 1.68 g of the polymer compound HTL-1.
  • the Mn of the polymer compound HTL-1 was 6.0 ⁇ 10 4 and the Mw was 4.9 ⁇ 10 5 .
  • the polymer compound HTL-1 has a theoretical value determined from the amount of raw materials charged, a structural unit derived from the compound CM1, a structural unit derived from the compound CM4, a structural unit derived from the compound CM5, and a compound.
  • the emission spectrum of the polymer compound HTL-1 had maximum wavelengths at 399 nm and 614 nm, and the maximum peak wavelength of the emission spectrum of the polymer compound HTL-1 was 399 nm.
  • the polymer compound HTL-2 has a theoretical value determined from the amount of raw materials charged, a structural unit derived from the compound CM1, a structural unit derived from the compound CM4, a structural unit derived from the compound CM5, and a compound.
  • the emission spectrum of the polymer compound HTL-2 had maximum wavelengths at 399 nm and 599 nm, and the maximum peak wavelength of the emission spectrum of the polymer compound HTL-2 was 399 nm.
  • the high molecular compound HTL-3 has a theoretical value determined from the amount of raw materials charged, a structural unit derived from the compound CM1, a structural unit derived from the compound CM2, a structural unit derived from the compound CM3, and a compound.
  • the structural unit derived from CM4 is a copolymer composed of a molar ratio of 50: 5: 5: 40.
  • Step 1 Synthesis of Polymer Compound HTL-4 (Step 1) After making the inside of the reaction vessel an inert gas atmosphere, Compound CM6 (2.52 g), Compound CM7 (0.470 g), Compound CM8 (4. 90 g), metal complex RM1 (0.530 g), dichlorobis (tris-o-methoxyphenylphosphine) palladium (4.2 mg) and toluene (158 mL) were added, and the mixture was heated to 100 ° C. (Step 2) A 20% by mass tetraethylammonium hydroxide aqueous solution (16 mL) was added dropwise to the reaction solution and refluxed for 8 hours.
  • Step 2 A 20% by mass tetraethylammonium hydroxide aqueous solution (16 mL) was added dropwise to the reaction solution and refluxed for 8 hours.
  • Step 3 After the reaction, phenylboronic acid (116 mg) and dichlorobis (tris-o-methoxyphenylphosphine) palladium (4.2 mg) were added thereto and refluxed for 15 hours.
  • Step 4 Thereafter, an aqueous sodium diethyldithiacarbamate solution was added thereto, and the mixture was stirred at 85 ° C. for 2 hours. After cooling, the reaction solution was washed with 3.6% by mass hydrochloric acid, 2.5% by mass ammonia water and water, and when the resulting solution was added dropwise to methanol, precipitation occurred.
  • the precipitate was dissolved in toluene and purified by passing through an alumina column and a silica gel column in this order. The obtained solution was added dropwise to methanol and stirred, and then the resulting precipitate was collected by filtration and dried to obtain 6.02 g of a polymer compound HTL-4.
  • the polymer compound HTL-4 had an Mn of 3.8 ⁇ 10 4 and an Mw of 4.5 ⁇ 10 5 .
  • the polymer compound HTL-4 has a theoretical value determined from the amount of raw materials charged, a structural unit derived from the compound CM6, a structural unit derived from the compound CM7, a structural unit derived from the compound CM8, a metal
  • the structural unit derived from the complex RM1 is a copolymer composed of a molar ratio of 40: 10: 47: 3.
  • the emission spectrum of the polymer compound HTL-4 had maximum wavelengths at 404 nm and 600 nm, and the maximum peak wavelength of the emission spectrum of the polymer compound HTL-4 was 404 nm.
  • Step 1 Synthesis of Polymer Compound HTL-5
  • Step 2 After making the inside of the reaction vessel an inert gas atmosphere, Compound CM6 (0.800 g), Compound CM7 (0.149 g), Compound CM8 (1. 66 g), dichlorobis (tris-o-methoxyphenylphosphine) palladium (1.4 mg) and toluene (45 mL) were added and heated to 100 ° C.
  • Step 2 A 20% by mass aqueous tetraethylammonium hydroxide solution (16 mL) was added dropwise to the reaction solution, and the mixture was refluxed for 7 hours.
  • Step 3 After the reaction, 2-ethylphenylboronic acid (90 mg) and dichlorobis (tris-o-methoxyphenylphosphine) palladium (1.3 mg) were added thereto and refluxed for 17.5 hours.
  • Step 4 Thereafter, an aqueous sodium diethyldithiacarbamate solution was added thereto, and the mixture was stirred at 85 ° C. for 2 hours. After cooling, the reaction solution was washed with 3.6% by mass hydrochloric acid, 2.5% by mass ammonia water and water, and when the resulting solution was added dropwise to methanol, precipitation occurred.
  • the precipitate was dissolved in toluene and purified by passing through an alumina column and a silica gel column in this order. The obtained solution was added dropwise to methanol and stirred, and then the resulting precipitate was collected by filtration and dried to obtain 1.64 g of a polymer compound HTL-5.
  • the polymer compound HTL-5 had an Mn of 3.5 ⁇ 10 4 and an Mw of 2.2 ⁇ 10 5 .
  • the theoretical value obtained from the amount of raw materials for the polymer compound HTL-5 is that the structural unit derived from the compound CM6, the structural unit derived from the compound CM7, and the structural unit derived from the compound CM8 are: It is a copolymer formed by a molar ratio of 40:10:50.
  • Step 2 Then, 12 mass% sodium carbonate aqueous solution (40.3 mL) was dripped there, and it was made to recirculate
  • Step 3 phenylboronic acid (0.47 g) and dichlorobis (tris-o-methoxyphenylphosphine) palladium (8.7 mg) were added thereto and refluxed for 14 hours.
  • Step 4 Thereafter, an aqueous sodium diethyldithiacarbamate solution was added thereto, and the mixture was stirred at 80 ° C. for 2 hours. When the obtained reaction solution was cooled and dropped into methanol, precipitation occurred.
  • the precipitate was collected by filtration, washed with methanol and water, and then dried, and the solid obtained was dissolved in chloroform and purified by passing through an alumina column and a silica gel column through which chloroform was passed in advance in this order. When the obtained purified solution was added dropwise to methanol and stirred, precipitation occurred. The precipitate was collected by filtration and dried to obtain polymer compound ETL-1a (7.15 g).
  • the polymer compound ETL-1a had an Mn of 3.2 ⁇ 10 4 and an Mw of 6.0 ⁇ 10 4 .
  • the polymer compound ETL-1a has a theoretical value determined from the amount of the raw materials charged, and the structural unit derived from the compound M4 and the structural unit derived from the compound CM1 are configured in a molar ratio of 50:50. It is a copolymer.
  • Step 5 After the inside of the reaction vessel was placed in an argon gas atmosphere, the polymer compound ETL-1a (3.1 g), tetrahydrofuran (130 mL), methanol (66 mL), cesium hydroxide monohydrate (2.1 g) And water (12.5 mL) were added, and the mixture was stirred at 60 ° C. for 3 hours.
  • Step 6 Thereafter, methanol (220 mL) was added thereto and stirred for 2 hours. The obtained reaction mixture was concentrated and then added dropwise to isopropyl alcohol, followed by stirring. As a result, precipitation occurred. The precipitate was collected by filtration and dried to obtain polymer compound ETL-1 (3.5 g). By 1 H-NMR analysis of polymer compound ETL-1, it was confirmed that the signal at the ethyl ester site in polymer compound ETL-1 disappeared and the reaction was completed.
  • the theoretical value obtained from the amount of the raw material of the polymer compound ETL-1a for the polymer compound ETL-1 is 50:50 when the structural unit represented by the following formula and the structural unit derived from the compound CM1 are 50:50 It is a copolymer comprised by the molar ratio of.
  • Elemental analysis of the polymer compound ETL-1 was performed by a combustion method and an atomic absorption method.
  • the elemental analysis values of the polymer compound ETL-1 are C, 54.1% by mass; H, 5.6% by mass; N, ⁇ 0.3% by mass; Cs, 22.7% by mass (theoretical value: C, H, 5.70% by mass; Cs, 21.49% by mass; O, 15.52% by mass).
  • Example D1 Fabrication and evaluation of light-emitting element D1 (formation of anode and hole injection layer)
  • An anode was formed by attaching an ITO film with a thickness of 45 nm to the glass substrate by sputtering.
  • AQ-1200 manufactured by Plextronics
  • AQ-1200 manufactured by Plextronics
  • the hole injection layer was formed by heating for 15 minutes.
  • the polymer compound HTL-1 was dissolved in xylene at a concentration of 0.7% by mass. Using the obtained xylene solution, a film having a thickness of 20 nm is formed on the hole injection layer by spin coating, and heated in a nitrogen gas atmosphere on a hot plate at 180 ° C. for 60 minutes to form a second film. The light emitting layer was formed.
  • the polymer compound ETL-1 was dissolved in 2,2,3,3,4,4,5,5-octafluoro-1-pentanol at a concentration of 0.25% by mass. Using the obtained 2,2,3,3,4,4,5,5-octafluoro-1-pentanol solution, a film having a thickness of 10 nm is formed on the first light-emitting layer by spin coating. Then, an electron transport layer was formed by heating at 130 ° C. for 10 minutes in a nitrogen gas atmosphere.
  • the current value was set so that the light emitting element D1 had an initial luminance of 6000 cd / m 2 , the device was then driven at a constant current, and the time until the luminance became 70% of the initial luminance was measured. It was. The results are shown in Table 3.
  • the current value was set so that the light-emitting element D2 had an initial luminance of 6000 cd / m 2 , the device was then driven at a constant current, and the time until the luminance reached 70% of the initial luminance was measured to be 15.1 hours. It was.
  • the results are shown in Table 3.
  • Example D3 Production and Evaluation of Light-Emitting Element D3
  • a light-emitting element D3 was produced in the same manner as in Example D1.
  • the current value was set so that the light-emitting element D3 had an initial luminance of 6000 cd / m 2 , the device was then driven at a constant current, and the time until the luminance reached 70% of the initial luminance was measured to be 6.7 hours. It was.
  • the results are shown in Table 3.
  • Example D4 Fabrication and Evaluation of Light-Emitting Element D4
  • the current value was set so that the light-emitting element D4 had an initial luminance of 6000 cd / m 2 , the device was then driven at a constant current, and the time until the luminance reached 70% of the initial luminance was measured to be 11.7 hours. It was. The results are shown in Table 3. It was. The results are shown in Table 3.
  • Example D5 Fabrication and Evaluation of Light-Emitting Element D5
  • the current value was set so that the light emitting element D5 had an initial luminance of 6000 cd / m 2 , the device was then driven at a constant current, and the time until the luminance became 70% of the initial luminance was measured. It was. The results are shown in Table 3.
  • Example D6 Production and Evaluation of Light-Emitting Element D6
  • the current value was set so that the light-emitting element D5 had an initial luminance of 6000 cd / m 2 , the device was then driven at a constant current, and the time until the luminance became 70% of the initial luminance was measured. It was. The results are shown in Table 3.
  • the current value of the light emitting element CD1 was set so that the initial luminance was 6000 cd / m 2 , the device was then driven at a constant current, and the time until the luminance became 70% of the initial luminance was measured. It was. The results are shown in Table 3.
  • Example D7 Production and Evaluation of Light-Emitting Element D7 “Polymer Compound HTL-2” was used instead of “Polymer Compound HTL-1” in (Formation of Second Light-Emitting Layer) in Example D1
  • a light emitting element D7 was produced in the same manner as in Example D1 except for the above.
  • the current value was set so that the light-emitting element D7 had an initial luminance of 6000 cd / m 2 , the device was then driven at a constant current, and the time until the luminance became 80% of the initial luminance was measured. It was.
  • the results are shown in Table 4.
  • Example D8 Production and Evaluation of Light-Emitting Element D8 “Polymer Compound HTL-2” was used instead of “Polymer Compound HTL-1” in (Formation of Second Light-Emitting Layer) in Example D2 Except for the above, a light-emitting element D8 was produced in the same manner as in Example D2.
  • the current value was set so that the light emitting element D8 had an initial luminance of 6000 cd / m 2 , the device was then driven at a constant current, and the time until the luminance became 80% of the initial luminance was measured. It was.
  • the results are shown in Table 4.
  • Example D9 Production and Evaluation of Light-Emitting Element D9 “Polymer Compound HTL-2” was used instead of “Polymer Compound HTL-1” in (Formation of Second Light-Emitting Layer) in Example D3 Except for the above, a light-emitting element D9 was produced in the same manner as in Example D3.
  • the light emitting element D9 was driven at a constant current after setting the current value so that the initial luminance was 6000 cd / m 2, and the time until the luminance became 80% of the initial luminance was measured. It was. The results are shown in Table 4.
  • Example D10 Fabrication and Evaluation of Light-Emitting Element D10
  • Polymer Compound HTL-2 was used instead of "Polymer Compound HTL-1" in (Formation of Second Light-Emitting Layer) in Example D4
  • a light emitting element D10 was produced in the same manner as in Example D4, except for the above.
  • the current value was set so that the light emitting element D10 had an initial luminance of 6000 cd / m 2 , the device was then driven at a constant current, and the time until the luminance became 80% of the initial luminance was measured. It was.
  • the results are shown in Table 4.
  • Example D11 Production and Evaluation of Light-Emitting Element D11 “Polymer Compound HTL-2” was used instead of “Polymer Compound HTL-1” in (Formation of Second Light-Emitting Layer) in Example D5 Except for the above, a light-emitting element D11 was produced in the same manner as in Example D5.
  • the current value was set so that the light emitting element D11 had an initial luminance of 6000 cd / m 2 , the device was then driven at a constant current, and the time until the luminance became 80% of the initial luminance was measured. It was.
  • the results are shown in Table 4.
  • Example D12 Production and Evaluation of Light-Emitting Element D12 “Polymer Compound HTL-2” was used instead of “Polymer Compound HTL-1” in (Formation of Second Light-Emitting Layer) in Example D6 Except for the above, a light-emitting element D12 was produced in the same manner as in Example D6.
  • the current value was set so that the light emitting element D12 had an initial luminance of 6000 cd / m 2 , the device was then driven at a constant current, and the time until the luminance reached 80% of the initial luminance was measured to be 11.8 hours. It was.
  • the results are shown in Table 4.
  • the current value was set so that the light emitting element D13 had an initial luminance of 6000 cd / m 2 , the device was then driven at a constant current, and the time until the luminance became 80% of the initial luminance was measured. It was.
  • the results are shown in Table 4.
  • the current value was set so that the light emitting element CD3 had an initial luminance of 6000 cd / m 2 , the device was then driven at a constant current, and the time until the luminance became 80% of the initial luminance was measured. It was.
  • the results are shown in Table 4.
  • the current value was set so that the light emitting element CD3 had an initial luminance of 6000 cd / m 2 , the device was then driven at a constant current, and the time until the luminance became 80% of the initial luminance was measured. It was.
  • the results are shown in Table 4.
  • Example D14 Fabrication and evaluation of light-emitting element D14 A light-emitting element D14 was fabricated in the same manner as in Example D8.
  • the current value was set so that the light-emitting element D14 had an initial luminance of 400 cd / m 2 , the device was then driven at a constant current, and the time until the luminance became 85% of the initial luminance was measured to be 197.8 hours. It was.
  • the polymer compound HTL-3 was dissolved in xylene at a concentration of 0.7% by mass. Using the obtained xylene solution, a film having a thickness of 20 nm was formed on the hole injection layer by spin coating, and heated at 180 ° C. for 60 minutes on a hot plate in a nitrogen gas atmosphere. A transport layer was formed.
  • the polymer compound ETL-1 was dissolved in 2,2,3,3,4,4,5,5-octafluoro-1-pentanol at a concentration of 0.25% by mass. Using the obtained 2,2,3,3,4,4,5,5-octafluoro-1-pentanol solution, a film having a thickness of 10 nm is formed on the first light-emitting layer by spin coating. Then, an electron transport layer was formed by heating at 130 ° C. for 10 minutes in a nitrogen gas atmosphere.
  • the current value was set so that the light emitting element CD5 had an initial luminance of 400 cd / m 2 , the device was then driven at a constant current, and the time until the luminance became 85% of the initial luminance was measured. It was. The results are shown in Table 5.
  • Example D15 Production and Evaluation of Light-Emitting Element D15 “Polymer Compound HTL-4” was used instead of “Polymer Compound HTL-1” in (Formation of Second Light-Emitting Layer) in Example D4 Except for the above, a light-emitting element D15 was produced in the same manner as in Example D4.
  • the current value was set so that the light emitting element D15 had an initial luminance of 6000 cd / m 2 , the device was then driven at a constant current, and the time until the luminance reached 70% of the initial luminance was measured to be 12.4 hours. It was. The results are shown in Table 6.
  • Example D16 Fabrication and Evaluation of Light-Emitting Element D16
  • Polymer Compound HTL-4" was used instead of "Polymer Compound HTL-1" in (Formation of Second Light-Emitting Layer) in Example D5
  • a light-emitting element D16 was produced in the same manner as in Example D5.
  • the current value was set so that the light-emitting element D16 had an initial luminance of 6000 cd / m 2 , the device was then driven at a constant current, and the time until the luminance became 70% of the initial luminance was measured to be 44.9 hours. It was. The results are shown in Table 6.
  • Example D17 Fabrication and Evaluation of Light-Emitting Element D17
  • Polymer Compound HTL-4" was used in place of "Polymer Compound HTL-1" in (Formation of Second Light-Emitting Layer) in Example D6
  • a light emitting element D17 was produced in the same manner as in Example D6, except for the above.
  • the current value was set so that the light-emitting element D17 had an initial luminance of 6000 cd / m 2 , the device was then driven at a constant current, and the time until the luminance became 70% of the initial luminance was measured. It was. The results are shown in Table 6.
  • Example D18 Production and Evaluation of Light-Emitting Element D18
  • polymer compound HTL-1 in “Formation of second light-emitting layer” in Example D4
  • polymer compound HTL-5 and metal complex RM3 were used.
  • the current value was set so that the light emitting element D18 had an initial luminance of 6000 cd / m 2 , the device was then driven at a constant current, and the time until the luminance reached 70% of the initial luminance was measured to be 13.3 hours. It was. The results are shown in Table 6.
  • the current value was set so that the light emitting element D19 had an initial luminance of 6000 cd / m 2 , the device was then driven at a constant current, and the time until the luminance reached 70% of the initial luminance was measured to be 8.6 hours. It was. The results are shown in Table 6.
  • the current value was set so that the light emitting element CD6 had an initial luminance of 6000 cd / m 2 , the device was then driven at a constant current, and the time until the luminance became 70% of the initial luminance was measured to be 3.8 hours. It was. The results are shown in Table 6.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

陽極と、陰極と、陽極及び陰極の間に設けられた第1の発光層と、陽極及び陰極の間に設けられた第2の発光層とを有し、第1の発光層が、式(1)で表される金属錯体を含有する、発光素子。 [式中、Mはイリジウム原子等を表す。nは1以上の整数を表し、nは0以上の整数を表し、n+nは2又は3である。環R1Aは、窒素原子、E、E11A、E12A及び炭素原子で構成されるトリアゾール環等を表す。環Rは、芳香族炭化水素環等を表す。E、E、E11A及びE12Aは、窒素原子等を表す。R11A及びR12Aは、アリール基等を表す。R13Aは、アリール基等を表す。A-G-Aは、アニオン性の2座配位子を表す。A及びAは、窒素原子等を表す。Gは、単結合等を表す。]

