WO2001098411A1 - Materiau de scellement pour cellules d'affichage a cristaux liquides plastiques - Google Patents

Materiau de scellement pour cellules d'affichage a cristaux liquides plastiques Download PDF

Info

Publication number
WO2001098411A1
WO2001098411A1 PCT/JP2001/005330 JP0105330W WO0198411A1 WO 2001098411 A1 WO2001098411 A1 WO 2001098411A1 JP 0105330 W JP0105330 W JP 0105330W WO 0198411 A1 WO0198411 A1 WO 0198411A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
crystal display
composition
mass
display cell
Prior art date
Application number
PCT/JP2001/005330
Other languages
English (en)
French (fr)
Inventor
Tadashi Kitamura
Hiroshi Kondo
Sunao Maeda
Original Assignee
Mitsui Chemicals Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Chemicals Inc. filed Critical Mitsui Chemicals Inc.
Priority to EP01941166A priority Critical patent/EP1293536A4/en
Priority to JP2002504365A priority patent/JP4358505B2/ja
Priority to US10/069,048 priority patent/US6913798B2/en
Publication of WO2001098411A1 publication Critical patent/WO2001098411A1/ja
Priority to US11/137,401 priority patent/US7541075B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D163/00Coating compositions based on epoxy resins; Coating compositions based on derivatives of epoxy resins
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1339Gaskets; Spacers; Sealing of cells
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/66Mercaptans
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/36Sulfur-, selenium-, or tellurium-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/36Sulfur-, selenium-, or tellurium-containing compounds
    • C08K5/37Thiols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L81/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing sulfur with or without nitrogen, oxygen or carbon only; Compositions of polysulfones; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/63Additives non-macromolecular organic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/65Additives macromolecular
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2323/00Functional layers of liquid crystal optical display excluding electroactive liquid crystal layer characterised by chemical composition
    • C09K2323/05Bonding or intermediate layer characterised by chemical composition, e.g. sealant or spacer
    • C09K2323/055Epoxy
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/133305Flexible substrates, e.g. plastics, organic film

