WO2019239998A1 - 有機エレクトロルミネッセンス素子 - Google Patents

有機エレクトロルミネッセンス素子 Download PDF

Info

Publication number
WO2019239998A1
WO2019239998A1 PCT/JP2019/022476 JP2019022476W WO2019239998A1 WO 2019239998 A1 WO2019239998 A1 WO 2019239998A1 JP 2019022476 W JP2019022476 W JP 2019022476W WO 2019239998 A1 WO2019239998 A1 WO 2019239998A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
organic
solvent
substituent
formula
Prior art date
Application number
PCT/JP2019/022476
Other languages
English (en)
French (fr)
Inventor
秀信 柿本
大塚 晋
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Priority to KR1020217000021A priority Critical patent/KR20210019485A/ko
Priority to US17/251,186 priority patent/US20210273172A1/en
Priority to JP2019531337A priority patent/JP6657487B1/ja
Priority to EP19819078.7A priority patent/EP3809802A4/en
Priority to CN201980038678.XA priority patent/CN112272967A/zh
Publication of WO2019239998A1 publication Critical patent/WO2019239998A1/ja

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/10Apparatus or processes specially adapted to the manufacture of electroluminescent light sources
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • H10K71/15Deposition of organic active material using liquid deposition, e.g. spin coating characterised by the solvent used
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/40Thermal treatment, e.g. annealing in the presence of a solvent vapour
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/115Polyfluorene; Derivatives thereof
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/151Copolymers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • H10K85/342Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising iridium
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/654Aromatic compounds comprising a hetero atom comprising only nitrogen as heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/656Aromatic compounds comprising a hetero atom comprising two or more different heteroatoms per ring
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/12Copolymers
    • C08G2261/124Copolymers alternating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/14Side-groups
    • C08G2261/141Side-chains having aliphatic units
    • C08G2261/1412Saturated aliphatic units
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/14Side-groups
    • C08G2261/148Side-chains having aromatic units
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/18Definition of the polymer structure conjugated
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/22Molecular weight
    • C08G2261/228Polymers, i.e. more than 10 repeat units
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/31Monomer units or repeat units incorporating structural elements in the main chain incorporating aromatic structural elements in the main chain
    • C08G2261/312Non-condensed aromatic systems, e.g. benzene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/31Monomer units or repeat units incorporating structural elements in the main chain incorporating aromatic structural elements in the main chain
    • C08G2261/314Condensed aromatic systems, e.g. perylene, anthracene or pyrene
    • C08G2261/3142Condensed aromatic systems, e.g. perylene, anthracene or pyrene fluorene-based, e.g. fluorene, indenofluorene, or spirobifluorene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/31Monomer units or repeat units incorporating structural elements in the main chain incorporating aromatic structural elements in the main chain
    • C08G2261/316Monomer units or repeat units incorporating structural elements in the main chain incorporating aromatic structural elements in the main chain bridged by heteroatoms, e.g. N, P, Si or B
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/90Applications
    • C08G2261/95Use in organic luminescent diodes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/14Macromolecular compounds
    • C09K2211/1408Carbocyclic compounds
    • C09K2211/1416Condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/14Macromolecular compounds
    • C09K2211/1408Carbocyclic compounds
    • C09K2211/1425Non-condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/14Macromolecular compounds
    • C09K2211/1408Carbocyclic compounds
    • C09K2211/1433Carbocyclic compounds bridged by heteroatoms, e.g. N, P, Si or B
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/18Metal complexes
    • C09K2211/185Metal complexes of the platinum group, i.e. Os, Ir, Pt, Ru, Rh or Pd
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/10Triplet emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/17Carrier injection layers