Description

発光素子
 本発明は、発光素子に関する。
 有機エレクトロルミネッセンス素子(以下、「発光素子」ともいう。)は、ディスプレイ及び照明の用途に好適に使用することが可能であり、研究開発が盛んに行われている。
 特許文献1には、下記式で表される金属錯体(M01)を含有する第1の発光層と、下記式で表される金属錯体(M02)から誘導される構成単位を含む高分子化合物の架橋体を含有する第2の発光層とを有する発光素子が記載されている。なお、該金属錯体(M01)と、後述の式(1)で表される金属錯体とは構造が異なる。
Figure JPOXMLDOC01-appb-C000012
 特許文献2には、下記式で表される金属錯体(M03)を含有する発光層を有する発光素子が記載されている。なお、この発光素子は、発光層が1層のみである。
Figure JPOXMLDOC01-appb-C000013
特開2014-148663号公報 国際公開第2014/156922号
 しかしながら、上記の特許文献1及び2に記載された発光素子は、輝度寿命が必ずしも十分ではなかった。
 そこで、本発明は、輝度寿命に優れる発光素子を提供することを目的とする。
 本発明は、以下の[1]~[12]を提供する。
[1]陽極と、陰極と、前記陽極及び前記陰極の間に設けられた第1の発光層と、前記陽極及び前記陰極の間に設けられた第2の発光層とを有し、第1の発光層が、式(1)で表される金属錯体を含有する、発光素子。
Figure JPOXMLDOC01-appb-C000014
[式中、
 Mはロジウム原子、パラジウム原子、イリジウム原子又は白金原子を表す。
 nは1以上の整数を表し、nは0以上の整数を表し、n+nは2又は3である。
 Mがロジウム原子又はイリジウム原子の場合、n+nは3であり、Mがパラジウム原子又は白金原子の場合、n+nは2である。
 環R1Aは、窒素原子、E、E11A、E12A及び炭素原子で構成されるトリアゾール環又はジアゾール環を表す。
 環Rは、芳香族炭化水素環又は芳香族複素環を表し、これらの環は置換基を有していてもよい。該置換基が複数存在する場合、それらは同一でも異なっていてもよく、互いに結合して、それぞれが結合する原子とともに環を形成していてもよい。環Rが複数存在する場合、それらは同一でも異なっていてもよい。
 E、E、E11A及びE12Aは、それぞれ独立に、窒素原子又は炭素原子を表す。E、E、E11A及びE12Aが複数存在する場合、それらはそれぞれ同一でも異なっていてもよい。但し、E及びEのうち、少なくとも一方は炭素原子である。
 R11A及びR12Aは、それぞれ独立に、水素原子、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、アリールオキシ基、1価の複素環基、置換アミノ基又はハロゲン原子を表し、これらの基は置換基を有していてもよい。R11A及びR12Aが複数存在する場合、それらはそれぞれ同一でも異なっていてもよい。R11AとR12Aとは、互いに結合して、それぞれが結合する原子とともに環を形成していてもよい。R11Aと環Rが有していてもよい置換基とは、互いに結合して、それぞれが結合する原子とともに環を形成していてもよい。
 E11Aが窒素原子の場合、R11Aは存在しても存在しなくてもよい。E12Aが窒素原子の場合、R12Aは存在しても存在しなくてもよい。
 R13Aは、アリール基、1価の複素環基又は置換アミノ基を表し、これらの基は置換基を有していてもよい。R13Aが複数存在する場合、それらはそれぞれ同一でも異なっていてもよい。R12AとR13Aとは、互いに結合して、それぞれが結合する原子とともに環を形成していてもよい。
 A-G-Aは、アニオン性の2座配位子を表す。A及びAは、それぞれ独立に、炭素原子、酸素原子又は窒素原子を表し、これらの原子は環を構成する原子であってもよい。Gは、単結合、又は、A及びAとともに2座配位子を構成する原子団を表す。A-G-Aが複数存在する場合、それらは同一でも異なっていてもよい。]
[2]前記第2の発光層が、式(2)で表される金属錯体、式(2)で表される金属錯体から、該金属錯体を構成する炭素原子又はヘテロ原子に直接結合する1個以上の水素原子を取り除いてなる基を有する構成単位を含む高分子化合物、及び、前記高分子化合物の架橋体からなる群より選択される少なくとも1種を含有する、[1]に記載の発光素子。
Figure JPOXMLDOC01-appb-C000015
[式中、
 Mはロジウム原子、パラジウム原子、イリジウム原子又は白金原子を表す。
 nは1以上の整数を表し、nは0以上の整数を表し、n+nは2又は3である。
 Mがロジウム原子又はイリジウム原子の場合、n+nは3であり、Mがパラジウム原子又は白金原子の場合、n+nは2である。
 Eは、炭素原子又は窒素原子を表す。
 環Lは、6員の芳香族複素環を表し、この環は置換基を有していてもよい。該置換基が複数存在する場合、それらは同一でも異なっていてもよく、互いに結合して、それぞれが結合する原子とともに環を形成していてもよい。環Lが複数存在する場合、それらは同一でも異なっていてもよい。
 環Lは、芳香族炭化水素環又は芳香族複素環を表し、これらの環は置換基を有していてもよい。該置換基が複数存在する場合、それらは同一でも異なっていてもよく、互いに結合して、それぞれが結合する原子とともに環を形成していてもよい。環Lが複数存在する場合、それらは同一でも異なっていてもよい。
 環Lが有していてもよい置換基と環Lが有していてもよい置換基とは、互いに結合して、それぞれが結合する原子とともに環を形成していてもよい。
 A-G-Aは、アニオン性の2座配位子を表す。A及びAは、それぞれ独立に、炭素原子、酸素原子又は窒素原子を表し、これらの原子は環を構成する原子であってもよい。Gは、単結合、又は、A及びAとともに2座配位子を構成する原子団を表す。A-G-Aが複数存在する場合、それらは同一でも異なっていてもよい。]
[3]前記第2の発光層が、前記高分子化合物及び前記架橋体からなる群より選択される少なくとも1種を含有する、[2]に記載の発光素子。
[4]前記構成単位が、式(1B)で表される構成単位、式(2B)で表される構成単位、式(3B)で表される構成単位又は式(4B)で表される構成単位である、[2]又は[3]に記載の発光素子。
Figure JPOXMLDOC01-appb-C000016
[式中、
 M1Bは、式(2)で表される金属錯体から、該金属錯体を構成する炭素原子又はヘテロ原子に直接結合する1個の水素原子を取り除いてなる基を表す。
 Lは、酸素原子、硫黄原子、-N(R)-、-C(R-、-C(R)=C(R)-、-C≡C-、アリーレン基又は2価の複素環基を表し、これらの基は置換基を有していてもよい。Rは、水素原子、アルキル基、シクロアルキル基、アリール基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。Rは、水素原子、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。複数存在するRは、同一でも異なっていてもよく、互いに結合して、それぞれが結合する炭素原子とともに環を形成していてもよい。Lが複数存在する場合、それらは同一でも異なっていてもよい。
 nc1は0以上の整数を表す。]
Figure JPOXMLDOC01-appb-C000017
[式中、
 M1Bは前記と同じ意味を表す。
 L及びLは、それぞれ独立に、酸素原子、硫黄原子、-N(R)-、-C(R-、-C(R)=C(R)-、-C≡C-、アリーレン基又は2価の複素環基を表し、これらの基は置換基を有していてもよい。R及びRは、前記と同じ意味を表す。L及びLが複数存在する場合、それらはそれぞれ同一でも異なっていてもよい。
 nd1及びne1は、それぞれ独立に、0以上の整数を表す。複数存在するnd1は、同一でも異なっていてもよい。
 Ar1Mは、芳香族炭化水素基又は複素環基を表し、これらの基は置換基を有していてもよい。]
Figure JPOXMLDOC01-appb-C000018
[式中、
 L及びnd1は、前記と同じ意味を表す。
 M2Bは、式(2)で表される金属錯体から、該金属錯体を構成する炭素原子又はヘテロ原子に直接結合する2個の水素原子を取り除いてなる基を表す。]
Figure JPOXMLDOC01-appb-C000019
[式中、
 L及びnd1は、前記と同じ意味を表す。
 M3Bは、式(2)で表される金属錯体から、該金属錯体を構成する炭素原子又はヘテロ原子に直接結合する3個の水素原子を取り除いてなる基を表す。]
[5]前記式(2)で表される金属錯体が、式(2-B)で表される金属錯体である、[2]~[4]のいずれかに記載の発光素子。
Figure JPOXMLDOC01-appb-C000020
[式中、
 M、n、n及びA-G-Aは、前記と同じ意味を表す。
 E11B、E12B、E13B、E14B、E21B、E22B、E23B及びE24Bは、それぞれ独立に、窒素原子又は炭素原子を表す。E11B、E12B、E13B、E14B、E21B、E22B、E23B及びE24Bが複数存在する場合、それらはそれぞれ同一でも異なっていてもよい。E11Bが窒素原子の場合、R11Bは存在しない。E12Bが窒素原子の場合、R12Bは存在しない。E13Bが窒素原子の場合、R13Bは存在しない。E14Bが窒素原子の場合、R14Bは存在しない。E21Bが窒素原子の場合、R21Bは存在しない。E22Bが窒素原子の場合、R22Bは存在しない。E23Bが窒素原子の場合、R23Bは存在しない。E24Bが窒素原子の場合、R24Bは存在しない。
 R11B、R12B、R13B、R14B、R21B、R22B、R23B及びR24Bは、それぞれ独立に、水素原子、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、アリールオキシ基、1価の複素環基、置換アミノ基又はハロゲン原子を表し、これらの基は置換基を有していてもよい。R11B、R12B、R13B、R14B、R21B、R22B、R23B及びR24Bが複数存在する場合、それらはそれぞれ同一でも異なっていてもよい。R11BとR12B、R12BとR13B、R13BとR14B、R11BとR21B、R21BとR22B、R22BとR23B、及び、R23BとR24Bは、それぞれ結合して、それぞれが結合する原子とともに環を形成していてもよい。
 環L1Bは、窒素原子、炭素原子、E11B、E12B、E13B及びE14Bで構成されるピリジン環又はピリミジン環を表す。
 環L2Bは、2つの炭素原子、E21B、E22B、E23B及びE24Bで構成されるベンゼン環、ピリジン環又はピリミジン環を表す。]
[6]前記式(2-B)で表される金属錯体が、式(2-B1)で表される金属錯体、式(2-B2)で表される金属錯体、式(2-B3)で表される金属錯体、式(2-B4)で表される金属錯体又は式(2-B5)で表される金属錯体である、[5]に記載の発光素子。
Figure JPOXMLDOC01-appb-C000021
[式中、
 M、n、n、A-G-A、R11B、R12B、R13B、R14B、R21B、R22B、R23B及びR24Bは、前記と同じ意味を表す。
 n31及びn32は、それぞれ独立に、1以上の整数を表し、n31+n32は2又は3である。Mがロジウム原子又はイリジウム原子の場合、n31+n32は3であり、Mがパラジウム原子又は白金原子の場合、n31+n32は2である。
 R15B、R16B、R17B及びR18Bは、それぞれ独立に、水素原子、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、アリールオキシ基、1価の複素環基、置換アミノ基又はハロゲン原子を表し、これらの基は置換基を有していてもよい。R15B、R16B、R17B及びR18Bが複数存在する場合、それらはそれぞれ同一でも異なっていてもよい。R15BとR16B、R16BとR17B、及び、R17BとR18Bは、それぞれ結合して、それぞれが結合する原子とともに環を形成していてもよい。]
[7]前記式(1)で表される金属錯体が、式(1-A)で表される金属錯体である、[1]~[6]のいずれかに記載の発光素子。
Figure JPOXMLDOC01-appb-C000022
[式中、M、n、n、環R1A、E、E11A、E12A、R11A、R12A、R13A及びA-G-Aは、前記と同じ意味を表す。
 環R2Aは、2つの炭素原子、E21A、E22A、E23A及びE24Aで構成されるベンゼン環、ピリジン環又はピリミジン環を表す。
 E21A、E22A、E23A及びE24Aは、それぞれ独立に、窒素原子又は炭素原子を表す。E21A、E22A、E23A及びE24Aが複数存在する場合、それらはそれぞれ同一でも異なっていてもよい。E21Aが窒素原子の場合、R21Aは存在しない。E22Aが窒素原子の場合、R22Aは存在しない。E23Aが窒素原子の場合、R23Aは存在しない。E24Aが窒素原子の場合、R24Aは存在しない。
 R21A、R22A、R23A及びR24Aは、水素原子、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、アリールオキシ基、1価の複素環基、置換アミノ基又はハロゲン原子を表し、これらの基は置換基を有していてもよい。
21A、R22A、R23A及びR24Aが複数存在する場合、それらはそれぞれ同一でも異なっていてもよい。R21AとR22Aとは、互いに結合して、それぞれが結合する原子とともに環を形成していてもよい。R22AとR23Aとは、互いに結合して、それぞれが結合する原子とともに環を形成していてもよい。R23AとR24Aとは、互いに結合して、それぞれが結合する原子とともに環を形成していてもよい。R11AとR21Aとは、互いに結合して、それぞれが結合する原子とともに環を形成していてもよい。]
[8]前記式(1-A)で表される金属錯体が、式(1-A1)で表される金属錯体、式(1-A2)で表される金属錯体、式(1-A3)で表される金属錯体又は式(1-A4)で表される金属錯体である、[7]に記載の発光素子。
Figure JPOXMLDOC01-appb-C000023
[式中、M、n、n、R11A、R12A、R13A、R21A、R22A、R23A、R24A及びA-G-Aは、前記と同じ意味を表す。]
[9]前記R13Aが、置換基を有していてもよいアリール基である、[1]~[8]のいずれかに記載の発光素子。
[10]前記第1の発光層が、式(H-1)で表される化合物を更に含有する、[1]~[9]のいずれかに記載の発光素子。
Figure JPOXMLDOC01-appb-C000024
[式中、
 ArH1及びArH2は、それぞれ独立に、アリール基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。
 nH1及びnH2は、それぞれ独立に、0又は1を表す。nH1が複数存在する場合、それらは同一でも異なっていてもよい。複数存在するnH2は、同一でも異なっていてもよい。
 nH3は、0以上の整数を表す。
 LH1は、アリーレン基、2価の複素環基、又は、-[C(RH11]nH11-で表される基を表し、これらの基は置換基を有していてもよい。LH1が複数存在する場合、それらは同一でも異なっていてもよい。nH11は、1以上10以下の整数を表す。
H11は、水素原子、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。
複数存在するRH11は、同一でも異なっていてもよく、互いに結合して、それぞれが結合する炭素原子とともに環を形成していてもよい。
 LH2は、-N(-LH21-RH21)-で表される基を表す。LH2が複数存在する場合、それらは同一でも異なっていてもよい。LH21は、単結合、アリーレン基又は2価の複素環基を表し、これらの基は置換基を有していてもよい。RH21は、水素原子、アルキル基、シクロアルキル基、アリール基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。]
[11]前記第1の発光層と、前記第2の発光層とが、隣接している、[1]~[10]のいずれかに記載の発光素子。
[12]前記第2の発光層が、前記陽極及び前記第1の発光層との間に設けられている、[1]~[11]のいずれかに記載の発光素子。
 本発明によれば、輝度寿命に優れる発光素子を提供することができる。
 以下、本発明の好適な実施形態について詳細に説明する。
 <共通する用語の説明>
 本明細書で共通して用いられる用語は、特記しない限り、以下の意味である。
 Meはメチル基、Etはエチル基、Buはブチル基、i-Prはイソプロピル基、t-Buはtert-ブチル基を表す。
 水素原子は、重水素原子であっても、軽水素原子であってもよい。
 金属錯体を表す式中、中心金属との結合を表す実線は、共有結合又は配位結合を意味する。
 「高分子化合物」とは、分子量分布を有し、ポリスチレン換算の数平均分子量が1×10~1×10である重合体を意味する。
 高分子化合物は、ブロック共重合体、ランダム共重合体、交互共重合体、グラフト共重合体のいずれであってもよいし、その他の態様であってもよい。
 高分子化合物の末端基は、重合活性基がそのまま残っていると、高分子化合物を発光素子の作製に用いた場合に発光特性が低下する可能性があるので、好ましくは安定な基である。この末端基としては、好ましくは主鎖と共役結合している基であり、例えば、炭素-炭素結合を介してアリール基又は1価の複素環基と結合している基が挙げられる。
 「低分子化合物」とは、分子量分布を有さず、分子量が1×10以下の化合物を意味する。
 「構成単位」とは、高分子化合物中に1個以上存在する単位を意味する。
 「アルキル基」は、直鎖及び分岐のいずれでもよい。直鎖のアルキル基の炭素原子数は、置換基の炭素原子数を含めないで、通常1~50であり、好ましくは3~30であり、より好ましくは4~20である。分岐のアルキル基の炭素原子数は、置換基の炭素原子数を含めないで、通常3~50であり、好ましくは3~30であり、より好ましくは4~20である。
 アルキル基は、置換基を有していてもよく、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、2-ブチル基、イソブチル基、tert-ブチル基、ペンチル基、イソアミル基、2-エチルブチル基、ヘキシル基、ヘプチル基、オクチル基、2-エチルヘキシル基、3-プロピルヘプチル基、デシル基、3,7-ジメチルオクチル基、2-エチルオクチル基、2-ヘキシルデシル基、ドデシル基、及び、これらの基における水素原子が、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、フッ素原子等で置換された基が挙げられ、例えば、トリフルオロメチル基、ペンタフルオロエチル基、パーフルオロブチル基、パーフルオロヘキシル基、パーフルオロオクチル基、3-フェニルプロピル基、3-(4-メチルフェニル)プロピル基、3-(3,5-ジ-ヘキシルフェニル)プロピル基、6-エチルオキシヘキシル基が挙げられる。
 「シクロアルキル基」の炭素原子数は、置換基の炭素原子数を含めないで、通常3~50であり、好ましくは3~30であり、より好ましくは4~20である。
 シクロアルキル基は、置換基を有していてもよく、例えば、シクロヘキシル基、シクロヘキシルメチル基、シクロヘキシルエチル基が挙げられる。
 「アリール基」は、芳香族炭化水素から環を構成する炭素原子に直接結合する水素原子1個を除いた残りの原子団を意味する。アリール基の炭素原子数は、置換基の炭素原子数を含めないで、通常6~60であり、好ましくは6~20であり、より好ましくは6~10である。
 アリール基は、置換基を有していてもよく、例えば、フェニル基、1-ナフチル基、2-ナフチル基、1-アントラセニル基、2-アントラセニル基、9-アントラセニル基、1-ピレニル基、2-ピレニル基、4-ピレニル基、2-フルオレニル基、3-フルオレニル基、4-フルオレニル基、2-フェニルフェニル基、3-フェニルフェニル基、4-フェニルフェニル基、及び、これらの基における水素原子が、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、フッ素原子等で置換された基が挙げられる。
 「アルコキシ基」は、直鎖及び分岐のいずれでもよい。直鎖のアルコキシ基の炭素原子数は、置換基の炭素原子数を含めないで、通常1~40であり、好ましくは4~10である。分岐のアルコキシ基の炭素原子数は、置換基の炭素原子数を含めないで、通常3~40であり、好ましくは4~10である。
 アルコキシ基は、置換基を有していてもよく、例えば、メトキシ基、エトキシ基、プロピルオキシ基、イソプロピルオキシ基、ブチルオキシ基、イソブチルオキシ基、tert-ブチルオキシ基、ペンチルオキシ基、ヘキシルオキシ基、ヘプチルオキシ基、オクチルオキシ基、2-エチルヘキシルオキシ基、ノニルオキシ基、デシルオキシ基、3,7-ジメチルオクチルオキシ基、ラウリルオキシ基、及び、これらの基における水素原子が、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、フッ素原子等で置換された基が挙げられる。
 「シクロアルコキシ基」の炭素原子数は、置換基の炭素原子数を含めないで、通常3~40であり、好ましくは4~10である。
 シクロアルコキシ基は、置換基を有していてもよく、例えば、シクロヘキシルオキシ基が挙げられる。
 「アリールオキシ基」の炭素原子数は、置換基の炭素原子数を含めないで、通常6~60であり、好ましくは6~48である。
 アリールオキシ基は、置換基を有していてもよく、例えば、フェノキシ基、1-ナフチルオキシ基、2-ナフチルオキシ基、1-アントラセニルオキシ基、9-アントラセニルオキシ基、1-ピレニルオキシ基、及び、これらの基における水素原子が、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、フッ素原子等で置換された基が挙げられる。
 「p価の複素環基」(pは、1以上の整数を表す。)とは、複素環式化合物から、環を構成する炭素原子又はヘテロ原子に直接結合している水素原子のうちp個の水素原子を除いた残りの原子団を意味する。p価の複素環基の中でも、芳香族複素環式化合物から、環を構成する炭素原子又はヘテロ原子に直接結合している水素原子のうちp個の水素原子を除いた残りの原子団である「p価の芳香族複素環基」が好ましい。
 「芳香族複素環式化合物」は、オキサジアゾール、チアジアゾール、チアゾール、オキサゾール、チオフェン、ピロール、ホスホール、フラン、ピリジン、ピラジン、ピリミジン、トリアジン、ピリダジン、キノリン、イソキノリン、カルバゾール、ジベンゾホスホール等の複素環自体が芳香族性を示す化合物、及び、フェノキサジン、フェノチアジン、ジベンゾボロール、ジベンゾシロール、ベンゾピラン等の複素環自体は芳香族性を示さなくとも、複素環に芳香環が縮環されている化合物を意味する。
 1価の複素環基の炭素原子数は、置換基の炭素原子数を含めないで、通常2~60であり、好ましくは4~20である。
 1価の複素環基は、置換基を有していてもよく、例えば、チエニル基、ピロリル基、フリル基、ピリジニル基、ピペリジニル基、キノリニル基、イソキノリニル基、ピリミジニル基、トリアジニル基、及び、これらの基における水素原子が、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基等で置換された基が挙げられる。
 「ハロゲン原子」とは、フッ素原子、塩素原子、臭素原子又はヨウ素原子を示す。
 「アミノ基」は、置換基を有していてもよく、置換アミノ基が好ましい。アミノ基が有する置換基としては、アルキル基、シクロアルキル基、アリール基又は1価の複素環基が好ましい。
 置換アミノ基としては、例えば、ジアルキルアミノ基、ジシクロアルキルアミノ基及びジアリールアミノ基が挙げられる。
 アミノ基としては、例えば、ジメチルアミノ基、ジエチルアミノ基、ジフェニルアミノ基、ビス(4-メチルフェニル)アミノ基、ビス(4-tert-ブチルフェニル)アミノ基、ビス(3,5-ジ-tert-ブチルフェニル)アミノ基が挙げられる。
 「アルケニル基」は、直鎖及び分岐のいずれでもよい。直鎖のアルケニル基の炭素原子数は、置換基の炭素原子数を含めないで、通常2~30であり、好ましくは3~20である。分岐のアルケニル基の炭素原子数は、置換基の炭素原子数を含めないで、通常3~30であり、好ましくは4~20である。
 「シクロアルケニル基」の炭素原子数は、置換基の炭素原子数を含めないで、通常3~30であり、好ましくは4~20である。
 アルケニル基及びシクロアルケニル基は、置換基を有していてもよく、例えば、ビニル基、1-プロペニル基、2-プロペニル基、2-ブテニル基、3-ブテニル基、3-ペンテニル基、4-ペンテニル基、1-ヘキセニル基、5-ヘキセニル基、7-オクテニル基、及び、これらの基が置換基を有する基が挙げられる。
 「アルキニル基」は、直鎖及び分岐のいずれでもよい。アルキニル基の炭素原子数は、置換基の炭素原子を含めないで、通常2~20であり、好ましくは3~20である。分岐のアルキニル基の炭素原子数は、置換基の炭素原子を含めないで、通常4~30であり、好ましくは4~20である。
 「シクロアルキニル基」の炭素原子数は、置換基の炭素原子を含めないで、通常4~30であり、好ましくは4~20である。
 アルキニル基及びシクロアルキニル基は、置換基を有していてもよく、例えば、エチニル基、1-プロピニル基、2-プロピニル基、2-ブチニル基、3-ブチニル基、3-ペンチニル基、4-ペンチニル基、1-ヘキシニル基、5-ヘキシニル基、及び、これらの基が置換基を有する基が挙げられる。
 「アリーレン基」は、芳香族炭化水素から環を構成する炭素原子に直接結合する水素原子2個を除いた残りの原子団を意味する。アリーレン基の炭素原子数は、置換基の炭素原子数を含めないで、通常6~60であり、好ましくは6~30であり、より好ましくは6~18である。
 アリーレン基は、置換基を有していてもよく、例えば、フェニレン基、ナフタレンジイル基、アントラセンジイル基、フェナントレンジイル基、ジヒドロフェナントレンジイル基、ナフタセンジイル基、フルオレンジイル基、ピレンジイル基、ペリレンジイル基、クリセンジイル基、及び、これらの基が置換基を有する基が挙げられ、好ましくは、式(A-1)~(A-20)で表される基である。アリーレン基は、これらの基が複数結合した基を含む。
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000028
[式中、R及びRは、それぞれ独立に、水素原子、アルキル基、シクロアルキル基、アリール基又は1価の複素環基を表す。複数存在するR及びRは、各々、同一でも異なっていてもよく、R同士は互いに結合して、それぞれが結合する原子と共に環を形成していてもよい。]
 2価の複素環基の炭素原子数は、置換基の炭素原子数を含めないで、通常2~60であり、好ましくは、3~20であり、より好ましくは、4~15である。
 2価の複素環基は、置換基を有していてもよく、例えば、ピリジン、ジアザベンゼン、トリアジン、アザナフタレン、ジアザナフタレン、カルバゾール、ジベンゾフラン、ジベンゾチオフェン、ジベンゾシロール、フェノキサジン、フェノチアジン、アクリジン、ジヒドロアクリジン、フラン、チオフェン、アゾール、ジアゾール、トリアゾールから、環を構成する炭素原子又はヘテロ原子に直接結合している水素原子のうち2個の水素原子を除いた2価の基が挙げられ、好ましくは、式(AA-1)~(AA-34)で表される基である。2価の複素環基は、これらの基が複数結合した基を含む。
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000035
[式中、R及びRは、前記と同じ意味を表す。]
 「架橋基」とは、加熱、紫外線照射、近紫外線照射、可視光照射、赤外線照射、ラジカル反応等に供することにより、新たな結合を生成することが可能な基であり、好ましくは、架橋基A群の式(XL-1)~(XL-17)で表される架橋基である。
(架橋基A群)
Figure JPOXMLDOC01-appb-C000036
[式中、RXLは、メチレン基、酸素原子又は硫黄原子を表し、nXLは、0~5の整数を表す。RXLが複数存在する場合、それらは同一でも異なっていてもよく、nXLが複数存在する場合、それらは同一でも異なっていてもよい。*1は結合位置を表す。これらの架橋基は置換基を有していてもよい。]
 「置換基」とは、ハロゲン原子、シアノ基、アルキル基、シクロアルキル基、アリール基、1価の複素環基、アルコキシ基、シクロアルコキシ基、アリールオキシ基、アミノ基、置換アミノ基、アルケニル基、シクロアルケニル基、アルキニル基又はシクロアルキニル基を表す。置換基は架橋基であってもよい。
<発光素子>
 次に、本実施形態に係る発光素子について説明する。
 本実施形態に係る発光素子は、陽極と、陰極と、陽極及び陰極の間に設けられた第1の発光層と、陽極及び陰極の間に設けられた第2の発光層とを有し、第1の発光層が、式(1)で表される金属錯体を含有する、発光素子である。
<第1の発光層>
 次に、本実施形態に係る発光素子が有する第1の発光層について、説明する。
 第1の発光層は、式(1)で表される金属錯体を含有する層である。
 第1の発光層は、式(1)で表される金属錯体がそのまま含有されていてもよいし、式(1)で表される金属錯体が分子内、分子間、又は、それらの両方で架橋した状態で含有されていてもよい。すなわち、第1の発光層は、式(1)で表される金属錯体及び/又は該金属錯体の架橋体を含有するものであってよい。
 第1の発光層は、1種単独の式(1)で表される金属錯体が含有されていてもよく、2種以上の式(1)で表される金属錯体が含有されていてもよい。
 第1の発光層における式(1)で表される金属錯体の含有量は、第1の発光層が発光層としての機能を奏する範囲であればよい。例えば、式(1)で表される金属錯体の含有量は、第1の発光層の全量基準で0.1~50質量%であってよく、1~40質量%であることが好ましく、10~30質量%であることがより好ましい。
 第1の発光層は、後述の式(2)で表される金属錯体を更に含有していてもよい。
 第1の発光層における式(2)で表される金属錯体の含有量は、特に限定されない。第1の発光層が式(2)で表される金属錯体を含有する場合、式(2)で表される金属錯体の含有量は、例えば、第1の発光層の全量基準で0.01~50質量%であってよく、0.1~20質量%であることが好ましく、0.5~5質量%であることがより好ましい。
 第1の発光層の形成方法としては、例えば、真空蒸着法、並びに、スピンコート法及びインクジェット印刷法に代表される塗布法が挙げられ、塗布法が好ましい。
 第1の発光層を塗布法により形成する場合、後述する第1の発光層のインクを用いることが好ましい。第1の発光層を形成後、加熱又は光照射することで、第1の発光層に含有される式(1)で表される金属錯体を架橋させることができる。式(1)で表される金属錯体が架橋した状態(式(1)で表される金属錯体の架橋体)で、第1の発光層に含有されている場合、第1の発光層は溶媒に対して実質的に不溶化されている。そのため、該第1の発光層は、発光素子の積層化に好適に使用することができる。
 本明細書において、特記しない限り、架橋させるための加熱の温度は、通常、25~300℃であり、好ましくは50~250℃であり、より好ましくは150~200℃である。加熱の時間は、通常、0.1分~1000分であり、好ましくは1分~500分であり、より好ましくは10分~100分であり、更に好ましくは50分~70分である。
 本明細書において、特記しない限り、架橋させるための光照射に用いられる光の種類は、例えば、紫外光、近紫外光、可視光である。
[式(1)で表される金属錯体]
 次に、式(1)で表される金属錯体に説明する。
 式(1)で表される金属錯体は、通常、室温(25℃)で燐光発光性を示す金属錯体であり、好ましくは、室温で三重項励起状態からの発光を示す金属錯体である。
 式(1)で表される金属錯体は、中心金属であるMと、添え字nでその数を規定されている配位子と、添え字nでその数を規定されている配位子とから構成される金属錯体である。
 Mは、本実施形態に係る発光素子の輝度寿命がより優れるので、イリジウム原子又は白金原子であることが好ましく、イリジウム原子であることがより好ましい。
 Mがロジウム原子又はイリジウム原子の場合、nは2又は3であることが好ましく、3であることがより好ましい。
 Mがパラジウム原子又は白金原子の場合、nは2であることが好ましい。
 E及びEは、炭素原子であることが好ましい。
 環R1Aがジアゾール環である場合、E11Aが窒素原子であるイミダゾール環、又は、E12Aが窒素原子であるイミダゾール環が好ましく、E11Aが窒素原子であるイミダゾール環がより好ましい。
 環R1Aがトリアゾール環である場合、E11A及びE12Aが窒素原子であるトリアゾール環が好ましい。
 E11Aが窒素原子であり、かつ、R11Aが存在する場合、R11Aはアルキル基、シクロアルキル基、アリール基又は1価の複素環基であることが好ましく、アルキル基、アリール基又は1価の複素環基であることがより好ましく、アリール基又は1価の複素環基であることが更に好ましく、アリール基であることが特に好ましく、これらの基は置換基を有していてもよい。
 E11Aが炭素原子である場合、R11Aは水素原子、アルキル基、シクロアルキル基、アリール基又は1価の複素環基であることが好ましく、水素原子、アルキル基、シクロアルキル基又はアリール基であることがより好ましく、水素原子、アルキル基又はシクロアルキル基であることが更に好ましく、水素原子であることが特に好ましく、これらの基は置換基を有していてもよい。
 E12Aが窒素原子であり、かつ、R12Aが存在する場合、R12Aはアルキル基、シクロアルキル基、アリール基又は1価の複素環基であることが好ましく、アリール基又は1価の複素環基であることがより好ましく、アリール基であることが更に好ましく、これらの基は置換基を有していてもよい。
 E12Aが炭素原子である場合、R12Aは水素原子、アルキル基、シクロアルキル基、アリール基又は1価の複素環基であることが好ましく、水素原子、アルキル基、シクロアルキル基又はアリール基であることがより好ましく、水素原子、アルキル基又はシクロアルキル基であることが更に好ましく、水素原子であることが特に好ましく、これらの基は置換基を有していてもよい。
 R11A及びR12Aにおけるアリール基としては、フェニル基、ナフチル基、アントラセニル基、フェントレニル基、ジヒドロフェントレニル基、フルオレニル基又はピレニル基が好ましく、フェニル基、ナフチル基又はフルオレニル基がより好ましく、フェニル基が更に好ましく、これらの基は置換基を有していてもよい。
 R11A及びR12Aにおける1価の複素環基としては、ピリジル基、ピリミジニル基、トリアジニル基、キノリニル基、イソキノリニル基、ジベンゾフラニル基、ジベンゾチエニル基、カルバゾリル基、アザカルバゾリル基、ジアザカルバゾリル基、フェノキサジニル基又はフェノチアジニル基が好ましく、ピリジル基、ピリミジニル基、トリアジニル基、ジベンゾフラニル基、カルバゾリル基、アザカルバゾリル基又はジアザカルバゾリル基がより好ましく、ピリジル基、ピリミジニル基又はトリアジニル基が更に好ましく、これらの基は置換基を有していてもよい。
 R11A及びR12Aにおける置換アミノ基において、アミノ基が有する置換基としては、アリール基又は1価の複素環基が好ましく、これらの基は更に置換基を有していてもよい。アミノ基が有する置換基におけるアリール基の例及び好ましい範囲は、R11A及びR12Aにおけるアリール基の例及び好ましい範囲と同じである。アミノ基が有する置換基における1価の複素環基の例及び好ましい範囲は、R11A及びR12Aにおける1価の複素環基の例及び好ましい範囲と同じである。
 R11A及びR12Aが有していてもよい置換基としては、アルキル基、シクロアルキル基、アリール基、1価の複素環基、アルコキシ基、シクロアルコキシ基、アリールオキシ基又は置換アミノ基が好ましく、アルキル基、シクロアルキル基、アリール基、1価の複素環基又は置換アミノ基がより好ましく、アルキル基、シクロアルキル基、アリール基又は1価の複素環基が更に好ましく、アルキル基又はアリール基が特に好ましく、これらの基は更に置換基を有していてもよい。
 R11A及びR12Aにおけるアリール基、1価の複素環基又は置換アミノ基は、本実施形態に係る発光素子の輝度寿命がより優れるので、好ましくは式(D-A)、(D-B)又は(D-C)で表される基であり、より好ましくは式(D-A)又は(D-C)で表される基であり、更に好ましくは式(D-C)で表される基である。
Figure JPOXMLDOC01-appb-C000037
[式中、
 mDA1、mDA2及びmDA3は、それぞれ独立に、0以上の整数を表す。
 GDAは、窒素原子、芳香族炭化水素基又は複素環基を表し、これらの基は置換基を有していてもよい。
 ArDA1、ArDA2及びArDA3は、それぞれ独立に、アリーレン基又は2価の複素環基を表し、これらの基は置換基を有していてもよい。ArDA1、ArDA2及びArDA3が複数ある場合、それらはそれぞれ同一でも異なっていてもよい。
 TDAは、アリール基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。複数あるTDAは、同一でも異なっていてもよい。]
Figure JPOXMLDOC01-appb-C000038
[式中、
 mDA1、mDA2、mDA3、mDA4、mDA5、mDA6及びmDA7は、それぞれ独立に、0以上の整数を表す。
 GDAは、窒素原子、芳香族炭化水素基又は複素環基を表し、これらの基は置換基を有していてもよい。複数あるGDAは、同一でも異なっていてもよい。
 ArDA1、ArDA2、ArDA3、ArDA4、ArDA5、ArDA6及びArDA7は、それぞれ独立に、アリーレン基又は2価の複素環基を表し、これらの基は置換基を有していてもよい。ArDA1、ArDA2、ArDA3、ArDA4、ArDA5、ArDA6及びArDA7が複数ある場合、それらはそれぞれ同一でも異なっていてもよい。
 TDAは、アリール基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。複数あるTDAは、同一でも異なっていてもよい。]
Figure JPOXMLDOC01-appb-C000039
[式中、
 mDA1は、0以上の整数を表す。
 ArDA1は、アリーレン基又は2価の複素環基を表し、これらの基は置換基を有していてもよい。ArDA1が複数ある場合、それらは同一でも異なっていてもよい。
 TDAは、アリール基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。]
 mDA1、mDA2、mDA3、mDA4、mDA5、mDA6及びmDA7は、通常10以下の整数であり、好ましくは5以下の整数であり、より好ましくは2以下の整数であり、更に好ましくは0又は1である。mDA2、mDA3、mDA4、mDA5、mDA6及びmDA7が、同一の整数であることが好ましく、mDA1、mDA2、mDA3、mDA4、mDA5、mDA6及びmDA7が、同一の整数であることがより好ましい。
 GDAは、好ましくは式(GDA-11)~(GDA-15)で表される基であり、より好ましくは式(GDA-11)~(GDA-14)で表される基であり、更に好ましくは式(GDA-11)又は(GDA-14)で表される基であり、特に好ましくは式(GDA-11)で表される基である。
Figure JPOXMLDOC01-appb-C000040
[式中、
 *は、式(D-A)におけるArDA1、式(D-B)におけるArDA1、式(D-B)におけるArDA2、又は、式(D-B)におけるArDA3との結合を表す。
 **は、式(D-A)におけるArDA2、式(D-B)におけるArDA2、式(D-B)におけるArDA4、又は、式(D-B)におけるArDA6との結合を表す。
 ***は、式(D-A)におけるArDA3、式(D-B)におけるArDA3、式(D-B)におけるArDA5、又は、式(D-B)におけるArDA7との結合を表す。
 RDAは、水素原子、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基又は1価の複素環基を表し、これらの基は更に置換基を有していてもよい。RDAが複数ある場合、それらは同一でも異なっていてもよい。]
 RDAは、好ましくは水素原子、アルキル基、シクロアルキル基、アルコキシ基又はシクロアルコキシ基であり、より好ましくは水素原子、アルキル基又はシクロアルキル基であり、これらの基は置換基を有していてもよい。
 ArDA1、ArDA2、ArDA3、ArDA4、ArDA5、ArDA6及びArDA7は、好ましくは、フェニレン基、フルオレンジイル基又はカルバゾールジイル基であり、より好ましくは式(A-1)~(A-3)、(A-8)、(A-9)、(AA-10)、(AA-11)、(AA-33)又は(AA-34)で表される基であり、更に好ましくは式(ArDA-1)~(ArDA-5)で表される基であり、特に好ましくは式(ArDA-1)~(ArDA-3)で表される基であり、とりわけ好ましくは式(ArDA-1)で表される基である。
Figure JPOXMLDOC01-appb-C000041
[式中、
 RDAは前記と同じ意味を表す。
 RDBは、水素原子、アルキル基、シクロアルキル基、アリール基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。RDBが複数ある場合、それらは同一でも異なっていてもよい。]
 RDBは、好ましくはアルキル基、シクロアルキル基、アリール基又は1価の複素環基であり、より好ましくはアリール基又は1価の複素環基であり、更に好ましくはアリール基であり、これらの基は置換基を有していてもよい。
 TDAは、好ましくは式(TDA-1)~(TDA-3)で表される基であり、より好ましくは式(TDA-1)で表される基である。
Figure JPOXMLDOC01-appb-C000042
[式中、RDA及びRDBは、前記と同じ意味を表す。]
 式(D-A)で表される基は、好ましくは式(D-A1)~(D-A4)で表される基であり、より好ましくは式(D-A1)又は(D-A4)で表される基であり、更に好ましくは式(D-A1)で表される基である。
Figure JPOXMLDOC01-appb-C000043
[式中、
 Rp1、Rp2、Rp3及びRp4は、それぞれ独立に、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基又はフッ素原子を表す。Rp1、Rp2及びRp4が複数ある場合、それらはそれぞれ同一であっても異なっていてもよい。
 np1は、0~5の整数を表し、np2は0~3の整数を表し、np3は0又は1を表し、np4は0~4の整数を表す。複数あるnp1は、同一でも異なっていてもよい。]
 式(D-B)で表される基は、好ましくは式(D-B1)~(D-B3)で表される基であり、より好ましくは式(D-B1)で表される基である。
Figure JPOXMLDOC01-appb-C000044
[式中、
 Rp1、Rp2及びRp3は、それぞれ独立に、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基又はフッ素原子を表す。Rp1及びRp2が複数ある場合、それらはそれぞれ同一でも異なっていてもよい。
 np1は0~5の整数を表し、np2は0~3の整数を表し、np3は0又は1を表す。np1及びnp2が複数ある場合、それらはそれぞれ同一でも異なっていてもよい。]
 式(D-C)で表される基は、好ましくは式(D-C1)~(D-C4)で表される基であり、より好ましくは式(D-C1)~(D-C3)で表される基であり、更に好ましくは式(D-C1)又は(D-C2)で表される基である。
Figure JPOXMLDOC01-appb-C000045
[式中、
 Rp4、Rp5及びRp6は、それぞれ独立に、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基又はフッ素原子を表す。Rp4、Rp5及びRp6が複数ある場合、それらはそれぞれ同一であっても異なっていてもよい。
 np4は、0~4の整数を表し、np5は0~5の整数を表し、np6は0~5の整数を表す。]
 np1は、好ましくは0又は1であり、より好ましくは1である。np2は、好ましくは0又は1であり、より好ましくは0である。np3は好ましくは0である。np4は、好ましくは0~2の整数である。np5は、好ましくは1~3の整数である。np6は、好ましくは0~2の整数である。
 Rp1、Rp2、Rp3、Rp4、Rp5及びRp6は、好ましくはアルキル基又はシクロアルキル基であり、より好ましくはメチル基、エチル基、イソプロピル基、tert-ブチル基、ヘキシル基、2-エチルヘキシル基、シクロヘキシル基、メトキシ基、2-エチルヘキシルオキシ基、tert-オクチル基又はシクロへキシルオキシ基であり、更に好ましくはメチル基、エチル基、イソプロピル基、tert-ブチル基、ヘキシル基、2-エチルヘキシル基又はtert-オクチル基である。
 式(D-A)で表される基としては、例えば、式(D-A-1)~(D-A-12)で表される基が挙げられる。
Figure JPOXMLDOC01-appb-C000046
Figure JPOXMLDOC01-appb-C000047
[式中、Rは、メチル基、エチル基、イソプロピル基、tert-ブチル基、ヘキシル基、2-エチルヘキシル基、tert-オクチル基、シクロヘキシル基、メトキシ基、2-エチルヘキシルオキシ基又はシクロへキシルオキシ基を表す。Rが複数存在する場合、それらは同一でも異なっていてもよい。]
 式(D-B)で表される基としては、例えば、式(D-B-1)~(D-B-4)で表される基が挙げられる。
Figure JPOXMLDOC01-appb-C000048
[式中、Rは前記と同じ意味を表す。]
 式(D-C)で表される基としては、例えば、式(D-C-1)~(D-C-17)で表される基が挙げられる。
Figure JPOXMLDOC01-appb-C000049
Figure JPOXMLDOC01-appb-C000050
[式中、Rは前記と同じ意味を表す。]
 Rはメチル基、エチル基、イソプロピル基、tert-ブチル基、ヘキシル基、2-エチルヘキシル基又はtert-オクチル基であることが好ましい。
 本実施形態に係る発光素子の輝度寿命がより優れるので、R11A及びR12Aからなる群から選ばれる少なくとも1つは、置換基を有していてもよいアリール基又は置換基を有していてもよい1価の複素環基であることが好ましく、置換基を有していてもよいアリール基であることがより好ましく、式(D-A1)、(D-A4)、(D-B1)又は(D-C1)~(D-C4)で表される基であることが更に好ましく、式(D-C1)~(D-C3)で表される基であることが特に好ましく、式(D-C1)又は(D-C2)で表される基であることがとりわけ好ましく、式(D-C1)で表される基であることが殊更に好ましい。
 R11A及びR12Aからなる群から選ばれる少なくとも1つが、置換基を有していてもよいアリール基又は置換基を有していてもよい1価の複素環基である場合、R11Aが置換基を有していてもよいアリール基又は置換基を有していてもよい1価の複素環基であることが好ましく、R11Aが置換基を有していてもよいアリール基であることがより好ましい。
 R11AとR12Aとは、互いに結合して、それぞれが結合する原子とともに環を形成していてもよいが、式(1)で表される金属錯体の発光スペクトルの最大ピーク波長が長波長になるため、環を形成しないことが好ましい。
 R13Aはアリール基又は1価の複素環基であることが好ましく、アリール基であることがより好ましく、これらの基は置換基を有していてもよい。
 R13Aにおけるアリール基、1価の複素環基及び置換アミノ基の例及び好ましい範囲は、それぞれ、R11A及びR12Aにおけるアリール基、1価の複素環基及び置換アミノ基の例及び好ましい範囲と同じである。
 R13Aが有していてもよい置換基の例及び好ましい範囲は、R11A及びR12Aが有していてもよい置換基の例及び好ましい範囲と同じである。
 環Rは、5員若しくは6員の芳香族炭化水素環、又は、5員若しくは6員の芳香族複素環であることが好ましく、6員の芳香族炭化水素環又は6員の芳香族複素環であることがより好ましく、6員の芳香族炭化水素環であることが更に好ましく、これらの環は置換基を有していてもよい。但し、環Rが6員の芳香族複素環である場合、Eは炭素原子であることが好ましい。
 環Rとしては、ベンゼン環、ナフタレン環、フルオレン環、フェナントレン環、インデン環、ピリジン環、ジアザベンゼン環及びトリアジン環が挙げられ、ベンゼン環、ナフタレン環、フルオレン環、ピリジン環又はピリミジン環が好ましく、ベンゼン環、ピリジン環又はピリミジン環がより好ましく、ベンゼン環が更に好ましく、これらの環は置換基を有していてもよい。
 環Rが有していてもよい置換基としては、好ましくは、フッ素原子、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリールオキシ基、アリール基、1価の複素環基又は置換アミノ基であり、より好ましくは、アルキル基、シクロアルキル基、アルコキシ基、アリール基、1価の複素環基又は置換アミノ基であり、更に好ましくは、アルキル基、シクロアルキル基、アリール基、1価の複素環基又は置換アミノ基であり、特に好ましくは、アルキル基又は式(D-A)、(D-B)若しくは(D-C)で表される基であり、とりわけ好ましくは式(D-A)、(D-B)若しくは(D-C)で表される基であり、殊更に好ましくは、式(D-A)又は(D-C)で表される基であり、最も好ましくは式(D-A)で表される基であり、これらの基は更に置換基を有していてもよい。
 環Rが有していてもよい置換基におけるアリール基、1価の複素環基及び置換アミノ基の例及び好ましい範囲は、それぞれ、R11A及びR12Aにおけるアリール基、1価の複素環基及び置換アミノ基の例及び好ましい範囲と同じである。
 環Rが有していてもよい置換基が更に有していてもよい置換基の例及び好ましい範囲は、R11A及びR12Aが有していてもよい置換基の例及び好ましい範囲と同じである。
[アニオン性の2座配位子]
 A-G-Aで表されるアニオン性の2座配位子としては、例えば、下記で表される配位子が挙げられる。
Figure JPOXMLDOC01-appb-C000051
Figure JPOXMLDOC01-appb-C000052
[式中、*は、Mと結合する部位を示す。]
 A-G-Aで表されるアニオン性の2座配位子は、下記で表される配位子であってもよい。但し、A-G-Aで表されるアニオン性の2座配位子は、添え字nでその数を定義されている配位子とは異なる。
Figure JPOXMLDOC01-appb-C000053
[式中、
 *は、Mと結合する部位を表す。
 RL1は、水素原子、アルキル基、シクロアルキル基又はハロゲン原子を表し、これらの基は置換基を有していてもよい。複数存在するRL1は、同一でも異なっていてもよい。
 RL2は、アルキル基、シクロアルキル基、アリール基、1価の複素環基又はハロゲン原子を表し、これらの基は置換基を有していてもよい。]
