JP4877717B2 - 緩反応性エポキシ樹脂用硬化剤およびエポキシ樹脂組成物 - Google Patents
緩反応性エポキシ樹脂用硬化剤およびエポキシ樹脂組成物 Download PDFInfo
- Publication number
- JP4877717B2 JP4877717B2 JP2005283593A JP2005283593A JP4877717B2 JP 4877717 B2 JP4877717 B2 JP 4877717B2 JP 2005283593 A JP2005283593 A JP 2005283593A JP 2005283593 A JP2005283593 A JP 2005283593A JP 4877717 B2 JP4877717 B2 JP 4877717B2
- Authority
- JP
- Japan
- Prior art keywords
- epoxy resin
- curing agent
- type epoxy
- parts
- compound
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Landscapes
- Adhesives Or Adhesive Processes (AREA)
- Conductive Materials (AREA)
- Organic Insulating Materials (AREA)
- Reinforced Plastic Materials (AREA)
- Adhesive Tapes (AREA)
- Paints Or Removers (AREA)
- Sealing Material Composition (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Epoxy Resins (AREA)
Description
二液性エポキシ樹脂組成物は室温で硬化しうる反面、エポキシ樹脂と硬化剤を別々に保管し、必要に応じて両者を計量、混合した後、使用する必要があるため、保管や取り扱いが煩雑である。
その上、可使用時間が限られているため、予め大量に混合しておくことができず、配合頻度が多くなり、能率の低下を免れない。
こうした二液性エポキシ樹脂配合品の問題を解決する目的で、これまでいくつかの一液性エポキシ樹脂組成物が提案されてきている。例えば、ジシアンジアミド、BF3−アミン錯体、アミン塩、変性イミダゾール化合物等の潜在性硬化剤をエポキシ樹脂に配合したものがある。
しかし近年、特に電子機器分野において、回路の高密度化や接続信頼性の向上に対応するため、またモバイル機器の軽量化として耐熱性の低い材料を使用するために、あるいは生産性を大幅に改善する目的で、接続材料の一つとして用いられる一液性エポキシ樹脂組成物に対して、貯蔵安定性を損なわずに、硬化性の一層の向上が強く求められ、従来技術ではその達成は困難であった。
きるエポキシ樹脂用硬化剤、およびエポキシ樹脂組成物、そして、貯蔵安定性が高く、高い接続信頼性、高い封止性が得られる接着材料、導電材料、絶縁材料、封止材料、コーティング材料、塗料組成物、プリプレグ、構造用接着剤、熱伝導性材料等を提供することを目的とする。
1)10〜50000重量部のエポキシ樹脂(E)に、エポキシ樹脂用硬化剤(C)からなるコアを、イソシアネート化合物(G)と活性水素化合物(H)の反応により得られた皮膜(c1)およびエポキシ樹脂用硬化剤(C)とエポキシ樹脂(N)の反応より得られた皮膜(c2)からなるシェルで被覆した、波数1630〜1680cm -1 の赤外線を吸収する結合基(x)と波数1680〜1725cm -1 の赤外線を吸収する結合基(y)を少なくとも表面に有するマイクロカプセル型エポキシ樹脂用硬化剤(D)を100重量部と、酸無水物類を配合したマスターバッチ型エポキシ樹脂用硬化剤組成物であって、
エポキシ樹脂用硬化剤(C)が、アミンアダクト(A)と低分子アミン化合物(B)を主成分とし、アミンアダクト(A)の重量平均分子量と数平均分子量の比として定義される分子量分布が7を超えて30以下であって、かつ、低分子アミン化合物(B)の含有量がアミンダクト(A)100質量部に対して0.001〜10質量部未満であり、軟化点が160℃以下であり、該低分子アミン化合物(B)が、