Definitions

  • the present invention relates to an organic electroluminescence element.
  • Organic electroluminescence elements (hereinafter referred to as “organic EL elements”) have high luminous efficiency and low driving voltage, and therefore can be suitably used for display and lighting applications. It is actively done.
  • organic EL elements By using a composition containing a soluble light-emitting compound used for a light-emitting layer of an organic EL element and a solvent, the light-emitting layer can be formed using a discharge-type coating method typified by an ink jet printing method. . Then, by forming the light emitting layer using a discharge-type coating method, a large-area organic EL element can be manufactured by a simple process. For this reason, various studies have been conducted on soluble luminescent compounds and solvents.
  • Patent Document 1 has been studied to improve device characteristics by improving a soluble light-emitting compound, but sufficient device characteristics have not been obtained yet.
  • An object of the present invention is to provide an organic EL element that is particularly excellent in luminance life among organic EL element characteristics.
  • the present inventor examined how the content (remaining amount) of the high boiling point solvent in the organic EL element affects the luminance life of the organic EL element. As a result, it has been found that the ratio of the content (residual amount) of the high boiling point solvent relative to the volume of the organic EL material in the organic EL element has a correlation with the luminance life of the organic EL element. Based on this knowledge, further studies have been made and the present invention has been completed.
  • this invention provides the following organic EL element and its manufacturing method.
  • An organic EL element containing an organic EL material and a solvent A having a boiling point of 250 ° C. or higher at 1 atm, and containing the solvent A relative to the volume (cm 3 ) of the organic EL material in the organic EL element
  • An organic EL element wherein the amount ( ⁇ g) of the ratio X A ( ⁇ g / cm 3 ) satisfies the formula (1). 5 ⁇ X A ⁇ 2650 (1)
  • the organic EL device according to [1] wherein the organic EL device has a substrate, an electrode, and two or more organic EL material layers, and the solvent A is contained in the one or more organic EL material layers.
  • the organic EL device according to [2], wherein the organic EL material layer includes a hole injection layer, a hole transport layer, and a light emitting layer, and at least the light emitting layer contains the solvent A.
  • the solvent A is at least one selected from the group consisting of a hydrocarbon solvent, an alcohol solvent, an ester solvent, a ketone solvent, an ether solvent, a solvent containing a nitrogen atom, and a solvent containing a sulfur atom.
  • the organic EL device according to any one of to [3].
  • the organic EL material comprises a compound represented by the formula (Y), a compound represented by the formula (H-1), and a compound represented by any of the formulas (Ir-1) to (Ir-5)
  • the organic EL device according to any one of [1] to [4], which is at least one selected from the group.
  • Ratio X A ( ⁇ g / cm 3 ) is represented by the formula (1): 5 ⁇ X A ⁇ 2650 (1)
  • the manufacturing method characterized by adjusting so that it may satisfy
  • the solid line representing the bond with the central metal means a covalent bond or a coordinate bond.
  • the “polymer compound” means a polymer having a molecular weight distribution and having a polystyrene-equivalent number average molecular weight of 1 ⁇ 10 3 to 1 ⁇ 10 8 .
  • Low molecular weight compound means a compound having no molecular weight distribution and a molecular weight of 1 ⁇ 10 4 or less.
  • the “structural unit” means a unit present in one or more (more than two) in the polymer compound.
  • Organic EL material means materials used for organic EL elements such as a hole injection material, a hole transport material, a light emitting material, an electron transport material, and an electron injection material, excluding the substrate, anode, and cathode.
  • the material is usually a material formed by a coating method. The material can be changed according to the device structure of the element.
  • Each of the organic EL materials may be a low molecular material (low molecular compound) or a high molecular material (polymer compound).
  • the “alkyl group” may be either linear or branched.
  • the straight-chain alkyl group usually has 1 to 50 carbon atoms, and the branched alkyl group usually has 3 to 50 carbon atoms.
  • Examples of the “alkyl group” include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, a 2-butyl group, an isobutyl group, a tert-butyl group, a pentyl group, an isoamyl group, a 2-ethylbutyl group, and a hexyl group.
  • alkyl group may have a substituent.
  • the “cycloalkyl group” usually has 3 to 50 carbon atoms.
  • Examples of the “cycloalkyl group” include a cyclohexyl group, a cyclohexylmethyl group, and a cyclohexylethyl group.
  • the “cycloalkyl group” may have a substituent.
  • Aryl group means an atomic group remaining after removing one hydrogen atom directly bonded to a carbon atom constituting a ring from an aromatic hydrocarbon. The number of carbon atoms in the aryl group is usually 6-60.
  • Examples of the “aryl group” include phenyl group, 1-naphthyl group, 2-naphthyl group, 1-anthracenyl group, 2-anthracenyl group, 9-anthracenyl group, 1-pyrenyl group, 2-pyrenyl group, 4-pyrenyl group.
  • the “aryl group” may have a substituent.
  • the “alkoxy group” may be either linear or branched.
  • the straight-chain alkoxy group usually has 1 to 40 carbon atoms, and the branched alkoxy group usually has 3 to 40 carbon atoms.
  • Examples of the “alkoxy group” include methoxy group, ethoxy group, propyloxy group, isopropyloxy group, butyloxy group, isobutyloxy group, tert-butyloxy group, pentyloxy group, hexyloxy group, heptyloxy group, octyloxy group 2-ethylhexyloxy group, nonyloxy group, decyloxy group, 3,7-dimethyloctyloxy group, lauryloxy group.
  • the “alkoxy group” may have a substituent.
  • the number of carbon atoms in the “cycloalkoxy group” is usually 3 to 40.
  • Examples of the “cycloalkoxy group” include a cyclohexyloxy group.
  • the “cycloalkoxy group” may have a substituent.
  • the “aryloxy group” usually has 6 to 60 carbon atoms.
  • Examples of the “aryloxy group” include phenoxy group, 1-naphthyloxy group, 2-naphthyloxy group, 1-anthracenyloxy group, 9-anthracenyloxy group, and 1-pyrenyloxy group.
  • the “aryloxy group” may have a substituent.
  • the “p-valent heterocyclic group” (p represents an integer of 1 or more) is p of hydrogen atoms directly bonded to a carbon atom or a hetero atom constituting a ring from a heterocyclic compound. This means the remaining atomic group excluding the hydrogen atom.
  • the number of carbon atoms of the monovalent heterocyclic group is usually 2 to 60.
  • Examples of the monovalent heterocyclic group include thienyl group, pyrrolyl group, furyl group, pyridyl group, piperidinyl group, quinolinyl group, isoquinolinyl group, pyrimidinyl group, and triazinyl group.
  • the “monovalent heterocyclic group” may have a substituent.
  • Halogen atom means a fluorine atom, a chlorine atom, a bromine atom or an iodine atom.
  • the “amino group” may have a substituent.
  • the “substituted amino group” include a dialkylamino group, a dicycloalkylamino group, and a diarylamino group. Specifically, for example, dimethylamino group, diethylamino group, diphenylamino group, bis (4-methylphenyl) amino group, bis (4-tert-butylphenyl) amino group, bis (3,5-di-tert- Butylphenyl) amino group.
  • the “alkenyl group” may be either linear or branched.
  • the straight-chain alkenyl group usually has 2 to 30 carbon atoms, and the branched alkenyl group usually has 3 to 30 carbon atoms.
  • Examples of the “alkenyl group” include a vinyl group, 1-propenyl group, 2-propenyl group, 2-butenyl group, 3-butenyl group, 3-pentenyl group, 4-pentenyl group, 1-hexenyl group and 5-hexenyl group. Group, 7-octenyl group.
  • the “alkenyl group” may have a substituent.
  • the “cycloalkenyl group” usually has 3 to 30 carbon atoms.
  • the “cycloalkenyl group” may have a substituent.
  • the “alkynyl group” may be either linear or branched.
  • the alkynyl group usually has 2 to 20 carbon atoms, and the branched alkynyl group usually has 4 to 30 carbon atoms.
  • Examples of the “alkynyl group” include ethynyl group, 1-propynyl group, 2-propynyl group, 2-butynyl group, 3-butynyl group, 3-pentynyl group, 4-pentynyl group, 1-hexynyl group and 5-hexynyl group. Groups.
  • the “alkynyl group” may have a substituent.
  • cycloalkynyl group usually has 4 to 30 carbon atoms.
  • the “cycloalkynyl group” may have a substituent.
  • “Arylene group” means an atomic group remaining after removing two hydrogen atoms directly bonded to a carbon atom constituting a ring from an aromatic hydrocarbon. The number of carbon atoms in the arylene group is usually 6-60.
  • Examples of the “arylene group” include a phenylene group, a naphthalenediyl group, an anthracenediyl group, a phenanthenediyl group, a dihydrophenanthenediyl group, a naphthacenediyl group, a fluorenediyl group, a pyrenediyl group, a perylenediyl group, and a chrysenediyl group. A group in which a plurality of the groups are bonded.
  • the “arylene group” may have a substituent.
  • the number of carbon atoms in the “divalent heterocyclic group” is usually 2 to 60.
  • Examples of the “divalent heterocyclic group” include pyridine, diazabenzene, triazine, azanaphthalene, diazanaphthalene, carbazole, dibenzofuran, dibenzothiophene, dibenzosilole, phenoxazine, phenothiazine, acridine, dihydroacridine, furan, thiophene, A divalent group in which two hydrogen atoms are removed from azole, diazole, and triazole from among hydrogen atoms directly bonded to carbon atoms or heteroatoms constituting a ring, and a group in which a plurality of these groups are bonded including.
  • the “divalent heterocyclic group” may have a substituent.
  • the “crosslinking group” is a group capable of generating a new bond by being subjected to heating, ultraviolet irradiation, near ultraviolet irradiation, visible light irradiation, infrared irradiation, radical reaction, and the like.
  • the bridging group is preferably a group represented by any one of formulas (B-1)-(B-17), and these groups may have a substituent.
  • Examples of the “substituent” include a halogen atom, a cyano group, an alkyl group, a cycloalkyl group, an aryl group, a monovalent heterocyclic group, an alkoxy group, a cycloalkoxy group, an aryloxy group, an amino group, a substituted amino group, An alkenyl group, a cycloalkenyl group, an alkynyl group or a cycloalkynyl group; The substituent may be a crosslinking group.
  • Organic EL element Organic EL element ⁇ Organic EL element>
  • the organic EL device of the present invention contains an organic EL material and a solvent A having a boiling point of 250 ° C. or higher at 1 atm, and the content of the solvent A relative to the volume (cm 3 ) of the organic EL material in the organic EL device.
  • the ratio X A ( ⁇ g / cm 3 ) of ( ⁇ g) satisfies the formula (1). 5 ⁇ X A ⁇ 2650 (1)
  • the volume (cm 3 ) of the organic EL material in the organic EL element means the entire volume of the organic EL material contained in the organic EL element. This volume can be calculated from the light emitting area and the film thickness as will be described later.
  • the content ( ⁇ g) of the solvent A in the organic EL element means the total weight of the solvent A contained in the organic EL element.
  • the content of the solvent A can be measured using, for example, a headspace gas chromatography method described later.
  • the lower limit of X A is preferably 10, more preferably 14, 18 is more preferred.
  • the upper limit of X A is preferably 2600, more preferably 2400, more preferably 2000, particularly preferably 1800. Each of these lower limit value and upper limit value can be arbitrarily combined.
  • the solvent A contained in an organic EL element is 2 or more types, the sum total of each content satisfy
  • the lower limit is preferably 10, more preferably 14, 18 is more preferred.
  • the upper limit is preferably 150, more preferably 100, even more preferably 80, particularly preferably 70, particularly preferably 65, and particularly preferably 60.
  • the case where the organic EL material in at least one of the organic EL material layers containing the organic EL material is mainly composed of a polymer compound means that at least one layer of the organic EL material layers containing the organic EL material.
  • the total content of the organic EL materials contained in one layer is 100 parts by weight, it means that the content of the polymer compound is more than 50 parts by weight, preferably 51 parts by weight or more. More preferably, it is 55 parts by weight or more, 70 parts by weight or more, 80 parts by weight or more, 90 parts by weight or more, or 95 parts by weight or more. , 100 parts by weight.
  • the lower limit is preferably 10, more preferably 50, more preferably 100, particularly preferably 150.
  • the upper limit is preferably 2600, more preferably 2400, still more preferably 2000, and particularly preferably 1800.
  • the case where the organic EL material in at least one of the organic EL material layers containing the organic EL material is mainly composed of a low molecular compound means that at least one of the organic EL material layers containing the organic EL material.
  • the content of the low molecular weight compound is more than 50 parts by weight, preferably 51 parts by weight or more. More preferably, it is 60 parts by weight or more, more preferably 80 parts by weight or more, particularly preferably 95 parts by weight or more, and may be 100 parts by weight.
  • the organic EL element of the present invention has, for example, two or more (more than three) organic EL material layers including an anode, a cathode, and an organic EL material on a substrate.
  • an organic EL material layer is provided between the anode and the cathode.
  • the organic EL material layer include a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, and an electron injection layer. From the viewpoint of hole injecting property and hole transporting property, it is preferable to have at least one of a hole injecting layer and a hole transporting layer between the anode and the light emitting layer. From the viewpoint, it is preferable to have at least one of an electron injection layer and an electron transport layer between the cathode and the light emitting layer.
  • the organic EL material constituting each of the hole transport layer, the electron transport layer, the light emitting layer, the hole injection layer, and the electron injection layer can be selected according to the function of each layer. Can be selected from the group consisting of
  • examples of the layer structure of the organic EL material layer include a hole injection layer, a hole transport layer, and a light emitting layer.
  • examples of the layer structure of the organic EL material layer include a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, and an electron injection layer. .
  • the organic EL element at least one layer (particularly, the light emitting layer) of the organic EL material layer such as a light emitting layer, a hole transport layer, an electron transport layer, a hole injection layer, and an electron injection layer is, for example, a low molecular weight described later.
  • An organic EL material selected from the group consisting of a compound and a polymer compound is included, and the film is usually formed by a coating method from a solution state containing the organic EL material and a solvent including the solvent A. That is, the solvent A is contained in one or more layers among the plurality of organic EL material layers.
  • the organic EL material layer may contain additives such as an antioxidant as necessary.
  • solvent A having a boiling point of 250 ° C. or higher under 1 atm is at least one of the organic EL material layers in the organic EL element of the present invention. It is included in one layer.
  • the lower limit of the boiling point at 1 atm is preferably 255 ° C, more preferably 260 ° C, further preferably 265 ° C, and particularly preferably 270 ° C.
  • the upper limit of the boiling point is preferably 320 ° C, more preferably 310 ° C, and particularly preferably 300 ° C. Any combination of the upper limit value and the lower limit value can be selected.
  • Examples of the solvent A include organic solvents that can dissolve or uniformly disperse the organic EL material (the high molecular compound, the low molecular compound, etc.).
  • organic solvents include hydrocarbon solvents, alcohol solvents (monohydric alcohol solvents, polyhydric alcohol solvents), ester solvents, ketone solvents, ether solvents, solvents containing nitrogen atoms, solvents containing sulfur atoms, and the like. can do.
  • aliphatic hydrocarbon solvents, aromatic hydrocarbon solvents, monohydric alcohol solvents, polyhydric alcohol solvents, aromatic ester solvents, aliphatic-aliphatic ether solvents, aromatic-aromatic ether solvents, solvents containing sulfur atoms Etc. are preferred.
  • Examples of the aliphatic hydrocarbon solvent having a boiling point of 250 ° C. or higher include n-tetradecane (boiling point: 253 ° C.), and examples of the aromatic hydrocarbon solvent include n-octylbenzene (boiling point: 250 ° C.). N-nonylbenzene (boiling point: 282 ° C.), n-decylbenzene (boiling point: 298 ° C.), n-undecylbenzene (boiling point: 316 ° C.), and n-dodecylbenzene.
  • aromatic hydrocarbon solvents are preferable, n-decylbenzene, n-undecylbenzene and n-dodecylbenzene are more preferable, and n-decylbenzene and n-dodecylbenzene are more preferable.
  • Examples of the monohydric alcohol solvent having a boiling point of 250 ° C. or higher include 1-dodecanol (boiling point: 259 ° C.), and examples of the polyhydric alcohol solvent include glycerin (boiling point: 290 ° C.), 1,6- Hexanediol (boiling point: 250 ° C.) is mentioned. Of these, polyhydric alcohol solvents are preferred.
  • aromatic ester solvent having a boiling point of 250 ° C. or higher examples include n-butyl benzoate (boiling point: 250 ° C.), tert-butyl benzoate, n-pentyl benzoate, and n-hexyl benzoate (boiling point: 272 ° C. ), Dimethyl phthalate (boiling point: 282 ° C.), and diethyl phthalate (boiling point: 302 ° C.).
  • n-pentyl benzoate, n-hexyl benzoate and dimethyl phthalate are preferred, and n-hexyl benzoate is more preferred.
  • Examples of the aliphatic-aliphatic ether solvent having a boiling point of 250 ° C. or higher include tetraethylene glycol dimethyl ether (boiling point: 276 ° C.), and examples of the aromatic-aromatic ether solvent include 3-phenoxytoluene (boiling point: 272 ° C.). Can be mentioned. Of these, aromatic-aromatic ether solvents are preferred.
  • Examples of the solvent containing a sulfur atom having a boiling point of 250 ° C. or higher include sulfolane (boiling point: 285 ° C.).
  • the organic EL element may contain one or more solvents A having a boiling point of 250 ° C. or higher.
  • the solvent A contained in the organic EL element can be measured by, for example, a head space gas chromatography method. Similar to the gas chromatography method, the target organic solvent can be quantified from the calibration curve and the AREA area acquired in advance.
  • the specific measurement method / quantitative method is as follows.
  • the volume of the organic EL material in the organic EL element is measured by a method described later.
  • the organic EL element is pulverized by a mill or the like, and a predetermined amount is sealed in a head space vial to produce a measurement sample.
  • a gas chromatography mass spectrometer with a headspace autosampler the m / z of the solvent peak contained in the scan measurement is specified, and the solvent species is specified.
  • a standard curve of the content and the AREA area value measured by gas chromatography is prepared using a standard product of the specified solvent type. Detailed measurement in the vicinity of the identified m / z is performed, the AREA area value of the solvent species contained in the measurement sample is measured, and the content is calculated from the calibration curve.
  • the volume of the organic EL material in the organic EL element can be calculated from the light emitting area and the film thickness, for example.
  • the light emitting area can be confirmed electrically, or can be confirmed by a polarizing microscope or the like.
  • the film thickness can be confirmed with an LCR meter, a step gauge, or the like, or can be confirmed with cross-sectional observation using an electron microscope or the like.
  • examples of the polymer compound include a polymer compound containing a structural unit represented by the formula (Y).
  • Ar Y1 represents an arylene group, a divalent heterocyclic group, or a divalent group in which at least one arylene group and at least one divalent heterocyclic group are directly bonded, and these This group may have a substituent.
  • the arylene group represented by Ar Y1 is preferably a phenylene group, a phenanthrene diyl group, a dihydrophenanthrene diyl group or a fluorenediyl group, and more preferably a phenylene group or a fluorenediyl group. It may have a substituent.
  • the divalent heterocyclic group represented by Ar Y1 is preferably bonded directly from pyridine, diazabenzene, triazine, carbazole, dibenzofuran, dibenzothiophene, phenoxazine or phenothiazine to the carbon atom or heteroatom constituting the ring.
  • the hydrogen atoms directly bonded to the carbon atom or hetero atom constituting the ring from pyridine, diazabenzene, or triazine are divalent groups excluding two hydrogen atoms, and these groups may have a substituent.
  • Preferred range, more preferred range of arylene group and divalent heterocyclic group in a divalent group in which at least one kind of arylene group represented by Ar Y1 and at least one kind of divalent heterocyclic group are directly bonded. are respectively the same as the preferred range and more preferred range of the arylene group and divalent heterocyclic group represented by Ar Y1 described above.
  • the divalent group in which at least one arylene group and at least one divalent heterocyclic group are directly bonded may have a substituent.
  • divalent group in which at least one arylene group and at least one divalent heterocyclic group are directly bonded examples include groups represented by the following formulas. These may have a substituent.
  • the substituent that the group represented by Ar Y1 may have is preferably an alkyl group, a cycloalkyl group, or an aryl group, and these groups may further have a substituent.
  • the substituent that the substituent represented by the group represented by Ar Y1 may further have is preferably an alkyl group or a cycloalkyl group, and these groups further have a substituent. It may be preferable, but it preferably has no substituent.
  • Examples of the structural unit represented by the formula (Y) include structural units represented by the following formulas (Y-1) to (Y-10). From the viewpoint of the luminance life of the organic EL device according to the present invention, it is preferably a structural unit represented by formulas (Y-1) to (Y-3), and from the viewpoint of electron transport properties, Y-4) to (Y-7) are structural units represented by formulas (Y-8) to (Y-10) from the viewpoint of hole transportability. .
  • R Y1 represents a hydrogen atom, an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, or a monovalent heterocyclic group, and these groups may have a substituent.
  • a plurality of R Y1 may be the same or different, and adjacent R Y1 may be bonded to each other to form a ring together with the carbon atom to which each is bonded.
  • R Y2 represents a hydrogen atom, an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, or a monovalent heterocyclic group, and these groups may have a substituent.
  • a plurality of R Y2 may be the same or different, and R Y2 may be bonded to each other to form a ring together with the carbon atom to which each is bonded.
  • R Y1 is preferably a hydrogen atom, an alkyl group, a cycloalkyl group, or an aryl group, and these groups optionally have a substituent.
  • R Y2 is preferably an alkyl group, a cycloalkyl group, an aryl group or a monovalent heterocyclic group, more preferably an alkyl group, a cycloalkyl group or an aryl group, and these groups have a substituent. You may do it.
  • the combination of two R Y2 in the group represented by —C (R Y2 ) 2 — is preferably an alkyl group or a cycloalkyl group, both an aryl group, and both are monovalent complex
  • Two R Y2 s may be bonded to each other to form a ring together with the atoms to which they are bonded.
  • R Y2 forms a ring
  • the group represented by —C (R Y2 ) 2 — Is preferably a group represented by formulas (Y-A1) to (Y-A5), more preferably a group represented by formula (Y-A4), and these groups have a substituent. It may be.
  • the combination of two R Y2 in the group represented by —C (R Y2 ) ⁇ C (R Y2 ) — is preferably such that both are alkyl groups or cycloalkyl groups, or one is an alkyl group Alternatively, a cycloalkyl group and the other is an aryl group, and these groups optionally have a substituent.
  • R Y2 in the group represented by —C (R Y2 ) 2 —C (R Y2 ) 2 — are preferably an alkyl group or a cycloalkyl group which may have a substituent. It is. A plurality of R Y2 may be bonded to each other to form a ring together with the atoms to which each is bonded. When R Y2 forms a ring, —C (R Y2 ) 2 —C (R Y2 ) 2 —
  • the group represented is preferably a group represented by the formula (Y-B1) to (Y-B5), more preferably a group represented by the formula (Y-B3). These groups are substituted It may have a group.
  • R Y2 represents the same meaning as described above.
  • X Y1 is preferably a group represented by —C (R Y2 ) 2 —.
  • the structural unit represented by the formula (Y-1) is preferably a structural unit represented by the following formula (Y-1 ′).
  • the structural unit represented by the formula (Y-2) is preferably a structural unit represented by the following formula (Y-2 ′).
  • the structural unit represented by the formula (Y-3) is preferably a structural unit represented by the following formula (Y-3 ′).
  • R Y1 and X Y1 represent the same meaning as described above.
  • R Y11 represents a fluorine atom, an alkyl group, a cycloalkyl group, an aryl group, a monovalent heterocyclic group, an alkoxy group, a cycloalkoxy group, or a substituted amino group, and these groups optionally have a substituent.
  • a plurality of R Y11 may be the same or different.
  • R Y11 is preferably an alkyl group, a cycloalkyl group, an aryl group or a monovalent heterocyclic group, more preferably an alkyl group, a cycloalkyl group or an aryl group, still more preferably an alkyl group or a cyclo It is an alkyl group, and these groups may have a substituent.
  • R Y1 represents the same meaning as described above.
  • R Y3 represents a hydrogen atom, an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, or a monovalent heterocyclic group, and these groups may have a substituent.
  • R Y3 is preferably an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group or a monovalent heterocyclic group, more preferably an aryl group, and these groups have a substituent. May be.
  • R Y1 represents the same meaning as described above.
  • R Y4 represents a hydrogen atom, an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, or a monovalent heterocyclic group, and these groups optionally have a substituent.
  • R Y4 is preferably an alkyl group, a cycloalkyl group, an aryl group, or a monovalent heterocyclic group, more preferably an aryl group, and these groups optionally have a substituent.
  • the preferred range of the substituent that the group represented by R Y1 to R Y4 and R Y11 may have is the same as the preferred range of the substituent that the group represented by Ar Y1 may have. .
  • Examples of the structural unit represented by the formula (Y) include structural units composed of an arylene group represented by the formulas (Y-101) to (Y-120), and the formulas (Y-201) to (Y-206).
  • the structural unit represented by the formula (Y), wherein Ar Y1 is an arylene group, is preferably 0.1 to 100 mol% with respect to the total amount of the structural units contained in the polymer compound, More preferably, it is 1 to 99 mol%, further preferably 30 to 95 mol%, particularly preferably 50 to 90 mol%, may be 0.5 to 80 mol%, and may be 30 to 60 mol%. There may be.
  • a structural unit represented by the formula (Y), wherein Ar Y1 is a divalent heterocyclic group, or at least one arylene group and at least one divalent heterocyclic group are directly bonded.
  • the structural unit that is the group is preferably 0.5 to 30 mol%, more preferably 3 to 20 mol%, based on the total amount of the structural units contained in the polymer compound.
  • the structural unit represented by the formula (Y) may be included in the polymer compound alone or in combination of two or more.
  • the polymer compound containing the structural unit represented by the formula (Y) has excellent hole transport properties, it is preferable that the polymer compound further contains a structural unit represented by the following formula (X).
  • a X1 and a X2 each independently represent an integer of 0 or more.
  • Ar X1 and Ar X3 each independently represent an arylene group or a divalent heterocyclic group, and these groups optionally have a substituent.
  • Ar X2 and Ar X4 each independently represent an arylene group, a divalent heterocyclic group, or a divalent group in which at least one arylene group and at least one divalent heterocyclic group are directly bonded to each other. And these groups may have a substituent.
  • Ar X2 and Ar X4 When there are a plurality of Ar X2 and Ar X4 , they may be the same or different.
  • R X1 , R X2 and R X3 each independently represent a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group or a monovalent heterocyclic group, and these groups may have a substituent. When there are a plurality of R X2 and R X3 , they may be the same or different. ]
  • a X1 is usually an integer of 0 to 5, preferably an integer of 0 to 2, and more preferably 0 or 1.
  • a X2 is usually an integer of 0 to 5, preferably an integer of 0 to 2, and more preferably 0.
  • R X1 , R X2 and R X3 are the same as the preferred range and more preferred range of R Y4 .
  • Preferred ranges and more preferred ranges of the arylene group and the divalent heterocyclic group represented by Ar X1 , Ar X2 , Ar X3 and Ar X4 are the arylene group and the divalent heterocyclic group represented by Ar Y1 , respectively.
  • the preferred range is the same as the more preferred range.
  • Examples and preferred ranges of a divalent group in which at least one arylene group represented by Ar X2 and Ar X4 and at least one divalent heterocyclic group are directly bonded are at least represented by Ar Y1.
  • Ar X1 , Ar X2 , Ar X3 and Ar X4 are preferably an arylene group which may have a substituent.
  • the preferred range of the substituent that the group represented by Ar X1 to Ar X4 and R X1 to R X3 may have is the same as the preferred range of the substituent that the group represented by Ar Y1 may have. is there.
  • the structural unit represented by the formula (X) is preferably 0.1 to 99 mol%, more preferably 1 to 50 mol%, still more preferably based on the total amount of structural units contained in the polymer compound. Is 5-30 mol%
  • the structural unit represented by the formula (Y) may be included in the polymer compound alone or in combination of two or more.
  • examples of the low molecular compound include a low molecular compound represented by the formula (H-1).
  • Ar H1 and Ar H2 each independently represent an aryl group or a monovalent heterocyclic group, and these groups optionally have a substituent.
  • n H1 and n H2 each independently represent 0 or 1. When a plurality of n H1 are present, they may be the same or different. A plurality of n H2 may be the same or different.
  • n H3 represents an integer of 0 or more and 10 or less.
  • L H1 represents an arylene group, a divalent heterocyclic group, or a group represented by — [C (R H11 ) 2 ] n H11 —, and these groups optionally have a substituent. When a plurality of L H1 are present, they may be the same or different.
  • n H11 represents an integer of 1 to 10.
  • R H11 represents a hydrogen atom, an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, or a monovalent heterocyclic group, and these groups may have a substituent.
  • a plurality of R H11 may be the same or different, and may be bonded to each other to form a ring together with the carbon atoms to which they are bonded.
  • L H2 represents a group represented by —N (—L H21 —R H21 ) —. When a plurality of L H2 are present, they may be the same or different.
  • L H21 represents a single bond, an arylene group or a divalent heterocyclic group, and these groups optionally have a substituent.
  • R H21 represents a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group, or a monovalent heterocyclic group, and these groups optionally have a substituent.
  • Ar H1 and Ar H2 are phenyl group, fluorenyl group, spirobifluorenyl group, pyridyl group, pyrimidinyl group, triazinyl group, quinolinyl group, isoquinolinyl group, thienyl group, benzothienyl group, dibenzothienyl group, furyl group, benzofuryl Group, dibenzofuryl group, pyrrolyl group, indolyl group, azaindolyl group, carbazolyl group, azacarbazolyl group, diazacarbazolyl group, phenoxazinyl group or phenothiazinyl group, phenyl group, fluorenyl group, spirobifluorene Nyl group, pyridyl group, pyrimidinyl group, triazinyl group, dibenzothienyl group, dibenzofuryl group, carbazolyl group or azacarb
  • Ar H1 and Ar H2 may have, a halogen atom, an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, or a monovalent heterocyclic group is preferable.
  • An alkoxy group, an alkoxy group or a cycloalkoxy group is more preferable, an alkyl group or a cycloalkoxy group is more preferable, and these groups may further have a substituent.
  • substituents which Ar H1 and Ar H2 may have may further have an alkyl group, a cycloalkyl group, an aryl group or a monovalent heterocyclic group, an alkyl group or a cyclo Alkyl groups are more preferred, and these groups may further have a substituent, but preferably have no further substituent.
  • n H1 is preferably 1.
  • n H2 is preferably 0.
  • n H3 is preferably an integer of 0 or more and 5 or less, more preferably an integer of 1 or more and 3 or less, and particularly preferably 1.
  • n H11 is preferably an integer of 1 or more and 5 or less, more preferably an integer of 1 or more and 3 or less, and even more preferably 1.
  • R H11 is preferably a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group or a monovalent heterocyclic group, more preferably a hydrogen atom, an alkyl group or a cycloalkyl group, and a hydrogen atom or an alkyl group. It is more preferable that these groups may have a substituent, but it is preferable that these groups further have no substituent.
  • L H1 is preferably an arylene group or a divalent heterocyclic group, and these groups may further have a substituent.
  • L H1 examples include groups represented by the following formulas (A-1) to (A-20) and groups represented by the formulas (AA-1) to (AA-34). It is done. L H1 represents formula (A-1) to formula (A-3), formula (A-8) to formula (A-10), formula (AA-1) to formula (AA-6), formula (AA— It is preferably a group represented by formula (AA-21) or formula (AA-24) to formula (AA-34), and is represented by formula (A-1), formula (A-2), formula (A A-8), formula (A-9), formula (AA-1) to formula (AA-4), formula (AA-10) to formula (AA-15), formula (AA-33) or formula (AA) More preferably a group represented by formula (A-1), formula (A-2), formula (A-8), formula (AA-2), formula (AA-4), A group represented by formula (AA-10), formula (AA-12), formula (AA-14) or (AA-33) is more preferred, and formula (A-8), formula (AA-10) ), A group represented by formula (AA-12) or formula (AA
  • R and R a each independently represents a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group or a monovalent heterocyclic group.
  • a plurality of R and R a may be the same or different, and R a may be bonded to each other to form a ring together with the atoms to which they are bonded.
  • L H1 may have, a halogen atom, an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, or a monovalent heterocyclic group is preferable, and an alkyl group, an alkoxy group, an aryl group Group or a monovalent heterocyclic group is more preferable, an alkyl group, an aryl group or a monovalent heterocyclic group is further preferable, and a monovalent heterocyclic group is particularly preferable, and these groups further have a substituent. Also good.
  • substituents which L H1 may have may further have an alkyl group, a cycloalkyl group, an aryl group or a monovalent heterocyclic group, an alkyl group or a cycloalkyl group is preferable. More preferably, these groups may further have a substituent, but preferably do not further have a substituent.
  • L H21 is preferably a single bond or an arylene group, more preferably a single bond, and this arylene group may have a substituent.
  • the definition and examples of the arylene group or divalent heterocyclic group represented by L H21 are the same as the definitions and examples of the arylene group or divalent heterocyclic group represented by L H1 .
  • Definitions and examples of the substituent that L H21 may have are the same as the definitions and examples of the substituent that L H1 may have.
  • R H21 is preferably an aryl group or a monovalent heterocyclic group, and these groups optionally have a substituent. Definitions and examples of the aryl group and monovalent heterocyclic group represented by R H21 are the same as those of the aryl group and monovalent heterocyclic group represented by Ar H1 and Ar H2 . Definitions and examples of the substituent that R H21 may have are the same as the definitions and examples of the substituent that Ar H1 and Ar H2 may have.
  • the compound represented by the formula (H-1) is preferably a compound represented by the formula (H-2).
  • Examples of the compound represented by the formula (H-1) include compounds represented by the following formula.
  • Z represents a group represented by —N ⁇ or a group represented by —CH ⁇ .
  • the compound represented by the formula (H-1) is Aldrich, Luminescence Technology® Corp. Etc. are available.
  • Low molecular weight compounds include guest materials, namely naphthalene and its derivatives, anthracene and its derivatives, perylene and its derivatives, and triplet light-emitting complexes (phosphorescent compounds) with iridium, platinum or europium as the central metal. To do.
  • iridium complexes such as metal complexes represented by the formulas Ir-1 to Ir-5 are preferable.
  • R D1 to R D8 , R D11 to R D20 , R D21 to R D26 and R D31 to R D37 are each independently a hydrogen atom, alkyl group, cycloalkyl group, alkoxy group, cycloalkoxy group, aryl group, aryl An oxy group, a monovalent heterocyclic group, a substituted amino group, or a halogen atom is represented, and these groups may have a substituent.
  • R D1 to R D8 , R D11 to R D20 , R D21 to R D26 and R D31 to R D37 they may be the same or different.
  • a D1 ——A D2 — represents an anionic bidentate ligand, and A D1 and A D2 each independently represent a carbon atom, an oxygen atom or a nitrogen atom bonded to an iridium atom, The atom may be an atom constituting a ring. When a plurality of -A D1 --- A D2 -are present, they may be the same or different. n D1 represents 1, 2 or 3, and n D2 represents 1 or 2. ]
  • R D1 to R D8 , R D11 to R D20 , R D21 to R D26 and R D31 to R D37 are preferably a hydrogen atom, alkyl group, cycloalkyl group, alkoxy group, cycloalkoxy group, aryl group, aryloxy Group, a monovalent heterocyclic group or a halogen atom, more preferably a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group or a monovalent heterocyclic group, still more preferably a hydrogen atom, an aryl group or 1
  • a valent heterocyclic group, particularly preferably a hydrogen atom or an aryl group, and these groups optionally have a substituent.
  • R D1 to R D8 , R D11 to R D20 , R D21 to R D26 and R D31 to R D37 may have, preferably an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy Group, aryl group, aryloxy group, monovalent heterocyclic group, substituted amino group or halogen atom, more preferably alkyl group, cycloalkyl group, aryl group or monovalent heterocyclic group, still more preferably.
  • R D1 to R D8 , R D11 to R D20 , R D21 to R D26 and R D31 to R D37 may further have are preferably alkyl groups, A cycloalkyl group, an aryl group or a monovalent heterocyclic group, more preferably an alkyl group or a cycloalkyl group, and these groups may further have a substituent, but further have a substituent. Preferably not.
  • At least one of R D1 to R D8 is preferably an aryl group, a monovalent heterocyclic group or a substituted amino group, more preferably a formula (DA) It is group represented by these.
  • at least one of R D11 to R D20 is preferably an aryl group, a monovalent heterocyclic group or a substituted amino group, more preferably a formula (DA) It is group represented by these.
  • At least one of R D1 to R D8 and R D11 to R D20 is preferably an aryl group, a monovalent heterocyclic group, or a substituted amino group, more preferably Is a group represented by the formula (DA).
  • at least one of R D21 to R D26 is preferably an aryl group, a monovalent heterocyclic group or a substituted amino group, more preferably a formula (DA) It is group represented by these.
  • R D31 to R D37 is preferably an aryl group, a monovalent heterocyclic group or a substituted amino group, more preferably a formula (DA) It is group represented by these.
  • m DA1 , m DA2 and m DA3 each independently represent an integer of 0 or more.
  • GDA represents a nitrogen atom, a trivalent aromatic hydrocarbon group, or a trivalent heterocyclic group, and these groups may have a substituent.
  • Ar DA1 , Ar DA2 and Ar DA3 each independently represent an arylene group or a divalent heterocyclic group, and these groups optionally have a substituent.
  • T DA represents an aryl group or a monovalent heterocyclic group, and these groups optionally have a substituent.
  • the plurality of TDAs may be the same or different.
  • m DA1 , m DA2 and m DA3 are usually an integer of 10 or less, preferably an integer of 5 or less, more preferably 0 or 1.
  • m DA1 , m DA2 and m DA3 are preferably the same integer.
  • G DA is preferably a trivalent aromatic hydrocarbon group or a trivalent heterocyclic group, more preferably a group represented by the formula (GDA-11) ⁇ (GDA -15), these The group may have a substituent.
  • R DA represents a hydrogen atom, an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, or a monovalent heterocyclic group, and these groups may further have a substituent.
  • RDA represents a hydrogen atom, an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, or a monovalent heterocyclic group, and these groups may further have a substituent.
  • RDA represents a hydrogen atom, an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an aryl group, or a monovalent heterocyclic group, and these groups may further have a substituent.
  • RDA represents a hydrogen atom, an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group, an
  • R DA is preferably a hydrogen atom, an alkyl group, a cycloalkyl group, an alkoxy group or a cycloalkoxy group, more preferably a hydrogen atom, an alkyl group or a cycloalkyl group, and these groups have a substituent. May be.
  • Ar DA1 , Ar DA2 and Ar DA3 are preferably groups represented by the formulas (ArDA-1) to (ArDA-3).
  • R DA represents the same meaning as described above.
  • R DB represents a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group or a monovalent heterocyclic group, and these groups may have a substituent. When there are a plurality of RDBs , they may be the same or different. ]
  • T DA is preferably a group represented by the formula (TDA-1) ⁇ (TDA -3).
  • the group represented by the formula (D-A) is preferably a group represented by the formulas (D-A1) to (D-A3).
  • R p1 , R p2 and R p3 each independently represents an alkyl group, a cycloalkyl group, an alkoxy group, a cycloalkoxy group or a halogen atom.
  • R p1 and R p2 may be the same or different.
  • np1 represents an integer of 0 to 5
  • np2 represents an integer of 0 to 3
  • np3 represents 0 or 1.
  • a plurality of np1 may be the same or different.
  • Np1 is preferably an integer of 0 to 3, more preferably an integer of 1 to 3, and still more preferably 1.
  • np2 is preferably 0 or 1, more preferably 0.
  • np3 is preferably 0.
  • R p1 , R p2 and R p3 are preferably an alkyl group or a cycloalkyl group.
  • Preferred ranges of substituents that G DA , Ar DA1 , Ar DA2 , Ar DA3 , T DA , R DA and R DB may have are R D1 to R D8 , R D11 to R D20 , R D21 to R D26 and R D31 to R D37 are the same as the preferred ranges of the substituents that the substituents that R D31 and R D37 may have further have.
  • Examples of the anionic bidentate ligand represented by —A D1 ——A D2 — include a ligand represented by the following formula.
  • the metal complex represented by the formula Ir-1 is preferably a metal complex represented by the formulas Ir-11 to Ir-13.
  • the metal complex represented by the formula Ir-2 is preferably a metal complex represented by the formula Ir-21.
  • the metal complex represented by the formula Ir-3 is preferably a metal complex represented by the formula Ir-31 to Ir-33.
  • the metal complex represented by the formula Ir-4 is preferably a metal complex represented by the formula Ir-41 to Ir-43.
  • the metal complex represented by the formula Ir-5 is preferably a metal complex represented by the formula Ir-51 to Ir-53.
  • D represents a group represented by the formula (DA).
  • a plurality of D may be the same or different.
  • R DC represents a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group, or a monovalent heterocyclic group, and these groups optionally have a substituent.
  • a plurality of R DCs may be the same or different.
  • R DD represents an alkyl group, a cycloalkyl group, an aryl group, or a monovalent heterocyclic group, and these groups optionally have a substituent.
  • a plurality of R DD may be the same or different.
  • triplet light-emitting complex examples include the metal complexes shown below.
  • the content of the guest material is usually 0 with respect to 100 parts by weight of the organic EL material (high molecular compound and low molecular compound). .1 to 400 parts by weight.
  • the antioxidant may be any compound that does not inhibit light emission and charge transport, and examples thereof include phenol-based antioxidants and phosphorus-based antioxidants.
  • the antioxidant is preferably soluble in the same solvent as the high molecular compound or low molecular compound that is the organic EL material.
  • the blending amount of the antioxidant is usually 0.001 to 10 parts by weight with respect to 100 parts by weight of the organic EL material (high molecular compound and low molecular compound).
  • Antioxidants may be used alone or in combination of two or more.
  • the organic EL element of the present invention is preferably an organic EL element having an electrode and two or more (or three or more) organic EL material layers on a substrate.
  • the organic EL element is formed by applying and drying a solution containing a solvent A containing a solvent A having a boiling point of 250 ° C. or higher at 1 atm and an organic EL material to form one or more organic EL material layers.
  • the ratio X A ( ⁇ g / cm 3 ) of the content ( ⁇ g) of the solvent A in the organic EL element to the volume (cm 3 ) of the organic EL material in the EL element is represented by the formula (1): 5 ⁇ X A ⁇ 2650 (1) It is manufactured by adjusting to satisfy.
  • solvent B ⁇ A solvent containing the solvent A having a boiling point of 250° C. or higher under 1 atm>
  • the solvent containing the solvent A having a boiling point of 250 ° C. or higher at 1 atm refers to the solvent A having a boiling point of 250 ° C. or higher as described in the section “2.
  • solvent B other solvents B (hereinafter also referred to as “solvent B”).
  • the range of the boiling point of the solvent B may be appropriately determined in consideration of workability and the like, and is usually 50 ° C. or higher and lower than 250 ° C., preferably 80 ° C. or higher and lower than 250 ° C., more preferably 100 ° C. or higher and lower than 250 ° C., more preferably Is 120 ° C. or higher and lower than 250 ° C., particularly preferably 160 ° C. or higher and lower than 250 ° C.
  • the solvent B may be used in combination of two or more organic solvents having different boiling points.
  • Solvent B is preferably an organic solvent that can dissolve or uniformly disperse the organic EL material (such as the high molecular compound and / or low molecular compound).
  • solvents B halogenated hydrocarbon solvents, aliphatic hydrocarbon solvents, aromatic hydrocarbon solvents, aliphatic ether solvents, aromatic ether solvents, alcohol solvents, ketone solvents, amide solvents, ester solvents, carbonate solvents are preferable. .
  • halogenated hydrocarbon solvent examples include dichloroethane, trichloroethane, chlorobenzene, and dichlorobenzene.
  • aliphatic hydrocarbon solvent examples include cyclohexane, methylcyclohexane, pentane, hexane, heptane, octane, nonane, decane, dodecane, and bicyclohexyl.
  • aromatic hydrocarbon solvent examples include toluene, xylene, ethylbenzene, trimethylbenzene, tetramethylbenzene, propylbenzene, butylbenzene, pentylbenzene, cyclopentylbenzene, methylcyclopentylbenzene, hexylbenzene, cyclohexylbenzene, methylcyclohexylbenzene, heptyl.
  • aromatic hydrocarbon solvent examples include toluene, xylene, ethylbenzene, trimethylbenzene, tetramethylbenzene, propylbenzene, butylbenzene, pentylbenzene, cyclopentylbenzene, methylcyclopentylbenzene, hexylbenzene, cyclohexylbenzene, methylcyclohexylbenzene, heptyl.
  • examples include benzene
  • aliphatic ether solvent examples include diisopropyl ether, methyl butyl ether, dibutyl ether, tetrahydrofuran, dioxane, ethylene glycol dimethyl ether, ethylene glycol diethyl ether, diethylene glycol dimethyl ether, and triethylene glycol dimethyl ether.