Definitions

  • the present invention relates to a sealant composition for a plastic liquid crystal display cell.
  • the present invention relates to a plastic liquid crystal display cell sealant composition, a method for producing a plastic liquid crystal display cell, and a plastic liquid crystal display cell.
  • liquid crystal display cells made of plastic
  • the plastic liquid crystal display cell is a space surrounded by a pair of transparent plastic substrates on which a transparent electrode and an alignment film are provided, and a plastic liquid crystal display cell sealant composition which is a thermosetting resin composition. Is formed by enclosing liquid crystal.
  • liquid crystal display cell The use environment of the liquid crystal display cell is severe, and a high-grade plastic liquid crystal display cell having high shock resistance and high handling safety that can withstand it is desired.
  • thermosetting resin composition between the substrates and bonding the pair of substrates has been reviewed. From the viewpoint of productivity, a multi-stage hot press bonding method, in which multiple substrates are heated and bonded at once, is mainly used.However, from the viewpoint of further securing the reliability of plastic liquid crystal display cells, A sheet-fed hot press bonding method for heating and bonding is also employed.
  • the plastic sealant composition for liquid crystal display cells a two-pack type thermosetting plastic sealant composition for liquid crystal display cells is known.
  • a hardener containing a trifunctional mercapto compound is known.
  • a two-pack type sealant composition comprising a liquid and a base liquid containing polyethylene glycol diglycidyl ether and the like.
  • these sealant compositions have sufficient basic performance regarding sealing properties for plastic liquid crystal display cells, that is, adhesive sealability under normal conditions, electrical insulation, non-contamination of liquid crystal, etc.
  • 60 ° C ⁇ 80 ° C Water vapor gas barrier properties under high-temperature and high-humidity environments, water resistance strength characteristics, etc. are considerably low.
  • An object of the present invention is to provide a one-liquid type or a two-stage type capable of manufacturing a highly reliable plastic liquid crystal display cell in a high-temperature and high-humidity environment, which is applicable not only to a multi-stage hot press bonding system but also to a single-wafer hot press bonding system.
  • An object of the present invention is to provide a liquid type plastic sealing compound composition for a liquid crystal display cell, a method for producing a liquid crystal display cell using the composition, and a liquid crystal display cell.
  • Sealant composition for liquid crystal display cells made of plastic, which has a low concentration and is excellent in water vapor gas barrier properties of cured products, water resistance adhesion reliability, heat resistance adhesion reliability, impact resistance, and dimensional stability.
  • the manufacturing method of the liquid crystal display cell that has been used is to provide a liquid crystal display cell.
  • the present invention relates to an epoxy resin composition
  • a 60 ° C water vapor permeability for passing a cured film of thickness 1 00 m of the composition is less than 200 g / m 2 ⁇ 24 hrs ,
  • the heat distortion temperature (Tg) of the cured product of the composition is in the range of 0 ° C to 85 ° C,
  • a plastic liquid crystal display cell seal characterized in that the cured product of the composition has a storage elastic modulus at room temperature in the range of 0.5 X 10 4 Pa. To l X 10 6 Pa. An agent composition.
  • the epoxy resin composition Preferably, the epoxy resin composition,
  • (V) E-type viscosity after applying to 5 thickness and heat treating at 50 ° C to 85 ° C for 20 minutes
  • the temperature is 50 to 100 ° C, and is 5 to 5000 Pa ⁇ s.
  • the composition since the composition has the above-mentioned characteristics (I) to (V), there are few electrically conductive ions generated from the composition, and the cured product of the composition has low moisture permeability, and penetrates during hot pressing. It is hard to generate bubbles.
  • the present invention provides a two-component type comprising: a base solution containing the following (1) and (3) to (6); and a curing agent solution containing the following (2A) or a mixture of the following (2A) and (3):
  • An epoxy resin composition
  • a sealant composition for a liquid crystal display cell made of plastic wherein the two-component mixture of the main component liquid and the curing agent liquid contains the following (1) to (6). '
  • (2A) The ionic conductivity of an aqueous solution extracted and separated by contact mixing with 10 times the mass of pure water at 40 ° C to 80 ° C is 0.6 mSZm or less, (2A-1) 4-functional Curing agent containing one or two or more selected from hydrophilic mercapto compounds or (2A-2) modified polymercapto derivatives 10-50% by mass
  • Rubber-like polymer fine particles having a softening point temperature of 0 ° C. or less and primary particles having an average particle size of 0.01 to 5 / im 1 to 25 mass ⁇ 1 ⁇ 2
  • the (2A-1) tetrafunctional mercapto compound is pentaerythritol tetrakis (3-mercaptopropionate)
  • the (2A-2) modified polymercapto derivative is pentaerythritol tetrakis (3-mer Modified poly (captopropionate) obtained by reacting 0.01 to 0.3 equivalents of the active isocyanate group of the diisocyanate compound Z or its isocyanate prepolymer per equivalent of active hydrogen of the captopropionate It is a mercapto derivative.
  • a sealing composition for a plastic liquid crystal display cell having the characteristics (I) to (V) can be obtained.
  • the present invention is a plastic liquid crystal display cell sealing agent composition characterized by being a one-pack type epoxy resin composition comprising the following (1) to (6).
  • (2B) The ionic conductivity of an aqueous solution extracted and separated by contact mixing with 10 times the mass of pure water at 40 ° C to 80 ° C is 0.6 mS / m or less.
  • (2B-1) 10 to 50 mass of a curing agent containing one or a mixture of two or more selected from a microencapsulated imidazole compound or (2B-2) an alicyclic diamine methyl methacrylate adduct. /.
  • Rubber-like polymer particles having a softening point temperature of 0 ° C. or less and primary particles having an average particle size of 0.01 to 5 / zm 1 to 25% by mass
  • the present invention the plastic liquid crystal display cell sealant composition
  • the cured product has a heat distortion temperature (T g) in the range of 0 ° C to 85 ° C;
  • T g heat distortion temperature
  • the cured product of the composition has a storage modulus at room temperature in the range of 0.5 X 10 4 Pa to 1 X 10 6 Pa.
  • the composition has the above-mentioned characteristics (I) to (IV), so that the amount of electrically conductive ions generated from the composition is small, and the cured product of the composition has low moisture permeability.
  • the present invention the plastic liquid crystal display cell sealant composition
  • V E-type viscosity after application at 50 / im thickness and heat treatment at 50 ° C to 85 ° C for 20 minutes is 5 to 5000 Pas at 50 ° C to 100 ° C. It is characterized by:
  • the (1) epoxy resin is a mixed composition of (1-1) an aliphatic and / or alicyclic epoxy resin and (1-2) an aromatic epoxy resin,
  • Aliphatic and / or alicyclic epoxy resin is a higher alcohol monodalicydyl ether, polyoxyalkylene glycol diglycidyl ether, 1,6-hexanediol diglycidyl ether, neopentyl glycol diglycidyl ether, Or a mixture of two or more selected from glycerin triglycidyl ether, and the (1-2) aromatic epoxy resin is a bisphenol A-type epoxy resin or an alkylene oxide-added type thereof. At least one resin selected from the group consisting of epoxy resin, bisphenol F type epoxy resin or an alkylene oxide-added epoxy resin thereof, bisphenol S type epoxy resin, and bisphenol AD type epoxy resin, or 2 Characterized by a mixture of more than one species
  • the epoxy resin (1) since using the above epoxy resin, good Ri sealing reliable plastic liquid crystal display cell sealant composition c
  • the present invention obtain a
  • the (3) The curing accelerator is characterized in that it is at least one selected from an alkyl urea derivative, tris-dimethylaminomethylphenol salt, and 1,8-diazabicyclo (5,4,0) indene 17 salt.
  • the seal signal is further improved.
  • a highly reliable plastic liquid crystal display cell sealing agent composition can be obtained.
  • the alkyl urea derivative is preferably 3- (p-chlorophenyl) 1-1,1-dimethylurea, 3- (o, p-dichlorophenyl) 1-1,1-dimethylurea, 2,4 It is characterized in that it is at least one selected from [bis (1,1-dimethylurea)] toluene and 2,6- [bis (1,1-dimethylurea)] toluene.
  • the present invention since the above-described substance is used for the alkyl urea derivative, a sealant composition for a liquid crystal display cell made of plastic having higher seal reliability can be obtained. Further, the present invention is characterized in that (6) the rubber-like polymer fine particles have a primary particle diameter of 0.1 to l / xm and are crosslinkable rubber particles.
  • the rubber-like polymer fine particles (6) have a primary particle diameter of 0.1 to lim and are crosslinkable rubber particles, it is possible to obtain adhesion durability reliability and heat resistance rigidity.
  • the inorganic filler is a graft with (1) an epoxy resin Z or (5) a silane coupling agent, and the graft is repeatedly washed with a solvent.
  • Graft rate calculated by the method and represented by the mass increase rate
  • the total amount of (1) epoxy resin and (5) silane coupling agent is 1 to 50 parts by mass per 100 parts by mass of the inorganic filler.
  • the inorganic filler (4) since the above-mentioned substance is used as the inorganic filler (4), the fluidity of the plastic sealant composition for liquid crystal display cells can be ensured, and the workability of screen printing or dispenser application is improved. I do.
  • the present invention provides a coating step of coating the plastic liquid crystal display cell sealing agent composition on one of a pair of plastic liquid crystal display cell substrates, and positioning the one substrate and the other substrate.
  • the plastic sealant composition for a liquid crystal display cell is used, a plastic liquid crystal display cell having high sealing reliability can be manufactured under a high temperature and high humidity environment.
  • the present invention provides a plastic liquid crystal display cell obtained by the method for producing a plastic liquid crystal display cell.
  • FIG. 1 is a flowchart of a method for manufacturing a plastic liquid crystal display cell of the present invention.
  • the sealant composition for a plastic liquid crystal display cell of the present invention is an epoxy resin composition, and the following functions (I) to (IV) are simultaneously secured.
  • the cured product of the composition has a heat distortion temperature (T g) in the range of 0 ° C to 85 ° C.
  • the cured product of the composition has a storage modulus at room temperature in the range of 0.5 X 10 4 Pa to l X 10 6 Pa.
  • a tetrafunctional mercapto compound or its prepolymer is used as a curing agent for the specified epoxy resin.
  • a curing accelerator such as an alkyl urea derivative, a rubber-like polymer fine particle, an inorganic filler, a silane coupling agent, and if necessary, a high-softening point polymer fine particle, a wax, and the like.
  • the properties shown in the above (I) to (IV) can be changed by changing the amount ratio of the epoxy resin, the curing agent, the curing accelerator such as an alkyl urea derivative, the inorganic filler, and the rubbery polymer fine particles if necessary. To achieve each. These characteristics are described in detail below.
  • the sealing agent composition for a plastic liquid crystal display cell of the present invention is represented by the ionic conductivity of an aqueous solution obtained by mixing and extracting 10 times the mass of the composition with pure water at 40 ° C. to 80 ° C. It is preferable that the ionic conductivity be 1 mS / m or less. By doing so, the liquid crystal display cell obtained can maintain the display functionality for a long time. More preferably, it is 0.2 mSZm or less.
  • Cured film of sealant composition for plastic liquid crystal display cell 100 ° C, which passes through a cured film having a thickness of 100 m and is exposed to water at 60 ° C and 95% relative humidity for 24 hours. It is preferably less than 200 g / m 2 ⁇ 24 hrs. By doing so, early display unevenness of the liquid crystal display cell and reduction in response speed can be suppressed. More preferably 6 0 ° C water vapor permeability characteristics 1 50 g / m less than 2 ⁇ 24 hrs, preferably the further less than 1 00 g / m 2 ⁇ 24 hrs.
  • the moisture permeability (X) per 100 ⁇ m-thick cured film can be obtained by the following conversion formula.
  • Moisture Permeability Measured Moisture Permeability X [Film Film Thickness of Sample ( ⁇ ) / 100] TM A (TMA)
  • the heat distortion temperature (T g) obtained by thermomechanical analysis) is preferably 0 ° C. or higher. By doing so, the long-term display reliability limit temperature of the liquid crystal display cell obtained can be improved. It is preferable that the temperature be 85 ° C or lower. As a result, the impact resistance and the heat-resistant bonding reliability of the liquid crystal display cell obtained can be secured. It is more preferably in the range of 20 ° C to 85 ° C.
  • the storage modulus at room temperature of the cured product of the sealing composition for a plastic liquid crystal display cell at room temperature is preferably in the range of 0.5 X 10 4 Pa to 1 X 10 6 Pa. This is because the production yield of the plastic liquid crystal display cell obtained by doing so increases. More preferably 0. 8 X 1 0 4 P a ⁇ 0 . 9 X 1 0 of 6 P a range, more favorable Mashiku in the range of 1 X 1 0 4 P a ⁇ 0. 8 X 1 0 6 P a is there.
  • the sealant composition for a plastic liquid crystal display cell of the present invention it is more preferable that the above (I) to (IV) and further the following (V) are simultaneously secured.
  • the properties shown in (V) are measured with an E-type viscometer after heat treatment at 50 ° C to 85 ° C for 20 minutes (hereinafter also referred to as B-stage) when applied to a thickness of 50 m.
  • the E-type viscosity is in the range of 5 to 5000 Pa ⁇ s at 50 ° C. to 100 ° C. By exceeding 5 Pa ⁇ s, it is possible to effectively avoid and suppress the generation of through bubbles at the time of heating and press-bonding by the multi-stage hot press or the single-wafer hot press method.
  • a desired gap control can be performed at the time of heating and press-bonding by a multi-stage hot press or a single-wafer hot press method, which is preferable.
  • it is in the range of 5 to 3000 Pas, more preferably in the range of 5 to: lOOOPas.
  • the properties of the plastic sealant composition for liquid crystal display cells include epoxy resin, curing agent, a curing accelerator composed of an alkyl urea derivative, and, if necessary, What is necessary is just to change the amount ratio of the inorganic filler and the rubber-like polymer fine particles so as to have the respective properties.
  • T g strongly depends on the type of epoxy resin and its amount ratio, as well as the type and amount ratio of curing agent, curing conditions, and the like.
  • the elastic modulus strongly depends on the type and amount ratio of epoxy resin, the type and amount ratio of hardener, the amount ratio of rubber, and curing conditions.
  • the moisture permeability strongly depends on the curing conditions, etc., if the amount ratio of the inorganic filler is large. Therefore, the above-mentioned properties may be obtained by selecting or determining the quantitative ratio and the curing conditions so as to fall within the respective preferable ranges.
  • the sealant composition for a plastic liquid crystal display cell of the present invention is preferably an active mercapto group or an active hydroxyl group of a tetrafunctional mercapto compound per one equivalent of an epoxy group of an epoxy resin. And / or a range of 0.5 to 1.2 equivalents, preferably 0.7 to 1.1 equivalents, and more preferably 0.85 to 1 equivalent of the ester-modified group thereof.
  • the alkyl urea derivative which is blended and is a curing accelerator is in the range of 0.1 to 20% by mass, more preferably 0.1 to 10% by mass. It is preferable to use an epoxy resin composition contained in the range of / 0 .
  • a two-pack type plastic liquid crystal display cell sealant composition comprises:
  • (2A) The ionic conductivity of an aqueous solution extracted and separated by contact mixing with 10 times the mass of pure water at 40 ° C to 80 ° C is 0. SmSZm or less.
  • (2A-1) 4-functional mercap Hardening agent consisting of one or a mixture selected from the group consisting of a compound or a (2A-2) modified polymercapto derivative 10 to 50% by mass
  • primary particles are particles that cannot be further separated mechanically.
  • Curing agent consisting of more than 10 species
  • a high softening point having a softening point temperature of 50 ° C or more and an average primary particle size of 2 m or less.
  • Acryl polymer fine particles hereinafter referred to as high softening point polymer fine particles
  • Wax (9) Gap control agent, (10) Conductive beads, (11) Solvent, leveling agent, pigment , A dye, a plasticizer, an antifoaming agent, and other additives may be appropriately contained.
  • Examples of the epoxy resin (1) that is a component of the composition of the present invention include a monofunctional epoxy resin and a polyfunctional epoxy resin. Specific examples include cresol novolac epoxy resin, bisphenol A epoxy resin, bisphenol F epoxy resin, triphenol methane epoxy resin, triphenol ethane epoxy resin, and the like. They may be used alone or as a mixture of two or more.
  • epoxy resin (1) an epoxy resin having an average weight of 1.7 or more, preferably 1.9 or more, more preferably 2.0 or more and 6 or less in one epoxy resin molecule is preferable. Preferably, it is used.
  • Epoxy resin (1) Power epoxy By having an epoxy group having a mass average of 1.7 or more and 6 or less in one molecule of the resin, excellent water resistance and heat resistance can be obtained in the composition of the present invention.
  • the epoxy resin (1) has an ionic conductivity of 10 OmSZm or less, preferably 5 mS / m or less, in an aqueous solution extracted and separated by contact mixing with 10 times the mass of pure water at 40 ° C to 80 ° C. More preferably, it is 2 mSZm or less, and still more preferably, the measurement limit or less.
  • the ionic conductivity By setting the ionic conductivity to 10 mSZm or less, when the cured product of the composition of the present invention comes into contact with liquid crystal, transfer of free ions from the cured product to the liquid crystal phase can be prevented.
  • the above requirement may be satisfied as an index of the total content of free ions in the mixture.
  • the content of the epoxy resin (1) in the composition is 15 to 84% by mass.
  • the epoxy resin (1) has a hydrolyzable chlorine concentration of 300 ppm or less, preferably 100 ppm, calculated from the chlorine ion concentration in an aqueous solution obtained by extracting with boiling water for 24 hours. ppm or less, more preferably 50 ppm or less, and even more preferably within the detection limit.
  • concentration of the hydrolyzable chlorine is 300 ppm or less, the transfer of free ions from the cured product to the liquid crystal phase can be prevented when the cured product of the composition of the present invention comes into contact with liquid crystal.
  • the epoxy resin (1) is preferably a mixture of an epoxy resin that is liquid at room temperature (25 ° C.) and an epoxy resin that is solid at room temperature. Also, the mixture is preferably liquid at 110 ° C. to 50 ° C.
  • the epoxy resin (1) preferably has a mass average molecular weight in terms of polystyrene, determined by gel permeation chromatography (hereinafter, referred to as GPC) of 7000 or less, more preferably 150 to 5000, and still more preferably 350. In the range of ⁇ 3500.
  • GPC gel permeation chromatography
  • the E-type viscosity value of the composition of the present invention after being B-staged can be set to 1 000 Pa ⁇ s or less. Suitable for bonding method.
  • the cured product of the composition of the present invention has Tg suitability, that is, optimal heat distortion temperature (Tg) and B-stage suitability. In other words, it is possible to obtain the optimal E-type viscosity value after the B-stage.
  • the epoxy resin (1) was purified or highly purified by a known purification method mainly for the purpose of reducing dehydrolyzable chlorine and releasing liberating ion so as to satisfy the above-mentioned requirements.
  • a purification method include a water washing-solvent extraction purification method, an ultrafiltration method, and a distillation purification method.
  • a solvent extraction is performed, and this extract is separated and quantified by GPC. It is common to use a method such as NMR (nuclear magnetic resonance spectrum) to identify / identify and quantify.
  • Methods for determining the type and amount of the epoxy resin (1) present in the cured product of the composition of the present invention include infrared absorption spectroscopy, thermal decomposition, chromatographic preparative method, and wet decomposition. Examples include chromatographic preparative methods, pyrolysis gas chromatography, pyrolysis-mass spectrometry, and solid NMR.
  • Examples of the monofunctional epoxy resin include an aliphatic monoglycidyl ether compound, an alicyclic monoglycidyl ether compound, an aromatic monodaricidyl ether compound, an aliphatic monoglycidyl ester compound, an aromatic monodaricidyl ester compound, and an alicyclic monoglycidyl ester compound.
  • Monoglycidyl ester compounds, nitrogen element-containing monoglycidyl ether compounds, monoglycidylpropyl polysiloxane compounds, monoglycidyl alkanes, and the like can be mentioned. Further, a monofunctional epoxy resin other than these may be used.
  • Examples of the aliphatic monodaricidyl ether compound include aliphatic monoglycidyl ethers obtained by reacting polyoxyalkylene monoalkyl ethers having an alkyl group or an alkenyl group having 1 to 6 carbon atoms with epichlorohydrin. And terpyl compounds, aliphatic monoglycidyl ether compounds obtained by the reaction of aliphatic alcohols with epichlorohydrin, and the like.
  • Examples of the polyoxyalkylene monoalkyl / leatenoles having an alkyl group or an alkenyl group having 1 to 6 carbon atoms include ethylene glycol monoalkyl / leene tenole, diethylene glycol / lemonoanolexoleate / le, and triethylene glycolone.
  • aliphatic alcohols examples include n-butanol, isoptanol, n-octanol, 2-ethynolehexyl 7-reanolone / resin dimethylonoleprononone monoolequinolate monoether, methylolpropane dialkyl ether, glycerindia / lequinoleate Nore, Dimethylonoreprono II. Monomonoolequinole Estenole, Methylol Prono ⁇ . And glycerin dialkyl esters.
  • the alicyclic monoglycidyl ether includes an alicyclic monoglycidyl ether compound obtained by the reaction of an alicyclic alcohol having a saturated cyclic aluminic group having 6 to 9 carbon atoms with epipichydrin. And the like.
  • Examples of the alicyclic alcohols include cyclohexanol.
  • aromatic monoglycidyl ether compound examples include an aromatic monoglycidyl ether compound obtained by a reaction between an aromatic alcohol and epichlorohydrin.
  • aromatic alcohols include phenol, methylphenol, ethynolephenol, n -propynolephenol, isopropynolephenol, n-ptynolephenol, benzyl alcohol, and t-pthino. Refenore, xylenol, naphthol and the like.
  • Examples of the aliphatic or aromatic monoglycidyl ester compound include an aliphatic monoglycidyl ester compound and an aromatic monoglycidyl ester compound obtained by reacting an aliphatic dicarboxylic acid monoalkyl ester or an aromatic dicarboxylic acid monoalkyl ester with epichlorohydrin. Monoglycidyl ester compounds and the like can be mentioned.
  • a polyfunctional epoxy resin has a mass average of 2 per molecule. It preferably has up to 6 epoxy groups. Specific examples include an aliphatic polyglycidyl ether compound, an aromatic polyglycidyl ether compound, a trisphanol-type polyvalent glycidyl ether compound, a hydroquinone-type polyvalent glycidyl ether compound, a resorcinol-type polyvalent glycidyl ether compound, and a fat.
  • Aromatic polyglycidyl ester compound Aromatic polyglycidyl ester compound, Aromatic polyglycidyl ester compound, Aliphatic polyglycidyl ether ester compound, Aromatic polyvalent glycidyl ether ester compound, Alicyclic polyvalent glycidyl ether compound, Aliphatic polyvalent glycidylamine Compounds, aromatic polyvalent glycidylamine compounds, hydantoin-type polyvalent glycidyl compounds, biphenyl-type polyvalent glycidyl compounds, novolak-type polyvalent glycidyl ether compounds, epoxygenated polymers, and the like. Further, a polyfunctional epoxy resin other than these may be used.
  • aliphatic polyglycidyl ether compound examples include aliphatic polyhydric glycidyl ether compounds obtained by reacting polyoxyalkylene diols or polyhydric alcohols with epichlorohydrin.
  • polyoxyalkylene glycols examples include ethylene glycol, ethylene glycol, triethylene glycol / re, polyethylene glycol, propylene glycol, dipyrropyrene glycol / re, tripyropyrendaricol, and polypyrene pyrendalicol. .
  • polyhydric alcohols examples include dimethylolpropane, trimethylolpropane, spirodalicol, glycerin and the like.
  • aromatic polyvalent glycidyl ether compound examples include an aromatic polyvalent glycidyl ether compound obtained by a reaction between an aromatic diol and a picopenic hydrin.
  • aromatic diol examples include bisphenol A, bisphenol S, bisphenol F, and bisphenol AD.
  • Trisphenol-type polyvalent glycidyl ether compound examples include a trisphenol-type polyvalent glycidyl ether compound obtained by a reaction of a trisphenol with epichlorohydrin.
  • the trisphenols include 4, 4 ', 4 "-methylidenetrisphenol, 4,4', 4" -methylidenetris (2-methylphenol), 4, A '— [( 2-Hydroxyphenyl) methylene] bis [2,3,6-trimethylphenol], 4,4 ', 4 "-ethylidenetrisphenol, 4, ⁇ '-[(2-hydroxyphenyl) methylene] Bis [2-methylinophenol], 4,4 '-[(2-hydroxyphenyl) ethylene] Bis [2-methynolephenol], 4,4'-[(4-hydroxyphenol) methylene] Bis [2-methylinophenol], 4,4 '_ [(4-hydroxyphenol) ethylene] bis [2-methylphenol], 4,4' _ [(2-hydroxyphenyl) methylene] bis [2 , 6—dimethyl phenol], 4, 4 '— [(2-hydroxyphenyl) ethyl Bis [2,6-dimethylphenol], 4,4 '-[(4-hydroxy
  • hydroquinone-type polyvalent glycidyl ether compound examples include a hydroquinone-type polyvalent glycidyl ether compound obtained by the reaction of hydroquinone and epichlorohydrin.
  • resorcinol-type polyvalent glycidyl ether compound examples include a resorcinol-type polyvalent glycidyl ether compound obtained by a reaction of resorcinol with epichlorohydrin.
  • Examples of the aliphatic polyglycidyl ester compound include an aliphatic polyglycidyl ester compound obtained by reacting an aliphatic dicarboxylic acid represented by adipic acid with epichlorohydrin.
  • aromatic polyvalent glycidyl ester compound examples include an aromatic polyvalent glycidyl ester compound obtained by a reaction between an aromatic dicarboxylic acid and epichlorohydrin.
  • aromatic dicarboxylic acid examples include isophthalic acid, terephthalic acid, and pyromellitic acid.
  • aliphatic or aromatic polyglycidyl ether ester compounds examples include aliphatic polyglycidyl ether ester compounds and aromatic polyglycidyl ether ester compounds obtained by reacting a hydroxydicarboxylic acid compound with epichlorohydrin. Is mentioned.
  • alpha-1 polyvalent glycidyl ether compound examples include alicyclic polyvalent glycidyl ether compounds represented by a dicyclopentadiene-type polyvalent glycidyl ether compound.
  • Examples of the aliphatic polyglycidylamine compound include an aliphatic polyvalent glycidylamine compound obtained by a reaction of an aliphatic amine represented by ethylenediamine or the like with epichlorohydrin.
  • aromatic polyglycidylamine compound examples include aromatic polyvalent glycidylamine obtained by the reaction of an aromatic diamine represented by diaminodiphenylmethane, adiline, and metaxylylenediamine with epichlorohydrin. And the like.
  • Examples of the hydantoin-type polyvalent daricidyl compound include a hydantoin-type polyvalent glycidyl compound obtained by reacting hydantoin or its derivative with epichlorohydrin.
  • Novolak-type polyhydric glycidyl ether compounds include novolak resins obtained by reacting novolak resins derived from aromatic alcohols represented by phenol, cresol, and naphthol with formaldehyde, and epichlorohydrin. Polyhydric glycidyl ether compounds. Also, a modified novolak obtained by the reaction of a modified aralkyl resin obtained by bonding a phenol nucleus or a naphthol nucleus derived from phenol or naphthol with a p-xylylene disulfide nucleus and a para-xylene nucleus with a methylene bond, and epichlorohydrin. And polyhydric glycidyl ether compounds.
  • epoxidized gen polymer examples include epoxidized polybutadiene and epoxidized polyisoprene.
  • Epoxy resin in sealing composition for plastic liquid crystal display cell of the present invention examples include epoxidized polybutadiene and epoxidized polyisoprene.
  • (1) is a mixed composition of (1-1) an aliphatic and / or alicyclic epoxy resin and (1-2) an aromatic epoxy resin, wherein the (1-1) aliphatic and Z or The alicyclic epoxy resin is selected from higher alcohol monoglycidyl ether, polyoxyalkylene glycol diglycidyl ether, 1,6-hexanediol diglycidyl ether, neopentyl glycol diglycidyl ether, and glycerin triglycidyl ether.
  • the aromatic epoxy resin is bisphenol A-type epoxy resin or an alkylene oxide-added epoxy resin thereof, or bisphenol F-type epoxy resin. Resin or its alkylene oxide-added epoxy resin, bisphenol S-type epoxy resin, and Preferably, at least one resin or two or more mixtures, that is selected from the group of bisphenol A D type Epokishi resin.
  • the mixing ratio of the composition of the present invention to the curing agent (2) is 10 to 50% by mass.
  • the content is 10% by mass or more, the curability of the epoxy resin (1) becomes good, and a highly reliable plastic sealant composition for a liquid crystal display cell can be obtained.
  • the content is 50% by mass or less, the unreacted product of the curing agent can be suppressed from remaining, and the crosslinking density of the cured product and the seal adhesion reliability of the liquid crystal display cell made of plastic can be maintained well.
  • the curing agent (2) used in the plastic liquid crystal display cell sealant composition of the present invention is a curing agent (2) used when the plastic liquid crystal display cell sealant composition is formed into a two-pack type.
  • 2A the ionic conductivity of an aqueous solution extracted and separated by contact mixing with 10 times the mass of pure water at 40 ° C to 80 ° C is 0.6 mS / m or less.
  • 2B the curing agent used when the plastic liquid crystal display cell sealing agent composition of the present invention is made into a one-pack type, it is contacted with 10 times the mass of pure water at 40 ° C to 80 ° C.
  • the ionic conductivity is 0.5 mSZm or less, more preferably 0.3 mS / m or less.
  • the curing agent (2A) of the sealant composition for a two-liquid type plastic liquid crystal display cell of the present invention the (2A-1) tetrafunctional mercapto compound alone or (2A-2) modified It is preferable to use the polymercapto derivative alone.
  • (2A— :!) to (2B—2) will be described in detail.
  • Examples of tetrafunctional mercapto compounds include pentaerythritol tetrakis (2-mercaptoacetonate), pentaerythritol tetrakis (3-mercaptopropionate), and pentaerythritol tetrakis (2- ⁇ f-sop-pionate) And those that can be handled as liquids at room temperature.
  • the modified polymercapto derivative includes an epoxy resin-modified polymercapto derivative, a diisocyanate compound-modified polymercapto derivative, and the like.
  • epoxy resin-modified polymercapto derivative 0.01 to 0.3 equivalent, preferably 0 equivalent, of an active cyano group of a diisocyanate compound per 1 equivalent of active hydrogen of a bifunctional to tetrafunctional mercapto compound. 0.5 to 0.25 equivalents, more preferably 0.1 to 0.2 equivalents.
  • bifunctional mercapto compound examples include ethylene dalicol dimercapto mouth pionate, polyoxyethylene glycol dimercaptopropionate, Examples thereof include propylene glycol dimercaptopropionate, polypropylene glycol dimercaptopropionate, tetramethylene glycol dimercaptopropionate, polyoxytetramethylene glycol dimercaptopropionate, and neopentylglycoldimercaptopropionate.
  • trifunctional mercapto compound examples include glycerin trimercaptopropionate, trimethylolpropane trimercaptopropionate, and trismercaptoisocyanurate.
  • the tetrafunctional mercapto compound includes one or a mixture of two or more selected from the above (2A-1) tetrafunctional mercapto compounds.
  • the (2A-1) tetrafunctional mercapto compound is pentaerythritol tetrakis (3_mercaptopropionate).
  • the (2A-2) modified polymercapto derivative is a diisocyanate compound and / or an active isocyanate of the isocyanate prepolymer per equivalent of active hydrogen of pentaerythritol tetrakis (3-mercaptopropionate). It is preferably a modified polymercapto derivative obtained by reacting 0.01 to 0.3 equivalents of the thio group.
  • the microencapsulated imidazole compounds include N-cyanoethyl-2-ethyl / re-4-methinoreimidazo, 2-ethyl-4-methylimidazole, 2-methylimidazolone, and 2-n-pentadecyl. / Micro-encapsulated products encapsulated in micro-shells using reimidazole as core material
  • Methyl methacrylate adducts of alicyclic diamines include methyl athalylate, methyl methacrylate, methyl methacrylate, Ethyl acryle 1
  • the method for determining the content of the curing agent (b) in the composition of the present invention include a chromatographic preparative method, an infrared absorption spectrum method, a functional group analysis method, and a solid-state solution NMR (nuclear magnetic resonance spectroscopy). Torr) method.
  • Examples of the curing accelerator (3) which is a component of the composition of the present invention include 1,1-dialkyl urea derivatives, imidazole salts, adducts of polyamine compounds and epoxy resins, and adducts of amine compounds and diisocyanate compounds.
  • DBU salt 1,8-diazabicyclo (5,4,0) indene-17 salt
  • DBN salt 1,5-diazabicyclo (4,3,0) 1-1
  • DBN salt 1,5-diazabicyclo (4,3,0) 1-1
  • DBN salt 1,5-diazabicyclo (4,3,0) 1-1
  • DBN salt 6-dibutylamine 1,8-diazabicyclo (5,4,0) -pandene-17 salt
  • DADBU salt 6-dibutylamine 1,8-diazabicyclo (5,4,0) -pandene-17 salt
  • Preferred as the curing accelerator (3) are those having low room temperature activity and high storage stability. Specifically, 1,1-dialkyl urea derivatives, DBU salts, and DBN salts are used alone. Is good.
  • the amount of the curing accelerator (3) used in the composition of the present invention is 0.01 to 15 mass in proportion to the total epoxy resin composition. / 0 , preferably 0.1 to 15% by mass, more preferably 1 to 15% by mass.
  • the content is set to 0.01% by mass or more, low-temperature curability of the composition can be obtained.
  • workability in applying the composition can be obtained.
  • the total content of alkali metals determined by atomic absorption spectrometry of wet decomposition products is preferably 50 ppm or less, more preferably 30 ppm or less, and further preferably 15 ppm or less.
  • Use compounds By doing so, when the cured product of the composition of the present invention comes into contact with the liquid crystal, transfer of free ions from the cured product to the liquid crystal phase can be suppressed.
  • a known method such as a solvent extraction purification method can be used as a purification method for adjusting the total content of alkali metals to 50 ppm or less.
  • specific examples of the curing accelerator (3) will be described.
  • 1,1-dialkylurea derivatives examples include 3 _ (p-chlorophenol) _1, 1-dimethylurea, 3- (o, p-dichlorophenol) 1-1,1-dimethylurea, 2, 4 1- [bis (1,1-dimethylurea)] toluene, 2,6- [bis (1,1-dimethylurea)] toluene and the like.
  • imidazole salts include anhydrous pyromellitic salt of 2-ethyl-4-methylimidazole, anhydrous tetrahydrophthalate of 2-methylimidazole, anhydrous tetrahydrophthalate of 2-ethyl-4-methylimidazole, and the like.
  • Examples of an adduct of a polyamine compound and an epoxy resin include an adduct of a known polyamine compound and an epoxy resin. Specific examples include an adduct obtained by reacting a compound having two or more acidic hydroxyl groups with an addition reaction product of an epoxy resin and a polyamine. Examples of the compound having two or more acidic hydroxyl groups include a phenol resin, a modified phenol resin, and polycarbonate.
  • Examples of the modified derivative of the adduct of the amine compound and the diisocyanate compound include an addition derivative obtained by heating and reacting N, N-dialkylaminoalkylamine, a cyclic amine, and a diisocyanate, and a softening point.
  • Trisdimethylaminomethylphenol salts include trisdimethylamino Methyl phenol octoate, tris dimethylamino methyl phenol oleate, tris dimethyl amino methyl phenol formate and the like.
  • DBU salts include DBU phenol salt, DBU polyvalent phenol compound salt, DBU polyphenol salt, DBU octylate, DBU oleate, and DBU formate.
  • DBN salts include DBN phenol salt, DBN polyvalent phenol compound salt, DBN polyphenol salt, DBN octylate, DBN oleate, DBN formate, and DBN paratoluene sulfonate.
  • DADBU salts include DADBU phenol salt, DADBU polyvalent phenol compound salt, DADBU polyphenol salt, DADBU octylate, DADB U oleate, DADBU formate, DADBU para toluene sulfonate, and the like. . ,
  • Examples of a method for measuring the content of the curing accelerator (3) in the composition of the present invention include a chromatographic preparative method, a water extraction preparative method, an infrared absorption spectrum method, and a phosphorus elemental analysis method. .
  • alkyl urea derivatives As the curing accelerator (3) in the sealant composition for a plastic liquid crystal display cell of the present invention, alkyl urea derivatives, trisdimethylaminomethylphenol salts, and 1,8-diazabicyclo (5,4,0) pentacene It is preferred that at least one selected from seven salts is used.
  • alkyl urea derivatives include 3- (p-chlorophenyl) 1-1,1-dimethylurea, 3- (o, p-dichlorophenyl) 1-1,1-dimethylurea, 2,4- [bis It is preferred that at least one selected from (1,1-dimethylurea)] toluene and 2,6- [bis (1,1-dimethylurea)] toluene is used.
  • any inorganic filler usually used in the field of electronic materials may be used.
  • high-purity silica and / or high-purity alumina or titanium oxide are high-purity silica and / or high-purity alumina or titanium oxide.
  • high-purity silica whose total amount of alkali metal content determined by atomic absorption spectrometry of wet decomposition products is preferably 50 ppm or less, more preferably 30 ppm or less, and still more preferably 15 ppm or less. It is preferable to use high-purity alumina or titanium oxide. By doing so, when the cured product of the composition of the present invention comes into contact with liquid crystal, transfer of free ions from the cured product to the liquid crystal phase can be suppressed.
  • Examples of a purification method for reducing the total alkali metal content to 50 ppm or less include an ion exchange purification method and the like, and the above method may be used after making a water solution at the stage of the production raw material.
  • the 9.9 mass% particle diameter value (d 9 9 ) on the mass addition curve obtained by the laser method particle diameter measuring instrument of 632.8 nm wavelength is 5 // m or less
  • the mass average particle diameter (d 5 ) indicated by the 50 mass% value on the mass addition curve is in the range of 0.05 to 1 // m. Is more preferred.
  • d 9 9 is 5 / zm less is inorganic filler used (4), the dimensional stability of the gap width of the liquid crystal panel is further improved preferably.
  • the content of the inorganic filler (4) in the composition of the present invention is preferably 5 to 50 mass. / 0 , more preferably 10 to 40 mass. / 0 range. 5 mass.
  • the content is 50% by mass or less, the fluidity of the composition can be ensured, and the coating operation can be facilitated because the blurring or clogging of the dispenser during screen printing can be suppressed.
  • the inorganic filler (4) includes the epoxy resin (1) and a silane coupling agent described below. It is preferable to use the composition after the grafting modification with a rubbing agent (5) in advance.
  • the grafting modification may be performed on a part of the inorganic filler (4) or on the whole.
  • at least one of the epoxy resin (1) and the silane coupling agent (5) is graft-modified at a ratio of 1 to 50 parts by mass per 100 parts by mass of the inorganic filler (4).
  • the rate at which this grafting modification occurs is preferably 1 to 50, and is represented by the mass increase rate determined by the repeated solvent washing method described below.
  • the repeated solvent washing method is a method for determining the graft ratio as described below.
  • wet filtration is repeated 5 to 10 times on the sample with the following solvent having a mass of 10 to 20 times the mass of the sample, which is an inorganic filler partially or entirely graft-modified.
  • the ungrafted and modified epoxy resin (1) and the silane coupling agent (5) are washed away.
  • the solvent include a good solvent for the epoxy resin (1) or the silane coupling agent (5), such as acetone, methyl ethyl ketone, methanol, ethanol, toluene, and xylene.
  • the specimen remaining after the filtration is dried and its mass is measured.
  • This mass is the dry mass of the graphitized and modified inorganic filler (4). From this measured value, the mass increase rate is determined according to the following formula.
  • the graft ratio may be determined by the Soxhlet continuous extraction method using the solvent instead of the repeated solvent washing method.
  • Graft ratio [(dry weight of grafted modified inorganic filler-dry weight of inorganic filler before grafting and modification) Z dry mass of inorganic filler before grafted and modified] X100
  • Examples of the method for determining the content of the inorganic filler (4), which is a component of the composition of the present invention, include a filtration preparative method, an X-ray diffraction spectrum method, an elemental analysis method, a heat incineration residue method, and wet decomposition. — Atomic absorption method, electron microscope observation image analysis method, etc.
  • the mixing ratio of the silane coupling agent (5) is preferably 0.1 to 5 mass 0/0, more preferably 0.5 to 3 wt. /. Range.
  • the content is 0.1% by mass or more, adhesiveness to a glass substrate can be ensured. 5 mass.
  • the value of / 0 or less is 5 mass. This is because even if it is more than / 0 , no more remarkable effects can be obtained.
  • Examples of the silane coupling agent (5) include trialkoxysilane compounds and methyldialkoxysilane compounds. Specifically, y-glycidoxy propyl pyrmethyl dimethoxy silane, ⁇ -glycidoxy propyl trimethoxy silane, ⁇ -glycidoxy propyl methyl ethoxy silane, ⁇ -glycidoxy propyl triethoxy silane, ⁇ -amino propyl methyl dimethoxy silane, y-aminopropyltrimethoxysilane, 2-aminopropylmethyldimethoxysilane, ⁇
  • Methods for determining the type and content of the silane coupling agent (5) in the composition of the present invention include a solvent extraction preparative method, an NMR spectrum identification method, a gas chromatography method, and a distillation method. Preparative methods and the like. Examples of the method for determining the type and content of the silane coupling agent (5) in the cured product of the composition of the present invention include a pyrolysis gas chromatography mass spectrum method and a solid NMR method. Can be
  • the rubber-like polymer fine particles (6) have a softening point temperature of 0 ° C or less determined by a Torsinal Braid Analyzer (hereinafter referred to as TBA) called a torsional pendulum method.
  • TBA Torsinal Braid Analyzer
  • those having an average primary particle size of 0.01 to 5 // 111 determined by observation with an electron microscope are preferably 1 to 25 mass. /. , More preferably 3 to 22.5 mass. /. , More preferably in the range of 5 to 20% by mass.
  • composition of the present invention when used as a sealant for a liquid crystal panel is set to 1% by mass or more. Can be secured. When the content is 25% by mass or less, the heat resistance required for the cured product can be secured.
  • the softening point temperature of the rubber-like polymer fine particles (6) By setting the softening point temperature of the rubber-like polymer fine particles (6) to 0 ° C or lower, adhesion reliability at low temperatures is further improved. Further, by setting the primary particle diameter of the rubber-like polymer fine particles (6) to 5 m or less, the gap of the plastic liquid crystal display cell can be reduced, and the amount of expensive liquid crystal used can be suppressed. The response speed of the liquid crystal display can also be improved. More preferably, the average particle diameter of the primary particles of the rubber-like polymer fine particles (6) is in the range of 0.05 to 2 m.
  • the rubber-like polymer fine particles (6) in the sealant composition for a plastic liquid crystal display cell of the present invention have a softening point temperature of 130 ° C. or less and a primary particle diameter of 0.01 to 3. Silicon rubber fine particles and / or acrylic rubber fine particles or polyolefin rubber fine particles in the range of ⁇ m are mentioned, and more preferably the rubbery polymer fine particles (6) are crosslinkable rubber particles.
  • rubber-like polymer fine particles (6) having a primary particle diameter of 0.1 to 1 ⁇ m and being bridging rubber particles.
  • the primary particle diameter means an average particle diameter of the primary particles.
  • rubber-like polymer fine particles (6) known rubber-like polymer fine particles can be used as long as the softening point temperature is 0 ° C. or less, even when the above conditions are not satisfied.
  • acrylic rubber-based rubber-like polymer fine particles, silicon rubber-based rubber-like polymer fine particles, conjugated rubber-based rubber-like polymer fine particles, ore-fin rubber-based rubber-like polymer fine particles, polyester rubber-based rubber-like polymer fine particles, urethane rubber-based Examples include rubber-like polymer fine particles, composite rubber, and rubber-like polymer fine particles having a functional group that reacts with an epoxy group. These rubber-like polymer fine particles preferably have a functional group that reacts with an epoxy group. Also, these rubbery polymers One fine particle may be used alone, or two or more kinds may be used in combination. Specific examples of these rubber-like polymer fine particles are described below.