メチルアミン、エチルアミン、プロピルアミン、ブチルアミン、エチレンジアミン、プロピレンジアミン、ヘキサメチレンジアミン、ジエチレントリアミン、トリエチレンテトラミン、エタノールアミン、プロパノールアミン、シクロヘキシルアミン、イソホロンジアミン、アニリン、トルイジン、ジアミノジフェニルメタン、ジアミノジフェニルスルホン、ジメチルアミン、ジエチルアミン、ジプロピルアミン、ジブチルアミン、ジペンチルアミン、ジヘキシルアミン、ジメタノールアミン、ジエタノールアミン、ジプロパノールアミン、ジシクロヘキシルアミン、ピペリジン、ピペリドン、ジフェニルアミン、フェニル
メチルアミン、フェニルエチルアミン、
トリメチルアミン、トリエチルアミン、べンジルジメチルアミン、N,N' −ジメチルピペラジン、トリエチレンジアミン、1、8−ジアザビシクロ(5,4,0)−ウンデセン−7、1、5−ジアザビシクロ(4,3,0)−ノネン−5;
2−ジメチルアミノエタノール、1−メチル−2−ジメチルアミノエタノール、1−フェノキシメチル−2−ジメチルアミノエタノール、2−ジエチルアミノエタノール、1−ブトキシメチル−2−ジメチルアミノエタノール、メチルジエタノールアミン、トリエタノールアミン、N−β−ヒドロキシエチルモルホリン;
2−(ジメチルアミノメチル)フェノール、2,4,6−トリス(ジメチルアミノメチル)フェノール;
2−メチルイミダゾール、2−エチル−4−メチルイミダゾール、2−ウンデシルイミダゾール、2−ヘプタデシルイミダゾール、2−フェニルイミダゾール、1−アミノエチル−2−メチルイミダゾール、1−(2−ヒドロキシ−3−フェノキシプロピル)−2−メチルイミダゾール、1−(2−ヒドロキシ−3−フェノキシプロピル)−2−エチル−4−メチルイミダゾール、1−(2−ヒドロキシ−3−ブトキシプロピル)−2−メチルイミダゾール、1−(2−ヒドロキシ−3−ブトキシプロピル)−2−エチル−4−メチルイミダゾール;
1−(2−ヒドロキシ−3−フェノキシプロピル)−2−フェニルイミダゾリン、1−(2−ヒドロキシ−3−ブトキシプロピル)−2−メチルイミダゾリン、2−メチルイミダゾリン、2,4−ジメチルイミダゾリン、2−エチルイミダゾリン、2−エチル−4−メチルイミダゾリン、2−ベンジルイミダゾリン、2−フェニルイミダゾリン、2−(o−トリル)−イミダゾリン、テトラメチレン−ビス−イミダゾリン、1,1,3−トリメチル−1,4−テトラメチレン−ビス−イミダゾリン、1,3,3−トリメチル−1,4−テトラメチレン−ビス−イミダゾリン、1,1,3−トリメチル−1,4−テトラメチレン−ビス−4−メチルイミダゾリン、1,3,3−トリメチル−1,4−テトラメチレン−ビス−4−メチルイミダゾリン、1,2−フェニレン−ビス−イミダゾリン、1,3−フェニレン−ビス−イミダゾリン、1,4−フェニレン−ビス−イミダゾリン、1,4−フェニレン−ビス−4−メチルイミダゾリン、
ジメチルアミノプロピルアミン、ジエチルアミノプロピルアミン、ジプロピルアミノプロピルアミン、ジブチルアミノプロピルアミン、ジメチルアミノエチルアミン、ジエチルアミノエチルアミン、ジプロピルアミノエチルアミン、ジブチルアミノエチルアミン、N−メチルピペラジン、N−アミノエチルピペラジン、ジエチルアミノエチルピペラジン;
2−ジメチルアミノエタンチオール、2−メルカプトベンゾイミダゾール、2−メルカプトベンゾチアゾール、2−メルカプトピリジン、4−メルカプトピリジン;
N,N−ジメチルアミノ安息香酸、N,N−ジメチルグリシン、ニコチン酸、イソニコチン酸、ピコリン酸;
N,N−ジメチルグリシンヒドラジド、ニコチン酸ヒドラジド、イソニコチン酸ヒドラジドの群より選択される1種以上からなることを特徴とするマスターバッチ型エポキシ樹脂用硬化剤組成物。
2)エポキシ樹脂用硬化剤(C)が25℃で固体状であることを特徴とする上記1)に記載のマスターバッチ型エポキシ樹脂用硬化剤組成物。
3)アミンアダクト(A)がエポキシ樹脂(a1)とアミン化合物(b1)との反応により得られることを特徴とする上記1)又は2)に記載のマスターバッチ型エポキシ樹脂用硬化剤組成物。
4)低分子アミン化合物(B)がイミダゾール類であることを特徴とする上記1)〜3)のいずれかに記載のマスターバッチ型エポキシ樹脂用硬化剤組成物。