  • aromatic ether solvent examples include anisole, dimethoxybenzene, trimethoxybenzene, ethoxybenzene, propoxybenzene, butoxybenzene, methylpropoxybenzene, butoxybenzene, methoxytoluene, ethoxytoluene, methoxynaphthalene, ethoxynaphthalene and phenoxytoluene. Can be mentioned.
  • alcohol solvent examples include ethanol, propanol, butanol, pentanol, cyclopentanol, hexanol, cyclohexanol, heptanol, octanol, benzyl alcohol, phenylethanol, ethylene glycol, propylene glycol, diethylene glycol monomethyl ether, and propanediol. .
  • ketone solvent examples include acetone, methyl ethyl ketone, methyl butyl ketone, dibutyl ketone, cyclohexanone, methyl cyclohexanone, hexanone, octanone, nonanone, phenylacetone, acetylacetone, acetonylacetone, acetophenone, methylnaphthylketone, and isophorone.
  • amide solvent examples include N-methylpyrrolidone, N-ethylpyrrolidone, N, N-dimethylacetamide, N, N-dimethylformamide and 1,3-dimethyl-2-imidazolidinone.
  • ester solvent examples include butyl acetate, ethyl acetate, propyl acetate, pentyl acetate, ethyl propionate, ethyl butyrate, propylene glycol monomethyl ether acetate, ethylene glycol monoethyl ether acetate, diethylene glycol monobutyl ether acetate, diethylene glycol monoethyl ether acetate, Ethyl-3-ethoxypyropionate, 3-methoxybutyl acetate, 3-methyl-3-methoxybutyl acetate, propyl formate, propyl lactate, ethyl phenylacetate, ethyl benzoate, ⁇ -propiolactone, ⁇ -butyrolactone, and , ⁇ -valerolactone.
  • Examples of the carbonate solvent include dimethyl carbonate, diethyl carbonate, ethylene carbonate, and propylene carbonate.
  • the solvent containing the solvent A having a boiling point of 250 ° C. or higher at 1 atm is desirably a solvent in which the solubility of the organic EL material (polymer compound and / or low molecular compound) is in a desirable range. It is desirable that the organic EL material has a solubility of usually 0.01% by weight or more, particularly 0.1% by weight or more.
  • the solvent may be one kind or a mixed solvent in which two or more kinds are combined.
  • the solvent is not necessarily required to have the solubility of the organic EL material alone in the above range, and other organic solvents are used in combination even if the solubility is less than 0.01% by weight.
  • the solubility in the mixed solvent is usually 0.01% by weight or more, preferably 0.01% by weight or more.
  • the blending ratio can be set widely within the range where the effects of the present invention are exhibited.
  • the mixing ratio of the solvent A and the solvent B is usually 10 to 10,000 parts by weight with respect to 1 part by weight of the solvent A.
  • Each layer of the organic EL material layer in the organic EL element is made of, for example, a spin coat method, a casting method, a micro gravure coat method, a gravure coat method, a bar coat method, a roll coat method, a wire bar coat method, a dip. It can be produced by a coating method, a spray coating method, a screen printing method, a flexographic printing method, an offset printing method, an ink jet printing method, a capillary coating method, or a nozzle coating method.
  • the thickness of each layer in the organic EL element is usually 1 nm to 10 ⁇ m.
  • each layer in the organic EL element for example, at least one organic EL material selected from the group consisting of a hole transport material, a hole injection material, an electron transport material, an electron injection material, and a light emitting material, and the above 1 A composition (ink) containing a solvent containing a solvent A having a boiling point of 250 ° C. or higher under atmospheric pressure can be used.
  • This ink is suitable for producing an organic EL element using a printing method such as an inkjet printing method or a nozzle printing method.
  • the organic EL material is selected from the high molecular compounds and the low molecular compounds.
  • the viscosity of the ink may be adjusted according to the type of printing method, but when applying a printing method such as an inkjet printing method to a printing method that passes through a discharge device, in order to prevent clogging and flight bending at the time of discharge. It is preferably 1 to 20 mPa ⁇ s at 25 ° C.
  • the amount of the solvent containing the solvent A having a boiling point of 250 ° C. or higher in the ink at 1 atm is usually 1000 to 100,000 parts by weight with respect to 100 parts by weight of the organic EL material.
  • the drying of the coating film obtained by the inkjet printing method can be appropriately selected according to the type of each layer. Usually, heating can be performed at 100 to 250 ° C., preferably 150 to 200 ° C. for 5 to 60 minutes in an air atmosphere or an inert gas (nitrogen, argon, etc.) atmosphere. Further, heating may be performed under normal pressure (1 atm) or reduced pressure (100 Pa to 0.1 MPa).
  • the temperature, pressure and time in this drying step can be set such that the solvent B having a low boiling point is removed and a predetermined amount of the solvent A having a high boiling point remains in each layer. That is, the present drying process, in the organic EL element, the ratio X A solvent A to the volume of the organic EL materials can be adjusted to satisfy the equation (1).
  • a hole transport material is used for the hole transport layer.
  • the hole transport material is selected from the aforementioned low molecular weight compounds and high molecular weight compounds.
  • the polymer compound include polyvinyl carbazole and derivatives thereof; polyarylene having an aromatic amine structure in the side chain or main chain and derivatives thereof.
  • the polymer compound may be a compound to which an electron accepting site is bonded. Examples of the electron accepting site include fullerene, tetrafluorotetracyanoquinodimethane, tetracyanoethylene, trinitrofluorenone and the like.
  • the compounding amount of the hole transport material in the ink is usually 1 to 400 parts by weight with respect to 100 parts by weight of the total solvent.
  • the content of the hole transport material with respect to the total weight of the ink is usually 0.1 to 30% by weight.
  • the hole transport material may be used alone or in combination of two or more.
  • An electron transport material is usually used for the electron transport layer.
  • the electron transport material is selected from the aforementioned low molecular weight compounds and high molecular weight compounds.
  • the low molecular weight compound include a metal complex having 8-hydroxyquinoline as a ligand, oxadiazole, anthraquinodimethane, benzoquinone, naphthoquinone, anthraquinone, tetracyanoanthraquinodimethane, fluorenone, diphenyldicyanoethylene, and , Diphenoquinone, and derivatives thereof.
  • the polymer compound include polyphenylene, polyfluorene, and derivatives thereof.
  • the polymer compound may be doped with a metal.
  • the amount of the electron transport material is usually 1 to 400 parts by weight with respect to 100 parts by weight of the total solvent.
  • the content of the electron transport material with respect to the total weight of the ink is usually 0.1 to 30% by weight.
  • An electron transport material may be used individually by 1 type, or may use 2 or more types together.
  • a hole injection material and an electron injection material are usually used.
  • the hole injection material and the electron injection material are each selected from a low molecular compound and a high molecular compound.
  • low molecular weight compounds include metal phthalocyanines such as copper phthalocyanine; carbon; metal oxides such as molybdenum and tungsten; and metal fluorides such as lithium fluoride, sodium fluoride, cesium fluoride, and potassium fluoride.
  • metal phthalocyanines such as copper phthalocyanine
  • carbon such as carbon
  • metal oxides such as molybdenum and tungsten
  • metal fluorides such as lithium fluoride, sodium fluoride, cesium fluoride, and potassium fluoride.
  • polymer compound examples include polyaniline, polythiophene, polypyrrole, polyphenylene vinylene, polythienylene vinylene, polyquinoline, and polyquinoxaline, and derivatives thereof; polymers containing an aromatic amine structure in the main chain or side chain, etc.
  • the conductive polymer is mentioned.
  • the amount of the hole injection material and the electron injection material is usually 1 to 400 parts by weight with respect to 100 parts by weight of the total solvent.
  • the content of the hole injection material and the electron injection material with respect to the total weight of the ink is usually 0.1 to 30% by weight.
  • Each of the hole injection material and the electron injection material may be used alone or in combination of two or more.
  • the electrical conductivity of the conductive polymer is preferably 1 ⁇ 10 ⁇ 5 S / cm to 1 ⁇ 10 3 S / cm.
  • the conductive polymer can be doped with an appropriate amount of ions.
  • the kind of ions to be doped is an anion for a hole injection material and a cation for an electron injection material.
  • the anion include polystyrene sulfonate ion, alkylbenzene sulfonate ion, and camphor sulfonate ion.
  • the cation include lithium ion, sodium ion, potassium ion, and tetrabutylammonium ion.
  • the substrate in the organic EL element only needs to be a substrate that can form an electrode and does not change chemically when forming the organic layer.
  • the substrate is made of a material such as glass, plastic, or silicon.
  • the electrode farthest from the substrate is preferably transparent or translucent.
  • Examples of the material for the anode include conductive metal oxides and translucent metals, preferably indium oxide, zinc oxide, tin oxide; indium tin oxide (ITO), indium zinc oxide, etc.
  • conductive metal oxides and translucent metals preferably indium oxide, zinc oxide, tin oxide; indium tin oxide (ITO), indium zinc oxide, etc.
  • Examples of the material of the cathode include metals such as lithium, sodium, potassium, rubidium, cesium, beryllium, magnesium, calcium, strontium, barium, aluminum, zinc, indium; two or more kinds of alloys thereof; Alloys of at least one species and at least one of silver, copper, manganese, titanium, cobalt, nickel, tungsten, and tin; and graphite and graphite intercalation compounds.
  • Each of the anode and the cathode may have a laminated structure of two or more layers.
  • the organic EL element of the present invention is useful for applications such as displays and lighting.
  • Synthesis Example 1 (Synthesis of phosphorescent compound E1) The phosphorescent compound E1 was synthesized according to the method described in JP-A-2006-188673.
  • Monomer CM1 was synthesized according to the method described in JP2011-174061A.
  • Monomer CM2 was synthesized according to the method described in WO2002 / 045184.
  • Monomer CM3 was synthesized according to the method described in JP 2008-106241 A.
  • Monomer CM4 was synthesized according to the method described in JP-A-2003-226744.
  • the washed organic layer was purified by passing through an alumina column and a silica gel column in this order.
  • the obtained purified solution was added dropwise to methanol and stirred to produce a precipitate.
  • the obtained precipitate was collected by filtration and dried to obtain 204 g of polymer compound P1.
  • the Mn of the polymer compound P1 was 6.7 ⁇ 10 4 and the Mw was 2.3 ⁇ 10 5 .
  • the polystyrene-equivalent number average molecular weight (Mn) and weight average molecular weight (Mw) were measured using HLC-8320GPC manufactured by Tosoh Corporation. The measurement conditions for GPC are shown below.
  • the polymer compound P1 has a constitutional unit derived from the monomer CM1, a constitutional unit derived from the monomer CM2, and a constitution derived from the monomer CM3 in terms of theoretical values obtained from the amounts of raw materials charged.
  • This is a copolymer in which the unit and the structural unit derived from the monomer CM4 are configured in a molar ratio of 50: 12.5: 7.5: 30.
  • Monomer CM5 was synthesized according to the method described in JP 2010-189630 A.
  • Monomer CM9 was synthesized according to the method described in International Publication No. 2012/86671.
  • Monomer CM12 was synthesized according to the method described in JP 2010-189630 A.
  • the polymer compound P2 was synthesized according to the method described in JP 2012-36388 A using monomer CM5, monomer CM9 and monomer CM12.
  • the Mn of the polymer compound P2 was 9.1 ⁇ 10 4 and the Mw was 2.3 ⁇ 10 5 .
  • the polystyrene-equivalent number average molecular weight (Mn) and weight average molecular weight (Mw) were measured using HLC-8320GPC manufactured by Tosoh Corporation.
  • the GPC measurement conditions are the same as those in Synthesis Example 2.
  • the polymer compound P2 has a constitutional unit derived from the monomer CM5, a constitutional unit derived from the monomer CM9, and a constitution derived from the monomer CM12 in the theoretical value obtained from the amount of the raw materials charged.
  • a unit is a copolymer composed of a molar ratio of 50:40:10.
  • the liquid composition 3 was prepared by dissolving the phosphorescent compound E1 and the polymer compound P2 in a content of 2.1% by weight.
  • Example D1 (Production and Evaluation of Organic EL Element D1) (Thickness setting for each layer)
  • the thicknesses of the hole injection layer, the hole transport layer, and the light-emitting layer formed by the spin coating method were determined by applying a stylus step meter (KLA-) to each single layer previously formed on the glass substrate by the spin coating method.
  • KLA- stylus step meter
  • Conditions for obtaining a predetermined film thickness were set by checking with Tencor, P-16 +.
  • Anode was formed on the glass substrate by attaching an ITO film with a thickness of 45 nm by sputtering.
  • a hole injection layer having a thickness of 60 nm was formed on the substrate by spin coating with a hole injection material. This was heated in an air atmosphere at 230 ° C. for 15 minutes on a hot plate, and then naturally cooled to room temperature.
  • composition 1 Using composition 1, a film having a thickness of 80 nm was formed on the hole transport layer by a spin coating method, and a light emitting layer was formed by heating at 150 ° C. for 10 minutes in a nitrogen gas atmosphere.
  • the substrate on which the light emitting layer is formed is depressurized in a vapor deposition machine until it becomes 1.0 ⁇ 10 ⁇ 4 Pa or less, and then, as a cathode, 3 nm of sodium fluoride is formed on the light emitting layer and then on the sodium fluoride layer.
  • Aluminum was deposited to 100 nm.
  • an organic EL element D1 was produced by forming a sealing layer using a glass substrate in a nitrogen gas atmosphere. A space exists between the anode, the cathode, and each layer included in the organic EL element D1 and the glass substrate used for forming the sealing layer. Since the sealing layer is formed in a nitrogen gas atmosphere, the space is filled with nitrogen gas.
  • Example D2 production and evaluation of organic EL element D2
  • An organic EL device D2 was produced in the same manner as in Example D1, except that the composition 1 in Example D1 was changed to the composition 2.
  • EL emission green
  • the current value was set so that the initial luminance would be 3000 cd / m 2 , the device was then driven at a constant current, and LT95 was measured to find 43.5 hours.
  • Example D3 (Production and Evaluation of Organic EL Element D3) An organic EL device D3 was produced in the same manner as in Example D1, except that the composition 1 in Example D1 was changed to the composition 3. When voltage was applied to the obtained organic EL element D3, EL light emission (green) was observed. The current value was set so that the initial luminance was 3000 cd / m 2 , the device was then driven at a constant current, and LT95 was measured to find 35.0 hours.
  • Example D4 (Production and Evaluation of Organic EL Element D4) An organic EL device D4 was produced in the same manner as in Example D1, except that the composition 1 in Example D1 was changed to the composition 4. When voltage was applied to the obtained organic EL element D4, EL light emission (green) was observed. The current value was set so that the initial luminance was 3000 cd / m 2 , the device was then driven at a constant current, and LT95 was measured to find 28.8 hours.
  • Comparative Example CD1 (Production and Evaluation of Organic EL Element CD1)
  • an organic EL element CD1 was produced in the same manner as in Example D2, except that 150 ° C. was changed to 200 ° C.
  • EL emission green
  • the current value was set so that the initial luminance was 3000 cd / m 2 , the device was then driven at a constant current, and LT95 was measured to find 22.8 hours.
  • Residual solvent amount measurement method Preparation and measurement of sample S1 ⁇ Residual solvent amount measurement method>
  • the amount of solvent remaining in the organic EL device (hereinafter referred to as the residual solvent amount) was measured by a headspace gas chromatography method. It consists of a headspace sampler (HS40 manufactured by Turbo Matrix), gas chromatography (GC-2010 manufactured by Shimadzu), and a mass spectrometer (QP-2010 Plus manufactured by Shimadzu). Each measurement condition is shown below.
  • Headspace sampler conditions Headspace mode: Constant Bayal bending: ON GC cycle time: 60 minutes Pressurization time: 3 minutes Lifting time: 0.5 minutes Insulation time: 30 minutes Injection time: 0.5 minutes Zone temperature setting: O / N / T Oven temperature: 200 ° C Needle temperature: 210 ° C HS carrier gas pressure: 120 kPa ⁇ Gas chromatography conditions Column: DB-5 (diameter 0.25 mm ⁇ ⁇ length 30 m ⁇ film thickness 0.25 ⁇ m) Column oven temperature: 60 ° C Vaporization chamber temperature: 250 ° C ⁇ Mass spectrometer conditions Ion source temperature: 240 ° C Interface temperature: 240 ° C Detector gain mode: Absolute value Detector gain: 1.00 kV
  • a calibration curve between the amount of n-hexyl benzoate (boiling point: 272 ° C.) or 3-phenoxytoluene (boiling point: 272 ° C.) and the AREA area was obtained in advance by headspace gas chromatography under the conditions described above.
  • the amount of residual solvent contained in the organic EL element was quantified based on the calibration curve.
  • Example S1 (Production and measurement of residual solvent amount measurement sample S1) (Formation of anode and hole injection layer) An anode was formed on the glass substrate by attaching an ITO film with a thickness of 45 nm by sputtering. A hole injection layer having a thickness of 60 nm was formed on the substrate by spin coating with a hole injection material. This was heated in an air atmosphere at 230 ° C. for 15 minutes on a hot plate, and then naturally cooled to room temperature.
  • composition 1 Using composition 1, a film having a thickness of 80 nm was formed on the hole transport layer by a spin coating method, and a light emitting layer was formed by heating at 150 ° C. for 10 minutes in a nitrogen gas atmosphere.
  • the film area is 1.4 cm ⁇ 1.4 cm after wiping and drying with a cloth containing an organic solvent having a low boiling point such as acetone.
  • the glass substrate was cut so that a residual solvent amount measurement sample S1 was produced.
  • the thickness of the organic EL material of the residual solvent amount measurement sample S1 was set to 160 nm, which is the sum of the hole injection layer 60 nm, the hole transport layer 20 nm, and the light emitting layer 80 nm.
  • the cut residual solvent amount measurement sample S1 was further pulverized with pliers to a size that could be enclosed in a headspace vial, and then sealed in a headspace vial.
  • the residual solvent amount was measured by the method described above, and 19 ⁇ g / cm 3 .
  • Example S2 (Production and measurement of residual solvent amount measurement sample S2) A residual solvent amount measurement sample S2 was prepared in the same manner as in Example S1 except that the composition 1 in Example S1 was changed to the composition 2. When the amount of residual solvent was measured by the method described above, it was 58 ⁇ g / cm 3 .
  • Example S3 (Preparation and measurement of residual solvent amount measurement sample S3) A residual solvent amount measurement sample S3 was produced in the same manner as in Example S1, except that the composition 1 in Example S1 was changed to the composition 3. When the amount of residual solvent was measured by the method as described above, it was 84 ⁇ g / cm 3 .
  • Example S4 (Preparation and measurement of residual solvent amount measurement sample S4) A residual solvent amount measurement sample S4 was produced in the same manner as in Example S1, except that the composition 1 in Example S1 was changed to the composition 4. When the amount of residual solvent was measured by the method described above, it was 132 ⁇ g / cm 3 .
  • Comparative Example CS1 (Production and Measurement of Residual Solvent Measurement Sample CS1)
  • a residual solvent amount measurement sample CS1 was produced in the same manner as in Example S2, except that 150 ° C. was changed to 200 ° C.
  • the residual solvent amount was measured by the method described above, it was 5 ⁇ g / cm 3 .
  • Synthesis Example 4 (Synthesis of phosphorescent compound E2) The phosphorescent compound E2 was synthesized according to the methods described in International Publication No. 2006/121811 and JP2013-048190A. Phosphorescent compound E2
  • Synthesis Example 5 (Synthesis of phosphorescent compound E3) The phosphorescent compound E3 was synthesized according to the method described in JP-A-2006-188673. Phosphorescent compound E3
  • Example D5 production and evaluation of organic EL element D5
  • An organic EL device D5 was produced in the same manner as in Example D1, except that the composition 1 in Example D1 was changed to composition 5 and 150 ° C. was changed to 170 ° C. in the light emitting layer forming step.
  • voltage was applied to the obtained organic EL element D5
  • EL light emission (white color) was observed.
  • the device was driven at a constant current, and LT95 was measured to be 29.3 hours.
  • Example D6 production and evaluation of organic EL element D6 An organic EL device D6 was produced in the same manner as in Example D5, except that the composition 5 in Example D5 was changed to the composition 6. When voltage was applied to the obtained organic EL element D6, EL light emission (white color) was observed. The current value was set so that the initial luminance was 1000 cd / m 2 , the device was then driven at a constant current, and LT95 was measured to find 34.0 hours.
  • Example D7 production and evaluation of organic EL element D7
  • An organic EL element D7 was produced in the same manner as in Example D6 except that in the step of forming the light emitting layer in Example D6, 170 ° C. was changed to 130 ° C.
  • voltage was applied to the obtained organic EL element D7, EL light emission (white color) was observed.
  • the current value was set so that the initial luminance was 1000 cd / m 2 , the device was driven with a constant current, and LT95 was measured to find 32.5 hours.
  • Comparative Example CD2 (Production and Evaluation of Organic EL Element CD2) An organic EL element CD2 was produced in the same manner as in Example D5 except that in the step of forming the light emitting layer in Example D5, 170 ° C. was changed to 130 ° C. When voltage was applied to the obtained organic EL element CD2, EL emission (white) was observed. When the current value was set so that the initial luminance was 1000 cd / m 2 , the device was driven with a constant current, and LT95 was measured to find 11.4 hours.
  • Example S5 (Production and measurement of residual solvent amount measurement sample S5) Residual solvent amount measurement sample S5 was produced in the same manner as in Example S1 except that composition 1 in Example S1 was changed to composition 5 and 150 ° C. was changed to 170 ° C. in the light emitting layer forming step. When the amount of residual solvent was measured by the method described above, it was 388 ⁇ g / cm 3 .
  • Example S6 (Production and measurement of residual solvent amount measurement sample S6) A residual solvent amount measurement sample S6 was produced in the same manner as in Example S5 except that the composition 5 in Example S5 was changed to the composition 6. When the amount of residual solvent was measured by the method described above, it was 160 ⁇ g / cm 3 .
  • Example S7 (Production and measurement of residual solvent amount measurement sample S7)
  • a residual solvent amount measurement sample S7 was produced in the same manner as in Example S6 except that 170 ° C. was changed to 130 ° C.
  • the amount of residual solvent was measured by the method described above, it was 1761 ⁇ g / cm 3 .
  • Comparative Example CS2 (Production and Measurement of Residual Solvent Measurement Sample CS2)
  • a residual solvent amount measurement sample CS2 was produced in the same manner as in Example S5 except that 170 ° C. was changed to 130 ° C.
  • the residual solvent amount was measured by the method described above, it was 2697 ⁇ g / cm 3 .
  • the organic EL element of the present invention has excellent luminance life and is useful for applications such as displays and lighting.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)