  • Examples of the acryl rubber-based rubber-like polymer fine particles include fine particles obtained by drying a core Z-shell emulsion whose core is made of acryl rubber, a resin composition obtained by non-aqueous dispersion polymerization of an acrylic monomer in an epoxy resin, and epoxy.
  • Acryl rubber polymer solution obtained by introducing a functional group that reacts with a group is separately prepared, then poured or dropped into an epoxy resin, mechanically mixed, desolventized or grafted, and the acryl rubber particles are finely divided.
  • a resin composition obtained by stably dispersing the compound in an epoxy resin are examples of the acryl rubber-based rubber-like polymer fine particles.
  • Silicon rubber-based rubber-like polymer microparticles include powdered silicon rubber microparticles and the introduction of a double bond into an epoxy resin to react with a silicon macromonomer having an acrylate group at one end capable of reacting with the double bond. After that, a resin composition obtained by charging vinyl silicon and hydridosilicon and subjecting to dispersion polymerization is exemplified.
  • conjugated diene rubber-based polymer fine particles known fine particles may be used. Specifically, monomers such as 1,3-butadiene, 1,3-pentadiene, isoprene, 1,3-hexadiene, and chloroprene are used. Examples include conjugated diene rubber-like polymer fine particles obtained by polymerization or copolymerization. More specifically, a copolymer of butadiene and atarilonitrile, a copolymer of a ptagene having a carboxyl group at the end and a copolymer of atari mouth-tolyl, a butadiene having an amino group at the end and acrylonitrile And the like.
  • olefin rubber-based polymer fine particles examples include fine particles of homopolymers such as ethylene, propylene, 1-butene, 2-butene, and isobutene, or copolymers and terpolymers with other copolymerizable monomers or terpolymers thereof. Composition, etc. Is mentioned.
  • a resin composition obtained by obtaining a commercially available product such as olefin rubber latex, dehydrating the olefin rubber in an epoxy resin, and stabilizing the olefin rubber in the epoxy resin may be used.
  • the polyester rubber-based rubber-like polymer fine particles are fine particles made of a rubber-like polymer having a polymer skeleton containing a polyester bond.
  • at least one diol component selected from liquid polysiloxane diol, liquid polyolefin diol, polypropylene glycol, polybutylene glycol, etc., in the co-presence of a polyhydric alcohol compound of a triol or more, if necessary, and adipine
  • the “urethane rubber-based rubber-like polymer fine particles” are fine particles made of a rubber-like polymer having a rubber-like polymer skeleton containing a urethane bond and / or a urea bond. Specifically, at least one diol selected from liquid polysiloxane diol, liquid polyolefin diol, polypropylene glycol, polybutylene glycol, and the like, if necessary, in the presence of a polyhydric alcohol compound having a triol or more.
  • Rubber-like polyurethane obtained by the action of a polyamine, liquid polysiloxane diamine, liquid polyolefin diamine, polypropylene dalicol diamine, etc.
  • At least one long chain diamine component selected from And known diisocyanate compounds represented by hexamethylene diisocyanate, isophorone diisocyanate, tolylene diisocyanate, difluoromethane diisocyanate, norbornane diisocyanate, etc.
  • a rubber-like polyurethane obtained by use.
  • composite rubber fine particles examples include the above-mentioned graft polymers composed of two or more of acrylic, silicon, conjugated, olefin, polyester, and urethane, and / or block polymers or core-shell polymers, multilayer polymers, and the like. Fine particles.
  • the rubber-like polymer fine particles having a functional group that reacts with an epoxy group a functional group that reacts with an epoxy group is introduced into the acryl-, silicon-, conjugated-gen-, olefin-, polyester-, or urethane-based fine particles. And those obtained by
  • the mass ratio of the structure derived from the monomer having the functional group that reacts with the epoxy group occupies 0.1 to 25 in the rubber-like polymer. It is preferable that the content is mass%.
  • Examples of the functional group capable of reacting with the epoxy group include a mercapto group, an amino group, an imino group, a carboxyl group, an acid anhydride group, an epoxy group, and a hydroxyl group.
  • at least one of these functional groups is preferably in the range of 0.01 to 25% by mass, and more preferably in the range of 0.1 to 10% by mass. % Is better.
  • These functional groups can be introduced by random copolymerization, alternating copolymerization, condensation polymerization, addition polymerization, or core-shell polymerization of a functional group-containing monomer and a monomer constituting the main chain polymer.
  • Examples include a method, an ion adsorption introduction method, a swelling impregnation introduction method, and a method of graft polymerization to a polymer that forms rubber-like particles.
  • the copolymerization method and the graft polymerization method are preferable because a necessary functional group can be efficiently introduced into the vicinity of the surface of the rubber-like polymer fine particles with a small amount.
  • the rubber-like polymer fine particles (6) maintain the shape as particles in the epoxy resin.
  • a mixture of the epoxy resin (1) having no turbidity and the rubber-like polymer fine particles (6) is used.
  • osmic acid staining of a fragment of a cured product of the composition of the present invention is carried out by TEM or TEM.
  • a method of observing and grasping with a SEM a method of obtaining an element distribution analysis image in parallel with the SEM observation of a hardened product fragment obtained in the same way, and identifying and quantifying it if it is identified, A method that gives a selectivity to the method and grasps it by TEM observation after etching, a method that measures and grasps a micro layer by micro infrared absorption spectrum (micro IR), and that a micro layer is decomposed by irradiating it with heat rays.
  • micro IR micro infrared absorption spectrum
  • the infrared absorption spectrum (IR) of the liquid crystal sealant composition is used.
  • Method for determining the type and its amount from the absorbance of the absorption spectrum peculiar to the rubber-like polymer fine particles in (1), and knowing the type of the rubber-like polymer fine particles identified from the above-mentioned IR analysis, and expressing the type of the rubber-like polymer fine particles It is a method of calculating from the low-temperature elastic modulus decay rate [G ⁇ ] obtained by TBA measurement, which is an index of the effect of action, thermal pyrolysis gas chromatography, elemental analysis, and multiple SEM photographs of the cured product.
  • the rubber-like polymer fine particles (6) may or may not be grafted with the epoxy resin (1) in advance, or may not be drafted.
  • the plastic sealant composition for a liquid crystal display cell of the present invention 100 parts by mass of the plastic sealant composition for a liquid crystal display cell containing the above (1) to (6) are further added with a high softening point acrylic shown below.
  • the sealant composition obtained by containing the polymer fine particles (7) in the range of 0.1 to 25 parts by mass is more preferable.
  • high-softening point acrylic polymer fine particles (7) By using 0.1 parts by mass or more of high-softening point acrylic polymer fine particles (7), through bubbles and seepage do not occur in the bonding process using a vacuum single-wafer hot press or a rigid single-wafer hot press method.
  • an acrylic polymer having a high softening point of 25% by mass or less a gap operability can be obtained.
  • the high softening point acrylic polymer fine particles (7) are those having a softening point temperature of 50 ° C or higher determined by TBA and an average primary particle diameter of 2 ⁇ or less as observed by electron microscopy. It is acryl polymer particles.
  • the average particle diameter of the primary particles is preferably from 0.01 to! ⁇ m, more preferably in the range of 0.2 to 0.5 ⁇ .
  • the high softening point acrylic polymer fine particles (7) can be used in either a crosslinked type or a non-crosslinked type, but a crosslinked type is more preferable, and a high softening point acrylic polymer fine particle having a finely crosslinked structure is most preferable. .
  • the high-softening point acrylyl polymer particles having a finely crosslinked structure have a crosslinkable monomer of 0.1 to 50% by mass, preferably 1 to 3% by mass, based on all monomers when producing a polymer. It can be manufactured in the range of / 0 .
  • the gel fraction index is preferably in the range of 0 to 50%, more preferably 0 to 5%.
  • the high-softening point acrylyl polymer fine particles preferably have a solubility parameter (SP value) calculated from the chemical structural formula in the range of 9 to 11 and preferably in the range of 9.3 to 10.5. Is more preferred.
  • SP value solubility parameter
  • Examples of the high softening point acrylic polymer fine particles (7) include finely crosslinked poly (methacrylic acid methyl ester) -based polymer obtained by copolymerizing 0.1 to 50% by mass of a crosslinkable monomer, and an ionomer structure of 0.1% by mass. 1 to 50 mass. / 0 in the range of polymethacrylic acid methyl ester polymer.
  • the high-softening point acryl polymer fine particles it is more preferable that one type of functional group such as an epoxy group, an amino group, an imino group, a mercapto group, and a carboxyl group is introduced on the particle surface.
  • it has a softening point temperature of 60 ° C. to 150 ° C., and its primary particle size is preferably in the range of 0.01 to 3 ⁇ m.
  • the rubber-like polymer fine particles (6) and the high softening point acrylic polymer fine particles (7) may be previously compounded.
  • the so-called rubbery polymer fine particles (6) and the high softening point acrylic polymer fine particles (7) are formed by polymer fine particles (6) forming a core phase and high softening point acryl polymer fine particles (7) forming a shell phase.
  • Coresil-type composite fine particles A are also included.
  • core-seal type composite fine particles B having high softening point acrylic polymer fine particles (7) as a core phase and rubber-like polymer fine particles (6) as a shell phase are also included.
  • the mass ratio of the core phase to the shell phase is 0.3 to 2 when the core phase is set to 1. It is preferred that As a specific example of the core-shell type high softening point polymer fine particles A, a product manufactured by Nippon Zeon Co., Ltd., trade name “Zeon F—351” can be easily obtained and preferably used. Examples of a method for determining the type and the amount ratio of the high-softening point acrylyl polymer particles (7) in the sealant composition for a liquid crystal display cell manufactured by Tuck Corporation include the same method as the method for measuring the rubber-like particles. .
  • the wax (8) is further used in the sealant composition for a plastic liquid crystal display cell of the present invention, if necessary.
  • the use ratio of the wax (8) is preferably 0.1 to 5 parts by mass with respect to 100 parts by mass of the plastic composition for a liquid crystal display cell of the present invention.
  • Methods for determining the content of wax (8) in the sealant composition for plastic liquid crystal display cells include pyrolysis gas chromatography, solid nuclear magnetic resonance spectroscopy, and fractional determination of hydrocarbon solvents by extraction. Is mentioned.
  • the wax (8) is a composition containing any one of (1) to (6) and a composition containing (1) to (7), and is a sealant composition for a plastic liquid crystal display cell. Most preferably, it is contained in an amount of 0.1 to 5 parts by mass with respect to 100 parts by mass.
  • amount of the mixture is 0.1 part by mass or more and 5 parts by mass or less per 100 parts by mass of the sealant composition.
  • any wax may be used. Specific examples include animal-based natural wax, plant-based natural wax, mineral-based natural wax, petroleum-based wax-synthetic hydrocarbon-based wax, modified wax, and hydrogenated wax. Of these, waxes having a melting point of 70 ° C. or more and 150 ° C. or less are preferable, and carnauba wax, microcrystalline wax, Fischer-Tropsch wax, and modified Fischer-Tropsch pettus are particularly preferable.
  • the wax is formed as independent primary particles in a state before the plastic sealant composition for a liquid crystal display cell is cured. It is preferable that the average particle size of the primary particles determined by observation with an electron microscope or an optical microscope is from 0.01 to It is preferably in the range of 5 / m, more preferably in the range of 0.03 to 3 / zm.
  • Animal natural waxes include beeswax, whale wax, shellac wax and the like.
  • plant-based natural wax include carnauba wax, olicury wax, candelilla wax, wood wax, and cane wax.
  • Mineral natural waxes include montanox, ozokerite, and ceresin.
  • petroleum waxes include paraffin wax and microcrystalline wax.
  • synthetic hydrocarbon-based wax include Fischer-Tropx wax and its derivatives, polyethylene wax and its derivatives, polypropylene wax and its derivatives.
  • the modified wax include oxidized wax, montan wax, and acid-modified wax.
  • hydrogenated wax include amide wax such as stearic acid amide wax, polyester wax, and opal pettus. Carnapax is particularly preferred.
  • Gap-out control agent (9) is a substance that can arbitrarily and accurately adjust the gap width of a liquid crystal display cell within a range of 3 to 7 ⁇ m. Either organic or inorganic can be used.
  • the gap-controlling agent (9) is preferably used in an amount of preferably 0.1 to 5 parts by mass, more preferably 0 to 5 parts by mass, based on 100 parts by mass of the plastic liquid crystal display cell sealing agent composition of the present invention. Used in the range of 5 to 2.5 parts by mass.
  • Methods for determining the content of the gap-controlling agent (9) in the sealant composition for plastic liquid crystal display cells include SEM image analysis, TEM image analysis, classification filtration, and thermal decomposition. Examples include gas chromatography, heating residue-fluorescence X-ray diffraction, and elemental analysis.
  • Examples of the gap control agent (9) include inorganic particles or thermosetting polymer particles such as spherical, soccer ball-shaped particles, and rod-shaped fibers that are not deformed, dissolved, or swollen by the epoxy resin (1). Is mentioned.
  • Examples of the inorganic particles of the gap control agent (9) include spherical silica particles, spherical alumina particles, short glass fibers, short metal fibers, and metal powder. These inorganic particles are preferable because the gap accuracy can be controlled with high accuracy.
  • organic gap control agent (9) examples include thermosetting polystyrene spherical particles, phenol resin-based thermosetting particles, and benzoguanamine resin-based thermosetting particles.
  • Examples of the conductive beads (10) include conductive beads having an average particle diameter of 3 to 10 O / zm, a maximum particle diameter of 10 ⁇ m or less, and a minimum particle diameter of 0.1 ⁇ m or more. No.
  • the conductive beads be contained in a proportion of 1 to 15 parts by mass with respect to 100 parts by mass of the plastic resin composition of the present invention, whereby the function of anisotropic conductivity can be imparted.
  • the use of 1 part by mass or more can impart a vertical conductivity function.
  • Examples of the conductive beads (10) include noble metal particles, noble metal alloy particles, base metal particles, base metal alloy particles, other metal-coated organic material particles, and metal-coated insulating inorganic particles.
  • Examples of the noble metal of the noble metal particles include gold, silver, and platinum.
  • Examples of the noble metal alloy of the noble metal alloy particles include silver copper alloy, gold copper alloy, gold silver alloy, platinum silver alloy, gold platinum alloy, gold nickel alloy, silver nickel alloy and the like.
  • Examples of the base metal of the base metal particles include copper, nickel, tin, and tungsten.
  • Base metal alloys of base metal alloy particles include copper-nickel alloy, copper-tin alloy, And the like. .-
  • Examples of the metal-coated organic material particles include particles obtained by forming a conductive metal film made of the above-mentioned noble metal on organic polymer particles represented by polystyrene or polymethyl methacrylate.
  • Commercial products include “Micropearl A U Series” by Sekisui Fine Chemical Co., Ltd.
  • the metal-coated insulating inorganic particles include those obtained by forming the conductive metal film on highly insulating inorganic particles represented by mica and glass beads.
  • the metal-coated organic particles are contained in an amount of 1 to 7% by volume in the sealing agent composition for a plastic liquid crystal display cell of the present invention. Examples are particularly preferred.
  • the conductive beads (10) have an organic polymer as a core, and gold, silver, a gold-copper alloy, a silver-copper alloy, nickel or an alloy thereof. Most preferably, it is composed of at least one metal coating phase selected from the group consisting of:
  • the average particle diameter of the conductive beads (10) is in the above range. If the average particle diameter is 1 / m or less, it is difficult to obtain good vertical conduction characteristics even if conductive particles remain between the electrodes, while the average particle diameter or the maximum particle diameter is 10 ⁇ m. The use of more than one can easily cause a short circuit.
  • C The method of determining the type of conductive beads (conductive particles) in the plastic liquid crystal display cell sealant composition or the cured product and the amount ratio thereof Examples include elemental analysis, TEM or SEM image analysis of the cured product, and filtration fractionation.
  • the sealant composition for a plastic liquid crystal display cell of the present invention if necessary, 100 parts by mass of the composition is compatible with the epoxy resin and has a boiling point of from 150 to 222. 0.
  • the solvent (11) inert to the epoxy group in the range of C may be contained in the range of 1 to 25 parts by mass. Screen printing suitability by containing solvent And the wettability to the adherend can be improved.
  • a high-boiling solvent having a boiling point in the range of 160 to 200 ° C is used.
  • Examples of the solvent (11) include ketone solvents such as cyclohexane, ether solvents, acetate solvents and the like.
  • ether solvent examples include ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monopropyl ether, ethylene glycol monobutyl ether ether, ethylene glycol monomethyl ether / ethylene glycol, ethylene glycol, and silicone glycol.
  • Noresimetinoleatenore ethylene glycol getylatenole, 'Ethylek, recall dipropyl atenole, ethylene glycol cornoresibutinoretenole, ethylene glycolo / lejifene / leitel, ethylene glycol / lemonomer Butyl ether, diethylene glycol monoethyl ether, diethylene glycol monopropynoleate, diethylene glycol monobutylinoleate, polyethylene glycol mono / lemonophenyl ether And diethylene glycol / ledimethyl ether, diethylene glycol / legetinole ether, diethylene glycol / resipropinole ether, diethylene glycol dibutyl ether, diethylene glycol diphenyl ether, and the like.
  • Examples of the above-mentioned acetate solvent include ethylene glycol monoacetate, ethylene glycol monomethylate / latezoleacetate, ethylene glycol monoethylenate / leetenoleacetate, ethylene glycolone monopropyate / leatenoreacetate, and ethylene glycol monooleate acetate.
  • Preferred examples of the solvent (11) include ethylene glycol monobutyl ether, ethylene glycol monomethyl monooleate / reacetate, diethylene glycol monomethyl oleate methyl ether, propylene glycol monomethyl oleate methyl oleate, and propylene glycol monomethyl oleate methylene oleate.
  • Acetate, Propylene Dali Cornole Monotech / Latenolace It is preferable to use at least one selected from the group consisting of tartrate and propylene daricol diacetate.
  • Methods for determining the type and amount ratio of the solvent in the sealant composition for liquid crystal display cells made of plastic include the drying loss method, gas chromatography (preparation) method, distillation preparative method, gas mass spectrometer, and red method. External absorption spectrum method, NMR method, and the like.
  • additives such as a leveling agent, a pigment, a dye, a plasticizer, and an antifoaming agent may be used.
  • the sealant composition for a plastic liquid crystal display cell of the present invention is prepared by mixing the above-mentioned components.
  • the one-pack plastic liquid crystal display cell sealing composition of the present invention (1) an epoxy resin, (2) a curing agent, (3) a curing accelerator, (4) an inorganic filler, (5) Silane coupling agent, (6) Mix rubber-like polymer fine particles having a softening point temperature of 0 ° C or less and primary particles having an average particle size of 0.01 to 5 ⁇ m. ) High softening point acrylic polymer microparticles having a softening point temperature of 50 ° C or more and primary particles having an average particle size of 2 / m or less, (8) wax, (9) gearing control agent, ( 10) Add conductive beads, (11) Solvent, leveling agent, pigment, dye, plasticizer, defoamer, etc.
  • a hardener solution is mixed with a mixed solution of (2) a hardener and (3) a hardening accelerator. Further, a mixture of (2) a curing agent, (3) a curing accelerator, and (4) an inorganic filler may be used.
  • Examples of the mixing method include a method of mixing using a double-armed stirrer, a roll kneader, a twin-screw extruder, a wet medium disperser, or the like. After mixing, the mixture may be subjected to vacuum defoaming treatment, sealed in glass bottles, plastic containers, and the like, and stored and transported.
  • the viscosity at 25 ° C. measured by an E-type viscometer is preferably in the range of 1 to 100 Pas.
  • the range is preferably from 5 to 500 Pas, more preferably from 10 to 200 Pas.
  • the sealant composition for a plastic liquid crystal display cell of the present invention may be manufactured by preparing in advance by a method such as heat curing so that the viscosity is in the above-mentioned range.
  • FIG. 1 is a flowchart of a method for manufacturing a plastic liquid crystal display cell of the present invention.
  • the plastic composition for a liquid crystal display cell made of plastic of the present invention is screen-printed or dispensed on one of the pair of substrates for a liquid crystal display cell made of a plastic material, on one of the substrates. .
  • step a2 the pair of substrates is aligned and bonded.
  • step a3 a heat-pressing treatment is performed at 60 ° C. to 100 ° C. to harden the plastic liquid crystal display cell sealant composition.
  • the thickness (cell gap) between the pair of substrates is determined in the range of 3 to 7 / zm depending on the type of liquid crystal used. Usually, by appropriately disposing a gap control agent between the pair of substrates, 0.0 is obtained.
  • step a4 liquid crystal is injected into a space surrounded by the pair of substrates and the sealant composition.
  • the injection hole for injecting the liquid crystal Sealing with a liquid composition, a two-part liquid crystal sealing composition, an ultraviolet curable liquid crystal sealing composition, or the like is formed.
  • the sealant composition is preferably applied at 50 ° C to 110 ° C, more preferably at 80 ° C. C-100. Precuring may be performed in the range of C.
  • the time for one pre-curing process is 5 minutes to 30 minutes. While it is preferably c 1 1 o ° manufacture of plastic liquid crystal display cell be a pre-cured first processing beyond c is possible to short time enough to high temperature, it becomes difficult to secure a gap width accuracy .
  • plastic liquid crystal display cell substrate examples include plastic substrates such as polyester, polyarylate, polycarbonate, and polyethersulfone. On the substrate, a transparent electrode represented by indium oxide, an alignment film represented by polyimide, an inorganic ion shielding film, and the like are formed. Although the present embodiment describes a plastic substrate, the present invention can be applied to a glass substrate.
  • the heat curing conditions for the heat-tightening treatment in step a3 are as follows: at 60 ° C. to 100 ° C. for 0.5 to 24 hours, preferably at 70 ° C. to 90 ° C .:! ⁇ 10 hours.
  • the conditions are such that temporary adhesion can be ensured, preferably 100 ° C to 110 ° C.
  • the pressure is released, the pair of substrates is taken out, and two or more heating steps such as completely curing and curing in a heating open at the same temperature are performed. It may be manufactured through a curing process.
  • the single-wafer hot press method means a hot-press method in which substrates are bonded one set at a time, and the single-wafer hot-press method in which heat is applied under vacuum to bond is used.
  • the method of forcibly heating and pressing and bonding through a hot plate under atmospheric pressure is called a rigid single-wafer heat press method. Any single-wafer heat press method may be used. Instead of the single-wafer heat press method, a multi-stage heat press method may be used.
  • the photocurable liquid crystal sealant composition includes a polyvalent (meth) acrylate compound.
  • a composition comprising an epoxy resin and a photoinitiator; a composition comprising an epoxy resin and an ultraviolet photoinitiator; a composition comprising an oxetane compound and a photoinitiator; and a composition comprising an epoxy resin and an oxetane compound.
  • a composition containing a photoinitiator includes a two-part liquid crystal sealant composition comprising an epoxy resin and a polyamide curing agent, and a two-part plastic liquid crystal display cell of the present invention comprising an epoxy resin and a polythiol curing agent.
  • Sealant composition for liquid crystal, and a two-pack type liquid crystal sealant composition composed of epoxy resin and polyamine curing agent. Examples of the liquid crystal include a nematic liquid crystal and a ferroelectric liquid crystal.
  • the liquid crystal display cell used in the present invention includes a TN (Twisted Nematic) liquid crystal display cell proposed by M Schadt and W Helfric W, and a STN type (Super Twisted Nematic).
  • Liquid crystal display cell a ferroelectric liquid crystal display cell proposed by NA Clark and Lagawell (ST Lagerwall), and a liquid crystal display cell in which a thin film transistor (TFT) is provided in each pixel.
  • TFT thin film transistor
  • the sealing composition for a plastic liquid crystal display cell sealed and stored in a polyethylene container at a temperature below the freezing point was taken out and returned to room temperature of 25 ° C. over 2 hours.
  • the viscosity value of the 25 ° CE type at that time is set to 100, and the viscosity value of the E type after standing at 25 ° C. for 12 hours is measured, and expressed as a rate of change.
  • the evaluation of the change rate is shown as follows.
  • the B-staged composition obtained by applying the plastic liquid crystal display cell sealant composition to a smooth release film at a thickness of 50 ⁇ m and heat-treating it at 75 ° C for 20 minutes. Six copies were taken quickly.
  • the B-staged composition was heated at a constant speed of 1 ° C. every 2 minutes from 80 ° C. to 120 ° C., and a temperature-viscosity curve was obtained with an E-type viscometer. From the temperature-viscosity curve, the lowest viscosity (hereinafter also referred to as bottom viscosity) in the range of 80 ° C to 120 ° C was read. Evaluation of the bottom viscosity is shown as follows.
  • a plastic liquid crystal display cell sealant composition is applied to a smooth release film at a thickness of 100 ⁇ m, heat-treated at ⁇ 5 for 20 minutes, and further heat-cured at 90 ° C for 5 hours. The resulting cured film was cut out.
  • a moisture permeability test was conducted according to JIS-Z-0208, a moisture permeability test method for moisture-proof packaging materials of Japanese Industrial Standards (JIS).
  • JIS-Z-0208 a moisture permeability test method for moisture-proof packaging materials of Japanese Industrial Standards (JIS).
  • JIS-Z-0208 a moisture permeability test method for moisture-proof packaging materials of Japanese Industrial Standards (JIS).
  • JIS Japanese Industrial Standards
  • the evaluation of the moisture permeability is shown below.
  • The moisture permeability at 60 ° C is less than 200 g / m 2 ⁇ 24 hrs, and the plastic cell sealant composition has excellent low moisture permeability.
  • the moisture permeability at 60 ° C is 201-250 g / m 2 ⁇ 24 hrs, and the plastic sealant composition for liquid crystal display cells lacks low moisture permeability.
  • a plastic sealant composition for liquid crystal display cells is applied to a smooth release film at a thickness of 100 x / xm, heat-treated at 75 ° C for 20 minutes, and further heat-hardened at 90 ° C for 5 hours.
  • a small piece (15 mm square) of the obtained cured film was cut out.
  • the cured film is subjected to a temperature of 130 ° C to 150 ° C.
  • TMA (Termomechanical analysis) was measured at a temperature increase of 5 ° C. per minute to C. The inflection point of the strain was defined as the heat distortion temperature (T g) of the cured product.
  • a plastic liquid crystal display cell sealant composition is applied on a smooth release film at a thickness of 100 / im, heat-treated at 75 DC for 20 minutes, and further heat-hardened at 90 ° C for 5 hours.
  • the obtained cured film was cut into 3 mm ⁇ 50 Omm.
  • the storage elastic modulus of this cured film was measured under a 20 ° C to 80 ° C environment using a Vibron type viscoelasticity meter.
  • a plastic liquid crystal display cell sealant composition is applied on a smooth release film at a thickness of 100 / m, heat-treated at 75 ° C for 20 minutes, and further heat-hardened at 90 ° C for 5 hours.
  • the obtained cured film was cut into 10 Omm square.
  • the cured film was immersed in boiling water for 30 minutes, the mass increase was determined, and the value obtained by dividing the value by the original mass was multiplied by 100 to determine the water absorption.
  • Ionic conductivity of extracted water is less than 1 niS Zm
  • Ionic conductivity of extracted water is 1-2 m S / m
  • the plastic liquid crystal display cell manufactured through the curing process using the single-wafer hot press method under the conditions shown in each example was visually observed through a magnifying glass to determine whether the seal line was disturbed, The presence or absence of a defective seal due to the generation of bubbles was measured.
  • Width 25 mm Length 10 Omm The surface of the plastic substrate made of polyester sulfone (Sumitomo Bakeseito), which is cut to O mm, is brought into contact with the liquid crystal by using a plastic liquid crystal display cell sealant composition. Using a test piece bonded at 0 ⁇ m, a 20 ° CT peel strength measurement was performed with an INTESCO testing machine. The evaluation of the results is shown below.
  • rupture is observed in the transparent electrode layer and the underlying organic layer, and the adhesiveness is excellent.
  • Good heat resistance due to cohesive rupture of the sealant composition for plastic liquid crystal display cells.
  • a liquid crystal is injected into a space surrounded by the pair of substrates and the sealant composition.
  • a liquid crystal material with a threshold voltage of liquid crystal of 1.38 volts and ⁇ of liquid crystal of 12.4 [Chisso Corporation] was injected from the injection hole by a vacuum method.
  • the injection hole was sealed with Stratatobond ES_302 (manufactured by Mitsui Chemicals, Inc.).
  • a deflection plate was attached to the front substrate of the pair of substrates, and a deflection plate with a reflection plate was attached to the rear substrate.
  • a drive circuit and the like were mounted on the unit to manufacture a liquid crystal display cell.
  • a liquid crystal display near the sealant of the liquid crystal display cell The evaluation of non-bleeding was evaluated based on whether or not the functioning functioned normally from the beginning of driving. The evaluation of the results is shown below.
  • the liquid crystal display function can be exerted up to the seal, and sufficient non-bleeding property is secured.
  • Liquid crystal display is not performed normally within 1 mm in the vicinity of the seal, and a little non-bleeding property is lacking.
  • a deflecting plate was attached to the front substrate of the pair of substrates, and a deflecting plate with a reflecting plate was attached to the rear substrate. After that, a drive circuit and the like were mounted on the unit to produce a plastic liquid crystal display cell. The change in the display function of the plastic liquid crystal display cell was observed. As a measurement condition under the measurement environment c, the cell was left in an environment of 60 ° C. and 90% humidity. The evaluation of the results is shown below.
  • 2-ethylhexyl monoglycidyl ether (Abbreviation: 2 EHMG) and t-butylphenol monoglycidyl ether (abbreviation: t-BPMG) were used.
  • 2 EHMG 2-ethylhexyl monoglycidyl ether
  • t-BPMG t-butylphenol monoglycidyl ether
  • difunctional aliphatic epoxy resins examples include 1,6-hexanediol diglycidyl ether (abbreviated symbol: 1,6-HGDE) and bifunctional bisphenol F type epoxy resin.
  • 0S average molecular weight of about 350 to 370
  • Adeki EP 4000 S average molecular weight of 530 to 550
  • Adeki EP 4000 S average molecular weight of 530 to 550
  • the same "Adeiki EP4023S” average molecular weight 800 to 900
  • Toto Kasei's product name “Epototo YDCN-702” weight average molecular weight in terms of polystyrene by GPC of about 1 000
  • Examples of the aliphatic polyfunctional epoxy resin include a polyoxypropylene glycol diglycidyl ether having an epoxy equivalent of '310, a polyoxytetramethylene dalicol diglycidyl ether having an epoxy equivalent of 557, and an epoxy equivalent of 1,6-hexanediol diglycidinoleate was used.
  • pentaerythritol tetrakis (3-mercaptopropionate) having an ionic conductivity of 0.5 mS / m in water extracted with 10 times the mass of pure water at 60 ° C was used.
  • one equivalent of active hydrogen of pentaerythritol tetrakis (3-mercaptopropionate) having an ion conductivity of 0.5 mS / m extracted water with 10 times the mass of pure water at 60 ° C is used.
  • IR infrared absorption spectroscopy analysis
  • 1,1-Dimethylurea derivatives include dimethylamine adduct of tolylene diisocyanate (2,4- [bis (1,1-dimethylurea)] toluene), DBU salt DBU-octylate and trisdimethylamonomethylphenol monooctate were used, respectively.
  • the curing accelerator was a solid, it was pulverized to a maximum of 3 ⁇ m or less by a jet mill, if necessary.
  • Shin-Etsu Chemical's product name “MU-120” (primary average particle size of 0.07 ⁇ determined by electron microscopy) was used as amorphous silica, and spherical silica was manufactured by Tatsumori Co., Ltd.
  • a part of the epoxy resin composition (a) was rapidly cured at a low temperature in the presence of a photocuring catalyst. Observing the fracture surface morphology of the cured product of the epoxy resin composition (a) with an electron microscope and measuring the particle size of the dispersed rubber revealed that the fine particles of the crosslinked acrylic rubber having an average particle size of 0.5 / m (S 1) was uniformly dispersed. The content of finely crosslinked acrylic rubber fine particles (S1) calculated from the charged monomer amount and the residual monomer was found to be 37.9% by mass.
  • the softening point temperature of the finely-crosslinked acryl rubber microparticles (S 1) obtained by subjecting the epoxy resin composition (a) to TB A was ⁇ 42 ° C.
  • Adeki EP4023S as a bifunctional epoxy resin
  • 6 g of methacrylic acid, triethanolamine 0.2 g and 50 g of toluene were added, and the mixture was reacted at 110 ° C for 5 hours while introducing air to introduce a double bond.
  • a part of the epoxy resin composition (b) was rapidly cured at a low temperature in the presence of a photocuring catalyst. Observing the morphology of the fracture surface of the cured product of the epoxy resin composition (b) with an electron microscope and measuring the particle size of the dispersed rubber revealed that finely-crosslinked acrylic rubber fine particles (S2) having an average particle size of 1.5 im Were uniformly dispersed. The content of finely crosslinked acrylic rubber fine particles (S 2) calculated from the amount of charged monomers and the remaining monomers was found to be 37.9% by mass. The softening point of the finely-crosslinked acrylic rubber microparticles (S2) determined by subjecting the epoxy resin composition (b) to TBA was 149 ° C.
  • a composition consisting of 76 parts of pentaerythritol tetrakis (3-mercaptopropionate) and 24 parts of fine parium sulfate was preliminarily mixed with a Dalton mixer. Next, the mixture is kneaded with three ceramic rolls until the solid material becomes 5 m or less, and the kneaded material is subjected to a vacuum defoaming treatment to give a two-liquid plastic liquid crystal display cell sealant composition P. Thus, a hardener liquid (P1 one hardener liquid) was obtained.
  • the plastic liquid crystal display cell sealant composition P1 was mixed at a ratio of 5 parts of the P1-curing agent liquid to 10 parts of the P1 main agent liquid. Even when the plastic sealant composition P1 for liquid crystal display cells was left at 23 ° C for 24 hours, only a slight change in the viscosity of the entire system was observed, indicating that the suitability for screen printing was excellent. found.
  • the sealant composition P1 for plastic liquid crystal display cells has an epoxy resin content of 39.22%, a rubber-like polymer fine particle content of 14.15%, and an inorganic filler content of 19. 66%, silane coupling agent content 1.6%, curing agent content 25.3%, curing accelerator content 0.07. /. Met.
  • Table 1 shows the results of the sealing function durability test performed on the obtained liquid crystal display cell.
  • a hardener liquid composition composed of 84 parts of the modified polymer abutene derivative and 16 parts of fine barium sulfate was used as (P 2 _hardener liquid) for the sealant composition P2 for plastic liquid crystal display cells.
  • the solid material is kneaded with three ceramic rolls until the solid material becomes 5 ⁇ m or less, and the kneaded material is subjected to vacuum defoaming treatment to obtain a two-liquid plastic liquid sealing composition P for liquid crystal display cells.
  • a main solution for P2 (P2—main solution) was obtained. 10 parts of the P2-base solution was mixed with 5 parts of the P2-hardener solution at a ratio of 5 parts.
  • the two-part plastic liquid crystal display cell sealant composition P2 when left at 23 ° C for 24 hours, shows only slight changes in the viscosity of the entire system. The suitability was found to be excellent.
  • the storage stability test results of the sealant composition P2 for plastic liquid crystal display cells The storage stability test results of the sealant composition P2 for plastic liquid crystal display cells, the results of the coating workability test, the results of the viscosity characteristics after the B-stage, the results of the moisture permeability characteristics, the results of the heat deformation temperature measurement, and the release Table 1 shows the results of the ion concentration measurement and the results of the T-peel adhesion test.
  • the leaves were heat-cured and bonded together by a multi-stage hot press method at a press pressure of 0.33 MPa / cm at 80 ° C for 10 hours. As a result, there were no samples with defective seals or seal line disturbances due to the generation of bubbles penetrating the seal, and the desired liquid crystal display cell could be manufactured.
  • Table 1 shows the results of the sealing function durability test performed on the obtained liquid crystal display cell.
  • the solid raw material is kneaded with three ceramic rolls until the solid raw material becomes 5 ⁇ or less, and the kneaded material is subjected to vacuum defoaming treatment to obtain a two-liquid plastic sealing compound composition for a liquid crystal display cell.
  • a hardener liquid for (3) was obtained.
  • the plastic liquid crystal display cell sealing compound composition No. 3 was obtained by mixing 10 parts of the above-mentioned 3-base liquid at a ratio of 5 parts of the above-mentioned 30-curing agent liquid. Even if the sealant composition for plastic liquid crystal display cell ⁇ 3 is left at 23 ° C for 24 hours, only a slight change in the viscosity of the entire system is observed, and the suitability for screen printing is excellent. It turned out that it was.
  • the sealant composition P3 for plastic liquid crystal display cells has an epoxy resin content of 34.35%, a rubber-like polymer fine particle content of 7.58%, and an inorganic filler content of 33.3. %,
  • the silane coupling agent content was 2.7%
  • the curing agent content was 22%
  • the curing accelerator content was 0 ... 07%.
  • Table 1 shows the results of the sealing function durability test performed on the obtained liquid crystal display cell.
  • An aqueous solution extracted and mixed with 30 parts of phenol A type epoxy resin and 10 times the amount of pure water at 60 ° C has an ion conductivity of 3.7 mS / m.
  • the sealant composition Q1 for a plastic liquid crystal display cell was prepared by mixing 10 parts of the above-mentioned Q1—the base liquid and 5 parts of the above-mentioned Q1 one-hardener liquid at a ratio of 5 parts.
  • the composition Q1 for liquid crystal display cells made of plastic showed very little change in viscosity of the entire system even when left at 23 ° C for 24 hours, and was excellent in screen printing workability.
  • the sealant composition for liquid crystal display cells Q1 manufactured by TAC has an epoxy resin content of 3.2.94%, an inorganic filler content of 43.6%, and a silane coupling agent content of 1.67. %, Curing agent content 21.65 ° /.
  • the content of the curing accelerator was 0.07%.
  • This composition was applied to the ITO substrate, which is one of a pair of substrates, in a pattern consisting of a total of four cells, one inch each for the top, bottom, left and right, with a width of about 0.5 mm and a width of about 0.5 mm. Screen printing was performed to a thickness of about 20 to 22 ⁇ m. After that, the ITO substrate is treated with a hot air dryer at 70 ° C. for 15 minutes, and an unprocessed ITO substrate, which is the other substrate of the pair of substrates, is placed thereon. After the alignment, the press pressure is 0.03 Mp. Heat curing and bonding were performed by a multi-stage hot press method at a / cm 2 and 80 ° C for 10 hours.
  • Table 1 shows the results of the sealing function durability test performed on the obtained liquid crystal display cell.
  • the solid material is kneaded with three rolls until the solid material becomes 5 ⁇ m or less, and the kneaded material is subjected to vacuum defoaming treatment to obtain a one-component solvent-type plastic liquid crystal display cell sealing agent composition Q2. Obtained.
  • the plastic liquid crystal display cell sealant composition Q2 has an epoxy resin content of 29.3%, an inorganic filler content of 21.6%, a silane cut coupling agent content of 1%, and curing.
  • the agent content was 32.5%
  • the curing accelerator content was 0.01%
  • the solvent content was 15.5%.
  • This composition was packed in a dispenser syringe, and a sealing agent was applied on the ITO substrate, which is one of a pair of substrates, in a pattern consisting of a total of four cells, one cell each of the upper, lower, left, and right sides, each having a 1-inch size.
  • Dispense was applied to a thickness of 5 mm and a thickness of about 20 to 22 ⁇ m.
  • the ITO substrate is treated with a hot air dryer at 60 ° C. for 30 minutes, and an untreated ITO substrate, which is the other substrate of the pair of substrates, is placed thereon, and after positioning, a pressing pressure of 0.3 Mp is applied. a / cm 2, 70.
  • the observation of the above-mentioned phenomenon means that the cutting, cleaning, liquid crystal injection work, transport, and encapsulation work of the obtained plastic liquid crystal display cell may cause serious problems in the process of assembly processing. Inferred easily.
  • the liquid crystal display cell manufactured with the sealing composition for a plastic liquid crystal display cell of the present invention is the plastic liquid crystal display cell.
  • 50-500 ° C.-viscosity characteristic of the B-staged composition of the sealant composition itself is 5 to 500 Pas.
  • the sealant for the plastic liquid crystal display cell. 6 0 ° C water vapor permeability of the cured product of the composition itself, 2 0 0 g / m 2 ⁇ 2 4 that below hrs, the thermal deformation temperature is less than 8 5 ° C, the elastic modulus of the cured product 0. 5 X 1 0 4 P a ⁇ l X 1 0 6 be in the range of P a, 1 0-fold by mass of 6 0.
  • the aqueous solution obtained by mixing and extracting with pure C water had the same function as having an ionic conductivity of 1 mS / m or less. As a result, the sealing function durability of the obtained liquid crystal display cell exceeded 1000 hours.
  • Comparative Example 1 the amount of free ions of the sealing compound composition for a plastic liquid crystal display cell was 2 mS Zm or more, the water absorption of the cured product was remarkably high, and it swelled when wet, resulting in marked display quality. Damaged.
  • the sealing function durability test of the obtained liquid crystal display cell it was difficult to maintain a stable display function after 250 hours, and the life of the liquid crystal display cell was short-lived.
  • the plastic liquid crystal display cell manufactured using the plastic liquid crystal display cell sealing agent composition of the present invention can ensure long-term display stability in a high-temperature and high-humidity environment.
  • the composition has good storage stability and coating workability, Mouth. Temporary adhesion after pre-cure is high.
  • the cured product has low elasticity and good film adhesion followability.
  • the cured product is rich in low water absorption
  • the cured product is excellent in low moisture permeability at 60 ° C.
  • a plastic liquid crystal display cell manufactured by using the plastic liquid crystal display cell sealant composition of the present invention which has adhesive durability at high temperatures as a sealant, has a long life in a high-temperature and high-humidity environment Byon. Time and high display stability.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mathematical Physics (AREA)
  • Inorganic Chemistry (AREA)
  • Epoxy Resins (AREA)
  • Liquid Crystal (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Sealing Material Composition (AREA)