 RL1は、好ましくは、水素原子、アルキル基、シクロアルキル基又はフッ素原子であり、より好ましくは水素原子又はアルキル基であり、これらの基は置換基を有していてもよい。
 RL2は、好ましくは、アルキル基、シクロアルキル基、アリール基又は1価の複素環基であり、より好ましくはアリール基又は1価の複素環基であり、更に好ましくはアリール基であり、これらの基は置換基を有していてもよい。
 式(1)で表される金属錯体は、本実施形態に係る発光素子の輝度寿命がより優れるので、式(1-A)で表される金属錯体であることが好ましい。
 環R2Aがピリジン環である場合、E21Aが窒素原子であるピリジン環、E22Aが窒素原子であるピリジン環、又は、E23Aが窒素原子であるピリジン環が好ましく、E22Aが窒素原子であるピリジン環がより好ましい。
 環R2Aがピリミジン環である場合、E21A及びE23Aが窒素原子であるピリミジン環、又は、E22A及びE24Aが窒素原子であるピリミジン環が好ましく、E22A及びE24Aが窒素原子であるピリミジン環がより好ましい。
 環R2Aは、ベンゼン環であることが好ましい。
 R21A、R22A、R23A及びR24Aは、好ましくは、水素原子、フッ素原子、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリールオキシ基、アリール基、1価の複素環基又は置換アミノ基であり、より好ましくは、水素原子、アルキル基、シクロアルキル基、アルコキシ基、アリール基、1価の複素環基又は置換アミノ基であり、更に好ましくは、水素原子、アルキル基、シクロアルキル基、アリール基、1価の複素環基又は置換アミノ基であり、特に好ましくは、水素原子、アルキル基又は式(D-A)、(D-B)若しくは(D-C)で表される基であり、とりわけ好ましくは、水素原子又は式(D-A)、(D-B)若しくは(D-C)で表される基であり、殊更に好ましくは、水素原子又は式(D-A)若しくは(D-C)で表される基であり、最も好ましくは、水素原子又は式(D-A)で表される基であり、これらの基は置換基を有していてもよい。
 R21A、R22A、R23A及びR24Aにおけるアリール基、1価の複素環基及び置換アミノ基の例及び好ましい範囲は、それぞれ、環Rが有していてもよい置換基におけるアリール基、1価の複素環基及び置換アミノ基の例及び好ましい範囲と同じである。
 R21A、R22A、R23A及びR24Aが有していてもよい置換基の例及び好ましい範囲は、環Rが有していてもよい置換基が更に有していてもよい置換基の例及び好ましい範囲と同じである。
 本実施形態に係る発光素子の輝度寿命がより優れるので、R21A、R22A、R23A及びR24Aからなる群から選ばれる少なくとも1つは、式(D-A)、(D-B)又は(D-C)で表される基であることが好ましく、式(D-A)又は(D-C)で表される基であることがより好ましく、式(D-A)で表される基であることが更に好ましい。
 R21A、R22A、R23A及びR24Aからなる群から選ばれる少なくとも1つが、式(D-A)、(D-B)又は(D-C)で表される基である場合、R22A又はR23Aが、式(D-A)、(D-B)又は(D-C)で表される基であることが好ましく、R22Aが、式(D-A)、(D-B)又は(D-C)で表される基であることがより好ましい。
 式(1-A)で表される金属錯体は、本実施形態に係る発光素子の輝度寿命が更に優れるので、式(1-A1)で表される金属錯体、式(1-A2)で表される金属錯体、式(1-A3)で表される金属錯体又は式(1-A4)で表される金属錯体であることが好ましく、式(1-A1)で表される金属錯体又は式(1-A3)で表される金属錯体であることがより好ましく、式(1-A1)で表される金属錯体であることが更に好ましい。
 式(1)で表される金属錯体としては、例えば、式(Ir-100)~(Ir-133)、(Pt-100)~(Pt-104)、(Pd-100)又は(Rh-100)で表される金属錯体が挙げられ、好ましくは、式(Ir-100)~(Ir-129)、(Pt-100)~(Pt-104)、(Pd-100)又は(Rh-100)で表される金属錯体である。なお、式中、Eは、-CH=で表される基又は-N=で表される基を表す。
Figure JPOXMLDOC01-appb-C000054
Figure JPOXMLDOC01-appb-C000055
Figure JPOXMLDOC01-appb-C000056
Figure JPOXMLDOC01-appb-C000057
Figure JPOXMLDOC01-appb-C000058
Figure JPOXMLDOC01-appb-C000059
Figure JPOXMLDOC01-appb-C000060
Figure JPOXMLDOC01-appb-C000061
Figure JPOXMLDOC01-appb-C000062
Figure JPOXMLDOC01-appb-C000063
Figure JPOXMLDOC01-appb-C000064
Figure JPOXMLDOC01-appb-C000065
Figure JPOXMLDOC01-appb-C000066
Figure JPOXMLDOC01-appb-C000067
Figure JPOXMLDOC01-appb-C000068
Figure JPOXMLDOC01-appb-C000069
Figure JPOXMLDOC01-appb-C000070
<式(1)で表される金属錯体の製造方法>
 式(1)で表される金属錯体は、例えば、配位子となる化合物と金属化合物とを反応させる方法により製造することができる。必要に応じて、金属錯体の配位子の官能基変換反応を行ってもよい。
 式(1)で表される金属錯体は、例えば、式(M-1)で表される化合物と、金属化合物若しくはその水和物とを反応させる工程A、及び、工程Aで得られた化合物(以下、「金属錯体中間体(1)」ともいう。)と、式(M-1)で表される化合物又はA-G-Aで表される配位子の前駆体とを反応させる工程B、を含む方法(以下、「製造方法1」ともいう。)により製造することができる。
Figure JPOXMLDOC01-appb-C000071
[式中、M、n、n、環R1A、環R、E、E、E11A、E12A、R11A、R12A、R13A及びA-G-Aは、前記と同じ意味を表す。]
 工程Aにおいて、金属化合物としては、例えば、塩化イリジウム、トリス(アセチルアセトナト)イリジウム(III)、クロロ(シクロオクタジエン)イリジウム(I)ダイマー、酢酸イリジウム(III)等のイリジウム化合物;塩化白金酸カリウム等の白金化合物;塩化パラジウム、酢酸パラジウム等のパラジウム化合物;及び、塩化ロジウム等のロジウム化合物が挙げられる。金属化合物の水和物としては、例えば、塩化イリジウム・三水和物、塩化ロジウム・三水和物が挙げられる。
 金属錯体中間体(1)としては、例えば、式(M-2)で表される金属錯体が挙げられる。
Figure JPOXMLDOC01-appb-C000072
[式中、
 M、n、n、環R1A、環R、E、E、E11A、E12A、R11A、R12A及びR13Aは、前記と同じ意味を表す。
 n1’は、1又は2を表す。Mがロジウム原子又はイリジウム原子の場合、n1’は2であり、Mがパラジウム原子又は白金原子の場合、n1’は1である。]
 工程Aにおいて、式(M-1)で表される化合物は、金属化合物又はその水和物1モルに対して、通常、2~20モルである。
 工程Bにおいて、式(M-1)で表される化合物又はA-G-Aで表される配位子の前駆体の量は、金属錯体中間体(1)1モルに対して、通常、1~100モルである。
 工程Bにおいて、反応は、トリフルオロメタンスルホン酸銀等の銀化合物の存在下で行うことが好ましい。銀化合物を用いる場合、その量は、金属錯体中間体(1)1モルに対して、通常、2~20モルである。
 次に、式(1)で表される金属錯体の配位子の官能基変換反応(以下、「製造方法2」ともいう)について説明する。
 製造方法2において、官能基変換反応は、Suzuki反応、Buchwald反応、Stille反応、Negishi反応及びKumada反応等の遷移金属触媒を用いる、公知のカップリング反応等が挙げられる。
 製造方法2としては、例えば、式(M-3)で表される金属錯体と、式(M-4)で表される化合物とをカップリング反応させる工程Cを含む方法が挙げられる。
Figure JPOXMLDOC01-appb-C000073
[式中、
 M、n、n、環R1A、環R、E、E、E11A、E12A、R11A、R12A、R13A及びA-G-Aは、前記と同じ意味を表す。
 Wは、塩素原子、臭素原子又はヨウ素原子を表す。Wが複数存在する場合、それらは同一でも異なっていてもよい。
 nW1は、1以上10以下の整数を表す。
 Zは、アルキル基、シクロアルキル基、アリール基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。
 Wは、置換基B群からなる群から選ばれる基を表す。]
(置換基B群)
 -B(ORC2(式中、RC2は、水素原子、アルキル基、シクロアルキル基又はアリール基を表し、これらの基は置換基を有していてもよい。複数存在するRC2は同一でも異なっていてもよく、互いに連結して、それぞれが結合する酸素原子とともに環構造を形成していてもよい。)で表される基;
 -BFQ’(式中、Q’は、Li、Na、K、Rb又はCsを表す。)で表される基;
 -MgY’(式中、Y’は、塩素原子、臭素原子又はヨウ素原子を表す。)で表される基;
 -ZnY’’(式中、Y’’は、塩素原子、臭素原子又はヨウ素原子を表す。)で表される基;及び、
 -Sn(RC3(式中、RC3は、水素原子、アルキル基、シクロアルキル基又はアリール基を表し、これらの基は置換基を有していてもよい。複数存在するRC3は同一でも異なっていてもよく、互いに連結して、それぞれが結合するスズ原子とともに環構造を形成していてもよい。)で表される基。
 -B(ORC2で表される基としては、式(W-1)~(W-10)で表される基が例示される。
Figure JPOXMLDOC01-appb-C000074
 Wは、カップリング反応が容易に進行するので、臭素原子又はヨウ素原子が好ましい。
 nW1は、好ましくは1~5の整数であり、より好ましくは1又は2であり、更に好ましくは1である。
 Zは、アリール基又は1価の複素環基が好ましく、アリール基がより好ましく、これらの基は置換基を有していてもよい。
 Zにおけるアリール基及び1価の複素環基の例及び好ましい範囲は、環Rが有していてもよい置換基におけるアリール基及び1価の複素環基の例及び好ましい範囲と同じである。
 Zが有していてもよい置換基の例及び好ましい範囲は、環Rが有していてもよい置換基が更に有していてもよい置換基の例及び好ましい範囲と同じである。
 Wは、-B(ORC2で表される基が好ましく、より好ましくは、式(W-7)で表される基である。
 カップリング反応において、反応を促進するために、パラジウム触媒等の触媒を用いてもよい。パラジウム触媒としては、例えば、酢酸パラジウム、ビス(トリフェニルホスフィン)パラジウム(II)ジクロリド、テトラキス(トリフェニルホスフィン)パラジウム(0)、[1,1’-ビス(ジフェニルホスフィノ)フェロセン]ジクロロパラジウム(II)、トリス(ジベンジリデンアセトン)二パラジウム(0)が挙げられる。
 パラジウム触媒は、トリフェニルホスフィン、トリ(o-トリル)ホスフィン、トリ(tert-ブチル)ホスフィン、トリシクロヘキシルホスフィン、1,1’-ビス(ジフェニルホスフィノ)フェロセン等のリン化合物と併用してもよい。
 カップリング反応においてパラジウム触媒を用いる場合、その量は、例えば、式(M-3)で表される化合物1モルに対して、通常、有効量であり、好ましくは、パラジウム元素換算で0.00001~10モルである。
 カップリング反応において、必要に応じて、パラジウム触媒と塩基を併用してもよい。
 式(M-3)で表される金属錯体は、例えば、式(1)で表される金属錯体と、ハロゲン化剤とを、反応させる工程Dを含む方法により、合成することができる。
 工程Dにおいて、ハロゲン化剤としては、例えば、N-クロロスクシンイミド、N-ブロモスクシンイミド、N-ヨードスクシンイミド等が挙げられる。
 工程Dにおいて、ハロゲン化剤の量は、式(1)で表される金属錯体1モルに対して、通常、1~50モルである。
 工程A、工程B、工程C及び工程Dは、通常、溶媒中で行う。溶媒としては、メタノール、エタノール、プロパノール、エチレングリコール、グリセリン、2-メトキシエタノール、2-エトキシエタノール等のアルコール系溶媒;ジエチルエーテル、テトラヒドロフラン(THF)、ジオキサン、シクロペンチルメチルエーテル、ジグライム等のエーテル系溶媒;塩化メチレン、クロロホルム等のハロゲン系溶媒;アセトニトリル、ベンゾニトリル等のニトリル系溶媒;ヘキサン、デカリン、トルエン、キシレン、メシチレン等の炭化水素系溶媒;N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド等のアミド系溶媒;アセトン、ジメチルスルホキシド、水等が挙げられる。
 工程A、工程B、工程C及び工程Dにおいて、反応時間は、通常、30分間~200時間であり、反応温度は、通常、反応系に存在する溶媒の融点から沸点の間である。
 <式(1)で表される金属錯体の製造方法>で説明した各反応において用いられる化合物、触媒及び溶媒は、各々、一種単独で用いても二種以上を併用してもよい。
[ホスト材料]
 本実施形態に係る発光素子の輝度寿命が優れるため、第1の発光層は、式(1)で表される金属錯体と、正孔注入性、正孔輸送性、電子注入性及び電子輸送性からなる群から選ばれる少なくとも1つの機能を有するホスト材料とを含有することが好ましい。第1の発光層において、ホスト材料は、1種単独で含有されていても、2種以上含有されていてもよい。
 第1の発光層が、式(1)で表される金属錯体とホスト材料とを含有する場合、式(1)で表される金属錯体の含有量は、式(1)で表される金属錯体とホスト材料との合計を100質量部とした場合、通常、0.1~50質量部であり、好ましくは1~40質量部であり、より好ましくは10~30質量部である。
 第1の発光層が、式(1)で表される金属錯体とホスト材料とを含有する場合、ホスト材料の有する最低励起三重項状態(T)は、本実施形態に係る発光素子の輝度寿命が優れるので、式(1)で表される金属錯体の有するTと同等のエネルギー準位、又は、より高いエネルギー準位であることが好ましい。
 ホスト材料としては、本実施形態に係る発光素子を溶液塗布プロセスで作製できるので、式(1)で表される金属錯体を溶解することが可能な溶媒に対して溶解性を示すものであることが好ましい。
 ホスト材料は、低分子化合物と高分子化合物とに分類され、低分子化合物が好ましい。
[低分子ホスト]
 ホスト材料として好ましい低分子化合物(以下、「低分子ホスト」と言う。)に関して説明する。
 低分子ホストは、好ましくは、式(H-1)で表される化合物である。
 ArH1及びArH2は、フェニル基、フルオレニル基、スピロビフルオレニル基、ピリジル基、ピリミジニル基、トリアジニル基、キノリニル基、イソキノリニル基、チエニル基、ベンゾチエニル基、ジベンゾチエニル基、フリル基、ベンゾフリル基、ジベンゾフリル基、ピロリル基、インドリル基、アザインドリル基、カルバゾリル基、アザカルバゾリル基、ジアザカルバゾリル基、フェノキサジニル基又はフェノチアジニル基であることが好ましく、フェニル基、スピロビフルオレニル基、ピリジル基、ピリミジニル基、トリアジニル基、ジベンゾチエニル基、ジベンゾフリル基、カルバゾリル基又はアザカルバゾリル基であることがより好ましく、フェニル基、ピリジル基、カルバゾリル基又はアザカルバゾリル基であることが更に好ましく、式(TDA-1)又は(TDA-3)で表される基であることが特に好ましく、式(TDA-3)で表される基であることがとりわけ好ましく、これらの基は置換基を有していてもよい。
 ArH1及びArH2が有していてもよい置換基としては、ハロゲン原子、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基又は1価の複素環基が好ましく、アルキル基、シクロアルキル基、アルコキシ基又はシクロアルコキシ基がより好ましく、アルキル基又はシクロアルキル基が更に好ましく、これらの基は更に置換基を有していてもよい。
 nH1は、好ましくは1である。nH2は、好ましくは0である。
 nH3は、通常、0以上10以下の整数であり、好ましくは0以上5以下の整数であり、更に好ましくは1以上3以下の整数であり、特に好ましくは1である。
 nH11は、好ましくは1以上5以下の整数であり、より好ましくは1以上3以下の整数であり、更に好ましくは1である。
 RH11は、水素原子、アルキル基、シクロアルキル基、アリール基又は1価の複素環基であることが好ましく、水素原子、アルキル基又はシクロアルキル基であることがより好ましく、水素原子又はアルキル基であることが更に好ましく、これらの基は置換基を有していてもよい。
 LH1は、アリーレン基又は2価の複素環基であることが好ましい。
 LH1は、式(A-1)~(A-3)、(A-8)~(A-10)、(AA-1)~(AA-6)、(AA-10)~(AA-21)又は(AA-24)~(AA-34)で表される基であることが好ましく、式(A-1)、(A-2)、(A-8)、(A-9)、(AA-1)~(AA-4)、(AA-10)~(AA-15)又は(AA-29)~(AA-34)で表される基であることがより好ましく、式(A-1)、(A-2)、(A-8)、(A-9)、(AA-2)、(AA-4)、(AA-10)~(AA-15)で表される基であることが更に好ましく、式(A-1)、(A-2)、(A-8)、(AA-2)、(AA-4)、(AA-10)、(AA-12)又は(AA-14)で表される基であることが特に好ましく、式(A-1)、(A-2)、(AA-2)、(AA-4)又は(AA-14)で表される基であることがとりわけ好ましい。
 LH1が有していてもよい置換基としては、ハロゲン原子、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基又は1価の複素環基が好ましく、アルキル基、アルコキシ基、アリール基又は1価の複素環基がより好ましく、アルキル基、アリール基又は1価の複素環基が更に好ましく、これらの基は更に置換基を有していてもよい。
 LH21は、単結合又はアリーレン基であることが好ましく、単結合であることがより好ましく、このアリーレン基は置換基を有していてもよい。
 LH21で表されるアリーレン基又は2価の複素環基の定義及び例は、LH1で表されるアリーレン基又は2価の複素環基の定義及び例と同様である。
 RH21は、アリール基又は1価の複素環基であることが好ましく、これらの基は置換基を有していてもよい。
 RH21で表されるアリール基及び1価の複素環基の定義及び例は、ArH1及びArH2で表されるアリール基及び1価の複素環基の定義及び例と同様である。
 RH21が有していてもよい置換基の定義及び例は、ArH1及びArH2が有していてもよい置換基の定義及び例と同様である。
 式(H-1)で表される化合物は、式(H-2)で表される化合物であることが好ましい。
Figure JPOXMLDOC01-appb-C000075
[式中、ArH1、ArH2、nH3及びLH1は、前記と同じ意味を表す。]
 式(H-1)で表される化合物としては、式(H-101)~(H-118)で表される化合物が例示される。
Figure JPOXMLDOC01-appb-C000076
Figure JPOXMLDOC01-appb-C000077
Figure JPOXMLDOC01-appb-C000078
Figure JPOXMLDOC01-appb-C000079
[高分子ホスト]
 ホスト材料に用いられる高分子化合物としては、例えば、後述の正孔輸送材料である高分子化合物、後述の電子輸送材料である高分子化合物が挙げられる。
 ホスト材料として好ましい高分子化合物(以下、「高分子ホスト」と言う。)に関して説明する。
 高分子ホストは、好ましくは、式(Y)で表される構成単位を含む高分子化合物である。
Figure JPOXMLDOC01-appb-C000080
 ArY1は、アリーレン基、2価の複素環基、又は、少なくとも1種のアリーレン基と少なくとも1種の2価の複素環基とが直接結合した2価の基を表し、これらの基は置換基を有していてもよい。
 ArY1で表されるアリーレン基は、より好ましくは、式(A-1)、(A-2)、(A-6)~(A-10)、(A-19)又は(A-20)で表される基であり、更に好ましくは、式(A-1)、(A-2)、(A-7)、(A-9)又は(A-19)で表される基であり、これらの基は置換基を有していてもよい。
 ArY1で表される2価の複素環基は、より好ましくは、式(AA-1)~(AA-4)、(AA-10)~(AA-15)、(AA-18)~(AA-21)、(AA-33)又は(AA-34)で表される基であり、更に好ましくは、式(AA-4)、(AA-10)、(AA-12)、(AA-14)又は(AA-33)で表される基であり、これらの基は置換基を有していてもよい。
 ArY1で表される少なくとも1種のアリーレン基と少なくとも1種の2価の複素環基とが直接結合した2価の基における、アリーレン基及び2価の複素環基のより好ましい範囲、更に好ましい範囲は、それぞれ、前述のArY1で表されるアリーレン基及び2価の複素環基のより好ましい範囲、更に好ましい範囲と同様である。
 「少なくとも1種のアリーレン基と少なくとも1種の2価の複素環基とが直接結合した2価の基」としては、例えば、下記式で表される基が挙げられ、これらは置換基を有していてもよい。
Figure JPOXMLDOC01-appb-C000081
[式中、RXXは、水素原子、アルキル基、シクロアルキル基、アリール基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。]
 RXXは、好ましくは、アルキル基、シクロアルキル基又はアリール基であり、これらの基は置換基を有していてもよい。
 ArY1で表される基が有してもよい置換基は、好ましくは、アルキル基、シクロアルキル基又はアリール基であり、これらの基は更に置換基を有していてもよい。
 式(Y)で表される構成単位としては、例えば、式(Y-1)~(Y-10)で表される構成単位が挙げられ、本実施形態に係る発光素子の輝度寿命の観点からは、好ましくは式(Y-1)~(Y-3)で表される構成単位であり、電子輸送性の観点からは、好ましくは式(Y-4)~(Y-7)で表される構成単位であり、正孔輸送性の観点からは、好ましくは式(Y-8)~(Y-10)で表される構成単位である。
Figure JPOXMLDOC01-appb-C000082
[式中、RY1は、水素原子、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。複数存在するRY1は、同一でも異なっていてもよく、隣接するRY1同士は互いに結合して、それぞれが結合する炭素原子と共に環を形成していてもよい。]
 RY1は、好ましくは、水素原子、アルキル基、シクロアルキル基又はアリール基であり、これらの基は置換基を有していてもよい。
 式(Y-1)で表される構成単位は、好ましくは、式(Y-1’)で表される構成単位である。
Figure JPOXMLDOC01-appb-C000083
[式中、RY11は、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。複数存在するRY11は、同一でも異なっていてもよい。]
 RY11は、好ましくは、アルキル基、シクロアルキル基又はアリール基であり、より好ましくは、アルキル基又はシクロアルキル基であり、これらの基は置換基を有していてもよい。
Figure JPOXMLDOC01-appb-C000084
[式中、RY1は前記と同じ意味を表す。XY1は、-C(RY2-、-C(RY2)=C(RY2)-又はC(RY2-C(RY2-で表される基を表す。RY2は、水素原子、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。複数存在するRY2は、同一でも異なっていてもよく、RY2同士は互いに結合して、それぞれが結合する炭素原子と共に環を形成していてもよい。]
 RY2は、好ましくは、アルキル基、シクロアルキル基、アリール基又は1価の複素環基であり、より好ましくは、アルキル基、シクロアルキル基又はアリール基であり、これらの基は置換基を有していてもよい。
 XY1において、-C(RY2-で表される基中の2個のRY2の組み合わせは、好ましくは両方がアルキル基若しくはシクロアルキル基、両方がアリール基、両方が1価の複素環基、又は、一方がアルキル基若しくはシクロアルキル基で他方がアリール基若しくは1価の複素環基であり、より好ましくは一方がアルキル基又はシクロアルキル基で他方がアリール基であり、これらの基は置換基を有していてもよい。2個存在するRY2は互いに結合して、それぞれが結合する原子と共に環を形成していてもよく、RY2が環を形成する場合、-C(RY2-で表される基としては、好ましくは式(Y-A1)~(Y-A5)で表される基であり、より好ましくは式(Y-A4)で表される基であり、これらの基は置換基を有していてもよい。
Figure JPOXMLDOC01-appb-C000085
 XY1において、-C(RY2)=C(RY2)-で表される基中の2個のRY2の組み合わせは、好ましくは両方がアルキル基若しくはシクロアルキル基、又は、一方がアルキル基若しくはシクロアルキル基で他方がアリール基であり、これらの基は置換基を有していてもよい。
 XY1において、-C(RY2-C(RY2-で表される基中の4個のRY2は、好ましくは置換基を有していてもよいアルキル基又はシクロアルキル基である。複数あるRY2は互いに結合して、それぞれが結合する原子と共に環を形成していてもよく、RY2が環を形成する場合、-C(RY2-C(RY2-で表される基は、好ましくは式(Y-B1)~(Y-B5)で表される基であり、より好ましくは式(Y-B3)で表される基であり、これらの基は置換基を有していてもよい。
Figure JPOXMLDOC01-appb-C000086
[式中、RY2は前記と同じ意味を表す。]
 式(Y-2)で表される構成単位は、式(Y-2’)で表される構成単位であることが好ましい。
Figure JPOXMLDOC01-appb-C000087
[式中、RY1及びXY1は前記と同じ意味を表す。]
Figure JPOXMLDOC01-appb-C000088
[式中、RY1及びXY1は前記と同じ意味を表す。]
 式(Y-3)で表される構成単位は、式(Y-3’)で表される構成単位であることが好ましい。
Figure JPOXMLDOC01-appb-C000089
[式中、RY11及びXY1は前記と同じ意味を表す。]
Figure JPOXMLDOC01-appb-C000090
Figure JPOXMLDOC01-appb-C000091
[式中、RY1は前記と同じ意味を表す。RY3は、水素原子、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。]
 RY3は、好ましくはアルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基又は1価の複素環基であり、より好ましくはアリール基であり、これらの基は置換基を有していてもよい。
 式(Y-4)で表される構成単位は、式(Y-4’)で表される構成単位であることが好ましく、式(Y-6)で表される構成単位は、式(Y-6’)で表される構成単位であることが好ましい。
Figure JPOXMLDOC01-appb-C000092
[式中、RY1及びRY3は前記と同じ意味を表す。]
Figure JPOXMLDOC01-appb-C000093
[式中、RY1は前記を同じ意味を表す。RY4は、水素原子、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。]
 RY4は、好ましくはアルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基又は1価の複素環基であり、より好ましくはアリール基であり、これらの基は置換基を有していてもよい。
 式(Y)で表される構成単位としては、例えば、式(Y-101)~(Y-121)で表されるアリーレン基からなる構成単位、式(Y-201)~(Y-206)で表される2価の複素環基からなる構成単位、式(Y-300)~(Y-304)で表される少なくとも1種のアリーレン基と少なくとも1種の2価の複素環基とが直接結合した2価の基からなる構成単位が挙げられ、好ましくは、式(Y-101)~(Y-121)で表されるアリーレン基からなる構成単位、式(Y-201)~(Y-206)で表される2価の複素環基からなる構成単位、式(Y-301)~(Y-304)で表される少なくとも1種のアリーレン基と少なくとも1種の2価の複素環基とが直接結合した2価の基からなる構成単位である。
Figure JPOXMLDOC01-appb-C000094
Figure JPOXMLDOC01-appb-C000095
Figure JPOXMLDOC01-appb-C000096
Figure JPOXMLDOC01-appb-C000097
Figure JPOXMLDOC01-appb-C000098
Figure JPOXMLDOC01-appb-C000099
Figure JPOXMLDOC01-appb-C000100
Figure JPOXMLDOC01-appb-C000101
Figure JPOXMLDOC01-appb-C000102
 式(Y)で表される構成単位であって、ArY1がアリーレン基である構成単位は、本実施形態に係る発光素子の輝度寿命がより優れるので、高分子ホストに含まれる構成単位の合計量に対して、好ましくは0.5~90モル%であり、より好ましくは30~80モル%である。
 式(Y)で表される構成単位であって、ArY1が2価の複素環基、又は、少なくとも1種のアリーレン基と少なくとも1種の2価の複素環基とが直接結合した2価の基である構成単位は、本実施形態に係る発光素子の電荷輸送性が優れるので、高分子ホストに含まれる構成単位の合計量に対して、好ましくは0.5~40モル%であり、より好ましくは3~30モル%である。
 式(Y)で表される構成単位は、高分子ホスト中に、1種のみ含まれていてもよく、2種以上含まれていてもよい。
 高分子ホストは、正孔輸送性が優れるので、更に、式(X)で表される構成単位を含むことが好ましい。
Figure JPOXMLDOC01-appb-C000103
[式中、
 aX1及びaX2は、それぞれ独立に、0以上の整数を表す。
 ArX1及びArX3は、それぞれ独立に、アリーレン基又は2価の複素環基を表し、これらの基は置換基を有していてもよい。
 ArX2及びArX4は、それぞれ独立に、アリーレン基、2価の複素環基、又は、少なくとも1種のアリーレン基と少なくとも1種の2価の複素環基とが直接結合した2価の基を表し、これらの基は置換基を有していてもよい。ArX2及びArX4が複数存在する場合、それらは同一でも異なっていてもよい。
 RX1、RX2及びRX3は、それぞれ独立に、水素原子、アルキル基、シクロアルキル基、アリール基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。
X2及びRX3が複数存在する場合、それらは同一でも異なっていてもよい。]
 aX1は、本実施形態に係る発光素子の輝度寿命がより優れるので、好ましくは2以下であり、より好ましくは1である。
 aX2は、本実施形態に係る発光素子の輝度寿命がより優れるので、好ましくは2以下であり、より好ましくは0である。
 RX1、RX2及びRX3は、好ましくはアルキル基、シクロアルキル基、アリール基又は1価の複素環基であり、より好ましくはアリール基であり、これらの基は置換基を有していてもよい。
 ArX1及びArX3で表されるアリーレン基は、より好ましくは式(A-1)又は(A-9)で表される基であり、更に好ましくは式(A-1)で表される基であり、これらの基は置換基を有していてもよい。
 ArX1及びArX3で表される2価の複素環基は、より好ましくは式(AA-1)、(AA-2)又は(AA-7)~(AA-26)で表される基であり、これらの基は置換基を有していてもよい。
 ArX1及びArX3は、好ましくは置換基を有していてもよいアリーレン基である。
 ArX2及びArX4で表されるアリーレン基としては、より好ましくは式(A-1)、(A-6)、(A-7)、(A-9)~(A-11)又は(A-19)で表される基であり、これらの基は置換基を有していてもよい。
 ArX2及びArX4で表される2価の複素環基のより好ましい範囲は、ArX1及びArX3で表される2価の複素環基のより好ましい範囲と同じである。
 ArX2及びArX4で表される少なくとも1種のアリーレン基と少なくとも1種の2価の複素環基とが直接結合した2価の基における、アリーレン基及び2価の複素環基のより好ましい範囲、更に好ましい範囲は、それぞれ、ArX1及びArX3で表されるアリーレン基及び2価の複素環基のより好ましい範囲、更に好ましい範囲と同様である。
 ArX2及びArX4で表される少なくとも1種のアリーレン基と少なくとも1種の2価の複素環基とが直接結合した2価の基としては、式(Y)のArY1で表される少なくとも1種のアリーレン基と少なくとも1種の2価の複素環基とが直接結合した2価の基と同様のものが挙げられる。
 ArX2及びArX4は、好ましくは置換基を有していてもよいアリーレン基である。
 ArX1~ArX4及びRX1~RX3で表される基が有してもよい置換基としては、好ましくはアルキル基、シクロアルキル基又はアリール基であり、これらの基は更に置換基を有していてもよい。
 式(X)で表される構成単位は、好ましくは式(X-1)~(X-7)で表される構成単位であり、より好ましくは式(X-1)~(X-6)で表される構成単位であり、更に好ましくは式(X-3)~(X-6)で表される構成単位である。
Figure JPOXMLDOC01-appb-C000104
Figure JPOXMLDOC01-appb-C000105
Figure JPOXMLDOC01-appb-C000106
Figure JPOXMLDOC01-appb-C000107
[式中、RX4及びRX5は、それぞれ独立に、水素原子、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、アリールオキシ基、ハロゲン原子、1価の複素環基又はシアノ基を表し、これらの基は置換基を有していてもよい。複数存在するRX4は、同一でも異なっていてもよい。複数存在するRX5は、同一でも異なっていてもよく、隣接するRX5同士は互いに結合して、それぞれが結合する炭素原子と共に環を形成していてもよい。]
 式(X)で表される構成単位は、正孔輸送性が優れるので、高分子ホストに含まれる構成単位の合計量に対して、好ましくは0.1~50モル%であり、より好ましくは1~40モル%であり、更に好ましくは5~30モル%である。
 式(X)で表される構成単位としては、例えば、式(X1-1)~(X1-11)で表される構成単位が挙げられ、好ましくは式(X1-3)~(X1-10)で表される構成単位である。
Figure JPOXMLDOC01-appb-C000108
Figure JPOXMLDOC01-appb-C000109
Figure JPOXMLDOC01-appb-C000110
Figure JPOXMLDOC01-appb-C000111
Figure JPOXMLDOC01-appb-C000112
 高分子ホストにおいて、式(X)で表される構成単位は、1種のみ含まれていても、2種以上含まれていてもよい。
 高分子ホストとしては、例えば、表1の高分子化合物(P-1)~(P-6)が挙げられる。
Figure JPOXMLDOC01-appb-T000113
[表中、p、q、r、s及びtは、各構成単位のモル比率を示す。p+q+r+s+t=100であり、かつ、100≧p+q+r+s≧70である。その他とは、式(Y)で表される構成単位、式(X)で表される構成単位以外の構成単位を意味する。]
 高分子ホストは、ブロック共重合体、ランダム共重合体、交互共重合体、グラフト共重合体のいずれであってもよいし、その他の態様であってもよいが、複数種の原料モノマーを共重合してなる共重合体であることが好ましい。
[高分子ホストの製造方法]
 高分子ホストは、ケミカルレビュー(Chem.Rev.),第109巻,897-1091頁(2009年)等に記載の公知の重合方法を用いて製造することができ、Suzuki反応、Yamamoto反応、Buchwald反応、Stille反応、Negishi反応及びKumada反応等の遷移金属触媒を用いるカップリング反応により重合させる方法が例示される。
 前記重合方法において、単量体を仕込む方法としては、単量体全量を反応系に一括して仕込む方法、単量体の一部を仕込んで反応させた後、残りの単量体を一括、連続又は分割して仕込む方法、単量体を連続又は分割して仕込む方法等が挙げられる。
 遷移金属触媒としては、パラジウム触媒、ニッケル触媒等が挙げられる。
 重合反応の後処理は、公知の方法、例えば、分液により水溶性不純物を除去する方法、メタノール等の低級アルコールに重合反応後の反応液を加えて、析出させた沈殿を濾過した後、乾燥させる方法等を単独又は組み合わせて行う。高分子ホストの純度が低い場合、例えば、再結晶、再沈殿、ソックスレー抽出器による連続抽出、カラムクロマトグラフィー等の通常の方法にて精製することができる。
[第1の発光層の組成物]
 第1の発光層は、式(1)で表される金属錯体と、前述のホスト材料、正孔輸送材料、正孔注入材料、電子輸送材料、電子注入材料、発光材料(式(1)で表される金属錯体とは異なる。)及び酸化防止剤からなる群から選ばれる少なくとも1種の材料とを含有する組成物(以下、「第1の発光層の組成物」ともいう。)を用いて形成された層であってもよい。
 ここで、「用いて形成された」とは、第1の発光層の組成物を用いて第1の発光層が形成されていることを意味する。第1の発光層の組成物中の式(1)で表される金属錯体がそのまま第1の発光層に含有されていてもよいし、第1の発光層の組成物中の(1)で表される金属錯体が分子内、分子間、又は、それらの両方で架橋した状態で第1の発光層に含有されていてもよい。すなわち、第1の発光層は、第1の発光層の組成物及び/又は第1の発光層の組成物の架橋体を含有するものであってよい。
[正孔輸送材料]
 正孔輸送材料は、低分子化合物と高分子化合物とに分類され、好ましくは高分子化合物である。正孔輸送材料は、架橋基を有していてもよい。
 低分子化合物としては、例えば、トリフェニルアミン及びその誘導体、N,N’-ジ-1-ナフチル-N,N’-ジフェニルベンジジン(α-NPD)、並びに、N,N’-ジフェニル-N,N’-ジ(m-トリル)ベンジジン(TPD)等の芳香族アミン化合物が挙げられる。
 高分子化合物としては、例えば、ポリビニルカルバゾール及びその誘導体;側鎖又は主鎖に芳香族アミン構造を有するポリアリーレン及びその誘導体が挙げられる。高分子化合物は、電子受容性部位が結合された化合物でもよい。電子受容性部位としては、例えば、フラーレン、テトラフルオロテトラシアノキノジメタン、テトラシアノエチレン、トリニトロフルオレノン等が挙げられ、好ましくはフラーレンである。
 第1の発光層の組成物が正孔輸送材料を含有する場合、正孔輸送材料の配合量は、式(1)で表される金属錯体を100質量部とした場合、通常、1~400質量部であり、好ましくは5~150質量部である。
 正孔輸送材料は、一種単独で用いても二種以上を併用してもよい。
[電子輸送材料]
 電子輸送材料は、低分子化合物と高分子化合物とに分類される。電子輸送材料は、架橋基を有していてもよい。
 低分子化合物としては、例えば、8-ヒドロキシキノリンを配位子とする金属錯体、オキサジアゾール、アントラキノジメタン、ベンゾキノン、ナフトキノン、アントラキノン、テトラシアノアントラキノジメタン、フルオレノン、ジフェニルジシアノエチレン及びジフェノキノン、並びに、これらの誘導体が挙げられる。
 高分子化合物としては、例えば、ポリフェニレン、ポリフルオレン、及び、これらの誘導体が挙げられる。高分子化合物は、金属でドープされていてもよい。
 第1の発光層の組成物が電子輸送材料を含有する場合、電子輸送材料の配合量は、式(1)で表される金属錯体を100質量部とした場合、通常、1~400質量部であり、好ましくは5~150質量部である。
 電子輸送材料は、一種単独で用いても二種以上を併用してもよい。
[正孔注入材料及び電子注入材料]
 正孔注入材料及び電子注入材料は、各々、低分子化合物と高分子化合物とに分類される。正孔注入材料及び電子注入材料は、架橋基を有していてもよい。
 低分子化合物としては、例えば、銅フタロシアニン等の金属フタロシアニン;カーボン;モリブデン、タングステン等の金属酸化物;フッ化リチウム、フッ化ナトリウム、フッ化セシウム、フッ化カリウム等の金属フッ化物が挙げられる。
 高分子化合物としては、例えば、ポリアニリン、ポリチオフェン、ポリピロール、ポリフェニレンビニレン、ポリチエニレンビニレン、ポリキノリン及びポリキノキサリン、並びに、これらの誘導体;芳香族アミン構造を主鎖又は側鎖に含む重合体等の導電性高分子が挙げられる。
 第1の発光層の組成物が正孔注入材料及び電子注入材料を含有する場合、正孔注入材料及び電子注入材料の配合量は、各々、式(1)で表される金属錯体を100質量部とした場合、通常、1~400質量部であり、好ましくは5~150質量部である。
 電子注入材料及び正孔注入材料は、各々、一種単独で用いても二種以上を併用してもよい。
[イオンドープ]
 正孔注入材料又は電子注入材料が導電性高分子を含む場合、導電性高分子の電気伝導度は、好ましくは1×10-5S/cm~1×10S/cmである。導電性高分子の電気伝導度をかかる範囲とするために、導電性高分子に適量のイオンをドープすることができる。
 ドープするイオンの種類は、正孔注入材料であればアニオン、電子注入材料であればカチオンである。アニオンとしては、例えば、ポリスチレンスルホン酸イオン、アルキルベンゼンスルホン酸イオン、樟脳スルホン酸イオンが挙げられる。カチオンとしては、例えば、リチウムイオン、ナトリウムイオン、カリウムイオン、テトラブチルアンモニウムイオンが挙げられる。
 ドープするイオンは、一種単独で用いても二種以上を併用してもよい。
[発光材料]
 発光材料(但し、式(1)で表される金属錯体とは異なる。)は、低分子化合物と高分子化合物とに分類される。発光材料は、架橋基を有していてもよい。
 低分子化合物としては、例えば、ナフタレン及びその誘導体、アントラセン及びその誘導体、並びに、ペリレン及びその誘導体が挙げられる。
 高分子化合物としては、例えば、フェニレン基、ナフタレンジイル基、アントラセンジイル基、フルオレンジイル基、フェナントレンジイル基、ジヒドロフェナントレンジイル基、式(X)で表される基、カルバゾールジイル基、フェノキサジンジイル基、フェノチアジンジイル基、ピレンジイル基等を含む高分子化合物が挙げられる。
 発光材料は、好ましくは、金属錯体を含む。該金属錯体としては、例えば、以下に示す金属錯体、後述の式(2)で表される金属錯体、後述の第2の発光層の高分子化合物、及び、後述の第2の発光層の高分子化合物の架橋体が挙げられ、好ましくは、後述の式(2)で表される金属錯体、後述の第2の発光層の高分子化合物、又は、後述の第2の発光層の高分子化合物の架橋体であり、より好ましくは後述の式(2)で表される金属錯体である。
Figure JPOXMLDOC01-appb-C000114
Figure JPOXMLDOC01-appb-C000115
Figure JPOXMLDOC01-appb-C000116
 第1の発光層の組成物が発光材料を含有する場合、発光材料の配合量は、式(1)で表される金属錯体を100質量部とした場合、通常、1~400質量部であり、好ましくは5~150質量部である。
 発光材料は、一種単独で用いても二種以上を併用してもよい。
[酸化防止剤]
 酸化防止剤は、金属錯体と同じ溶媒に可溶であり、発光及び電荷輸送を阻害しない化合物であればよく、例えば、フェノール系酸化防止剤、リン系酸化防止剤が挙げられる。
 第1の発光層の組成物が酸化防止剤を含有する場合、酸化防止剤の配合量は、式(1)で表される金属錯体を100質量部とした場合、通常、0.001~10質量部である。
 酸化防止剤は、一種単独で用いても二種以上を併用してもよい。
[第1の発光層のインク]
 式(1)で表される金属錯体と、溶媒とを含有する組成物(以下、「第1の発光層のインク」ともいう。)は、スピンコート法、キャスティング法、マイクログラビアコート法、グラビアコート法、バーコート法、ロールコート法、ワイヤーバーコート法、ディップコート法、スプレーコート法、スクリーン印刷法、フレキソ印刷法、オフセット印刷法、インクジェット印刷法、キャピラリ-コート法、ノズルコート法等の塗布法に好適に使用することができる。
 第1の発光層のインクの粘度は、塗布法の種類によって調整すればよいが、インクジェット印刷法等の溶液が吐出装置を経由する印刷法に適用する場合には、吐出時の目づまり及び飛行曲がりが起こりづらいので、好ましくは25℃において1~30mPa・sである。
 第1の発光層のインクに含有される溶媒は、好ましくは、インク中の固形分を溶解又は均一に分散できる溶媒である。溶媒としては、例えば、1,2-ジクロロエタン、1,1,2-トリクロロエタン、クロロベンゼン、o-ジクロロベンゼン等の塩素系溶媒;THF、ジオキサン、アニソール、4-メチルアニソール等のエーテル系溶媒;トルエン、キシレン、メシチレン、エチルベンゼン、n-ヘキシルベンゼン、シクロヘキシルベンゼン等の芳香族炭化水素系溶媒;シクロヘキサン、メチルシクロヘキサン、n-ペンタン、n-ヘキサン、n-へプタン、n-オクタン、n-ノナン、n-デカン、n-ドデカン、ビシクロヘキシル等の脂肪族炭化水素系溶媒;アセトン、メチルエチルケトン、シクロヘキサノン、アセトフェノン等のケトン系溶媒;酢酸エチル、酢酸ブチル、エチルセルソルブアセテート、安息香酸メチル、酢酸フェニル等のエステル系溶媒;エチレングリコール、グリセリン、1,2-ヘキサンジオール等の多価アルコール系溶媒;イソプロピルアルコール、シクロヘキサノール等のアルコール系溶媒;ジメチルスルホキシド等のスルホキシド系溶媒;N-メチル-2-ピロリドン、N,N-ジメチルホルムアミド等のアミド系溶媒が挙げられる。溶媒は、一種単独で用いても二種以上を併用してもよい。
 第1の発光層のインクにおいて、溶媒の配合量は、式(1)で表される金属錯体を100質量部とした場合、通常、1000~100000質量部であり、好ましくは2000~20000質量部である。
 第1の発光層のインクは、式(1)で表される金属錯体及び溶媒以外の成分を含んでいてよい。例えば、第1の発光層のインクは、前述のホスト材料、正孔輸送材料、正孔注入材料、電子輸送材料、電子注入材料、発光材料(式(1)で表される金属錯体とは異なる。)及び酸化防止剤からなる群から選ばれる少なくとも1種の材料を更に含んでいてよい。
<第2の発光層>
 次に、本実施形態に係る発光素子が有する第2の発光層について、説明する。
 第2の発光層は、通常、発光材料を用いて形成される。第2の発光層に用いられる発光材料としては、例えば、前述の第1の発光層の組成物が含有していてもよい発光材料が挙げられる。第2の発光層に用いられる発光材料は、式(2)で表される金属錯体、式(2)で表される金属錯体から、該金属錯体を構成する炭素原子又はヘテロ原子に直接結合する1個以上の水素原子を取り除いてなる基を有する構成単位(以下、「金属錯体構成単位」ともいう。)を含む高分子化合物(以下、「第2の発光層の高分子化合物」ともいう。
)、及び、第2の発光層の高分子化合物の架橋体、からなる群より選択される少なくとも1種であることが好ましく、より好ましくは、第2の発光層の高分子化合物及びその架橋体からなる群より選択される少なくとも1種である。
 すなわち、第2の発光層は、式(2)で表される金属錯体、第2の発光層の高分子化合物、及び、第2の発光層の高分子化合物の架橋体からなる群より選択される少なくとも1種を含有することが好ましく、第2の発光層の高分子化合物及びその架橋体からなる群より選択される少なくとも1種を含有することがより好ましい。
 発光材料がそのまま第2の発光層に含有されていてもよいし、発光材料が分子内、分子間、又は、それらの両方で架橋した状態で第2の発光層に含有されていてもよい。すなわち、第2の発光層は、発光材料及び/又は該発光材料の架橋体が含有されていてもよい。
 第2の発光層は、1種単独の発光材料を含有してもよく、2種以上の発光材料を含有してもよい。
 第2の発光層における発光材料の含有量は、第2の発光層が発光層としての機能を奏する範囲であればよい。例えば、発光材料の含有量は、第2の発光層の全量基準で0.01~100質量%であってよく、1~100質量%であることが好ましく、10~100質量%であることがより好ましく、50~100質量%であることが更に好ましい。
 第2の発光層の形成方法としては、例えば、真空蒸着法、並びに、スピンコート法及びインクジェット印刷法に代表される塗布法が挙げられ、塗布法が好ましい。
 第2の発光層を塗布法により形成する場合、後述する第2の発光層のインクを用いることが好ましい。第2の発光層を形成後、加熱又は光照射することで、第2の発光層に含有される発光材料を架橋させることができる。発光材料が架橋した状態(発光材料の架橋体)で、第2の発光層に含有されている場合、第2の発光層は溶媒に対して実質的に不溶化されている。そのため、該第2の発光層は、発光素子の積層化に好適に使用することができる。
[式(2)で表される金属錯体]
 式(2)で表される金属錯体は、中心金属であるMと、添え字nでその数を規定されている配位子と、添え字nでその数を規定されている配位子とから構成される金属錯体である。
 Mは、本実施形態に係る発光素子の輝度寿命がより優れるので、イリジウム原子又は白金原子であることが好ましく、イリジウム原子であることがより好ましい。
 Mがロジウム原子又はイリジウム原子の場合、nは2又は3であることが好ましく、3であることがより好ましい。
 Mがパラジウム原子又は白金原子の場合、nは2であることが好ましい。
 Eは、炭素原子であることが好ましい。
 環Lは、1つ以上4つ以下の窒素原子を構成原子として有する6員の芳香族複素環であることが好ましく、1つ以上2つ以下の窒素原子を構成原子として有する6員の芳香族複素環であることがより好ましく、これらの環は置換基を有していてもよい。
 環Lとしては、例えば、ピリジン環、ジアザベンゼン環、キノリン環及びイソキノリン環が挙げられ、ピリジン環、ピリミジン環、キノリン環又はイソキノリン環が好ましく、ピリジン環、キノリン環又はイソキノリン環がより好ましく、これらの環は置換基を有していてもよい。
 環Lは、5員若しくは6員の芳香族炭化水素環、又は、5員若しくは6員の芳香族複素環であることが好ましく、6員の芳香族炭化水素環又は6員の芳香族複素環であることがより好ましく、6員の芳香族炭化水素環であることが更に好ましく、これらの環は置換基を有していてもよい。但し、環Lが6員の芳香族複素環である場合、Eは炭素原子であることが好ましい。