Abstract

本発明は、有機EL素子特性のうち、特に輝度寿命に優れる有機EL素子を提供することを目的とする。有機EL材料及び1気圧下での沸点が250℃以上の溶媒Aを含有する有機EL素子であって、有機EL素子中における、有機EL材料の体積(cm)に対する溶媒Aの含有量(μg)の割合X(μg/cm)が、式(1)を満たすことを特徴とする、有機EL素子、及びその製造方法に関する。 5<X≦2650 (1)

Description

有機エレクトロルミネッセンス素子
 本発明は、有機エレクトロルミネッセンス素子に関する。
 有機エレクトロルミネッセンス素子(以下、「有機EL素子」と表記する。)は、発光効率が高く、駆動電圧が低いことから、ディスプレイ及び照明の用途に好適に使用することが可能であり、研究開発が盛んに行われている。有機EL素子の発光層に用いる可溶性の発光性化合物と、溶媒とを含有する組成物を用いることで、インクジェット印刷法に代表される吐出型の塗布法を用いて発光層を形成することができる。そして、吐出型の塗布法を用いて発光層を形成することにより、大面積の有機EL素子を簡易なプロセスで製造することができる。そのため、可溶性の発光性化合物と溶媒が種々検討されている。
 特許文献1には可溶性の発光性化合物を改良することにより、素子特性を向上させる検討がなされているが、未だ十分な素子特性を得られていなかった。
 また、塗布法を用いて有機EL素子を製造する場合、均一な発光層を成膜するためにはインクの乾燥挙動を精密に制御することが必要であり、一般に、インクをゆっくり乾燥させるスロードライ性が求められる。そのために、インクの溶媒として高沸点溶媒を含む溶媒が用いられている。しかし、高沸点溶媒が発光材料中に残存する場合に、該高沸点溶媒が有機EL素子の特性に与える影響については明らかにされていなかった。
特開2006-128325号公報
 これまで前記塗布法に合わせた数々の発光性化合物と溶媒が検討されているが、いまだ素子特性が十分ではなく、更なる素子特性の向上が必要とされている。
 本発明は、有機EL素子特性のうち、特に輝度寿命に優れる有機EL素子を提供することを目的とする。
 本発明者は、上記課題を解決するべく、有機EL素子中の高沸点溶媒の含有量(残存量)が当該有機EL素子の輝度寿命にどのような影響を与えるかについて検討した。その結果、有機EL素子中における、有機EL材料の体積に対する高沸点溶媒の含有量(残存量)の割合が、有機EL素子の輝度寿命と相関があることを見出した。かかる知見に基づいて、さらに検討を加えて本発明を完成するに至った。
 即ち、本発明は、下記の有機EL素子及びその製造方法を提供する。
 [1]有機EL材料及び1気圧下での沸点が250℃以上の溶媒Aを含有する有機EL素子であって、有機EL素子中における、有機EL材料の体積(cm)に対する溶媒Aの含有量(μg)の割合X(μg/cm)が、式(1)を満たすことを特徴とする、有機EL素子。
  5<X≦2650      (1)
 [2]有機EL素子が、基板、電極及び2以上の有機EL材料層を有し、1以上の有機EL材料層に溶媒Aを含有する、[1]に記載の有機EL素子。
 [3]有機EL材料層が、正孔注入層、正孔輸送層、及び発光層を含み、少なくとも発光層に溶媒Aを含有する、[2]に記載の有機EL素子。
 [4]溶媒Aが、炭化水素溶媒、アルコール溶媒、エステル溶媒、ケトン溶媒、エーテル溶媒、窒素原子を含む溶媒、及び硫黄原子を含む溶媒からなる群より選ばれる少なくとも1種である、[1]~[3]のいずれかに記載の有機EL素子。
 [5]有機EL材料が、式(Y)で表される化合物、式(H-1)で表される化合物、及び式(Ir-1)~(Ir-5)で表される化合物からなる群より選ばれる少なくとも1種である、[1]~[4]のいずれかに記載の有機EL素子。
 [6]基板上に電極及び2以上の有機EL材料層を有する有機EL素子の製造方法であって、1気圧下での沸点が250℃以上の溶媒Aを含む溶媒と有機EL材料とを含有する溶液(インク)を塗布及び乾燥させて、1以上の有機EL材料層を形成し、有機EL素子中の有機EL材料の体積(cm)に対する有機EL素子中の溶媒Aの含有量(μg)の割合X(μg/cm)が、式(1):
  5<X≦2650      (1)
を満たすように調整することを特徴とする、製造方法。
 本発明によれば、輝度寿命に優れる有機EL素子を提供することができる。
 以下、本発明の好適な実施形態について詳細に説明する。
1.共通する用語の説明
 本明細書で共通して用いられる用語は、特記しない限り、以下の意味である。
 「Me」はメチル基、「Et」はエチル基、「Bu」はブチル基、「i-Pr」はイソプロピル基、「t-Bu」はtert-ブチル基を表す。
 金属錯体を表す式中、中心金属との結合を表す実線は、共有結合又は配位結合を意味する。
 「高分子化合物」とは、分子量分布を有し、ポリスチレン換算の数平均分子量が1×103~1×108である重合体を意味する。
 「低分子化合物」とは、分子量分布を有さず、分子量が1×104以下の化合物を意味する。
 「構成単位」とは、高分子化合物中に1個以上(さらに2個以上)存在する単位を意味する。
 「有機EL材料」とは、基板、陽極、陰極を除く、正孔注入材料、正孔輸送材料、発光材料、電子輸送材料、電子注入材料等の有機EL素子に用いられる材料を意味する。当該材料は、通常、塗布法で形成される材料である。当該材料は、素子のデバイス構造に応じて変更可能である。前記有機EL材料は、それぞれ低分子材料(低分子化合物)であっても高分子材料(高分子化合物)であってもよい。
 「アルキル基」は、直鎖及び分岐のいずれでもよい。直鎖のアルキル基の炭素原子数は、通常1~50であり、分岐のアルキル基の炭素原子数は、通常3~50である。「アルキル基」としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、2-ブチル基、イソブチル基、tert-ブチル基、ペンチル基、イソアミル基、2-エチルブチル基、ヘキシル基、ヘプチル基、オクチル基、2-エチルヘキシル基、3-プロピルヘプチル基、デシル基、3,7-ジメチルオクチル基、2-エチルオクチル基、2-ヘキシルデシル基、ドデシル基が挙げられる。「アルキル基」は、置換基を有していてもよい。
 「シクロアルキル基」の炭素原子数は、通常3~50である。「シクロアルキル基」としては、例えば、シクロヘキシル基、シクロヘキシルメチル基、シクロヘキシルエチル基が挙げられる。「シクロアルキル基」は、置換基を有していてもよい。
 「アリール基」は、芳香族炭化水素から環を構成する炭素原子に直接結合する水素原子1個を除いた残りの原子団を意味する。アリール基の炭素原子数は、通常6~60である。「アリール基」としては、例えば、フェニル基、1-ナフチル基、2-ナフチル基、1-アントラセニル基、2-アントラセニル基、9-アントラセニル基、1-ピレニル基、2-ピレニル基、4-ピレニル基、2-フルオレニル基、3-フルオレニル基、4-フルオレニル基、2-フェニルフェニル基、3-フェニルフェニル基、4-フェニルフェニル基が挙げられる。「アリール基」は、置換基を有していてもよい。
 「アルコキシ基」は、直鎖及び分岐のいずれでもよい。直鎖のアルコキシ基の炭素原子数は、通常1~40であり、分岐のアルコキシ基の炭素原子数は、通常3~40である。「アルコキシ基」としては、例えば、メトキシ基、エトキシ基、プロピルオキシ基、イソプロピルオキシ基、ブチルオキシ基、イソブチルオキシ基、tert-ブチルオキシ基、ペンチルオキシ基、ヘキシルオキシ基、ヘプチルオキシ基、オクチルオキシ基、2-エチルヘキシルオキシ基、ノニルオキシ基、デシルオキシ基、3,7-ジメチルオクチルオキシ基、ラウリルオキシ基が挙げられる。「アルコキシ基」は、置換基を有していてもよい。
 「シクロアルコキシ基」の炭素原子数は、通常3~40である。「シクロアルコキシ基」としては、例えば、シクロヘキシルオキシ基が挙げられる。「シクロアルコキシ基」は、置換基を有していてもよい。
 「アリールオキシ基」の炭素原子数は、通常6~60である。「アリールオキシ基」としては、例えば、フェノキシ基、1-ナフチルオキシ基、2-ナフチルオキシ基、1-アントラセニルオキシ基、9-アントラセニルオキシ基、1-ピレニルオキシ基が挙げられる。「アリールオキシ基」は、置換基を有していてもよい。
 「p価の複素環基」(pは、1以上の整数を表す。)とは、複素環式化合物から、環を構成する炭素原子又はヘテロ原子に直接結合している水素原子のうちp個の水素原子を除いた残りの原子団を意味する。
 1価の複素環基の炭素原子数は、通常、2~60である。
 1価の複素環基としては、例えば、チエニル基、ピロリル基、フリル基、ピリジル基、ピペリジニル基、キノリニル基、イソキノリニル基、ピリミジニル基、トリアジニル基が挙げられる。「1価の複素環基」は、置換基を有していてもよい。
 「ハロゲン原子」とは、フッ素原子、塩素原子、臭素原子又はヨウ素原子を示す。
 「アミノ基」は、置換基を有していてもよい。「置換アミノ基」としては、例えば、ジアルキルアミノ基、ジシクロアルキルアミノ基及びジアリールアミノ基が挙げられる。具体的には、例えば、ジメチルアミノ基、ジエチルアミノ基、ジフェニルアミノ基、ビス(4-メチルフェニル)アミノ基、ビス(4-tert-ブチルフェニル)アミノ基、ビス(3,5-ジ-tert-ブチルフェニル)アミノ基が挙げられる。
 「アルケニル基」は、直鎖及び分岐のいずれでもよい。直鎖のアルケニル基の炭素原子数は、通常2~30であり、分岐のアルケニル基の炭素原子数は、通常3~30である。「アルケニル基」としては、例えば、ビニル基、1-プロペニル基、2-プロペニル基、2-ブテニル基、3-ブテニル基、3-ペンテニル基、4-ペンテニル基、1-ヘキセニル基、5-ヘキセニル基、7-オクテニル基が挙げられる。「アルケニル基」は、置換基を有していてもよい。
 「シクロアルケニル基」の炭素原子数は、通常3~30である。「シクロアルケニル基」は、置換基を有していてもよい。
 「アルキニル基」は、直鎖及び分岐のいずれでもよい。アルキニル基の炭素原子数は、通常2~20であり、分岐のアルキニル基の炭素原子数は、通常4~30である。「アルキニル基」としては、例えば、エチニル基、1-プロピニル基、2-プロピニル基、2-ブチニル基、3-ブチニル基、3-ペンチニル基、4-ペンチニル基、1-ヘキシニル基、5-ヘキシニル基が挙げられる。「アルキニル基」は、置換基を有していてもよい。
 「シクロアルキニル基」の炭素原子数は、通常4~30である。「シクロアルキニル基」は、置換基を有していてもよい。
 「アリーレン基」は、芳香族炭化水素から環を構成する炭素原子に直接結合する水素原子2個を除いた残りの原子団を意味する。アリーレン基の炭素原子数は、通常、6~60である。「アリーレン基」としては、例えば、フェニレン基、ナフタレンジイル基、アントラセンジイル基、フェナントレンジイル基、ジヒドロフェナントレンジイル基、ナフタセンジイル基、フルオレンジイル基、ピレンジイル基、ペリレンジイル基、クリセンジイル基が挙げられ、これらの基が複数結合した基を含む。「アリーレン基」は、置換基を有していてもよい。
 「2価の複素環基」の炭素原子数は、通常、2~60である。「2価の複素環基」としては、例えば、ピリジン、ジアザベンゼン、トリアジン、アザナフタレン、ジアザナフタレン、カルバゾール、ジベンゾフラン、ジベンゾチオフェン、ジベンゾシロール、フェノキサジン、フェノチアジン、アクリジン、ジヒドロアクリジン、フラン、チオフェン、アゾール、ジアゾール、トリアゾールから、環を構成する炭素原子又はヘテロ原子に直接結合している水素原子のうち2個の水素原子を除いた2価の基が挙げられ、これらの基が複数結合した基を含む。「2価の複素環基」は、置換基を有していてもよい。
 「架橋基」とは、加熱、紫外線照射、近紫外線照射、可視光照射、赤外線照射、ラジカル反応等に供することにより、新たな結合を生成することが可能な基である。架橋基は、好ましくは、式(B-1)-(B-17)のいずれかで表される基であり、これらの基は、置換基を有していてもよい。
Figure JPOXMLDOC01-appb-I000004
 「置換基」とは、例えば、ハロゲン原子、シアノ基、アルキル基、シクロアルキル基、アリール基、1価の複素環基、アルコキシ基、シクロアルコキシ基、アリールオキシ基、アミノ基、置換アミノ基、アルケニル基、シクロアルケニル基、アルキニル基又はシクロアルキニル基を表す。置換基は架橋基であってもよい。
2.有機EL素子
 <有機EL素子>
 本発明の有機EL素子は、有機EL材料及び1気圧下での沸点が250℃以上の溶媒Aを含有し、有機EL素子中における、有機EL材料の体積(cm)に対する溶媒Aの含有量(μg)の割合X(μg/cm)が、式(1)を満たすことを特徴とする。
  5<X≦2650      (1)
 有機EL素子中における有機EL材料の体積(cm)とは、有機EL素子中に含まれる有機EL材料の全体積を意味する。この体積は、後述するように発光面積と膜厚とから算出することができる。
 また、有機EL素子中における溶媒Aの含有量(μg)とは、有機EL素子中に含まれる溶媒Aの全重量を意味する。この溶媒Aの含有量は、例えば、後述するヘッドスペースガスクロマトグラフィー法を用いて測定することができる。
 Xの下限値は10が好ましく、14がより好ましく、18がさらに好ましい。Xの上限値は2600が好ましく、2400がより好ましく、2000がさらに好ましく、1800が特に好ましい。なお、これらの下限値と上限値それぞれは任意に組み合わせることができる。有機EL素子中に含まれる溶媒Aが2種以上の場合は、それぞれの含有量の総和が式(1)を満たすものである。
 Xの他の好適な範囲として、下限値は10が好ましく、14がより好ましく、18がさらに好ましい。上限値は150が好ましく、100がより好ましく、80がさらに好ましく、70が特に好ましく、65がとりわけ好ましく、60がとりわけより好ましい。これらは、有機EL材料を含む有機EL材料層のうちの少なくとも1層(好ましくは、発光層)における有機EL材料が高分子化合物を主成分とする場合によく当てはまる。
 ここで、有機EL材料を含む有機EL材料層のうちの少なくとも1層における有機EL材料が高分子化合物を主成分とする場合とは、有機EL材料を含む有機EL材料層のうちの少なくとも1層において、該1層に含まれる有機EL材料の合計の含有量を100重量部とした場合に、高分子化合物の含有量が50重量部より多いことを意味し、好ましくは51重量部以上であり、より好ましくは55重量部以上であり、70重量部以上であってもよく、80重量部以上であってもよく、90重量部以上であってもよく、95重量部以上であってもよく、100重量部であってもよい。
 また、Xの他の好適な範囲として、下限値は10が好ましく、50がより好ましく、100がさらに好ましく、150が特に好ましい。上限値は2600が好ましく、2400がより好ましく、2000がさらに好ましく、1800が特に好ましい。これらは、有機EL材料を含む有機EL材料層のうちの少なくとも1層(好ましくは、発光層)における有機EL材料が低分子化合物を主成分とする場合によく当てはまる。
 ここで、有機EL材料を含む有機EL材料層のうちの少なくとも1層における有機EL材料が低分子化合物を主成分とする場合とは、有機EL材料を含む有機EL材料層のうちの少なくとも1層において、該1層に含まれる有機EL材料の合計の含有量を100重量部とした場合に、低分子化合物の含有量が50重量部より多いことを意味し、好ましくは51重量部以上であり、より好ましくは60重量部以上であり、さらに好ましくは80重量部以上であり、特に好ましくは95重量部以上であり、100重量部であってもよい。
 本発明の有機EL素子は、例えば、基板上に、陽極、陰極、及び有機EL材料を含む有機EL材料層を2以上(さらに3以上)有している。通常、陽極と陰極の間に有機EL材料層を有している。有機EL材料層としては、例えば、正孔注入層、正孔輸送層、発光層、電子輸送層、電子注入層等が挙げられる。正孔注入性及び正孔輸送性の観点からは、陽極と発光層との間に、正孔注入層及び正孔輸送層の少なくとも1層を有することが好ましく、電子注入性及び電子輸送性の観点からは、陰極と発光層の間に、電子注入層及び電子輸送層の少なくとも1層を有することが好ましい。
 正孔輸送層、電子輸送層、発光層、正孔注入層、及び電子注入層のそれぞれを構成する有機EL材料は、各層の機能に応じて選択することができ、高分子化合物及び低分子化合物からなる群より選択することができる。例えば、有機EL材料が高分子化合物を主成分とする場合は、有機EL材料層の層構成として、正孔注入層、正孔輸送層、発光層等が挙げられる。また、有機EL材料が低分子化合物を主成分とする場合は、有機EL材料層の層構成として、正孔注入層、正孔輸送層、発光層、電子輸送層、電子注入層等が挙げられる。
 有機EL素子中、発光層、正孔輸送層、電子輸送層、正孔注入層、電子注入層等の有機EL材料層の少なくとも1つの層(特に、発光層)は、例えば、後述する低分子化合物及び高分子化合物からなる群より選択される有機EL材料を含み、通常、この有機EL材料と溶媒Aを含む溶媒とを含有する溶液状態から塗布法により成膜される。つまり、複数の有機EL材料層のうち1以上の層には溶媒Aを含有する。さらに、有機EL材料層は、必要に応じ、酸化防止剤等の添加剤を含有していてもよい。
 <1気圧下での沸点が250℃以上の溶媒A>
 1気圧下での沸点が250℃以上の溶媒A(以下、「溶媒A」とも表記する。)は、本発明の有機EL素子中、具体的には有機EL素子中の有機EL材料層の少なくとも1層に含まれている。溶媒Aは、1気圧下での沸点の下限値は255℃が好ましく、260℃がより好ましく、265℃がさらに好ましく、270℃が特に好ましい。その沸点の上限値は320℃が好ましく、310℃がより好ましく、300℃が特に好ましい。上限値及び下限値は任意の組み合わせを選択することができる。
 溶媒Aとしては、有機EL材料(前記高分子化合物、低分子化合物等)を溶解又は均一に分散できる有機溶媒が挙げられる。このような有機溶媒として、例えば、炭化水素溶媒、アルコール溶媒(一価アルコール溶媒、多価アルコール溶媒)、エステル溶媒、ケトン溶媒、エーテル溶媒、窒素原子を含む溶媒、硫黄原子を含む溶媒等から選択することができる。そのうち、脂肪族炭化水素溶媒、芳香族炭化水素溶媒、一価アルコール溶媒、多価アルコール溶媒、芳香族エステル溶媒、脂肪族-脂肪族エーテル溶媒、芳香族-芳香族エーテル溶媒、硫黄原子を含む溶媒等が好ましい。
 沸点が250℃以上を有する脂肪族炭化水素溶媒としては、例えば、n-テトラデカン(沸点:253℃)が挙げられ、芳香族炭化水素溶媒としては、例えば、n-オクチルベンゼン(沸点:250℃)、n-ノニルベンゼン(沸点:282℃)、n-デシルベンゼン(沸点:298℃)、n-ウンデシルベンゼン(沸点:316℃)、n-ドデシルベンゼンが挙げられる。これらのうち、芳香族炭化水素溶媒が好ましく、n-デシルベンゼン、n-ウンデシルベンゼン、n-ドデシルベンゼンがより好ましく、n-デシルベンゼン、n-ドデシルベンゼンがさらに好ましい。
 沸点が250℃以上を有する一価アルコール溶媒としては、例えば、1-ドデカノール(沸点:259℃)が挙げられ、多価アルコール溶媒としては、例えば、グリセリン(沸点:290℃)、1,6-ヘキサンジオール(沸点:250℃)が挙げられる。これらのうち、多価アルコール溶媒が好ましい。
 沸点が250℃以上を有する芳香族エステル溶媒としては、例えば、安息香酸n-ブチル(沸点:250℃)、安息香酸tert-ブチル、安息香酸n-ペンチル、安息香酸n-ヘキシル(沸点:272℃)、フタル酸ジメチル(沸点:282℃)、フタル酸ジエチル(沸点:302℃)が挙げられる。これらのうち、安息香酸n-ペンチル、安息香酸n-ヘキシル、フタル酸ジメチルが好ましく、安息香酸n-ヘキシルがより好ましい。
 沸点が250℃以上を有する脂肪族-脂肪族エーテル溶媒としては、例えば、テトラエチレングリコールジメチルエーテル(沸点:276℃)、芳香族-芳香族エーテル溶媒としては3-フェノキシトルエン(沸点:272℃)が挙げられる。これらのうち、芳香族-芳香族エーテル溶媒が好ましい。
 沸点が250℃以上を有する硫黄原子を含む溶媒としては、例えば、スルホラン(沸点:285℃)が挙げられる。
 有機EL素子には、250℃以上の沸点を有する溶媒Aを1種又は2種以上含有していてもよい。
 <ヘッドスペースガスクロマトグラフィー法>
 前記有機EL素子中に含まれる溶媒Aは、例えば、ヘッドスペースガスクロマトグラフィー法で測定することができる。ガスクロマトグラフィー法と同様に、あらかじめ取得した検量線とAREA面積から目的とする有機溶媒を定量することができる。具体的な測定方法・定量手法は、以下の通りである。
 測定したい有機EL素子の表面、裏面、側面をアセトンなどの溶媒を含んだ布などで軽く拭き取り、付着している不純物を除去する。次いで、後述する方法で該有機EL素子中の有機EL材料の体積を測定する。次いで、該有機EL素子をミルなどにて粉砕し、ヘッドスペース用バイアル瓶内に所定量封入し測定サンプルを作製する。ヘッドスペースオートサンプラーを付したガスクロマトグラフィー質量分析計を用いて、スキャン測定にて含有する溶媒ピークのm/zを特定し、溶媒種を特定する。特定した溶媒種の標準品を用いて含有量とガスクロマトグラフィーで測定されるAREA面積値との検量線を作成する。特定されたm/z付近の詳細測定を実施し、測定サンプルに含有される溶媒種のAREA面積値を測定し、前記検量線から含有量を算出する。
 <有機EL材料の体積評価(面積・膜厚評価手法)>
 有機EL素子中の有機EL材料の体積は、例えば、発光面積と膜厚とから算出することができる。前記発光面積は電気的に確認することもできるし、偏光顕微鏡などにより確認することもできる。膜厚はLCRメーターや段差計などでも確認することもできるし、電子顕微鏡などを用いた断面観察でも確認することができる。
 <高分子化合物>
 有機EL材料が高分子化合物を含む場合、高分子化合物としては、例えば、式(Y)で表される構成単位を含む高分子化合物が挙げられる。
Figure JPOXMLDOC01-appb-I000005
[式中、ArY1は、アリーレン基、2価の複素環基、又は、少なくとも1種のアリーレン基と少なくとも1種の2価の複素環基とが直接結合した2価の基を表し、これらの基は置換基を有していてもよい。]
 ArY1で表されるアリーレン基は、好ましくは、フェニレン基、フェナントレンジイル基、ジヒドロフェナントレンジイル基又はフルオレンジイル基であり、より好ましくは、フェニレン基又はフルオレンジイル基であり、これらの基は置換基を有していてもよい。 ArY1で表される2価の複素環基は、好ましくは、ピリジン、ジアザベンゼン、トリアジン、カルバゾール、ジベンゾフラン、ジベンゾチオフェン、フェノキサジン又はフェノチアジンから、環を構成する炭素原子又はヘテロ原子に直接結合している水素原子のうち2個の水素原子を除いた2価の基であり、より好ましくは、ピリジン、ジアザベンゼン又はトリアジンから、環を構成する炭素原子又はヘテロ原子に直接結合している水素原子のうち2個の水素原子を除いた2価の基であり、これらの基は置換基を有していてもよい。 ArY1で表される少なくとも1種のアリーレン基と少なくとも1種の2価の複素環基とが直接結合した2価の基における、アリーレン基及び2価の複素環基の好ましい範囲、より好ましい範囲は、それぞれ、前述のArY1で表されるアリーレン基及び2価の複素環基の好ましい範囲、より好ましい範囲と同様である。少なくとも1種のアリーレン基と少なくとも1種の2価の複素環基とが直接結合した2価の基は、置換基を有していてもよい。
 「少なくとも1種のアリーレン基と少なくとも1種の2価の複素環基とが直接結合した2価の基」としては、例えば、下記式で表される基が挙げられる。これらは置換基を有していてもよい。
Figure JPOXMLDOC01-appb-I000006
 ArY1で表される基が有していてもよい置換基は、好ましくは、アルキル基、シクロアルキル基又はアリール基であり、これらの基は更に置換基を有していてもよい。
 ArY1で表される基が有していてもよい置換基が更に有していてもよい置換基は、好ましくは、アルキル基又はシクロアルキル基であり、これらの基は更に置換基を有していてもよいが、更に置換基を有さないことが好ましい。
 式(Y)で表される構成単位としては、例えば、以下に記載する式(Y-1)~(Y-10)で表される構成単位が挙げられる。本発明に係る有機EL素子の輝度寿命の観点からは、好ましくは式(Y-1)~(Y-3)で表される構成単位であり、電子輸送性の観点からは、好ましくは式(Y-4)~(Y-7)で表される構成単位であり、正孔輸送性の観点からは、好ましくは式(Y-8)~(Y-10)で表される構成単位である。
Figure JPOXMLDOC01-appb-I000007
[式中、
 RY1は、水素原子、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。複数存在するRY1は、同一でも異なっていてもよく、隣接するRY1同士は互いに結合して、それぞれが結合する炭素原子と共に環を形成していてもよい。
 XY1は、-C(RY2)2-、-C(RY2)=C(RY2)-又はC(RY2)2-C(RY2)2-で表される基を表す。RY2は、水素原子、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。複数存在するRY2は、同一でも異なっていてもよく、RY2同士は互いに結合して、それぞれが結合する炭素原子と共に環を形成していてもよい。]
 RY1は、好ましくは、水素原子、アルキル基、シクロアルキル基又はアリール基であり、これらの基は置換基を有していてもよい。
 RY2は、好ましくは、アルキル基、シクロアルキル基、アリール基又は1価の複素環基であり、より好ましくは、アルキル基、シクロアルキル基又はアリール基であり、これらの基は置換基を有していてもよい。
 XY1において、-C(RY2)2-で表される基中の2個のRY2の組み合わせは、好ましくは両方がアルキル基若しくはシクロアルキル基、両方がアリール基、両方が1価の複素環基、又は、一方がアルキル基若しくはシクロアルキル基で他方がアリール基若しくは1価の複素環基であり、より好ましくは一方がアルキル基若しくはシクロアルキル基で他方がアリール基であり、これらの基は置換基を有していてもよい。2個存在するRY2は互いに結合して、それぞれが結合する原子と共に環を形成していてもよく、RY2が環を形成する場合、-C(RY2)2-で表される基としては、好ましくは式(Y-A1)~(Y-A5)で表される基であり、より好ましくは式(Y-A4)で表される基であり、これらの基は置換基を有していてもよい。
Figure JPOXMLDOC01-appb-I000008
 XY1において、-C(RY2)=C(RY2)-で表される基中の2個のRY2の組み合わせは、好ましくは両方がアルキル基若しくはシクロアルキル基、又は、一方がアルキル基若しくはシクロアルキル基で他方がアリール基であり、これらの基は置換基を有していてもよい。
 XY1において、-C(RY2)2-C(RY2)2-で表される基中の4個のRY2は、好ましくは置換基を有していてもよいアルキル基又はシクロアルキル基である。複数あるRY2は互いに結合して、それぞれが結合する原子と共に環を形成していてもよく、RY2が環を形成する場合、-C(RY2)2-C(RY2)2-で表される基は、好ましくは式(Y-B1)~(Y-B5)で表される基であり、より好ましくは式(Y-B3)で表される基であり、これらの基は置換基を有していてもよい。
Figure JPOXMLDOC01-appb-I000009
[式中、RY2は前記と同じ意味を表す。]
 XY1は、好ましくは-C(RY2-で表される基である。
 式(Y-1)で表される構成単位は、好ましくは下記の式(Y-1’)で表される構成単位である。式(Y-2)で表される構成単位は、好ましくは下記の式(Y-2’)で表される構成単位である。式(Y-3)で表される構成単位は、好ましくは下記の式(Y-3’)で表される構成単位である。
Figure JPOXMLDOC01-appb-I000010
[式中、RY1及びXY1は前記と同じ意味を表す。
 RY11は、フッ素原子、アルキル基、シクロアルキル基、アリール基、1価の複素環基、アルコキシ基、シクロアルコキシ基又は置換アミノ基を表し、これらの基は置換基を有していてもよい。複数存在するRY11は、同一であってもよく異なっていてもよい。]
 RY11は、好ましくは、アルキル基、シクロアルキル基、アリール基又は1価の複素環基であり、より好ましくは、アルキル基、シクロアルキル基又はアリール基であり、さらに好ましくは、アルキル基又はシクロアルキル基であり、これらの基は置換基を有していてもよい。
Figure JPOXMLDOC01-appb-I000011
Figure JPOXMLDOC01-appb-I000012