6)マスターバッチ型エポキシ樹脂用硬化剤組成物(F)の全塩素量が2500ppm以下であることを特徴とする上記1)〜5)のいずれかに記載のマスターバッチ型エポキシ樹脂用硬化剤組成物。
7)エポキシ樹脂(E)の全塩素量が2500ppm以下であることを特徴とする上記1)〜6)のいずれかに記載のマスターバッチ型エポキシ樹脂用硬化剤組成物。
9)さらに、環状ホウ酸エステル化合物(L)を含有することを特徴とする上記1)〜8)のいずれかに記載のマスターバッチ型エポキシ樹脂用硬化剤組成物。
10)前記の環状ホウ酸エステル化合物(L)は、2,2’−オキシビス(5,5’−ジメチル−1,3,2−オキサボリナン)である上記9)に記載のマスターバッチ型エポキシ樹脂用硬化剤組成物。
12)エポキシ樹脂(J)100質量部に対して、前記1)〜11)のいずれかに記載のマスターバッチ型エポキシ樹脂用硬化剤組成物を0.1〜1000質量部含有し、それらを主成分とすることを特徴とするエポキシ樹脂組成物。
13)エポキシ樹脂(J)100質量部に対して、フェノール類、ヒドラジド類、およびグアニジン類よりなる群より選ばれる少なくとも1種の硬化剤(K)を1〜200質量部と、前記1)〜11)のいずれかに記載のマスターバッチ型エポキシ樹脂用硬化剤組成物を、0.1〜200質量部を含有し、それらを主成分とするエポキシ樹脂組成物。
)または13)に記載のエポキシ樹脂組成物。
15)前記の環状ホウ酸エステル化合物(L)は、2,2’−オキシビス(5,5’−ジメチル−1,3,2−オキサボリナン)であることを特徴とする前記14)に記載のエポキシ樹脂組成物。
16)前記の環状ホウ酸エステル化合物(L)の配合量は、エポキシ樹脂(E)100質量部に対して0.001〜10質量部であることを特徴とする前記14)または15)に記載のエポキシ樹脂組成物。
17)前記12)〜16)のいずれかに記載のエポキシ樹脂組成物を含有することを特徴とするペースト状組成物。
18)前記12)〜16)のいずれかに記載のエポキシ樹脂組成物を含有することを特徴とするフィルム状組成物。
20)前記12)〜16)のいずれかに記載のエポキシ樹脂組成物を含有することを特徴とする接合用ペースト。
21)前記12)〜16)のいずれかに記載のエポキシ樹脂組成物を含有することを特徴とする接合用フィルム。
22)前記12)〜16)のいずれかに記載のエポキシ樹脂組成物を含有することを特徴とする導電性材料。
23)前記12)〜16)のいずれかに記載のエポキシ樹脂組成物を含有することを特徴とする異方導電性材料。
24)前記12)〜16)のいずれかに記載のエポキシ樹脂組成物を含有することを特徴とする異方導電性フィルム。
26)前記12)〜16)のいずれかに記載のエポキシ樹脂組成物を含有することを特徴とする封止材料。
27)前記12)〜16)のいずれかに記載のエポキシ樹脂組成物を含有することを特徴とするコーティング用材料。
28)前記12)〜16)のいずれかに記載のエポキシ樹脂組成物を含有することを特徴とする塗料組成物。
29)前記12)〜16)のいずれかに記載のエポキシ樹脂組成物を含有することを特徴とするプリプレグ。
30)前記12)〜16)のいずれかに記載のエポキシ樹脂組成物を含有することを特徴とする熱伝導性材料。
本発明は、アミンアダクト(A)を主成分とし、低分子アミン化合物(B)を特定比率で含有するエポキシ樹脂用硬化剤(C)からなるコアの表面を、シェルで被覆したマイクロカプセル型エポキシ樹脂用硬化剤(D)および、該マイクロカプセル型エポキシ樹脂用硬化剤(D)をエポキシ樹脂(E)に分散させてマスターバッチ型エポキシ樹脂用硬化剤としたものである。
アミンアダクト(A)は、カルボン酸化合物、スルホン酸化合物、イソシアネート化合物、尿素化合物およびエポキシ樹脂(a1)からなる群より選ばれる少なくとも1種の化合物とアミン化合物(b1)とを反応して得られるアミノ基を有する化合物である。アミンアダクト(A)の原料として用いられる、カルボン酸化合物、スルホン酸化合物、イソシアネート化合物、尿素化合物およびエポキシ樹脂(a1)を下記に示す。
カルボン酸化合物としては、例えば、コハク酸、アジピン酸、セバシン酸、フタル酸、ダイマー酸等が挙げられる。
スルホン酸化合物としては、例えば、エタンスルホン酸、p−トルエンスルホン酸等が挙げられる。