Description

明 細 書
プラスチック製液晶表示セル用シール剤組成物 【発明の属する技術分野】
本発明は、 プラスチック製液晶表示セル用シール剤組成物おょぴプラスチック 製液晶表示セルの製造方法ならびにプラスチック製液晶表示セルに関する。
【従来の技術】
近年、 携帯電話の表示パネルと,して軽量薄型の液晶表示パネル、 すなわちブラ スチック製液晶表示セルが広く使用されている。 前記プラスチック製液晶表示セ ルは、 透明電極や配向膜を配した透明な一対のプラスチック製基板、 および熱硬 化性樹脂組成物であるプラスチック製液晶表示セル用シール剤組成物に囲まれた 空間に液晶が封入されて形成される。
前記液晶表示セルの使用環境は厳しくなつており、 それに耐えられるほどの耐' 衝撃性を有し、 かつ、 取り扱い安全性も高い、 高品位なプラスチック製液晶表示 セルが望まれている。
上述したように、 プラスチック製液晶表示セルを使用した製品の需要には著し い伸びがあり、 当該分野の生産現場ではより均質で高品質なプラスチック製液晶 表示セルを生産すべく、 一対のプラスチック製基板の間の熱硬化性樹脂組成物を 硬化させ、 前記一対の基板を貼り合わせる加熱接着工程の見直しがされている。 生産性の点からは、 一度に複数の基板を加熱接着させる多段熱プレス接着方式が 主に採用されているが、 プラスチック製液晶表示セルのより一層の信頼性確保の 観点から、 一基板毎に加熱接着させる枚葉熱プレス接着方式も採用されている。 また前記プラスチック製液晶表示セル用シール剤組成物としては、 2液型の熱 硬化性プラスチック製液晶表示セル用シール剤組成物が知られており、 たとえば、 3官能性メルカプト化合物を含有する硬化剤液と、 ポリエチレングリコ一ルジグ リシジルエーテルなどを含有する主剤液とからなる 2液型シール剤組成物が知ら れている。 これらのシール剤組成物は、 プラスチック製液晶表示セル用のシール 特性に関する基本的な性能、 すなわち常態下での接着シール性、 電気絶縁性、 液 晶非汚染性などは十分有するものの、 過酷な環境下、 たとえば 6 0 °C〜8 0 °Cの 高温高湿環境下での水蒸気ガスバリヤ一性、 耐水強度特性などがかなり低い。 し たがって、 高温高湿環境下で長時間使用すると、 時間の経過とともにシール剤組 成物を通して、 プラスチック製液晶表示セル内に水分が進入し、 結果として表示 ムラや応答速度の低下など、 液晶表示セルの機能障害が生ずる。
本発明の目的は、 多段熱プレス接着方式はもとより、 枚葉熱プレス接着方式に 対応可能で、 かつ、 高温高湿環境下で信頼性が高いプラスチック製液晶表示セル を製造できる 1液型または 2液型のプラスチック製液晶表示セル用シール剤組成 物、 該組成物を用いた液晶表示セルの製造方法、 ならびに液晶表示セルを提供す ることである。
より詳しくは、 真空枚葉熱プレスまたは剛性枚葉熱プレス接着方式による接着 工程で貫通泡や液晶の滲み出しの発生のない確実なシール接着を可能とするとと もに、 組成物由来の遊離イオン濃度が少なく、 硬化体の水蒸気ガスバリヤ一性、 耐水密着信頼性、 耐熱接着信頼性、 耐衝撃接着性、 寸法安定性に優れるプラスチ ック製液晶表示セル用シール剤組成物、 該組成物を用いた液晶表示セルの製造方 法、 ならぴに液晶表示セルを提供することである。
【発明の開示】
本発明は、 エポキシ樹脂組成物であって、
( I ) 該組成物と、 該組成物の 1 0倍質量の 40 °C〜 80 °Cの純水とを混和さ せて得られる水溶液のイオン伝導度が 1 mSZm以下であり、
該組成物の硬化体が、
( I I ) 該組成物の厚み 1 00 mの硬化膜を通過する 60°C透湿度が 200 g/m2 · 24 h r s未満であり、
( I I I ) 該組成物硬化体の熱変形温度 (T g) が 0°C〜8 5°Cの範囲にあり、
( I V) 該組成物硬化体の室温下の貯蔵弾性率が 0. 5 X 1 04P. a〜l X l 06 P aの範囲にあることを特徴とするプラスチック製液晶表示セル用シール剤 組成物である。
好ましくは、 前記エポキシ樹脂組成物が、
(V) 5 厚みに塗布し、 50°C〜8 5°Cで 20分熱処理した後の E型粘 度が、 50°C〜1 00°Cにおいて、 5〜 5000 P a · sであることを特徴とす る。 . 本発明に従えば、 前記 ( I ) 〜 (V) の特性を有するので、 組成物から発生す る電気伝導性イオンが少なく、 組成物の硬化体は透湿性が低く、 熱プレス時に貫 通泡が発生しにくい。
また本発明は、 下記 (1) および (3) 〜 (6) を含む主剤液と、 下記 (2A ) 、 または下記 (2A) と (3) との混合物を含む硬化剤液との 2液型エポキシ 樹脂組成物であって、
前記主剤液と前記硬化剤液の 2液混合物が、 以下の (1) 〜 (6) を含むこと を特徴とするプラスチック製液晶表示セル用シール剤組成物である。 '
(1) 一分子中にエポキシ基を質量平均 1. 7個〜 6倜持ち、 かつ 1 0倍質量 の 40°C〜80°Cの純水と接触混合して抽出分離させた水溶液のイオン伝導度が 2 mS/m以下である液状エポキシ樹脂 1 5〜 84質量%
(2 A) 1 0倍質量の 40°C~80°Cの純水と接触混合して抽出分離させた水 溶液のイオン伝導度が 0. 6mSZm以下である、 (2 A— 1) 4官能性メルカ ブト化合物、 または (2 A— 2) 変性ポリメルカプト誘導体から選ばれた 1種ま たは 2種以上の混合物を含む硬化剤 1 0〜50質量%
(3) 硬化促進剤 0. 0 1〜1 5質量%
( 4 ) 無機質充填剤 5〜 50質量%
(5) シランカップリング剤 0. :!〜 5質量。 /0
(6) 0°C以下の軟化点温度を持ち、 その一次粒子の平均粒子径が 0. 0 1〜 5 /i mであるゴム状ポリマー微粒子 1〜25質量<½
好ましくは、 前記 (2A— 1) 4官能性メルカプト化合物が、 ペンタエリスリ トールテトラキス (3—メルカプトプロピオネート) であり、 かつ前記 (2A— 2) 変性ポリメルカプト誘導体が、 ペンタエリスリ トールテトラキス (3—メル カプトプロピオネート) の活性水素 1当量当たりジィソシアナ一ト化合物おょぴ Zまたはそのィソシアナ一トプレポリマーの活性ィソシアナ一ト基の 0. 0 1〜 0. 3当量を反応させて得られる変性ポリメルカプト誘導体である。 本発明に従えば、 前記 (1) 〜 (6) の成分を前記割合で配合するので、 前記 (I ) 〜 (V) の特性を有するプラスチック製液晶表示セル用シール剤組成物が 得られる。
また本発明は、 下記 (1) 〜 (6) を含む 1液型エポキシ樹脂組成物であるこ とを特徴とするプラスチック製液晶表示セル用シール剤組成物である。
(I ) 一分子中にエポキシ基を質量平均 1. 7個〜 6個持ち、 かつ 1 0倍質量 の 40°C〜80°Cの純水と接触混合して抽出分離させた水溶液のィオシ伝導度が 2mSZm以下であるエポキシ樹脂 15〜84質量%
(2 B) 1 0倍質量の 40°C〜80°Cの純水と接触混合して抽出分離させた水 溶液のイオン伝導度が 0. 6mS/m以下である、 ( 2 B— 1 ) マイクロカプセ ル化されたイミダゾール化合物、 または (2 B— 2) 脂環式ジァミンのメチルメ タクリレート付加体から選ばれた 1種または 2種以上の混合物を含む硬化剤 1 0〜 50質量。/。
( 3 ) 硬化促進剤 0. 0 1〜: 1 5質量%
( 4 ) 無機質充填剤 5〜 50質量%
(5) シランカップリング剤 0. 1〜5質量。/0
(6) 0°C以下の軟化点温度を持ち、 その一次粒子の平均粒子径が 0. 01〜 5 /zmであるゴム状ポリマー微粒子 1〜25質量%
本発明に従えば、 前記 (1) 〜 (6) の成分を前記割合で含まれているので、 前記 ( I ) 〜 (V) の特性を有するプラスチック製液晶表示セル用シール剤組成 物が得られる。
また本発明は、 前記プラスチック製液晶表示セル用シール剤組成物が、
( I ) 該組成物と、 該組成物の 1 0倍質量の 40 °C〜 80 °Cの純水とを混和さ せて得られる水溶液のイオン伝導度が 1 mS/m以下であり、
該組成物の硬化体が、
( I I ) 該組成物の厚み 1 00 μ mの硬化膜を通過する 60°C透湿度が 200 g/m2 · 24 h r s未満であり、
( I I I ) 該組成物硬化体の熱変形温度 (T g) が 0°C〜8 5°Cの範囲にあり- ( I V) 該組成物硬化体の室温下の貯蔵弾性率が 0. 5 X 1 04P a〜 l X l 06P aの範囲にあることを特徴とする。
本発明に従えば、 前記 ( I ) 〜 ( I V) の特性を有するので、 組成物から発生 する電気伝導性イオンが少なく、 組成物の硬化体は透湿性が低い。
また本発明は、 前記プラスチック製液晶表示セル用シール剤組成物が、
(V) 50 /im厚みに塗布し、 50°C〜85°Cで 20分熱処理した後の E型粘 度が、 50°C〜 1 00°Cにおいて、 5〜 5000 P a · sであることを特徴とす る。
本発明に従えば、 前記 (V) の特性を有するので、 熱プレス時に貫通泡が発生 しにくい。
本発明は、 前記 (1 ) エポキシ樹脂が、 (1— 1) 脂肪族および/または脂環 式エポキシ樹脂と (1— 2) 芳香族エポキシ樹脂との混合組成物であり、 前記 (
1一 1 ) 脂肪族および/または脂環式エポキシ樹脂が、 高級アルコールモノダリ シジルエーテル、 ポリオキシアルキレングリコールジグリシジルエーテル、 1, 6一へキサンジオールジグリシジルエーテル、 ネオペンチルグリコールジグリシ ジルエーテル、 およぴグリセリントリグリシジルエーテルから選ばれた 1種また は 2種以上の混合物であり、 かつ前記 (1— 2) 芳香族エポキシ樹脂が、 ビスフ ェノール A型ェポキシ樹脂またはそのアルキレンォキサイ ド付加型ェポキシ樹脂、 ビスフエノール F型ェポキシ榭脂またはそのアルキレンォキサイド付加型ェポキ シ樹脂、 ビスフエノール S型エポキシ樹脂、 およびビスフエノール A D型ェポキ シ樹脂の群から選ばれる少なくとも 1種の樹脂、 または 2種以上の混合物である ことを特徴とする。
本発明に従えば、 エポキシ樹脂 (1 ) に、 上記エポキシ樹脂を用いるので、 よ りシール信頼性の高いプラスチック製液晶表示セル用シール剤組成物を得られる c また本発明は、 前記 (3) 硬化促進剤が、 アルキル尿素誘導体、 トリスジメチ ルァミノメチルフエノール塩、 および 1, 8—ジァザビシクロ (5, 4, 0) ゥ ンデセン一 7塩から選ばれる少なくとも 1種であることを特徴とする。
本発明に従えば、 硬化促進剤 (3) に、 上記物質を用いるので、 よりシール信 頼性の高いプラスチック製液晶表示セル用シール剤組成物を得られる。
また本発明は、 前記アルキル尿素誘導体が、 3— (p—クロ口フエニル) 一 1, 1—ジメチル尿素、 3— (o, p—ジクロロフエニル) 一 1, 1—ジメチル尿素、 2, 4一 [ビス (1, 1—ジメチル尿素) ] トルエン、 および 2, 6 - [ビス ( 1, 1ージメチル尿素) ] トルエンから選ばれる少なく とも 1種であることを特 徴とする。
本発明に従えば、 前記アルキル尿素誘導体に、 上記物質を用いるので、 よりシ ール信頼性の高いプラスチック製液晶表示セル用シール剤組成物を得られる。 また本発明は、 前記 (6) ゴム状ポリマー微粒子が、 0. l〜l /xmの一次粒 子径を持ち、 かつ架橋性ゴム粒子であることを特徴とする。
本発明に従えば、 ゴム状ポリマー微粒子 (6) が 0. l〜l imの一次粒子径 を持ち、 かつ架橋性ゴム粒子であるので、 接着耐久信頼性および耐熱剛性を得ら れる。
また本発明は、 前記 (4) 無機質充填剤の少なくとも一部が、 (1) エポキシ 樹脂おょぴ Zまたは (5) シランカップリング剤とのグラフト体であり、 そのグ ラフト体の繰り返し溶剤洗浄法で求められ質量増加率で表されるグラフト率が、
(4) 無機質充填剤の 1 00質量部当たり、 (1) エポキシ樹脂と (5) シラン カップリング剤の総和で 1〜 50質量部であることを特徴とする。
本発明に従えば、 無機質充填剤 (4) として、 上記物質を用いるので、 プラス チック製液晶表示セル用シール剤組成物の流動性を確保でき、 スクリーン印刷ま たはディスペンサー塗布の作業性が向上する。
また本発明は、 一対のプラスチック製液晶表示セル用基板のいずれか一方基板 に、 前記プラスチック製液晶表示セル用シール剤組成物を塗布する塗布工程と、 前記一方基板と他方基板との位置合わせを行い、 一対のプラスチック製液晶表 示セル用基板の貼り合わせを行う貼り合わせ工程と、
前記貼り合わせ工程で貼り合わされた一対の基板を、 60°C〜1 00°Cで熱圧 締処理し、 前記プラスチック製液晶表示セル用シール剤組成物を硬化させるシー ル剤組成物硬化工程と、 前記一対のプラスチック製液晶表示セル用基板とそれらの間のプラスチック製 液晶表示セル用シール剤組成物とで囲まれた空間に液晶を注入する液晶注入工程 とを含むことを特徴とするプラスチック製液晶表示セルの製造方法である。 本発明に従えば、 前記プラスチック製液晶表示セル用シール剤組成物を用いる ので、 高温高湿環境下で、 高いシール信頼性が確保されたプラスチック性液晶表 示セルを製造できる。
また本発明は、 前記プラスチック製液晶表示セルの製造方法によって得られた ことを特徴とするプラスチック製液晶表示セルである。
本発明に従えば、 前記プラスチック製液晶表示セルの製造方法によって得られ るので、 高温高湿環境下でも、 長時間安定した表示を実現できる。
【図面の簡単な説明】
本発明とこれらの目的とそれ以外の目的と、 特色と利点とは、 下記の詳細な説 明と図面とから一層明確になるであろう。
図 1は、 本発明のプラスチック製液晶表示セルの製造方法のフローチャートで める。
【発明を実施するための最良の形態】
本発明のプラスチック製液晶表示セル用シール剤組成物は、 エポキシ榭脂組成 物であって、 以下の ( I) 〜 (I V) の機能性が同時に確保されている。
( I ) 該組成物と、 該組成物の 1 0倍質量の 40 °C〜 80 °Cの純水とを混和さ せて得られる水溶液のイオン伝導度が 1 mSZm以下であること。
( I I ) 該組成物の厚み 1 00 μ mの硬化膜を通過する 60°C透湿度が 200 gZm2. 24 h r s未満であること。
( I I I ) 該組成物の硬化体の熱変形温度 (T g) が 0°C〜8 5°Cの範囲にあ ること。
( I V) 該組成物の硬化体の室温下の貯蔵弾性率が 0. 5 X 1 04P a〜l X 1 06 P aの範囲にあること。
本発明のプラスチック製液晶表示セル用シール剤組成物においては、 特定され たエポキシ樹脂の硬化剤として、 4官能性メルカプト化合物やそのプレボリマー を使用することと同時に、 アルキル尿素誘導体などの硬化促進剤、 ゴム状ポリマ 一微粒子、 無機質充填剤、 シランカップリング剤、 必要に応じてさらに、 高軟化 点ポリマー微粒子、 ワックスなどを適宜含有させることにより、 特にこれまで達 し得なかった熱硬化性の液晶表示セルシール剤用組成物やその硬化体に関わる性 質である、 前記 (I ) 〜 ( I V) を同時に満足し、 プラスチック製液晶表示セル 用シール剤組成物の高機能化が可能となったのである。
ところで、 前記 ( I ) 〜 (I V) に示す性質は、 エポキシ樹脂、 硬化剤、 アル キル尿素誘導体などの硬化促進剤、 必要に応じてさらに無機質充填剤、 ゴム状ポ リマー微粒子の量比を代えてそれぞれ達成することでよい。 これらの特性につい て以下に詳しく述べる。
本発明のプラスチック製液晶表示セル用シール剤組成物では、 該組成物の 1 0 倍質量の 40°C〜80°C純水とを混和抽出させてなる水溶液のイオン伝導度で表 し、 そのイオン伝導度を 1 mS/m以下とする事が好ましい。 そうすることで得 られる液晶表示セルの長期間表示機能性の保持が確保できる。 より好ましくは 0. 2 mSZm以下である。
プラスチック製液晶表示セル用シール剤組成物の硬化膜 1 00 m厚みの硬化 膜を通過する 60°C、 95%相対湿度環境下、 24時間の水蒸気透過量で表され る 60°C透湿度が 200 g/m2 · 24 h r s未満であることが好ましい。 そう することで得られる液晶表示セルの早期の表示ムラや応答速度の低下を抑制でき る。 より好ましくは 6 0 °C透湿度特性が 1 50 g /m2 · 24 h r s未満、 さら に好ましくは 1 00 g/m2 · 24 h r s未満である。
ここで、 該厚み 1 00 μ mの硬化膜当たりの透湿度 (X) は下記の換算式より 求められる。
透湿度 (X) =実測透湿度 X [検体のフィルム膜厚 (μπι) /1 00] プラスチック製液晶表示セル用シール剤組成物硬化体の TM A (
Thermomechanical analysis) より求められた熱変形温度 (T g ) は 0 °C以上と することが好ましい。 そうすることで得られる液晶表示セルの長期間の表示信頼 限界温度の向上が図れるからである。 また 8 5°C以下とすることが好ましく、 そ うすることで得られる液晶表示セルの耐衝擊性ならびに耐熱接着信頼性がそれぞ れ確保できる。 より好ましくは 20°C〜8 5 °Cの範囲である。
また、 プラスチック製液晶表示セル用シール剤組成物の硬化体自体の室温下の 貯蔵弾性率は、 0. 5 X 1 04P a〜l X 1 06P aの範囲が好ましい。 そうす ることで得られるプラスチック製液晶表示セルの製造歩留りが高くなるからであ る。 より好ましくは 0. 8 X 1 04P a〜0. 9 X 1 06P aの範囲、 さらに好 ましくは 1 X 1 04 P a〜 0. 8 X 1 06 P aの範囲である。
本発明のプラスチック製液晶表示セル用シール剤組成物では、 前記 ( I ) 〜 ( I V) と、 さらに下記 (V) を同時に確保された組成物であることがより好まし い。 (V) に示す性質とは、 50 m厚みに塗布した際の 50°C〜8 5°Cで 20 分熱処理 (以下、 Bステージ化ともいう) 後の組成物の E型粘度計で測定した E 型粘度が、 5 0°C〜1 00°Cにおいて 5〜5000 P a · sの範囲とすることで ある。 5 P a · sを上回ることで、 多段熱プレスまたは枚葉熱プレス方式による 加熱圧締接着時の貫通泡の発生が効果的に回避抑止できるからである。 また、 5 000 P a · s以下であれば、 多段熱プレスまたは枚葉熱プレス方式による加熱 圧締接着時に、 所望のギャップコントロールができるので好ましい。 好ましくは 5〜3 000 P a · sの範囲、 より好ましくは 5〜: l O O O P a . sの範囲であ る。
前記のプラスチック製液晶表示セル用シール剤組成物の性質として、 Tg、 弾 性率、 透湿度などの性質は、 エポキシ樹脂、 硬化剤、 アルキル尿素誘導体からな る硬化促進剤、 必要に応じてさらに無機質充填剤、 ゴム状ポリマー微粒子の量比 をかえてそれぞれの性質を有するようにすればよい。
T gは、 エポキシ樹脂の種類とその量比ならぴに硬化剤の種類とその量比、 硬 化条件などに強く依存する。 弾性率は、 エポキシ樹脂の種類とその量比ならびに 硬化剤の種類とその量比、ゴムの量比、 硬化条件などに強く依存する。 透湿性は、 無機質充填剤の量比ならぴに硬化条件などに強く依存する。 したがって、 それぞ れ好ましい範囲となる様に量比や硬化条件を選定または決定するすることで上記 性質を有するようにすればよい。 なお、 本発明のプラスチック製液晶表示セル用シール剤組成物とは、 前記特性 を満足するために、 好ましくはエポキシ樹脂のエポキシ基 1当量に対し、 4官能 性メルカプト化合物の活性メルカプト基または活性水酸基および/またはそのェ ステル変性基の 0. 5〜1. 2当量の範囲、 好ましくは 0. 7〜1. 1当量の範 囲、 より好ましくは 0. 8 5〜1当量の範囲となる様に配合し、 かつ硬化促進剤 であるアルキル尿素誘導体を 0. 1〜20質量%の範囲で、 より好ましくは 0. 1〜1 0質量。 /0の範囲で含有させてなるエポキシ樹脂組成物とすることがよい。 本発明のプラスチック製液晶表示セル用シール剤組成物のより好ましい態様と して、 2液型のプラスチック製液晶表示セル用シール剤組成物では、
(1) 一分子中にエポキシ基を質量平均 1. 7個〜 6個持ち、 かつ 1 0倍質量 の 40°C〜80°Cの純水と接触混合して抽出分離させた水溶液のイオン伝導度が 2 mSZm以下である液状エポキシ樹脂 1 5〜84質量。 /0
(2 A) 1 0倍質量の 40°C〜80°Cの純水と接触混合して抽出分離させた水 溶液のイオン伝導度が 0. SmSZm以下である (2A— 1) 4官能性メルカプ ト化合物、 または (2 A— 2) 変性ポリメルカプト誘導体から選ばれた 1種また は混合物からなる硬化剤 1 0〜 50質量%
( 3 ) 硬化促進剤 0. 0 1〜: 1 5質量%
( 4 ) 無機質充填剤 5〜 50質量%
(5) シランカップリング剤 0. :!〜 5質量0 /0
(6) 0°C以下の軟化点温度を持ちその一次粒子の平均粒子径が 0. 0 1〜5 μ mであるゴム状ポリマー微粒子 1〜2 5質量%とを含有してなるエポキシ樹 脂樹脂組成物である。 ここで、 一次粒子とは、 機械的にそれ以上分離できない粒 子のことである。
また 1液型のプラスチック製液晶表示セル用シール剤組成物では、
(1) 一分子中にエポキシ基を質量平均 1. 7個〜 6個持ち、 かつ 1 0倍質量 の 40°C〜80°Cの純水と接触混合して抽出分離させた水溶液のイオン伝導度が
2 mS/m以下であるエポキシ樹脂 1 5〜84質量%
(2 B) 1 0倍質量の 40°C〜 80°Cの純水と接触混合して抽出分離させた水 溶液のイオン伝導度が 0. 6mSZm以下である (2 B— 1) マイクロカプセル 化されたイミダゾール化合物、 または (2 B— 2) 脂環式ジァミンのメチルメタ タリレート付加体から選ばれた 1種または 2種以上からなる硬化剤 1 0〜50
(3) 硬化促進剤 0. 01〜1 5質量%
(4) 無機質充填剤 5〜50質量%
(5) シランカップリング剤 0. :!〜 5質量0 /0
(6) 0°C以下の軟化点温度を持ちその一次粒子の平均粒子径が 0. 01〜5 /zmであるゴム状ポリマー微粒子 1〜25質量%
とを含有してなるエポキシ樹脂組成物である。
さらに、 本発明のプラスチック製液晶表示セル用シール剤組成物では、 必要に 応じて、 (7) 50°C以上の軟化点温度を持ちその一次粒子の平均粒子径が 2 m以下である高軟化点ァクリルポリマー微粒子 (以下、.高軟化点ポリマー微粒子 という) 、 (8) ワックス、 (9) ギャップ出しコントロール剤、 (1 0) 導電 性ビーズ、 (1 1) 溶剤、 レべリング剤、 顔料、 染料、 可塑剤、 消泡剤、 その他 添加剤などを適宜含有させてもよい。
以下、 本発明のプラスチック製液晶表示セル用シール剤組成物の構成成分につ いて説明する。
[ (1) エポキシ樹脂]
本発明の組成物の成分であるエポキシ樹脂 (1) としては、 単官能性エポキシ 樹脂、 多官能性エポキシ樹脂などが挙げられる。 具体的には、 クレゾールノボラ ック型エポキシ樹脂、 ビスフエノール A型エポキシ樹脂、 ビスフエノール F型ェ ポキシ樹脂、 トリフエノールメタン型エポキシ樹脂、 トリフエノールエタン型ェ ポキシ樹脂などが挙げられ、 それらを単独で用いてもよいし、 2種以上を混合し て用いてもよい。
前記エポキシ樹脂 (1) として、 エポキシ樹脂 1分子中にエポキシ基を質量平 均 1. 7個以上、 好ましくは 1. 9個以上、 より好ましくは 2. 0個以上 6個以 下有するエポキシ樹脂を用いることが好ましい。 エポキシ樹脂 (1) 力 ェポキ シ樹脂 1分子中にエポキシ基を質量平均 1. 7個以上 6個以下有することにより、 本発明の組成物において良好な耐水性おょぴ耐熱性を得られる。
前記エポキシ樹脂 (1) は、 1 0倍質量の 40°C〜80°Cの純水と接触混合し て抽出分離させた水溶液のイオン伝導度が 1 OmSZm以下、 好ましくは 5 mS /m以下、 より好ましくは 2mSZm以下、 さらに好ましくは測定限界以下とす る。 イオン伝導度を 1 0 mSZm以下とすることで、 本発明の組成物の硬化体が 液晶と接触した場合、 該硬化体から液晶相への遊離イオンの移行が阻止できる。 異なる種類のエポキシ樹脂の混合物を用いる場合には、 その混合物中の遊離ィォ ンの含有量の総和の指標として、 前記の要件を満たせばよい。
前記エポキシ樹脂 (1) の組成物での含有量としては、 1 5〜84質量%であ る。
前記エポキシ樹脂 (1) は、 煮沸水で 24時間抽出して得た水溶液中の塩素ィ オン濃度より換算して求めたエポキシ樹脂中の加水分解性塩素濃度が 3 00 p p m以下、 好ましくは 1 00 p p m以下、 より好ましくは 50 p p m以下、 さらに 好ましくは検出限度以内である。 加水分解性塩素濃度を 3 00 p pm以下とする ことで、 本発明の組成物の硬化体が液晶と接触した場合、 該硬化体から液晶相へ の遊離イオンの移行が阻止できる。
前記エポキシ樹脂 (1) は、 室温 (25°C) で液体であるエポキシ樹脂と、 室 温で固体であるエポキシ樹脂との混合物であることが好ましい。 また、 その混合 物は、 一 1 0°C〜50°Cで液体であることが好ましい。
前記エポキシ樹脂 (1) の、 ゲルパーミエーシヨンクロマトグラフィー (以下、 GPCという) によって求められたポリスチレン換算質量平均分子量としては、 7000以下が好ましく、 より好ましくは 1 50〜 5000、 さらに好ましくは 3 50〜3 500の範囲である。 前記ポリスチレン換算質量平均分子量が 700 0以下であれば、 本発明の組成物の Bステージ化後の E型粘度値を 1 000 P a • s以下とすることができ、 枚葉型熱プレスによる加熱接着方式に適する。 また、 前記ポリスチレン換算質量平均分子量が 1 50以上であれば、 本発明の組成物の 硬化体の T g適性、 すなわち最適な熱変形温度 (T g) と、 Bステージ化適性、 すなわち最適な Bステージ化後の E型粘度値を得ることができる。
また、 エポキシ樹脂 (1 ) としては、 脱加水分解性塩素低減化、 脱遊離性ィォ ンなどを主目的とする公知の精製方法により、 上述した要件を満たすように精製 または高純度化させたものを使用してもよい。 前記精製方法としては、 水洗浄一 溶剤抽出精製法、 限外濾過法、 蒸留精製法などが挙げられる。
本発明の組成物中に存在するエポキシ樹脂 (1 ) の種類およぴ量を知る方法と しては、 溶剤抽出して、 この抽出液を G P Cで分取定量するとともに、 各フラク ション毎の NM R (核磁気共鳴スぺク トル) などで特定 ·同定し定量する方法が 一般的である。 また、 本発明の組成物の硬化体中に存在するエポキシ樹脂 (1 ) の種類およぴ量を知る方法としては、 赤外吸収スペク トル法、 熱分解一クロマト グラフィ一分取法、 湿式分解一クロマトグラフィー分取法、 熱分解ガスクロマト グラフィ一法、 熱分解一マススペクトル法、 固体 NM R法などが挙げられる。 く単官能性エポキシ樹脂 >
前記単官能性エポキシ樹脂としては、 脂肪族モノグリシジルエーテル化合物、 脂環式モノグリシジル ーテル化合物、 芳香族モノダリシジルエーテル化合物、 脂肪族モノグリシジルエステル化合物、 芳香族モノダリシジルエステル化合物、 脂環式モノグリシジルエステル化合物、 窒素元素含有モノグリシジルエーテル化 合物、 モノグリシジルプロピルポリシロキサン化合物、 モノグリシジルアルカン などが挙げられる。 また、 これら以外の単官能性エポキシ樹脂を用いてもよい。
(脂肪族モノグリシジルエーテル化合物)
前記脂肪族モノダリシジルエーテル化合物としては、 炭素数が 1〜6のアルキ ル基またはアルケニル基を有するポリォキシアルキレンモノアルキルエーテル類 とェピクロルヒ ドリンとの反応で得られた脂肪族モノグリシジルェ一テル化合物、 脂肪族アルコール類とェピクロルヒ ドリンとの反応で得られた脂肪族モノグリシ ジルエーテル化合物などが挙げられる。
炭素数が 1〜6のアルキル基またはアルケニル基を有する前記ポリオキシアル キレンモノアルキ /レエーテノレ類としては、 エチレングリ コールモノアルキ /レエ一 テノレ、 ジエチレングリコー/レモノアノレキゾレエーテ /レ、 トリエチレングリコーノレモ ノアノレキルエーテノレ、 ポリエチレングリコールモノア/レキルエーテノレ、 ピロピレ ングリコールモノアノレキルエーテル、 ジピロピレングリ コールモノアルキルエー テル、 トリピロピレングリコ一/レモノァゾレキルエーテノレ、 ポリピロピレングリコ ールモノアルキルエーテルなどが挙げられる。
脂肪族アルコール類としては、 n—ブタノール、 イソプタノール、 n—ォクタ ノーノレ、 2—ェチノレへキシ 7レアノレコ一/レゝ ジメチローノレプロノ ンモノアノレキノレエ 一テル、 メチロールプロパンジアルキルエーテル、 グリセリンジァ /レキノレエーテ ノレ、 ジメチローノレプロノヽ。ンモノアノレキノレエステノレ、 メチロールプロノヽ。ンジァ /レキ ルエステル、 グリセリンジアルキルエステルなどが挙げられる。
(脂環式モノグリシジルエーテル化合物)
脂環式モノグリシジルェ一テルとしては、 炭素数が 6 〜 9の飽和型環式アル力 ン基を有する脂環式アルコール類とェピクロルヒ ドリンとの反応で得られた脂環 式モノグリシジルエーテル化合物などが挙げられる。 また、 前記脂環式アルコー ル類としては、 シクロへキサノールなどが挙げられる。
(芳香族モノグリシジルエーテル化合物)
芳香族モノグリシジルエーテル化合物としては、 芳香族アルコール類とェピク ロルヒ ドリンとの反応で得られた芳香族モノグリシジルエーテル化合物がなどが 挙げられる。 また、 前記芳香族アルコール類としては、 フ-ノール、 メチルフエ ノール、 ェチノレフエノーノレ、 n—プロピノレフエノーノレ、 イソプロピノレフエノーノレ、 n—プチノレフエノール、 ベンジルアルコール、 t—プチノレフエノーノレ、 キシレノ ール、 ナフトールなどが挙げられる。
(脂肪族または芳香族モノグリシジルエステル化合物)
脂肪族または芳香族モノグリシジルエステル化合物としては、 脂肪族ジカルボ ン酸モノアルキルエステルまたは芳香族ジカルボン酸モノアルキルエステルとェ ピクロルヒ ドリンとの反応で得られた脂肪族モノグリシジルェステル化合物また は芳香族モノグリシジルエステル化合物などが挙げられる。
く多官能性エポキシ樹脂 >
多官能性エポキシ樹脂としては、 多官能性エポキシ樹脂 1分子中に質量平均 2 〜 6個のエポキシ基を有することが好ましい。 具体的には、 脂肪族多価グリシジ ルエーテル化合物、 芳香族多価グリシジルエーテル化合物、 トリスフ工ノール型 多価グリシジルエーテル化合物、 ハイ ドロキノン型多価グリシジルエーテル化合 物、 レゾルシノール型多価グリシジルエーテル化合物、 脂肪族多価グリシジルェ ステル化合物、 芳香族多価グリシジルエステル化合物、 脂肪族多価グリシジルェ 一テルエステル化合物、 芳香族多価グリシジルエーテルエステル化合物、 脂環式 多価グリシジルエーテル化合物、 脂肪族多価グリシジルァミン化合物、 芳香族多 価グリシジルァミン化合物、 ヒダントイン型多価グリシジル化合物、 ビフヱニル 型多価グリシジル化合物、 ノボラック型多価グリシジルエーテル化合物、 ェポキ シ化ジェン重合体などが挙げらる。 また、 これら以外の多官能性エポキシ樹脂を 用いてもよい。
(脂肪族多価グリシジルエーテル化合物)
脂肪族多価グリシジルエーテル化合物としては、 ポリオキシアルキレンダリコ ール類または多価アルコール類とェピクロルヒ ドリンとの反応で得られた脂肪族 多価グリシジルェ一テル化合物などが挙げられる。
前記ポリオキシアルキレングリコール類としては、 エチレングリコール、 ジェ チレングリコール、 トリエチレングリコー/レ、 ポリエチレングリコール、 ピロピ レングリコール、 ジピロピレングリコー/レ、 トリピロピレンダリコール、 ポリピ 口ピレンダリコールなどが挙げられる。
前記多価アルコール類としては、 ジメチロールプロパン、 トリメチロールプロ パン、 スピロダリコール、 グリセリンなどが挙げられる。
(芳香族多価グリシジルエーテル化合物)
芳香族多価グリシジルエーテル化合物としては、 芳香族ジオール類とヱピク口 ルヒ ドリンとの反応で得られた芳香族多価グリシジルエーテル化合物などが挙げ られる。