[式中、
 RY1は前記と同じ意味を表す。
 RY3は、水素原子、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。]
 RY3は、好ましくはアルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基又は1価の複素環基であり、より好ましくはアリール基であり、これらの基は置換基を有していてもよい。
Figure JPOXMLDOC01-appb-I000013
[式中、
 RY1は前記と同じ意味を表す。
 RY4は、水素原子、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。]
 RY4は、好ましくはアルキル基、シクロアルキル基、アリール基又は1価の複素環基であり、より好ましくはアリール基であり、これらの基は置換基を有していてもよい。
 RY1~RY4及びRY11で表される基が有していてもよい置換基の好ましい範囲は、ArY1で表される基が有していてもよい置換基の好ましい範囲と同様である。
 式(Y)で表される構成単位としては、例えば、式(Y-101)~(Y-120)で表されるアリーレン基からなる構成単位、式(Y-201)~(Y-206)で表される2価の複素環基からなる構成単位、式(Y-301)~(Y-304)で表される少なくとも1種のアリーレン基と少なくとも1種の2価の複素環基とが直接結合した2価の基からなる構成単位が挙げられる。
Figure JPOXMLDOC01-appb-I000014
Figure JPOXMLDOC01-appb-I000015
Figure JPOXMLDOC01-appb-I000016
Figure JPOXMLDOC01-appb-I000017
Figure JPOXMLDOC01-appb-I000018
Figure JPOXMLDOC01-appb-I000019
Figure JPOXMLDOC01-appb-I000020
 式(Y)で表される構成単位であって、ArY1がアリーレン基である構成単位は、高分子化合物に含まれる構成単位の合計量に対して、好ましくは0.1~100モル%であり、より好ましくは1~99モル%であり、さらに好ましくは30~95モル%であり、特に好ましくは50~90モル%であり、0.5~80モル%であってもよく、30~60モル%であってもよい。
 式(Y)で表される構成単位であって、ArY1が2価の複素環基、又は、少なくとも1種のアリーレン基と少なくとも1種の2価の複素環基とが直接結合した2価の基である構成単位は、高分子化合物に含まれる構成単位の合計量に対して、好ましくは0.5~30モル%であり、より好ましくは3~20モル%である。
 式(Y)で表される構成単位は、高分子化合物中に、1種のみ含まれていてもよく、2種以上含まれていてもよい。
 式(Y)で表される構成単位を含む高分子化合物は、正孔輸送性が優れるので、更に、下記式(X)で表される構成単位を含むことが好ましい。
Figure JPOXMLDOC01-appb-I000021
[式中、
 aX1及びaX2は、それぞれ独立に、0以上の整数を表す。
 ArX1及びArX3は、それぞれ独立に、アリーレン基または2価の複素環基を表し、これらの基は置換基を有していてもよい。
 ArX2及びArX4は、それぞれ独立に、アリーレン基、2価の複素環基、または、少なくとも1種のアリーレン基と少なくとも1種の2価の複素環基とが直接結合した2価の基を表し、これらの基は置換基を有していてもよい。ArX2及びArX4が複数存在する場合、それらは同一でも異なっていてもよい。
 RX1、RX2及びRX3は、それぞれ独立に、水素原子、アルキル基、シクロアルキル基、アリール基または1価の複素環基を表し、これらの基は置換基を有していてもよい。RX2及びRX3が複数存在する場合、それらは同一でも異なっていてもよい。]
 aX1は、通常0~5の整数であり、好ましくは0~2の整数であり、より好ましくは0又は1である。aX2は、通常0~5の整数であり、好ましくは0~2の整数であり、より好ましくは0である。
 RX1、RX2及びRX3の好ましい範囲、より好ましい範囲は、RY4の好ましい範囲、より好ましい範囲と同様である。
 ArX1、ArX2、ArX3及びArX4で表されるアリーレン基及び2価の複素環基の好ましい範囲、より好ましい範囲は、それぞれ、ArY1で表されるアリーレン基及び2価の複素環基の好ましい範囲、より好ましい範囲と同様である。
 ArX2及びArX4で表される少なくとも1種のアリーレン基と少なくとも1種の2価の複素環基とが直接結合した2価の基の例及び好ましい範囲等は、ArY1で表される少なくとも1種のアリーレン基と少なくとも1種の2価の複素環基とが直接結合した2価の基の例及び好ましい範囲等と同様である。
 ArX1、ArX2、ArX3及びArX4は、好ましくは置換基を有していてもよいアリーレン基である。
 ArX1~ArX4及びRX1~RX3で表される基が有してもよい置換基の好ましい範囲は、ArY1で表される基が有してもよい置換基の好ましい範囲と同様である。
 式(X)で表される構成単位は、高分子化合物に含まれる構成単位の合計量に対して、好ましくは0.1~99モル%であり、より好ましくは1~50モル%であり、さらに好ましくは5~30モル%である
 式(Y)で表される構成単位は、高分子化合物中に、1種のみ含まれていてもよく、2種以上含まれていてもよい。
Figure JPOXMLDOC01-appb-I000022
Figure JPOXMLDOC01-appb-I000023
Figure JPOXMLDOC01-appb-I000024
 <低分子化合物>
 有機EL材料が低分子化合物を含む場合、低分子化合物としては、例えば、式(H-1)で表される低分子化合物が挙げられる。
Figure JPOXMLDOC01-appb-I000025
[式中、
 ArH1及びArH2は、それぞれ独立に、アリール基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。
 nH1及びnH2は、それぞれ独立に、0又は1を表す。nH1が複数存在する場合、それらは同一でも異なっていてもよい。複数存在するnH2は、同一でも異なっていてもよい。 nH3は、0以上10以下の整数を表す。
 LH1は、アリーレン基、2価の複素環基、又は、-[C(RH112]nH11-で表される基を表し、これらの基は置換基を有していてもよい。LH1が複数存在する場合、それらは同一でも異なっていてもよい。nH11は、1以上10以下の整数を表す。RH11は、水素原子、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。複数存在するRH11は、同一でも異なっていてもよく、互いに結合して、それぞれが結合する炭素原子とともに環を形成していてもよい。
 LH2は、-N(-LH21-RH21)-で表される基を表す。LH2が複数存在する場合、それらは同一でも異なっていてもよい。LH21は、単結合、アリーレン基又は2価の複素環基を表し、これらの基は置換基を有していてもよい。RH21は、水素原子、アルキル基、シクロアルキル基、アリール基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。]
 ArH1及びArH2は、フェニル基、フルオレニル基、スピロビフルオレニル基、ピリジル基、ピリミジニル基、トリアジニル基、キノリニル基、イソキノリニル基、チエニル基、ベンゾチエニル基、ジベンゾチエニル基、フリル基、ベンゾフリル基、ジベンゾフリル基、ピロリル基、インドリル基、アザインドリル基、カルバゾリル基、アザカルバゾリル基、ジアザカルバゾリル基、フェノキサジニル基又はフェノチアジニル基であることが好ましく、フェニル基、フルオレニル基、スピロビフルオレニル基、ピリジル基、ピリミジニル基、トリアジニル基、ジベンゾチエニル基、ジベンゾフリル基、カルバゾリル基又はアザカルバゾリル基であることがより好ましく、フルオレニル基、スピロビフルオレニル基、ジベンゾチエニル基、ジベンゾフリル基又はカルバゾリル基であることが更に好ましく、後述の式(TDA-3)で表される基であることが特に好ましく、これらの基は置換基を有していてもよい。
 ArH1及びArH2が有していてもよい置換基としては、ハロゲン原子、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基又は1価の複素環基が好ましく、アルキル基、シクロアルコキシ基、アルコキシ基又はシクロアルコキシ基がより好ましく、アルキル基又はシクロアルコキシ基が更に好ましく、これらの基は更に置換基を有していてもよい。
 ArH1及びArH2が有していてもよい置換基が更に有していてもよい置換基としては、アルキル基、シクロアルキル基、アリール基又は1価の複素環基が好ましく、アルキル基又はシクロアルキル基がより好ましく、これらの基は更に置換基を有していてもよいが、更に置換基を有さないことが好ましい。
 nH1は、好ましくは1である。nH2は、好ましくは0である。
 nH3は、好ましくは0以上5以下の整数であり、更に好ましくは1以上3以下の整数であり、特に好ましくは1である。
 nH11は、好ましくは1以上5以下の整数であり、より好ましく1以上3以下の整数であり、更に好ましく1である。
 RH11は、水素原子、アルキル基、シクロアルキル基、アリール基又は1価の複素環基であることが好ましく、水素原子、アルキル基又はシクロアルキル基であることがより好ましく、水素原子又はアルキル基であることが更に好ましく、これらの基は置換基を有していてもよいが、更に置換基を有さないことが好ましい。
 LH1は、アリーレン基又は2価の複素環基であることが好ましく、これらの基は更に置換基を有していてもよい。
 LH1は、例えば、下記に示す式(A-1)~式(A-20)で表される基、及び式(AA-1)~式(AA-34)で表される基等が挙げられる。LH1は、式(A-1)~式(A-3)、式(A-8)~式(A-10)、式(AA-1)~式(AA-6)、式(AA-10)~式(AA-21)又は式(AA-24)~式(AA-34)で表される基であることが好ましく、式(A-1)、式(A-2)、式(A-8)、式(A-9)、式(AA-1)~式(AA-4)、式(AA-10)~式(AA-15)、式(AA-33)又は式(AA-34)で表される基であることがより好ましく、式(A-1)、式(A-2)、式(A-8)、式(AA-2)、式(AA-4)、式(AA-10)、式(AA-12)、式(AA-14)又は(AA-33)で表される基であることが更に好ましく、式(A-8)、式(AA-10)、式(AA-12)又は式(AA-14)で表される基であることが特に好ましく、式(AA-14)で表される基であることがとりわけ好ましい。
Figure JPOXMLDOC01-appb-I000026
Figure JPOXMLDOC01-appb-I000027
Figure JPOXMLDOC01-appb-I000028
Figure JPOXMLDOC01-appb-I000029
[式中、R及びRaは、それぞれ独立に、水素原子、アルキル基、シクロアルキル基、アリール基又は1価の複素環基を表す。複数存在するR及びRaは、各々、同一でも異なっていてもよく、Ra同士は互いに結合して、それぞれが結合する原子と共に環を形成していてもよい。]
 LH1が有していてもよい置換基としては、ハロゲン原子、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基又は1価の複素環基が好ましく、アルキル基、アルコキシ基、アリール基又は1価の複素環基がより好ましく、アルキル基、アリール基又は1価の複素環基が更に好ましく、1価の複素環基が特に好ましく、これらの基は更に置換基を有していてもよい。
 LH1が有していてもよい置換基が更に有していてもよい置換基としては、アルキル基、シクロアルキル基、アリール基又は1価の複素環基が好ましく、アルキル基又はシクロアルキル基がより好ましく、これらの基は更に置換基を有していてもよいが、更に置換基を有さないことが好ましい。
 LH21は、単結合又はアリーレン基であることが好ましく、単結合であることがより好ましく、このアリーレン基は置換基を有していてもよい。
 LH21で表されるアリーレン基又は2価の複素環基の定義及び例は、LH1で表されるアリーレン基又は2価の複素環基の定義及び例と同様である。
 LH21が有していてもよい置換基の定義及び例は、LH1が有していてもよい置換基の定義及び例と同様である。
 RH21は、アリール基又は1価の複素環基であることが好ましく、これらの基は置換基を有していてもよい。
 RH21で表されるアリール基及び1価の複素環基の定義及び例は、ArH1及びArH2で表されるアリール基及び1価の複素環基の定義及び例と同様である。
 RH21が有していてもよい置換基の定義及び例は、ArH1及びArH2が有していてもよい置換基の定義及び例と同様である。
 式(H-1)で表される化合物は、式(H-2)で表される化合物であることが好ましい。
Figure JPOXMLDOC01-appb-I000030
[式中、ArH1、ArH2、nH3及びLH1は、前記と同じ意味を表す。]
 式(H-1)で表される化合物としては、例えば、下記式で表される化合物が挙げられる。なお、式中、Zは、-N=で表される基、又は、-CH=で表される基を表す。
Figure JPOXMLDOC01-appb-I000031
Figure JPOXMLDOC01-appb-I000032
Figure JPOXMLDOC01-appb-I000033
Figure JPOXMLDOC01-appb-I000034
Figure JPOXMLDOC01-appb-I000035
Figure JPOXMLDOC01-appb-I000036
Figure JPOXMLDOC01-appb-I000037
Figure JPOXMLDOC01-appb-I000038
Figure JPOXMLDOC01-appb-I000039
Figure JPOXMLDOC01-appb-I000040
Figure JPOXMLDOC01-appb-I000041
Figure JPOXMLDOC01-appb-I000042
Figure JPOXMLDOC01-appb-I000043
Figure JPOXMLDOC01-appb-I000044
Figure JPOXMLDOC01-appb-I000045
Figure JPOXMLDOC01-appb-I000046
Figure JPOXMLDOC01-appb-I000047
Figure JPOXMLDOC01-appb-I000048
Figure JPOXMLDOC01-appb-I000049
 式(H-1)で表される化合物は、Aldrich、Luminescence Technology Corp.等から入手可能である。その他には、例えば、国際公開第2007/063754号、国際公開第2008/056746号、国際公開第2011/032686号、国際公開第2012/096263号、特開2009-227663号公報、特開2010-275255号公報に記載されている方法に従って合成することができる。
 低分子化合物には、ゲスト材料、即ち、ナフタレン及びその誘導体、アントラセン及びその誘導体、ペリレン及びその誘導体、並びに、イリジウム、白金又はユーロピウムを中心金属とする三重項発光錯体(燐光発光性化合物)を包含する。
 三重項発光錯体としては、式Ir-1~Ir-5で表される金属錯体等のイリジウム錯体が好ましい。
Figure JPOXMLDOC01-appb-I000050
Figure JPOXMLDOC01-appb-I000051
Figure JPOXMLDOC01-appb-I000052
[式中、
 RD1~RD8、RD11~RD20、RD21~RD26及びRD31~RD37は、それぞれ独立に、水素原子、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、アリールオキシ基、1価の複素環基、置換アミノ基又はハロゲン原子を表し、これらの基は置換基を有していてもよい。RD1~RD8、RD11~RD20、RD21~RD26及びRD31~RD37が複数存在する場合、それらはそれぞれ同一でも異なっていてもよい。
 -AD1---AD2-は、アニオン性の2座配位子を表し、AD1及びAD2は、それぞれ独立に、イリジウム原子と結合する炭素原子、酸素原子又は窒素原子を表し、これらの原子は環を構成する原子であってもよい。-AD1---AD2-が複数存在する場合、それらは同一でも異なっていてもよい。
 nD1は、1、2又は3を表し、nD2は、1又は2を表す。]
 RD1~RD8、RD11~RD20、RD21~RD26及びRD31~RD37は、好ましくは、水素原子、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、アリールオキシ基、1価の複素環基又はハロゲン原子であり、より好ましくは、水素原子、アルキル基、シクロアルキル基、アリール基又は1価の複素環基であり、さらに好ましくは水素原子、アリール基又は1価の複素環基であり、特に好ましくは水素原子又はアリール基であり、これらの基は置換基を有していてもよい。
 RD1~RD8、RD11~RD20、RD21~RD26及びRD31~RD37が有していてもよい置換基としては、好ましくは、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、アリールオキシ基、1価の複素環基、置換アミノ基又はハロゲン原子であり、より好ましくは、アルキル基、シクロアルキル基、アリール基又は1価の複素環基であり、さらに好ましくは、アルキル基、シクロアルキル基又はアリール基であり、これらの基は更に置換基を有していてもよい。
 RD1~RD8、RD11~RD20、RD21~RD26及びRD31~RD37が有していてもよい置換基が更に有していてもよい置換基としては、好ましくはアルキル基、シクロアルキル基、アリール基又は1価の複素環基であり、より好ましくは、アルキル基又はシクロアルキル基であり、これらの基は更に置換基を有していてもよいが、更に置換基を有さないことが好ましい。
 式Ir-1で表される金属錯体において、RD1~RD8の少なくとも1つは、好ましくは、アリール基、1価の複素環基又は置換アミノ基であり、より好ましくは、式(D-A)で表される基である。
 式Ir-2で表される金属錯体において、RD11~RD20の少なくとも1つは、好ましくは、アリール基、1価の複素環基又は置換アミノ基であり、より好ましくは、式(D-A)で表される基である。
 式Ir-3で表される金属錯体において、RD1~RD8及びRD11~RD20の少なくとも1つは、好ましくは、アリール基、1価の複素環基又は置換アミノ基であり、より好ましくは、式(D-A)で表される基である。
 式Ir-4で表される金属錯体において、RD21~RD26の少なくとも1つは、好ましくは、アリール基、1価の複素環基又は置換アミノ基であり、より好ましくは、式(D-A)で表される基である。
 式Ir-5で表される金属錯体において、RD31~RD37の少なくとも1つは、好ましくは、アリール基、1価の複素環基又は置換アミノ基であり、より好ましくは、式(D-A)で表される基である。
Figure JPOXMLDOC01-appb-I000053
[式中、
 mDA1、mDA2及びmDA3は、それぞれ独立に、0以上の整数を表す。
 GDAは、窒素原子、3価の芳香族炭化水素基又は3価の複素環基を表し、これらの基は置換基を有していてもよい。
 ArDA1、ArDA2及びArDA3は、それぞれ独立に、アリーレン基又は2価の複素環基を表し、これらの基は置換基を有していてもよい。ArDA1、ArDA2及びArDA3が複数ある場合、それらはそれぞれ同一でも異なっていてもよい。
 TDAは、アリール基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。複数あるTDAは、同一でも異なっていてもよい。]
 mDA1、mDA2及びmDA3は、通常10以下の整数であり、好ましくは5以下の整数であり、より好ましくは0又は1である。mDA1、mDA2及びmDA3は、同一の整数であることが好ましい。
 GDAは、好ましくは、3価の芳香族炭化水素基又は3価の複素環基であり、より好ましくは式(GDA-11)~(GDA-15)で表される基であり、これらの基は置換基を有していてもよい。
Figure JPOXMLDOC01-appb-I000054
[式中、
 *、**及び***は、各々、ArDA1、ArDA2、ArDA3との結合を表す。 RDAは、水素原子、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基又は1価の複素環基を表し、これらの基は更に置換基を有していてもよい。RDAが複数ある場合、それらは同一でも異なっていてもよい。]
 RDAは、好ましくは水素原子、アルキル基、シクロアルキル基、アルコキシ基又はシクロアルコキシ基であり、より好ましくは水素原子、アルキル基又はシクロアルキル基であり、これらの基は置換基を有していてもよい。
 ArDA1、ArDA2及びArDA3は、好ましくは式(ArDA-1)~(ArDA-3)で表される基である。
Figure JPOXMLDOC01-appb-I000055
[式中、
 RDAは前記と同じ意味を表す。
 RDBは、水素原子、アルキル基、シクロアルキル基、アリール基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。RDBが複数ある場合、それらは同一でも異なっていてもよい。]
 TDAは、好ましくは式(TDA-1)~(TDA-3)で表される基である。
Figure JPOXMLDOC01-appb-I000056
[式中、RDA及びRDBは前記と同じ意味を表す。]
 式(D-A)で表される基は、好ましくは式(D-A1)~(D-A3)で表される基である。
Figure JPOXMLDOC01-appb-I000057
[式中、
 Rp1、Rp2及びRp3は、それぞれ独立に、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基又はハロゲン原子を表す。Rp1及びRp2が複数ある場合、それらはそれぞれ同一であっても異なっていてもよい。
 np1は、0~5の整数を表し、np2は0~3の整数を表し、np3は0又は1を表す。複数あるnp1は、同一でも異なっていてもよい。]
 np1は、好ましくは0~3の整数であり、より好ましくは1~3の整数であり、更に好ましくは1である。np2は、好ましくは0又は1であり、より好ましくは0である。np3は好ましくは0である。
 Rp1、Rp2及びRp3は、好ましくはアルキル基又はシクロアルキル基である。
 GDA、ArDA1、ArDA2、ArDA3、TDA、RDA及びRDBが有していてもよい置換基の好ましい範囲等は、RD1~RD8、RD11~RD20、RD21~RD26及びRD31~RD37が有していてもよい置換基が更に有していてもよい置換基の好ましい範囲等と同様である。
 -AD1---AD2-で表されるアニオン性の2座配位子としては、例えば、下記式で表される配位子が挙げられる。
Figure JPOXMLDOC01-appb-I000058
[式中、*は、Irと結合する部位を表す。]
 式Ir-1で表される金属錯体としては、好ましくは式Ir-11~Ir-13で表される金属錯体である。式Ir-2で表される金属錯体としては、好ましくは式Ir-21で表される金属錯体である。式Ir-3で表される金属錯体としては、好ましくは式Ir-31~Ir-33で表される金属錯体である。式Ir-4で表される金属錯体としては、好ましくは式Ir-41~Ir-43で表される金属錯体である。式Ir-5で表される金属錯体としては、好ましくは式Ir-51~Ir-53で表される金属錯体である。
Figure JPOXMLDOC01-appb-I000059
Figure JPOXMLDOC01-appb-I000060
Figure JPOXMLDOC01-appb-I000061
Figure JPOXMLDOC01-appb-I000062
Figure JPOXMLDOC01-appb-I000063
[式中、
 nD2は、1又は2を表す。
 Dは、式(D-A)で表される基を表す。複数存在するDは、同一でも異なっていてもよい。 RDCは、水素原子、アルキル基、シクロアルキル基、アリール基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。複数存在するRDCは、同一でも異なっていてもよい。
 RDDは、アルキル基、シクロアルキル基、アリール基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。複数存在するRDDは、同一でも異なっていてもよい。]
 三重項発光錯体としては、例えば、以下に示す金属錯体が挙げられる。
Figure JPOXMLDOC01-appb-I000064
Figure JPOXMLDOC01-appb-I000065
Figure JPOXMLDOC01-appb-I000066
Figure JPOXMLDOC01-appb-I000067
Figure JPOXMLDOC01-appb-I000068
Figure JPOXMLDOC01-appb-I000069
 前記高分子化合物及び前記低分子化合物と前記ゲスト材料とを組み合わせて用いる場合、前記ゲスト材料の含有量は、有機EL材料(高分子化合物及び低分子化合物)100重量部に対して、通常、0.1~400重量部である。
 <酸化防止剤>
 酸化防止剤は、発光及び電荷輸送を阻害しない化合物であればよく、例えば、フェノール系酸化防止剤、リン系酸化防止剤が挙げられる。酸化防止剤は、有機EL材料である高分子化合物又は低分子化合物と同じ溶媒に可溶であることが好ましい。
 酸化防止剤の配合量は、有機EL材料(高分子化合物及び低分子化合物)100重量部に対して、通常、0.001~10重量部である。酸化防止剤は、一種単独で用いても二種以上を併用してもよい。
3.有機EL素子の作製
 本発明の有機EL素子は、基板上に電極及び2以上(又は3以上)の有機EL材料層を有する有機EL素子であることが好ましい。当該有機EL素子は、1気圧下での沸点が250℃以上の溶媒Aを含む溶媒と有機EL材料とを含有する溶液を塗布及び乾燥させて、1以上の有機EL材料層を形成し、有機EL素子中の有機EL材料の体積(cm)に対する有機EL素子中の溶媒Aの含有量(μg)の割合X(μg/cm)が、式(1):
  5<X≦2650      (1)
を満たすように調整することにより製造される。
 <1気圧下での沸点が250℃以上の溶媒Aを含む溶媒>
 1気圧下での沸点が250℃以上の溶媒Aを含む溶媒とは、上記「2.有機EL素子」の項で記載した1気圧下での沸点が250℃以上の溶媒Aと、必要に応じその他の溶媒B(以下、「溶媒B」とも表記する。)とを含む溶媒が挙げられる。
 溶媒Bの沸点の範囲は、作業性等を考慮して適宜決めればよく、通常、50℃以上250℃未満、好ましくは80℃以上250℃未満、より好ましくは100℃以上250℃未満、さらに好ましくは120℃以上250℃未満、特に好ましくは160℃以上250℃未満である。膜の平坦性を向上させるために、溶媒Bは、沸点の異なる2以上の有機溶媒を組み合わせて使用してもよい。
 溶媒Bとしては、有機EL材料(前記高分子化合物及び/又は低分子化合物等)を溶解又は均一に分散できる有機溶媒が好ましい。
 溶媒Bの中で、ハロゲン化炭化水素溶媒、脂肪族炭化水素溶媒、芳香族炭化水素溶媒、脂肪族エーテル溶媒、芳香族エーテル溶媒、アルコール溶媒、ケトン溶媒、アミド溶媒、エステル溶媒、カーボネート溶媒が好ましい。
 ハロゲン化炭化水素溶媒としては、例えば、ジクロロエタン、トリクロロエタン、クロロベンゼン及びジクロロベンゼンが挙げられる。
 脂肪族炭化水素溶媒としては、例えば、シクロヘキサン、メチルシクロヘキサン、ペンタン、ヘキサン、へプタン、オクタン、ノナン、デカン、ドデカン及びビシクロヘキシルが挙げられる。
 芳香族炭化水素溶媒としては、例えば、トルエン、キシレン、エチルベンゼン、トリメチルベンゼン、テトラメチルベンゼン、プロピルベンゼン、ブチルベンゼン、ペンチルベンゼン、シクロペンチルベンゼン、メチルシクロペンチルベンゼン、ヘキシルベンゼン、シクロヘキシルベンゼン、メチルシクロヘキシルベンゼン、ヘプチルベンゼン、シクロヘプチルベンゼン、メチルシクロヘプチルベンゼンが挙げられる。