アネートメチルヘキサン、2,6−ジイソシアナトヘキサン酸−2−イソシアナトエチル等を挙げることができる。ポリイソシアネートとしては、ポリメチレンポリフェニルポリイソシアネートや上記ジイソシアネート化合物より誘導されるポリイソシアネートが例示される。上記ジイソシアネートより誘導されるポリイソシアネートとしては、イソシアヌレート型ポリイソシアネート、ビュレット型ポリイソシアネート、ウレタン型ポリイソシアネート、アロハネート型ポリイソシアネート、カルボジイミド型ポリイソシアネート等がある。
尿素化合物としては、例えば、尿素、メチル尿素、ジメチル尿素、エチル尿素、t −ブチル尿素等が挙げられる。
エポキシ樹脂(a1)としては、エポキシ樹脂組成物の貯蔵安定性を高めることができるので、多価エポキシ化合物が好ましい。多価エポキシ化合物としては、アミン化合物の生産性が圧倒的に高いので、グリシジル型エポキシ樹脂が好ましく、より好ましくは、硬化物の接着性や耐熱性が優れるため多価フェノール類をグリシジル化したエポキシ樹脂であり、更に好ましくはビスフェノール型エポキシ樹脂である。ビスフェノールAをグリシジル化したエポキシ樹脂とビスフェノールFをグリシジル化したエポキシ樹脂が一層好ましい。ビスフェノールAをグリシジル化したエポキシ樹脂が更に一層好ましい。これらエポキシ樹脂は単独で使用しても併用しても良い。
より好ましくは2000ppm以下であり、より好ましくは1500ppm以下であり、より好ましくは800ppm以下であり、より好ましくは400ppm以下であり、より好ましくは180ppm以下であり、より好ましくは100ppm以下であり、より好ましくは80ppm以下であり、さらに好ましくは50ppm以下である。
また、シェル形成反応のコントロールを容易にするためには全塩素量は、0.01ppm以上が好ましい。より好ましくは0.02ppm以上であり、より好ましくは0.05ppm以上であり、より好ましくは0.1ppm以上であり、より好ましくは0.2ppm以上であり、さらに好ましくは0.5ppm以上である。全塩素量が0.1ppm以上であることにより、シェル形成反応が硬化剤表面で効率よく行われ、貯蔵安定性に優れたシェルを得ることができる。硬化剤のたとえば、全塩素量の好ましい範囲は0.1ppm以上200ppm以下であり、より好ましい範囲は0.2ppm以上80ppm以下であり、より好ましい範囲は0.5ppm以上50ppm以下である。
加水分解性塩素量が50ppm以下で、高い硬化性と貯蔵安定性の両立に対し有利であり、優れた電気特性を示し好ましい。
これらエポキシ樹脂は単独で使用しても併用しても良い。
少なくとも1 個の一級アミノ基および/または二級アミノ基を有するが三級アミノ基を有さない化合物としては、例えば、メチルアミン、エチルアミン、プロピルアミン、ブチルアミン、エチレンジアミン、プロピレンジアミン、ヘキサメチレンジアミン、ジエチレントリアミン、トリエチレンテトラミン、エタノールアミン、プロパノールアミン、シクロヘキシルアミン、イソホロンジアミン、アニリン、トルイジン、ジアミノジフェニルメタン、ジアミノジフェニルスルホン等の三級アミノ基を有さない第一アミン類、例えば、ジメチルアミン、ジエチルアミン、ジプロピルアミン、ジブチルアミン、ジペンチルアミン、ジヘキシルアミン、ジメタノールアミン、ジエタノールアミン、ジプロパノールアミ
ン、ジシクロヘキシルアミン、ピペリジン、ピペリドン、ジフェニルアミン、フェニルメチルアミン、フェニルエチルアミン等の三級アミノ基を有さない第二アミン類を挙げることができる。
少なくとも1個の三級アミノ基と少なくとも1個の活性水素基を有する化合物としては、例えば、2−ジメチルアミノエタノール、1−メチル−2−ジメチルアミノエタノール、1−フェノキシメチル−2−ジメチルアミノエタノール、2−ジエチルアミノエタノール、1−ブトキシメチル−2−ジメチルアミノエタノール、メチルジエタノールアミン、トリエタノールアミン、N−β−ヒドロキシエチルモルホリン等のアミノアルコール類;2−(ジメチルアミノメチル)フェノール、2,4,6−トリス(ジメチルアミノメチル)フェノール等のアミノフェノール類;2−メチルイミダゾール、2−エチル−4−メチルイミダゾール、2−ウンデシルイミダゾール、2−ヘプタデシルイミダゾール、2−フェニルイミダゾール、1−アミノエチル−2−メチルイミダゾール、1−(2−ヒドロキシ−3−フェノキシプロピル)−2−メチルイミダゾール、1−(2−ヒドロキシ−3−フェノキシプロピル)−2−エチル−4−メチルイミダゾール、1−(2−ヒドロキシ−3−ブトキシプロピル)−2−メチルイミダゾール、1−(2−ヒドロキシ−3−ブトキシプロピル)−2−エチル−4−メチルイミダゾール等のイミダゾール類;1−(2−ヒドロキシ−3−フェノキシプロピル)−2−フェニルイミダゾリン、1−(2−ヒドロキシ−3−ブトキシプロピル)−2−メチルイミダゾリン、2−メチルイミダゾリン、2,4−ジメチルイミダゾリン、2−エチルイミダゾリン、2−エチル−4−メチルイミダゾリン、2−ベンジルイミダゾリン、2−フェニルイミダゾリン、2−(o−トリル)−イミダゾリン、テトラメチレン−ビス−イミダゾリン、1,1,3−トリメチル−1,4−テトラメチレン−ビス−イミダゾリン、1,3,3−トリメチル−1,4−テトラメチレン−ビス−イミダゾリン、1,1,3−トリメチル−1,4−テトラメチレン−ビス−4−メチルイミダゾリン、1,3,3−トリメチル−1,4−テトラメチレン−ビス−4−メチルイミダゾリン、1,2−フェニレン−ビス−イミダゾリン、1,3−フェニレン−ビス−イミダゾリン、1,4−フェニレン−ビス−イミダゾリン、1,4−フェニレン−ビス−4−メチルイミダゾリン等のイミダゾリン類、ジメチルアミノプロピルアミン、ジエチルアミノプロピルアミン、ジプロピルアミノプロピルアミン、ジブチルアミノプロピルアミン、ジメチルアミノエチルアミン、ジエチルアミノエチルアミン、ジプロピルアミノエチルアミン、ジブチルアミノエチルアミン、N−メチルピペラジン、N−アミノエチルピペラジン、ジエチルアミノエチルピペラジン等の三級アミノアミン類;2−ジメチルアミノエタンチオール、2−メルカプトベンゾイミダゾール、2−メルカプトベンゾチアゾール、2−メルカプトピリジン、4−メルカプトピリジン等のアミノメルカプタン類;N,N−ジメチルアミノ安息香酸、N,N−ジメチルグリシン、ニコチン酸、イソニコチン酸、ピコリン酸等のアミノカルボン酸類;N,N−ジメチルグリシンヒドラジド、ニコチン酸ヒドラジド、イソニコチン酸ヒドラジド等のアミノヒドラジド類を挙げることができる。
アミン化合物(b1)としては、貯蔵安定性と硬化性のバランスが優れているので、少なくとも1個の三級アミノ基と少なくとも1個の活性水素基を有する化合物が好ましく、イミダゾール類が更に好ましく、2−メチルイミダゾール、2−エチル−4−メチルイミダゾールが一層好ましい。
即ち、本発明に用いられるアミンアダクト(A)の分子量分布は7を超えて30以下にすることである。ここで分子量分布は重量平均分子量と数平均分子量の比として定義され、ゲルパーミッションクロマトグラフィー(以下GPCと称す)法を用いてポリスチレン換算で求めた分子量より計算される。アミンアダクト(A)の分子量分布は7.01以上25.0以下が好ましく、さらに好ましくは7.20以上19.75以下が好ましく、7.30以上15.00以下にすることが一層好ましい。アミンアダクト(A)の分子量分布を7から30までにすることで、硬化反応そのものを阻害することなく、硬化反応を緩和させることができ、硬化による内部応力や歪みを劇的に低減したエポキシ樹脂組成物が得られる。分子量分布が30を超えるものについては、十分な硬化速度が得られない。逆に分子量分布が7より小さい場合、硬化物の応力歪みを無くすために、添加物等を使用することになり、硬化物の物性低下の原因となる。
一級アミノ基を有する化合物としては、例えば、メチルアミン、エチルアミン、プロピルアミン、ブチルアミン、エチレンジアミン、プロピレンジアミン、ヘキサメチレンジアミン、ジエチレントリアミン、トリエチレンテトラミン、エタノールアミン、プロパノールアミン、シクロヘキシルアミン、イソホロンジアミン、アニリン、トルイジン、ジアミノジフェニルメタン、ジアミノジフェニルスルホン等を挙げることができる。
二級アミノ基を有する化合物としては、例えば、ジメチルアミン、ジエチルアミン、ジプロピルアミン、ジブチルアミン、ジペンチルアミン、ジヘキシルアミン、ジメタノールアミン、ジエタノールアミン、ジプロパノールアミン、ジシクロヘキシルアミン、ピペリジン、ピペリドン、ジフェニルアミン、フェニルメチルアミン、フェニルエチルアミン等を挙げることができる。