前記芳香族ジオールとしては、 ビスフエノール A、 ビスフエノール S、 ビスフ ヱノール F、 ビスフエノール A Dなどが挙げられる。
(トリスフエノール型多価グリシジルエーテル化合物) トリスフエノール型多価グリシジルエーテル化合物としては、 トリスフエノー ル類とェピクロルヒ ドリンとの反応で得られたトリスフエノール型多価グリシジ ルエーテル化合物が挙げられる。
前記トリスフエノール類と しては、 4, Α' , 4" —メチリデントリスフエノ ール、 4, 4' , 4 " ーメチリデントリス (2—メチルフエノール) 、 4, A' — [ (2—ヒ ドロキシフエニル) メチレン] ビス [2, 3, 6— トリメチルフエ ノール] 、 4, 4' , 4 " —ェチリデントリスフエノール、 4, Α' - [ (2— ヒ ドロキシフエ二ノレ) メチレン] ビス [ 2—メチノレフエノーノレ] 、 4, 4' — [ ( 2—ヒ ドロキシフエニル) エチレン] ビス [2—メチノレフエノール] 、 4, 4 ' - [ (4ーヒ ドロキシフエ-ル) メチレン] ビス [2—メチノレフエノール] 、 4, 4' _ [ (4—ヒ ドロキシフエ二ノレ) エチレン] ビス [2—メチルフエノー ノレ] 、 4, 4' _ [ ( 2—ヒ ドロキシフエニル) メチレン] ビス [2, 6—ジメ チルフエノール] 、 4, 4' — [ ( 2—ヒ ドロキシフエニル) エチレン] ビス [ 2, 6—ジメチルフエノール] 、 4, 4' 一 [ (4—ヒ ドロキシフエニル) メチ レン] ビス [2, 6—ジメチルフエノーノレ] 、 4, Α' 一 [ (4ーヒ ドロキシフ ェ-ノレ) エチレン] ビス [2, 6—ジメチノレフ工ノール] 、 4, 4' - [ (2 - ヒ ドロキシフエ二ノレ) メチレン] ビス [3, 5—ジメチノレフエノール] 、 4, 4 ' - [ (2—ヒ ドロキシフエニル) エチレン] ビス [3, 5—ジメチルフエノー ル] 、 4, 4' — [ ( 3—ヒ ドロキシフエニル) メチレン] ビス [2, 3 , 6 - トリメチルフエノール] 、 4, 4' _ [ (4—ヒ ドロキシフエ-ル) メチレン] ビス [ 2, 3, 6— トリメチルフエノ一ノレ] 、 4, 4' 一 [ (2—ヒ ドロキシフ エニスレ) メチレン] ビス [ 2—シクロへキシル一 5—メチノレフエノール] 、 4, 4' ― [ ( 3—ヒ ドロキシフエニル) メチレン] ビス [ 2—シクロへキシルー 5 —メチノレフエノーノレ] 、 4, 4' 一 [ (4—ヒ ドロキシフエ二ノレ) メチレン] ビ ス [ 2—シクロへキシルー 5—メチルフエノール] 、 4, 4' 一 [ 1 - [4一 [ 1 - (4ーヒ ドロキシフエニル) — 1—メチルェチル] フエノールェチリデン] ビスフエノール] 、 4, 4' 一 [ (3, 4ージヒ ドロキシフエニル) メチレン] ビス [ 2—メチノレフエノール] 、 4, 4' — [ (3, 4ージヒ ドロキシフエ-ノレ ) メチレン] ビス [ 2, 6—ジメチルフエノール] 、 4, 4 ' 一 [ ( 3, 4ージ ヒ ドロキシフエニル) メチレン] ビス [ 2, 3, 6—トリメチルフエノール] 、 4一 [ビス (3—シクロへキシル一4ーヒ ドロキシ _ 6—メチルフエニル) メチ ル] _ 1, 2—ベンゼンジオールなどが挙げられる。
(ハイ ドロキノン型多価グリシジルエーテル化合物)
ハイ ドロキノン型多価グリシジルエーテル化合物としては、 ハイ ドロキノンと ェピクロルヒ ドリンとの反応で得られたハイ ドロキノン型多価グリシジルエーテ ル化合物などが挙げられる。
(レゾルシノール型多価グリシジルエーテル化合物)
レゾルシノール型多価グリシジルエーテル化合物としては、 レゾルシノ一ルと ェピクロルヒ ドリンとの反応で得られたレゾルシノール型多価グリシジルエーテ ル化合物などが挙げられる。
(脂肪族多価グリシジルエステル化合物)
脂肪族多価グリシジルエステル化合物としては、 アジピン酸などで代表される 脂肪族ジカルボン酸とェピクロルヒ ドリンとの反応で得られた肪族多価グリシジ ルエステル化合物などが挙げられる。
(芳香族多価グリシジルエステル化合物)
芳香族多価グリシジルエステル化合物としては、 芳香族ジカルボン酸とェピク ロルヒ ドリンとの反応で得られた芳香族多価グリシジルエステル化合物などが挙 げられる。
前記芳香族ジカルボン酸としては、 イソフタル酸、 テレフタル酸、 ピロメリッ ト酸などが挙げられる。
(脂肪族または芳香族多価グリシジルエーテルエステル化合物)
脂肪族または芳香族多価グリシジルエーテルエステル化合物としては、 ヒ ドロ キシジカルボン酸化合物とェピクロルヒ ドリンとの反応で得られた脂肪族多価グ リシジルエーテルエステル化合物または芳香族多価グリシジルエーテルエステル 化合物などが挙げられる。
(脂環式多価グリシジルェ一テル化合物) 脂環式多価グリシジルエーテル化合物としては、 ジシクロペンタジェン型多価 グリシジルェ一テル化合物などで代表される脂環式多価グリシジルエーテル化合 物などが挙げられる。
(脂肪族多価ダリシジルァミン化合物)
脂肪族多価グリシジルァミン化合物としては、 エチレンジァミンなどで代表さ れる脂肪族ァミンとェピクロルヒ ドリンとの反応で得られた脂肪族多価グリシジ ルァミン化合物などが挙げられる。
(芳香族多価ダリシジルァミン化合物)
芳香族多価グリシジルァミン化合物としては、 ジアミノジフエ二ルメタン、 ァ 二リン、 メタキシリレンジァミンなどで代表される芳香族ジァミンとェピクロル ヒ ドリンとの反応で得られた芳香族多価グリシジルァミン化合物などが挙げられ る。
(ヒダントイン型多価グリシジル化合物)
ヒダントイン型多価ダリシジル化合物としては、 ヒダントインまたはその誘導 体とェピクロルヒ ドリンとの反応で得られたヒダントイン型多価グリシジル化合 物などが挙げられる。
(ノボラック型多価グリシジルエーテル化合物)
ノボラック型多価グリジ'ジルエーテル化合物としては、 フエノール、 クレゾ一 ル、 ナフトールなどで代表される芳香族アルコール類とホルムアルデヒ ドとから 誘導されるノボラック樹脂と、 ェピクロルヒ ドリンとの反応で得られるノボラッ ク型多価グリシジルエーテル化合物などが挙げられる。 また、 フエノールまたは ナフトールと p—キシリレンジク口ライ ドとから誘導されるフエノール核または ナフトール核とパラキシレン核がメチレン結合で結合してなる変性ァラルキル樹 脂と、 ェピクロルヒ ドリンとの反応で得られる変性ノボラック型多価グリシジル エーテル化合物なども挙げられる。
(ェポキシ化ジェン重合体)
エポキシ化ジェン重合体としては、 エポキシ化ポリブタジエン、 エポキシ化ポ リイソプレンなどが挙げられる。 本発明のプラスチック製液晶表示セル用シール剤組成物におけるェポキシ樹脂
(1) としては、 (1— 1) 脂肪族および/または脂環式エポキシ樹脂と (1— 2) 芳香族エポキシ樹脂との混合組成物であり、 前記 (1一 1) 脂肪族および Z または脂環式エポキシ樹脂が、 高級アルコールモノグリシジルエーテル、 ポリオ キシアルキレングリコールジグリシジルエーテル、 1, 6—へキサンジオールジ グリシジルエーテル、 ネオペンチルグリコールジグリシジルエーテル、 およぴグ リセリントリグリシジルエーテルから選ばれた 1種または 2種以上の混合物であ り、 かつ前記 (1— 2) 芳香族エポキシ樹脂が、 ビスフエノール A型エポキシ樹 脂またはそのアルキレンォキサイド付加型エポキシ樹脂、 ビスフエノール F型ェ ポキシ樹脂またはそのアルキレンォキサイド付加型エポキシ樹脂、 ビスフエノー ル S型ェポキシ樹脂、 およぴビスフェノール A D型ェポキシ樹脂の群から選ばれ る少なくとも 1種の樹脂、 または 2種以上の混合物であるのが好ましい。
[ (2) 硬化剤]
硬化剤 (2) の本発明の組成物の配合割合としては、 1 0〜50質量%でぁる。 1 0質量%以上とすると、 エポキシ樹脂 (1) の硬化性が良好となり、 信頼性の 高いプラスチック製液晶表示セル用シール剤組成物が得られる。 また、 50質量 %以下とすると、 硬化剤の未反応物の残留を抑えることができるとともに硬化体 の架橋密度ならびにプラスチック製液晶表示セルのシール接着信頼性を良好に保 つことができる。
本発明のプラスチック製液晶表示セル用シール剤組成物で用レ、る硬化剤 ( 2 ) は、 該プラスチック製液晶表示セル用シール剤組成物が 2液型とする際に用いら れる硬化剤 (2A) としては、 1 0倍質量の 40°C〜80°C純水と接触混合して 抽出分離させた水溶液のイオン伝導度が 0. 6mS/m以下である、 以下の (2 A— 1) または (2A— 2) から選ばれた 1種または 2種以上の混合物である。 また本発明のプラスチック製液晶表示セル用シール剤組成物が、 1液型とする際 に用いられる硬化剤 (2 B) としては、 1 0倍質量の 40°C〜80°C純水と接触 混合して抽出分離させた水溶液のイオン伝導度が 0. 6mS/m以下である、 下 記の (2 B— 1) または (2 B— 2) から選ばれた 1種または 2種以上の混合物 である。
(2A- 1) 4官能性メルカプト化合物
(2 A— 2) 変性ポリメルカプト誘導体
(2 B- 1 ) マイク口カプセル化されたィミダゾ一ル化合物
(2 B- 2) 脂環式ジァミンのメチルメタクリレート付加体
前記イオン伝導度を 0. 6mS/m以下とすることで、 本発明のプラスチック 製液晶表示セル用シール剤組成物硬化体が液晶に接触した時、 該硬化体から液晶 相への遊離イオンの移行を抑えることができる。 好ましくは前記イオン伝導度を 0. 5mSZm以下、 より好ましくは 0. 3mS/m以下とする。
また、 本発明の 2液型のプラスチック製液晶表示セル用シール剤組成物の硬化 剤 (2A) として、 前記 (2A— 1) 4官能性メルカプト化合物を単独で、 また は (2A— 2) 変性ポリメルカプト誘導体を単独で用いることが好ましい。
以下に、 (2A— :! ) 〜 (2 B— 2) について詳しく説明する。
< (2 A- 1 ) 4官能性メルカプト化合物 >
(2A— 1) 4官能性メルカプト化合物としては、 ペンタエリスリ トールテト ラキス (2—メルカプトァセトネート) 、 ペンタエリスリ トールテトラキス (3 一メルカプトプロピオネート) 、 ペンタエリスリ トールテトラキス (2—^ f ソプ 口ピオネート) など、 室温で液体として取り扱えるものが挙げられる。
く (2 A— 2) 変性ポリメルカプト誘導体 >
(2 A- 2) 変性ポリメルカプト誘導体としては、 エポキシ樹脂変性ポリメル カプト誘導体、 ジィソシアナ一ト化合物変性ポリメルカプト誘導体などが挙げら れる。
前記エポキシ樹脂変性ポリメルカプト誘導体としては、 2〜 4官能性メルカプ ト化合物の活性水素 1当量当たりに対し、 ジィソシアナ一ト化合物の活性ィソシ アナ一ト基 0. 01〜0. 3当量、 好ましくは 0. 0 5〜0. 25当量、 より好 ましくは 0. 1〜0. 2当量を反応させて得たものが挙げられる。
前記 2官能性メルカプト化合物としては、 エチレンダリコールジメルカプトプ 口ピオネート、 ポリオキシエチレングリコールジメルカプトプロピオネート、 プ ロピレングリコールジメルカプトプロピオネート、 ポリプロピレングリコールジ メルカプトプロピオネート、 テトラメチレングリコールジメルカプトプロビオネ ート、 ポリオキシテトラメチレングリコールジメルカプトプロピオネート、 ネオ ペンチルグリコルジメルカプトプロピオネートなどが挙げられる。
前記 3官能性メルカプト化合物としては、 グリセリントリメルカプトプロピオ ネート、 トリメチロールプロパントリメルカプトプロピオネート、 トリスメルカ プトイソシァヌーレートなどが挙げられる。
俞記 4官能性メルカプト化合物としては、 前記 (2 A— 1 ) 4官能性メルカプ ト化合物から選ばれた 1種または 2種以上の混合物などが挙げられる。
本発明のプラスチック製液晶表示セル用シール剤組成物における硬化剤 ( 2 A ) としては、 前記 (2 A— 1 ) 4官能性メルカプト化合物が、 ペンタエリスリ ト ールテトラキス (3 _メルカプトプロピオネート) であり、 かつ前記 (2 A— 2 ) 変性ポリメルカプト誘導体が、 ペンタエリスリ トールテトラキス (3—メルカ ブトプロピオネート) の活性水素 1当量当たりジィソシアナ一ト化合物および/ またはそのィソシアナ一トプレポリマーの活性ィソシアナ一ト基の 0 . 0 1〜0 . 3当量を反応させて得られる変性ポリメルカプト誘導体であるのが好ましい。
< ( 2 B - 1 ) マイクロカプセル化されたィミダゾール化合物 >
( 2 B - 1 ) マイクロカプセル化されたイミダゾール化合物としては、 N—シ ァノエチルー 2ーェチ /レー 4ーメチノレイミダゾ"ノレ、 2ーェチルー 4ーメチルイ ミダゾール、 2—メチルイミダゾーノレ、 2— n—ペンタデシ/レイミダゾールなど をコア材として、 微小なシェルで封じ込めたマイクロカプセル化物が挙げられる
< ( 2 B - 2 ) 脂環式ジァミンのメチルメタクリレート付加体〉
( 2 B— 2 ) 脂環式ジァミンのメチルメタクリレート付加体としては、 イソフ ォロンジァミン、 ノルボルナンジァミンなどで代表される脂環式ジァミンの 1モ ル当量に対して、 メチルアタリレート、 メチルメタクリレート、 ェチルァクリレ 一トネェチルメタクリレートなどで代表されるメチル (メタ) アクリル酸エステ ルの 1〜1 . 9モル当量を反応させて得られ、 軟化点温度が 5 0 °C以上である固 溶体物質などが挙げられる。 本発明の組成物中の硬化剤 (b) の含有量を求める方法としては、 クロマトグ ラフィ一分取法、 赤外吸収スぺク トル法、 官能基分析法、 溶液ノ固体 NMR (核 磁気共鳴スペク トル) 法などが挙げられる。
[ (3) 硬化促進剤]
本発明の組成物の成分である硬化促進剤 (3) としては、 1、 1ージアルキル 尿素誘導体、 イミダゾール塩類、 ポリアミン化合物とエポキシ樹脂とのァダク ト 体、 ァミン化合物とジィソシアナ一ト化合物との付加体またはその変性誘導体、 トリスジメチルァミノメチルフエノール塩類、 1, 8—ジァザビシクロ (5, 4, 0) ゥンデセン一 7塩類 (以下、 DBU塩類という) 、 1, 5—ジァザビシクロ (4, 3, 0) 一ノネンー 5塩類 (以下、 DBN塩類という) 、 6—ジブチルァ ミノー 1, 8—ジァザビシクロ (5, 4, 0) —ゥンデセン一 7塩類 (以下、 D ADBU塩類という) などが挙げられ、 それらを単独で用いてもよいし、 2種以 上を用いてもよい。
前記硬化促進剤 (3) として用いるのに好ましいのは、 室温活性が低く、 貯蔵 安定性に富むものであり、 具体的には、 1, 1ージアルキル尿素誘導体、 DBU 塩類、 DBN塩類を単独で用いるのがよい。
本発明の組成物における硬化促進剤 (3) の使用量は、 全エポキシ樹脂組成物 中に占める割合で 0. 0 1〜 1 5質量。 /0、 好ましくは 0. 1〜1 5質量%、 より 好ましくは 1〜1 5質量%の範囲である。 0. 0 1質量%以上とすることで、 組 成物の低温硬化性が得られる。 また、 1 5質量%以下とすることで、 組成物の塗 布作業性が得られる。
硬化促進剤 (3) としては、 湿式分解物の原子吸光分析法で求めたアルカリ金 属の総和含有量が好ましくは 50 p p m以下、 より好ましくは 30 p p m以下、 さらに好ましくは 1 5 p p m以下である化合物を用いる。 そうすることで、 本発 明の組成物の硬化体が液晶に接触する場合に、 硬化体から液晶相への遊離イオン の移行を抑えることができる。 アルカリ金属の含有量の総和を 50 p pm以下と するための精製方法としては、 溶剤抽出精製法などの公知の方法を用いることが できる。 以下に、 硬化促進剤 (3 ) の具体例を述べる。
( 1、 1—ジアルキル尿素誘導体)
1、 1—ジアルキル尿素誘導体としては、 3 _ ( p—クロ口フエ-ル) _ 1, 1—ジメチル尿素、 3— (o, p—ジクロロフエエル) 一 1, 1ージメチル尿素、 2 , 4一 [ビス (1, 1ージメチル尿素) ] トルエン、 2, 6— [ビス (1, 1 ージメチル尿素) ] トルエンなどが挙げられる。
(ィミダゾール塩類)
ィミダゾール塩類としては、 2—ェチルー 4—メチルイミダゾールの無水ピロ メリッ ト塩、 2—メチルイミダゾール無水テトラヒ ドロフタル酸塩、 2—ェチル ― 4—メチルイミダゾール無水テトラヒ ドロフタル酸塩などが挙げられる。
(ポリアミン化合物とェポキシ樹脂とのァダク ト体)
ポリアミン化合物とエポキシ樹脂とのァダク ト体としては、 公知のポリアミン 化合物とエポキシ樹脂とから誘導されるァダク ト体などが挙げられる。 具体的に は、 エポキシ樹脂とポリアミンとの付加反応物に、 酸性水酸基を 2個以上有する 化合物を反応させて得られるァダク ト体などが挙げられる。 酸性水酸基を 2個以 上有する前記化合物としては、 フエノール樹脂、 変性フエノール樹脂、 ポリカル ボン酸などが挙げられる。
(ァミン化合物とジィソシアナ一ト化合物との付加体またはその変性誘導体) ァミン化合物とジィソシアナ一ト化合物との付加体としては、 公知の第 1〜第 2級ァミン化合物とジィソシアナ一トとを反応させて得られる付加体などが挙げ られる。
ァミン化合物とジィソシアナ一ト化合物との付加体の変性誘導体としては、 N, N _ジァルキルアミノアルキルァミンと、 環状ァミンと、 ジイソシアナ一トとを 加熱反応させて得られる付加誘導体、 軟化点が 6 0 °C以上かつ 3級アミノ基を持 つ粉末状の前記付加誘導体の粒子表面に均一にジィソシアナ一ト化合物を接触さ せて得られる組成物などが挙げられる。
(トリスジメチルァミノメチルフエノール塩類)
トリスジメチルァミノメチルフエノール塩類としては、 トリスジメチルァミノ メチルフエノールォクチル酸塩、 トリスジメチルァミノメチルフエノールォレイ ン酸塩、 トリスジメチルァミノメチルフエノール蟻酸塩などが挙げられる。
(DBU塩類)
DBU塩類としては、 DBUフエノール塩、 DBU多価フエノール化合物塩、 DBUポリフエノール塩、 DBUォクチル酸塩、 DBUォレイン酸塩、 DBU蟻 酸塩などが挙げられる。
(DBN塩類)
DBN塩類としては、 DBNフヱノール塩、 DBN多価フエノール化合物塩、 DBNポリフエノール塩、 DBNォクチル酸塩、 DBNォレイン酸塩、 DBN蟻 酸塩、 DBNパラ トルエンスルフォン酸塩などが挙げられる。
(D ADBU塩類)
DADBU塩類としては、 DADBUフエノール塩、 DADBU多価フエノー ル化合物塩、 DADBUポリフエノール塩、 DADBUォクチル酸塩、 DADB Uォレイン酸塩、 DADBU蟻酸塩、 D AD BUパラ トルエンスルフォン酸塩な どが挙げられる。 ,
本発明の組成物中に硬化促進剤 (3) の含有割合を測定する方法としては、 ク 口マトグラフィ一分取法、 水抽出分取法、 赤外吸収スペク トル法、 リン元素分析 法などが挙げられる。
本発明のプラスチック製液晶表示セル用シール剤組成物における硬化促進剤 ( 3) としては、 アルキル尿素誘導体、 トリスジメチルァミノメチルフエノール塩、 および 1, 8—ジァザビシクロ (5, 4, 0) ゥンデセン一 7塩から選ばれる少 なく とも 1種であるのが好ましい。
さらに、 前記アルキル尿素誘導体としては、 3— (p—クロ口フエニル) 一 1, 1ージメチル尿素、 3— ( o , p—ジクロロフエニル) 一 1, 1—ジメチル尿素、 2, 4 - [ビス (1, 1—ジメチル尿素) ] トルエン、 および 2, 6 - [ビス ( 1, 1—ジメチル尿素) ] トルエンから選ばれる少なく とも 1種であることが好 ましい。
[ (4) 無機質充填剤] 本発明で用いる無機質充填剤 (4 ) としては、 通常電子材料分野で用いられて いる無機質充填剤であれば、 いずれを用いてもよい。 具体的には、 炭酸カルシゥ ム、 炭酸マグネシウム、 硫酸バリウム、 硫酸マグネシウム、 珪酸アルミニウム、 珪酸ジルコニウム、 酸化鉄、 酸化チタン、 酸化アルミニウム (アルミナ) 、 酸化 亜鉛、 二酸化珪素、 チタン酸カリウム、 カオリン、 タルク、 アスベス ト粉、 石英 粉、 雲母、 ガラス繊維などが挙げられる。
その中で好ましいものは、 高純度シリカおよび または高純度アルミナまたは 酸化チタンである。 また、 湿式分解物の原子吸光分析法で求めたアルカリ金属の 含有量の総和量が好ましくは 5 0 p p m以下、 より好ましくは 3 0 p p m以下、 さらに好ましくは 1 5 p p m以下である高純度シリカおよび/または高純度アル ミナまたは酸化チタンを用いるのがよい。 そうすることで本発明の組成物の硬化 体が液晶に接触する場合に、 前記硬化体から液晶相へ遊離ィォンが移行するのを 抑えることができる。 アルカリ金属の含有量の総和を 5 0 p p m以下とするため の精製方法としては、 イオン交換法精製法などが挙げられ、 製造原料の段階で水 溶液化した後に前記方法を用いればよい。
また、 無機質充填剤 (4 ) としては、 6 3 2 . 8 n m波長のレーザー法粒子径 測定器により求めた質量加積曲線上の 9 9質量%粒子径値 (d 9 9 ) が 5 // m以 下にあるものが好ましく、 質量加積曲線上の 5 0質量%値で示される質量平均粒 子径値 (d 5。) が 0 . 0 0 5 〜 1 // mの範囲にあるものがより好ましい。 d 9 9 が 5 /z m以下である無機質充填剤 (4 ) を用いると、 液晶パネルのギャップ幅の 寸法安定性が一層向上し好ましい。
本発明の組成物での無機質充填剤 (4 ) の含有割合として、 好ましくは 5 〜 5 0質量。 /0、 より好ましくは 1 0 〜 4 0質量。 /0の範囲である。 5質量。 /0以上含有さ せることで、 スクリーン印刷またはディスペンサー塗布作業性を向上できる。 ま た、 5 0質量%以下とすることで、 組成物の流動性を確保でき、 スクリーン印刷 時のカスレまたはディスペンサー詰まりを抑えることができるため塗布作業が容 易となる。
無機質充填剤 (4 ) は、 前記エポキシ樹脂 (1 ) 、 後述するシランカップリン グ剤 (5 ) で事前にグラフト化変性させてのち使用することが好ましい。
グラフト化変性は、 無機質充填剤 (4 ) の一部にされてもよいし、 全部にされ てもよい。 通常、 無機質充填剤 (4 ) の 1 0 0質量部当たりエポキシ樹脂 (1 ) およびシランカップリング剤 (5 ) の少なくとも一方が、 1〜5 0質量部の割合 で、 グラフト化変性されていることが好ましい。 このグラフト化変性が起こって いる率、 すなわちグラフト率は、 好ましくは 1〜 5 0であり、 以下に述べる繰り 返し溶剤洗浄法で求めた質量増加率で表される。
ここで、 繰り返し溶剤洗浄法とは、 以下のようにグラフト率を求める方法であ る。 まず、 一部または全部がグラフト化変性されている無機質充填剤である検体 の 1 0〜 2 0倍質量の下記溶剤で、 前記検体に対して 5〜1 0回湿潤濾過を繰り 返す。 この濾過により、 グラフト化変性していないエポキシ樹脂 (1 ) ゃシラン カップリング剤 (5 ) が洗い流される。 前記溶剤としては、 エポキシ樹脂 (1 ) またはシランカップリング剤 (5 ) の良溶剤である、 たとえばアセトン、 メチル ェチルケトン、 メタノール、 エタノール、 トルエン、 キシレンなどが挙げられる。 次に、 前記濾過後に残った検体を乾燥し、 その質量を測定する。 この質量が、 グ ラフト化変性された無機質充填剤 (4 ) の乾燥質量となる。 この測定値から、 以 下の計算式にしたがって、 質量増加率を求める。 なお、 前記繰り返し溶剤洗浄法 の変わりに、 前記溶剤を用いたソックスレー連続抽出法によってグラフト率を求 めてもよい。
グラフト率 = [ (グラフト化変性された無機質充填剤の乾燥質量一グラフト化 変性前の無機質充填剤の乾燥質量) Zグラフト化変性前の無機質充填剤の乾燥質 量] X 1 0 0
本発明の組成物の成分である無機質充填剤 (4 ) の含有割合を求める方法とし ては、 濾過分取法、 X線回析スぺク トル法、 元素分析法、 加熱焼却残渣法、 湿式 分解—原子吸光法、 電子顕微鏡観察像解析法などが挙げられる。
[ ( 5 ) シランカップリング剤]
本発明の組成物における、 シランカップリング剤 (5 ) の配合割合としては、 好ましくは 0 . 1〜 5質量0 /0、 より好ましくは 0 . 5〜3質量。 /。の範囲である。 0 . 1質量%以上とすることで、 ガラス基板に対する接着性が確保できる。 5質 量。 /0以下とするのは、 5質量。 /0より多くても、 それ以上に顕著な作用効果を得ら れないからである。
シランカップリング剤 (5 ) としては、 トリアルコキシシラン化合物、 メチル ジアルコキシシラン化合物などが挙げられる。 具体的には、 y—グリシドキシプ 口ピルメチルジメ トキシシラン、 γ—グリシドキシプロピルトリメ トキシシラン、 γ—グリシドキシプロピルメチルジェ トキシシラン、 γ—グリシドキシプロピル トリエトキシシラン、 γ—ァミノプロピルメチルジメ トキシシラン、 y—アミノ プロビルトリメ トキシシラン、 ツーアミノプロピルメチルジメ トキシシラン、 Ί
—アミノプロピルトリエトキシシラン、 Ν—ァミノエチル一 γ—ィミノプロピル メチルジメ トキシシラン、 Ν—アミノエチル _ γ—ァミノプロビルトリメ トキシ シラン、 Ν—アミノエチル一 γ—ァミノプロピルトリエトキシシラン、 Ν—フエ 二ルー γ—ァミノプロビルトリメ トキシシラン、 Ν—フエニル一ツーアミノプロ ピルトリエトキシシラン、 Ν—フエニル一 γ—アミノプロピルメチルジメ トキシ シラン、 Ν—フエ二ルー γ—ァミノプロピルメチノレジェトキシシラン、 γ—メル カプトプロピルメチルジメ トキシシラン、 Τ/ーァミノプロビルトリメ トキシシラ ン、 ーメルカプトプロピルメチルジェトキシシラン、 γ—メルカプ'トプロピル トリエ トキシシラン、 γ—イソシアナートプロピルメチルジェトキシシラン、 γ 一^ f ソシアナートプロピルトリエトキシシランなどが挙げられ、 それらを単独で 用いてもよいし、 2種以上を併用してもよい。
本発明の組成物中のシランカップリング剤 (5 ) の種類おょぴ含有割合を求め る方法としては、 溶剤抽出分取法、 NM Rスぺク トル同定法、 ガスクロマトグラ フィ一法、 蒸留分取法などが挙げられる。 また、 本発明の組成物の硬化体中のシ ランカップリング剤 (5 ) の種類おょぴ含有割合を求める方法としては、 熱分解 ガスクロマトグラフィ マススぺク トル法、 固体 NM R法などが挙げられる。
[ ( 6 ) ゴム状ポリマー微粒子]
ゴム状ポリマー微粒子 (6 ) としては、 捩り振子法と言われる Torsinal Braid Analyzer (以下、 T B Aという) で求めた軟化点温度が 0 °C以下のものであり、 かつ、 電子顕微鏡観察から求めた一次粒子の平均粒子径が 0 . 0 1〜5 // 111のも のを、 好ましくは 1〜 2 5質量。/。、 より好ましくは 3〜 2 2 . 5質量。 /。、 より好 ましくは 5〜2 0質量%の範囲で含ませる。 1質量%以上とすることで、 本発明 の組成物を液晶パネルのシール剤として用いた場合の完成したプラスチック製液 晶表示セルの 6 0〜 8 0 °C耐水試験後の接着耐久信頼性を確保できる。 また、 2 5質量%以下とすることで、 硬化体に必要な耐熱剛性を確保できる。
ゴム状ポリマー微粒子 (6 ) の軟化点温度を 0 °C以下とすることで、 低温下で の接着信頼性がより向上する。 さらに、 ゴム状ポリマー微粒子 (6 ) の一次粒子 径が 5 m以下とすることで、 プラスチック製液晶表示セルのギャップを薄くす ることができ、 高価な液晶の使用量を抑制することができるとともに液晶表示応 答速度をも向上させることができる。 また、 より好ましい前記ゴム状ポリマー微 粒子 (6 ) の一次粒子の平均粒子径は、 0 . 0 5〜 2 mの範囲である。
本発明のプラスチック製液晶表示セル用シール剤組成物におけるゴム状ポリマ 一微粒子 (6 ) としては、 一 3 0 °C以下の軟化点温度を有し、 その一次粒子径が 0 . 0 1〜3 μ mの範囲のシリコンゴム微粒子、 および/またはアク リルゴム微 粒子またはポリオレフインゴム微粒子が挙げられ、 より好ましくはそのゴム状ポ リマー微粒子 (6 ) が架橋性ゴム粒子であるのが好ましい。
また別の好ましいものとしては、 0 . 1〜 1 μ mの一次粒子径を持ち、 かつ架 橋性ゴム粒子であるゴム状ポリマー微粒子 ( 6 ) である。 ここで、 一次粒子径と は、 一次粒子の平均粒子径のことをいう。
ゴム状ポリマー微粒子 (6 ) としては、 上記条件を満たさない場合でも、 軟化 点温度が 0 °C以下であれば公知のゴム状ポリマー微粒子を用いることができる。 具体的には、 アクリルゴム系のゴム状ポリマー微粒子、 シリコンゴム系のゴム状 ポリマー微粒子、 共役ジェンゴム系のゴム状ポリマー微粒子、 ォレフィンゴム系 ゴム状ポリマー微粒子、 ポリエステルゴム系ゴム状ポリマー微粒子、 ウレタンゴ ム系ゴム状ポリマー微粒子、 複合化ゴムやエポキシ基と反応する官能基を有する ゴム状ポリマー微粒子などが挙げられる。 これらのゴム状ポリマー微粒子はェポ キシ基と反応する官能基を有することが好ましい。 また、 これらのゴム状ポリマ 一微粒子を単独で用いてもよく、 2種以上を併用してもよい。 これらゴム状ポリ マー微粒子の具体例を以下に述べる。
<アクリルゴム系のゴム状ポリマー微粒子 >
ァクリルゴム系のゴム状ポリマー微粒子としては、 コア部がァクリルゴムから なるコア Zシェル型エマルシヨンを乾燥して得られる微粒子、 エポキシ樹脂中で アクリル系モノマーを非水分散重合させて得られる樹脂組成物、 エポキシ基と反 応する官能基を導入して得られるァクリルゴムポリマー溶液を別個に調製後、 ェ ポキシ樹脂中に投入または滴下して、 機械的に混合し、 脱溶剤またはグラフト化 させてァクリルゴム微粒子をエポキシ樹脂中に安定的に分散させて得られる樹脂 組成物などが挙げられる。
くシリ コンゴム系のゴム状ポリマー微粒子〉
シリコンゴム系のゴム状ポリマー微粒子としては、 粉末状のシリコンゴム微粒 子、 エポキシ樹脂に二重結合を導入してその二重結合と反応可能な片末端ァクリ レート基を持つシリコンマクロモノマーを反応させた後、 ビニルシリコンとハイ ドロジ: ンシリ コンとを仕込み、 分散重合させて得られる樹脂組成物などが挙げ られる。
く共役ジェンゴム系のゴム状ポリマー微粒子 >
共役ジェンゴム系のゴム状ポリマー微粒子としては、 公知の微粒子を用いてよ く、 具体的には 1, 3—ブタジエン、 1、 3 _ペンタジェン、 イソプレン、 1、 3—へキサジェン、 クロロプレンなどのモノマーを重合または共重合して得られ た共役ジェンゴム状ポリマー微粒子などが挙げられる。 より具体的には、 ブタジ ェンとアタリロニトリルとの共重合体、 末端にカルボキシル基を有するプタジェ ンとアタリ口 -トリルとの共重合体、 末端にアミノ基を有するブタジエンとァク リロニトリルとの共重合体などが挙げられる。
<ォレフインゴム系ゴム状ポリマー微粒子 >
ォレフィンゴム系ゴム状ポリマー微粒子としては、 エチレン、 プロピレン、 1 ープテン、 2—ブテン、 イソブテンなどの単独非晶質重合体または共重合可能な 他のモノマーとの共重合体やターポリマーからなる微粒子またはその組成物など が挙げられる。 また、 ォレフインゴムラテックスなどの形で市販されている物を 入手し、 エポキシ樹脂中で脱水処理し、 ォレフィンゴムをエポキシ樹脂中に分散 安定化させて得られる樹脂組成物を用いてもよい。
くポリエステルゴム系ゴム状ポリマー微粒子 >
ポリエステルゴム系ゴム状ポリマー微粒子とは、 ポリマー骨格にポリエステル 結合が含有されているゴム状ポリマーからなる微粒子である。 具体的には、 必要 に応じてトリオール以上の多価アルコール化合物の共存下で、 液状ポリシロキサ ンジオール、 液状ポリオレフインジオール、 ポリプロピレングリコール、 ポリブ チレングリコールなどから選ばれた少なく とも 1種のジオール成分と、 アジピン 酸、 マレイン酸、 コハク酸、 フタル酸などから選ばれた少なく とも 1種の 2塩基 酸とから誘導された低軟化点ポリェステル樹脂、 前記 2塩基酸の代わりに酸無水 物を用いた低軟化点ポリエステル樹脂、 ヒ ドロキシ多価カルボン酸などから誘導 させた低軟化点ポリエステル樹脂などが挙げられる。