 脂肪族エーテル溶媒としては、例えば、ジイソプロピルエーテル、メチルブチルエーテル、ジブチルエーテル、テトラヒドロフラン、ジオキサン、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、ジエチレングリコールジメチルエーテル及びトリエチレングリコールジメチルエーテルが挙げられる。
 芳香族エーテル溶媒としては、例えば、アニソール、ジメトキベンゼン、トリメトキシベンゼン、エトキシベンゼン、プロポキシベンゼン、ブトキシベンゼン、メチルプロポキシベンゼン、ブトキシベンゼン、メトキシトルエン、エトキシトルエン、メトキシナフタレン、エトキシナフタレン及びフェノキシトルエンが挙げられる。
 アルコール溶媒としては、例えば、エタノール、プロパノール、ブタノール、ペンタノール、シクロペンタノール、ヘキサノール、シクロヘキサノール、ヘプタノール、オクタノール、ベンジルアルコール、フェニルエタノール、エチレングリコール、プロピレングリコール、ジエチレングリコールモノメチルエーテル及びプロパンジオールが挙げられる。
 ケトン溶媒としては、例えば、アセトン、メチルエチルケトン、メチルブチルケトン、ジブチルケトン、シクロヘキサノン、メチルシクロヘキサノン、ヘキサノン、オクタノン、ノナノン、フェニルアセトン、アセチルアセトン、アセトニルアセトン、アセトフェノン、メチルナフチルケトン及びイソホロンが挙げられる。
 アミド溶媒としては、例えば、N-メチルピロリドン、N-エチルピロリドン、N,N-ジメチルアセトアミド、N,N-ジメチルホルムアミド及び1,3-ジメチル-2-イミダゾリジノンが挙げられる。
 エステル溶媒としては、例えば、酢酸ブチル、酢酸エチル、酢酸プロピル、酢酸ペンチル、プロピオン酸エチル、酪酸エチル、プロピレングリコールモノメチルエーテルアセテート、エチレングリコールモノエチルエーテルアセテート、ジエチレングリコールモノブチルエーテルアセテート、ジエチレングリコールモノエチルエーテルアセテート、エチル-3-エトキシピロピオネート、3-メトキシブチルアセテート、3-メチル-3-メトキシブチルアセテート、蟻酸プロピル、乳酸プロピル、フェニル酢酸エチル、安息香酸エチル、β-プロピオラクトン、γ-ブチロラクトン、及び、δ-バレロラクトンが挙げられる。
 カーボネート溶媒としては、例えば、ジメチルカーボネート、ジエチルカーボネート、エチレンカーボネート、及び、プロピレンカーボネートが挙げられる。
 1気圧下での沸点が250℃以上の溶媒Aを含む溶媒は、有機EL材料(高分子化合物及び/又は低分子化合物)の溶解度が望ましい範囲になる溶媒であることが望ましい。有機EL材料の溶解度が、通常0.01重量%以上、特には0.1重量%以上のとなる溶媒であることが望ましい。当該溶媒は、1種であっても、2種以上を組み合わせた混合溶媒であってもよい。
 例えば、当該溶媒は、単独で有機EL材料の溶解度が上記の範囲であることは必ずしも必要ではなく、単独溶媒で溶解度が0.01重量%未満であったとしても、他の有機溶媒を併用した混合溶媒において通常0.01重量%以上、好ましくは0.01重量%以上の溶解度があればよい。
 溶媒Aを含む溶媒が溶媒A及び溶媒Bを含む場合、その配合比は本発明の効果を奏する範囲で広く設定できる。溶媒Aと溶媒Bの配合割合は、通常、溶媒A 1重量部に対し、溶媒Bは10~10000重量部である。
 <有機EL素子作製方法>
 有機EL素子中の有機EL材料層の各層は、インクを用いて、例えば、スピンコート法、キャスティング法、マイクログラビアコート法、グラビアコート法、バーコート法、ロールコート法、ワイヤーバーコート法、ディップコート法、スプレーコート法、スクリーン印刷法、フレキソ印刷法、オフセット印刷法、インクジェット印刷法、キャピラリ-コート法、ノズルコート法により作製することができる。
 有機EL素子中の各層の厚さは、通常、1nm~10μmである。
 有機EL素子中の各層の形成には、例えば、正孔輸送材料、正孔注入材料、電子輸送材料、電子注入材料及び発光材料からなる群から選ばれる少なくとも1種の有機EL材料と、前記1気圧下での沸点が250℃以上の溶媒Aを含む溶媒とを含有する組成物(インク)を用いることができる。このインクは、インクジェットプリント法、ノズルプリント法等の印刷法を用いた有機EL素子の作製に好適である。有機EL材料は、前記の高分子化合物及び低分子化合物から選択される。
 インクの粘度は、印刷法の種類によって調整すればよいが、インクジェットプリント法等の溶液が吐出装置を経由する印刷法に適用する場合には、吐出時の目づまりと飛行曲がりを防止するために、好ましくは25℃において1~20mPa・sである。
 インクにおける1気圧下での沸点が250℃以上の溶媒Aを含む溶媒の配合量は、有機EL材料100重量部に対して、通常、1000~100000重量部である。
 <乾燥方法>
 インクジェットプリント法により得られた塗布膜の乾燥は、各層の種類に応じて適宜選択することができる。通常、大気雰囲気下、又は不活性ガス(窒素、アルゴン等)雰囲気下にて、100~250℃、好ましくは150~200℃にて、5分~60分加熱することができる。また、常圧下(1気圧)又は減圧下(100Pa~0.1MPa)で加熱してもよい。この乾燥工程における温度、圧力及び時間は、各層中において、沸点の低い溶媒Bが除去され、沸点の高い溶媒Aの所定量が残存するように設定できる。即ち、本乾燥工程により、有機EL素子中における、有機EL材料の体積に対する溶媒Aの割合Xが、式(1)を満たすように調整することができる。
 以下、典型的な有機EL材料層の各層について説明する。
 [正孔輸送層]
 正孔輸送層には、通常、正孔輸送材料が用いられる。正孔輸送材料は、前記の低分子化合物と高分子化合物から選択される。
 高分子化合物としては、例えば、ポリビニルカルバゾール及びその誘導体;側鎖又は主鎖に芳香族アミン構造を有するポリアリーレン及びその誘導体が挙げられる。高分子化合物は、電子受容性部位が結合された化合物でもよい。電子受容性部位としては、例えば、フラーレン、テトラフルオロテトラシアノキノジメタン、テトラシアノエチレン、トリニトロフルオレノン等が挙げられる。
 前記インクにおける正孔輸送材料の配合量は、全溶媒100重量部に対して、通常、1~400重量部である。或いは、インクの全重量に対する正孔輸送材料の含有量は、通常、0.1~30重量%である。
 正孔輸送材料は、一種単独で用いても二種以上を併用してもよい。
 [電子輸送層]
 電子輸送層には、通常、電子輸送材料が用いられる。電子輸送材料は、前記の低分子化合物と高分子化合物から選択される。
 低分子化合物としては、例えば、8-ヒドロキシキノリンを配位子とする金属錯体、オキサジアゾール、アントラキノジメタン、ベンゾキノン、ナフトキノン、アントラキノン、テトラシアノアントラキノジメタン、フルオレノン、ジフェニルジシアノエチレン、及び、ジフェノキノン、並びに、これらの誘導体が挙げられる。
 高分子化合物としては、例えば、ポリフェニレン、ポリフルオレン、及び、これらの誘導体が挙げられる。高分子化合物は、金属でドープされていてもよい。
 前記インクにおいて、電子輸送材料の配合量は、全溶媒100重量部に対して、通常、1~400重量部である。或いは、インクの全重量に対する電子輸送材料の含有量は、通常、0.1~30重量%である。
 電子輸送材料は、一種単独で用いても二種以上を併用してもよい。
 [正孔注入層及び電子注入層]
 正孔注入層及び電子注入層には、通常、正孔注入材料及び電子注入材料が用いられる。正孔注入材料及び電子注入材料は、各々、低分子化合物と高分子化合物から選択される。
 低分子化合物としては、例えば、銅フタロシアニン等の金属フタロシアニン;カーボン;モリブデン、タングステン等の金属酸化物;フッ化リチウム、フッ化ナトリウム、フッ化セシウム、フッ化カリウム等の金属フッ化物が挙げられる。
 高分子化合物としては、例えば、ポリアニリン、ポリチオフェン、ポリピロール、ポリフェニレンビニレン、ポリチエニレンビニレン、ポリキノリン、及び、ポリキノキサリン、並びに、これらの誘導体;芳香族アミン構造を主鎖又は側鎖に含む重合体等の導電性高分子が挙げられる。
 前記インクにおいて、正孔注入材料及び電子注入材料の配合量は、各々、全溶媒100重量部に対して、通常、1~400重量部である。或いは、インクの全重量に対する正孔注入材料及び電子注入材料の含有量は、通常、0.1~30重量%である。
 正孔注入材料及び電子注入材料は、各々、一種単独で用いても二種以上を併用してもよい。
 [イオンドープ]
 正孔注入材料又は電子注入材料が導電性高分子を含む場合、導電性高分子の電気伝導度は、好ましくは、1×10-5S/cm~1×103S/cmである。導電性高分子の電気伝導度をかかる範囲とするために、導電性高分子に適量のイオンをドープすることができる。
 ドープするイオンの種類は、正孔注入材料であればアニオン、電子注入材料であればカチオンである。アニオンとしては、例えば、ポリスチレンスルホン酸イオン、アルキルベンゼンスルホン酸イオン、樟脳スルホン酸イオンが挙げられる。カチオンとしては、例えば、リチウムイオン、ナトリウムイオン、カリウムイオン、テトラブチルアンモニウムイオンが挙げられる。
 [基板/電極]
 有機EL素子における基板は、電極を形成することができ、かつ、有機層を形成する際に化学的に変化しない基板であればよく、例えば、ガラス、プラスチック、シリコン等の材料からなる基板である。不透明な基板の場合には、基板から最も遠くにある電極が透明又は半透明であることが好ましい。
 陽極の材料としては、例えば、導電性の金属酸化物、半透明の金属が挙げられ、好ましくは、酸化インジウム、酸化亜鉛、酸化スズ;インジウム・スズ・オキサイド(ITO)、インジウム・亜鉛・オキサイド等の導電性化合物;銀とパラジウムと銅との複合体(APC);NESA、金、白金、銀、銅である。
 陰極の材料としては、例えば、リチウム、ナトリウム、カリウム、ルビジウム、セシウム、ベリリウム、マグネシウム、カルシウム、ストロンチウム、バリウム、アルミニウム、亜鉛、インジウム等の金属;それらのうち2種以上の合金;それらのうち1種以上と、銀、銅、マンガン、チタン、コバルト、ニッケル、タングステン、錫のうち1種以上との合金;並びに、グラファイト及びグラファイト層間化合物が挙げられる。
 陽極及び陰極は、各々、2層以上の積層構造としてもよい。
 [有機EL素子の用途]
 本発明の有機EL素子は、例えば、ディスプレイ、照明等の用途に有用である。
 以下、本発明について実施例及び比較例を用いて詳細に説明するが、本発明はこれらの例に限定されるものではない。
 合成例1(燐光発光性化合物E1の合成)
 燐光発光性化合物E1は、特開2006-188673号公報に記載の方法に従って合成した。
Figure JPOXMLDOC01-appb-I000070
 合成例2(高分子化合物P1の合成)
 高分子化合物P1は下記のようにして合成した。
Figure JPOXMLDOC01-appb-I000071
 単量体CM1は、特開2011-174061号公報に記載の方法に従って合成した。 単量体CM2は、国際公開第2002/045184号に記載の方法に従って合成した。
 単量体CM3は、特開2008-106241号公報に記載の方法に従って合成した。 単量体CM4は、特開2003-226744号公報に記載の方法に従って合成した。
 反応容器内を不活性ガス雰囲気とした後、単量体CM1(185g)、単量体CM2(35.9g)、単量体CM3(20.1g)、単量体CM4(104g)、ジクロロビス(トリフェニルホスフィン)パラジウム(177mg)及びトルエン(4.3kg)を加え、100℃に加熱した。
 その後、そこへ、20重量%水酸化テトラエチルアンモニウム水溶液(873g)を滴下し、100℃で5時間攪拌した。
 その後、そこへ、フェニルボロン酸(3.08g)及びトルエン(120g)を加え、100℃で14時間攪拌した。
 得られた反応液から水層を除いた後、そこへ、ジエチルジチアカルバミン酸ナトリウム水溶液及びトルエンを加え、40℃で3時間撹拌した。その後、室温まで冷却し、水層を除去することにより有機層を得た。得られた有機層を、10重量%塩酸で2回、3重量%アンモニア水溶液で2回、水で2回洗浄した。洗浄した有機層を、アルミナカラム、シリカゲルカラムの順番で通すことにより精製した。得られた精製液をメタノールに滴下し、撹拌したところ、沈殿物が生じた。得られた沈殿物をろ取し、乾燥させることにより、高分子化合物P1を204g得た。高分子化合物P1のMnは6.7×10であり、Mwは2.3×10であった。
 尚、ポリスチレン換算の数平均分子量(Mn)及び重量平均分子量(Mw)は、東ソー株式会社製、HLC-8320GPCを用いて測定した。GPCの測定条件を以下に示す。
Figure JPOXMLDOC01-appb-T000072
 高分子化合物P1は、仕込み原料の量から求めた理論値では、単量体CM1から誘導される構成単位と、単量体CM2から誘導される構成単位と、単量体CM3から誘導される構成単位と、単量体CM4から誘導される構成単位とが、50:12.5:7.5:30のモル比で構成されてなる共重合体である。
 合成例3(高分子化合物P2の合成)
 高分子化合物P2は下記のようにして合成した。
Figure JPOXMLDOC01-appb-I000073
 単量体CM5は、特開2010-189630号公報に記載の方法に従って合成した。 単量体CM9は、国際公開第2012/86671号に記載の方法に従って合成した。 単量体CM12は、特開2010-189630号公報に記載の方法に従って合成した。
 高分子化合物P2は、単量体CM5、単量体CM9及び単量体CM12を用いて、特開2012-36388号公報に記載の方法に従って合成した。高分子化合物P2のMnは9.1×10であり、Mwは2.3×10であった。
 尚、ポリスチレン換算の数平均分子量(Mn)及び重量平均分子量(Mw)は、東ソー株式会社製、HLC-8320GPCを用いて測定した。GPC測定条件は、合成例2と同じである。
 高分子化合物P2は、仕込み原料の量から求めた理論値では、単量体CM5から誘導される構成単位と、単量体CM9から誘導される構成単位と、単量体CM12から誘導される構成単位とが、50:40:10のモル比で構成されてなる共重合体である。
 調製例1(組成物1の調製)
 燐光発光性化合物E1及び高分子化合物P2(重量比=45/55)を、キシレン(沸点:144℃)及び安息香酸n-ヘキシル(沸点:272℃)(重量比=99.9/0.1)の溶媒に溶解させ、燐光発光性化合物E1及び高分子化合物P2の含有量が2.1重量%となる液状組成物1を調製した。
 調製例2(組成物2の調製)
 燐光発光性化合物E1及び高分子化合物P2(重量比=45/55)を、キシレン(沸点:144℃)及び安息香酸n-ヘキシル(沸点:272℃)(重量比=99.0/1.0)の溶媒に溶解させ、燐光発光性化合物E1及び高分子化合物P2の含有量が2.1重量%となる液状組成物2を調製した。
 調製例3(組成物3の調製)
 燐光発光性化合物E1及び高分子化合物P2(重量比=45/55)を、キシレン(沸点:144℃)及び安息香酸n-ヘキシル(沸点:272℃)(重量比=90/10)の溶媒に溶解させ、燐光発光性化合物E1及び高分子化合物P2の含有量が2.1重量%となる液状組成物3を調製した。
 調製例4(組成物4の調製)
 燐光発光性化合物E1及び高分子化合物P2(重量比=45/55)を、キシレン(沸点:144℃)及び安息香酸n-ヘキシル(沸点:272℃)(重量比=50/50)の溶媒に溶解させ、燐光発光性化合物E1及び高分子化合物P2の含有量が2.1重量%となる液状組成物4を調製した。
 実施例D1(有機EL素子D1の作製と評価)
(各層の膜厚設定)
 スピンコート法により成膜する正孔注入層、正孔輸送層、発光層の厚みは、事前にスピンコート法によりガラス基板上に成膜したそれぞれの単独の層を触針式段差計(KLA-Tencor社製、P-16+)にて確認することにより所定膜厚を得る条件を設定した。
(陽極及び正孔注入層の形成)
 ガラス基板に、スパッタ法により45nmの厚みでITO膜を付けることにより陽極を形成した。該基板上に、正孔注入材料をスピンコートにより60nmの厚さの正孔注入層を成膜した。これを大気雰囲気中において、ホットプレート上で230℃、15分間加熱した後、室温まで自然冷却させた。
(正孔輸送層の形成)
 キシレンに、高分子化合物P1を0.6重量%の濃度で溶解させた。得られたキシレン溶液を用いて、正孔注入層の上にスピンコート法により20nmの厚さで成膜し、窒素ガス雰囲気下において、190℃、60分間加熱させることにより正孔輸送層を形成した。
(発光層の形成)
 組成物1を用いて、正孔輸送層の上にスピンコート法により80nmの厚さで成膜し、窒素ガス雰囲気下において、150℃、10分間加熱させることにより発光層を形成した。
(陰極の形成)
 発光層を形成した基板を蒸着機内において、1.0×10-4Pa以下となるまで減圧した後、陰極として、発光層の上にフッ化ナトリウムを3nm、次いで、フッ化ナトリウム層の上にアルミニウムを100nm蒸着した。蒸着後、窒素ガス雰囲気下において、ガラス基板を用いて封止層を形成することにより、有機EL素子D1を作製した。なお、有機EL素子D1が有する陽極、陰極及び各層と、封止層の形成に用いたガラス基板との間には空間が存在する。封止層の形成は窒素ガス雰囲気下で行われているため、該空間には窒素ガスが充填されている。
 有機EL素子D1に電圧を印加したところ、EL発光(緑色)が観測された。初期輝度が3000cd/mとなるように電流値を設定後、定電流で駆動させ、輝度が初期輝度の95%にまで低下した時間(以下、「LT95」ともいう。)を測定したところ、43.0時間であった。
 実施例D2(有機EL素子D2の作製と評価)
 実施例D1における組成物1を、組成物2としたこと以外は、実施例D1と同様にして有機EL素子D2を作製した。
 得られた有機EL素子D2に電圧を印加したところ、EL発光(緑色)が観測された。初期輝度が3000cd/mとなるように電流値を設定後、定電流で駆動させ、LT95を測定したところ、43.5時間であった。
 実施例D3(有機EL素子D3の作製と評価)
 実施例D1における組成物1を、組成物3としたこと以外は、実施例D1と同様にして有機EL素子D3を作製した。
 得られた有機EL素子D3に電圧を印加したところ、EL発光(緑色)が観測された。初期輝度が3000cd/mとなるように電流値を設定後、定電流で駆動させ、LT95を測定したところ、35.0時間であった。
 実施例D4(有機EL素子D4の作製と評価)
 実施例D1における組成物1を、組成物4としたこと以外は、実施例D1と同様にして有機EL素子D4を作製した。
 得られた有機EL素子D4に電圧を印加したところ、EL発光(緑色)が観測された。初期輝度が3000cd/mとなるように電流値を設定後、定電流で駆動させ、LT95を測定したところ、28.8時間であった。
 比較例CD1(有機EL素子CD1の作製と評価)
 実施例D2における発光層の形成工程において、150℃を200℃とすること以外は、実施例D2と同様にして有機EL素子CD1を作製した。
 得られた有機EL素子CD1に電圧を印加したところ、EL発光(緑色)が観測された。初期輝度が3000cd/mとなるように電流値を設定後、定電流で駆動させ、LT95を測定したところ、22.8時間であった。
 上記の結果を表2に示す。なお、LT95が25(h)以上であるものを好ましい輝度寿命であると評価した。
Figure JPOXMLDOC01-appb-T000074
 残溶媒量測定方法サンプルS1の作製と測定
 <残溶媒量測定方法>
 有機EL素子中に残留する溶媒量(以下、残溶媒量と記載する)は、ヘッドスペースガスクロマトグラフィー法で測定した。ヘッドスペースサンプラー(Turbo Matrix製HS40)、ガスクロマトグラフィー(島津製GC-2010)と質量分析計(島津製QP-2010 Plus)とから構成されている。それぞれの測定条件を以下に示す。
 ■ヘッドスペースサンプラー条件
  ヘッドスペースモード:コンスタント
  バイヤルベンディング:ON
  GCサイクル時間:60分
  加圧時間:3分
  引き上げ時間:0.5分
  保温時間:30分
  注入時間:0.5分
  ゾーン温度設定:O/N/T
  オーブン温度:200℃
  ニードル温度:210℃
  HSキャリアガス圧力:120kPa
 ■ガスクロマトグラフィー条件
  カラム:DB-5(径0.25mmΦ×長さ30m×膜厚0.25μm)
  カラムオーブン温度:60℃
  気化室温度:250℃
 ■質量分析計条件
  イオン源温度:240℃
  インターフェイス温度:240℃
  検出器ゲインモード:絶対値
  検出器ゲイン:1.00kV
 前述した条件にてヘッドスペースガスクロマトグラフィー法にて、安息香酸n-ヘキシル(沸点:272℃)又は3-フェノキシトルエン(沸点:272℃)の量とAREA面積との検量線をあらかじめ取得しておき、前記検量線を基に有機EL素子中に含まれる残溶媒量を定量した。
 実施例S1(残溶媒量測定サンプルS1の作製と測定)
(陽極及び正孔注入層の形成)
 ガラス基板に、スパッタ法により45nmの厚みでITO膜を付けることにより陽極を形成した。該基板上に、正孔注入材料をスピンコートにより60nmの厚さの正孔注入層を成膜した。これを大気雰囲気中において、ホットプレート上で230℃、15分間加熱した後、室温まで自然冷却させた。
(正孔輸送層の形成)
 キシレンに、高分子化合物P1を0.6重量%の濃度で溶解させた。得られたキシレン溶液を用いて、正孔注入層の上にスピンコート法により20nmの厚さで成膜し、窒素ガス雰囲気下において、190℃、60分間加熱させることにより正孔輸送層を形成した。
(発光層の形成)
 組成物1を用いて、正孔輸送層の上にスピンコート法により80nmの厚さで成膜し、窒素ガス雰囲気下において、150℃、10分間加熱させることにより発光層を形成した。
(残溶媒量測定サンプルS1の作製)
 有機EL素子の表面、裏面、側面に付着している不純物を取り除くためにアセトンなどの沸点が低い有機溶媒を含んだ布などで拭き取りし乾燥させた後、膜面積が1.4cm×1.4cmとなるようにガラス基板をカットし、残溶媒量測定サンプルS1を作製した。ここで、残留溶媒量測定サンプルS1の有機EL材料の厚みは正孔注入層60nm、正孔輸送層20nmと発光層80nmとを合わせた160nmとした。カットした残溶媒量測定サンプルS1をヘッドスペース用バイアル瓶に封入できる大きさまで更にペンチで粉砕した後に、ヘッドスペース用バイアル瓶に封入し、上記記載の方法で残溶媒量を測定したところ、19μg/cmであった。
 実施例S2(残溶媒量測定サンプルS2の作製と測定)
 実施例S1における組成物1を、組成物2としたこと以外は、実施例S1と同様にして残溶媒量測定サンプルS2を作製した。上記に記載の方法で残溶媒量を測定したところ、58μg/cmであった。
 実施例S3(残溶媒量測定サンプルS3の作製と測定)
 実施例S1における組成物1を、組成物3としたこと以外は、実施例S1と同様にして残溶媒量測定サンプルS3を作製した。上記に記載の方法で残溶媒量を測定したところ、84μg/cmであった。
 実施例S4(残溶媒量測定サンプルS4の作製と測定)
 実施例S1における組成物1を、組成物4としたこと以外は、実施例S1と同様にして残溶媒量測定サンプルS4を作製した。上記に記載の方法で残溶媒量を測定したところ、132μg/cmであった。
 比較例CS1(残溶媒量測定サンプルCS1の作製と測定)
 実施例S2における発光層の形成工程において、150℃を200℃とすること以外は、実施例S2と同様にして残溶媒量測定サンプルCS1を作製した。上記に記載の方法で残溶媒量を測定したところ、5μg/cmであった。
 上記の結果を表3に示す。
Figure JPOXMLDOC01-appb-T000075
 合成例4(燐光発光性化合物E2の合成)
 燐光発光性化合物E2は、国際公開第2006/121811号及び特開2013-048190号公報に記載の方法に準じて合成した。
Figure JPOXMLDOC01-appb-I000076
燐光発光性化合物E2
 合成例5(燐光発光性化合物E3の合成)
 燐光発光性化合物E3は、特開2006-188673号公報に記載の方法に準じて合成した。
Figure JPOXMLDOC01-appb-I000077
燐光発光性化合物E3
 合成例6(低分子化合物E4の合成)
 低分子化合物E4は、Luminescence Technology社より購入した。
Figure JPOXMLDOC01-appb-I000078
低分子化合物E4
 調製例5(組成物5の調製)
 燐光発光性化合物E1、燐光発光性化合物E2、燐光発光性化合物E3、及び低分子化合物E4(重量比;E1/E2/E3/E4=1/0.1/25/73.9)をトルエン(沸点:111℃)及び3-フェノキシトルエン(沸点:272℃)(重量比:トルエン/3-フェノキシトルエン=99/1)の溶媒に溶解させ、燐光発光性化合物E1、燐光発光性化合物E2、燐光発光性化合物E3、低分子化合物E4の含有量が3.0重量%となる液状組成物5を調製した。
 調製例6(組成物6の調製)
 トルエン(沸点:111℃)及び3-フェノキシトルエン(沸点:272℃)(重量比:トルエン/3-フェノキシトルエン=99.9/0.1)の溶媒に溶解させた以外は液状組成物5と同様にして液状組成物6を調製した。
 実施例D5(有機EL素子D5の作製と評価)
 実施例D1における組成物1を、組成物5に、発光層の形成工程において、150℃を170℃とすること以外は、実施例D1と同様にして有機EL素子D5を作製した。
 得られた有機EL素子D5に電圧を印加したところ、EL発光(白色)が観測された。初期輝度が1000cd/mとなるように電流値を設定後、定電流で駆動させ、LT95を測定したところ、29.3時間であった。
 実施例D6(有機EL素子D6の作製と評価)
 実施例D5における組成物5を、組成物6にすること以外は、実施例D5と同様にして有機EL素子D6を作製した。
 得られた有機EL素子D6に電圧を印加したところ、EL発光(白色)が観測された。初期輝度が1000cd/mとなるように電流値を設定後、定電流で駆動させ、LT95を測定したところ、34.0時間であった。
 実施例D7(有機EL素子D7の作製と評価)
 実施例D6における発光層の形成工程において、170℃を130℃とすること以外は、実施例D6と同様にして有機EL素子D7を作製した。
 得られた有機EL素子D7に電圧を印加したところ、EL発光(白色)が観測された。初期輝度が1000cd/mとなるように電流値を設定後、定電流で駆動させ、LT95を測定したところ、32.5時間であった。
 比較例CD2(有機EL素子CD2の作製と評価)
 実施例D5における発光層の形成工程において、170℃を130℃とすること以外は、実施例D5と同様にして有機EL素子CD2を作製した。
 得られた有機EL素子CD2に電圧を印加したところ、EL発光(白色)が観測された。初期輝度が1000cd/mとなるように電流値を設定後、定電流で駆動させ、LT95を測定したところ、11.4時間であった。
 上記の結果を表4に示す。
Figure JPOXMLDOC01-appb-T000079
 実施例S5(残溶媒量測定サンプルS5の作製と測定)
 実施例S1における組成物1を、組成物5に、発光層の形成工程において、150℃を170℃とすること以外は、実施例S1と同様にして残溶媒量測定サンプルS5を作製した。上記に記載の方法で残溶媒量を測定したところ、388μg/cmであった。
 実施例S6(残溶媒量測定サンプルS6の作製と測定)
 実施例S5における組成物5を、組成物6にすること以外は、実施例S5と同様にして残溶媒量測定サンプルS6を作製した。上記に記載の方法で残溶媒量を測定したところ、160μg/cmであった。
 実施例S7(残溶媒量測定サンプルS7の作製と測定)
 実施例S6における発光層の形成工程において、170℃を130℃とすること以外は、実施例S6と同様にして残溶媒量測定サンプルS7を作製した。上記に記載の方法で残溶媒量を測定したところ、1761μg/cmであった。
 比較例CS2(残溶媒量測定サンプルCS2の作製と測定)
 実施例S5における発光層の形成工程において、170℃を130℃とすること以外は、実施例S5と同様にして残溶媒量測定サンプルCS2を作製した。上記に記載の方法で残溶媒量を測定したところ、2697μg/cmであった。
 上記の結果を表5に示す。
Figure JPOXMLDOC01-appb-T000080
 上記表2及び表3、表4及び表5より、有機EL素子中における、有機EL材料(正孔注入層、正孔輸送層及び発光層)の体積(cm)に対する、高沸点溶媒(安息香酸n-ヘキシル又は3-フェノキシトルエン)の含有量(μg)の割合(残溶媒量)が5を超えて2650以下の場合には、LT95が顕著に高いことが確認された。
 本発明の有機EL素子の有機EL素子特性のうち、輝度寿命に優れるため、ディスプレイ、照明等の用途に有用である。