、メチルジエタノールアミン、トリエタノールアミン、N−β−ヒドロキシエチルモルホリン等のアミノアルコール類;2−(ジメチルアミノメチル)フェノール、2,4,6−トリス(ジメチルアミノメチル)フェノール等のアミノフェノール類;2−メチルイミダゾール、2−エチル−4−メチルイミダゾール、2−ウンデシルイミダゾール、2−ヘプタデシルイミダゾール、2−フェニルイミダゾール、1−アミノエチル−2−メチルイミダゾール、1−(2−ヒドロキシ−3−フェノキシプロピル)−2−メチルイミダゾール、1−(2−ヒドロキシ−3−フェノキシプロピル)−2−エチル−4−メチルイミダゾール、1−(2−ヒドロキシ−3−ブトキシプロピル)−2−メチルイミダゾール、1−(2−ヒドロキシ−3−ブトキシプロピル)−2−エチル−4−メチルイミダゾール等のイミダゾール類;1−(2−ヒドロキシ−3−フェノキシプロピル)−2−フェニルイミダゾリン、1−(2−ヒドロキシ−3−ブトキシプロピル)−2−メチルイミダゾリン、2−メチルイミダゾリン、2,4−ジメチルイミダゾリン、2−エチルイミダゾリン、2−エチル−4−メチルイミダゾリン、2−ベンジルイミダゾリン、2−フェニルイミダゾリン、2−(o−トリル)−イミダゾリン、テトラメチレン−ビス−イミダゾリン、1,1,3−トリメチル−1,4―テトラメチレン−ビス−イミダゾリン、1,3,3−トリメチル−1,4―テトラメチレン−ビス−イミダゾリン、1,1,3−トリメチル−1,4―テトラメチレン−ビス−4−メチルイミダゾリン、1,3,3−トリメチル−1,4―テトラメチレン−ビス−4−メチルイミダゾリン、1,2−フェニレン−ビス−イミダゾリン、1,3−フェニレン−ビス−イミダゾリン、1,4−フェニレン−ビス−イミダゾリン、1,4−フェニレン−ビス−4−メチルイミダゾリン等のイミダゾリン類、ジメチルアミノプロピルアミン、ジエチルアミノプロピルアミン、ジプロピルアミノプロピルアミン、ジブチルアミノプロピルアミン、ジメチルアミノエチルアミン、ジエチルアミノエチルアミン、ジプロピルアミノエチルアミン、ジブチルアミノエチルアミン、N−メチルピペラジン、N−アミノエチルピペラジン、ジエチルアミノエチルピペラジン等の三級アミノアミン類;2−ジメチルアミノエタンチオール、2−メルカプトベンゾイミダゾール、2−メルカプトベンゾチアゾール、2−メルカプトピリジン、4−メルカプトピリジン等のアミノメルカプタン類;N,N−ジメチルアミノ安息香酸、N,N−ジメチルグリシン、ニコチン酸、イソニコチン酸、ピコリン酸等のアミノカルボン酸類;N,N−ジメチルグリシンヒドラジド、ニコチン酸ヒドラジド、イソニコチン酸ヒドラジド等のアミノヒドラジド類を挙げることができる。
低分子アミン化合物(B)としては、貯蔵安定性の優れたエポキシ樹脂組成物が得られるため、三級アミノ基を有する化合物が好ましく、イミダゾール類が更に好ましく、2−メチルイミダゾール、2−エチル−4−メチルイミダゾールが一層好ましい。
即ち、本発明において、アミンアダクト(A)100質量部に対する低分子アミン化合物(B)の量は、貯蔵安定性の高いエポキシ樹脂組成物を得るために、0.001質量部以上10質量部未満の範囲である。好ましくは、0.01質量部以上8質量部以下、一層好ましくは、0.05質量部以上6質量部以下、更に一層好ましくは0.1質量部以上4質量部以下である。
低分子アミン化合物(B)の含有量が10質量部より多く含有すると、分子量分布を7以上としても、カプセル膜の間を抜けて溶出する量が多いため、貯蔵安定性を損なうこととなる。
低分子アミン化合物(B)は、アミンアダクト(A)の製造後にアミンアダクト(A)に混合しても構わないし、アミンアダクト(A)の製造前および/または製造中に混合し
ても構わない。また、アミンアダクト(A)の原料であるアミン化合物(b1)の未反応物を低分子アミン化合物(B) として用いても構わない。
エポキシ樹脂用硬化剤(C)の形態としては、25℃で固体状であること、即ち、軟化点が25℃を超えることが好ましい。より好ましくは、軟化点が40℃以上、一層好ましくは軟化点が60℃以上である。25℃で固体状であるエポキシ樹脂用硬化剤(C)を用いることで、貯蔵安定性の高いエポキシ樹脂組成物が得られる。
合成樹脂としては、エポキシ樹脂、ポリエステル樹脂、ポリエチレン樹脂、ナイロン樹脂、ポリスチレン樹脂、ウレタン樹脂などが挙げられ、モノまたは多価アルコールとモノまたは多価イソシアネートの付加生成物であるウレタン系樹脂、アミン系硬化剤とエポキシ樹脂との反応生成物、フェノール樹脂が望ましく、中でも膜の安定性と加熱時の破壊しやすさの観点から、アミン系硬化剤とエポキシ樹脂との反応生成物が好ましい。