 環Lとしては、例えば、ベンゼン環、ナフタレン環、フルオレン環、フェナントレン環、インデン環、ピリジン環、ジアザベンゼン環、ピロール環、フラン環及びチオフェン環が挙げられ、ベンゼン環、ナフタレン環、フルオレン環、ピリジン環又はピリミジン環であることが好ましく、ベンゼン環、ピリジン環又はピリミジン環であることがより好ましく、ベンゼン環であることが更に好ましく、これらの環は置換基を有していてもよい。
 環L及び環Lが有していてもよい置換基としては、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、アリールオキシ基、1価の複素環基、置換アミノ基又はハロゲン原子が好ましく、アルキル基、シクロアルキル基、アリール基、1価の複素環基又は置換アミノ基がより好ましく、アルキル基、シクロアルキル基、アリール基又は1価の複素環基が更に好ましく、アリール基又は1価の複素環基が特に好ましく、これらの基は更に置換基を有していてもよい。
 環L及び環Lが有していてもよい置換基が更に有していてもよい置換基の例及び好ましい範囲は、R11A及びR12Aが有していてもよい置換基の例及び好ましい範囲と同じである。
 環Lが有していてもよい置換基が複数存在する場合、それらは同一でも異なっていてもよく、互いに結合して、それぞれが結合する原子とともに環を形成していてもよい。
 環Lが有していてもよい置換基が複数存在する場合、それらは同一でも異なっていてもよく、互いに結合して、それぞれが結合する原子とともに環を形成していてもよい。
 環Lが有していてもよい置換基と、環Lが有していてもよい置換基とは、互いに結合して、それぞれが結合する原子とともに環を形成していてもよい。
 環L及び環Lが有していてもよい置換基におけるアリール基の例及び好ましい範囲は、R11A及びR12Aにおけるアリール基の例及び好ましい範囲と同じである。
 環L及び環Lが有していてもよい置換基における1価の複素環基の例及び好ましい範囲は、R11A及びR12Aにおける1価の複素環基の例及び好ましい範囲と同じである。
 環L及び環Lが有していてもよい置換基における置換アミノ基の例及び好ましい範囲は、R11A及びR12Aにおける置換アミノ基の例及び好ましい範囲と同じである。
 環L及び環Lが有していてもよい置換基は、本実施形態に係る発光素子の輝度寿命がより優れるので、好ましくは、式(D-A)、(D-B)又は(D-C)で表される基であり、より好ましくは、式(D-A)又は(D-B)で表される基であり、更に好ましくは式(D-A)で表される基である。
 環L及び環Lが有していてもよい置換基における式(D-A)及び(D-B)で表される基において、GDAは、好ましくは式(GDA-11)~(GDA-15)で表される基であり、より好ましくは式(GDA-11)~(GDA-14)で表される基であり、更に好ましくは式(GDA-11)又は(GDA-14)で表される基である。
 環L及び環Lが有していてもよい置換基において、式(D-A)で表される基は、好ましくは、式(D-A1)~(D-A4)で表される基であり、より好ましくは式(D-A1)、(D-A3)又は(D-A4)で表される基であり、更に好ましくは、式(D-A1)又は(D-A3)で表される基である。
 環L及び環Lが有していてもよい置換基において、式(D-B)で表される基は、好ましくは、式(D-B1)~(D-B3)で表される基であり、より好ましくは式(D-B1)又は(D-B3)で表される基である。
 環L及び環Lが有していてもよい置換基において、式(D-C)で表される基は、好ましくは式(D-C1)~(D-C4)で表される基であり、より好ましくは式(D-C1)~(D-C3)で表される基であり、更に好ましくは式(D-C1)又は(D-C2)で表される基である。
 本実施形態に係る発光素子の輝度寿命がより優れるので、環L及び環Lのうち、少なくとも1つは、置換基を有することが好ましい。
[アニオン性の2座配位子]
 A-G-Aで表されるアニオン性の2座配位子としては、例えば、下記で表される配位子が挙げられる。
Figure JPOXMLDOC01-appb-C000117
Figure JPOXMLDOC01-appb-C000118
[式中、*は、Mと結合する部位を示す。]
 A-G-Aで表されるアニオン性の2座配位子は、下記で表される配位子であってもよい。
Figure JPOXMLDOC01-appb-C000119
[式中、
 *は、Mと結合する部位を表す。
 RL1及びRL2は前記と同じ意味を表す。]
 RL1は、好ましくは、水素原子、アルキル基、シクロアルキル基又はフッ素原子であり、より好ましくは水素原子又はアルキル基であり、これらの基は置換基を有していてもよい。
 RL2は、好ましくは、アルキル基、シクロアルキル基、アリール基又は1価の複素環基であり、より好ましくはアリール基又は1価の複素環基であり、更に好ましくはアリール基であり、これらの基は置換基を有していてもよい。
 式(2)で表される金属錯体は、本実施形態に係る発光素子の輝度寿命がより優れるので、式(2-B)で表される金属錯体であることが好ましい。
 R11B、R12B、R13B、R14B、R21B、R22B、R23B及びR24Bは、水素原子、アルキル基、シクロアルキル基、アリール基、1価の複素環基又は置換アミノ基であることが好ましく、水素原子、アルキル基、シクロアルキル基、又は、式(D-A)、(D-B)若しくは(D-C)で表される基であることがより好ましく、水素原子、又は、式(D-A)、(D-B)若しくは(D-C)で表される基であることが更に好ましく、水素原子、又は、式(D-A)若しくは(D-B)で表される基であることが特に好ましく、水素原子、又は、式(D-A)で表される基であることがとりわけ好ましく、これらの基は置換基を有していてもよい。
 R11B、R12B、R13B、R14B、R21B、R22B、R23B及びR24Bにおけるアリール基、1価の複素環基及び置換アミノ基の例及び好ましい範囲は、それぞれ、環L及び環Lが有していてもよい置換基におけるアリール基、1価の複素環基及び置換アミノ基の例及び好ましい範囲と同じである。
 R11B、R12B、R13B、R14B、R21B、R22B、R23B及びR24Bが有していてもよい置換基の例及び好ましい範囲は、環L及び環Lが有していてもよい置換基が更に有していてもよい置換基の例及び好ましい範囲と同じである。
 環L1Bがピリミジン環である場合、E11Bが窒素原子であるピリミジン環が好ましい。
 環L1Bは、ピリジン環が好ましい。
 環L2Bがピリジン環である場合、E21Bが窒素原子であるピリジン環、E22Bが窒素原子であるピリジン環、又は、E23Bが窒素原子であるピリジン環が好ましく、E22Bが窒素原子であるピリジン環がより好ましい。
 環L2Bがピリミジン環である場合、E21B及びE23Bが窒素原子であるピリミジン環、又は、E22B及びE24Bが窒素原子であるピリミジン環が好ましく、E22B及びE24Bが窒素原子であるピリミジン環がより好ましい。
 環L2Bは、ベンゼン環であることが好ましい。
 本実施形態に係る発光素子の輝度寿命がより優れるので、R11B、R12B、R13B、R14B、R21B、R22B、R23B及びR24Bのうち、少なくとも1つは、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、アリールオキシ基、1価の複素環基、置換アミノ基又はハロゲン原子であることが好ましく、アルキル基、シクロアルキル基、アリール基、1価の複素環基又は置換アミノ基であることがより好ましく、アルキル基、シクロアルキル基、又は、式(D-A)、(D-B)若しくは(D-C)で表される基であることが更に好ましく、水素原子、又は、式(D-A)、(D-B)若しくは(D-C)で表される基であることが特に好ましく、水素原子、又は、式(D-A)若しくは(D-B)で表される基であることがとりわけ好ましく、水素原子、又は、式(D-A)で表される基であることが殊更に好ましく、これらの基は置換基を有していてもよい。
 R11B、R12B、R13B、R14B、R21B、R22B、R23B及びR24Bのうち、少なくとも1つは、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、アリールオキシ基、1価の複素環基、置換アミノ基又はハロゲン原子である場合、R12B、R13B、R22B及びR23Bのうち、少なくとも1つが、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、アリールオキシ基、1価の複素環基、置換アミノ基又はハロゲン原子であることが好ましく、R13B又はR22Bが、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、アリールオキシ基、1価の複素環基、置換アミノ基又はハロゲン原子であることがより好ましく、これらの基は置換基を有していてもよい。
 本実施形態に係る発光素子の輝度寿命が更に優れるので、式(2-B)で表される金属錯体は、式(2-B1)で表される金属錯体、式(2-B2)で表される金属錯体、式(2-B3)で表される金属錯体、式(2-B4)で表される金属錯体又は式(2-B5)で表される金属錯体であることが好ましく、式(2-B1)で表される金属錯体、式(2-B2)で表される金属錯体又は式(2-B3)で表される金属錯体であることがより好ましく、式(2-B1)で表される金属錯体又は式(2-B3)で表される金属錯体であることが更に好ましい。
 R15B、R16B、R17B及びR18Bは、水素原子、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、1価の複素環基又は置換アミノ基であることが好ましく、水素原子、アルキル基、シクロアルキル基又はアリール基であることがより好ましく、水素原子又はアルキル基であることが更に好ましく、水素原子であることが特に好ましく、これらの基は置換基を有していてもよい。
 R15B、R16B、R17B及びR18Bにおけるアリール基、1価の複素環基及び置換アミノ基の例及び好ましい範囲は、それぞれ、環L及び環Lが有していてもよい置換基におけるアリール基、1価の複素環基及び置換アミノ基の例及び好ましい範囲と同じである。
 R15B、R16B、R17B及びR18Bが有していてもよい置換基の例及び好ましい範囲は、環L及び環Lが有していてもよい置換基が更に有していてもよい置換基の例及び好ましい範囲と同じである。
 式(2)で表される金属錯体としては、例えば、下記式で表される金属錯体が挙げられる。
Figure JPOXMLDOC01-appb-C000120
Figure JPOXMLDOC01-appb-C000121
Figure JPOXMLDOC01-appb-C000122
Figure JPOXMLDOC01-appb-C000123
Figure JPOXMLDOC01-appb-C000124
Figure JPOXMLDOC01-appb-C000125
Figure JPOXMLDOC01-appb-C000126
Figure JPOXMLDOC01-appb-C000127
Figure JPOXMLDOC01-appb-C000128
Figure JPOXMLDOC01-appb-C000129
Figure JPOXMLDOC01-appb-C000130
 式(2)で表される金属錯体及び前述の第1の発光層の組成物における三重項発光錯体は、Aldrich、Luminescence Technology Corp.、American Dye Source等から入手可能である。
 また、上記以外の入手方法として、例えば、「Journal of the American Chemical Society,Vol.107,1431-1432(1985)」、「Journal of the American Chemical Society,Vol.106,6647-6653(1984)」、特表2004-530254号公報、特開2008-179617号公報、特開2011-105701号公報、特表2007-504272号公報、国際公開第2006/121811号、特開2013-147450号公報に記載されている方法に従って合成することができる。
[第2の発光層の高分子化合物]
 金属錯体構成単位は、本実施形態に係る発光素子の輝度寿命が優れ、かつ、合成が容易なため、好ましくは、式(2)で表される金属錯体から、該金属錯体を構成する炭素原子又はヘテロ原子に直接結合する1個以上5個以下の水素原子を取り除いてなる基を含む構成単位であり、より好ましくは、式(2)で表される金属錯体から、該金属錯体を構成する炭素原子又はヘテロ原子に直接結合する1個以上3個以下の水素原子を取り除いてなる基を含む構成単位であり、更に好ましくは式(1B)で表される構成単位、式(2B)で表される構成単位、式(3B)で表される構成単位又は式(4B)で表される構成単位であり、特に好ましくは式(1B)で表される構成単位、式(2B)で表される構成単位又は式(3B)で表される構成単位であり、とりわけ好ましくは式(3B)で表される構成単位である。
[式(1B)で表される構成単位]
 Rは、アリール基又は1価の複素環基であることが好ましく、アリール基であることがより好ましく、これらの基は置換基を有していてもよい。
 Rは、水素原子、アルキル基、シクロアルキル基、アリール基又は1価の複素環基であることが好ましく、水素原子、アルキル基、シクロアルキル基又はアリール基がより好ましく、水素原子又はアルキル基が更に好ましく、水素原子であることが特に好ましく、これらの基は置換基を有していてもよい。
 Lは、-C(R-、アリーレン基又は2価の複素環基であることが好ましく、-C(R-又はアリーレン基であることがより好ましく、アリーレン基であることが更に好ましく、式(A-1)又は(A-2)で表される基であることが特に好ましく、これらの基は置換基を有していてもよい。
 Lで表されるアリーレン基及び2価の複素環基の例及び好ましい範囲は、それぞれ、前述のArY1で表されるアリーレン基及び2価の複素環基の例及び好ましい範囲と同じである。
 R、R及びLが有していてもよい置換基の例及び好ましい範囲は、それぞれ、前述のArY1で表される基が有してもよい置換基の例及び好ましい範囲と同じである。
 nc1は、通常、0~10の整数であり、好ましくは0~5の整数であり、より好ましくは0~2の整数であり、更に好ましくは0又は1であり、特に好ましくは0である。
 第2の発光層の高分子化合物が式(1B)で表される構成単位を含む高分子化合物である場合、式(1B)で表される構成単位は末端の構成単位である。
 「末端の構成単位」とは、高分子化合物の末端の構成単位を意味し、該末端の構成単位は、高分子化合物の製造において、末端封止剤から誘導される構成単位であることが好ましい。
 M1Bは、式(BM-1)で表される基であることがより好ましい。
Figure JPOXMLDOC01-appb-C000131
[式中、
 M、E、環L、環L及びA-G-Aは、前記と同じ意味を表す。
 環L11は、6員の芳香族複素環を表し、これらの環は置換基を有していてもよい。該置換基が複数存在する場合、それらは同一でも異なっていてもよく、互いに結合して、それぞれが結合する原子とともに環を形成していてもよい。
 環L12は、芳香族炭化水素環又は芳香族複素環を表し、これらの環は置換基を有していてもよい。該置換基が複数存在する場合、それらは同一でも異なっていてもよく、互いに結合して、それぞれが結合する原子とともに環を形成していてもよい。
 但し、環L11及び環L12の一方は、1つの結合手を有する。
 n11及びn12は、それぞれ独立に、0以上の整数を表す。但し、n11+n12は1又は2である。Mがロジウム原子又はイリジウム原子の場合、n11+n12は2であり、Mがパラジウム原子又は白金原子の場合、n11+n12は1である。]
 Mがロジウム原子又はイリジウム原子の場合、n11が2であることがより好ましい。
 Mがパラジウム原子又は白金原子の場合の場合、n11が1であることが好ましい。
 環L11が結合手を有さない場合、環L11の定義、例及び好ましい範囲は、前述の環Lの定義、例及び好ましい範囲と同様である。
 環L11が結合手を有する場合、環L11の結合手を除いた環部分の定義、例及び好ましい範囲は、前述の環Lの定義、例及び好ましい範囲と同様である。
 環L12が結合手を有さない場合、環L12の定義、例及び好ましい範囲は、前述の環Lの定義、例及び好ましい範囲と同様である。
 環L12が結合手を有する場合、環L12の結合手を除いた環部分の定義、例及び好ましい範囲は、前述の環Lの定義、例及び好ましい範囲と同様である。
 環L11及び環L12が有していてもよい置換基の定義、例及び好ましい範囲は、前述の環L及び環Lが有していてもよい置換基の定義、例及び好ましい範囲と同様である。
[式(2B)で表される構成単位]
 Lは、-C(R-、アリーレン基又は2価の複素環基であることが好ましく、アリーレン基又は2価の複素環基であることがより好ましく、アリーレン基であることが更に好ましく、式(A-1)又は(A-2)で表される基であることが特に好ましく、これらの基は置換基を有していてもよい。
 Lは、-C(R-、アリーレン基又は2価の複素環基であることが好ましく、-C(R-又はアリーレン基であることがより好ましく、アリーレン基であることが更に好ましく、式(A-1)又は(A-2)で表される基であることが特に好ましく、これらの基は置換基を有していてもよい。
 L及びLで表されるアリーレン基及び2価の複素環基の例及び好ましい範囲は、それぞれ、前述のArY1で表されるアリーレン基及び2価の複素環基の例及び好ましい範囲と同じである。
 nd1及びne1は、通常、0~10の整数であり、好ましくは0~5の整数であり、より好ましくは0~2の整数であり、更に好ましくは0又は1であり、特に好ましくは0である。
 Ar1Mは、ベンゼン環、ナフタレン環、フルオレン環、フェナントレン環、ジヒドロフェナントレン環、ピリジン環、ジアザベンゼン環、トリアジン環、カルバゾール環、フェノキサジン環又はフェノチアジン環から、環を構成する炭素原子又はヘテロ原子に直接結合する水素原子3個を除いた基であることが好ましく、ベンゼン環、ナフタレン環、フルオレン環、フェナントレン環又はジヒドロフェナントレン環から、環を構成する炭素原子に直接結合する水素原子3個を除いた基であることがより好ましく、ベンゼン環又はフルオレン環から、環を構成する炭素原子に直接結合する水素原子3個を除いた基であることが更に好ましく、ベンゼン環から、環を構成する炭素原子に直接結合する水素原子3個を除いた基であることが特に好ましく、これらの基は置換基を有していてもよい。
 L、L及びAr1Mが有していてもよい置換基の例及び好ましい範囲は、それぞれ、前述のArY1で表される基が有してもよい置換基の例及び好ましい範囲と同じである。
[式(3B)で表される構成単位]
 M2Bは、式(BM-2)又は(BM-3)で表される基であることがより好ましく、式(BM-2)で表される基であることが更に好ましい。
Figure JPOXMLDOC01-appb-C000132
[式中、
 M、E、環L、環L、環L11、環L12及びA-G-Aは前記と同じ意味を表す。複数存在する環L11は、同一でも異なっていてもよい。複数存在する環L12は、同一でも異なっていてもよい。
 n13及びn14は、それぞれ独立に、0以上の整数を表す。但し、n13+n14は0又は1である。Mがロジウム原子又はイリジウム原子の場合、n13+n14は1であり、Mがパラジウム原子又は白金原子の場合、n13+n14は0である。]
 Mがロジウム原子又はイリジウム原子の場合、n13が1であることが好ましい。
Figure JPOXMLDOC01-appb-C000133
[式中、
 M、E、環L、環L、A-G-A、n11及びn12は、前記と同じ意味を表す。
 環L13は、6員の芳香族複素環を表し、これらの環は置換基を有していてもよい。該置換基が複数存在する場合、それらは同一でも異なっていてもよく、互いに結合して、それぞれが結合する原子とともに環を形成していてもよい。
 環L14は、芳香族炭化水素環又は芳香族複素環を表し、これらの環は置換基を有していてもよい。該置換基が複数存在する場合、それらは同一でも異なっていてもよく、互いに結合して、それぞれが結合する原子とともに環を形成していてもよい。
 但し、環L13及び環L14の一方は2つの結合手を有するか、又は、環L13及び環L14は、それぞれ、結合手を1つずつ有する。]
 環L13が結合手を有さない場合、環L13の定義、例及び好ましい範囲は、前述の環Lの定義、例及び好ましい範囲と同様である。
 環L13が結合手を有する場合、環L13の結合手を除いた環部分の定義、例及び好ましい範囲は、前述の環Lの定義、例及び好ましい範囲と同様である。
 環L14が結合手を有さない場合、環L14の定義、例及び好ましい範囲は、前述の環Lの定義、例及び好ましい範囲と同様である。
 環L14が結合手を有する場合、環L14の結合手を除いた環部分の定義、例及び好ましい範囲は、前述の環Lの定義、例及び好ましい範囲と同様である。
 環L13及び環L14が有していてもよい置換基の定義、例及び好ましい範囲は、前述の環L及び環Lが有していてもよい置換基の定義、例及び好ましい範囲と同様である。
 環L13及び環L14は、それぞれ、結合手を1つずつ有することが好ましい。
[式(4B)で表される構成単位]
 M3Bは、式(BM-4)で表される基であることが好ましい。
Figure JPOXMLDOC01-appb-C000134
[式中、
 M、E、環L11、環L12、環L13及び環L14は、前記と同じ意味を表す。
 n15は0又は1を表す。n16は1又は3を表す。但し、Mがロジウム原子又はイリジウム原子の場合、n15は0であり、かつ、n16は3である。Mがパラジウム原子又は白金原子の場合、n15は1であり、かつ、n16は1である。]
 金属錯体構成単位としては、例えば、式(1G-1)~(1G-13)、(2G-1)~(2G-16)、(3G-1)~(3G-23)又は(4G-1)~(4G-6)で表される構成単位が挙げられる。
Figure JPOXMLDOC01-appb-C000135
Figure JPOXMLDOC01-appb-C000136
Figure JPOXMLDOC01-appb-C000137
Figure JPOXMLDOC01-appb-C000138
Figure JPOXMLDOC01-appb-C000139
Figure JPOXMLDOC01-appb-C000140
Figure JPOXMLDOC01-appb-C000141
Figure JPOXMLDOC01-appb-C000142
Figure JPOXMLDOC01-appb-C000143
Figure JPOXMLDOC01-appb-C000144
Figure JPOXMLDOC01-appb-C000145
Figure JPOXMLDOC01-appb-C000146
Figure JPOXMLDOC01-appb-C000147
[式中、
 Rは、前記と同じ意味を表す。
 Deは式(D-A)、(D-B)又は(D-C)で表される基を表す。]
 金属錯体構成単位は、本実施形態に係る発光素子の輝度寿命が優れるので、第2の発光層の高分子化合物に含まれる構成単位の合計量に対して、好ましくは0.01~50モル%であり、より好ましくは0.1~30モル%であり、更に好ましくは0.5~10モル%であり、特に好ましくは1~5モル%である。
 第2の発光層の高分子化合物は、正孔輸送性が優れるので、更に、式(X)で表される構成単位を含むことが好ましい。
 第2の発光層の高分子化合物が含んでいてもよい式(X)で表される構成単位の定義、例及び好ましい範囲は、前述の高分子ホストが含んでいてもよい式(X)で表される構成単位の定義、例及び好ましい範囲と同じである。
 第2の発光層の高分子化合物が式(X)で表される構成単位を含む場合、第2の発光層の高分子化合物に含まれる式(X)で表される構成単位は、正孔輸送性がより優れるので、第2の発光層の高分子化合物に含まれる構成単位の合計量に対して、好ましくは1~80モル%であり、より好ましくは10~60モル%であり、更に好ましくは20~40モル%である。
 式(X)で表される構成単位は、第2の発光層の高分子化合物中に、1種のみ含まれていてもよく、2種以上含まれていてもよい。
 第2の発光層の高分子化合物は、本実施形態に係る発光素子の輝度寿命が優れるので、更に、式(Y)で表される構成単位を含むことが好ましい。
 第2の発光層の高分子化合物が含んでいてもよい式(Y)で表される構成単位の定義、例及び好ましい範囲は、前述の高分子ホストが含んでいてもよい式(Y)で表される構成単位の定義、例及び好ましい範囲と同じである。
 第2の発光層の高分子化合物が式(Y)で表される構成単位を含み、ArY1がアリーレン基である場合、第2の発光層の高分子化合物に含まれる式(Y)で表される構成単位は、本実施形態に係る発光素子の輝度寿命がより優れるので、第2の発光層の高分子化合物に含まれる構成単位の合計量に対して、好ましくは0.5~90モル%であり、より好ましくは30~80モル%である。
 第2の発光層の高分子化合物が式(Y)で表される構成単位を含み、ArY1が2価の複素環基、又は、少なくとも1種のアリーレン基と少なくとも1種の2価の複素環基とが直接結合した2価の基である場合、第2の発光層の高分子化合物に含まれる式(Y)で表される構成単位は、本実施形態に係る発光素子の電荷輸送性がより優れるので、第2の発光層の高分子化合物に含まれる構成単位の合計量に対して、好ましくは0.5~40モル%であり、より好ましくは3~30モル%である。
 式(Y)で表される構成単位は、第2の発光層の高分子化合物中に、1種のみ含まれていてもよく、2種以上含まれていてもよい。
 第2の発光層の高分子化合物は、本実施形態に係る発光素子を塗布法で形成でき、発光素子の積層化も可能なため、更に、架橋基を有する架橋構成単位を含むことが好ましい。
 架橋基を有する架橋構成単位は、第2の発光層の高分子化合物中に、1種のみ含まれていてもよく、2種以上含まれていてもよい。
 上述のとおり、第2の発光層の高分子化合物は、架橋基を有する架橋構成単位、式(X)で表される構成単位及び式(Y)で表される構成単位からなる群から選ばれる少なくとも1種の構成単位を更に含むことが好ましく、架橋基を有する架橋構成単位、式(X)で表される構成単位及び式(Y)で表される構成単位からなる群から選ばれる少なくとも2種の構成単位を更に含むことがより好ましく、架橋基を有する架橋構成単位、式(X)で表される構成単位及び式(Y)で表される構成単位を更に含むことが更に好ましい。
[架橋基を有する架橋構成単位]
 架橋基を有する架橋構成単位において、本実施形態に係る発光素子の輝度寿命がより優れるので、架橋基は、好ましくは、架橋基A群から選ばれる架橋基であり、より好ましくは、式(XL-1)、(XL-3)、(XL-9)、(XL-16)又は(XL-17)で表される架橋基であり、更に好ましくは、式(XL-1)、(XL-16)又は(XL-17)で表される架橋基であり、特に好ましくは、式(XL-1)又は(XL-17)で表される架橋基である。
 第2の発光層の高分子化合物が含んでいてもよい、架橋基を有する架橋構成単位は、後述する式(3)で表される構成単位及び式(4)で表される構成単位であることが好ましいが、下記で表される構成単位であってもよい。
Figure JPOXMLDOC01-appb-C000148
 第2の発光層の高分子化合物が含んでいてもよい架橋基を有する架橋構成単位は、式(3)で表される構成単位又は式(4)で表される構成単位であることが好ましい。
[式(3)で表される構成単位]
Figure JPOXMLDOC01-appb-C000149
[式中、
 nAは0~5の整数を表し、nは1~4の整数を表す。
 Arは、芳香族炭化水素基又は複素環基を表し、これらの基は置換基を有していてもよい。
 Lは、アルキレン基、シクロアルキレン基、アリーレン基、2価の複素環基、-NR’-で表される基、酸素原子又は硫黄原子を表し、これらの基は置換基を有していてもよい。R’は、水素原子、アルキル基、シクロアルキル基、アリール基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。Lが複数存在する場合、それらは同一でも異なっていてもよい。
 Xは、式(XL-1)~(XL-17)のいずれかで表される架橋基を表す。Xが複数存在する場合、それらは同一でも異なっていてもよい。]
 nAは、本実施形態に係る発光素子の輝度寿命が優れるため、好ましくは0~3の整数であり、より好ましくは0~2の整数であり、更に好ましくは0又は1であり、特に好ましくは1である。
 nは、本実施形態に係る発光素子の輝度寿命が優れるので、好ましくは1又は2であり、より好ましくは2である。
 Arは、本実施形態に係る発光素子の輝度寿命が優れるので、好ましくは置換基を有していてもよい芳香族炭化水素基である。
 Arで表される芳香族炭化水素基の炭素原子数は、置換基の炭素原子数を含めないで、通常6~60であり、好ましくは6~30であり、より好ましくは6~18である。
 Arで表される芳香族炭化水素基のn個の置換基を除いたアリーレン基部分としては、好ましくは、式(A-1)~(A-20)で表される基であり、より好ましくは、式(A-1)、(A-2)、(A-6)~(A-10)、(A-19)又は(A-20)で表される基であり、更に好ましくは、式(A-1)、(A-2)、(A-7)、(A-9)又は(A-19)で表される基であり、これらの基は置換基を有していてもよい。
 Arで表される複素環基の炭素原子数は、置換基の炭素原子数を含めないで、通常2~60であり、好ましくは3~30であり、より好ましくは4~18である。
 Arで表される複素環基のn個の置換基を除いた2価の複素環基部分としては、好ましくは、式(AA-1)~(AA-34)で表される基である。
 Arで表される芳香族炭化水素基及び複素環基は置換基を有していてもよく、置換基としては、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、アリールオキシ基、ハロゲン原子、1価の複素環基及びシアノ基が好ましい。
 Lで表されるアルキレン基は、置換基の炭素原子数を含めないで、通常1~20であり、好ましくは1~15であり、より好ましくは1~10である。Lで表されるシクロアルキレン基は、置換基の炭素原子数を含めないで、通常3~20である。
 アルキレン基及びシクロアルキレン基は、置換基を有していてもよく、例えば、メチレン基、エチレン基、プロピレン基、ブチレン基、ヘキシレン基、シクロヘキシレン基、オクチレン基が挙げられる。
 Lで表されるアルキレン基及びシクロアルキレン基は、置換基を有していてもよい。アルキレン基及びシクロアルキレン基が有していてもよい置換基としては、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、ハロゲン原子及びシアノ基が好ましい。
 Lで表されるアリーレン基は、置換基を有していてもよい。アリーレン基としては、フェニレン基又はフルオレンジイル基が好ましく、m-フェニレン基、p-フェニレン基、フルオレン-2,7-ジイル基、フルオレン-9,9-ジイル基がより好ましい。アリーレン基が有してもよい置換基としては、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、アリールオキシ基、1価の複素環基、ハロゲン原子、シアノ基及び架橋基A群から選ばれる架橋基が好ましい。
 Lは、第2の発光層の高分子化合物の合成が容易になるため、好ましくは、アリーレン基又はアルキレン基であり、より好ましくは、フェニレン基、フルオレンジイル基又はアルキレン基であり、これらの基は置換基を有していてもよい。
 Xで表される架橋基としては、第2の発光層の高分子化合物の架橋性が優れるので、好ましくは式(XL-1)、(XL-3)、(XL-7)~(XL-10)、(XL-16)又は(XL-17)で表される架橋基であり、より好ましくは、式(XL-1)、(XL-3)、(XL-9)、(XL-16)又は(XL-17)で表される架橋基であり、更に好ましくは、式(XL-1)、(XL-16)又は(XL-17)で表される架橋基であり、特に好ましくは、式(XL-1)又は(XL-17)で表される架橋基である。
 式(3)で表される構成単位は、第2の発光層の高分子化合物の架橋性が優れるので、第2の発光層の高分子化合物に含まれる構成単位の合計量に対して、好ましくは0.5~80モル%であり、より好ましくは1~60モル%であり、更に好ましくは3~40モル%であり、特に好ましくは5~20モル%である。
 式(3)で表される構成単位は、第2の発光層の高分子化合物中に、1種のみ含まれていてもよく、2種以上含まれていてもよい。
[式(4)で表される構成単位]
Figure JPOXMLDOC01-appb-C000150
[式中、
 mAは0~5の整数を表し、mは1~4の整数を表し、cは0又は1を表す。mAが複数存在する場合、それらは同一でも異なっていてもよい。
 Arは、芳香族炭化水素基、複素環基、又は、少なくとも1種の芳香族炭化水素環と少なくとも1種の複素環とが直接結合した基を表し、これらの基は置換基を有していてもよい。
 Ar及びArは、それぞれ独立に、アリーレン基又は2価の複素環基を表し、これらの基は置換基を有していてもよい。
 Ar、Ar及びArはそれぞれ、当該基が結合している窒素原子に結合している当該基以外の基と、直接又は酸素原子若しくは硫黄原子を介して結合して、環を形成していてもよい。
 Kは、アルキレン基、シクロアルキレン基、アリーレン基、2価の複素環基、-NR’’-で表される基、酸素原子又は硫黄原子を表し、これらの基は置換基を有していてもよい。R’’は、水素原子、アルキル基、シクロアルキル基、アリール基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。Kが複数存在する場合、それらは同一でも異なっていてもよい。
 X’は、式(XL-1)~(XL-17)のいずれかで表される架橋基、水素原子、アルキル基、シクロアルキル基、アリール基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。但し、少なくとも1つのX’は、式(XL-1)~(XL-17)のいずれかで表される架橋基である。]
 mAは、本実施形態に係る発光素子の輝度寿命が優れるので、好ましくは0又は1であり、より好ましくは0である。
 mは、本実施形態に係る発光素子の輝度寿命が優れるので、好ましくは0である。
 cは、第2の発光層の高分子化合物の合成が容易となり、かつ、本実施形態に係る発光素子の輝度寿命が優れるため、好ましくは0である。
 Arは、本実施形態に係る発光素子の輝度寿命が優れるので、好ましくは置換基を有していてもよい芳香族炭化水素基である。
 Arで表される芳香族炭化水素基のm個の置換基を除いたアリーレン基部分の定義や例は、前述の式(X)におけるArX2で表されるアリーレン基の定義や例と同じである。
 Arで表される複素環基のm個の置換基を除いた2価の複素環基部分の定義や例は、前述の式(X)におけるArX2で表される2価の複素環基部分の定義や例と同じである。
 Arで表される少なくとも1種の芳香族炭化水素環と少なくとも1種の複素環が直接結合した基のm個の置換基を除いた2価の基の定義や例は、前述の式(X)におけるArX2で表される少なくとも1種のアリーレン基と少なくとも1種の2価の複素環基とが直接結合した2価の基の定義や例と同じである。
 Ar及びArは、本実施形態に係る発光素子の輝度寿命が優れるので、好ましくは置換基を有していてもよいアリーレン基である。
 Ar及びArで表されるアリーレン基の定義や例は、前述の式(X)におけるArX1及びArX3で表されるアリーレン基の定義や例と同じである。
 Ar及びArで表される2価の複素環基の定義や例は、前述の式(X)におけるArX1及びArX3で表される2価の複素環基の定義や例と同じである。
 Ar、Ar及びArで表される基は置換基を有していてもよく、置換基としては、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、アリールオキシ基、ハロゲン原子、1価の複素環基及びシアノ基が好ましい。
 Kで表されるアルキレン基、シクロアルキレン基、アリーレン基、2価の複素環基の定義や例は、それぞれ、Lで表されるアルキレン基、シクロアルキレン基、アリーレン基、2価の複素環基の定義や例と同じである。
 Kは、第2の発光層の高分子化合物の合成が容易になるため、フェニレン基又はメチレン基であることが好ましく、これらの基は置換基を有していてもよい。
 X’で表される架橋基の定義や例は、前述のXで表される架橋基の定義や例と同じである。
 式(4)で表される構成単位は、第2の発光層の高分子化合物の正孔輸送性が優れ、かつ、第2の発光層の高分子化合物の架橋性が優れるので、第2の発光層の高分子化合物に含まれる構成単位の合計量に対して、好ましくは0.5~80モル%であり、より好ましくは1~60モル%であり、更に好ましくは3~40モル%であり、特に好ましくは5~20モル%である。
 式(4)で表される構成単位は、第2の発光層の高分子化合物中に、1種のみ含まれていてもよく、2種以上含まれていてもよい。
 式(3)で表される構成単位としては、例えば、式(3-1)~(3-30)で表される構成単位が挙げられ、式(4)で表される構成単位としては、例えば、式(4-1)~(4-9)で表される構成単位が挙げられる。これらの中でも、第2の発光層の高分子化合物の架橋性が優れるので、好ましくは、式(3-1)~(3-30)で表される構成単位であり、より好ましくは、式(3-1)~(3-15)、(3-19)、(3-20)、(3-23)、(3-25)又は(3-30)で表される構成単位であり、更に好ましくは、式(3-1)~(3-13)又は(3-30)で表される構成単位であり、特に好ましくは、式(3-1)~(3-9)又は(3-30)で表される構成単位である。
Figure JPOXMLDOC01-appb-C000151
Figure JPOXMLDOC01-appb-C000152
Figure JPOXMLDOC01-appb-C000153
 第2の発光層の高分子化合物としては、例えば、表1に示す高分子化合物P-7~P-20が挙げられる。ここで、「その他」とは、金属錯体構成単位、式(3)、式(4)、式(X)及び式(Y)で表される構成単位以外の構成単位を意味する。
Figure JPOXMLDOC01-appb-T000154
[表中、p’、q’、r’、s’、t’及びu’は、各構成単位のモル比率(モル%)を表す。p’+q’+r’+s’+t’+u’=100であり、かつ、70≦p’+q’+r’+s’+t’≦100である。]
 第2の発光層の高分子化合物は、ブロック共重合体、ランダム共重合体、交互共重合体、グラフト共重合体のいずれであってもよいし、その他の態様であってもよいが、複数種の原料モノマーを共重合してなる共重合体であることが好ましい。
[第2の発光層の高分子化合物の製造方法]
 第2の発光層の高分子化合物は、前述の高分子ホストの製造方法と同様の方法で製造することができる。
 また、上記以外の製造方法として、例えば、特開2003-171659号公報、国際公開第2006/003000号、特開2010-43243号公報、特開2011-105701号公報、国際公開第2013/021180号、特開2015-174931号公報、特開2015-174932号公報に記載されている方法に従って合成することができる。
[第2の発光層の組成比等]
 第2の発光層は、発光材料と、ホスト材料、正孔輸送材料、正孔注入材料、電子輸送材料、電子注入材料及び酸化防止剤からなる群から選ばれる少なくとも1種の材料とを含有する組成物(以下、「第2の発光層の組成物」ともいう。)を用いて形成された層であってもよい。
 ここで、「用いて形成された」とは、第2の発光層の組成物を用いて第2の発光層が形成されていることを意味する。第2の発光層の組成物中の発光材料がそのまま第2の発光層に含有されていてもよいし、第2の発光層の組成物中の発光材料が分子内、分子間、又は、それらの両方で架橋した状態で第2の発光層に含有されていてもよい。すなわち、第2の発光層は、第2の発光層の組成物及び/又は該第2の発光層の組成物の架橋体を含有するものであってよい。
 第2の発光層の組成物において、ホスト材料、正孔輸送材料、電子輸送材料、正孔注入材料及び電子注入材料の例及び好ましい範囲は、第1の発光層の組成物おけるホスト材料、正孔輸送材料、電子輸送材料、正孔注入材料及び電子注入材料の例及び好ましい範囲と同じである。
 第2の発光層の組成物において、ホスト材料の配合量は、発光材料とホスト材料との合計を100質量部とした場合、通常、50~99.9質量部であり、好ましくは60~99質量部であり、より好ましくは70~95質量部である。
 第2の発光層の組成物において、正孔輸送材料、電子輸送材料、正孔注入材料及び電子注入材料の配合量は、各々、発光材料を100質量部とした場合、通常、1~400質量部であり、好ましくは5~150質量部である。
 第2の発光層の組成物において、酸化防止剤の例及び好ましい範囲は、第1の発光層の組成物における酸化防止剤の例及び好ましい範囲と同じである。第2の発光層の組成物において、酸化防止剤の配合量は、発光材料を100質量部とした場合、通常、0.001~10質量部である。
[第2の発光層のインク]
 発光材料と溶媒とを含有する組成物(以下、「第2の発光層のインク」ともいう。)は、第1の発光層のインクと同様に、スピンコート法、キャスティング法、マイクログラビアコート法、グラビアコート法、バーコート法、ロールコート法、ワイヤーバーコート法、ディップコート法、スプレーコート法、スクリーン印刷法、フレキソ印刷法、オフセット印刷法、インクジェット印刷法、キャピラリ-コート法、ノズルコート法等の塗布法に好適に使用することができる。
 第2の発光層のインクの粘度の好ましい範囲は、第1の発光層のインクの粘度の好ましい範囲と同じである。
 第2の発光層のインクに含有される溶媒の例及び好ましい範囲は、第1の発光層のインクに含有される溶媒の例及び好ましい範囲と同じである。
 第2の発光層のインクにおいて、溶媒の配合量は、第2の発光層の高分子化合物を100質量部とした場合、通常、1000~100000質量部であり、好ましくは2000~20000質量部である。
 第2の発光層のインクは、発光材料及び溶媒以外の成分を含んでいてよい。例えば、第2の発光層のインクは、ホスト材料、正孔輸送材料、正孔注入材料、電子輸送材料、電子注入材料及び酸化防止剤からなる群から選ばれる少なくとも1種の材料を更に含んでいてよい。
<発光素子の層構成>
 本実施形態に係る発光素子は、陽極と、陰極と、陽極及び陰極の間に設けられた第1の発光層と、陽極及び陰極の間に設けられた第2の発光層とを有する。本実施形態に係る発光素子は、陽極、陰極、第1の発光層及び第2の発光層以外の層を有していてもよい。
 本実施形態に係る発光素子において、第1の発光層と第2の発光層とは、本実施形態に係る発光素子の輝度寿命がより優れるので、隣接していることが好ましい。
 本実施形態に係る発光素子において、第2の発光層は、本実施形態に係る発光素子の輝度寿命がより優れるので、陽極及び第1の発光層の間に設けられた層であることが好ましい。
 本実施形態に係る発光素子において、第1の発光層の形成に用いられる式(1)で表される金属錯体の含有量と、第2の発光層の形成に用いられる発光材料の含有量との比率を調整することで、発光色を調整することが可能であり、発光色を白色に調整することも可能である。
 発光素子の発光色は、発光素子の発光色度を測定して色度座標(CIE色度座標)を求めることで確認することできる。白色の発光色とは、例えば、色度座標のXが0.20~0.55の範囲内であり、かつ、色度座標のYが0.20~0.55の範囲内であり、色度座標のXが0.25~0.51の範囲内であり、かつ、色度座標のYが0.25~0.51の範囲内であることが好ましい。
 本実施形態に係る発光素子の発光色を調整(特に、発光色を白色に調整)する観点からは、式(1)で表される金属錯体の発光スペクトルの最大ピーク波長は、通常、380nm以上495nm未満であり、好ましくは400nm以上490nm以下であり、より好ましくは420nm以上485nm以下であり、更に好ましくは450nm以上480nm以下である。
 本実施形態に係る発光素子の発光色を調整(特に、発光色を白色に調整)する観点からは、第2の発光層の形成に用いられる発光材料の発光スペクトルは、通常、495nm以上750nm未満に極大波長を有し、好ましくは500nm以上700nm以下に極大波長を有し、より好ましくは570nm以上680nm以下に極大波長を有し、更に好ましくは590nm以上640nm以下に極大波長を有する。
 本実施形態に係る発光素子の発光色を調整(特に、発光色を白色に調整)する観点からは、式(2)で表される金属錯体の発光スペクトルの最大ピーク波長は、通常、495nm以上750nm未満であり、好ましくは500nm以上700nm以下である。
 本実施形態に係る発光素子の発光色を調整(特に、発光色を白色に調整)する観点からは、第2の発光層に含有される発光材料が式(2)で表される金属錯体である場合、式(2)で表される金属錯体の発光スペクトルの最大ピーク波長は、通常、495nm以上750nm未満であり、好ましくは500nm以上700nm以下であり、より好ましくは570nm以上680nm以下であり、更に好ましくは590nm以上640nm以下である。
 本実施形態に係る発光素子の発光色を調整(特に、発光色を白色に調整)する観点からは、第2の発光層に含有される発光材料が、第2の発光層の高分子化合物である場合、第2の発光層の高分子化合物に含まれる式(2)で表される金属錯体の発光スペクトルの最大ピーク波長は、通常、495nm以上750nm未満であり、好ましくは500nm以上700nm以下であり、より好ましくは570nm以上680nm以下であり、更に好ましくは590nm以上640nm以下である。
 本実施形態に係る発光素子の発光色を調整(特に、発光色を白色に調整)する観点からは、第2の発光層に含有される発光材料が、第2の発光層の高分子化合物の架橋体である場合、第2の発光層の高分子化合物の架橋体に含まれる式(2)で表される金属錯体の発光スペクトルの最大ピーク波長は、通常、495nm以上750nm未満であり、好ましくは500nm以上700nm以下であり、より好ましくは570nm以上680nm以下であり、更に好ましくは590nm以上640nm以下である。
 本実施形態に係る発光素子の発光色を調整(特に、発光色を白色に調整)する観点からは、本実施形態に係る発光素子が有する第1の発光層は、発光スペクトルの極大波長を380nm以上750nm未満に有する発光材料(以下、「第3の発光材料」ともいう。)を更に含有する組成物を用いて形成される層であることが好ましい。
 第3の発光材料の例及び好ましい範囲は、第1の発光層の組成物が含有していてもよい発光材料の例及び好ましい範囲と同じである。
 本実施形態に係る発光素子の発光色を調整(特に、発光色を白色に調整)する観点からは、第3の発光材料の発光スペクトルは、好ましくは、495nm以上750nm未満に極大波長を有し、より好ましくは500nm以上700nm以下に極大波長を有し、更に好ましくは500nm以上570nm未満に極大波長を有し、特に好ましくは505nm以上560nm以下に極大波長を有する。
 本実施形態に係る発光素子の発光色を調整(特に、発光色を白色に調整)する観点からは、第3の発光材料が式(2)で表される金属錯体である場合、式(2)で表される金属錯体の発光スペクトルの最大ピーク波長は、通常、495nm以上750nm未満であり、好ましくは500nm以上700nm以下であり、より好ましくは500nm以上570nm未満であり、更に好ましくは505nm以上560nm以下である。
 本実施形態に係る発光素子の発光色を調整(特に、発光色を白色に調整)する観点からは、第3の発光材料が第2の発光層の高分子化合物である場合、第2の発光層の高分子化合物に含まれる式(2)で表される金属錯体の発光スペクトルの最大ピーク波長は、通常、495nm以上750nm未満であり、好ましくは500nm以上700nm以下であり、より好ましくは500nm以上570nm未満であり、更に好ましくは505nm以上560nm以下である。
 本実施形態に係る発光素子の発光色を調整(特に、発光色を白色に調整)する観点からは、第3の発光材料が第2の発光層の高分子化合物の架橋体である場合、第2の発光層の高分子化合物の架橋体に含まれる式(2)で表される金属錯体の発光スペクトルの最大ピーク波長は、通常、495nm以上750nm未満であり、好ましくは500nm以上700nm以下であり、より好ましくは500nm以上570nm未満であり、更に好ましくは505nm以上560nm以下である。
 本実施形態に係る発光素子の発光色を調整(特に、発光色を白色に調整)する観点からは、本実施形態に係る発光素子が有する第2の発光層は、2種以上の発光材料を用いて形成される層であることが好ましい。
 第2の発光層が、2種以上の発光材料を用いて形成される層である場合、本実施形態に係る発光素子の発光色を調整(特に、発光色を白色に調整)する観点からは、少なくとも2種の発光材料の発光スペクトルの極大波長は互いに異なることが好ましく、その差は、好ましくは10~200nmであり、より好ましくは20~150nmであり、更に好ましくは40~120nmである。
 第2の発光層が、2種以上の発光材料を用いて形成される層であり、かつ、少なくとも2種の発光材料の発光スペクトルの極大波長が異なる場合、本実施形態に係る発光素子の発光色を調整(特に、発光色を白色に調整)する観点からは、少なくとも2種の発光材料の組み合わせは、500nm以上570nm未満に極大波長を有する発光材料と570nm以上680nm以下に極大波長を有する発光材料との組み合わせが好ましく、505nm以上560nm以下に極大波長を有する発光材料と590nm以上640nm以下に極大波長を有する発光材料との組み合わせがより好ましい。
 金属錯体及び発光材料の発光スペクトルの最大ピーク波長及び極大波長は、金属錯体又は発光材料を、キシレン、トルエン、クロロホルム、テトラヒドロフラン等の有機溶媒に溶解させ、希薄溶液を調製し(1×10-6~1×10-3質量%)、該希薄溶液のPLスペクトルを室温で測定することで評価することができる。金属錯体又は発光材料を溶解させる有機溶媒としては、キシレンが好ましい。
 本実施形態に係る発光素子において、第2の発光層が陽極及び第1の発光層の間に設けられた層である場合、本実施形態に係る発光素子の輝度寿命がより優れるので、陽極と第2の発光層との間に、正孔注入層及び正孔輸送層からなる群から選ばれる少なくとも1つの層を更に有することが好ましい。また、第2の発光層が陽極及び第1の発光層の間に設けられた層である場合、本実施形態に係る発光素子の輝度寿命がより優れるので、陰極と第1の発光層との間に、電子注入層及び電子輸送層からなる群から選ばれる少なくとも1つの層を更に有することが好ましい。