Claims (6)

  1. 有機EL材料及び1気圧下での沸点が250℃以上の溶媒Aを含有する有機EL素子であって、有機EL素子中における、有機EL材料の体積(cm)に対する溶媒Aの含有量(μg)の割合X(μg/cm)が、式(1)を満たすことを特徴とする、有機EL素子。
      5<X≦2650      (1)
  2. 有機EL素子が、基板、電極及び2以上の有機EL材料層を有し、1以上の有機EL材料層に溶媒Aを含有する、請求項1に記載の有機EL素子。
  3. 有機EL材料層が、正孔注入層、正孔輸送層、及び発光層を含み、少なくとも発光層に溶媒Aを含有する、請求項2に記載の有機EL素子。
  4. 溶媒Aが、炭化水素溶媒、アルコール溶媒、エステル溶媒、ケトン溶媒、エーテル溶媒、窒素原子を含む溶媒、及び硫黄原子を含む溶媒からなる群より選ばれる少なくとも1種である、請求項1~3のいずれかに記載の有機EL素子。
  5. 有機EL材料が、
     式(Y)で表される化合物、
    Figure JPOXMLDOC01-appb-I000001
    [式中、ArY1は、アリーレン基、2価の複素環基、又は、少なくとも1種のアリーレン基と少なくとも1種の2価の複素環基とが直接結合した2価の基を表し、これらの基は置換基を有していてもよい。]
     式(H-1)で表される化合物、
    Figure JPOXMLDOC01-appb-I000002
    [式中、
     ArH1及びArH2は、それぞれ独立に、アリール基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。
     nH1及びnH2は、それぞれ独立に、0又は1を表す。nH1が複数存在する場合、それらは同一でも異なっていてもよい。複数存在するnH2は、同一でも異なっていてもよい。
     nH3は、0以上10以下の整数を表す。
     LH1は、アリーレン基、2価の複素環基、又は、-[C(RH112]nH11-で表される基を表し、これらの基は置換基を有していてもよい。LH1が複数存在する場合、それらは同一でも異なっていてもよい。nH11は、1以上10以下の整数を表す。RH11は、水素原子、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。複数存在するRH11は、同一でも異なっていてもよく、互いに結合して、それぞれが結合する炭素原子とともに環を形成していてもよい。
     LH2は、-N(-LH21-RH21)-で表される基を表す。LH2が複数存在する場合、それらは同一でも異なっていてもよい。LH21は、単結合、アリーレン基又は2価の複素環基を表し、これらの基は置換基を有していてもよい。RH21は、水素原子、アルキル基、シクロアルキル基、アリール基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。]、及び
     式(Ir-1)~(Ir-5)で表される化合物、
    Figure JPOXMLDOC01-appb-I000003
    [式中、
     RD1~RD8、RD11~RD20、RD21~RD26及びRD31~RD37は、それぞれ独立に、水素原子、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、アリールオキシ基、1価の複素環基又はハロゲン原子を表し、これらの基は置換基を有していてもよい。RD1~RD8、RD11~RD20、RD21~RD26及びRD31~RD37が複数存在する場合、それらはそれぞれ同一でも異なっていてもよい。
     -AD1---AD2-は、アニオン性の2座配位子を表し、AD1及びAD2は、それぞれ独立に、イリジウム原子と結合する炭素原子、酸素原子又は窒素原子を表し、これらの原子は環を構成する原子であってもよい。-AD1---AD2-が複数存在する場合、それらは同一でも異なっていてもよい。
     nD1は、1、2又は3を表し、nD2は、1又は2を表す。]
    からなる群より選ばれる少なくとも1種である、請求項1~4のいずれかに記載の有機EL素子。
  6. 基板上に電極及び2以上の有機EL材料層を有する有機EL素子の製造方法であって、1気圧下での沸点が250℃以上の溶媒Aを含む溶媒と有機EL材料とを含有する組成物を塗布及び乾燥させて、1以上の有機EL材料層を形成し、有機EL素子中の有機EL材料の体積(cm)に対する有機EL素子中の溶媒Aの含有量(μg)の割合X(μg/cm)が、式(1):
      5<X≦2650      (1)
    を満たすように調整することを特徴とする、製造方法。
     
PCT/JP2019/022476 2018-06-12 2019-06-06 有機エレクトロルミネッセンス素子 WO2019239998A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020217000021A KR20210019485A (ko) 2018-06-12 2019-06-06 유기 일렉트로루미네센스 소자
US17/251,186 US20210273172A1 (en) 2018-06-12 2019-06-06 Organic electroluminescent device
JP2019531337A JP6657487B1 (ja) 2018-06-12 2019-06-06 有機エレクトロルミネッセンス素子
EP19819078.7A EP3809802A4 (en) 2018-06-12 2019-06-06 ORGANIC ELECTROLUMINESCENT ELEMENT
CN201980038678.XA CN112272967A (zh) 2018-06-12 2019-06-06 有机电致发光元件

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018111988 2018-06-12
JP2018-111988 2018-06-12

Publications (1)

Publication Number Publication Date
WO2019239998A1 true WO2019239998A1 (ja) 2019-12-19

Family

ID=68843297

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/022476 WO2019239998A1 (ja) 2018-06-12 2019-06-06 有機エレクトロルミネッセンス素子

Country Status (7)

Country Link
US (1) US20210273172A1 (ja)
EP (1) EP3809802A4 (ja)
JP (2) JP6657487B1 (ja)
KR (1) KR20210019485A (ja)
CN (1) CN112272967A (ja)
TW (1) TWI743489B (ja)
WO (1) WO2019239998A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022034421A1 (ja) * 2020-08-12 2022-02-17 株式会社半導体エネルギー研究所 発光デバイス、発光装置、電子機器および照明装置

Citations (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002045184A1 (en) 2000-11-28 2002-06-06 Avecia Limited Field effect transistors and materials and methods for their manufacture
JP2003226744A (ja) 2001-11-09 2003-08-12 Sumitomo Chem Co Ltd 高分子化合物およびそれを用いた高分子発光素子
JP2006128325A (ja) 2004-10-27 2006-05-18 Sharp Corp 有機el素子、有機el表示装置及び有機el照明装置
JP2006156824A (ja) * 2004-11-30 2006-06-15 Seiko Epson Corp 発光材料及び有機el装置とその製造方法
JP2006188673A (ja) 2004-12-07 2006-07-20 Sumitomo Chemical Co Ltd 高分子材料およびそれを用いた素子
WO2006121811A1 (en) 2005-05-06 2006-11-16 Universal Display Corporation Stability oled materials and devices with improved stability
WO2007063754A1 (ja) 2005-12-01 2007-06-07 Nippon Steel Chemical Co., Ltd. 有機電界発光素子用化合物及び有機電界発光素子
JP2008106241A (ja) 2006-09-25 2008-05-08 Sumitomo Chemical Co Ltd 高分子化合物及びそれを用いた高分子発光素子
WO2008056746A1 (fr) 2006-11-09 2008-05-15 Nippon Steel Chemical Co., Ltd. Composé pour un dispositif électroluminescent organique et dispositif électroluminescent organique
JP2009227663A (ja) 2008-02-25 2009-10-08 Mitsubishi Chemicals Corp キノリン系化合物、有機電界発光素子用材料、有機電界発光素子用組成物、有機電界発光素子、有機elディスプレイおよび有機el照明
JP2010189630A (ja) 2009-01-20 2010-09-02 Sumitomo Chemical Co Ltd メタフェニレン系高分子化合物及びそれを用いた発光素子
JP2010275255A (ja) 2009-05-29 2010-12-09 Mitsubishi Chemicals Corp 含窒素複素環化合物、有機電界発光素子材料、有機電界発光素子用組成物、有機電界発光素子、有機elディスプレイ及び有機el照明
WO2011032686A1 (de) 2009-09-16 2011-03-24 Merck Patent Gmbh Formulierungen zur herstellung von elektronischen vorrichtungen
JP2011174061A (ja) 2010-01-28 2011-09-08 Sumitomo Chemical Co Ltd 高分子化合物及びそれを用いてなる発光素子
JP2012036388A (ja) 2010-07-16 2012-02-23 Sumitomo Chemical Co Ltd 高分子化合物及び該高分子化合物を含有する組成物
WO2012086671A1 (ja) 2010-12-21 2012-06-28 住友化学株式会社 高分子化合物及びそれを用いた有機el素子
WO2012096263A1 (ja) 2011-01-11 2012-07-19 三菱化学株式会社 有機電界発光素子用組成物、有機電界発光素子、表示装置及び照明装置
JP2012531012A (ja) * 2009-06-17 2012-12-06 ユニバーサル ディスプレイ コーポレイション 有機層のインクジェット印刷または他の用途向けの液体組成物
JP2013048190A (ja) 2011-08-29 2013-03-07 Konica Minolta Holdings Inc 有機エレクトロルミネッセンス素子および照明装置
JP2015149501A (ja) * 2015-04-15 2015-08-20 コニカミノルタ株式会社 有機エレクトロルミネッセンス素子、表示装置及び照明装置
JP2016181648A (ja) * 2015-03-25 2016-10-13 セイコーエプソン株式会社 機能層形成用組成物、機能層形成用組成物の製造方法、有機el素子の製造方法、有機el装置、電子機器
WO2017059943A1 (en) * 2015-10-09 2017-04-13 Merck Patent Gmbh Formulations containing n,n-dialkylaniline solvents
WO2017140404A1 (en) * 2016-02-17 2017-08-24 Merck Patent Gmbh Formulation of an organic functional material
JP2018016681A (ja) * 2016-07-26 2018-02-01 セイコーエプソン株式会社 インク組成物、有機半導体素子の製造方法、有機半導体装置、および光学素子の製造方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011087601A1 (en) * 2009-12-22 2011-07-21 Universal Display Corporation Aromatic solvent comprising compositions for inkjet printing of layers comprising organic semiconductive material

Patent Citations (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002045184A1 (en) 2000-11-28 2002-06-06 Avecia Limited Field effect transistors and materials and methods for their manufacture
JP2003226744A (ja) 2001-11-09 2003-08-12 Sumitomo Chem Co Ltd 高分子化合物およびそれを用いた高分子発光素子
JP2006128325A (ja) 2004-10-27 2006-05-18 Sharp Corp 有機el素子、有機el表示装置及び有機el照明装置
JP2006156824A (ja) * 2004-11-30 2006-06-15 Seiko Epson Corp 発光材料及び有機el装置とその製造方法
JP2006188673A (ja) 2004-12-07 2006-07-20 Sumitomo Chemical Co Ltd 高分子材料およびそれを用いた素子
WO2006121811A1 (en) 2005-05-06 2006-11-16 Universal Display Corporation Stability oled materials and devices with improved stability
WO2007063754A1 (ja) 2005-12-01 2007-06-07 Nippon Steel Chemical Co., Ltd. 有機電界発光素子用化合物及び有機電界発光素子
JP2008106241A (ja) 2006-09-25 2008-05-08 Sumitomo Chemical Co Ltd 高分子化合物及びそれを用いた高分子発光素子
WO2008056746A1 (fr) 2006-11-09 2008-05-15 Nippon Steel Chemical Co., Ltd. Composé pour un dispositif électroluminescent organique et dispositif électroluminescent organique
JP2009227663A (ja) 2008-02-25 2009-10-08 Mitsubishi Chemicals Corp キノリン系化合物、有機電界発光素子用材料、有機電界発光素子用組成物、有機電界発光素子、有機elディスプレイおよび有機el照明
JP2010189630A (ja) 2009-01-20 2010-09-02 Sumitomo Chemical Co Ltd メタフェニレン系高分子化合物及びそれを用いた発光素子
JP2010275255A (ja) 2009-05-29 2010-12-09 Mitsubishi Chemicals Corp 含窒素複素環化合物、有機電界発光素子材料、有機電界発光素子用組成物、有機電界発光素子、有機elディスプレイ及び有機el照明
JP2012531012A (ja) * 2009-06-17 2012-12-06 ユニバーサル ディスプレイ コーポレイション 有機層のインクジェット印刷または他の用途向けの液体組成物
WO2011032686A1 (de) 2009-09-16 2011-03-24 Merck Patent Gmbh Formulierungen zur herstellung von elektronischen vorrichtungen
JP2011174061A (ja) 2010-01-28 2011-09-08 Sumitomo Chemical Co Ltd 高分子化合物及びそれを用いてなる発光素子
JP2012036388A (ja) 2010-07-16 2012-02-23 Sumitomo Chemical Co Ltd 高分子化合物及び該高分子化合物を含有する組成物
WO2012086671A1 (ja) 2010-12-21 2012-06-28 住友化学株式会社 高分子化合物及びそれを用いた有機el素子
WO2012096263A1 (ja) 2011-01-11 2012-07-19 三菱化学株式会社 有機電界発光素子用組成物、有機電界発光素子、表示装置及び照明装置
JP2013048190A (ja) 2011-08-29 2013-03-07 Konica Minolta Holdings Inc 有機エレクトロルミネッセンス素子および照明装置
JP2016181648A (ja) * 2015-03-25 2016-10-13 セイコーエプソン株式会社 機能層形成用組成物、機能層形成用組成物の製造方法、有機el素子の製造方法、有機el装置、電子機器
JP2015149501A (ja) * 2015-04-15 2015-08-20 コニカミノルタ株式会社 有機エレクトロルミネッセンス素子、表示装置及び照明装置
WO2017059943A1 (en) * 2015-10-09 2017-04-13 Merck Patent Gmbh Formulations containing n,n-dialkylaniline solvents
WO2017140404A1 (en) * 2016-02-17 2017-08-24 Merck Patent Gmbh Formulation of an organic functional material
JP2018016681A (ja) * 2016-07-26 2018-02-01 セイコーエプソン株式会社 インク組成物、有機半導体素子の製造方法、有機半導体装置、および光学素子の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3809802A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022034421A1 (ja) * 2020-08-12 2022-02-17 株式会社半導体エネルギー研究所 発光デバイス、発光装置、電子機器および照明装置

Also Published As

Publication number Publication date
JP6657487B1 (ja) 2020-03-04
JP2020098925A (ja) 2020-06-25
US20210273172A1 (en) 2021-09-02
EP3809802A4 (en) 2022-02-23
KR20210019485A (ko) 2021-02-22
EP3809802A1 (en) 2021-04-21
JPWO2019239998A1 (ja) 2020-06-25
CN112272967A (zh) 2021-01-26
TW202000859A (zh) 2020-01-01
TWI743489B (zh) 2021-10-21

Similar Documents

Publication Publication Date Title
JP6427681B2 (ja) 組成物、燐光発光性化合物及び発光素子
JP6468289B2 (ja) 発光素子
WO2018198975A1 (ja) 発光素子
WO2016140205A1 (ja) 組成物およびそれを用いた発光素子
KR102558986B1 (ko) 조성물 및 그것을 사용한 발광 소자
JP6489122B2 (ja) 発光素子およびそれに用いる高分子化合物
JP6296208B2 (ja) 発光素子
WO2018198972A1 (ja) 組成物及びそれを用いた発光素子
JP2018157207A (ja) 発光素子
JP2015035600A (ja) 組成物およびそれを用いた発光素子
JP6972912B2 (ja) 組成物及びそれを用いた発光素子
JP6657487B1 (ja) 有機エレクトロルミネッセンス素子
JPWO2017077904A1 (ja) 発光素子の駆動方法および発光装置
JP6596918B2 (ja) 発光素子
JP6296209B2 (ja) 発光素子
JP6624153B2 (ja) 組成物の製造方法及び発光素子の製造方法
JP7439312B2 (ja) 組成物及びそれを用いた発光素子の製造方法
JP7348417B1 (ja) 組成物及びそれを用いた発光素子の製造方法
JP2018188515A (ja) 組成物及び発光素子
JP6399248B2 (ja) 発光素子
WO2023181738A1 (ja) 組成物及びそれを用いた発光素子の製造方法
JP2020043083A (ja) 組成物の製造方法及び発光素子の製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019531337

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19819078

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20217000021

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019819078

Country of ref document: EP

Effective date: 20210112