無機物の例としては、酸化ホウ素、ホウ酸エステル等のホウ素化合物、二酸化珪素、酸化カルシウムが等挙げられ、膜の安定性と加熱時の破壊しやすさの観点から、酸化ホウ素が好ましい。
0〜1680cm−1の赤外線を吸収する結合基(x)と波数1680〜1725cm−1の赤外線を吸収する結合基(y)を少なくともその表面に有するものが、貯蔵安定性と反応性のバランスの観点から好ましい。
結合基(x)と結合基(y)は、フーリエ変換式赤外分光光度計(FT−IRと称す)を用いて測定することができる。また、結合基(x)およびまたは結合基(y)がエポキシ樹脂用硬化剤(C)の少なくとも表面に有することは、顕微FT−IRを用いて測定することができる。
結合基(x)のうち、特に有用なものとして、ウレア結合を挙げることができる。結合基(y)のうち、特に有用なものとして、ビュレット結合を挙げることができる。
サメチレンジアミン等のアルキレンジアミン。ジエチレントリアミン、トリエチレンテトラミン、テトラエチレンペンタミン等のポリアルキレンポリアミン、ポリオキシプロピレンジアミン、ポリオキシエチレンジアミン等のポリオキシアルキレンポリアミン類等を挙げることができる。脂環式アミンの例としては、シクロプロピルアミン、シクロブチルアミン、シクロペンチルアミン、シクロヘキシルアミン、イソホロンジアミン等を挙げることができる。芳香族アミンとしては、アニリン、トルイジン、べンジルアミン、ナフチルアミン、ジアミノジフェニルメタン、ジアミノジフェニルスルホン等を挙げることができる。
結合基(y)の濃度が1meq/kg以上で、機械的剪断力に対して高い耐性を有するカプセル型硬化剤を得るのに有利である。また、1000meq/kg以下で、高い硬化性を得るのに有利である。さらに好ましい結合基(y)の範囲は10〜200meq/kgである。
面に有することは、顕微FT−IRを用いて測定することができる。
この結合基(z)のうち、特に有用なものは、ウレタン結合である。このウレタン結合は、イソシアネート化合物(G)と1分子中に1個以上の水酸基を有する化合物との反応により生成される。ここで用いられるイソシアネート化合物(G)としては、ウレア結合、ビュレット結合を生成するために用いられるイソシアネート化合物(G)が使用できる。
エポキシ樹脂用硬化剤(C)からなるコアに対する該表面の結合基の比は、質量比で1
00/1〜100/100である。この範囲において貯蔵安定性と硬化性が両立する。好ましくは100/2〜100/80、より好ましくは100/5〜100/60、一層好ましくは100/10〜100/50である。
溶媒としては、例えば、ベンゼン、トルエン、キシレン、シクロヘキサン、ミネラルスピリット、ナフサ等の炭化水素類;アセトン、メチルエチルケトン、メチルイソブチルケトン等のケトン類;酢酸エチル、酢酸−n−ブチル、プロピレングリコールモノメチルエチルエーテルアセテート等のエステル類;メタノール、イソプロパノール、n−ブタノール、ブチルセロソルブ、ブチルカルビトール等のアルコール類;水、等が例示される。可塑剤としては、フタル酸ジブチル、フタル酸ジ(2−エチルヘキシシル)等のフタル酸ジエステル系、アジピン酸ジ(2−エチルヘキシシル)等の脂肪族二塩基酸エステル系、リン酸トリクレジル等のリン酸トリエステル系、ポリエチレングリコールエステル等のグリコールエステル系等が例示される。樹脂類としては、シリコーン樹脂類、エポキシ樹脂類、フェノール樹脂類等が例示される。
脂が好ましく、より好ましくは、硬化物の接着性や耐熱性が優れるため多価フェノール類をグリシジル化したエポキシ樹脂であり、更に好ましくはビスフェノール型エポキシ樹脂である。ビスフェノールAをグリシジル化したエポキシ樹脂とビスフェノールFをグリシジル化したエポキシ樹脂が一層好ましい。ビスフェノールAをグリシジル化したエポキシ樹脂が更に一層好ましい。
イソシアネート化合物(G)と活性水素化合物(H)との量比は、特に制限は無いが通常、イソシアネート化合物(G)中のイソシアネート基と活性水素化合物(H)中の活性水素との当量比が1:0.1〜1:1000の範囲で用いられる。