 本実施形態に係る発光素子において、第2の発光層が陰極及び第1の発光層の間に設けられた層である場合、本実施形態に係る発光素子の輝度寿命がより優れるので、陽極と第1の発光層との間に、正孔注入層及び正孔輸送層からなる群から選ばれる少なくとも1つの層を更に有することが好ましい。また、第2の発光層が陰極及び第1の発光層の間に設けられた層である場合、本実施形態に係る発光素子の輝度寿命がより優れるので、陰極と第2の発光層との間に、電子注入層及び電子輸送層からなる群から選ばれる少なくとも1つの層を更に有することが好ましい。
 本実施形態に係る発光素子の具体的な層構成としては、例えば、下記の(D1)~(D18)で表される層構成が挙げられる。本実施形態に係る発光素子は、通常、基板を有するが、基板上に陽極から積層されていてもよく、基板上に陰極から積層されていてもよい。
(D1)陽極/第2の発光層/第1の発光層/陰極
(D2)陽極/第1の発光層/第2の発光層/陰極
(D3)陽極/正孔注入層/第2の発光層/第1の発光層/陰極
(D4)陽極/正孔輸送層/第2の発光層/第1の発光層/陰極
(D5)陽極/第2の発光層/第1の発光層/電子輸送層/陰極
(D6)陽極/第2の発光層/第1の発光層/電子注入層/陰極
(D7)陽極/第2の発光層/第1の発光層/電子輸送層/電子注入層/陰極
(D8)陽極/正孔注入層/第2の発光層/第1の発光層/電子輸送層/陰極
(D9)陽極/正孔注入層/第2の発光層/第1の発光層/電子注入層/陰極
(D10)陽極/正孔注入層/第2の発光層/第1の発光層/電子輸送層/電子注入層/陰極
(D11)陽極/正孔輸送層/第2の発光層/第1の発光層/電子輸送層/陰極
(D12)陽極/正孔輸送層/第2の発光層/第1の発光層/電子注入層/陰極
(D13)陽極/正孔輸送層/第2の発光層/第1の発光層/電子輸送層/電子注入層/陰極
(D14)陽極/正孔注入層/正孔輸送層/第2の発光層/第1の発光層/陰極
(D15)陽極/正孔注入層/正孔輸送層/第2の発光層/第1の発光層/電子輸送層/陰極
(D16)陽極/正孔注入層/正孔輸送層/第2の発光層/第1の発光層/電子輸送層/電子注入層/陰極
(D17)陽極/正孔注入層/第1の発光層/第2の発光層/電子輸送層/電子注入層/陰極
(D18)陽極/正孔注入層/正孔輸送層/第1の発光層/第2の発光層/電子輸送層/電子注入層/陰極
 上記の(D1)~(D18)中、「/」は、その前後の層が隣接して積層していることを意味する。具体的には、「第2の発光層/第1の発光層」とは、第2の発光層と第1の発光層とが隣接して積層していることを意味する。
 本実施形態に係る発光素子の輝度寿命がより優れるので、上記の(D3)~(D16)で表される層構成が好ましい。
 本実施形態に係る発光素子は、電極と他の層との密着性向上や電極からの電荷注入の改善のために、電極に隣接して絶縁層を設けてもよい。また、本実施形態に係る発光素子では、界面の密着性向上や隣接する2層の成分混合の防止等のために、正孔輸送層、電子輸送層、第1の発光層又は第2の発光層の界面に薄いバッファー層を挿入してもよい。積層する層の順番及び数、並びに各層の厚さは、外部量子効率や素子寿命を勘案して調整すればよい。
 次に、本実施形態に係る発光素子の構成について、詳しく説明する。
[基板]
 本実施形態に係る発光素子は、陽極の発光層側とは反対側、又は陰極の発光層側とは反対側に、基板を有していてもよい。基板は、電極を形成し、有機層(例えば、第1の発光層、第2の発光層、正孔輸送層、正孔注入層、電子輸送層、電子注入層等)を形成する際に化学的に変化しないものであればよく、例えば、ガラス、プラスチック、高分子フィルム、金属フィルム、シリコン等の基板、及びこれらを積層した基板が用いられる。
 本実施形態に係る発光素子において、陽極、正孔注入層、正孔輸送層、電子輸送層、電子注入層及び陰極は、それぞれ、必要に応じて、2層以上設けられていてもよい。
 陽極、正孔注入層、正孔輸送層、電子輸送層、電子注入層及び陰極が複数存在する場合、それらはそれぞれ同一でも異なっていてもよい。
 陽極、正孔注入層、正孔輸送層、第2の発光層、第1の発光層、電子輸送層、電子注入層及び陰極の厚さは、通常、1nm~1μmであり、好ましくは2nm~500nmであり、更に好ましくは5nm~150nmである。
[電子輸送層]
 電子輸送層は、電子輸送材料を含有する層である。電子輸送材料としては、例えば、第1の発光層の組成物が含有していてもよい電子輸送材料、並びに、式(ET-1)で表される構成単位及び式(ET-2)で表される構成単位からなる群から選ばれる少なくとも1種の構成単位を含む高分子化合物(以下、「電子輸送層の高分子化合物」ともいう。)が挙げられ、電子輸送層の高分子化合物が好ましい。
Figure JPOXMLDOC01-appb-C000155
[式中、
 nE1は、1以上の整数を表す。
 ArE1は、芳香族炭化水素基又は複素環基を表し、これらの基はRE1以外の置換基を有していてもよい。
 RE1は、式(ES-1)で表される基を表す。RE1が複数存在する場合、それらは同一でも異なっていてもよい。]
 -RE3-{(QE1nE3-YE1(ME1aE1(ZE1bE1mE1  (ES-1)
[式中、
 nE3は0以上の整数を表し、aE1は1以上の整数を表し、bE1は0以上の整数を表し、mE1は1以上の整数を表す。nE3、aE1及びbE1が複数存在する場合、それらはそれぞれ同一でも異なっていてもよい。但し、RE3が単結合である場合、mE1は1である。また、aE1及びbE1は、式(ES-1)で表される基の電荷が0となるように選択される。
 RE3は、単結合、炭化水素基、複素環基又はO-RE3’を表し(RE3’は、炭化水素基又は複素環基を表す。)、これらの基は置換基を有していてもよい。
 QE1は、アルキレン基、シクロアルキレン基、アリーレン基、酸素原子又は硫黄原子を表し、これらの基は置換基を有していてもよい。QE1が複数存在する場合、それらは同一でも異なっていてもよい。
 YE1は、-CO 、-SO 、-SO 又はPO 2-を表す。YE1が複数存在する場合、それらは同一でも異なっていてもよい。
 ME1は、アルカリ金属カチオン、アルカリ土類金属カチオン又はアンモニウムカチオンを表し、このアンモニウムカチオンは置換基を有していてもよい。ME1が複数存在する場合、それらは同一でも異なっていてもよい。
 ZE1は、F、Cl、Br、I、OH、B(RE4 、RE4SO 、RE4COO、NO 、SO 2-、HSO 、PO 3-、HPO 2-、HPO 、BF 又はPF を表す。RE4は、アルキル基、シクロアルキル基又はアリール基を表し、これらの基は置換基を有していてもよい。ZE1が複数存在する場合、それらは同一でも異なっていてもよい。]
 nE1は、通常1~4の整数であり、好ましくは1又は2である。
 ArE1で表される芳香族炭化水素基又は複素環基としては、1,4-フェニレン基、1,3-フェニレン基、1,2-フェニレン基、2,6-ナフタレンジイル基、1,4-ナフタレンジイル基、2、7-フルオレンジイル基、3,6-フルオレンジイル基、2,7-フェナントレンジイル基又は2,7-カルバゾールジイル基から、環を構成する原子に直接結合する水素原子nE1個を除いた基が好ましく、RE1以外の置換基を有していてもよい。
 ArE1が有していてもよいRE1以外の置換基としては、ハロゲン原子、シアノ基、アルキル基、シクロアルキル基、アリール基、1価の複素環基、アルコキシ基、シクロアルコキシ基、アリールオキシ基、アミノ基、置換アミノ基、アルケニル基、シクロアルケニル基、アルキニル基、シクロアルキニル基、カルボキシル基及び式(ES-3)で表される基が挙げられる。
 -O-(Cn’2n’O)nx-Cm’2m’+1  (ES-3)
[式中、n’、m’及びnxは、それぞれ独立に、1以上の整数を表す。]
 nE3は、通常0~10の整数であり、好ましくは0~8の整数であり、より好ましくは0~2の整数である。
 aE1は、通常1~10の整数であり、好ましくは1~5の整数であり、より好ましくは1又は2である。
 bE1は、通常0~10の整数であり、好ましくは0~4の整数であり、より好ましくは0又は1である。
 mE1は、通常1~5の整数であり、好ましくは1又は2であり、より好ましくは1である。
 RE3が-O-RE3’の場合、式(ES-1)で表される基は、下記で表される基である。
 -O-RE3’-{(QE1nE3-YE1(ME1aE1(ZE1bE1mE1
 RE3としては、炭化水素基又は複素環基が好ましく、芳香族炭化水素基又は芳香族複素環基がより好ましく、芳香族炭化水素基が更に好ましい。
 RE3が有していてもよい置換基としては、アルキル基、シクロアルキル基、アリール基、1価の複素環基及び式(ES-3)で表される基が挙げられ、式(ES-3)で表される基が好ましい。
 QE1としては、アルキレン基、アリーレン基又は酸素原子が好ましく、アルキレン基又は酸素原子がより好ましい。
 YE1としては、-CO 、-SO 又はPO 2-が好ましく、-CO がより好ましい。
 ME1で表されるアルカリ金属カチオンとしては、例えば、Li、Na、K、Rb、Csが挙げられ、K、Rb又はCsが好ましく、Csがより好ましい。
 ME1で表されるアルカリ土類金属カチオンとしては、例えば、Be2+、Mg2+、Ca2+、Sr2+、Ba2+が挙げられ、Mg2+、Ca2+、Sr2+又はBa2+が好ましく、Ba2+がより好ましい。
 ME1としては、アルカリ金属カチオン又はアルカリ土類金属カチオンが好ましく、アルカリ金属カチオンがより好ましい。
 ZE1としては、F、Cl、Br、I、OH、B(RE4 、RE4SO 、RE4COO又はNO が好ましく、F、Cl、Br、I、OH、RE4SO 又はRE4COOが好ましい。RE4としては、アルキル基が好ましい。
 式(ES-1)で表される基としては、例えば、下記式で表される基が挙げられる。
Figure JPOXMLDOC01-appb-C000156
Figure JPOXMLDOC01-appb-C000157
[式中、Mは、Li、Na、K、Cs又はN(CH を表す。Mが複数存在する場合、それらは同一でも異なっていてもよい。]
Figure JPOXMLDOC01-appb-C000158
[式中、
 nE2は、1以上の整数を表す。
 ArE2は、芳香族炭化水素基又は複素環基を表し、これらの基はRE2以外の置換基を有していてもよい。
 RE2は、式(ES-2)で表される基を表す。RE2が複数存在する場合、それらは同一でも異なっていてもよい。]
 -RE5-{(QE2nE4-YE2(ME2aE2(ZE2bE2mE2  (ES-2)
[式中、
 nE4は0以上の整数を表し、aE2は1以上の整数を表し、bE2は0以上の整数を表し、mE2は1以上の整数を表す。nE4、aE2及びbE2が複数存在する場合、それらはそれぞれ同一でも異なっていてもよい。但し、RE5が単結合である場合、mE2は1である。また、aE2及びbE2は、式(ES-2)で表される基の電荷が0となるように選択される。
 RE5は、単結合、炭化水素基、複素環基又はO-RE5’を表し(RE5’は、炭化水素基又は複素環基を表す。)、これらの基は置換基を有していてもよい。
 QE2は、アルキレン基、シクロアルキレン基、アリーレン基、酸素原子又は硫黄原子を表し、これらの基は置換基を有していてもよい。QE2が複数存在する場合、それらは同一でも異なっていてもよい。
 YE2は、-CE6 、-NE6 、-PE6 、-SE6 又はIE6 を表す。RE6は、水素原子、アルキル基、シクロアルキル基又はアリール基を表し、これらの基は置換基を有していてもよい。複数存在するRE6は、同一でも異なっていてもよい。YE2が複数存在する場合、それらは同一でも異なっていてもよい。
 ME2は、F、Cl、Br、I、OH、B(RE7 、RE7SO 、RE7COO、BF 、SbCl 又はSbF を表す。RE7は、アルキル基、シクロアルキル基又はアリール基を表し、これらの基は置換基を有していてもよい。
E2が複数存在する場合、それらは同一でも異なっていてもよい。
 ZE2は、アルカリ金属カチオン又はアルカリ土類金属カチオンを表す。ZE2が複数存在する場合、それらは同一でも異なっていてもよい。]
 nE2は、通常1~4の整数であり、好ましくは1又は2である。
 ArE2で表される芳香族炭化水素基又は複素環基としては、1,4-フェニレン基、1,3-フェニレン基、1,2-フェニレン基、2,6-ナフタレンジイル基、1,4-ナフタレンジイル基、2、7-フルオレンジイル基、3,6-フルオレンジイル基、2,7-フェナントレンジイル基又は2,7-カルバゾールジイル基から、環を構成する原子に直接結合する水素原子nE2個を除いた基が好ましく、RE2以外の置換基を有していてもよい。
 ArE2が有していてもよいRE2以外の置換基としては、ArE1が有していてもよいRE1以外の置換基と同様である。
 nE4は、通常0~10の整数であり、好ましくは0~8の整数であり、より好ましくは0~2の整数である。
 aE2は、通常1~10の整数であり、好ましくは1~5の整数であり、より好ましくは1又は2である。
 bE2は、通常0~10の整数であり、好ましくは0~4の整数であり、より好ましくは0又は1である。
 mE2は、通常1~5の整数であり、好ましくは1又は2であり、より好ましくは1である。
 RE5が-O-RE5’の場合、式(ES-2)で表される基は、下記で表される基である。
 -O-RE5’-{(QE1nE3-YE1(ME1aE1(ZE1bE1mE1
 RE5としては、炭化水素基又は複素環基が好ましく、芳香族炭化水素基又は芳香族複素環基がより好ましく、芳香族炭化水素基が更に好ましい。
 RE5が有していてもよい置換基としては、アルキル基、シクロアルキル基、アリール基、1価の複素環基及び式(ES-3)で表される基が挙げられ、式(ES-3)で表される基が好ましい。
 QE2としては、アルキレン基、アリーレン基又は酸素原子が好ましく、アルキレン基又は酸素原子がより好ましい。
 YE2としては、-CE6 、-NE6 、-PE6 又はSE6 が好ましく、-NE6 がより好ましい。RE6としては、水素原子、アルキル基又はアリール基が好ましく、水素原子又はアルキル基がより好ましい。
 ME2としては、F、Cl、Br、I、B(RE7 、RE7SO 、RE7COO、BF 又はSbF6-が好ましく、Br、I、B(RE7 、RE7COO又はSbF6-がより好ましい。RE7としては、アルキル基が好ましい。
 ZE2で表されるアルカリ金属カチオンとしては、例えば、Li、Na、K、Rb、Csが挙げられ、Li、Na又はKが好ましい。
 ZE2で表されるアルカリ土類金属カチオンとしては、例えば、Be2+、Mg2+、Ca2+、Sr2+、Ba2+が挙げられ、Mg2+又はCa2+が好ましい。
 ZE2としては、アルカリ金属カチオンが好ましい。
 式(ES-2)で表される基としては、例えば、下記式で表される基が挙げられる。
Figure JPOXMLDOC01-appb-C000159
Figure JPOXMLDOC01-appb-C000160
[式中、Xは、F、Cl、Br、I、B(C 、CHCOO又はCFSO を表す。Xが複数存在する場合、それらは同一でも異なっていてもよい。]
 式(ET-1)又は(ET-2)で表される構成単位としては、例えば、式(ET-31)~(ET-38)で表される構成単位が挙げられる。
Figure JPOXMLDOC01-appb-C000161
Figure JPOXMLDOC01-appb-C000162
Figure JPOXMLDOC01-appb-C000163
 電子輸送層の高分子化合物は、例えば、特開2009-239279号公報、特開2012-033845号公報、特開2012-216821号公報、特開2012-216822号公報、特開2012-216815号公報に記載の方法に従って合成することができる。
 後述する正孔注入層の形成に用いる材料、後述する正孔輸送層の形成に用いる材料、第2の発光層の形成に用いる材料、第1の発光層の形成に用いる材料、電子輸送層の形成に用いる材料、後述する電子注入層の形成に用いる材料は、発光素子の作製において、各々、正孔注入層、正孔輸送層、第2の発光層、第1の発光層、電子輸送層及び電子注入層に隣接する層の形成時に使用される溶媒に溶解する場合、該溶媒に該材料が溶解することが回避されることが好ましい。材料の溶解を回避する方法としては、i)架橋基を有する材料を用いる方法、又は、ii)隣接する層の溶解性に差を設ける方法が好ましい。上記i)の方法では、架橋基を有する材料を用いて層を形成した後、該架橋基を架橋させることにより、該層を不溶化させることができる。
 第1の発光層の上に、溶解性の差を利用して電子輸送層を積層する場合、第1の発光層に対して溶解性の低い溶液を用いることで電子輸送層を積層することができる。
 第2の発光層の上に、溶解性の差を利用して電子輸送層を積層する場合、第2の発光層に対して溶解性の低い溶液を用いることで電子輸送層を積層することができる。
 第1の発光層又は第2の発光層の上に、溶解性の差を利用して電子輸送層を積層する場合に用いる溶媒としては、水、アルコール、エーテル、エステル、ニトリル化合物、ニトロ化合物、フッ素化アルコール、チオール、スルフィド、スルホキシド、チオケトン、アミド、カルボン酸が好ましい。該溶媒の具体例としては、メタノール、エタノール、2-プロパノール、1-ブタノール、tert-ブチルアルコール、アセトニトリル、1,2-エタンジオール、N,N-ジメチルホルムアミド、ジメチルスルホキシド、酢酸、ニトロメタン、炭酸プロピレン、ピリジン、二硫化炭素、及び、これらの溶媒の混合溶媒が挙げられる。混合溶媒を用いる場合、水、アルコール、エーテル、エステル、ニトリル化合物、ニトロ化合物、フッ素化アルコール、チオール、スルフィド、スルホキシド、チオケトン、アミド、カルボン酸から選ばれる1種以上の溶媒と、塩素系溶媒、芳香族炭化水素系溶媒、脂肪族炭化水素系溶媒及びケトン系溶媒から選ばれる1種以上の溶媒との混合溶媒であってもよい。
[正孔注入層及び電子注入層]
 正孔注入層は、正孔注入材料を含有する層である。正孔注入材料としては、例えば、第1の発光層の組成物が含有していてもよい正孔注入材料が挙げられる。正孔注入材料は、1種単独で含有されていても、2種以上が含有されていてもよい。
 電子注入層は、電子注入材料を含有する層である。電子注入材料としては、例えば、第1の発光層の組成物が含有していてもよい電子注入材料が挙げられる。電子注入材料は、1種単独で含有されていても、2種以上が含有されていてもよい。
[正孔輸送層]
 正孔輸送層は、正孔輸送材料を含有する層である。正孔輸送材料としては、例えば、第1の発光層の組成物が含有していてもよい正孔輸送材料が挙げられる。正孔輸送材料は、1種単独で含有されていても、2種以上が含有されていてもよい。
[電極]
 陽極の材料としては、例えば、導電性の金属酸化物、半透明の金属が挙げられ、好ましくは、酸化インジウム、酸化亜鉛、酸化スズ;インジウム・スズ・オキサイド(ITO)、インジウム・亜鉛・オキサイド等の導電性化合物;銀とパラジウムと銅との複合体(APC);NESA、金、白金、銀、銅である。
 陰極の材料としては、例えば、リチウム、ナトリウム、カリウム、ルビジウム、セシウム、ベリリウム、マグネシウム、カルシウム、ストロンチウム、バリウム、アルミニウム、亜鉛、インジウム等の金属;それらのうち2種以上の合金;それらのうち1種以上と、銀、銅、マンガン、チタン、コバルト、ニッケル、タングステン、錫のうち1種以上との合金;並びに、グラファイト及びグラファイト層間化合物が挙げられる。合金としては、例えば、マグネシウム-銀合金、マグネシウム-インジウム合金、マグネシウム-アルミニウム合金、インジウム-銀合金、リチウム-アルミニウム合金、リチウム-マグネシウム合金、リチウム-インジウム合金、カルシウム-アルミニウム合金が挙げられる。
 本実施形態に係る発光素子において、陽極及び陰極の少なくとも一方は、通常、透明又は半透明であるが、陽極が透明又は半透明であることが好ましい。
 陽極及び陰極の形成方法としては、例えば、真空蒸着法、スパッタリング法、イオンプレーティング法、メッキ法及びラミネート法が挙げられる。
[発光素子の製造方法]
 本実施形態に係る発光素子において、第1の発光層、第2の発光層、正孔輸送層、電子輸送層、正孔注入層、電子注入層等の各層の形成方法としては、低分子化合物を用いる場合、例えば、粉末からの真空蒸着法、溶液又は溶融状態からの成膜による方法が挙げられ、高分子化合物を用いる場合、例えば、溶液又は溶融状態からの成膜による方法が挙げられる。
 第1の発光層は第1の発光層のインクを用いて、第2の発光層は第2の発光層のインクを用いて、正孔輸送層、電子輸送層、正孔注入層及び電子注入層は、上述した正孔輸送材料、電子輸送材料、正孔注入材料及び電子注入材料をそれぞれ含有するインクを用いて、スピンコート法、インクジェット印刷法に代表される塗布法により形成することができる。
 本実施形態に係る発光素子は、基板上に各層を順次積層することにより製造することができる。
 本実施形態に係る発光素子において、第2の発光層が陽極及び第1の発光層の間に設けられた層である場合、本実施形態に係る発光素子は、例えば、基板上に陽極を形成し、必要に応じて陽極上に正孔注入層及び/又は正孔輸送層を形成し、陽極上、正孔注入層上又は正孔輸送層上に第2の発光層を形成し、第2の発光層上に第1の発光層を形成し、必要に応じて第1の発光層上に電子輸送層及び/又は電子注入層を形成し、第1の発光層上、電子輸送層上又は電子注入層上に陰極を形成することにより、製造することができる。
 また、本実施形態に係る発光素子において、第2の発光層が陽極及び第1の発光層の間に設けられた層である場合、本実施形態に係る発光素子は、例えば、基板上に陰極を形成し、必要に応じて陰極上に電子注入層及び/又は電子輸送層を形成し、陰極上、電子注入層上又は電子輸送層上に第1の発光層を形成し、第1の発光層上に第2の発光層を形成し、必要に応じて第2の発光層上に正孔輸送層及び/又は正孔注入層を形成し、第2の発光層上、正孔輸送層上又は正孔注入層上に陽極を形成することにより、製造することができる。
 本実施形態に係る発光素子において、第2の発光層が陰極及び第1の発光層の間に設けられた層である場合、本実施形態に係る発光素子は、例えば、基板上に陽極を形成し、必要に応じて陽極上に正孔注入層及び/又は正孔輸送層を形成し、陽極上、正孔注入層上又は正孔輸送層上に第1の発光層を形成し、第1の発光層上に第2の発光層を形成し、必要に応じて第2の発光層上に電子輸送層及び/又は電子注入層を形成し、第2の発光層上、電子輸送層上又は電子注入層上に陰極を形成することにより、製造することができる。
 また、本実施形態に係る発光素子において、第2の発光層が陰極及び第1の発光層の間に設けられた層である場合、本実施形態に係る発光素子は、例えば、基板上に陰極を形成し、必要に応じて陰極上に電子注入層及び/又は電子輸送層を形成し、陰極上、電子注入層上又は電子輸送層上に第2の発光層を形成し、第2の発光層上に第1の発光層を形成し、必要に応じて第1の発光層上に正孔輸送層及び/又は正孔注入層を形成し、第1の発光層上、正孔輸送層上又は正孔注入層上に陽極を形成することにより、製造することができる。
[発光素子の用途]
 発光素子を用いて面状の発光を得るためには、面状の陽極と陰極が重なり合うように配置すればよい。パターン状の発光を得るためには、面状の発光素子の表面にパターン状の窓を設けたマスクを設置する方法、非発光部にしたい層を極端に厚く形成し実質的に非発光とする方法、陽極若しくは陰極、又は両方の電極をパターン状に形成する方法がある。これらのいずれかの方法でパターンを形成し、いくつかの電極を独立にON/OFFできるように配置することにより、数字、文字等を表示できるセグメントタイプの表示装置が得られる。ドットマトリックス表示装置とするためには、陽極と陰極を共にストライプ状に形成して直交するように配置すればよい。複数の種類の発光色の異なる高分子化合物を塗り分ける方法、カラーフィルター又は蛍光変換フィルターを用いる方法により、部分カラー表示、マルチカラー表示が可能となる。ドットマトリックス表示装置は、パッシブ駆動も可能であるし、TFT等と組み合わせてアクティブ駆動も可能である。これらの表示装置は、コンピュータ、テレビ、携帯端末等のディスプレイに用いることができる。面状の発光素子は、液晶表示装置のバックライト用の面状光源、又は、面状の照明用光源として好適に用いることができる。フレキシブルな基板を用いれば、曲面状の光源及び表示装置としても使用できる。
 以下、実施例によって本発明を更に詳細に説明するが、本発明はこれらの実施例に限定されるものではない。
 実施例において、高分子化合物のポリスチレン換算の数平均分子量(Mn)及びポリスチレン換算の重量平均分子量(Mw)は、移動層にテトラヒドロフランを用い、下記のサイズエクスクルージョンクロマトグラフィー(SEC)のいずれかにより求めた。なお、SECの各測定条件は、次のとおりである。
 測定する高分子化合物を約0.05質量%の濃度でテトラヒドロフランに溶解させ、SECに10μL注入した。移動相は、0.6mL/分の流量で流した。カラムとして、TSKguardcolumn SuperAW-Hと、TSKgel Super AWM-Hと、TSKgel SuperAW3000(いずれも東ソー製)の各1本を直列につないで用いた。検出器にはUV-VIS検出器(東ソー製、商品名:UV-8320GPC)を用いた。
 LC-MSは、下記の方法で測定した。
 測定試料を約2mg/mLの濃度になるようにクロロホルム又はテトラヒドロフランに溶解させ、LC-MS(Agilent製、商品名:1100LCMSD)に約1μL注入した。LC-MSの移動相には、アセトニトリル及びテトラヒドロフランの比率を変化させながら用い、0.2mL/分の流量で流した。カラムは、L-column 2 ODS(3μm)(化学物質評価研究機構製、内径:2.1mm、長さ:100mm、粒径3μm)を用いた。
 TLC-MSは、下記の方法で測定した。
 測定試料をトルエン、テトラヒドロフラン又はクロロホルムのいずれかの溶媒に任意の濃度で溶解させ、DART用TLCプレート(テクノアプリケーションズ社製、商品名:YSK5-100)上に塗布し、TLC-MS(日本電子社製、商品名:JMS-T100TD(The AccuTOF TLC))を用いて測定した。測定時のヘリウムガス温度は、200~400℃の範囲で調節した。
 NMRは、下記の方法で測定した。
 5~10mgの測定試料を約0.5mLの重クロロホルム(CDCl)、重テトラヒドロフラン、重ジメチルスルホキシド、重アセトン、重N,N-ジメチルホルムアミド、重トルエン、重メタノール、重エタノール、重2-プロパノール又は重塩化メチレンに溶解させ、NMR装置(Agilent製、商品名:INOVA300又はMERCURY 400VX)を用いて測定した。
 化合物の純度の指標として、高速液体クロマトグラフィー(HPLC)面積百分率の値を用いた。この値は、特に記載がない限り、HPLC(島津製作所製、商品名:LC-20A)でのUV=254nmにおける値とする。この際、測定する化合物は、0.01~0.2質量%の濃度になるようにテトラヒドロフラン又はクロロホルムに溶解させ、濃度に応じてHPLCに1~10μL注入した。HPLCの移動相には、アセトニトリル/テトラヒドロフランの比率を100/0~0/100(容積比)まで変化させながら用い、1.0mL/分の流量で流した。カラムは、Kaseisorb LC ODS 2000(東京化成工業製)又は同等の性能を有するODSカラムを用いた。検出器には、フォトダイオードアレイ検出器(島津製作所製、商品名:SPD-M20A)を用いた。
 本実施例において、金属錯体及び化合物の発光スペクトルの最大ピーク波長及び極大波長は、分光光度計(日本分光株式会社製、FP-6500)により室温にて測定した。金属錯体又は化合物をキシレンに、約0.8×10-4質量%の濃度で溶解させたキシレン溶液を試料として用いた。励起光としては、波長325nmのUV光を用いた。
<合成例1> 化合物CM1~CM8及び化合物HM-1
 化合物CM1は、特開2010-189630号公報に記載の方法に従って合成した。
 化合物CM2は、特開2008-106241号公報に記載の方法に従って合成した。
 化合物CM3は、特開2010-215886号公報に記載の方法に従って合成した。
 化合物CM4は、国際公開第2002/045184号に記載の方法に準じて合成した。
 化合物CM5は、国際公開第2011/049241号に記載の方法に従って合成した。
 化合物CM6、CM7及びCM8は、国際公開第2013/146806号に記載の方法に従って合成した。
 化合物HM-1はLuminescence Technology社より購入した。
Figure JPOXMLDOC01-appb-C000164
Figure JPOXMLDOC01-appb-C000165
Figure JPOXMLDOC01-appb-C000166
<合成例2> 金属錯体RM1~RM4及びGM1の合成
 金属錯体RM1は、国際公開第2009/157424号に記載の方法に従って合成した。
 金属錯体RM2及び金属錯体RM4は、特開2011-105701号公報に記載の方法に従って合成した。
 金属錯体RM3は、特開2008-179617号公報に記載の方法に従って合成した。
Figure JPOXMLDOC01-appb-C000167
Figure JPOXMLDOC01-appb-C000168
Figure JPOXMLDOC01-appb-C000169
 金属錯体RM3の発光スペクトルの最大ピーク波長は594nmであった。
 金属錯体RM4の発光スペクトルの最大ピーク波長は611nmであった。
 金属錯体GM1の発光スペクトルの最大ピーク波長は514nmであった。
<合成例3> 金属錯体MC3及びMC6の合成
 金属錯体MC3及びMC6は、特開2013-147551号公報に記載の方法に従って合成した。
Figure JPOXMLDOC01-appb-C000170
 金属錯体MC3の発光スペクトルの最大ピーク波長は450nmであった。
 金属錯体MC6の発光スペクトルの最大ピーク波長は475nmであった。
<合成例4> 金属錯体MC1の合成
Figure JPOXMLDOC01-appb-C000171
 反応容器内をアルゴンガス雰囲気とした後、化合物MC1-a(33.7g)及びジクロロメタン(400mL)を加え、反応容器を氷浴に設置して冷却した。その後、そこへ、25質量%アンモニア水溶液(40.8g)を加え、反応容器を氷浴で冷却しながら1時間撹拌した。その後、そこへ、イオン交換水(200mL)及びジクロロメタン(150mL)を加え、有機層を抽出した。得られた有機層を無水硫酸マグネシウムで乾燥した後、ヘプタン(400mL)を加えて、ジクロロメタンを減圧濃縮することにより、白色固体を含む溶液を得た。得られた白色固体を含む溶液をろ過した後、得られた白色固体を減圧乾燥することにより、化合物MC1-b(27.8g、収率93%)を白色固体として得た。化合物MC1-bのHPLC面積百分率値は99.3%であった。この作業を繰り返し行うことで、化合物MC1-bの必要量を得た。
 TLC/MS(DART,positive):m/z=150[M+H]
 反応容器内をアルゴンガス雰囲気とした後、化合物MC1-b(34.3g)及びジクロロメタン(1.38L)を加えた。その後、そこへ、トリエチルオキソニウムテトラフルオロボレートのジクロロメタン溶液(1mol/L、276mL)を加え、室温で34時間攪拌した。その後、そこへ、炭酸水素ナトリウム水溶液(1mol/L、352mL)を加え、室温で30分攪拌した。得られた反応液の有機層を抽出した後、得られた有機層を飽和食塩水(300mL)で洗浄し、有機層を得た。得られた有機層にヘプタン(200mL)を加えた後、ジクロロメタンを減圧濃縮することにより、白色固体を含む溶液を得た。得られた白色固体を含む溶液をろ過した後、得られたろ液を濃縮することにより、化合物MC1-c(33.6g、収率82%)を黄色油状物として得た。化合物MC1-cのHPLC面積百分率値は98.0%であった。
 TLC/MS(DART,positive):m/z=178[M+H]
 反応容器内をアルゴンガス雰囲気とした後、化合物MC1-c(33.5g)、塩化ベンゾイル(26.6g)及びクロロホルム(570mL)を加え、次いで、トリエチルアミン(26.4mL)を加え、室温で66時間攪拌した。得られた反応液を減圧濃縮し、得られた残渣に、イオン交換水(210mL)及びクロロホルム(210mL)を加え、有機層を抽出した。得られた有機層を飽和食塩水(150mL)で洗浄し、無水硫酸マグネシウムで乾燥した後、減圧濃縮することにより、化合物MC1-d(54.2g、収率88%)を橙色油状物として得た。化合物MC1-dのHPLC面積百分率値は86.0%であった。
 TLC/MS(DART,positive):m/z=282[M+H]
 H-NMR(300MHz、CDCl-d):δ(ppm)=8.01-7.98(m,2H),7.56-7.51(m,1H),7.46-7.41(m,2H),7.19(s,2H),7.03(s,1H),4.48-4.41(m,2H),2.23(s,6H),1.48(t,3H).
 反応容器内をアルゴンガス雰囲気とした後、化合物MC1-e(55.8g)及びトルエン(925mL)を加え、反応容器を氷浴に設置して冷却した。その後、そこへ、水酸化ナトリウム水溶液(1mol/L、222mL)を加え、反応容器を氷浴で冷却しながら30分間撹拌した。得られた反応液の有機層を抽出し、有機層であるトルエン溶液を得た。
 別途用意した反応容器内をアルゴンガス雰囲気とした後、化合物MC1-d(52.0g)及びクロロホルム(925mL)を加え、反応容器を氷浴に設置して冷却した。その後、そこへ、上記で得られたトルエン溶液を加えた。その後、反応容器を氷浴で冷却しながら7時間攪拌し、次いで、室温で100時間攪拌した。得られた反応液にイオン交換水(500mL)を加え、有機層を抽出し、得られた有機層を減圧濃縮した。得られた残渣をシリカゲルカラムクロマトグラフィー(クロロホルム及びヘキサンの混合溶媒)で精製した後、クロロホルム及びヘプタンの混合溶媒を用いて再結晶した。その後、50℃で減圧乾燥することにより、化合物MC1-f(17.6g、収率22%)を白色固体として得た。化合物MC1-fのHPLC面積百分率値は99.5%以上であった。この作業を繰り返し行うことで、化合物MC1-fの必要量を得た。
 TLC/MS(DART,positive):m/z=432[M+H]
 H-NMR(300MHz、CDCl-d):δ(ppm)=7.84(s,2H),7.56-7.54(m,2H),7.43-7.32(m,5H),7.09(s,1H),2.40(s,6H),1.99(s,6H).
 反応容器内をアルゴンガス雰囲気とした後、化合物MC1-f(17.3g)、シクロペンチルメチルエーテル(240mL)及び[1,1’-ビス(ジフェニルホスフィノ)フェロセン]パラジウム(II)ジクロリド(98mg)を加え、50℃に昇温した。その後、そこへ、ヘキシルマグネシウムブロミドのジエチルエーテル溶液(2mol/L、40mL)を加えた後、50℃で2時間攪拌した。その後、そこへ、塩酸水溶液(1mol/L、80mL)を加え、有機層を抽出した。得られた有機層をイオン交換水(100mL)で2回洗浄し、無水硫酸マグネシウムで乾燥させた後、ろ過し、得られたろ液を減圧濃縮することにより油状物を得た。得られた油状物に、トルエン及び活性炭を加え、50℃で30分間攪拌した。その後、シリカゲル及びセライトを敷いたろ過器でろ過し、得られたろ液を減圧濃縮することにより固体を得た。得られた固体をシリカゲルカラムクロマトグラフィー(ヘキサン及び酢酸エチルの混合溶媒)で精製した後、メタノールを用いて再結晶した。その後、50℃で減圧乾燥させることにより、化合物MC1-g(12.1g、収率69%)を白色固体として得た。化合物MC1-gのHPLC面積百分率値は99.5%以上であった。
 TLC/MS(DART,positive):m/z=438[M+H]
 H-NMR(300MHz、CDCl-d)δ(ppm)=7.92(s,2H),7.65-7.62(m,2H),7.48-7.35(m,3H),7.15(s,1H),7.09(s,2H),2.70(t,2H),2.46(s,6H),2.03(s,6H),1.77-1.67(m,2H),1.46-1.36(m,6H),1.00-0.95(m,3H).
 反応容器内をアルゴンガス雰囲気とした後、塩化イリジウムn水和物(2.50g)、化合物MC1-g(6.43g)、イオン交換水(28mL)及び2-エトキシエタノール(112mL)を加え、加熱還流下で25時間攪拌した。その後、そこへ、トルエンを加え、イオン交換水で洗浄した。得られた洗浄液の有機層を抽出し、得られた有機層を減圧濃縮することにより固体を得た。得られた固体を、シリカゲルカラムクロマトグラフィー(トルエン及びメタノールの混合溶媒)で精製することにより固体(4.82g)を得た。
 別途用意した反応容器内をアルゴンガス雰囲気とした後、上記で得られた固体(4.81g)、トリフルオロメタンスルホン酸銀(1.43g)、化合物MC1-g(4.81g)及びトリデカン(1.1mL)を加え、150℃で15時間加熱攪拌した。その後、そこへ、トルエンを加え、シリカゲル及びセライトを敷いたろ過器でろ過し、得られたろ液をイオン交換水で洗浄し、有機層を得た。得られた有機層を減圧濃縮することにより固体を得た。得られた固体をシリカゲルカラムクロマトグラフィー(ヘキサン及びトルエンの混合溶媒)で精製した後、酢酸エチル及びエタノールの混合溶媒を用いて再結晶した。
その後、50℃で減圧乾燥することにより、金属錯体MC1(2.32g、収率35%)を黄色固体として得た。金属錯体MC1のHPLC面積百分率値は99.5%以上であった。
 LC-MS(APCI,positive):m/z=1502.8[M+H]
 H-NMR(300MHz、CDCl-d)δ(ppm)=7.96(s,6H),7.07(s,6H),6.91(s,3H),6.60(t,3H),6.51(t,3H),6.41(d,3H),6.29(d,3H),2.70(t,6H),2.09(s,18H),1.85(s,9H),1.76-1.67(m,6H),1.60(s,9H),1.44-1.35(m,18H),1.00-0.95(m,9H).
 金属錯体MC1の発光スペクトルの最大ピーク波長は453nmであった。
<合成例5> 金属錯体MC2の合成
Figure JPOXMLDOC01-appb-C000172
 反応容器内をアルゴンガス雰囲気とした後、金属錯体MC1(0.50g)、ジクロロメタン(25mL)及びN-ブロモスクシンイミド(203mg)を加え、室温で27.5時間攪拌した。その後、そこへ、10質量%の亜硫酸ナトリウム水溶液(4.20g)を加え、次いで、イオン交換水(8.40mL)を加え、室温で30分間攪拌した。得られた反応液から有機層を抽出し、得られた有機層を、シリカゲルを敷いたろ過器でろ過した。得られたろ液にメタノールを加えることで沈殿を析出させた。得られた沈殿をろ過した後、50℃で真空乾燥することにより、金属錯体MC1TBR(0.55g、収率95%)を黄色固体として得た。金属錯体MC1TBRのHPLC面積百分率値は99.5%以上であった。
 LC-MS(APCI,positive):m/z=1736.5[M+H]
 H-NMR(300MHz、CDCl-d)δ(ppm)=7.94(s,6H),7.71(d,6H),6.94(s,3H),6.73-6.70(m,3H),6.29(d,3H),6.25(d,3H),2.72(t,6H),2.10(s,18H),1.84(s,9H),1.77-1.67(m,6H),1.57(s,9H),1.45-1.34(m,18H),0.99-0.94(m,9H).
 反応容器内をアルゴンガス雰囲気とした後、金属錯体MC1TBR(0.50g)、化合物MC2-a(0.44g)、トルエン(30mL)、トリス(ジベンジリデンアセトン)ジパラジウム(0)(7.9mg)及び2-ジシクロヘキシルホスフィノ-2’,6’-ジメトキシビフェニル(8.5mg)を加え、80℃に昇温した。その後、そこへ、20質量%のテトラエチルアンモニウムヒドロキシド水溶液(4.2mL)を加え、加熱還流下で6時間攪拌した。その後、そこへ、トルエンを加え、有機層を抽出した。得られた有機層をイオン交換水で洗浄し、無水硫酸マグネシウムで乾燥させた後、シリカゲル及びセライトを敷いたろ過器でろ過し、得られたろ液を減圧濃縮することで固体を得た。得られた固体をシリカゲルカラムクロマトグラフィー(ヘキサン及びトルエンの混合溶媒)で精製することにより、金属錯体MC2(0.54g、収率74%)を黄色固体として得た。金属錯体MC2のHPLC面積百分率値は99.5%以上であった。
 LC-MS(APCI,positive):m/z=2523.5[M+H]
 H-NMR(300MHz、CDCl-d)δ(ppm)=8.05(s(br),6H),7.70-7.50(m,27H),7.38(s(br),6H),7.13-7.01(m,9H),6.95(s,3H),6.82(s(br),3H),6.65(s(br),3H),2.25(t,6H),2.11(s,18H),2.02(s,9H)1.71-1.64(m,9H),1.48-1.20(m,78H),0.96-0.86(m,9H).
 金属錯体MC2の発光スペクトルの最大ピーク波長は470nmであった。
<合成例6> 金属錯体MC5の合成
(合成例6-1) 金属錯体MC4の合成
Figure JPOXMLDOC01-appb-C000173
 反応容器内をアルゴンガス雰囲気とした後、化合物MC4-a(13.1g)及びtert-ブチルメチルエーテル(110mL)を加え、反応容器を氷浴に設置して冷却した。その後、そこへ、水酸化ナトリウム水溶液(1mol/L、125mL)を加え、反応容器を氷浴で冷却しながら30分間撹拌した。得られた反応液の有機層を抽出し、有機層であるtert-ブチルメチルエーテル溶液を得た。
 別途用意した反応容器内をアルゴンガス雰囲気とした後、化合物MC1-d(11.0g)及びクロロホルム(220mL)を加え、反応容器を氷浴に設置して冷却した。その後、そこへ、上記で得られたtert-ブチルメチルエーテル溶液を加えた。その後、反応容器を氷浴で冷却しながら7時間攪拌し、次いで、室温で110時間攪拌した。得られた反応液にイオン交換水(330mL)を加え、有機層を抽出し、得られた有機層を減圧濃縮した。得られた残渣をシリカゲルカラムクロマトグラフィー(クロロホルム及びヘキサンの混合溶媒)で精製した後、クロロホルム及びヘプタンの混合溶媒を用いて再結晶した。その後、50℃で減圧乾燥することにより、化合物MC4-b(10.2g、収率55%)を白色固体として得た。化合物MC4-bのHPLC面積百分率値は99.5%以上であった。この作業を繰り返し行うことで、化合物MC4-bの必要量を得た。
 LC-MS(ESI,positive):m/z=488.2[M+H]
 H-NMR(CDCl,300MHz):δ(ppm)=7.92(s,2H),7.66-7.62(m,2H),7.52(s,2H),7.52-7.36(m,3H),7.16(s,1H),2.57-2.46(m,8H),1.20(d,6H),0.97(d,6H).
 反応容器内をアルゴンガス雰囲気とした後、化合物MC4-b(10.2g)、化合物MC2-a(2.8g)、ビス[トリ(2-メトキシフェニル)ホスフィン]パラジウム(II)ジクロリド(92.1mg)、トルエン(102mL)及び20質量%テトラエチルアンモニウムヒドロキシド水溶液(36.9g)を加え、加熱還流下で4時間撹拌した。その後、そこへ、トルエンを加え、有機層を抽出した。得られた有機層をイオン交換水で洗浄し、有機層を得た。得られた有機層を無水硫酸ナトリウムで乾燥させた後、シリカゲル(10g)を加えてろ過し、得られたろ液を減圧濃縮することにより固体を得た。得られた固体をヘプタン及びクロロホルムの混合溶媒を用いて再結晶した。その後、50℃で減圧乾燥させることにより、化合物MC4-c(8.55g、収率84%)を白色固体として得た。化合物MC4-cのHPLC面積百分率値は99.5%以上であった。
 LC-MS(ESI,positive):m/z=486.3[M+H]
 H-NMR(CDCl,300MHz):δ(ppm)=7.96(s,2H),7.75(t,4H),7.60-7.55(m,4H),7.51-7.41(m,4H),7.17(s,1H),2.63-2.58(m,2H),2.47(d,6H),1.27(d,6H),1.05(d,6H).
 反応容器内をアルゴンガス雰囲気とした後、塩化イリジウムn水和物(1.96g)、化合物MC4-c(5.61g)、イオン交換水(20mL)及びジグライム(80mL)を加え、150℃で18時間加熱攪拌した。その後、そこへ、トルエンを加え、イオン交換水で洗浄し、有機層を得た。得られた有機層を減圧濃縮することにより固体を得た。得られた固体をシリカゲルクロマトグラフィー(トルエン及びメタノールの混合溶媒)で精製した。その後、50℃で減圧乾燥することにより、固体(5.16g)を得た。
 別途用意した反応容器内をアルゴンガス雰囲気とした後、上記で得られた固体(4.5g)、トリフルオロメタンスルホン酸銀(1.93g)、化合物MC4-c(2.78g)、ジグライム(4.5mL)、デカン(4.5mL)及び2,6-ルチジン(1.1mL)を加え、160℃で31時間加熱攪拌した。その後、そこへ、ジクロロメタンを加え、セライトを敷いたろ過器でろ過し、得られたろ液をイオン交換水で洗浄し、有機層を得た。得られた有機層を無水硫酸マグネシウムで乾燥させた後、シリカゲル(18.6g)を加えてろ過し、得られたろ液を減圧濃縮することにより固体を得た。得られた固体をシリカゲルカラムクロマトグラフィー(シクロヘキサン及びジクロロメタンの混合溶媒)で精製した後、トルエン及びアセトニトリルの混合溶媒を用いて再結晶した。その後、50℃で減圧乾燥することにより、金属錯体MC4(1.9g、収率24%)を黄色固体として得た。金属錯体MC4のHPLC面積百分率値は98.9%であった。
 LC-MS(APCI,positive):m/z=1646.8[M+H]
 H-NMR(CDCl,300MHz):δ(ppm)=9.12-7.10(m,27H),7.00(s,3H),6.72(t,3H),6.62-6.33(m,9H),2.74-1.67(m,24H),1.25(d,9H),1.15-1.00(m,18H),0.84(d,9H).
(合成例6-2) 金属錯体MC5の合成
Figure JPOXMLDOC01-appb-C000174
 反応容器内をアルゴンガス雰囲気とした後、金属錯体MC4(0.70g)、ジクロロメタン(35mL)及びN-ブロモスクシンイミド(825mg)を加え、室温で40時間攪拌した。その後、そこへ、10質量%の亜硫酸ナトリウム水溶液(7.7g)を加え、次いで、イオン交換水(15mL)を加え、室温で30分間攪拌した。得られた反応液から有機層を抽出し、得られた有機層を、シリカゲルを敷いたろ過器でろ過した。得られたろ液にエタノールを加えることで沈殿を析出させた。得られた沈殿をろ過した後、50℃で真空乾燥することにより、金属錯体MC4TBR(0.73g、収率91%)を黄色固体として得た。金属錯体MC4TBRのHPLC面積百分率値は96%であった。この作業を繰り返し行うことで、金属錯体MC4TBRの必要量を得た。
 LC-MS(APCI,positive):m/z=1880.5[M+H]
 H-NMR(CDCl,300MHz):δ(ppm)=8.25-7.83(m,6H),7.76(d,6H),7.76-7.46(m,15H),7.04(s,3H),6.83(d,3H),6.50(s,3H),6.31(d,3H),2.33-1.85(m,24H),1.25(d,9H),1.12-1.07(m,18H),0.84(d,9H).
 反応容器内をアルゴンガス雰囲気とした後、金属錯体MC4TBR(0.60g)、化合物MC5-a(0.52g)、トルエン(18mL)及びビス(ジ-tert-ブチル(4-ジメチルアミノフェニル)ホスフィン)ジクロロパラジウム(II)(6.8mg)を加え、90℃に昇温した。その後、そこへ、20質量%のテトラエチルアンモニウムヒドロキシド水溶液(9.1mL)を加え、加熱還流下で19時間攪拌した。その後、そこへ、トルエンを加え、有機層を抽出した。得られた有機層をイオン交換水で洗浄し、無水硫酸マグネシウムで乾燥させた後、シリカゲルを敷いたろ過器でろ過し、得られたろ液を減圧濃縮することで固体を得た。得られた固体をシリカゲルカラムクロマトグラフィー(シクロヘキサン及びジクロロメタンの混合溶媒)で精製した後、トルエン及びアセトニトリルの混合溶媒を用いて再結晶した。その後、50℃で減圧乾燥することにより、金属錯体MC5(0.30g、収率47%)を黄色固体として得た。金属錯体MC5のHPLC面積百分率値は97.5%であった。
 LC-MS(APCI,positive):m/z=2001.1[M+H]
 H-NMR(CDCl,300MHz):δ(ppm)=7.70-7.40(m,27H),7.04(s,3H),6.78(s,9H),6.56-6.52(m,3H),6.21(s,3H),2.43-1.88(m,42H),1.75(s,9H),1.23(d,9H),1.07-1.01(m,18H),0.85(d,9H).
 金属錯体MC5の発光スペクトルの最大ピーク波長は462nmであった。
<合成例7> 金属錯体MC7の合成
Figure JPOXMLDOC01-appb-C000175
 反応容器内をアルゴンガス雰囲気とした後、金属錯体MC4TBR(0.31g)、化合物MC2-a(0.31g)、トルエン(9.3mL)及びビス(ジ-tert-ブチル(4-ジメチルアミノフェニル)ホスフィン)ジクロロパラジウム(II)(3.5mg)を加え、90℃に昇温した。その後、そこへ、20質量%のテトラエチルアンモニウムヒドロキシド水溶液(2.7mL)を加え、加熱還流下で5時間攪拌した。その後、そこへ、トルエンを加え、有機層を抽出した。得られた有機層をイオン交換水で洗浄し、無水硫酸マグネシウムで乾燥させた後、シリカゲルを敷いたろ過器でろ過し、得られたろ液を減圧濃縮することで固体を得た。得られた固体をシリカゲルカラムクロマトグラフィー(シクロヘキサン及びジクロロメタンの混合溶媒)で精製した後、ジクロロメタン及びヘキサンの混合溶媒を用いて再結晶した。その後、50℃で減圧乾燥することにより、金属錯体MC7(0.26g、収率60%)を黄色固体として得た。金属錯体MC7のHPLC面積百分率値は99.5%以上であった。
 LC-MS(APCI,positive):m/z=2667.5[M+H]
 H-NMR(CDCl,300MHz):δ(ppm)=8.40-7.32(m,60H),7.15(d,3H),7.05-7.03(m,6H),6.76(s,3H),2.54-2.50(m,3H),2.18-2.13(m,18H),1.38(s,54H),1.31-1.13(m,30H),0.90(d,9H).
 金属錯体MC7の発光スペクトルの最大ピーク波長は469nmであった。
<合成例8> 金属錯体MC8の合成
Figure JPOXMLDOC01-appb-C000176