<ゥレタンゴム系ゴム状ポリマー微粒子 >
ゥレタンゴム系ゴム状ポリマー微粒子とは、 ゴム状ポリマー骨格にウレタン結 合および/または尿素結合が含有されているゴム状ポリマーからなる微粒子であ る。 具体的には、 必要に応じてトリオール以上の多価アルコール化合物の共存下 で、 液状ポリシロキサンジオール、 液状ポリオレフインジオール、 ポリプロピレ ングリコール、 ポリプチレングリコールなどから選ばれた少なく とも 1種からな るジオール成分と、 へキサメチレンジィソシアナ一ト、 ィソフォロンジィソシァ ナート、 トリレンジィソシアナ一ト、 ジフエニルメタンジイソシアナート、 ノル ボルナンジィソシアナートなどで代表されるジィソシアナ一ト化合物とを作用さ せて得られるゴム状ポリウレタン、 必要に応じてトリアミン以上の多価アミン化 合物の共存下で、 液状ポリシロキサンジァミン、 液状ポリオレフインジァミン、 ポリプロピレンダリコールジァミンなどから選ばれた少なく とも 1種の長鎖ジァ ミン成分と、 へキサメチレンジイソシアナート、 イソフォロンジイソシアナート、 トリレンジイソシアナート、 ジフヱ-ルメタンジイソシアナ一ト、 ノルボルナン ジィソシアナートなどで代表されるすでに公知のジィソシアナ一ト化合物とを作 用させて得られるゴム状ポリウレタンなどが挙げられる。
<複合化ゴム微粒子 >
複合化ゴム微粒子としては、 前記アク リル系、 シリコン系、 共役ジェン系、 ォ レフイン系、 ポリエステル系、 ウレタン系の 2種以上からなるグラフトポリマー および/またはプロックポリマーまたはコアシェルポリマー、 複層ポリマーなど からなる微粒子などが挙げられる。
くエポキシ基と反応する官能基を有するゴム状ポリマー微粒子 >
エポキシ基と反応する官能基を有するゴム状ポリマー微粒子としては、 前記ァ クリル系、 シリコン系、 共役ジェン系、 ォレフィン系、 ポリエステル系、 ウレタ ン系の微粒子にエポキシ基と反応する官能基を導入して得られるものなどが挙げ られる。
そのエポキシ基と反応する官能基を有するゴム状ポリマー微粒子において、 ェ ポキシ基と反応する官能基を有する単量体に由来する構造がゴム状ポリマー中に 占める質量割合が、 0 . 1 〜 2 5質量%であることが好ましい。 エポキシ基と反 応する官能基を有する単量体に由来する繰り返し構造の含有量を 0 . 1質量%以 上 2 5質量%以下とすることで、 得られるプラスチック製液晶表示セル用シール 剤組成物の接着性が著しく向上する。
エポキシ基と反応しうる官能基としては、 メルカプト基、 アミノ基、 イミノ基、 カルボキシル基、 酸無水物基、 エポキシ基、 ヒ ドロキシル基などが挙げられ、る。 エポキシ基と反応する官能基を有するゴム状ポリマーには、 これらの官能基の うち少なく とも 1種が、 好ましくは 0 . 0 1 〜 2 5質量%、 より好ましくは 0 . :! 〜 1 0質量%導入されているものがよい。
それらの官能基の導入方法としては、 官能基含有モノマーと主鎖ポリマーを構 成するモノマーとのランダム共重合法、 交互共重合法、 縮合重合法、 付加重合法、 コア一シェル重合法による導入方法、 イオン吸着導入法、 膨潤含浸導入法、 ゴム 状粒子を形成するポリマーへグラフト重合する方法などが挙げられる。 このなか でも、 共重合する方法およびグラフト重合する方法は、 少ない量で効率良くゴム 状ポリマー微粒子表面近傍に必要な官能基を導入できるので好ましい。 本発明の組成物では、 ゴム状ポリマー微粒子 (6 ) がエポキシ樹脂中に粒子と して形状を保持するものが好ましい。
ゴム状ポリマー微粒子 (6 ) がエポキシ樹脂 (1 ) 中に粒子として存在してい ることを確認する方法としては、 濁りの全く無いエポキシ樹脂 (1 ) とゴム状ポ リマー微粒子 (6 ) との混合物を作り、 該混合物を光学顕微鏡で観察しゴム状ポ リマー微粒子の存在を確認する方法、 前記混合物にポリメルカブタン系室温硬化 剤またはポリアミン系室温硬化剤などの必要量を添加して得た硬化体の微小切断 面を、 オスミウム酸染色増感して走査型電子顕微鏡 (T E M) または透過型電子 顕微鏡 (S E M) で観察して確認する方法、 硬化体のミクロ層を顕微 I R測定し て確認する方法などが挙げられる。
また本発明の組成物中のゴム状ポリマー微粒子 (6 ) の種類、 量、 および粒子 径を把握する方法としては、 本発明の組成物の硬化体の断片をオスミウム酸染色 増感して T E Mまたは S E Mで観察して把握する方法、 同様にして得た硬化体の 断片の S E M観察と平行して元素分布解析像を得て同定ならぴに定量して把握す る方法、 硬化体表面を公知の方法で選択性を持たせてェツチング後に T E M観察 して把握する方法、 ミクロ層を顕微赤外吸収スペク トル (顕微 I R ) 測定して把 握する方法、 ミクロ層を熱線照射し分解発生してくるガス種成分を同定して把握 する方法、 ミク口層の体積比容から換算して質量比を求めて把握する方法などが 挙げられる。
また調製済みのプラスチック製液晶表示セル用シール剤組成物中に含まれるゴ ム状ポリマー微粒子 (6 ) の含有割合を求める方法としては、 その液晶シール剤 組成物の赤外線吸収スぺク トル ( I R ) におけるゴム状ポリマ一微粒子に特有の 吸収スぺク トルの吸光度から種類とその量を求める方法、 前記 I R分析から特定 されたゴム状ポリマー微粒子種を知り、 そのゴム状ポリマー微粒子種で発現する ことが明らかな作用効果の指標量である、 T B A測定による低温塽の弾性率減衰 率量 〔G〃〕 から求める方法、 熱分解ガスクロマトグラフィー法、 元素分析法、 硬化体の複数の S E M写真からゴム状ポリマー微粒子占有体積を求め比重換算し て求める方法、 加熱分解ガス成分分析から求める方法などが挙げられる。 本発明のプラスチック製液晶表示セル用シール剤組成物中では、 ゴム状ポリマ 一微粒子 (6) がエポキシ樹脂 (1) と事前にグラフトしていてもよいし、 ダラ フトしていなくてもよい。
[ (7) 高軟化点アク リルポリマー微粒子]
本発明のプラスチック製液晶表示セル用シール剤組成物では前記 (1) 〜 (6 ) を含むプラスチック製液晶表示セル用シール剤組成物 1 00質量部に対して、 さらに以下に示す高軟化点アクリルポリマー微粒子 (7) を 0. 1〜25質量部 の範囲で含有させて得られるシール剤組成物がより好ましい。 0. 1質量部以上 の高軟化点アクリルポリマー微粒子 (7) を使用することで、 真空枚葉熱プレス または剛性枚葉熱プレス方式による接着工程において、 貫通泡や滲み出しが発生 しない。 また、 25質量%以下の高軟化点アクリルポリマーを使用することで、 ギャップ出し作業性が得られる。
その高軟化点アク リルポリマー微粒子 (7) とは、 TBAから求めた軟化点温 度が 50°C以上であり、 かつ、 電子顕微鏡観察による一次粒子の平均粒子径が 2 μπι以下の高軟化点ァクリルポリマー微粒子である。 前記 1次粒子の平均粒子径 は、 好ましくは 0. 0 1〜;! μ m、 より好ましくは 0. 2〜0. 5 μπιの範囲と するのがよい。 高軟化点アクリルポリマー微粒子 (7) の一次粒子の平均粒子径 を、 2 / m以下とすることで、 ギャップ出し作業性が得られる。
高軟化点アク リルポリマー微粒子 (7) は、 架橋型、 非架橋型のいずれでも使 用することができるが、 架橋型がより好ましく、 特に微架橋構造を持つ高軟化点 アクリルポリマー微粒子が最も好ましい。
前記微架橋構造を持つ高軟化点ァクリルポリマー微粒子は、 ポリマーを製造す る際に架橋性モノマーを全モノマーに対して 0. 1〜50質量%、 好ましくは 1 〜 3質量。 /0の範囲にすることで製造できる。
微架橋度の指標の一つとしては、 ゲル分率がある。 これは、 1 0 gの高軟化点 ポリマー微粒子を 50 gのメチルカルビトール溶剤中に分散し、 25。Cで 1時間 攪拌後に濾過し、 その濾液量とその濾液中のポリマー含有量 (溶解量) を求め、 ゲル分率 (%) = (溶解量 /1 0 g) X 1 00 とする指標である。 このゲル分率指標としては、 好ましくは 0〜5 0 %、 より好 ましくは 0〜 5 %の範囲である。
高軟化点ァクリルポリマー微粒子は、 化学構造式から算出されるソルビリティ 一パラメーター (S P値) で 9〜1 1の範囲にあるものが好ましく、 9 . 3〜1 0 . 5の範囲にあるものがより好ましい。
高軟化点アクリルポリマー微粒子 (7 ) としては、 0 . 1〜5 0質量%の架橋 性モノマーを共重合させて得られる微架橋型のポリメタクリル酸メチルエステル 主成分型ポリマー、 アイオノマー構造を 0 . 1〜 5 0質量。 /0の範囲で有するポリ メタァクリル酸メチルエステルポリマーなどが挙げられる。 その高軟化点ァクリ ルポリマー微粒子では、 その粒子表面にエポキシ基、 アミノ基、 イミノ基、 メル カプト基、 カルボキシル基などの 1種の官能基を導入されていることがより好ま しい。
さらに好ましくは、 6 0 °C〜1 5 0 °Cの軟化点温度を持ち、 その一次粒子径が 0 . 0 1〜3 μ mの範囲にあることがよい。
本発明のプラスチック製液晶表示セル用シール剤組成物では、 前記ゴム状ポリ マー微粒子 (6 ) と高軟化点アク リルポリマー微粒子 (7 ) とが事前に複合化さ れていてもよく、 ゴム状ポリマー微粒子 (6 ) がコア相をなし、 高軟化点アタリ ルポリマー微粒子 (7 ) がシェル相を形成してなる、 いわゆるゴム状ポリマー微 粒子 ( 6 ) と高軟化点アクリルポリマ一微粒子 ( 7 ) のコアシ ル型複合微粒子 Aなども含まれる。 またその逆の高軟化点アクリルポリマー微粒子 (7 ) をコア 相とし、 ゴム状ポリマ一微粒子 ( 6 ) をシェル相とするコアシヱル型複合微粒子 Bなども含まれる。 複合化する場合は、 前者のコアシェル型複合微粒子 Aを使用 することが好ましい。
コア相としてゴム状ポリマー微粒子 (6 ) を内包するコアシェル型複合微粒子 Aにおいて、 コア相とシェル相の質量比としては、 コア相を 1とした場合、 シェ ル相が 0 . 3〜 2の範囲であることが好ましい。 そのコアシェル型高軟化点ポリ マー微粒子 Aの具体例としては、 日本ゼオン社製品 ·商品名 「ゼオン F— 3 5 1 」 が容易に入手でき、 好ましく使用できる。 ック製液晶表示セル用シール剤組成物中の高軟化点ァクリルポリマー 微粒子 (7) の種類およぴ量比を求める方法としては、 前記ゴム状微粒子の測定 方法と同様の方法が挙げられる。
[ (8) ワックス]
本発明のプラスチック製液晶表示セル用シール剤組成物は、 必要に応じてさら にワックス (8) を併用することが好ましい。 ワックス (8) の使用割合として は、 本発明の前記プラスチック製液晶表示セル用シール剤組成物 1 00質量部に 対して 0. 1〜5質量部とするのがよい。
プラスチック製液晶表示セル用シール剤組成物中のワックス (8) の含有割合 を求める方法としては、 熱分解ガスクロマトグラフィー法、 固体核磁気共鳴スぺ ク トル法、 炭化水素溶剤抽出一分別定量などが挙げられる。
また、 ワックス (8) は、 (1 ) 〜 (6) を含む組成物、 (1) 〜 (7) を含 む組成物、 のいずれか 1種からなるプラスチック製液晶表示セル用シール剤組成 物 1 00質量部に対して 0. 1〜 5質量部含有させることが最も好ましい。 ヮッ クス配合量を該シール剤組成物 1 00質量部当たり 0. 1質量部以上、 5質量部 以下とすることで、 該硬化体の 60°C、 相対湿度 9 5%以上の高温高湿環境下で その硬化体の 60°C透湿度特性をよりいっそう小さくできるからである。 それに 伴って、 高耐久性の高いプラスチック製液晶表示セルを製造できることになる。 ワックス (8) としては、 いずれのワックスを用いてもよい。 具体的には、 動 物系天然ワックス、 植物系天然ワックス、 鉱物系天然ワックス、 石油系ワックス- 合成炭化水素系ワックス、 変性ワックス、 水素化ワックスなどが挙げられる。 このなかでも、 融点が 70°C以上 1 50°C以下のワックスが好ましく、 カルナバ ワックス、 マイクロク リスタリンワックス、 フィッシャートロプッシュワックス, 変性フィッシヤートロプッシュヮッタスが特に好ましい。
またワックス (8) を含有させてなる本発明のプラスチック製液晶表示セル用 シール剤組成物では、 そのプラスチック製液晶表示セル用シール剤組成物の硬化 前の状態において、 ワックスは独立した一次粒子として存在していることが好ま しく、 電子顕微鏡や光学顕微鏡観察による一次粒子の平均粒子径は、 0. 0 1〜 5 / mの範囲にあることが好ましく、 0 . Q 1〜3 /z mの範囲にあることがさら に好ましい。
以下にワックス (8 ) のより具体的な例を示す。 動物系天然ワックスとしては、 蜜ロウ、 鯨ロウ、 セラックロウなどが挙げられる。 植物系天然ワックスとしては、 カルナバワックス、 オリキュリーワックス、 キャンデリラワックス、 木ロウ、 ケ ーンワックスなどが挙げられる。 鉱物系天然ワックスとしては、 モンタンヮック ス、 ォゾケライ ト、 セレシンなどが挙げられる。 石油系ワックスとしては、 パラ フィンワックス、 マイクロクリスタリンワックスなどが挙げられる。 合成炭化水 素系ワックスとしては、 フィッシヤートロプッシュヮックスおよびその誘導体、 ポリエチレンヮックス及ぴその誘導体、 ポリプロピレンワックスおよぴその誘導 体などが挙げられる。 変性ワックスとしては、 酸化ワックス、 モンタンワックス、 酸変性ワックスなどが挙げられる。 水素化ワックスとしては、 ステアリン酸アミ ドワックスなどのアミ ドワックス、 ポリエステルヮックス、 オパールヮッタスな どが挙げられる。 特に最も好ましいヮックスとしてばカルナパヮックスである。
[ ( 9 ) ギャップ出しコントロール剤]
ギャップ出しコント口一ル剤 ( 9 ) とは、 液晶表示セルのギャップ幅を 3〜 7 μ mの幅で任意かつ正確に調節することができる物質のことであり、 このような ものであれば有機質または無機質のいずれでも使用することができる。
ギャップ出しコントロール剤 (9 ) は、 必要に応じて本発明のプラスチック製 液晶表示セル用シール剤組成物 1 0 0質量部に対して、 好ましくは 0 . 1〜5質 量部、 より好ましくは 0 . 5〜2 . 5質量部の範囲で用いられる。
プラスチック製液晶表示セル用シール剤組成物中のギャップ出しコント口ール 剤 (9 ) の含有割合を求める方法としては、 S E M像画像解析法、 T E M像画像 解析法、 分級濾別法、 熱分解ガスクロマト法、 加熱残渣ー蛍光 X線回析法、 元素 分析法などが挙げられる。
ギャップ出しコントロール剤 (9 ) としては、 エポキシ樹脂 (1 ) によって変 形や溶解、 膨潤されない真球状、 サッカーボール状粒子、 棒状繊維などの上下左 右対象の無機質粒子または熱硬化性のポリマー粒子などが挙げられる。 ギャップ出しコントロール剤 (9 ) の無機質粒子としては、 真球シリカ粒子、 真球アルミナ粒子、 ガラス短繊維、 金属短繊維、 金属粉などが挙げられる。 この 無機質粒子は、 ギャップ精度を高精度で制御できるので、 好ましい。
また、 有機質のギャップ出しコントロール剤 (9 ) としては、 熱硬化性のポリ スチレン真球状粒子、 フエノール樹脂系熱硬化粒子、 ベンゾグアナミン樹脂系熱 硬化粒子などが挙げられる。
[ ( 1 0 ) 導電性ビーズ]
導電性ビーズ (1 0 ) としては、 平均粒子径が 3〜1 O /z mで、 かつ、 最大粒 子径が 1 0 μ m以下で最小粒子径 0 . 1 μ m以上の導電性ビーズなどが挙げられ る。
本発明のプラスチック樹脂組成物の 1 0 0質量部に対し、 導電性ビーズの 1〜 1 5質量部の割合で含有させることが好ましく、 そうすることで、 異方導電性の 機能を付与できる。 1質量部以上の使用で上下導通性機能を付与できる。 また、 1 5質量部未満とすることで、 両横 (左右) 電極間の絶縁特性の確保が向上する c より好ましくは 2〜1 0質量部の範囲である。
導電性ビーズ (1 0 ) としては、 貴金属粒子、 貴金属合金粒子、 卑金属粒子、 卑金属合金粒子、 その他金属被覆型有機物粒子、 金属被覆型絶縁性無機粒子など が挙げられる。
(貴金属粒子)
貴金属粒子の貴金属としては、 金、 銀、' 白金などが挙げられる。
(貴金属合金粒子)
貴金属合金粒子の貴金属合金どしては、 銀銅合金、 金銅合金、 金銀合金、 白金 銀合金、 金白金合金、 金ニッケル合金、 銀ニッケル合金などが挙げられる。
(卑金属粒子)
卑金属粒子の卑金属としては、 銅、 ニッケル、 錫、 タングステンなどが挙げら れる。
(卑金属合金粒子)
卑金属合金粒子の卑金属合金としては、 銅一ニッケル合金、 銅一錫合金、 ハン ダなどが挙げられる。 . -
(金属被覆型有機物粒子)
金属被覆型有機物粒子としては、 ポリスチレン、 ポリメタクリル酸メチルで代 表される有機ポリマー粒子に、 上記貴金属などからなる導電性金属皮膜を形成し て得られるものなどが挙げられる。 市販品としては、 積水ファインケミカル社よ り商品名 「ミクロパール A Uシリーズ」 などが挙げられる。
(金属被覆型絶縁性無機粒子)
金属被覆型絶縁性無機粒子としては、 雲母、 ガラスビーズで代表される高絶縁 性の無機質粒子に前記導電性金属皮膜を形成して得られるものなどが挙げられる c 前記導電性ビーズ (1 0 ) としては、 その 1次分散安定性が確保しやすい点で、 金属被覆型有機物粒子を本発明のプラスチック製液晶表示セル用シール剤組成物 中に占める割合で、 1〜 7体積%含有される態様例が特に好ましい。 特に、 本発 明のプラスチック製液晶表示セル用シール剤組成物では、 導電性ビーズ (1 0 ) が有機ポリマーを芯に持ち、 金、 銀、 金銅合金、 銀銅合金、 ニッケルまたはそれ らの合金などから選ばれた少なくとも 1種の金属被覆相からなっていることが最 も好ましい。
前記導電性ビーズ (1 0 ) の平均粒子径ほ、 前記した範囲とすることがよい。 平均粒子径が 1 / m以下のものでは、 電極間に導電性粒子が残っても良好な上下 導通特性を引き出しづらいからであり、 また一方、 平均粒子径または最大粒子径 が 1 0 μ mを越えたものを使用すると、 ショートの原因となりやすいからである c なお、 プラスチック製液晶表示セル用シール剤組成物中または硬化体中の導電 性ビーズ (導電粒子) の種類およびその量比を求める方法としては、 元素分析法、 硬化体の T E Mまたは S E M像解析法、 濾過分別法などが挙げられる。
[ ( 1 1 ) 溶媒]
本発明のプラスチック製液晶表示セル用シール剤組成物では、 必要に応じてさ らに、 該組成物 1 0 0質量部に対し、 エポキシ樹脂と相溶しかつ沸点が 1 5 0か ら 2 2 0。Cの範囲にあるエポキシ基に対して不活性な溶剤 (1 1 ) を、 1〜2 5 質量部の範囲で含有させてよい。 溶剤を含有させることで、 スクリーン印刷適性 や接着被着体への濡れ性の向上が図れる。 好ましくは、 沸点が 1 6 0〜2 0 0 °C の範囲にある高沸点溶剤が挙げられる。
溶剤 (1 1 ) としては、 シクロへキサンなどのケトン溶剤、 エーテル溶剤、 ァ セテート溶剤などが挙げられる。
前記エーテル溶剤としては、 エチレングリコールモノメチルエーテル、 ェチレ ングリコールモノェチルエーテル、 エチレングリ コーノレモノプロピルエーテル、 ェテレングリコールモノプチノレエーテノレ、 エチレングリコーノレモノフエェ /レエ一 テル、 エチレング、リコ一ノレジメチノレエーテノレ、 エチレングリ コールジェチルエー テノレ、 'エチレ ク、、リコールジプロピルエーテノレ、 エチレングリ コーノレジブチノレエ ーテノレ、 エチレングリコー/レジフエ二/レエ一テル、 ジェチレングリコ一/レモノメ チルエーテル、 ジエチレングリコールモノェチルエーテル、 ジエチレングリ コー ノレモノプロピノレエーテ ^レ、 ジエチレングリコールモノプチノレエーテ/レ、 ジェチレ ングリコ一/レモノフエニルェーテノレ、 ジエチレングリコ一/レジメチルエーテノレ、 ジエチレングリコ一/レジェチノレエーテノレ、 ジエチレングリコ一/レジプロピノレエ一 テル、 ジエチレングリ コールジプチルエーテル、 ジエチレングリコールジフエ二 ルェ一テルなどが挙げられる。
前記アセテート溶剤としては、 エチレングリコールモノアセテート、 エチレン グリコーノレモノメチ /レエーテゾレアセテ一ト、 エチレングリコー レモノエチ /レエ一 テノレアセテート、 エチレングリコーノレモノプロピ /レエーテノレアセテート、 ェチレ ングリコーノレモノブチノレエーテノレアセテート、 エチレングリコ一/レモノフエニノレ エーテルアセテート、 エチレングリコー/レジアセテート、 ジエチレングリコーノレ モノメチ/レアセテート、 ジエチレングリコ一 /レモノエチノレアセテート、,ジェチレ ングリコーノレモノブチノレエーテ/レアセテート、 ジエチレングリ コ一/レジァセテ一 トなどが挙げられる。
好ましい溶剤 (1 1 ) としては、 エチレングリコールモノプチルエーテル、 ェ チレングリコ一ノレモノメチノレエーテ /レアセテート、 ジエチレングリコ一/レジメチ ノレエーテル、 プロピレングリコーノレモノメチ /レエーテノレ、 プロピレングリコ一ノレ モノメチノレエーテノレアセテート、 プロピレンダリコーノレモノェチ/レエーテノレァセ テート、 プロピレンダリコールジァセテートから選ばれた少なくとも 1種とする ことがよい。
なお、 プラスチック製液晶表示セル用シール剤組成部中の溶剤の種類および量 比を知る方法としては、 乾燥減量法、 ガスクロマトグラフィー (分取) 法、 蒸留 分取法、 ガスマススぺク トル法、 赤外吸収スぺク トル法、 NMR法などが挙げら れる。
また必要に応じて、 レべリング剤、 顔料、 染料、 可塑剤、 消泡剤などの添加剤 を用いてもよい。
本発明のプラスチック製液晶表示セル用シール剤組成物は、 上述した各成分を それぞれ混合して調製する。
本発明の 1液型のプラスチック製液晶表示セル用シール剤組成物の調製では、 (1) エポキシ樹脂、 (2) 硬化剤、 (3) 硬化促進剤、 (4) 無機質充填剤、 (5) シランカップリング剤、 (6) 0°C以下の軟化点温度を持ちその一次粒子 の平均粒子径が 0. 0 1〜 5 μ mであるゴム状ポリマー微粒子を混合し、 必要に 応じて (7) 50°C以上の軟化点温度を持ちその一次粒子の平均粒子径が 2 / m 以下である高軟化点アクリルポリマー微粒子、 (8) ワックス 、 (9) ギヤッ プ出しコント口ール剤、 (1 0) 導電性ビーズ、 (1 1 ) 溶剤、 レベリング剤、 顔料、 染料、 可塑剤、 消泡剤などを添加する。
本発明の 2液型のプラスチック製液晶表示セル用シール剤組成物の調製では、 (1) エポキシ樹脂、 (3) 硬化促進剤、 (4) 無機質充填剤、 (5) シラン力 ップリング剤、 (6) 0°C以下の軟化点温度を持ちその一次粒子の平均粒子径が 0. 0 1〜5 /z mであるゴム状ポリマー微粒子を混合し、 必要に応じて、 (7) 50°C以上の軟化点温度を持ちその一次粒子の平均粒子径が 2 μ m以下である高 軟化点アクリルポリマー微粒子、 (8) ワックス、 (9) ギャップ出しコント口 ール剤、 (1 0) 導電性ビーズ、 (1 1) 溶剤、 レべリング剤、 顔料、 染料、 可 塑剤、 消泡剤など添加して得られた混合液が主剤液となる。 また、 その場合、 ( 2 ) 硬化剤の単独液が硬化剤液となる。
また硬化剤液を、 (2) 硬化剤と (3) 硬化促進剤との混合液と さらに (2 ) 硬化剤と (3 ) 硬化促進剤と (4 ) 無機質充填剤との混合液として もよい。
前記混合方法には、 双腕式攪拌機、 .ロール混練機、 2軸押出機、 湿式媒体分散 機などを使用して混合する方法が挙げられる。 また、 混合後、 真空脱泡処理され、 ガラス瓶、 ポリ容器などに密封充填され、 貯蔵、 輸送されてよい。
本発明のプラスチック製液晶表示セル用シール剤組成物の硬化前の取り扱い粘 度としては、 好ましくは E型粘度計による 2 5 °C粘度が 1〜1 0 0 0 P a · sの 範囲、 より好ましくは 5〜5 0 0 P a . sの範囲、 さらに好ましくは 1 0 ~ 2 0 0 P a · sの範囲である。 本発明のプラスチック製液晶表示セル用シール剤組成 物は、 事前に加熱養生などの方法によって、 粘度が前記した範囲内になるように 調製を行って製造されてよい。
また E型粘度計のローター番号を同一とする毎分 1 0回転のズリ速度から求め られた l r p mと l O r p mの時の粘度比 ( 1 r p m粘度値 1 0 r p m粘度値 ) であらわされるチクソ指数は、 好ましくは 1〜3の範囲である。
本発明のプラスチック製液晶表示セル用シール剤組成物を用!/、たプラスチック 製液晶表示セルは、 以下のような工程を経て製造される。 図 1は、 本発明のブラ スチック製液晶表示セルの製造方法のフローチャートである。
まず工程 a 1において、 一対のプラスチック製液晶表示セル用基板のいずれか 一方基板の接合シール構成部位に、 本発明のブラスチック製液晶表示セル用シー ル剤組成物を、 スクリーン印刷またはデイスペンス塗布する。
次に工程 a 2において、 前記一対の基板の位置合わせを行い、 貼り合わせる。 次に工程 a 3において、 6 0 °C〜 1 0 0 °Cで熱圧締処理し、 前記プラスチック 製液晶表示セル用シール剤組成物を硬化させる。 前記一対の基板間の厚み (セル ギャップ) は、 使用する液晶種に応じて 3〜7 /z mの範囲に決定する。 通常、 ギ ヤップコントロール剤を該一対の基板間に適宜配置させることによって、 0 . 0
1 μ以下の誤差で均質な厚みとする。
次に工程 a 4において、 前記一対の基板および前記シール剤組成物に囲まれた 空間に液晶を注入する。 次いで、 液晶を注入する注入孔を、 光硬化型液晶シール 剤組成物、 2液型液晶シール剤組成物、 紫外線硬化型液晶シール剤組成物などで 封孔する。 このようにして得られたプラスチック製液晶表示セルは、 高温高湿環 境下においても信頼性が高い。
また工程 a 1において、 前記一方基板に本発明のシール剤組成物を塗布した後、 該シール剤組成物に対して、 好ましくは 5 0 °C〜 1 1 0 °C、 より好ましくは 8 0 °C〜 1 0 0。Cの範囲でプレキュア一処理を行ってもよい。 プレキュア一処理の時 間としては、 5分〜 3 0分である。 高温化するほど短時間にすることが好ましい c 1 1 o °cを超えたプレキュア一処理であってもプラスチック製液晶表示セルの製 造は可能であるが、 ギャップ幅の精度の確保が難しくなる。
前記プラスチック製液晶表示セル用基板としては、 ポリエステル製、 ポリアリ レート製、 ポリカーボネート製、 ポリエーテルスルフォン製などのプラスチック 製基板が挙げられる。 前記基板には、 酸化インジウムで代表される透明電極、 ポ リイミ ドなどで代表される配向膜、 無機質イオン遮蔽膜などが形成される。 なお、 本実施の形態では、 プラスチック製基板について述べているが、 ガラス製基板に も本発明は適用できる。
工程 a 3における前記熱締処理の加熱硬化条件としては、 6 0 °C〜1 0 0 °Cで 0 . 5〜 2 4時間、 好ましくは 7 0 °C ~ 9 0 °Cで:!〜 1 0時間である。
また熱圧締処理による基板の接着工程を、 枚葉熱プレス方式でおこなう場合は、 仮接着性を確保できる条件、 好ましくは 1 0 0 °C〜 1 1 0。 で 3〜 2 0分程度の 条件で一対の基板を接合後、 圧を開放して前記一対の基板を取り出し、 同温度の 加熱オープン中で完全硬化養生させるなどの 2段または複数の加熱工程や養生ェ 程を経て製造されてもよい。
ここで、 枚葉熱プレス方式とは、 基板を一セット枚ずつ接合する熱プレス方式 を意味し、 真空下で熱を加えて接合する枚葉熱プレス方式を真空枚葉熱プレス方 式、 大気圧下で熱板を介して強制的に加熱圧締接着する方式を剛体枚葉熱プレス 方式という。 いずれの枚葉熱プレス方式を使用してもよい。 また、 前記枚葉熱プ レス方式ではなく、 多段熱プレス方式であってもよい。
前記光硬化型液晶シール剤組成物としては、 多価 (メタ) アタ リ レート化合物 と光開始剤とを含有してなる組成物、 エポキシ樹脂と紫外線光開始剤とを含有し てなる組成物、 ォキセタン化合物と光開始剤とを含有してなる組成物、 エポキシ 樹脂とォキセタン化合物と光開始剤とを含有してなる組成物などが挙げられる。 前記 2液型液晶シール剤組成物としては、 エポキシ樹脂とポリアミ ド硬化剤か らなる 2液型液晶シール剤組成物、 エポキシ樹脂とポリチオール硬化剤からなる 本発明の 2液型プラスチック製液晶表示セル用シール剤組成物、 ヱポキシ樹脂と ポリアミン硬化剤とからなる 2液型液晶シール剤組成物などが挙げられる。 液晶としては、 ネマチック液晶、 強誘電液晶などが挙げられる。
本発明で用いられる液晶表示セルとしては、 ェム シャッ ト (M Schadt) と ダプリュ ヘルフリ ツヒ ( W Helfric W) らが提唱した T N型 (Twisted Nematic) の液晶表示セル、 S T N型 (Super Twisted Nematic) の液晶表示セ ル、 クラーク (N A Clark) とラガウエル (S T Lagerwall) により提唱された 強誘電型液晶表示セル、 薄膜トランジスター (T F T ) を各画素に設けた液晶表 示セルなどが挙げられる。
【実施例】
以下、 実施例により本発明を詳細に説明するが、 これに限定されたものではな い。 実施例中に記載の%、 部とはそれぞれ質量%、 質量部を意味する。
また実施例中で用いた原材料種 (略記号) は以下の通りである。
' [試験方法]
以下に、 プラスチック製液晶表示セル用シール剤組成物おょぴその硬化体につ いて行う評価試験の方法を述べる。
(貯蔵安定性試験)
プラスチック製液晶表示セル用シール剤組成物 1 0 0部をポリエチレン製容器 に入れ密封した時の、 E型粘度計で測定した、 2 0 °C E型粘度値を 1 0 0とし、 一 1 0 °Cで 3 0日経過後の E型粘度値を測定し、 その変化率で表す。 変化率の評 価は以下のように示す。
〇: 1 0 %未満の変化率で、 貯蔵安定性が良好
Δ: 1 0〜5 0 %の変化率で、 貯蔵安定性がやや問題 X : 5 0 %を超える変化率で、 貯蔵安定性が不良
(塗付作業性試験)
氷点以下でポリエチレン製容器に密封保存されたプラスチック製液晶表示セル 用シール剤組成物を取り出し、 2時間かけて室温 2 5 °Cに戻した。 その時点の 2 5°CE型粘度値を 1 0 0とし、 2 5°Cで 1 2時間放置後の E型粘度値を測定し、 その変化率で表す。 変化率の評価は以下のように示す。
〇: 1 5 %未満の変化率であり、 塗付作業性は良好
厶: 1 5〜5 0 %の変化率であり、 塗付作業性にやや欠ける
X : 5 0 %を超える変化率であり、 塗付作業適性に著しく欠ける
( Bステージ化組成物の 8 0¾〜1 2 0°じ£型粘度特性)
プラスチック製液晶表示セル用シール剤組成物を、 平滑な離型フィルム上に 5 0 μ mの厚みで塗布し、 7 5°Cで 2 0分熱処理させて得られた Bステージ化組成 物の 0. 6部をすばやく採取した。 この Bステージ化組成物を、 8 0°Cから 1 2 0°Cまで、 2分につき 1 °Cの等速昇温させ、 E型粘度計にて温度一粘度曲線を求 めた。 その温度ー粘库曲線より、 8 0°C〜1 2 0°Cの範囲内の最低粘度 (以下、 ボトム粘度ともいう) を読み取った。 ボトム粘度の評価は以下のように示す。
X (—) : ボトム粘度が 5 P a · s未満である場合
◎:ボトム粘度が 5〜 5 0 0 P a · sである場合
〇:ボトム粘度が 5 0 1〜5 0 0 0 P a · sである塲合
X (-) :ボトム粘度が 5 0 0 0 P a · s.を越える場合
(透湿度特性)
プラスチック製液晶表示セル用シール剤組成物を、 平滑な離型フィルム上に 1 0 0 μ mの厚みでで塗布し、 Ί 5 で 20分熱処理後、 さらに 9 0 °Cで 5時間熱 硬化させて得られた硬化膜を切り出した。 その硬化膜に^して、 日本工業規格 ( J I S) の防湿包装材料の透湿度試験方法 (力ップ法) J I S— Z— 0 2 0 8に 準じた透湿度試験を実施し、 6 0 °C、 24時間で透湿した膜厚 1 00 μ m当たり の水蒸気量 (単位; gZm2 · 2 4 h r s ) を求めた。 透湿度特性の評価は以下 のように示す。 〇: 60°C透湿度特性が 200 g/m2 · 24 h r s未満で、 プラスチック製 セル用シール剤組成物が低透湿性に優れる。