 反応容器内をアルゴンガス雰囲気とした後、化合物MC4-b(17.0g)、シクロペンチルメチルエーテル(150mL)及び[1,1’-ビス(ジフェニルホスフィノ)フェロセン]パラジウム(II)ジクロリド(172mg)を加え、50℃に昇温した。その後、そこへ、ヘキシルマグネシウムブロミドのジエチルエーテル溶液(2mol/L、35mL)を加えた後、50℃で5時間攪拌した。その後、そこへ、塩酸水溶液(1mol/L、35mL)を加え、有機層を抽出した。得られた有機層をイオン交換水(85mL)で2回洗浄し、無水硫酸マグネシウムで乾燥させた後、ろ過し、得られたろ液を減圧濃縮することにより油状物を得た。得られた油状物に、トルエン及びシリカゲルを加え、室温で30分間攪拌した。その後、セライトを敷いたろ過器でろ過し、得られたろ液を減圧濃縮することにより固体を得た。得られた固体をアセトニトリルを用いて再結晶した。その後、50℃で減圧乾燥させることにより、化合物MC8-a(13.7g、収率80%)を白色固体として得た。化合物MC8-aのHPLC面積百分率値は99.5%以上であった。
 TLC/MS(DART,positive):m/z=494[M+H]
 H-NMR(300MHz、CDCl-d)δ(ppm)=7.92(s,2H),7.67-7.63(m,2H),7.46-7.33(m,3H),7.18(s,2H),7.14(s,1H),2.76(t,2H),2.57-2.46(m,8H),1.77-1.70(m,2H),1.48-1.42(m,6H),1.21-1.19(m,6H),0.98-0.96(m,9H).
 反応容器内をアルゴンガス雰囲気とした後、塩化イリジウム三水和物(2.96g)、化合物MC8-a(8.65g)、イオン交換水(30mL)及びジグライム(74mL)を加え、加熱還流下で18時間攪拌した。その後、室温まで冷却し、トルエンを加え、イオン交換水で洗浄した。得られた洗浄液の有機層を抽出し、得られた有機層を減圧濃縮することにより固体を得た。得られた固体を、シリカゲルカラムクロマトグラフィー(トルエン及びエタノールの混合溶媒)で精製することにより固体MC8-b’(7.51g)を得た。
 別途用意した反応容器内をアルゴンガス雰囲気とした後、上記で得られた固体MC8-b’(7.40g)、トリフルオロメタンスルホン酸銀(3.19g)、化合物MC8-a(4.59g)、2,6-ルチジン(1.66g)及びデカン(15mL)を加え、150℃で20時間加熱攪拌した。その後、室温まで冷却し、トルエンを加え、シリカゲル及びセライトを敷いたろ過器でろ過し、得られたろ液をイオン交換水で洗浄し、有機層を得た。得られた有機層を減圧濃縮することにより固体を得た。得られた固体をシリカゲルカラムクロマトグラフィー(ジクロロメタン及びシクロヘキサンの混合溶媒)で精製した後、トルエン及びメタノールの混合溶媒を用いて再結晶した。その後、50℃で減圧乾燥することにより、金属錯体MC8-b(1.47g、収率14%)を黄色固体として得た。金属錯体MC8-bのHPLC面積百分率値は99.4%であった。
 LC-MS(APCI,positive):m/z=1671.0[M+H]
 H-NMR(300MHz、CDCl-d)δ(ppm)=8.03(br,6H),7.17(s,6H),6.96(s,3H),6.66(t,3H),6.51-6.41(m,6H),6.32(d,3H),2.76(t,6H),2.23-1.92(m,21H),1.76-1.69(m,6H),1.58(s,3H),1.53-1.42(m,18H),1.16(d,9H),1.01-0.96(m,27H),0.73(d,9H).
 反応容器内をアルゴンガス雰囲気とした後、金属錯体MC8-b(1.36g)、ジクロロメタン(68mL)及びN-ブロモスクシンイミド(1.23g)を加え、室温で32時間攪拌した。その後、そこへ、10質量%の亜硫酸ナトリウム水溶液(8.71g)を加え、次いで、イオン交換水(70mL)を加え、室温で30分間攪拌した。得られた反応液から有機層を抽出し、得られた有機層を、シリカゲルを敷いたろ過器でろ過した。得られたろ液を減圧濃縮することにより固体を得た。得られた固体をトルエンに溶解させた後、メタノールを加えることで沈殿を析出させた。得られた沈殿をろ過した後、50℃で真空乾燥することにより、金属錯体MC8-c(1.47g、収率95%)を黄色固体として得た。金属錯体MC8-cのHPLC面積百分率値は99.5%以上であった。
 LC-MS(APCI,positive):m/z=1903.7[M+H]
 H-NMR(300MHz、CDCl-d)δ(ppm)=8.00(br,6H),7.20(s,6H),6.99(s,3H),6.67(d,3H),6.36(d,3H),6.25(d,3H),2.78(t,6H),2.06-1.69(m,30H),1.46-1.41(m,18H),1.16(d,9H),1.03-0.94(m,27H),0.74(d,9H).
 反応容器内をアルゴンガス雰囲気とした後、金属錯体MC8-c(1.30g)、化合物MC8-d(0.44g)、トルエン(65mL)及び(ジ-tert-ブチル(4-ジメチルアミノフェニル)ホスフィン)ジクロロパラジウム(II)(16mg)を加え、80℃に昇温した。その後、そこへ、20質量%のテトラブチルアンモニウムヒドロキシド水溶液(23mL)を加え、加熱還流下で36時間攪拌した。その後、室温まで冷却し、トルエンを加え、有機層を抽出した。得られた有機層をイオン交換水で洗浄し、無水硫酸マグネシウムで乾燥させた後、シリカゲル及びセライトを敷いたろ過器でろ過し、得られたろ液を減圧濃縮することで固体を得た。得られた固体をシリカゲルカラムクロマトグラフィー(ジクロロメタン及びシクロヘキサンの混合溶媒)で精製した後、酢酸エチル及びアセトニトリルの混合溶媒を用いて再結晶した。その後、50℃で減圧乾燥することにより、金属錯体MC8(0.93g、収率72%)を黄色固体として得た。金属錯体MC8のHPLC面積百分率値は99.5%以上であった。
 LC-MS(APCI,positive):m/z=2067.3[M+H]
 H-NMR(300MHz、CDCl-d)δ(ppm)=8.04(br,6H),7.30-7.26(m,12H),7.06-6.98(m,12H),6.70(s,3H),6.54(d,3H),2.82(t,6H),2.32-1.78(m,27H),1.59-1.42(m,21H),1.34(s,27H),1.20(d,9H),1.10(d,9H),1.04-0.98(m,18H),0.73(d,9H).
 金属錯体MC8の発光スペクトルの最大ピーク波長は469nmであった。
 <合成例9> 金属錯体MC9の合成
Figure JPOXMLDOC01-appb-C000177
 反応容器内をアルゴンガス雰囲気とした後、化合物MC9-a(100g)、炭酸カリウム(110g)及びN,N’-ジメチルホルムアミド(500mL)を加え、90℃に昇温した。その後、そこへ、化合物MC9-b(109g)を含むN,N’-ジメチルホルムアミド(100mL)溶液を加え、100℃で1時間攪拌した。その後、室温まで冷却し、イオン交換水及びクロロホルムを加え、有機層を抽出した。得られた有機層をイオン交換水で洗浄し、無水硫酸マグネシウムで乾燥させた後、シリカゲルを敷いたろ過器でろ過し、得られたろ液を減圧濃縮することで油状物を得た。得られた油状物をシリカゲルカラムクロマトグラフィー(ヘプタン及び酢酸エチルの混合溶媒)で精製した後、45℃で減圧乾燥することにより、化合物MC9-c(117g、収率94%)を無色油状物として得た。化合物MC9-cのHPLC面積百分率値は99.5%以上であった。この作業を繰り返し行うことで、化合物MC9-cの必要量を得た。
 TLC/MS(DART,positive):m/z=281.9[M+H]
 H-NMR(CDCl,300MHz):δ(ppm)=3.94(d,2H),2.32-2.23(m,1H),0.95(d,6H).
 反応容器内をアルゴンガス雰囲気とした後、化合物MC9-c(127g)、化合物MC9-d(88.9g)、エタノール(380mL)、トルエン(1140mL)及びテトラキス(トリフェニルホスフィン)パラジウム(0)(15.6g)を加え、55℃に昇温した。その後、そこへ、炭酸ナトリウム水溶液(2mol/L,450mL)を加え、70℃で29時間攪拌した。その後、そこへ、トルエンを加え、有機層を抽出した。得られた有機層をイオン交換水で洗浄し、無水硫酸マグネシウムで乾燥させた後、得られ溶液を減圧濃縮することで油状物を得た。得られた油状物をシリカゲルカラムクロマトグラフィー(トルエン及び酢酸エチルの混合溶媒)で複数回精製した後、45℃で減圧乾燥することにより、化合物MC9-e(63.2g、収率39%)を無色油状物として得た。化合物MC9-eのHPLC面積百分率値は99.5%以上であった。
 TLC/MS(DART,positive):m/z=356.1[M+H]
 H-NMR(CDCl,300MHz):δ(ppm)=7.83-7.82(m,1H),7.76-7.74(m,1H),7.63-7.53(m,4H),7.56-7.46(m,2H),7.42-7.39(m,1H),4.03(d,2H),2.38-2.28(m,1H),0.88(d,6H).
 反応容器内をアルゴンガス雰囲気とした後、化合物MC9-e(25.0g)、化合物MC9-f(11.6g)、エタノール(75mL)、トルエン(225mL)及びテトラキス(トリフェニルホスフィン)パラジウム(0)(2.43g)を加え、80℃に昇温した。その後、そこへ、炭酸ナトリウム水溶液(2mol/L,70mL)を加え、80℃で16時間攪拌した。その後、そこへ、トルエンを加え、有機層を抽出した。得られた有機層をイオン交換水で洗浄し、無水硫酸マグネシウムで乾燥させた後、得られ溶液を減圧濃縮することで油状物を得た。得られた油状物をシリカゲルカラムクロマトグラフィー(ヘプタン及び酢酸エチルの混合溶媒)で精製した後、45℃で減圧乾燥することにより、化合物MC9-g(26.5g、収率99%)を無色油状物として得た。化合物MC9-gのHPLC面積百分率値は99.5%以上であった。
 TLC/MS(DART,positive):m/z=382.2[M+H]
 H-NMR(CDCl,300MHz):δ(ppm)=7.88-7.87(m,1H),7.82-7.80(m,2H),7.75-7.72(m,1H),7.67-7.56(m,4H),7.49-7.45(m,2H),7.41-7.37(m,1H),7.05-7.04(m,1H),4.06(d,2H),2.42-2.38(m,7H),0.88(d,6H).
 反応容器内をアルゴンガス雰囲気とした後、塩化イリジウムn水和物(1.43g)、化合物MC9-g(3.20g)、イオン交換水(11mL)及びジグライム(35mL)を加え、140℃で18時間加熱攪拌した。その後、そこへ、トルエンを加え、イオン交換水で洗浄し、有機層を得た。得られた有機層を減圧濃縮することにより固体を得た。得られた固体をtert-ブチルメチルエーテル及びヘプタンの混合溶媒を用いて再結晶することで、固体MC9’(2.5g)を得た。
 別途用意した反応容器内をアルゴンガス雰囲気とした後、上記で得られた固体MC9’(1.0g)、トリフルオロメタンスルホン酸銀(0.58g)、化合物MC9-g(1.16g)及び2,6-ルチジン(0.9mL)を加え、160℃で12時間加熱攪拌した。その後、そこへ、ジクロロメタンを加え、セライトを敷いたろ過器でろ過し、得られたろ液をアセトニトリルに加えたところ、沈殿が生じた。得られた沈殿をろ過することで固体を得た。得られた固体をジクロロメタンに溶解させシリカゲルを加えてろ過した。得られたろ液を減圧濃縮し、カラムクロマトグラフィー(トルエン)で精製した後、トルエン及びメタノールの混合溶媒を用いて再結晶した。その後、50℃で減圧乾燥することにより、金属錯体MC9(270mg、収率20%)を黄色固体として得た。金属錯体MC9のHPLC面積百分率値は88%であった。
 LC-MS(APCI,positive):m/z=1334.6[M+H]
 H-NMR(CDCl,300MHz):δ(ppm)=7.75(d,3H),7.67-7.64(m,6H),7.49(t,6H),7.39-7.34(m,3H),7.12-7.08(m,3H),6.96(s,3H),6.86-6.83(m,3H),6.50(s,6H),4.53-4.46(m,3H),4.14-4.00(m,3H),2.45-2.32(m,3H),2.23-2.18(m,18H),1.08(d,9H),0.91(d,9H).
 金属錯体MC9の発光スペクトルの最大ピーク波長は469nmであった。
<合成例10> 金属錯体MC10の合成
Figure JPOXMLDOC01-appb-C000178
 反応容器内をアルゴンガス雰囲気とした後、化合物MC10-a(140g)及び濃塩酸(1.26L)を加え、反応容器を氷浴に設置して冷却した。その後、そこへ、亜硝酸ナトリウム(50g)を加え、反応容器を氷浴で冷却しながら30分間撹拌した。その後、そこへ、塩化スズ(II)(400g)を加えた後、室温で18時間撹拌した。その後、得られた反応液を減圧濃縮し、得られた残渣をヘキサン及びジエチルエーテルの混合溶媒により洗浄することにより、固体を得た。得られた固体にtert-ブチルメチルエーテル及び10質量%水酸化ナトリウム水溶液を加え、有機層を抽出した。得られた有機層をイオン交換水で洗浄し、無水硫酸ナトリウムを加えて乾燥させた後、減圧濃縮することにより、化合物MC10-b(125g、収率83%)を白色固体として得た。
 反応容器内をアルゴンガス雰囲気とした後、化合物MC1-c(80g)、3-ブロモ塩化ベンゾイル(100g)及びクロロホルムを加え、次いで、トリエチルアミン(94mL)を加え、室温で16時間攪拌した。得られた反応液を減圧濃縮し、得られた残渣に、ヘプタンを加え、白色固体を含む溶液を得た。得られた白色固体を含む溶液をろ過した後、得られたろ液を濃縮することにより、化合物MC10-c(90g、収率55%)を得た。
 反応容器内をアルゴンガス雰囲気とした後、化合物MC10-c(90g)、化合物MC10-b(56g)、トリエチルアミン(100mL)及び四塩化炭素を加え、50℃で3日間攪拌した。得られた反応混合物をシリカゲルカラムクロマトグラフィー(酢酸エチル及びヘキサンの混合溶媒)で精製することにより、化合物MC10-d(45g、収率32%)を白色固体として得た。化合物MC10-dのHPLC面積百分率値は94.8%であった。この作業を繰り返し行うことで、化合物MC10-dの必要量を得た。
 反応容器内をアルゴンガス雰囲気とした後、化合物MC10-d(60g)、化合物MC3-a(55g)、トリス(ジベンジリデンアセトン)ジパラジウム(0)(980mg)、2-ジシクロヘキシルホスフィノ-2’,6’-ジメトキシビフェニル(440mg)、トルエン及び40質量%テトラエチルアンモニウムヒドロキシド水溶液(156g)を加え、加熱還流下で18時間撹拌した。その後、室温まで冷却し、有機層を抽出し、得られた有機層を減圧濃縮することで固体を得た。得られた固体をシリカゲルカラムクロマトグラフィー(ヘキサン及び酢酸エチルの混合溶媒)で精製した後、トルエン及びアセトニトリルの混合溶媒を用いて再結晶した。その後、50℃で減圧乾燥させることにより、化合物MC10-e(85g、収率97%)を白色固体として得た。化合物MC10-eのHPLC面積百分率値は99.5%以上であった。
 LC-MS(ESI,positive):m/z=826.5[M+H]
 H-NMR(CDCl,300MHz):δ(ppm)=8.00(t,1H),7.96(s,2H),7.87-7.82(m,3H),7.68-7.46(m,18H),7.17(s,1H),2.71-2.62(m,2H),2.47(s,6H),1.42(s,18H),1.29(d,6H),1.07(s,6H).
 反応容器内をアルゴンガス雰囲気とした後、塩化イリジウムn水和物(6.38g)、化合物MC10-e(31.1g)、イオン交換水(51mL)及びジグライム(151mL)を加え、加熱還流下で36時間攪拌した。その後、そこへ、トルエンを加え、イオン交換水で洗浄した。得られた洗浄液の有機層を抽出し、得られた有機層を減圧濃縮することにより固体を得た。得られた固体を、シリカゲルカラムクロマトグラフィー(トルエン及びエタノールの混合溶媒)で精製することにより固体MC10’(28.5g)を得た。
 別途用意した反応容器内をアルゴンガス雰囲気とした後、上記で得られた固体MC10’(0.60g)、アセチルアセトン(0.96g)、炭酸ナトリウム(0.34g)及び2-エトキシエタノール(18mL)を加え、120℃で2時間攪拌することで沈殿を析出させた。得られた沈殿をろ過し、2-エトキシエタノール(30mL)、イオン交換水(30mL)及びメタノール(30mL)の順で洗浄することにより固体を得た。得られた固体をジクロロメタン(5mL)に溶解させた後、シリカゲル(3g)を敷いたろ過器でろ過し、得られたろ液を減圧濃縮することにより固体を得た。得られた固体を、酢酸エチルを用いて再結晶した後、さらにトルエン及びアセトニトリルの混合溶媒を用いて再結晶した。その後、50℃で減圧乾燥させることにより、金属錯体MC10(0.40g、収率65%)を黄色固体として得た。金属錯体MC10のHPLC面積百分率値は97.9%であった。
 LC-MS(ESI,positive):m/z=1980.0[M+K]
 H-NMR(300MHz、CDCl-d)δ(ppm)=7.78(d,4H),7.69-7.65(m,10H),7.53-7.50(m,18H),7.36-7.30(m,12H),7.07-7.04(m,4H),4.71(s,1H),3.15-3.06(m,2H),2.86-2.77(m,2H),2.25(s,12H),1.46-1.26(m,66H).
 金属錯体MC10の発光スペクトルの最大ピーク波長は472nmであった。
<合成例P1> 高分子化合物HTL-1の合成
(工程1)反応容器内を不活性ガス雰囲気とした後、化合物CM1(1.51g)、化合物CM4(0.884g)、化合物CM5(0.259g)、化合物CM3(0.139g)、金属錯体RM2(0.350g)、ジクロロビス〔トリス(2-メトキシフェニル)ホスフィン〕パラジウム(2.6mg)及びトルエン(50ml)を加え、105℃に加熱した。
(工程2)得られた反応液に、20質量%水酸化テトラエチルアンモニウム水溶液(10.6g)を滴下し、7時間還流させた。
(工程3)その後、そこに、フェニルボロン酸(73.9mg)、20質量%水酸化テトラエチルアンモニウム水溶液(10.6g)及びジクロロビス〔トリス(2-メトキシフェニル)ホスフィン〕パラジウム(2.7mg)を加え、18時間還流させた。
(工程4)その後、そこに、ジエチルジチアカルバミン酸ナトリウム水溶液を加え、80℃で2時間撹拌した。得られた反応液を冷却後、3.6質量%塩酸で2回、2.5質量%アンモニア水で2回、イオン交換水で6回、順次洗浄し、得られた溶液をメタノールに滴下したところ、沈殿が生じた。得られた沈殿物をトルエンに溶解させ、アルミナカラム、シリカゲルカラムの順番で通液することにより精製した。得られた溶液をメタノールに滴下し、撹拌したところ、沈殿が生じた。得られた沈殿物をろ取し、乾燥させることにより、高分子化合物HTL-1を1.68g得た。高分子化合物HTL-1のMnは6.0×10であり、Mwは4.9×10であった。
 高分子化合物HTL-1は、仕込み原料の量から求めた理論値では、化合物CM1から誘導される構成単位と、化合物CM4から誘導される構成単位と、化合物CM5から誘導される構成単位と、化合物CM3から誘導される構成単位と、金属錯体RM2から誘導される構成単位とが、50:32:10:5:3のモル比で構成されてなる共重合体である。
 高分子化合物HTL-1の発光スペクトルは、399nm及び614nmに極大波長を有し、高分子化合物HTL-1の発光スペクトルの最大ピーク波長は399nmであった。
<合成例P2> 高分子化合物HTL-2の合成
 高分子化合物HTL-1の合成における(工程1)を、「反応容器内を不活性ガス雰囲気とした後、化合物CM1(1.50g)、化合物CM4(0.884g)、化合物CM5(0.259g)、化合物CM3(0.139g)、金属錯体RM1(0.333g)、ジクロロビス〔トリス(2-メトキシフェニル)ホスフィン〕パラジウム(2.7mg)及びトルエン(50ml)を加え、105℃に加熱した。」とする以外は、高分子化合物HTL-1の合成と同様にすることで、高分子化合物HTL-2を1.71g得た。高分子化合物HTL-2のMnは3.3×10であり、Mwは2.4×10であった。
 高分子化合物HTL-2は、仕込み原料の量から求めた理論値では、化合物CM1から誘導される構成単位と、化合物CM4から誘導される構成単位と、化合物CM5から誘導される構成単位と、化合物CM3から誘導される構成単位と、金属錯体RM1から誘導される構成単位とが、50:32:10:5:3のモル比で構成されてなる共重合体である。
 高分子化合物HTL-2の発光スペクトルは、399nm及び599nmに極大波長を有し、高分子化合物HTL-2の発光スペクトルの最大ピーク波長は399nmであった。
<合成例P3> 高分子化合物HTL-3の合成
 高分子化合物HTL-3は、化合物CM1、化合物CM2、化合物CM3及び化合物CM4を用いて、特開2015-110751号公報に記載の方法に従って合成した。高分子化合物HTL-3のMnは5.9×10であり、Mwは2.5×10であった。
 高分子化合物HTL-3は、仕込み原料の量から求めた理論値では、化合物CM1から誘導される構成単位と、化合物CM2から誘導される構成単位と、化合物CM3から誘導される構成単位と、化合物CM4から誘導される構成単位とが、50:5:5:40のモル比で構成されてなる共重合体である。
 <合成例P4> 高分子化合物HTL-4の合成
(工程1)反応容器内を不活性ガス雰囲気とした後、化合物CM6(2.52g)、化合物CM7(0.470g)、化合物CM8(4.90g)、金属錯体RM1(0.530g)、ジクロロビス(トリス-o-メトキシフェニルホスフィン)パラジウム(4.2mg)及びトルエン(158mL)を加え、100℃に加熱した。
(工程2)反応液に、20質量%水酸化テトラエチルアンモニウム水溶液(16mL)を滴下し、8時間還流させた。
(工程3)反応後、そこに、フェニルボロン酸(116mg)及びジクロロビス(トリス-o-メトキシフェニルホスフィン)パラジウム(4.2mg)を加え、15時間還流させた。
(工程4)その後、そこに、ジエチルジチアカルバミン酸ナトリウム水溶液を加え、85℃で2時間撹拌した。冷却後、反応液を、3.6質量%塩酸、2.5質量%アンモニア水、水で洗浄し、得られた溶液をメタノールに滴下したところ、沈澱が生じた。沈殿物をトルエンに溶解させ、アルミナカラム、シリカゲルカラムの順番で通すことにより精製した。得られた溶液をメタノールに滴下し、撹拌した後、得られた沈殿物をろ取し、乾燥させることにより、高分子化合物HTL-4を6.02g得た。高分子化合物HTL-4のMnは3.8×10であり、Mwは4.5×10であった。
 高分子化合物HTL-4は、仕込み原料の量から求めた理論値では、化合物CM6から誘導される構成単位と、化合物CM7から誘導される構成単位と、化合物CM8から誘導される構成単位と、金属錯体RM1から誘導される構成単位とが、40:10:47:3のモル比で構成されてなる共重合体である。
 高分子化合物HTL-4の発光スペクトルは、404nm及び600nmに極大波長を有し、高分子化合物HTL-4の発光スペクトルの最大ピーク波長は404nmであった。
<合成例P5> 高分子化合物HTL-5の合成
(工程1)反応容器内を不活性ガス雰囲気とした後、化合物CM6(0.800g)、化合物CM7(0.149g)、化合物CM8(1.66g)、ジクロロビス(トリス-o-メトキシフェニルホスフィン)パラジウム(1.4mg)及びトルエン(45mL)を加え、100℃に加熱した。
(工程2)反応液に、20質量%水酸化テトラエチルアンモニウム水溶液(16mL)を滴下し、7時間還流させた。
(工程3)反応後、そこに、2-エチルフェニルボロン酸(90mg)及びジクロロビス(トリス-o-メトキシフェニルホスフィン)パラジウム(1.3mg)を加え、17.5時間還流させた。
(工程4)その後、そこに、ジエチルジチアカルバミン酸ナトリウム水溶液を加え、85℃で2時間撹拌した。冷却後、反応液を、3.6質量%塩酸、2.5質量%アンモニア水、水で洗浄し、得られた溶液をメタノールに滴下したところ、沈澱が生じた。沈殿物をトルエンに溶解させ、アルミナカラム、シリカゲルカラムの順番で通すことにより精製した。得られた溶液をメタノールに滴下し、撹拌した後、得られた沈殿物をろ取し、乾燥させることにより、高分子化合物HTL-5を1.64g得た。高分子化合物HTL-5のMnは3.5×10であり、Mwは2.2×10であった。
 高分子化合物HTL-5は、仕込み原料の量から求めた理論値では、化合物CM6から誘導される構成単位と、化合物CM7から誘導される構成単位と、化合物CM8から誘導される構成単位とが、40:10:50のモル比で構成されてなる共重合体である。
<合成例P6> 高分子化合物ETL-1の合成
(工程1)反応容器内を不活性ガス雰囲気とした後、特開2012-33845号公報に記載の方法に従って合成した化合物M4(9.23g)、化合物CM1(4.58g)、ジクロロビス(トリス-o-メトキシフェニルホスフィン)パラジウム(8.6mg)、メチルトリオクチルアンモニウムクロライド(シグマアルドリッチ社製、商品名Aliquat336(登録商標))(0.098g)及びトルエン(175mL)を加え、105℃に加熱した。
Figure JPOXMLDOC01-appb-C000179
(工程2)その後、そこに、12質量%炭酸ナトリウム水溶液(40.3mL)を滴下し、29時間還流させた。
(工程3)その後、そこに、フェニルボロン酸(0.47g)及びジクロロビス(トリス-o-メトキシフェニルホスフィン)パラジウム(8.7mg)を加え、14時間還流させた。
(工程4)その後、そこに、ジエチルジチアカルバミン酸ナトリウム水溶液を加え、80℃で2時間撹拌した。得られた反応液を冷却後、メタノールに滴下したところ、沈澱が生じた。沈殿物をろ取し、メタノール、水で洗浄後、乾燥させることにより得た固体をクロロホルムに溶解させ、予めクロロホルムを通液したアルミナカラム及びシリカゲルカラムに順番に通すことにより精製した。得られた精製液をメタノールに滴下し、撹拌したところ、沈殿が生じた。沈殿物をろ取し、乾燥させることにより、高分子化合物ETL-1a(7.15g)を得た。高分子化合物ETL-1aのMnは3.2×10、Mwは6.0×10であった。
 高分子化合物ETL-1aは、仕込み原料の量から求めた理論値では、化合物M4から誘導される構成単位と、化合物CM1から誘導される構成単位とが、50:50のモル比で構成されてなる共重合体である。
(工程5)反応容器内をアルゴンガス雰囲気下とした後、高分子化合物ETL-1a(3.1g)、テトラヒドロフラン(130mL)、メタノール(66mL)、水酸化セシウム一水和物(2.1g)及び水(12.5mL)を加え、60℃で3時間撹拌した。
(工程6)その後、そこに、メタノール(220mL)を加え、2時間攪拌した。得られた反応混合物を濃縮した後、イソプロピルアルコールに滴下し、攪拌したところ、沈殿が生じた。沈殿物をろ取し、乾燥させることにより、高分子化合物ETL-1(3.5g)を得た。高分子化合物ETL-1のH-NMR解析により、高分子化合物ETL-1中のエチルエステル部位のシグナルが消失し、反応が完結したことを確認した。
 高分子化合物ETL-1は、高分子化合物ETL-1aの仕込み原料の量から求めた理論値では、下記式で表される構成単位と、化合物CM1から誘導される構成単位とが、50:50のモル比で構成されてなる共重合体である。
Figure JPOXMLDOC01-appb-C000180
 高分子化合物ETL-1の元素分析は、燃焼法及び原子吸光法により行った。
 高分子化合物ETL-1の元素分析値は、C,54.1質量%; H,5.6質量%; N,<0.3質量%; Cs,22.7質量%(理論値:C,57.29質量%; H,5.70質量%; Cs,21.49質量%; O,15.52質量%)であった。
<実施例D1> 発光素子D1の作製と評価
(陽極及び正孔注入層の形成)
 ガラス基板にスパッタ法により45nmの厚みでITO膜を付けることにより陽極を形成した。該陽極上に、ポリチオフェン・スルホン酸系の正孔注入材料であるAQ-1200(Plextronics社製)をスピンコート法により35nmの厚さで成膜し、大気雰囲気下において、ホットプレート上で170℃、15分間加熱することにより正孔注入層を形成した。
(第2の発光層の形成)
 キシレンに、高分子化合物HTL-1を0.7質量%の濃度で溶解させた。得られたキシレン溶液を用いて、正孔注入層の上にスピンコート法により20nmの厚さで成膜し、窒素ガス雰囲気下において、ホットプレート上で180℃、60分間加熱させることにより第2の発光層を形成した。
(第1の発光層の形成)
 トルエンに、化合物HM-1、金属錯体MC1及び金属錯体GM1(化合物HM-1/金属錯体MC1/金属錯体GM1=74質量%/25質量%/1質量%)を2質量%の濃度で溶解させた。得られたトルエン溶液を用いて、第2の発光層の上にスピンコート法により75nmの厚さで成膜し、窒素ガス雰囲気下において、130℃、10分間加熱させることにより第1の発光層を形成した。
(電子輸送層の形成)
 2,2,3,3,4,4,5,5-オクタフルオロ-1-ペンタノールに、高分子化合物ETL-1を0.25質量%の濃度で溶解させた。得られた2,2,3,3,4,4,5,5-オクタフルオロ-1-ペンタノール溶液を用いて、第1の発光層の上にスピンコート法により10nmの厚さで成膜し、窒素ガス雰囲気下において、130℃、10分間加熱させることにより電子輸送層を形成した。
(陰極の形成)
 電子輸送層を形成した基板を蒸着機内において、1.0×10-4Pa以下にまで減圧した後、陰極として、電子輸送層の上にフッ化ナトリウムを約4nm、次いで、フッ化ナトリウム層の上にアルミニウムを約80nm蒸着した。蒸着後、ガラス基板を用いて封止することにより、発光素子D1を作製した。
(発光素子の評価)
 発光素子D1に電圧を印加することによりEL発光が観測された。1000cd/mにおけるCIE色度座標(x,y)=(0.50,0.41)であった。
 発光素子D1を初期輝度が6000cd/mとなるように電流値を設定後、定電流で駆動させ、輝度が初期輝度の70%となるまでの時間を測定したところ、9.4時間であった。結果を表3に示す。
<実施例D2> 発光素子D2の作製と評価
 実施例D1の(第1の発光層の形成)における、「化合物HM-1、金属錯体MC1及び金属錯体GM1(化合物HM-1/金属錯体MC1/金属錯体GM1=74質量%/25質量%/1質量%)」に代えて、「化合物HM-1、金属錯体MC2及び金属錯体GM1(化合物HM-1/金属錯体MC2/金属錯体GM1=74質量%/25質量%/1質量%)」を用いた以外は、実施例D1と同様にして、発光素子D2を作製した。
(発光素子の評価)
 発光素子D2に電圧を印加することによりEL発光が観測された。1000cd/mにおけるCIE色度座標(x,y)=(0.45,0.42)であった。
 発光素子D2を初期輝度が6000cd/mとなるように電流値を設定後、定電流で駆動させ、輝度が初期輝度の70%となるまでの時間を測定したところ、15.1時間であった。結果を表3に示す。
<実施例D3> 発光素子D3の作製と評価
 実施例D1の(第1の発光層の形成)における、「化合物HM-1、金属錯体MC1及び金属錯体GM1(化合物HM-1/金属錯体MC1/金属錯体GM1=74質量%/25質量%/1質量%)」に代えて、「化合物HM-1、金属錯体MC5及び金属錯体GM1(化合物HM-1/金属錯体MC5/金属錯体GM1=74質量%/25質量%/1質量%)」を用いた以外は、実施例D1と同様にして、発光素子D3を作製した。
(発光素子の評価)
 発光素子D3に電圧を印加することによりEL発光が観測された。1000cd/mにおけるCIE色度座標(x,y)=(0.46,0.40)であった。
 発光素子D3を初期輝度が6000cd/mとなるように電流値を設定後、定電流で駆動させ、輝度が初期輝度の70%となるまでの時間を測定したところ、6.7時間であった。結果を表3に示す。
<実施例D4> 発光素子D4の作製と評価
 実施例D1の(第1の発光層の形成)における、「化合物HM-1、金属錯体MC1及び金属錯体GM1(化合物HM-1/金属錯体MC1/金属錯体GM1=74質量%/25質量%/1質量%)」に代えて、「化合物HM-1、金属錯体MC7及び金属錯体GM1(化合物HM-1/金属錯体MC7/金属錯体GM1=74質量%/25質量%/1質量%)」を用いた以外は、実施例D1と同様にして、発光素子D4を作製した。
(発光素子の評価)
 発光素子D4に電圧を印加することによりEL発光が観測された。1000cd/mにおけるCIE色度座標(x,y)=(0.48,0.42)であった。
 発光素子D4を初期輝度が6000cd/mとなるように電流値を設定後、定電流で駆動させ、輝度が初期輝度の70%となるまでの時間を測定したところ、11.7時間であった。結果を表3に示す。
った。結果を表3に示す。
<実施例D5> 発光素子D5の作製と評価
 実施例D1の(第1の発光層の形成)における、「化合物HM-1、金属錯体MC1及び金属錯体GM1(化合物HM-1/金属錯体MC1/金属錯体GM1=74質量%/25質量%/1質量%)」に代えて、「化合物HM-1、金属錯体MC8及び金属錯体GM1(化合物HM-1/金属錯体MC8/金属錯体GM1=74質量%/25質量%/1質量%)」を用いた以外は、実施例D1と同様にして、発光素子D5を作製した。
(発光素子の評価)
 発光素子D5に電圧を印加することによりEL発光が観測された。1000cd/mにおけるCIE色度座標(x,y)=(0.45,0.42)であった。
 発光素子D5を初期輝度が6000cd/mとなるように電流値を設定後、定電流で駆動させ、輝度が初期輝度の70%となるまでの時間を測定したところ、13.9時間であった。結果を表3に示す。
<実施例D6> 発光素子D6の作製と評価
 実施例D1の(第1の発光層の形成)における、「化合物HM-1、金属錯体MC1及び金属錯体GM1(化合物HM-1/金属錯体MC1/金属錯体GM1=74質量%/25質量%/1質量%)」に代えて、「化合物HM-1、金属錯体MC9及び金属錯体GM1(化合物HM-1/金属錯体MC9/金属錯体GM1=74質量%/25質量%/1質量%)」を用いた以外は、実施例D1と同様にして、発光素子D6を作製した。
(発光素子の評価)
 発光素子D6に電圧を印加することによりEL発光が観測された。1000cd/mにおけるCIE色度座標(x,y)=(0.48,0.41)であった。
 発光素子D5を初期輝度が6000cd/mとなるように電流値を設定後、定電流で駆動させ、輝度が初期輝度の70%となるまでの時間を測定したところ、8.0時間であった。結果を表3に示す。
<比較例CD1> 発光素子CD1の作製と評価
 実施例D1の(第1の発光層の形成)における、「化合物HM-1、金属錯体MC1及び金属錯体GM1(化合物HM-1/金属錯体MC1/金属錯体GM1=74質量%/25質量%/1質量%)」に代えて、「化合物HM-1、金属錯体MC3及び金属錯体GM1(化合物HM-1/金属錯体MC3/金属錯体GM1=74質量%/25質量%/1質量%)」を用いた以外は、実施例D1と同様にして、発光素子CD1を作製した。
(発光素子の評価)
 発光素子CD1に電圧を印加することによりEL発光が観測された。1000cd/mにおけるCIE色度座標(x,y)=(0.46,0.42)であった。
発光素子CD1を初期輝度が6000cd/mとなるように電流値を設定後、定電流で駆動させ、輝度が初期輝度の70%となるまでの時間を測定したところ、0.8時間であった。結果を表3に示す。
<比較例CD2> 発光素子CD2の作製と評価
 実施例D1の(第1の発光層の形成)における、「化合物HM-1、金属錯体MC1及び金属錯体GM1(化合物HM-1/金属錯体MC1/金属錯体GM1=74質量%/25質量%/1質量%)」に代えて、「化合物HM-1、金属錯体MC6及び金属錯体GM1(化合物HM-1/金属錯体MC6/金属錯体GM1=74質量%/25質量%/1質量%)」を用いた以外は、実施例D1と同様にして、発光素子CD2を作製した。
(発光素子の評価)
 発光素子CD2に電圧を印加することによりEL発光が観測された。1000cd/mにおけるCIE色度座標(x,y)=(0.41,0.43)であった。
 発光素子CD1を初期輝度が6000cd/mとなるように電流値を設定後、定電流で駆動させ、輝度が初期輝度の70%となるまでの時間を測定したところ、1.0時間であった。結果を表3に示す。
Figure JPOXMLDOC01-appb-T000181
<実施例D7> 発光素子D7の作製と評価
 実施例D1の(第2の発光層の形成)における、「高分子化合物HTL-1」に代えて、「高分子化合物HTL-2」を用いた以外は、実施例D1と同様にして、発光素子D7を作製した。
(発光素子の評価)
 発光素子D7に電圧を印加することによりEL発光が観測された。1000cd/mにおけるCIE色度座標(x,y)=(0.51,0.42)であった。
 発光素子D7を初期輝度が6000cd/mとなるように電流値を設定後、定電流で駆動させ、輝度が初期輝度の80%となるまでの時間を測定したところ、7.9時間であった。結果を表4に示す。
<実施例D8> 発光素子D8の作製と評価
 実施例D2の(第2の発光層の形成)における、「高分子化合物HTL-1」に代えて、「高分子化合物HTL-2」を用いた以外は、実施例D2と同様にして、発光素子D8を作製した。
(発光素子の評価)
 発光素子D8に電圧を印加することによりEL発光が観測された。1000cd/mにおけるCIE色度座標(x,y)=(0.49,0.43)であった。
 発光素子D8を初期輝度が6000cd/mとなるように電流値を設定後、定電流で駆動させ、輝度が初期輝度の80%となるまでの時間を測定したところ、10.3時間であった。結果を表4に示す。
<実施例D9> 発光素子D9の作製と評価
 実施例D3の(第2の発光層の形成)における、「高分子化合物HTL-1」に代えて、「高分子化合物HTL-2」を用いた以外は、実施例D3と同様にして、発光素子D9を作製した。
(発光素子の評価)
 発光素子D9に電圧を印加することによりEL発光が観測された。1000cd/mにおけるCIE色度座標(x,y)=(0.49,0.42)であった。
 発光素子D9を初期輝度が6000cd/mとなるように電流値を設定後、定電流で駆動させ、輝度が初期輝度の80%となるまでの時間を測定したところ、4.5時間であった。結果を表4に示す。
<実施例D10> 発光素子D10の作製と評価
 実施例D4の(第2の発光層の形成)における、「高分子化合物HTL-1」に代えて、「高分子化合物HTL-2」を用いた以外は、実施例D4と同様にして、発光素子D10を作製した。
(発光素子の評価)
 発光素子D10に電圧を印加することによりEL発光が観測された。1000cd/mにおけるCIE色度座標(x,y)=(0.50,0.42)であった。
 発光素子D10を初期輝度が6000cd/mとなるように電流値を設定後、定電流で駆動させ、輝度が初期輝度の80%となるまでの時間を測定したところ、14.8時間であった。結果を表4に示す。
<実施例D11> 発光素子D11の作製と評価
 実施例D5の(第2の発光層の形成)における、「高分子化合物HTL-1」に代えて、「高分子化合物HTL-2」を用いた以外は、実施例D5と同様にして、発光素子D11を作製した。
(発光素子の評価)
 発光素子D11に電圧を印加することによりEL発光が観測された。1000cd/mにおけるCIE色度座標(x,y)=(0.47,0.42)であった。
 発光素子D11を初期輝度が6000cd/mとなるように電流値を設定後、定電流で駆動させ、輝度が初期輝度の80%となるまでの時間を測定したところ、19.9時間であった。結果を表4に示す。
<実施例D12> 発光素子D12の作製と評価
 実施例D6の(第2の発光層の形成)における、「高分子化合物HTL-1」に代えて、「高分子化合物HTL-2」を用いた以外は、実施例D6と同様にして、発光素子D12を作製した。
(発光素子の評価)
 発光素子D12に電圧を印加することによりEL発光が観測された。1000cd/mにおけるCIE色度座標(x,y)=(0.50,0.43)であった。
 発光素子D12を初期輝度が6000cd/mとなるように電流値を設定後、定電流で駆動させ、輝度が初期輝度の80%となるまでの時間を測定したところ、11.8時間であった。結果を表4に示す。
<実施例D13> 発光素子D13の作製と評価
 実施例D1の(第1の発光層の形成)における、「化合物HM-1、金属錯体MC1及び金属錯体GM1(化合物HM-1/金属錯体MC1/金属錯体GM1=74質量%/25質量%/1質量%)」に代えて、「化合物HM-1、金属錯体MC10及び金属錯体GM1(化合物HM-1/金属錯体MC10/金属錯体GM1=74質量%/25質量%/1質量%)」を用い、更に、実施例D1の(第2の発光層の形成)における、「高分子化合物HTL-1」に代えて、「高分子化合物HTL-2」を用いた以外は、実施例D1と同様にして、発光素子D13を作製した。
(発光素子の評価)
 発光素子D13に電圧を印加することによりEL発光が観測された。1000cd/mにおけるCIE色度座標(x,y)=(0.53,0.45)であった。
 発光素子D13を初期輝度が6000cd/mとなるように電流値を設定後、定電流で駆動させ、輝度が初期輝度の80%となるまでの時間を測定したところ、3.5時間であった。結果を表4に示す。
<比較例CD3> 発光素子CD3の作製と評価
 比較例CD1の(第2の発光層の形成)における、「高分子化合物HTL-1」に代えて、「高分子化合物HTL-2」を用いた以外は、比較例CD1と同様にして、発光素子CD3を作製した。
(発光素子の評価)
 発光素子CD3に電圧を印加することによりEL発光が観測された。1000cd/mにおけるCIE色度座標(x,y)=(0.48,0.43)であった。
 発光素子CD3を初期輝度が6000cd/mとなるように電流値を設定後、定電流で駆動させ、輝度が初期輝度の80%となるまでの時間を測定したところ、0.5時間であった。結果を表4に示す。
<比較例CD4> 発光素子CD4の作製と評価
 比較例CD2の(第2の発光層の形成)における、「高分子化合物HTL-1」に代えて、「高分子化合物HTL-2」を用いた以外は、比較例CD2と同様にして、発光素子CD4を作製した。
(発光素子の評価)
 発光素子CD4に電圧を印加することによりEL発光が観測された。1000cd/mにおけるCIE色度座標(x,y)=(0.44,0.44)であった。
 発光素子CD3を初期輝度が6000cd/mとなるように電流値を設定後、定電流で駆動させ、輝度が初期輝度の80%となるまでの時間を測定したところ、0.5時間であった。結果を表4に示す。
Figure JPOXMLDOC01-appb-T000182
<実施例D14> 発光素子D14の作製と評価
 実施例D8と同様にして、発光素子D14を作製した。
 発光素子D14を初期輝度が400cd/mとなるように電流値を設定後、定電流で駆動させ、輝度が初期輝度の85%となるまでの時間を測定したところ、197.8時間であった。
<比較例CD5> 発光素子CD5の作製と評価
(陽極及び正孔注入層の形成)
 ガラス基板にスパッタ法により45nmの厚みでITO膜を付けることにより陽極を形成した。該陽極上に、ポリチオフェン・スルホン酸系の正孔注入材料であるAQ-1200(Plextronics社製)をスピンコート法により35nmの厚さで成膜し、大気雰囲気下において、ホットプレート上で170℃、15分間加熱することにより正孔注入層を形成した。
(正孔輸送層の形成)
 キシレンに、高分子化合物HTL-3を0.7質量%の濃度で溶解させた。得られたキシレン溶液を用いて、正孔注入層の上にスピンコート法により20nmの厚さで成膜し、窒素ガス雰囲気下において、ホットプレート上で180℃、60分間加熱させることにより正孔輸送層を形成した。
(第1の発光層の形成)
 トルエンに、化合物HM-1、金属錯体MC2、金属錯体GM1及び金属錯体RM3(化合物HM-1/金属錯体MC2/金属錯体GM1/金属錯体RM3=73.9質量%/25質量%/1質量%/0.1質量%)を2質量%の濃度で溶解させた。得られたトルエン溶液を用いて、正孔輸送層の上にスピンコート法により75nmの厚さで成膜し、窒素ガス雰囲気下において、130℃、10分間加熱させることにより第1の発光層を形成した。
(電子輸送層の形成)
 2,2,3,3,4,4,5,5-オクタフルオロ-1-ペンタノールに、高分子化合物ETL-1を0.25質量%の濃度で溶解させた。得られた2,2,3,3,4,4,5,5-オクタフルオロ-1-ペンタノール溶液を用いて、第1の発光層の上にスピンコート法により10nmの厚さで成膜し、窒素ガス雰囲気下において、130℃、10分間加熱させることにより電子輸送層を形成した。
(陰極の形成)
 電子輸送層を形成した基板を蒸着機内において、1.0×10-4Pa以下にまで減圧した後、陰極として、電子輸送層の上にフッ化ナトリウムを約4nm、次いで、フッ化ナトリウム層の上にアルミニウムを約80nm蒸着した。蒸着後、ガラス基板を用いて封止することにより、発光素子CD5を作製した。
(発光素子の評価)
 発光素子CD5に電圧を印加することによりEL発光が観測された。1000cd/mにおけるCIE色度座標(x,y)=(0.34,0.46)であった。
 発光素子CD5を初期輝度が400cd/mとなるように電流値を設定後、定電流で駆動させ、輝度が初期輝度の85%となるまでの時間を測定したところ、19.9時間であった。結果を表5に示す。
Figure JPOXMLDOC01-appb-T000183
<実施例D15> 発光素子D15の作製と評価
 実施例D4の(第2の発光層の形成)における、「高分子化合物HTL-1」に代えて、「高分子化合物HTL-4」を用いた以外は、実施例D4と同様にして、発光素子D15を作製した。
(発光素子の評価)
 発光素子D15に電圧を印加することによりEL発光が観測された。6000cd/mにおけるCIE色度座標(x,y)=(0.58,0.40)であった。
 発光素子D15を初期輝度が6000cd/mとなるように電流値を設定後、定電流で駆動させ、輝度が初期輝度の70%となるまでの時間を測定したところ、12.4時間であった。結果を表6に示す。
<実施例D16> 発光素子D16の作製と評価
 実施例D5の(第2の発光層の形成)における、「高分子化合物HTL-1」に代えて、「高分子化合物HTL-4」を用いた以外は、実施例D5と同様にして、発光素子D16を作製した。
(発光素子の評価)
 発光素子D16に電圧を印加することによりEL発光が観測された。6000cd/mにおけるCIE色度座標(x,y)=(0.53,0.41)であった。
 発光素子D16を初期輝度が6000cd/mとなるように電流値を設定後、定電流で駆動させ、輝度が初期輝度の70%となるまでの時間を測定したところ、44.9時間であった。結果を表6に示す。
<実施例D17> 発光素子D17の作製と評価
 実施例D6の(第2の発光層の形成)における、「高分子化合物HTL-1」に代えて、「高分子化合物HTL-4」を用いた以外は、実施例D6と同様にして、発光素子D17を作製した。
(発光素子の評価)
 発光素子D17に電圧を印加することによりEL発光が観測された。6000cd/mにおけるCIE色度座標(x,y)=(0.53,0.42)であった。
 発光素子D17を初期輝度が6000cd/mとなるように電流値を設定後、定電流で駆動させ、輝度が初期輝度の70%となるまでの時間を測定したところ、20.2時間であった。結果を表6に示す。
<実施例D18> 発光素子D18の作製と評価
 実施例D4の(第2の発光層の形成)における、「高分子化合物HTL-1」に代えて、「高分子化合物HTL-5及び金属錯体RM3(高分子化合物HTL-5/金属錯体RM3=65質量%/35質量%)」」を用いた以外は、実施例D4と同様にして、発光素子D18を作製した。
(発光素子の評価)
 発光素子D18に電圧を印加することによりEL発光が観測された。6000cd/mにおけるCIE色度座標(x,y)=(0.38,0.44)であった。
 発光素子D18を初期輝度が6000cd/mとなるように電流値を設定後、定電流で駆動させ、輝度が初期輝度の70%となるまでの時間を測定したところ、13.3時間であった。結果を表6に示す。
<実施例D19> 発光素子D19の作製と評価
 実施例D1の(第1の発光層の形成)における、「化合物HM-1、金属錯体MC1及び金属錯体GM1(化合物HM-1/金属錯体MC1/金属錯体GM1=74質量%/25質量%/1質量%)」に代えて、「化合物HM-1及び金属錯体MC7(化合物HM-1/金属錯体MC7=75質量%/25質量%)」を用い、更に、実施例D1の(第2の発光層の形成)における、「高分子化合物HTL-1」に代えて、「高分子化合物HTL-4」を用いた以外は、実施例D1と同様にして、発光素子D19を作製した。
(発光素子の評価)
 発光素子D19に電圧を印加することによりEL発光が観測された。6000cd/mにおけるCIE色度座標(x,y)=(0.58,0.39)であった。
 発光素子D19を初期輝度が6000cd/mとなるように電流値を設定後、定電流で駆動させ、輝度が初期輝度の70%となるまでの時間を測定したところ、8.6時間であった。結果を表6に示す。
<実施例D20> 発光素子D20の作製と評価
 実施例D19の(第2の発光層の形成)における、「高分子化合物HTL-4」に代えて、「高分子化合物HTL-5及び金属錯体RM3(高分子化合物HTL-5/金属錯体RM3=65質量%/35質量%)」を用いた以外は、実施例D19と同様にして、発光素子D20を作製した。
(発光素子の評価)
 発光素子D20に電圧を印加することによりEL発光が観測された。6000cd/mにおけるCIE色度座標(x,y)=(0.34,0.35)であった。
 発光素子D20を初期輝度が6000cd/mとなるように電流値を設定後、定電流で駆動させ、輝度が初期輝度の70%となるまでの時間を測定したところ、7.6時間であった。結果を表6に示す。
<比較例CD6> 発光素子CD6の作製と評価
 比較例CD5の(第1の発光層の形成)における、「化合物HM-1、金属錯体MC2、金属錯体GM1及び金属錯体RM3(化合物HM-1/金属錯体MC2/金属錯体GM1/金属錯体RM3=73.9質量%/25質量%/1質量%/0.1質量%)」に代えて、「化合物HM-1、金属錯体MC7及び金属錯体RM3(化合物HM-1/金属錯体MC7/金属錯体RM3=74質量%/25質量%/1質量%)」を用い、更に、比較例CD5の(正孔輸送層の形成)における、「高分子化合物HTL-3」に代えて、「高分子化合物HTL-5」を用いた以外は、比較例CD5と同様にして、発光素子CD6を作製した。
(発光素子の評価)
 発光素子CD6に電圧を印加することによりEL発光が観測された。6000cd/mにおけるCIE色度座標(x,y)=(0.52,0.40)であった。
 発光素子CD6を初期輝度が6000cd/mとなるように電流値を設定後、定電流で駆動させ、輝度が初期輝度の70%となるまでの時間を測定したところ、3.8時間であった。結果を表6に示す。
Figure JPOXMLDOC01-appb-T000184
 本発明によれば、輝度寿命に優れる発光素子を提供することができる。