△: 60°C透湿度特性が 20 1〜 2 50 g/m2 · 24 h r sで、 プラスチッ ク製液晶表示セル用シール剤組成物が低透湿性にやや欠ける
X : 60°C透湿度特性が 25 1 g/m2 · 24 h r sを超え、 プ スチック製 液晶表示セル用シール剤組成物が低透湿性に著しく欠ける。
(硬化体の熱変形温度)
プラスチック製液晶表示セル用シール剤組成物を、 平滑な離型フィルム上に 1 O O /xmの厚みで塗布し、 75 °Cで 20分熱処理後、 さらに 90 °Cで 5時間熱硬 化させて得られた硬化膜の小片 (1 5mm角) を切り出した。 この硬化膜を、 一 3 0°C力 ら 1 50。Cまで毎分 5°Cの昇温下で TMA (Termomechanical analysis ) 測定した。 歪み量変曲点をその硬化体の熱変形温度 (T g) とした。
(硬化体の弾性率)
プラスチック製液晶表示セル用シール剤組成物を、 平滑な離型フィルム上に 1 00 /imの厚みで塗布し、 75 DCで 20分熱処理後、 さらに 90 °Cで 5時間熱硬 化させて得られた硬化膜を 3 mmx 50 Ommに切り出した。 この硬化膜を、 バ イブロン式粘弾性測定機にて 20°C〜80°C環境下の各貯蔵弾性率を測定した。
(硬化体の吸水率)
プラスチック製液晶表示セル用シール剤組成物を、 平滑な離型フィルム上に 1 00 / mの厚みで塗布し、 75 °Cで 20分熱処理後、 さらに 90 °Cで 5時間熱硬 化させて得られた硬化膜を 1 0 Omm角に切り出した。 この硬化膜を煮沸水に 3 0分浸漬し、 その質量増加量を求め、 その値を元の質量で割った値に 1 00を乗 じた値を吸水率とした。
すなわち、
吸水率 (%) = (煮沸水浸漬後の質量増加量ノ試験前の質量) X 1 00 で示す。
(遊離イオン濃度)
プラスチック製液晶表示セル用シール剤組成物 1 0質量部とその 1 0倍質量の 純水とを 6 0 °Cで 3 0分攪拌混和抽出させてなる水溶液のイオン伝導度を測定し た。 ィオン伝導度の評価は以下のように示す。
〇:抽出水のイオン伝導度が 1 ni S Zm未満
△:抽出水のイオン伝導度が 1〜2 m S /m
X :抽出水のイオン伝導度が 2 m S /mを超える
(接合シール試験)
各例に示された条件下の枚葉熱プレス方式による硬化工程を経て製造されたプ ラスチック製液晶表示セルを、 拡大鏡を介して肉眼で観察し、 シールラインの乱 れの有無、 および貫通泡の発生によるシール不良箇所の有無を測定した。
( Tピール引き剥がし試験)
幅 2 5 m m長さ 1 0 O m mにカツトしたポリェ一テルスルフォン製プラスチッ ク基板 (住友べークセイト製) の液晶と接触する面同士をプラスチック製液晶表 示セル用シール剤組成物でギヤップ幅 1 0 μで接合した試験片を用い、 ィンテス コ試験機にて、 2 0 °C Tピール強度測定を実施した。 その結果の評価は以下のよ うに示す。
◎:透明電極層およびその下地有機層で破壌が認められ、 接着性に優れる 〇 : プラスチック製液晶表示セル用シール剤組成物の凝集破壌を一部伴い、 耐 熱接着性は良好
X :界面剥離を伴う破壊が認められ、 耐熱接着力に問題がある
(プラスチック製液晶表示セル用シール剤組成物の非滲みだし性)
各例に示された条件下において、 多段熱プレス方式または枚葉熱プレス方式に よって一対の基板を接着した後、 前記一対の基板およびシール剤組成物で囲まれ た空間に、 液晶を注入する注入孔から、 液晶のしきい値電圧が 1 . 3 8ボルト, 液晶の Δ εが 1 2 . 4である R C 4 0 8 7 [チッソ (株) ] 液晶材料を真空法で 注入した。 次いで、 その注入孔をストラタ トボンド E S _ 3 0 2 [三井化学 (株 ) 製] で封孔した。 前記一対の基板のフロント側基板には偏向板を、 リャ側基板 には反射板つき偏向板を取り付けた。 その後、 該ユニットに駆動回路などを実装 させて液晶表示セルを作製した。 その液晶表示セルのシール剤近傍の液晶表示機 能が、 駆動初期から正常に機能するか否かで非滲み出し性の評価判定を行った。 その結果の評価は以下のように示す。
〇:シール際まで液晶表示機能が発揮できており、 非滲み出し性が十分確保さ れている
△:シール際の近傍の 1 mm以内が正常に液晶表示されず、 やや非滲み出し性 に欠ける
X :シール際の近傍 1. 1 mmを超えており、 非滲み出し性に著しく欠ける (シール機能耐久性試験)
各例に示された条件下において、 多段熱プレス方式または枚葉熱プレス方式 によって一対の基板を接着した後、 前記一対の基板およびシール剤組成物で囲ま れた空間に液晶を注入する注入孔から液晶のしきい値電圧が 1. 3 8ボルト, 液 晶の Δ εが 1 2. 4である RC 408 7 [チッソ (株) ] 液晶材料を真空法で注 入した。 次いで、 その注入孔をストラク トボンド E S— 3 0 2 [三井化学 (株) 製] で封孔した。 該ユニットを、 8 5°CZRH 95 %の雰囲気下で、 それぞれ 2 50時間、 500時間、 1, 000時間放置後に取り出た。 前記一対の基板のフ ロント側基板には偏向板を、 リャ側基板には反射板つき偏向板をそれぞれ取り付 けた。 その後、 該ユニットに駆動回路などを実装させてプラスチック製液晶表示 セルを作製した。 このプラスチック製液晶表示セルの表示機能の変化を観察した c 測定環境下の測定条件として、 60°C、 90%湿度の環境下に放置した。 その結 果の評価は以下のように示す。
◎ : 500時間経過後において、 表示ムラの発生が見られない
〇: 500時間経過後において、 表示ムラがセル周辺部のシール際からの距離 で 500 μπι以内に僅かに見られる
X : 500時間経過後において、 表示ムラがセル周辺部のシール際からの距離 で 500 以上に及ぴ著しく表示機能の低下が発生している
[使用原材料]
1. エポキシ樹脂 (1)
単官能性エポキシ樹脂としては、 2—ェチルへキシルモノグリシジルエーテル (略記号; 2 EHMG) 、 t _ブチルフエノールモノグリシジルエーテル (略記 号; t— B PMG) を用いた。
2官能性脂肪族エポキシ樹脂としては、 1, 6—へキサンジオールジグリシジ ルエーテル (略記号 1 , 6— HGDE) 、 2官能性ビスフヱノール F型エポキシ 樹脂である大日本インキ製品 '商品名 「ェピクロン 83 0 S」 (平均分子量約 3 50〜3 70) 、 ビスフエノール Aのプロピレンオキサイ ド付加型液状エポキシ 樹脂として旭電化製品 '商品名 「アデ力 E P 4000 S」 (平均分子量 530〜 5 50) 、 同 「アデ力 E P 40 23 S」 (平均分子量 800〜 900)を用いた。 また、 多官能性ノボラックエポキシ樹脂としては、 東都化成製品 '商品名 「ェ ポトート YDCN— 702」 (G P Cによるポリスチレン換算質量平均分子量約 1 000) を用いた。
また、 脂肪族多官能性エポキシ樹脂としては、 エポキシ当量が' 3 1 0のポリオ キシプロピレングリコールジグリシジルエーテル、 エポキシ当量が 55 7のポリ ォキシテトラメチレンダリコールジグリシジルェ一テル、 エポキシ当量が 1 6 5 の 1, 6一へキサンジオールジグリシジノレエーテノレを用いた。
2. 硬化剤 (2)
4官能性メルカプト化合物としては、 1 0倍質量の 60°C純水による抽出水の イオン伝導度が 0. 5 mS/mのペンタエリスリ トールテトラキス (3—メルカ ブトプロピオネート) を用いた。
また、 変性ポリメルカプト誘導体としては、 1 0倍質量の 60°C純水による抽 出水のイオン伝導度が 0. 5 mS/mのペンタエリスリ トールテトラキス (3— メルカプトプロピオネート) の活性水素 1当量に対し、 ノルボルナンジイソシァ ナートの活性イソシアナート基 0. 3当量の比率で混合し、 触媒量のトリエタノ ールァミンの存在下で、 I R (赤外吸収スペク トル分析) でイソシアナ一ト基固 有の吸収が認められなくなるまで反応を進め、 誘導された反応性生成物を用いた
3. 硬化促進剤 (3)
1, 1ージメチル尿素誘導体として、 トリレンジイソシアナートのジメチルァ ミン付加体 (2, 4一 [ビス (1, 1ージメチル尿素) ] トルエン) 、 DBU塩 として DBU—ォクチル酸塩、 トリスジメチルァモノメチルフエノール一ォクチ ル酸塩をそれぞれ用いた。 なお、 前記硬化促進剤が固体である場合は、 必要に応 じて、 ジェットミルで最大 3 μ m以下に粉砕したものを用いた。
4. 無機質充填剤 (4)
無定形シリカとして、 信越化学製品 ·商品名 「MU— 1 20」 (電子顕微鏡観 察法で求めた一次平均粒子径 0. 07 μπι) を、 球状シリカとして、 龍森社製 . 商品名 「アドマファイン S Ο _ Ε 1」 の y—グリシドキシプロビルトリメ トキシ シランの 6質量%乾式処理フィラー (以下、 S O— E 1— 6という) の平均粒子 径が 1 μ m以下の硫酸バリウムを、 無定形アルミナとして、 d 5°が 0. 2 / m の高純度アルミナ紛 (輸入品) をそれぞれ用いた。
5. シラン力ップリング剤 (5)
γ—グリシドキシプロビルトリメ トキシシラン (信越化学製品 ·商品名 ΚΒΜ 403) を用いた。
6. ゴム状ポリマー微粒子 (6)
以下に示す合成例 1または合成例 2を経て調製した組成物のいずれかを用いた c (合成例 1 )
ゴム状ポリマー微粒子 (微架橋型ァクリルゴム微粒子; S 1と略称) 含有ェポキ シ樹脂組成物 (a) の合成
攪拌機、 気体導入管、 温度計、 冷却管を備えた 2000m lの四つ口フラスコ 中に、 2官能性エポキシ樹脂としてェピクロン 830 Sの 500 gとアデ力 E P 4000 Sの 1 00 g、 メタアクリル酸 1 0 g、 トリエタノールァミン 0. 1 g、 トルエン 50 gを加え、 空気を導入しながら 1 1 0°Cで 5時間反応させ二重結合 を導入した。
次に、 プチルァクリレート 3 50 g、 グリシジルメタクリレート 20 g、 ジビ ニルベンゼン 1 g、 ァゾビスジメチルパレロニトリル 1 g、 およびァゾビスイソ プチ口-トリル 2 gを加え反応系内に窒素を導入しながら、 70°Cで 3時間反応 させ、 さらに 9 0°Cで 1時間反応させた。
次に、 1 1 0°Cの減圧下で脱トルエンを行い、 エポキシ樹脂組成物 (a) を得 た。
そのエポキシ樹脂組成物 (a) の一部を、 光硬化触媒の存在化に低温で速硬化 させた。 そのエポキシ樹脂組成物 (a) の硬化体の破断面モルフォロジ一を電子 顕微鏡で観察して分散ゴム粒子径を測定すると、 平均粒子径が 0. 5 / mの微架 橋型アク リルゴム微粒子 (S 1) が均一に分散していた。 なお、 モノマー仕込量 と残存モノマーとから算出される微架橋型アク リルゴム微粒子 (S 1) 含有量は 3 7. 9質量%と判明した。
また、 このエポキシ樹脂組成物 (a) を TB Aにかけて求めた微架橋型アタリ ルゴム微粒子 (S 1) の軟化点温度は _ 4 2°Cを示した。
(合成例 2 )
ゴム状ポリマー微粒子 (微架橋型ァクリルゴム微粒子; S 2と略称) 含有ェポキ シ榭脂組成物 (b) の合成
攪拌機、 気体導入管、 温度計、 冷却管を備えた 2000m 1の四つ口フラスコ 中に、 2官能性エポキシ樹脂としてアデ力 E P 40 23 Sの 604 g、 メタァク リル酸 6 g、 トリエタノールァミン 0. 2 g、 トルエン 50 gを加え、 空気を導 入しながら 1 1 0°Cで 5時間反応させ二重結合を導入した。
次に、 2 _ェチルへキシルアタ リ レート 3 50 g、 グリシジルメタタ リ レート 20 g、 1, 6—へキサンジォーノレジメタクリレート 1 g、 ァゾビスジメチルバ レロニトリル 1 g、 およぴァゾビスィソプチロニトリル 2 gを加え反応系内に窒 素を導入しながら、 70°Cで 3時間反応させ、 さらに 90°(Dで 1時間反応させた c 次に、 1 1 0°Cの減圧下で脱トルエンを行い、 エポキシ樹脂組成物 (b) を得 た。
エポキシ樹脂組成物 (b) の一部を、 光硬化触媒の存在化に低温で速硬化させ た。 そのエポキシ樹脂組成物 (b) の硬化体の破断面モルフォロジ一を電子顕微 鏡で観察して分散ゴム粒子径を測定すると、 平均粒子径 1. 5 imの微架橋型ァ クリルゴム微粒子 (S 2) が均一に分散していた。 なお、 モノマー仕込量と残存 モノマ一とから算出される微架橋型アクリルゴム微粒子 (S 2) 含有量は 3 7. 9質量%と判明した。 また、 エポキシ樹脂組成物 (b) を TB Aにかけて求めた微架橋型アクリルゴ ム微粒子 (S 2) の軟化点温度は一 4 9°Cを示した。
(実施例 1 )
エポキシ樹脂組成物 (a) の 56部、 ェピクロン 83 0 Sの 24部、 微粒子な 硫酸バリゥムの 14. 5部、 MU— 1 20の 3部、 KBM— 403の 2. 4部、 トリレンジイソシアナートのジメチルァミン付加体の 0 · 0 9部、 DBU—ォク チル酸塩の 0. 0 1部をダルトンミキサーで予備混合した。 次いで、 セラミック 製の 3本ロールで固体原料が 5 μ m以下になるまで混練し、 その該混練物を真空 脱泡処理して、 2液性のプラスチック製液晶表示セル用シール剤組成物 P 1用の 主剤液 (P 1—主剤液) を得た。
一方、 ペンタエリスリ ト一ルテトラキス (3—メルカプトプロピオネート) の 76部と微粒子な硫酸パリゥムの 24部からなる組成物をダルトンミキサーで予 備混合した。 次いで、 セラミック製の 3本ロールで固体原枓が 5 m以下になる まで混練し、 その該混練物を真空脱泡処理して、 2液性のプラスチック製液晶表 示セル用シール剤組成物 P 1用の硬化剤液 (P 1一硬化剤液) を得た。
プラスチック製液晶表示セル用シール剤組成物 P 1は前記 P 1一主剤液の 1 0 部に対し前記 P 1—硬化剤液の 5部の割合で混合した。 プラスチック製液晶表示 セル用シール剤組成物 P 1は 23 °Cで 24時間放置しても系全体の粘度変化はご くわずかの変動が観察されるのみで、 スクリーン印刷作業適性が優れていること が判明した。
プラスチック製液晶表示セル用シール剤組成物 P 1は、 エポキシ樹脂の含有量 が 3 9. 22%、 ゴム状ポリマー微粒子含有量が 1 4. 1 5%、 無機質充填剤含 有量が 1 9. 6 6%、 シランカツプリング剤含有量が 1. 6 %、 硬化剤含有量が 25. 3 %、 硬化促進剤含有量が 0. 0 7。/。であった。
プラスチック製液晶表示セル用シール剤組成物 P 1の貯蔵安定性試験結果、 塗 付作業性試験結果、 Bステージ化後の粘度特性結果、 透湿度特性結果、 熱変形温 度測定結果、 遊離イオン濃度測定結果、 Tピール接着試験結果などはそれぞれ表 1に示した。 プラスチック製液晶表示セル用シール剤組成物 P 1の 1 00部に対し、 太さ 5 / mのガラス短繊維スぺーサ一の 5部を配合し、 十分真空下に混合脱泡して得た 組成物を得た。 この組成物を、 一対の基板の一方基板である、 透明電極と配向膜 処理されたポリエーテルスルフォン製液晶基板 (以下、 I TO基板という) に、 1基板当り 1ィンチサイズの上下左右各 1セルの合計 4セルからなるパターンで、 シール剤が、 幅約 0. 5mm、 厚み約 20〜 22 // mとなるようにスク リーン印 刷した。 その後、 前記 I TO基板を 90°C熱風乾燥機で 1 5分熱処理後に、 前記 一対の基板の他方基板である未処理の I TO基板を乗せ、 位置合わせ後に、 その 3〜5枚葉を一括で、 プレス圧 0. 03Mp a/c m2、 80。Cで 1 0時間の多 段熱プレス方式により加熱硬化 ·接着させた。 その結果、 シール貫通泡の発生に よるシール不良個所やシールラインの乱れは 1サンプルもなく、 所望の液晶表示 用セルが製造できた。
次いで、 得られた液晶表示セルの液晶表示機能の観察結果を合わせて表 1に示 した。 また、 得られた液晶表示セルを用いて行ったシール機能耐久性試験結果は 表 1に示した。
(実施例 2)
変性ポリメルカブト誘導体の 84部と微粒子な硫酸バリウムの 1 6部とからな る硬化剤液組成物をプラスチック製液晶表示セル用シール剤組成物 P 2用の ( P 2 _硬化剤液) とした。
一方、 プラスチック製液晶表示セル用シール剤組成物 P 2として、 エポキシ樹 脂組成物 (b) の 6 9. 5部、 ェピクロン 83 0 Sの 1 6部、 微粒子な硫酸バリ ゥムの 1 0部、 MU— 1 20の 2部、 KBM— 403の 1. 4部、 トリ レンジィ ソシアナートのジメチルァミン付加体の 0. 0 9部、 DBU—ォクチル酸塩の 0. 02部とをダルトンミキサーで予備混合した。
次いで、 セラミック製の 3本ロールで固体原料が 5 μ m以下になるまで混練し、 その該混練物を真空脱泡処理して、 2液性のプラスチック製液晶表示セル用シー ル剤組成物 P 2用の主剤液 (P 2—主剤液) を得た。 前記 P 2—主剤液の 1 0部 に対し前記 P 2一硬化剤液の 5部の割合で混和させた。 2液性のプラスチック製液晶表示セル用シール剤組成物 P 2は、 2 3°Cで 24 時間放置しても系全体の粘度変化はごくわずかの変動が観察されるのみで、 スク リーン印刷作業適性が優れていることが判明した。
なお、 プラスチック製液晶表示セル用シール剤組成物 P 2の貯蔵安定性試験結 果、 塗付作業性試験結果、 Bステージ化後の粘度特性結果、 透湿度特性結果、 熱 変形温度測定結果、 遊離イオン濃度測定結果、 Tピール接着試験結果などはそれ ぞれ表 1に示した。
プラスチック製液晶表示セル用シール剤組成物 P 2の 1 0 0部に対し、 太さ 5 μ mのガラス短繊維スぺーサ一の 5部を配合し、 十分真空下に混合脱泡して得た 組成物を得た。 この組成物を、 一対の基板の一方基板である I TO基板に、 1基 板当り 1インチサイズの上下左右各 1セルの合計 4セルからなるパターンで、 シ ール剤が、 幅約 0. 5 mm、 厚み約 2 0〜2 2 /i mとなるようにスク リーン印刷 した。 その後、 前記 I TO基板を、 9 0°C熱風乾燥機で 1 5分熱処理後に、 前記 —対の基板の他方基板である未処理の I TO基板を乗せ、 位置合わせ後に、 その 3〜5枚葉を一括で、 プレス圧 0. 0 3Mp a/c m 8 0°Cで 1 0時間の多 段熱プレス方式により加熱硬化 ·接着させた。 その結果、 シール貫通泡の発生に よるシール不良個所やシールラインの乱れは 1サンプルもなく、 所望の液晶表示 用セルが製造できた。
次いで、 得られた液晶表示セルの液晶表示機能の観察結果を合わせて表 1に示 した。 また、 得られた液晶表示セルを用いて行ったシール機能耐久性試験結果は 表 1に示した。
(実施例 3 )
ェピクロン 8 3 0 Sの 2 0部にェポトート YDCN— 7 0 2の 1 1部を溶解さ せた後、 室温下にさらにエポキシ樹脂組成物 (a) の 3 0部、 S O— E 1— 6球 状シリカの 3 0部、 無定形シリカである MU— 1 2 0の 2. 9部、 KBM— 4 0 3の 4部、 およびトリスジメチルァミノメチルフエノールォクチル酸塩の 0. 1 部をダルトンミキサーで予備混合した。
次いで、 セラミック製 3本ロールにて固体原料が 5 μ m以下になるまで混練し、 その該混練物を真空脱泡処理して、 2液性のプラスチック製液晶表示セル用シー ル剤組成物 P 3用の主剤液 (P 3—主剤液) を得た。
一方、 ペンタエリスリ トーレテトラキス (3—メルカプトプロピオネート) の 6 6部、 球状シリカ S O— E 1— 6の 3 0部、 MU— 1 2 0の 4部をダルトンミ キサ一で予備混合した。
次いで、 セラミック製の 3本ロールにて固体原料が 5 μ πι以下になるまで混練 し、 その該混練物を真空脱泡処理して、 2液性のプラスチック製液晶表示セル用 シール剤組成物 Ρ 3用の硬化剤液 (Ρ 3一硬化剤液) を得た。
プラスチック製液晶表示セル用シール剤組成物 Ρ 3は、 前記 Ρ 3—主剤液の 1 0部に対し前記 Ρ 3一硬化剤液の 5部の割合で混合して得た。 プラスチック製液 晶表示セル用シール剤組成物 Ρ 3は 2 3 °Cで 2 4時間放置しても系全体の粘度変 化はごくわずかの変動が観察されるのみで、 スクリーン印刷作業適性が優れてい ることが判明した。
プラスチック製液晶表示セル用シール剤組成物 P 3は、 エポキシ樹脂の含有量 が 3 4 . 3 5 %、 ゴム状ポリマー微粒子含有量が 7 . 5 8 %、 無機質充填剤含有 量が 3 3 . 3 %、 シランカツプリング剤含有量が 2 . 7 %、 硬化剤含有量が 2 2 %、 硬化促進剤含有量が 0… 0 7 %であつた。
プラスチック製液晶表示セル用シール剤組成物 P 3の貯蔵安定性試験結果、 塗 付作業性試験結果、 Bステージ化後の粘度特性結果、 透湿度特性結果、 熱変形温 度測定結果、 遊離イオン濃度測定結果、 Tピール接着試験結果などはそれぞれ表 1に示した。
プラスチック製液晶表示セル用シール剤組成物 P 3の 1 0 0部に対し、 太さ 5 μ mのガラス短繊維スぺーサ一の 5部を配合し、 十分真空下に混合脱泡して組成 物を得た。 この組成物を、 一対の基板の一方基板である I T O基板に、 1基板当 り 1インチサイズの上下左右各 1セルの合計 4セルからなるパターンで、 シール 剤が、 幅約 0 . 5 m m、 厚み約 2 0〜 2 2 mとなるようにスク リーン印刷した c その後、 前記 I T O基板を、 9 0 °C熱風乾燥機で 1 5分熱処理後に、 前記一対の 基板の他方基板である未処理の I T O基板を乗せ、 位置合わせ後に、 その 3〜5 枚葉を一括で、 プレス圧 0. 03Mp aZc m2、 8 0 °Cで 1 0時間の多段熱プ レス方式により加熱硬化 ·接着させた。 その結果、 シール貫通泡の発生によるシ ール不良個所やシールラインの乱れは 1サンプルもなく、 所望の液晶表示用セル が製造できた。
次いで、 得られた液晶表示セルの液晶表示機能の観察結果を合わせて表 1に示 した。 また、 得られた液晶表示セルを用いて行ったシール機能耐久性試験結果は 表 1に示した。
(比較例 1 )
1 0倍量の 60°C純水と混合分離抽出した水溶液のイオン伝導度が 6. 2mS mで、 かつ G P Cによる数平均分子量で約 3 90の加水分解性塩素を高濃度で 含有する液状ビスフエノール A型エポキシ樹脂の 3 0部と、 1 0倍量の 60°C純 水と混合分離抽出した水溶液のィオン伝導度が 3. 7mS/mを示すェポキシ当 量が 260の加水分解塩素を高濃度で含有するポリエチレングリコ一ルジグリシ ジルエーテルの 23. 4部、 微粒子な硫酸バリウムの 4 5部、 コロイダルシリカ 紛であるエア口ジル社製品 「ァエロジル 3 80」 の 3部、 KBM40 3の 2. 5 部、 および DBU—ォクチル酸塩の 0. 1部をダルトンミキサーで予備混合した c 次に、 3本ロールで固体原料が 5 m以下になるまで混練し、 混練物を真空脱 泡処理して、 2液性のプラスチック製液晶表示セル用シール剤組成物 Q 1用の主 剤液 (Q 1一主剤液) を得た。
一方、 3官能性メルカプト化合物として三井化学社製品 「MR— 7 B」 の 6 5 部、 硫酸バリゥムの 3 0部及びァエロジル 3 80の 5部をダルトンミキサーで予 備混合し、 次に 3本ロールで固体原料が 5 μ m以下になるまで混練し、 混練物を 真空脱泡処理して、 2液性のプラスチック製液晶表示セル用シール剤組成物 Q 1 用の硬化剤液 (Q 1—硬化剤液) を得た。
プラスチック製液晶表示セル用シール剤組成物 Q 1は、 前記 Q 1—主剤液の 1 0部に対し前記 Q 1一硬化剤液の 5部の比率で混和して調製した。
プラスチック製液晶表示セル用組成物 Q 1は、 23 °Cで 24時間放置しても系 全体の粘度変化はごくわずかであり、 スク リーン印刷作業適性に優れていた。 . ック製液晶表示セル用シール剤組成物 Q 1は、 エポキシ樹脂の含有量 が 3 2. 94%、 無機質充填剤含有量が 43. 6 7%、 シランカツプリング剤含 有量が 1. 67%、 硬化剤含有量が 2 1. 6 5°/。、 硬化促進剤含有量が 0. 0 7 %であった。
プラスチック製液晶表示セル用シール剤組成物 Q 1の貯蔵安定性試験結果、 塗 付作業性試験結果、 Bステージ化後の粘度特性結果、 透湿度特性結果、 熱変形温 度測定結果、.遊離イオン濃度測定結果、 Tピール接着試験結果などはそれぞれ表 1に示した。
プラスチック製液晶表示セル用シール剤組成物 Q 1の 1 00部に対し、 太さ 5 μ mのガラス短繊維スぺーサ一の 5部を配合し、 真空下に十分混合脱泡処理して 組成物を得た。
この組成物を、 一対の基板の一方基板である I TO基板に、 1基板当たり 1ィ ンチサイズの上下左右各 1セルの合計 4セルからなるパターンで、 シール剤が、 幅約 0. 5 mm、 厚み約 20〜 22 μ mとなるようにスク リーン印刷した。 その 後、 前記 I TO基板を、 70°C熱風乾燥器で 1 5分処理後に、 前記一対の基板の 他方基板である未処理の I TO基板を乗せ、 位置合わせ後に、 プレス圧 0. 03 Mp a/c m2, 80°Cで 1 0時間の多段熱プレス方式により加熱硬化 ·接着さ せた。 その結果、 シール貫通泡の発生によるシール不良個所やシールラインの乱 れは 1サンプルもなく、 所望の液晶表示用セルが製造できることが判明した。 次いで、 得られた液晶表示セルの液晶表示機能の観察結果を合わせて表 1に示 した。 また、 得られた液晶表示セルを用いて行ったシール機能耐久性試験結果は 表 1に示した。
(比較例 2)
4官能性ァミノエポキシ樹脂として東都化成製品 「ェポトート YH 4 34」 の 23. 5部をメチルカルビトール (別名 ;ジエチレングリコールモノ.メチルエー テル) の 4. 5部とを混和させた液 2 8部と、 ェビクロン 83 0 Sの 5. 8部と、 1 0倍量の純水と混合分離抽出した水溶液のイオン伝導度が 0. SmSZmを示 すミレックス 3 Lの 2 9. 3部をメチルカルビトールの 1 1部に溶解して得た硬 化剤溶液 40. 3部と、 平均粒子径 d 5 °が 0. 0 2 //mの無定形アルミナの 0. 5部、 無定形シリ力 MU— 1 20の 1. 1 9部、 ァミキユア一 P N— 23の 3. 2部、 DBN—ォクチル酸塩の 0. 0 1部、 KBM40 3の 1部をダメ トンミキ サ一にて予備混合した。
次に、 3本ロールで固体原料が 5 μ m以下になるまで混練し、 混練物を真空脱 泡処理して、 1液性溶剤型でありプラスチック製液晶表示セル用シール剤組成物 Q 2を得た。
そのプラスチック製液晶表示セル用シール剤組成物 Q 2は、 エポキシ樹脂の含 有量が 29. 3 %、 無機質充填剤含有量が 21. 6 9%、 シランカツ.プリング剤 含有量が 1 %、 硬化剤含有量が 3 2. 5 %、 硬化促進剤含有量が 0. 0 1 %、 溶 剤含有量 1 5. 5 %であつた。
プラスチック製液晶表示セル用シール剤組成物 Q 2の貯蔵安定性試験結果、 塗 付作業性試験結果、 Bステージ化後の粘度特性結果、 透湿度特性結果、 熱変形温 度測定結果、 遊離イオン濃度測定結果、 Tピール接着試験結果などはそれぞれ表 1に示した。
プラスチック製液晶表示セル用シール剤組成物 Q 2の 1 00部に対し、 太さ 5 μ mのガラス短繊維スぺーサ一の 5部を配合し、 真空下に十分混合脱泡処理して 組成物を得た。
この組成物をディスペンサーシリンジに詰め、 一対の基板の一方基板である I TO基板に、 1基板当たり 1インチサイズの上下左右各 1セルの合計 4セルから なるパターンで、 シール剤が、 幅約 0. 5mm、 厚み約 20〜 22 μ mとなるよ うにディスペンス塗布した。 その後、 前記 I TO基板を、 60°C熱風乾燥器で 3 0分処理後に、 前記一対の基板の他方基板である未処理の I TO基板を乗せ、 位 置合わせ後に、 プレス圧 0. 0 3Mp a/c m2、 70。Cから 1 20 °Cまで 1 0 分で昇温させ、 トータル 20分熱プレス板で仮接着させて後、 引き続き、 1 20 °C加熱ォープン中に 9時間投入して本硬化させる工程を経て、 液晶表示セルを製 造した。 その結果、 シール貫通泡の発生は、 1 0の液晶表示セル中 1〜 5の液晶 表示セルで認められた。 残りの液晶表示セルは、 シールラインの乱れは認められ るもののなんとか液晶表示セルとしての機能は保持できる程度にシール性が確保 されていた。 しかし、 シール剤硬化体の弾性率が高すぎることから、 得られたセ ルを 1枚づっ取り上げる際の基板変形時の接着追従性が低いことによる、 I T O 界面からの剥離現象が多く見られた。 Tピール応力として 5 0 g程度の弱い応力 を加えると容易に前記現象が多発することがわかった。
すなわち、 前記の現象が観察されるということは、 得られるプラスチック性液 晶表示セルの切断、 洗浄、 液晶注入作業、 搬送、 封入作業おょぴアッセンブリー 処理の工程に際し、 重大な支障をきたすことが容易に推察された。
【表 1】
Figure imgf000060_0001
実施例 1〜実施例 3で明らかな様に、 本発明のプラスチック製液晶表示セル用 シール剤組成物で製造された液晶表示セルは、 そのプラスチック製液晶表示セル 用シール剤組成物自体の Bステージ化組成物の 5 0 °C〜 1 0 0 °C E型粘度特性で 5〜5 0 0 0 P a · sにあること、 そのプラスチック製液晶表示セル用シール剤 組成物自体の硬化体の 6 0 °C透湿度が、 2 0 0 g /m2 · 2 4 h r s未満にある こと、 熱変形温度が 8 5 °C未満にあること、 硬化体の弾性率が 0 . 5 X 1 0 4 P a〜l X 1 0 6 P aの範囲にあること、 1 0倍質量の 6 0。C純水と混合抽出させ て得られる水溶液のイオン伝導度が 1 m S /m以下にあることなどの機能を同時 に併せ持つていた。 その結果、 得られる液晶表示セルのシール機能耐久性が 1 0 0 0時間を越えた。
—方、 比較例 1では、 プラスチック製液晶表示セル用シール剤組成物の遊離ィ オン量が 2 m S Zm以上であり、 硬化体の吸水率が著しく高く、 湿潤時に膨潤し て表示品位を著しく損った。 また、 得られた液晶表示セルのシール機能耐久性試 験の結果で 2 5 0時間経過時点で表示機能の安定保持は困難であり、 液晶表示セ ルの寿命は短命であった。
比較例 2では、 硬化体の弾性率が 2 X 1 06 P a以上と硬質であるため、 プラ スチック基板に対する接着追従性が欠如する結果として、 プラスチック製液晶表 示セルを安定的に製造することが困難であった。
すなわち、 本発明のプラスチック製液晶表示セル用シール剤組成物を用いて製 造されたプラスチック製液晶表示セルは、 高温多湿環境下で長時間表示安定性が 確保できることがわかる。
本発明は、 その精神または主要な特徴から逸脱することなく、 他のいろいろな 形で実施することができる。 したがって前述の実施形態は、 あらゆる点で単なる 例示に過ぎず、 本発明の範囲は、 請求の範囲に示すものであって、 明細書本文に はなんら拘束されない。
さらに、 請求の範囲の均等範囲に属する変形や変更は、 すべて本 明の範囲内 のものである。
【産業上の利用可能性】
以上より本発明によれば、
ィ . 組成物の貯蔵安定性ならびに塗布作業性が良好で、 口. プレキュア一後の仮接着性が高く、
ノ、. 多段熱プレスや枚葉プレス加熱接着方式に適合すると共に、 非滲み出し 性、 非貫通泡性、 シールラインの直線性、 正確なギャップ幅制御性が優れ、 二. 組成物から移行する電気伝導性ィオンが低く抑えられており、
ホ. その硬化体は低弾性でフィルム接着追従性に富み、
へ. その硬化体は低吸水性に富み、
ト. その硬化体は 6 0 °C低透湿性に優れている。
チ. よって、 シール剤として高温時の接着耐久性を有し、 本発明のプラスチッ ク製液晶表示セル用シール剤組成物を用いて製造されたプラスチック製液晶表示 セルは、 高温多湿環境卞で長時間、 高い表示安定性を有する。