Claims (12)

  1.  陽極と、
     陰極と、
     前記陽極及び前記陰極の間に設けられた第1の発光層と、
     前記陽極及び前記陰極の間に設けられた第2の発光層とを有し、
     前記第1の発光層が、式(1)で表される金属錯体を含有する、発光素子。
    Figure JPOXMLDOC01-appb-C000001
    [式中、
     Mはロジウム原子、パラジウム原子、イリジウム原子又は白金原子を表す。
     nは1以上の整数を表し、nは0以上の整数を表し、n+nは2又は3である。 Mがロジウム原子又はイリジウム原子の場合、n+nは3であり、Mがパラジウム原子又は白金原子の場合、n+nは2である。
     環R1Aは、窒素原子、E、E11A、E12A及び炭素原子で構成されるトリアゾール環又はジアゾール環を表す。
     環Rは、芳香族炭化水素環又は芳香族複素環を表し、これらの環は置換基を有していてもよい。該置換基が複数存在する場合、それらは同一でも異なっていてもよく、互いに結合して、それぞれが結合する原子とともに環を形成していてもよい。環Rが複数存在する場合、それらは同一でも異なっていてもよい。
     E、E、E11A及びE12Aは、それぞれ独立に、窒素原子又は炭素原子を表す。E、E、E11A及びE12Aが複数存在する場合、それらはそれぞれ同一でも異なっていてもよい。但し、E及びEのうち、少なくとも一方は炭素原子である。
     R11A及びR12Aは、それぞれ独立に、水素原子、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、アリールオキシ基、1価の複素環基、置換アミノ基又はハロゲン原子を表し、これらの基は置換基を有していてもよい。R11A及びR12Aが複数存在する場合、それらはそれぞれ同一でも異なっていてもよい。R11AとR12Aとは、互いに結合して、それぞれが結合する原子とともに環を形成していてもよい。R11Aと環Rが有していてもよい置換基とは、互いに結合して、それぞれが結合する原子とともに環を形成していてもよい。
     E11Aが窒素原子の場合、R11Aは存在しても存在しなくてもよい。E12Aが窒素原子の場合、R12Aは存在しても存在しなくてもよい。
     R13Aは、アリール基、1価の複素環基又は置換アミノ基を表し、これらの基は置換基を有していてもよい。R13Aが複数存在する場合、それらはそれぞれ同一でも異なっていてもよい。R12AとR13Aとは、互いに結合して、それぞれが結合する原子とともに環を形成していてもよい。
     A-G-Aは、アニオン性の2座配位子を表す。A及びAは、それぞれ独立に、炭素原子、酸素原子又は窒素原子を表し、これらの原子は環を構成する原子であってもよい。Gは、単結合、又は、A及びAとともに2座配位子を構成する原子団を表す。A-G-Aが複数存在する場合、それらは同一でも異なっていてもよい。]
  2.  前記第2の発光層が、
     式(2)で表される金属錯体、
     式(2)で表される金属錯体から、該金属錯体を構成する炭素原子又はヘテロ原子に直接結合する1個以上の水素原子を取り除いてなる基を有する構成単位を含む高分子化合物、及び
     前記高分子化合物の架橋体
    からなる群より選択される少なくとも1種を含有する、請求項1に記載の発光素子。
    Figure JPOXMLDOC01-appb-C000002
    [式中、
     Mはロジウム原子、パラジウム原子、イリジウム原子又は白金原子を表す。
     nは1以上の整数を表し、nは0以上の整数を表し、n+nは2又は3である。 Mがロジウム原子又はイリジウム原子の場合、n+nは3であり、Mがパラジウム原子又は白金原子の場合、n+nは2である。
     Eは、炭素原子又は窒素原子を表す。
     環Lは、6員の芳香族複素環を表し、この環は置換基を有していてもよい。該置換基が複数存在する場合、それらは同一でも異なっていてもよく、互いに結合して、それぞれが結合する原子とともに環を形成していてもよい。環Lが複数存在する場合、それらは同一でも異なっていてもよい。
     環Lは、芳香族炭化水素環又は芳香族複素環を表し、これらの環は置換基を有していてもよい。該置換基が複数存在する場合、それらは同一でも異なっていてもよく、互いに結合して、それぞれが結合する原子とともに環を形成していてもよい。環Lが複数存在する場合、それらは同一でも異なっていてもよい。
     環Lが有していてもよい置換基と環Lが有していてもよい置換基とは、互いに結合して、それぞれが結合する原子とともに環を形成していてもよい。
     A-G-Aは、アニオン性の2座配位子を表す。A及びAは、それぞれ独立に、炭素原子、酸素原子又は窒素原子を表し、これらの原子は環を構成する原子であってもよい。Gは、単結合、又は、A及びAとともに2座配位子を構成する原子団を表す。A-G-Aが複数存在する場合、それらは同一でも異なっていてもよい。]
  3.  前記第2の発光層が、前記高分子化合物及び前記架橋体からなる群より選択される少なくとも1種を含有する、請求項2に記載の発光素子。
  4.  前記構成単位が、式(1B)で表される構成単位、式(2B)で表される構成単位、式(3B)で表される構成単位又は式(4B)で表される構成単位である、請求項2又は3に記載の発光素子。
    Figure JPOXMLDOC01-appb-C000003
    [式中、
     M1Bは、式(2)で表される金属錯体から、該金属錯体を構成する炭素原子又はヘテロ原子に直接結合する1個の水素原子を取り除いてなる基を表す。
     Lは、酸素原子、硫黄原子、-N(R)-、-C(R-、-C(R)=C(R)-、-C≡C-、アリーレン基又は2価の複素環基を表し、これらの基は置換基を有していてもよい。Rは、水素原子、アルキル基、シクロアルキル基、アリール基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。Rは、水素原子、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。複数存在するRは、同一でも異なっていてもよく、互いに結合して、それぞれが結合する炭素原子とともに環を形成していてもよい。Lが複数存在する場合、それらは同一でも異なっていてもよい。
     nc1は0以上の整数を表す。]
    Figure JPOXMLDOC01-appb-C000004
    [式中、
     M1Bは前記と同じ意味を表す。
     L及びLは、それぞれ独立に、酸素原子、硫黄原子、-N(R)-、-C(R-、-C(R)=C(R)-、-C≡C-、アリーレン基又は2価の複素環基を表し、これらの基は置換基を有していてもよい。R及びRは、前記と同じ意味を表す。L及びLが複数存在する場合、それらはそれぞれ同一でも異なっていてもよい。
     nd1及びne1は、それぞれ独立に、0以上の整数を表す。複数存在するnd1は、同一でも異なっていてもよい。
     Ar1Mは、芳香族炭化水素基又は複素環基を表し、これらの基は置換基を有していてもよい。]
    Figure JPOXMLDOC01-appb-C000005
    [式中、
     L及びnd1は、前記と同じ意味を表す。
     M2Bは、式(2)で表される金属錯体から、該金属錯体を構成する炭素原子又はヘテロ原子に直接結合する2個の水素原子を取り除いてなる基を表す。]
    Figure JPOXMLDOC01-appb-C000006
    [式中、
     L及びnd1は、前記と同じ意味を表す。
     M3Bは、式(2)で表される金属錯体から、該金属錯体を構成する炭素原子又はヘテロ原子に直接結合する3個の水素原子を取り除いてなる基を表す。]
  5.  前記式(2)で表される金属錯体が、式(2-B)で表される金属錯体である、請求項2~4のいずれか一項に記載の発光素子。
    Figure JPOXMLDOC01-appb-C000007
    [式中、
     M、n、n及びA-G-Aは、前記と同じ意味を表す。
     E11B、E12B、E13B、E14B、E21B、E22B、E23B及びE24Bは、それぞれ独立に、窒素原子又は炭素原子を表す。E11B、E12B、E13B、E14B、E21B、E22B、E23B及びE24Bが複数存在する場合、それらはそれぞれ同一でも異なっていてもよい。E11Bが窒素原子の場合、R11Bは存在しない。E12Bが窒素原子の場合、R12Bは存在しない。E13Bが窒素原子の場合、R13Bは存在しない。E14Bが窒素原子の場合、R14Bは存在しない。E21Bが窒素原子の場合、R21Bは存在しない。E22Bが窒素原子の場合、R22Bは存在しない。E23Bが窒素原子の場合、R23Bは存在しない。E24Bが窒素原子の場合、R24Bは存在しない。
     R11B、R12B、R13B、R14B、R21B、R22B、R23B及びR24Bは、それぞれ独立に、水素原子、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、アリールオキシ基、1価の複素環基、置換アミノ基又はハロゲン原子を表し、これらの基は置換基を有していてもよい。R11B、R12B、R13B、R14B、R21B、R22B、R23B及びR24Bが複数存在する場合、それらはそれぞれ同一でも異なっていてもよい。R11BとR12B、R12BとR13B、R13BとR14B、R11BとR21B、R21BとR22B、R22BとR23B、及び、R23BとR24Bは、それぞれ結合して、それぞれが結合する原子とともに環を形成していてもよい。
     環L1Bは、窒素原子、炭素原子、E11B、E12B、E13B及びE14Bで構成されるピリジン環又はピリミジン環を表す。
     環L2Bは、2つの炭素原子、E21B、E22B、E23B及びE24Bで構成されるベンゼン環、ピリジン環又はピリミジン環を表す。]
  6.  前記式(2-B)で表される金属錯体が、式(2-B1)で表される金属錯体、式(2-B2)で表される金属錯体、式(2-B3)で表される金属錯体、式(2-B4)で表される金属錯体又は式(2-B5)で表される金属錯体である、請求項5に記載の発光素子。
    Figure JPOXMLDOC01-appb-C000008
    [式中、
     M、n、n、A-G-A、R11B、R12B、R13B、R14B、R21B、R22B、R23B及びR24Bは、前記と同じ意味を表す。
     n31及びn32は、それぞれ独立に、1以上の整数を表し、n31+n32は2又は3である。Mがロジウム原子又はイリジウム原子の場合、n31+n32は3であり、Mがパラジウム原子又は白金原子の場合、n31+n32は2である。
     R15B、R16B、R17B及びR18Bは、それぞれ独立に、水素原子、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、アリールオキシ基、1価の複素環基、置換アミノ基又はハロゲン原子を表し、これらの基は置換基を有していてもよい。R15B、R16B、R17B及びR18Bが複数存在する場合、それらはそれぞれ同一でも異なっていてもよい。R15BとR16B、R16BとR17B、及び、R17BとR18Bは、それぞれ結合して、それぞれが結合する原子とともに環を形成していてもよい。]
  7.  前記式(1)で表される金属錯体が、式(1-A)で表される金属錯体である、請求項1~6のいずれか一項に記載の発光素子。
    Figure JPOXMLDOC01-appb-C000009
    [式中、M、n、n、環R1A、E、E11A、E12A、R11A、R12A、R13A及びA-G-Aは、前記と同じ意味を表す。
     環R2Aは、2つの炭素原子、E21A、E22A、E23A及びE24Aで構成されるベンゼン環、ピリジン環又はピリミジン環を表す。
     E21A、E22A、E23A及びE24Aは、それぞれ独立に、窒素原子又は炭素原子を表す。E21A、E22A、E23A及びE24Aが複数存在する場合、それらはそれぞれ同一でも異なっていてもよい。E21Aが窒素原子の場合、R21Aは存在しない。E22Aが窒素原子の場合、R22Aは存在しない。E23Aが窒素原子の場合、R23Aは存在しない。E24Aが窒素原子の場合、R24Aは存在しない。
     R21A、R22A、R23A及びR24Aは、水素原子、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、アリールオキシ基、1価の複素環基、置換アミノ基又はハロゲン原子を表し、これらの基は置換基を有していてもよい。R21A、R22A、R23A及びR24Aが複数存在する場合、それらはそれぞれ同一でも異なっていてもよい。R21AとR22Aとは、互いに結合して、それぞれが結合する原子とともに環を形成していてもよい。R22AとR23Aとは、互いに結合して、それぞれが結合する原子とともに環を形成していてもよい。R23AとR24Aとは、互いに結合して、それぞれが結合する原子とともに環を形成していてもよい。R11AとR21Aとは、互いに結合して、それぞれが結合する原子とともに環を形成していてもよい。]
  8.  前記式(1-A)で表される金属錯体が、式(1-A1)で表される金属錯体、式(1-A2)で表される金属錯体、式(1-A3)で表される金属錯体又は式(1-A4)で表される金属錯体である、請求項7に記載の発光素子。
    Figure JPOXMLDOC01-appb-C000010
    [式中、M、n、n、R11A、R12A、R13A、R21A、R22A、R23A、R24A及びA-G-Aは、前記と同じ意味を表す。]
  9.  前記R13Aが、置換基を有していてもよいアリール基である、請求項1~8のいずれか一項に記載の発光素子。
  10.  前記第1の発光層が、式(H-1)で表される化合物を更に含有する、請求項1~9のいずれか一項に記載の発光素子。
    Figure JPOXMLDOC01-appb-C000011
    [式中、
     ArH1及びArH2は、それぞれ独立に、アリール基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。
     nH1及びnH2は、それぞれ独立に、0又は1を表す。nH1が複数存在する場合、それらは同一でも異なっていてもよい。複数存在するnH2は、同一でも異なっていてもよい。
     nH3は、0以上の整数を表す。
     LH1は、アリーレン基、2価の複素環基、又は、-[C(RH11]nH11-で表される基を表し、これらの基は置換基を有していてもよい。LH1が複数存在する場合、それらは同一でも異なっていてもよい。nH11は、1以上10以下の整数を表す。RH11は、水素原子、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。複数存在するRH11は、同一でも異なっていてもよく、互いに結合して、それぞれが結合する炭素原子とともに環を形成していてもよい。
     LH2は、-N(-LH21-RH21)-で表される基を表す。LH2が複数存在する場合、それらは同一でも異なっていてもよい。LH21は、単結合、アリーレン基又は2価の複素環基を表し、これらの基は置換基を有していてもよい。RH21は、水素原子、アルキル基、シクロアルキル基、アリール基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。]
  11.  前記第1の発光層と、前記第2の発光層とが、隣接している、請求項1~10のいずれか一項に記載の発光素子。
  12.  前記第2の発光層が、前記陽極及び前記第1の発光層との間に設けられている、請求項1~11のいずれか一項に記載の発光素子。
PCT/JP2016/085886 2015-12-07 2016-12-02 発光素子 WO2017099012A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020187018584A KR20180091026A (ko) 2015-12-07 2016-12-02 발광 소자
JP2017555045A JP6754774B2 (ja) 2015-12-07 2016-12-02 発光素子
EP16872910.1A EP3389104B1 (en) 2015-12-07 2016-12-02 Light emitting element
CN201680071249.9A CN108292709B (zh) 2015-12-07 2016-12-02 发光元件
US15/781,717 US20180375034A1 (en) 2015-12-07 2016-12-02 Light emitting device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015238662 2015-12-07
JP2015-238662 2015-12-07