Claims

請 求 の 範 囲
1. エポキシ樹脂組成物であって、
( I ) 該組成物と、 該組成物の 1 0倍質量の 40 °C~ 80 °Cの純水とを混和さ せて得られる水溶液のイオン伝導度が 1 mS/m以下であり、
該組成物の硬化体が、
( I I ) 該組成物の厚み 1 00 μ mの硬化膜を通過する 60°C透湿度が 200 g /m2 · 24 h r s未満であり、
( I I I ) 該組成物硬化体の熱変形温度 (T g) が 0°C〜8 5°Cの範囲にあり
( I V) 該組成物硬化体の室温下の貯蔵弾性率が 0. 5 X 1 04P a〜l X l 06 P aの範囲にあることを特徴とするプラスチック製液晶表示セル用シール剤 組成物。
2. 前記エポキシ樹脂組成物が、
(V) 50 //m厚みに塗布し、 50°C〜 8 5°Cで 20分熱処理した後め E型粘 度が、 50 °C〜 1 00。Cにおいて、 5〜 5000 P a · sであることを特徴とす る請求項 1記載のプラスチック製液晶表示セル用シール剤組成物。
3. 下記 (1) および (3) 〜 (6) を含む主剤液と、 下記 (2A) 、 または 下記 (2A) と (3) との混合物を含む硬化剤液との 2液型エポキシ樹脂組成物 であって、
前記主剤液と前記硬化剤液の 2液混合物が、 以下の (1) 〜 (6) を含むこと を特徴とするプラスチック製液晶表示セル用シール剤組成物。
(1) 一分子中にエポキシ基を質量平均 1 · 7個〜 6個持ち、 かつ 1 0倍質量 の 40°C〜80°Cの純水と接触混合して抽出分離させた水溶液のイオン伝導度が 2 mS/m以下である液状エポキシ樹脂 1 5〜84質量%
(2 A) 1 0倍質量の 40°C〜80°Cの純水と接触混合して抽出分離させた水 溶液のイオン伝導度が 0. SmSZin以下である、 (2A— 1) 4官能性メルカ ブト化合物、 または (2A— 2) 変性ポリメルカプト誘導体から選ばれた 1種ま たは 2種以上の混合物を含む硬化剤 1 0〜50質量% ( 3 ) 硬化促進剤 0. 0 1〜: 1 5質量%
( 4 ) 無機質充填剤 5〜 50質量%
(5) シランカップリング剤 0. 1〜5質量%
(6) 0°C以下の軟化点温度を持ち、 その一次粒子の平均粒子径が 0. 0 1〜 5 μ mであるゴム状ポリマー微粒子 1〜 25質量0 /0
4. 前記 (2A— 1 ) 4官能性メルカプト化合物が、 ペンタエリスリ トールテ トラキス (3—メルカプトプロピオネート) であり、 かつ前記 (2A— 2) 変性 ポリメルカプト誘導体が、 ペンタエリスリ トールテトラキス (3—メルカプトプ 口ピオネート) の活性水素 1当量当たりジィソシアナ一ト化合物および/または そのイソシアナートプレポリマ一の活性イソシアナート基の 0. 0 1〜0. 3当 量を反応させて得られる変性ポリメルカプト誘導体であることを特徴とする請求 項 3記載のプラスチック製液晶表示セル用シール剤組成物。
5. 下記 (1 ) 〜 (6) を含む 1液型エポキシ樹脂組成物であることを特徴と するプラスチック製液晶表示セル用シール剤組成物。 .
(1) 一分子中にエポキシ基を質量平均 1. 7個〜 6個持ち、 かつ 1 0倍質量 の 40°C〜80°Cの純水と接触混合して抽出分離させた水溶液のイオン伝導度が SmSZm以下であるエポキシ樹脂 1 5〜84質量%
(2 B) 1 0倍質量の 40°C〜80°Cの純水と接触混合して抽出分離させた水 溶液のイオン伝導度が 0. 6mS,m以下である、 ( 2 B— 1 ) マイクロカプセ ル化されたイミダゾール化合物、 または (2 B— 2) 脂環式ジァミンのメチルメ タクリレート付加体から選ばれた 1種または 2種以上の混合物を含む硬化剤 1 0〜 50質量%
( 3 ) 硬化促進剤 0. 0 1〜: 1 5質量%
(4) 無機質充填剤 5〜50質量%
(5) シランカツプリング剤 0. :!〜 5質量0 /0
(6) 0°C以下の軟化点温度を持ち、 その一次粒子の平均粒子径が 0. 0 1〜 5 μπιであるゴム状ポリマー微粒子 1〜25質量%
6. 前記プラスチック製液晶表示セル用シール剤組成物が、 ( I ) 該組成物と、 該組成物の 1 0倍質量の 40 °C〜 80 °Cの純水とを混和さ せて得られる水溶液のイオン伝導度が 1 mSZtti以下であり、
該組成物の硬化体が、
(I I ) 該組成物の厚み 1 00 μ mの硬化膜を通過する 60°C透湿度が 200 g/m2 · 24 h r s未満であり、
( I I I ) 該組成物硬化体の熱変形温度 (T g') が 0°C〜8 5°Cの範囲にあり
( I V) 該組成物硬化体の室温下の貯蔵弾性率が 0. 5 X 1 04P a〜l X l 06 P aの範囲にあることを特徴とする請求項 3〜 5のいずれかに記載のプラス チック製液晶表示セル用シール剤組成物。 .
7. 前記プラスチック製液晶表示セノレ用シール剤組成物が、 '
(V) 50 /zm厚みに塗布し、 50°C〜8 5°Cで 20分熱処理した後の E型粘 度が、 50°C〜 : 1 00°Cにおいて、 5〜 5000 P a . sであることを特徴とす る請求項 3〜 5記載のいずれかに記載のプラスチック製液晶表示セル用シール剤 組成物。
8. 前記 (1) エポキシ樹脂が、 (1— 1 ) 脂肪族および Zまたは脂環式ェポ キシ樹脂と (1一 2) 芳香族エポキシ樹脂との混合組成物であり、 前記 (1一 1 ) 脂肪族および/または脂環式エポキシ樹脂が、 高級アルコールモノグリシジル エーテル、 ポリオキシアルキレングリ コールジグリシジルエーテル、 1, 6 _へ キサンジオールジグリシジルエーテ/レ、 ネオペンチノレグリコールジグリシジ /レエ 一テル、 およぴグリセリントリグリシジルエーテルから選ばれた 1種または 2種 以上の混合物であり、 かつ前記 (1— 2) 芳香族エポキシ樹脂が、 ビスフエノー ル A型エポキシ樹脂またはそのアルキレンォキサイ ド付加型エポキシ樹脂、 ビス フエノール F型ェポキシ樹脂またはそのアルキレンォキサイ ド付加型エポキシ樹 脂、 ビスフエノール S型エポキシ樹脂、 およびビスフエノール AD型エポキシ樹 脂の群から選ばれる少なく とも 1種の樹脂、 または 2種以上の混合物であること を特徴とする請求項 3〜 7のいずれかに記載の液晶表示セル用シール剤組成物。
9. 前記 (3) 硬化促進剤が、 アルキル尿素誘導体、 トリスジメチルアミノメ チルフエノール塩、 および 1, 8—ジァザビシクロ (5 , 4, 0 ) ゥンデセン一 7塩から選ばれる少なくとも 1種であることを特徴とする請求項 3〜 8のいずれ かに記載の液晶表示セル用シール剤組成物。
10. 前記アルキル尿素誘導体が、 3 _ ( p—クロロフヱニル) ー1, 1—ジメ チル尿素、 3— ( o , p—ジクロロフエニル) 一 1, 1ージメチル尿素、 2, 4 一 [ビス ( 1, 1—ジメチル尿素) ] トルエン、 および 2 , 6 - [ビス (1, 1 ージメチル尿素) ] トルエンから選ばれる少なくとも 1種であることを特徴とす る請求項 9記載の液晶表示セル用シール剤組成物。
11. 前記 (6 ) ゴム状ポリマー微粒子が、 0 . 1〜1 の一次粒子径を持ち 、 かつ架橋性ゴム粒子であることを特徴とする請求項 3〜 1 0めいずれかに記載 のプラスチック製液晶表示セル用シール剤組成物。
12. 前記 (4 ) 無機質充填剤の少なくとも一部が、 (1 ) エポキシ樹脂おょぴ /または (5 ) シランカップリング剤とのグラフト体であり、 そのグラフト体の 繰り返し溶剤洗浄法で求められ質量増加率で表されるグラフト率が、 (4 ) 無機 質充填剤の 1 0 0質量部当たり、 (1 ) エポキシ樹脂と (5 ) シランカップリン グ剤の総和で 1〜5 0質量部であることを特徴とする請求項 3〜1 1のいずれか に記載のプラスチック製液晶表示セル用シール剤組成物。
13. 一対のプラスチック製液晶表示セル用基板のいずれか一方基板に、 請求項 1〜 1 2のいずれかに記載のプラスチック製液晶表示セル用シール剤組成物を塗 布する塗布工程と、
前記一方基板と他方基板との位置合わせを行い、 一対のプラスチック製液晶表 示セル用基板の貼り合わせを行う貼り合わせ工程と、
前記貼り合わせ工程で貼り合わされた一対の基板を、 6 0 °C〜1 0 0 °Cで熱圧 締処理し、 前記プラスチック製液晶表示セル用シール剤組成物を硬化させるシー ル剤組成物硬化工程と、
前記一対のプラスチック製液晶表示セル用基板とそれらの間のプラスチック製 液晶表示セル用シール剤組成物とで囲まれた空間に液晶を注入する液晶注入工程 とを含むことを特徴とするプラスチック製液晶表示セルの製造方法。
14. 請求項 1 3に記載のプラスチック製液晶表示セルの製造方法によって得ら れたことを特徴とするプラスチック製液晶表示セル。
PCT/JP2001/005330 2000-06-21 2001-06-21 Materiau de scellement pour cellules d'affichage a cristaux liquides plastiques WO2001098411A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP01941166A EP1293536A4 (en) 2000-06-21 2001-06-21 SEALING MATERIAL FOR PLASTIC FLUID CRYSTAL DISPLAY DEVICES
JP2002504365A JP4358505B2 (ja) 2000-06-21 2001-06-21 プラスチック製液晶表示セル用シール剤組成物
US10/069,048 US6913798B2 (en) 2000-06-21 2001-06-21 Sealing material for plastic liquid crystal display cells including two-component epoxy resin composition
US11/137,401 US7541075B2 (en) 2000-06-21 2005-05-26 Sealant material for plastic liquid crystal display cells including one component epoxy resin composition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2000-185871 2000-06-21
JP2000185871 2000-06-21

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US10069048 A-371-Of-International 2001-06-21
US11/137,401 Division US7541075B2 (en) 2000-06-21 2005-05-26 Sealant material for plastic liquid crystal display cells including one component epoxy resin composition

Publications (1)

Publication Number Publication Date
WO2001098411A1 true WO2001098411A1 (fr) 2001-12-27

Family

ID=18686125

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/005330 WO2001098411A1 (fr) 2000-06-21 2001-06-21 Materiau de scellement pour cellules d'affichage a cristaux liquides plastiques

Country Status (7)

Country Link
US (2) US6913798B2 (ja)
EP (1) EP1293536A4 (ja)
JP (1) JP4358505B2 (ja)
KR (1) KR100483910B1 (ja)
CN (1) CN1217991C (ja)
TW (1) TWI298412B (ja)
WO (1) WO2001098411A1 (ja)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1480071A1 (en) * 2002-02-04 2004-11-24 Mitsui Chemicals, Inc. Method for producing liquid crystal display cell and sealing agent for liquid crystal display cell
JP2005308941A (ja) * 2004-04-20 2005-11-04 Sony Corp 液晶表示パネル用の封止剤および液晶表示パネル
WO2009093467A1 (ja) * 2008-01-25 2009-07-30 Mitsui Chemicals, Inc. エポキシ重合性組成物、それを含むシール材組成物
JP2010053199A (ja) * 2008-08-27 2010-03-11 Daicel Chem Ind Ltd 光半導体封止用樹脂組成物
WO2013027389A1 (ja) * 2011-08-22 2013-02-28 三井化学株式会社 シート状エポキシ樹脂組成物、及びこれを含む封止用シート
WO2013115152A1 (ja) * 2012-01-31 2013-08-08 東レ株式会社 エポキシ樹脂組成物および繊維強化複合材料
JP2013253194A (ja) * 2012-06-08 2013-12-19 Mitsubishi Rayon Co Ltd エポキシ樹脂組成物
JP2014187152A (ja) * 2013-03-22 2014-10-02 Sumitomo Bakelite Co Ltd エポキシ樹脂成形材料、モールドコイルの製造方法及びモールドコイル
JPWO2013108629A1 (ja) * 2012-01-18 2015-05-11 三井化学株式会社 組成物、組成物からなる表示デバイス端面シール剤、表示デバイス、およびその製造方法
JP2017027041A (ja) * 2015-07-21 2017-02-02 日本化薬株式会社 液晶シール剤及びそれを用いた液晶表示セル
JP2017512221A (ja) * 2014-02-13 2017-05-18 カール ツァイス スマート オプティクス ゲーエムベーハーCarl Zeiss Smart Optics Gmbh アミンで触媒されるエポキシ樹脂のチオール硬化
US10108029B2 (en) 2011-09-15 2018-10-23 Henkel Ag & Co. Kgaa Sealant composition
JP2018203910A (ja) * 2017-06-06 2018-12-27 日本化薬株式会社 電子部品用樹脂組成物
JP6651161B1 (ja) * 2019-08-21 2020-02-19 ナミックス株式会社 エポキシ樹脂組成物
JP2020523450A (ja) * 2017-06-12 2020-08-06 スリーエム イノベイティブ プロパティズ カンパニー エポキシ/チオール樹脂組成物、方法、及びテープ
WO2021033329A1 (ja) * 2019-08-21 2021-02-25 ナミックス株式会社 エポキシ樹脂組成物

Families Citing this family (77)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4802364B2 (ja) * 2000-12-07 2011-10-26 ソニー株式会社 半導体層のドーピング方法、薄膜半導体素子の製造方法、及び半導体層の抵抗制御方法
CN1177895C (zh) * 2001-10-12 2004-12-01 中国石油化工股份有限公司 一种增韧热固性树脂及其制备方法
GB2382151A (en) * 2001-11-20 2003-05-21 Hewlett Packard Co Liquid crystal device and compositions
US20030232126A1 (en) * 2002-06-14 2003-12-18 Yang Michael W. Method for dispersing spacer on the substrate of a liquid crystal display element and apparatus for dispersion therewith
US20060100299A1 (en) * 2002-07-24 2006-05-11 Ranjit Malik Transformable pressure sensitive adhesive tape and use thereof in display screens
EP1431325A1 (de) * 2002-12-17 2004-06-23 Sika Technology AG Hitze-härtbare Epoxidharzzusammensetzung mit verbesserter Tieftemperatur-Schlagzähigkeit
JP4245377B2 (ja) * 2003-03-07 2009-03-25 株式会社Adeka 高弾性エポキシ樹脂組成物
EP1612597B1 (en) * 2003-04-08 2008-08-13 Nippon Kayaku Kabushiki Kaisha Liquid crystal sealing agent and liquid crystalline display cell using the same
DE602004021928D1 (de) * 2003-05-21 2009-08-20 Nippon Kayaku Kk Dichtmittel für flüssigkristall und damit hergestellte flüssigkristallanzeigezelle
US7133109B2 (en) * 2003-06-17 2006-11-07 Samsung Electronics Co., Ltd. Liquid crystal display comprising the spacers disposed near the liquid crystal inlet, wherein the spacers have prism shapes or elliptical column shapes
JP4186737B2 (ja) * 2003-07-17 2008-11-26 Jsr株式会社 低弾性率熱硬化性樹脂組成物および該組成物を用いた熱硬化性フィルム、ならびにそれらの硬化物
WO2005038519A1 (ja) * 2003-10-17 2005-04-28 Nippon Kayaku Kabushiki Kaisha 液晶シール剤、それを用いた液晶表示装置および該装置の製造方法
JP4652235B2 (ja) * 2003-11-26 2011-03-16 三井化学株式会社 1液型の光及び熱併用硬化性樹脂組成物及びその用途
KR101104779B1 (ko) * 2004-03-22 2012-01-12 니폰 가야꾸 가부시끼가이샤 액정 씰 재료 및 그의 제조방법
TW200600934A (en) * 2004-06-18 2006-01-01 Innolux Display Corp Liquid crystal display panel and process for producing it
JP5027509B2 (ja) * 2004-08-18 2012-09-19 株式会社カネカ 半導体封止剤用エポキシ樹脂組成物およびエポキシ樹脂成形材料
JP4901134B2 (ja) 2005-06-03 2012-03-21 エルジー ディスプレイ カンパニー リミテッド 液晶表示装置及びその製造方法
US9024298B2 (en) * 2005-07-26 2015-05-05 Xerox Corporation Encapsulation layer for electronic devices
US20070048349A1 (en) * 2005-08-29 2007-03-01 Bausch & Lomb Incorporated Surface-modified medical devices and methods of making
US7390863B2 (en) * 2005-08-30 2008-06-24 Bausch & Lomb Incorporated Polymeric materials having enhanced ion and water transport property and medical devices comprising same
WO2007032051A1 (ja) * 2005-09-12 2007-03-22 Tadahiro Ohmi 重合体の製造方法及び重合体材料
US20070269658A1 (en) * 2006-05-05 2007-11-22 Kondos Constantine A Solvent-borne coating compositions, related methods and substrates
US20090236036A1 (en) * 2006-06-26 2009-09-24 Hidenori Miyakawa Heat curable resin composition, and mounting method and reparing process for circuit board using the heat curable composition
EP1876194A1 (de) * 2006-06-30 2008-01-09 Sika Technology AG Hitzehärtende Zusammensetzung geeignet zum Verkleben von beschichteten Substraten
CN101517029B (zh) 2006-07-31 2013-10-16 汉高股份及两合公司 可固化的环氧树脂-基粘合剂组合物
KR100776325B1 (ko) * 2006-09-07 2007-11-15 헨켈코리아 주식회사 충돌성능을 향상시키는 실란트 조성물
KR20090080956A (ko) 2006-10-06 2009-07-27 헨켈 아게 운트 코. 카게아아 발수성의 펌핑가능한 에폭시 페이스트 접착제
US20080132626A1 (en) * 2006-12-01 2008-06-05 Smith Stuart B Sprayable thixotropic polymer decorative coating material
JP5143020B2 (ja) * 2006-12-04 2013-02-13 パナソニック株式会社 封止材料及び実装構造体
CN101821333A (zh) * 2007-07-26 2010-09-01 汉高公司 可固化的环氧树脂基粘合剂组合物
KR101392734B1 (ko) * 2007-12-21 2014-05-09 삼성디스플레이 주식회사 백라이트 어셈블리, 이를 갖는 표시장치 및 이의 제조방법
KR101130881B1 (ko) 2007-12-24 2012-03-28 동우 화인켐 주식회사 경화성 수지 조성물, 이를 이용한 화상표시장치 및 화상표시장치의 제조방법
DE502008001517D1 (de) * 2008-01-30 2010-11-25 Sika Technology Ag Auswaschbeständige hitzehärtende Epoxidharzklebstoffe
JP5008682B2 (ja) * 2009-01-21 2012-08-22 株式会社Adeka 光硬化性樹脂と熱硬化性樹脂を含有する液晶滴下工法用シール剤
CN102334395A (zh) * 2009-02-25 2012-01-25 3M创新有限公司 具有抗湿气透过垫圈的制品及方法
CN101840872B (zh) * 2009-03-16 2011-12-21 华映视讯(吴江)有限公司 无气泡的封装方法
CN102472928B (zh) * 2009-07-01 2014-07-02 日本化药株式会社 液晶滴下工艺用液晶密封剂以及使用了该密封剂的液晶显示单元
US8410188B2 (en) * 2009-07-13 2013-04-02 Adeka Corporation Sealant for one-drop fill process
CN102549481B (zh) * 2009-09-25 2015-07-22 旭硝子株式会社 显示装置的制造方法及显示装置
KR101033045B1 (ko) * 2009-12-30 2011-05-09 제일모직주식회사 반도체 조립용 접착필름 조성물 및 이를 이용한 접착필름
KR101033044B1 (ko) * 2009-12-30 2011-05-09 제일모직주식회사 반도체용 접착 조성물 및 이를 포함하는 다이 접착 필름
US8642709B2 (en) * 2010-03-23 2014-02-04 Henkel Ag & Co. Kgaa Epoxy resin composition with reduced toxicity
CN103038285B (zh) * 2010-07-29 2015-11-25 三井化学株式会社 组合物、由该组合物组成的显示设备端面密封剂用组合物、显示设备及其制造方法
CN103180384A (zh) * 2010-09-23 2013-06-26 汉高公司 耐化学蒸气的环氧树脂组合物
EP2468792A1 (en) * 2010-12-23 2012-06-27 3M Innovative Properties Company Curable adhesive composition
US20120299162A1 (en) * 2011-05-23 2012-11-29 Samsung Electronics Co. Ltd. Barrier film for electronic device, method of manufacture thereof, and articles including the same
KR101289302B1 (ko) * 2011-05-31 2013-07-24 주식회사 케이씨씨 반도체 봉지용 에폭시 수지 조성물 및 이를 이용하여 봉지된 반도체 장치
US8569960B2 (en) 2011-11-14 2013-10-29 Willis Electric Co., Ltd Conformal power adapter for lighted artificial tree
US8876321B2 (en) 2011-12-09 2014-11-04 Willis Electric Co., Ltd. Modular lighted artificial tree
US9179793B2 (en) 2012-05-08 2015-11-10 Willis Electric Co., Ltd. Modular tree with rotation-lock electrical connectors
US9044056B2 (en) 2012-05-08 2015-06-02 Willis Electric Co., Ltd. Modular tree with electrical connector
US10206530B2 (en) 2012-05-08 2019-02-19 Willis Electric Co., Ltd. Modular tree with locking trunk
US9572446B2 (en) 2012-05-08 2017-02-21 Willis Electric Co., Ltd. Modular tree with locking trunk and locking electrical connectors
JP5408373B2 (ja) * 2012-08-17 2014-02-05 旭硝子株式会社 電子デバイス用部材および電子デバイスの製造方法、ならびに電子デバイス用部材
KR101254742B1 (ko) * 2012-09-28 2013-04-15 주식회사 원케미컬 내충격성이 우수한 열경화성 에폭시 수지 조성물
TW201415136A (zh) * 2012-10-11 2014-04-16 Zhang su ling 具間隔微結構的液晶薄膜及其製造方法
JP5685346B1 (ja) * 2013-05-15 2015-03-18 積水化学工業株式会社 液晶滴下工法用シール剤、上下導通材料、及び、液晶表示素子
US9140438B2 (en) 2013-09-13 2015-09-22 Willis Electric Co., Ltd. Decorative lighting with reinforced wiring
US9157588B2 (en) 2013-09-13 2015-10-13 Willis Electric Co., Ltd Decorative lighting with reinforced wiring
CN104865339B (zh) * 2015-06-15 2017-05-03 深圳市华星光电技术有限公司 液晶中硅烷偶联剂含量的测试方法
KR102000901B1 (ko) * 2015-11-09 2019-07-16 세키스이가가쿠 고교가부시키가이샤 액정 표시 소자용 시일제, 상하 도통 재료, 및 액정 표시 소자
TWI575016B (zh) 2015-12-03 2017-03-21 財團法人工業技術研究院 環氧樹脂組成物及包含該組成物之熱介面材料
CN105446022B (zh) * 2016-01-05 2019-08-06 京东方科技集团股份有限公司 一种显示面板及其制备方法、应用
JP6672953B2 (ja) 2016-03-29 2020-03-25 味の素株式会社 樹脂シート
CN107286885B (zh) * 2016-04-05 2020-05-19 新纶科技(常州)有限公司 一种异方向导电胶膜及其制备方法
WO2017183583A1 (ja) * 2016-04-20 2017-10-26 積水化学工業株式会社 液晶表示素子用シール剤、液晶表示素子用シール剤の製造方法、上下導通材料、及び、液晶表示素子
CN105739138A (zh) * 2016-04-28 2016-07-06 京东方科技集团股份有限公司 一种面板、封框胶固化方法及超薄基板加工方法
CN109196413B (zh) * 2016-12-27 2021-03-16 积水化学工业株式会社 液晶显示元件用密封剂、上下导通材料和液晶显示元件
US11186659B2 (en) * 2017-11-22 2021-11-30 Board Of Supervisors Of Louisiana State University And Agricultural And Mechanical College Cure-on-demand and time-lapse polymerization
CN109054711A (zh) * 2018-08-10 2018-12-21 深圳飞世尔新材料股份有限公司 一种柔性屏边框封框用环氧胶粘合剂及其制备方法
CN112955486A (zh) 2018-09-20 2021-06-11 Ppg工业俄亥俄公司 含硫醇的组合物
JP6792088B2 (ja) * 2018-10-23 2020-11-25 積水化学工業株式会社 液晶滴下工法用シール剤、硬化物、上下導通材料、及び、液晶表示素子
JP6805372B2 (ja) * 2018-12-07 2020-12-23 積水化学工業株式会社 液晶表示素子用シール剤、硬化物、上下導通材料、及び、液晶表示素子
CN111019093B (zh) * 2019-12-10 2022-05-03 武汉市科达云石护理材料有限公司 室温快速环氧固化剂及其在制备环氧干挂胶中的应用
CN110938401B (zh) * 2019-12-13 2020-09-25 山东益丰生化环保股份有限公司 一种防弹材料专用胶黏剂
CN115368859A (zh) * 2022-09-13 2022-11-22 深圳市凯迪高科技有限公司 一种高透光性环氧树脂光纤粘合胶及其制备方法
CN117343477A (zh) * 2023-09-28 2024-01-05 益丰新材料股份有限公司 一种固化性组合物及其应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11246743A (ja) * 1998-02-27 1999-09-14 Mitsui Chem Inc 液晶封止用樹脂組成物
JP2000072955A (ja) * 1998-08-27 2000-03-07 Mitsui Chemicals Inc 低温硬化型または高温短時間硬化型液晶シール材組成物
JP2000347203A (ja) * 1999-04-01 2000-12-15 Mitsui Chemicals Inc 液晶シール剤組成物
JP2001100223A (ja) * 1999-09-28 2001-04-13 Mitsui Chemicals Inc 液晶表示セル用シール材、液晶表示セルの製造方法および液晶表示素子
JP2001100224A (ja) * 1999-09-28 2001-04-13 Mitsui Chemicals Inc 液晶表示セル用シール材組成物

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS617325A (ja) * 1984-06-20 1986-01-14 Sumitomo Bakelite Co Ltd 高純度エポキシ樹脂組成物
JPS61127721A (ja) * 1984-11-28 1986-06-16 Fujitsu Ltd エポキシ樹脂の精製方法
JPS62133425A (ja) * 1985-12-06 1987-06-16 Sumitomo Bakelite Co Ltd 液晶セル用シ−ル剤組成物
US4882216A (en) * 1987-08-10 1989-11-21 Kashima Industries Co. Epoxy resin film covered with metal foil and flexible printed wiring board
US4879414A (en) * 1988-02-17 1989-11-07 Henkel Corporation Polythiols and use as epoxy resin curing agents
DE58909681D1 (de) 1988-11-23 1996-06-20 Ciba Geigy Ag Polyoxyalkylendithiole und Polyamine enthaltende härtbare Epoxidharz-Stoffgemische
JP2833111B2 (ja) * 1989-03-09 1998-12-09 日立化成工業株式会社 回路の接続方法及びそれに用いる接着剤フィルム
MY104771A (en) * 1989-11-21 1994-05-31 Vantico Ag Hardenable epoxide resin mixtures containing a latent hardener, an amine and a thiol.
ES2090497T3 (es) * 1991-03-08 1996-10-16 Nat Starch Chem Invest Dispositivo visualizador de cristal liquido.
EP0523001A1 (de) * 1991-06-20 1993-01-13 Ciba-Geigy Ag Härtbare Epoxidharz-Zusammensetzung enthaltend einen blockierten Beschleuniger
KR0163981B1 (ko) * 1993-06-29 1999-01-15 사또오 아키오 필름제 액정셀 봉지용 수지조성물
JPH0818152A (ja) * 1994-06-30 1996-01-19 Sony Corp 光半導体装置及びその製造方法
US5830252A (en) * 1994-10-04 1998-11-03 Ppg Industries, Inc. Alkali metal diffusion barrier layer
ES2210484T3 (es) * 1996-07-02 2004-07-01 Vantico Ag Endurecedores de resinas epoxi.
US6153719A (en) * 1998-02-04 2000-11-28 Lord Corporation Thiol-cured epoxy composition
US6219126B1 (en) * 1998-11-20 2001-04-17 International Business Machines Corporation Panel assembly for liquid crystal displays having a barrier fillet and an adhesive fillet in the periphery
KR100414698B1 (ko) * 1999-04-01 2004-01-13 미쯔이카가쿠 가부시기가이샤 액정밀봉제 조성물
EP1061402B1 (en) * 1999-06-16 2004-12-22 Ricoh Company, Ltd. Sealing material for liquid crystal display using plastic substrate
KR100596031B1 (ko) * 2000-07-24 2006-07-03 엘지.필립스 엘시디 주식회사 횡전계 방식의 액정표시장치

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11246743A (ja) * 1998-02-27 1999-09-14 Mitsui Chem Inc 液晶封止用樹脂組成物
JP2000072955A (ja) * 1998-08-27 2000-03-07 Mitsui Chemicals Inc 低温硬化型または高温短時間硬化型液晶シール材組成物
JP2000347203A (ja) * 1999-04-01 2000-12-15 Mitsui Chemicals Inc 液晶シール剤組成物
JP2001100223A (ja) * 1999-09-28 2001-04-13 Mitsui Chemicals Inc 液晶表示セル用シール材、液晶表示セルの製造方法および液晶表示素子
JP2001100224A (ja) * 1999-09-28 2001-04-13 Mitsui Chemicals Inc 液晶表示セル用シール材組成物

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1293536A4 *

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7903230B2 (en) 2002-02-04 2011-03-08 Mitsui Chemicals, Inc. Method for producing liquid crystal display cell and sealing agent for liquid crystal display cell
EP1480071A4 (en) * 2002-02-04 2005-08-17 Mitsui Chemicals Inc PROCESS FOR PRODUCING LIQUID CRYSTAL DISPLAY CELL AND SEALING AGENT FOR LIQUID CRYSTAL DISPLAY CELL
KR100714241B1 (ko) * 2002-02-04 2007-05-02 미쓰이 가가쿠 가부시키가이샤 액정 표시 셀의 제조 방법 및 액정 표시 셀용 실링제
EP1480071A1 (en) * 2002-02-04 2004-11-24 Mitsui Chemicals, Inc. Method for producing liquid crystal display cell and sealing agent for liquid crystal display cell
JP2005308941A (ja) * 2004-04-20 2005-11-04 Sony Corp 液晶表示パネル用の封止剤および液晶表示パネル
US8889803B2 (en) 2008-01-25 2014-11-18 Mitsui Chemicals, Inc. Polymerizable epoxy composition, and sealing material composition comprising the same
JPWO2009093467A1 (ja) * 2008-01-25 2011-05-26 三井化学株式会社 エポキシ重合性組成物、それを含むシール材組成物
JP5395677B2 (ja) * 2008-01-25 2014-01-22 三井化学株式会社 エポキシ重合性組成物、それを含むシール材組成物
WO2009093467A1 (ja) * 2008-01-25 2009-07-30 Mitsui Chemicals, Inc. エポキシ重合性組成物、それを含むシール材組成物
JP2010053199A (ja) * 2008-08-27 2010-03-11 Daicel Chem Ind Ltd 光半導体封止用樹脂組成物
WO2013027389A1 (ja) * 2011-08-22 2013-02-28 三井化学株式会社 シート状エポキシ樹脂組成物、及びこれを含む封止用シート
CN103732658A (zh) * 2011-08-22 2014-04-16 三井化学株式会社 片状环氧树脂组合物及含有该片状环氧树脂组合物的密封用片
US10108029B2 (en) 2011-09-15 2018-10-23 Henkel Ag & Co. Kgaa Sealant composition
JPWO2013108629A1 (ja) * 2012-01-18 2015-05-11 三井化学株式会社 組成物、組成物からなる表示デバイス端面シール剤、表示デバイス、およびその製造方法
JP5403184B1 (ja) * 2012-01-31 2014-01-29 東レ株式会社 繊維強化複合材料
WO2013115152A1 (ja) * 2012-01-31 2013-08-08 東レ株式会社 エポキシ樹脂組成物および繊維強化複合材料
JP2013253194A (ja) * 2012-06-08 2013-12-19 Mitsubishi Rayon Co Ltd エポキシ樹脂組成物
JP2014187152A (ja) * 2013-03-22 2014-10-02 Sumitomo Bakelite Co Ltd エポキシ樹脂成形材料、モールドコイルの製造方法及びモールドコイル
JP2017512221A (ja) * 2014-02-13 2017-05-18 カール ツァイス スマート オプティクス ゲーエムベーハーCarl Zeiss Smart Optics Gmbh アミンで触媒されるエポキシ樹脂のチオール硬化
JP2017027041A (ja) * 2015-07-21 2017-02-02 日本化薬株式会社 液晶シール剤及びそれを用いた液晶表示セル
JP2018203910A (ja) * 2017-06-06 2018-12-27 日本化薬株式会社 電子部品用樹脂組成物
JP2020523450A (ja) * 2017-06-12 2020-08-06 スリーエム イノベイティブ プロパティズ カンパニー エポキシ/チオール樹脂組成物、方法、及びテープ
JP6651161B1 (ja) * 2019-08-21 2020-02-19 ナミックス株式会社 エポキシ樹脂組成物
WO2021033329A1 (ja) * 2019-08-21 2021-02-25 ナミックス株式会社 エポキシ樹脂組成物

Also Published As

Publication number Publication date
US20020176046A1 (en) 2002-11-28
CN1217991C (zh) 2005-09-07
KR20020034177A (ko) 2002-05-08
CN1388818A (zh) 2003-01-01
EP1293536A4 (en) 2005-03-23
US7541075B2 (en) 2009-06-02
JP4358505B2 (ja) 2009-11-04
TWI298412B (ja) 2008-07-01
US6913798B2 (en) 2005-07-05
US20050249891A1 (en) 2005-11-10
EP1293536A1 (en) 2003-03-19
KR100483910B1 (ko) 2005-04-18

Similar Documents

Publication Publication Date Title
WO2001098411A1 (fr) Materiau de scellement pour cellules d&#39;affichage a cristaux liquides plastiques
KR100414698B1 (ko) 액정밀봉제 조성물
KR100402154B1 (ko) 이방 도전성 페이스트
WO2001044342A1 (en) Sealing agent for liquid-crystal display cell, composition for sealing agent for liquid-crystal display cell, and liquid-crystal display element
KR101064344B1 (ko) 액정 실링제 및 그것을 이용한 액정표시 셀
JP4531566B2 (ja) 液晶シール剤組成物及びそれを用いた液晶表示パネルの製造方法
JP2000345010A (ja) 異方導電性ペースト
JP4753934B2 (ja) エポキシ樹脂用潜在性硬化剤およびエポキシ樹脂組成物
JP4911981B2 (ja) 高含水含溶剤エポキシ樹脂用硬化剤およびエポキシ樹脂組成物
US20040075802A1 (en) Sealant for liquid crystal display cell, composition for liquid crystal display cell sealant and liquid crystal display element
JP4877717B2 (ja) 緩反応性エポキシ樹脂用硬化剤およびエポキシ樹脂組成物
JP2002088228A (ja) 液晶表示素子用シール剤組成物ならびに液晶表示素子の製造方法
JP2002069160A (ja) 液晶表示セル用シール剤、液晶表示セルシール剤用組成物及び液晶表示素子
JP4877716B2 (ja) 速硬化性エポキシ樹脂用硬化剤およびエポキシ樹脂組成物
JP2007091899A (ja) 高安定性エポキシ樹脂用硬化剤およびエポキシ樹脂組成物
JP4014352B2 (ja) 液晶シール剤組成物
JP2001100224A (ja) 液晶表示セル用シール材組成物
EP3257898B1 (en) Epoxy resin composition
JP3933356B2 (ja) 液晶表示セル用シール材、液晶表示セルの製造方法および液晶表示素子
JPH0673164A (ja) 液晶封止用樹脂組成物及び液晶封止用セルの製造方法
JP2008153230A (ja) 回路接続材料
JP4292611B2 (ja) 液晶表示素子用シール材組成物及びそれを用いた液晶表示素子
JPS61126188A (ja) 液晶セル封止用接着剤

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN IN JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 10069048

Country of ref document: US

Ref document number: 1020027002267

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2001941166

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: IN/PCT/2002/406/CHE

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 018024742

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 1020027002267

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2001941166

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1020027002267

Country of ref document: KR

WWW Wipo information: withdrawn in national office

Ref document number: 2001941166

Country of ref document: EP