Publications (1)

Publication Number Publication Date
WO2017099012A1 true WO2017099012A1 (ja) 2017-06-15

Family

ID=59013156

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/085886 WO2017099012A1 (ja) 2015-12-07 2016-12-02 発光素子

Country Status (6)

Country Link
US (1) US20180375034A1 (ja)
EP (1) EP3389104B1 (ja)
JP (1) JP6754774B2 (ja)
KR (1) KR20180091026A (ja)
CN (1) CN108292709B (ja)
WO (1) WO2017099012A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019065389A1 (ja) 2017-09-29 2019-04-04 住友化学株式会社 発光素子
WO2022065098A1 (ja) * 2020-09-24 2022-03-31 住友化学株式会社 発光素子及び組成物

Citations (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002045184A1 (en) 2000-11-28 2002-06-06 Avecia Limited Field effect transistors and materials and methods for their manufacture
JP2003171659A (ja) 2001-03-27 2003-06-20 Sumitomo Chem Co Ltd 高分子発光体およびそれを用いた高分子発光素子
JP2004530254A (ja) 2001-02-20 2004-09-30 アイシス イノベイシヨン リミテツド 金属含有デンドリマー
WO2006003000A1 (de) 2004-07-06 2006-01-12 Merck Patent Gmbh Elektrolumineszierende polymere
JP2006121811A (ja) 2004-10-21 2006-05-11 Nissan Motor Co Ltd 回転電機のロータ位置検出装置
JP2007504272A (ja) 2003-05-16 2007-03-01 イシス イノベイション リミテッド 有機燐光材料および有機オプトエレクトロニクス素子
JP2008106241A (ja) 2006-09-25 2008-05-08 Sumitomo Chemical Co Ltd 高分子化合物及びそれを用いた高分子発光素子
JP2008179617A (ja) 2006-12-27 2008-08-07 Sumitomo Chemical Co Ltd 金属錯体、高分子化合物及びこれらを含む素子
WO2008140115A1 (ja) * 2007-05-16 2008-11-20 Konica Minolta Holdings, Inc. 有機エレクトロルミネッセンス素子、表示装置及び照明装置
JP2009239279A (ja) 2008-03-07 2009-10-15 Sumitomo Chemical Co Ltd 積層構造体
WO2009157424A1 (ja) 2008-06-23 2009-12-30 住友化学株式会社 金属錯体の残基を含む高分子化合物及びそれを用いた素子
JP2010189630A (ja) 2009-01-20 2010-09-02 Sumitomo Chemical Co Ltd メタフェニレン系高分子化合物及びそれを用いた発光素子
JP2010215886A (ja) 2008-07-29 2010-09-30 Sumitomo Chemical Co Ltd 高分子化合物及びそれを用いた発光素子
WO2011049241A1 (ja) 2009-10-22 2011-04-28 住友化学株式会社 有機エレクトロルミネッセンス素子
JP2011105701A (ja) 2009-10-19 2011-06-02 Sumitomo Chemical Co Ltd 金属錯体、高分子化合物及びそれを用いた素子
WO2011105701A2 (ko) 2010-02-26 2011-09-01 (주)휴먼전자엔씨 터치 센서
JP2012033845A (ja) 2009-09-30 2012-02-16 Sumitomo Chemical Co Ltd 積層構造体、重合体、電界発光素子及び光電変換素子
JP2012216822A (ja) 2011-03-28 2012-11-08 Sumitomo Chemical Co Ltd 電子デバイス、高分子化合物
JP2012216821A (ja) 2011-03-28 2012-11-08 Sumitomo Chemical Co Ltd 電子デバイス、高分子化合物
JP2012216815A (ja) 2011-03-28 2012-11-08 Sumitomo Chemical Co Ltd 電子デバイス、高分子化合物
JP2013033915A (ja) * 2011-07-06 2013-02-14 Konica Minolta Holdings Inc 有機エレクトロルミネッセンス素子、表示装置および照明装置
WO2013021180A1 (en) 2011-08-05 2013-02-14 Cambridge Display Technology Limited Light emitting polymers and devices
JP2013147450A (ja) 2012-01-18 2013-08-01 Sumitomo Chemical Co Ltd 金属錯体及び該金属錯体を含む発光素子
JP2013147551A (ja) 2012-01-18 2013-08-01 Sumitomo Chemical Co Ltd 燐光性発光化合物及び高分子化合物を含む組成物、並びにそれを用いた発光素子
JP2013197323A (ja) * 2012-03-21 2013-09-30 Konica Minolta Inc 有機エレクトロルミネッセンス素子
WO2013146806A1 (ja) 2012-03-27 2013-10-03 住友化学株式会社 高分子化合物およびそれを用いた発光素子
JP2014003249A (ja) * 2012-06-21 2014-01-09 Konica Minolta Inc 有機エレクトロルミネッセンス素子、表示装置及び照明装置
WO2014097865A1 (ja) * 2012-12-18 2014-06-26 コニカミノルタ株式会社 有機エレクトロルミネッセンス素子、表示装置および照明装置
JP2014148663A (ja) 2012-12-21 2014-08-21 Cambridge Display Technology Ltd ポリマーおよび有機発光デバイス
WO2014156922A1 (ja) 2013-03-29 2014-10-02 コニカミノルタ株式会社 異性体混合金属錯体組成物、有機エレクトロルミネッセンス素子、照明装置及び表示装置
JP2015110751A (ja) 2013-10-31 2015-06-18 住友化学株式会社 組成物およびそれを用いた発光素子
JP2015174932A (ja) 2014-03-17 2015-10-05 住友化学株式会社 高分子化合物およびそれを用いた発光素子
JP2015174931A (ja) 2014-03-17 2015-10-05 住友化学株式会社 高分子化合物およびそれを用いた発光素子
WO2016006523A1 (ja) * 2014-07-08 2016-01-14 住友化学株式会社 金属錯体およびそれを用いた発光素子
JP2016219490A (ja) * 2015-05-15 2016-12-22 コニカミノルタ株式会社 有機エレクトロルミネッセンス素子、表示装置及び照明装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2006008976A1 (ja) * 2004-07-16 2008-05-01 コニカミノルタホールディングス株式会社 白色発光有機エレクトロルミネッセンス素子、表示装置及び照明装置
US8586204B2 (en) * 2007-12-28 2013-11-19 Universal Display Corporation Phosphorescent emitters and host materials with improved stability
CN101580521B (zh) * 2009-04-21 2012-09-05 中国科学院长春应用化学研究所 树枝状有机金属配合物及用该配合物的电致发光器件
EP3136462A4 (en) * 2014-04-25 2017-12-20 Sumitomo Chemical Company Limited Light-emitting element

Patent Citations (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002045184A1 (en) 2000-11-28 2002-06-06 Avecia Limited Field effect transistors and materials and methods for their manufacture
JP2004530254A (ja) 2001-02-20 2004-09-30 アイシス イノベイシヨン リミテツド 金属含有デンドリマー
JP2003171659A (ja) 2001-03-27 2003-06-20 Sumitomo Chem Co Ltd 高分子発光体およびそれを用いた高分子発光素子
JP2007504272A (ja) 2003-05-16 2007-03-01 イシス イノベイション リミテッド 有機燐光材料および有機オプトエレクトロニクス素子
WO2006003000A1 (de) 2004-07-06 2006-01-12 Merck Patent Gmbh Elektrolumineszierende polymere
JP2006121811A (ja) 2004-10-21 2006-05-11 Nissan Motor Co Ltd 回転電機のロータ位置検出装置
JP2008106241A (ja) 2006-09-25 2008-05-08 Sumitomo Chemical Co Ltd 高分子化合物及びそれを用いた高分子発光素子
JP2008179617A (ja) 2006-12-27 2008-08-07 Sumitomo Chemical Co Ltd 金属錯体、高分子化合物及びこれらを含む素子
WO2008140115A1 (ja) * 2007-05-16 2008-11-20 Konica Minolta Holdings, Inc. 有機エレクトロルミネッセンス素子、表示装置及び照明装置
JP2009239279A (ja) 2008-03-07 2009-10-15 Sumitomo Chemical Co Ltd 積層構造体
WO2009157424A1 (ja) 2008-06-23 2009-12-30 住友化学株式会社 金属錯体の残基を含む高分子化合物及びそれを用いた素子
JP2010043243A (ja) 2008-06-23 2010-02-25 Sumitomo Chemical Co Ltd 金属錯体の残基を含む高分子化合物及びそれを用いた素子
JP2010215886A (ja) 2008-07-29 2010-09-30 Sumitomo Chemical Co Ltd 高分子化合物及びそれを用いた発光素子
JP2010189630A (ja) 2009-01-20 2010-09-02 Sumitomo Chemical Co Ltd メタフェニレン系高分子化合物及びそれを用いた発光素子
JP2012033845A (ja) 2009-09-30 2012-02-16 Sumitomo Chemical Co Ltd 積層構造体、重合体、電界発光素子及び光電変換素子
JP2011105701A (ja) 2009-10-19 2011-06-02 Sumitomo Chemical Co Ltd 金属錯体、高分子化合物及びそれを用いた素子
WO2011049241A1 (ja) 2009-10-22 2011-04-28 住友化学株式会社 有機エレクトロルミネッセンス素子
WO2011105701A2 (ko) 2010-02-26 2011-09-01 (주)휴먼전자엔씨 터치 센서
JP2012216822A (ja) 2011-03-28 2012-11-08 Sumitomo Chemical Co Ltd 電子デバイス、高分子化合物
JP2012216821A (ja) 2011-03-28 2012-11-08 Sumitomo Chemical Co Ltd 電子デバイス、高分子化合物
JP2012216815A (ja) 2011-03-28 2012-11-08 Sumitomo Chemical Co Ltd 電子デバイス、高分子化合物
JP2013033915A (ja) * 2011-07-06 2013-02-14 Konica Minolta Holdings Inc 有機エレクトロルミネッセンス素子、表示装置および照明装置
WO2013021180A1 (en) 2011-08-05 2013-02-14 Cambridge Display Technology Limited Light emitting polymers and devices
JP2013147450A (ja) 2012-01-18 2013-08-01 Sumitomo Chemical Co Ltd 金属錯体及び該金属錯体を含む発光素子
JP2013147551A (ja) 2012-01-18 2013-08-01 Sumitomo Chemical Co Ltd 燐光性発光化合物及び高分子化合物を含む組成物、並びにそれを用いた発光素子
JP2013197323A (ja) * 2012-03-21 2013-09-30 Konica Minolta Inc 有機エレクトロルミネッセンス素子
WO2013146806A1 (ja) 2012-03-27 2013-10-03 住友化学株式会社 高分子化合物およびそれを用いた発光素子
JP2014003249A (ja) * 2012-06-21 2014-01-09 Konica Minolta Inc 有機エレクトロルミネッセンス素子、表示装置及び照明装置
WO2014097865A1 (ja) * 2012-12-18 2014-06-26 コニカミノルタ株式会社 有機エレクトロルミネッセンス素子、表示装置および照明装置
JP2014148663A (ja) 2012-12-21 2014-08-21 Cambridge Display Technology Ltd ポリマーおよび有機発光デバイス
WO2014156922A1 (ja) 2013-03-29 2014-10-02 コニカミノルタ株式会社 異性体混合金属錯体組成物、有機エレクトロルミネッセンス素子、照明装置及び表示装置
JP2015110751A (ja) 2013-10-31 2015-06-18 住友化学株式会社 組成物およびそれを用いた発光素子
JP2015174932A (ja) 2014-03-17 2015-10-05 住友化学株式会社 高分子化合物およびそれを用いた発光素子
JP2015174931A (ja) 2014-03-17 2015-10-05 住友化学株式会社 高分子化合物およびそれを用いた発光素子
WO2016006523A1 (ja) * 2014-07-08 2016-01-14 住友化学株式会社 金属錯体およびそれを用いた発光素子
JP2016219490A (ja) * 2015-05-15 2016-12-22 コニカミノルタ株式会社 有機エレクトロルミネッセンス素子、表示装置及び照明装置

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
CHEM. REV., vol. 109, 2009, pages 897 - 1091
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, vol. 106, 1984, pages 6647 - 6653
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, vol. 107, 1985, pages 1431 - 1432

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019065389A1 (ja) 2017-09-29 2019-04-04 住友化学株式会社 発光素子
WO2022065098A1 (ja) * 2020-09-24 2022-03-31 住友化学株式会社 発光素子及び組成物
JP2022053493A (ja) * 2020-09-24 2022-04-05 住友化学株式会社 発光素子及び組成物
JP7079883B2 (ja) 2020-09-24 2022-06-02 住友化学株式会社 発光素子及び組成物

Also Published As

Publication number Publication date
KR20180091026A (ko) 2018-08-14
JPWO2017099012A1 (ja) 2018-09-20
EP3389104B1 (en) 2020-09-16
EP3389104A4 (en) 2019-07-31
JP6754774B2 (ja) 2020-09-16
EP3389104A1 (en) 2018-10-17
CN108292709A (zh) 2018-07-17
CN108292709B (zh) 2020-10-30
US20180375034A1 (en) 2018-12-27

Similar Documents

Publication Publication Date Title
JP5867580B2 (ja) 発光素子
WO2017130977A1 (ja) 組成物、燐光発光性化合物及び発光素子
JP6108056B2 (ja) 組成物およびそれを用いた発光素子
JP6468289B2 (ja) 発光素子
JP5842989B2 (ja) 組成物およびそれを用いた発光素子
JP6256630B2 (ja) 発光素子および該発光素子に用いる組成物
WO2015163174A1 (ja) 発光素子
JPWO2016006523A1 (ja) 金属錯体およびそれを用いた発光素子
WO2015156235A1 (ja) 発光素子およびそれに用いる組成物
WO2017146083A1 (ja) 発光素子及び該発光素子に用いる高分子化合物
WO2016009908A1 (ja) 発光素子の製造方法
JP6877976B2 (ja) 発光素子
JP6754774B2 (ja) 発光素子
JP6851189B2 (ja) 発光素子及び金属錯体
JP7192339B2 (ja) 発光素子
JP6804465B2 (ja) 組成物及びそれを用いた発光素子
WO2017061332A1 (ja) 発光素子
JP6711808B2 (ja) 発光素子および該発光素子に用いる組成物
JP6596918B2 (ja) 発光素子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16872910

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017555045

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20187018584

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2016872910

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016872910

Country of ref document: EP

Effective date: 20180709