エポキシ樹脂用硬化剤(C)とエポキシ樹脂(N)との反応生成物からなるシェルでコアを被覆する方法としては、シェル成分を溶解し、エポキシ樹脂用硬化剤(C)を分散させた分散媒中で、シェル成分の溶解度を下げて、エポキシ樹脂用硬化剤(C)の表面にシェルを析出させる方法、エポキシ樹脂用硬化剤(C)を分散させた分散媒中で、シェルの形成反応を行い、エポキシ樹脂用硬化剤(C)の表面にシェルを析出させる方法、またはエポキシ樹脂用硬化剤(C)からなるコアの表面を反応の場として、そこでシェルを生成させる方法等が挙げられる。後2者の方法が反応と被覆を同時に行うことができ好ましい。
また、後者の場合、本発明のエポキシ樹脂用硬化剤は、本コア中のアミン化合物を使用してもよいし、別途添加しても構わない。
本発明のエポキシ樹脂(N)については本発明の目的とする効果を損なわない範囲内において特に制限されない。そのようなエポキシ樹脂(N)の一例を挙げると、例えば、ビスフェノールA、ビスフェノールF、ビスフェノールAD、ビスフェノールS、テトラメチルビスフェノールA、テトラメチルビスフェノールF、テトラメチルビスフェノールAD、テトラメチルビスフェノールS、テトラブロモビスフェノールA、テトラクロロビスフェノールA、テトラフルオロビスフェノールA等のビスフェノール類をグリシジル化したビスフェノール型エポキシ樹脂;ビフェノール、9,9−ビス(4−ヒドロキシフェニル)フルオレン等のその他の2価フェノール類をグリシジル化したエポキシ樹脂;1,1,1−トリス(4−ヒドロキシフェニル)メタン、4,4−(1−(4−(1−(4−ヒドロキシフェニル)−1−メチルエチル)フェニル)エチリデン)ビスフェノール等のトリスフェノール類をグリシジル化したエポキシ樹脂;1,1,2,2,−テトラキス(4−ヒドロキシフェニル)エタン等のテトラキスフェノール類をグリシジル化したエポキシ樹脂;フェノールノボラック、クレゾールノボラック、ビスフェノールAノボラック、臭素化フェノールノボラック、臭素化ビスフェノールAノボラック等のノボラック類をグリシジル化したノボラック型エポキシ樹脂等;多価フェノール類をグリシジル化したエポキシ樹脂、グリセリンやポリエチレングリコール等の多価アルコールをグリシジル化した脂肪族エーテル型エポキシ樹脂;p−オキシ安息香酸、β−オキシナフトエ酸等のヒドロキシカルボン酸をグリシジル化したエーテルエステル型エポキシ樹脂;フタル酸、テレフタル酸のようなポリカルボン酸をグリシジル化したエステル型エポキシ樹脂;4,4−ジアミノジフェニルメタンやm−アミノフェノール等のアミン化合物のグリシジル化物やトリグリシジルイソシアヌレート等のアミン型エポキシ樹脂等のグリシジル型エポキシ樹脂と、3,4−エポキシシクロヘキシルメチル−3’,4’−エポキシシクロヘキサンカルボキシレート等の脂環族エポキサイド等が例示される。
これらエポキシ樹脂は単独で使用しても併用しても良い。
性と貯蔵安定性の両立のためには、2500ppm以下であることが望ましい。
より好ましくは1500ppm以下であり、より好ましくは800ppm以下であり、より好ましくは400ppm以下であり、より好ましくは200ppm以下であり、より好ましくは100ppm以下であり、より好ましくは80ppm以下であり、さらに好ましくは50ppm以下である。
エポキシ樹脂(E)の全塩素量は、高い硬化性と貯蔵安定性の両立のためには、2500ppm以下であることが望ましい。
より好ましくは1500ppm以下であり、より好ましくは800ppm以下であり、より好ましくは400ppm以下であり、より好ましくは200ppm以下であり、より好ましくは100ppm以下であり、より好ましくは80ppm以下であり、さらに好ましくは50ppm以下である。
また、本発明のエポキシ樹脂(E)のジオール末端不純成分が、エポキシ樹脂(E)の基本構造成分の0.001〜30質量%であることが望ましい。
エポキシ樹脂(E)の基本構造成分およびジオール末端不純成分の分析方法については、同じくエポキシ樹脂技術協会刊行の「総説 エポキシ樹脂 第1巻基礎編I」において引用されている文献に記載の方法を参考に分析を行う。
マスターバッチ型エポキシ樹脂用硬化剤組成物(F)は全塩素量が2500ppm以下であることが望ましい。全塩素量が低いほど反応性が高まり、また、該エポキシ樹脂組成
物を電子材料に使用した場合、信頼性が高いという観点から望ましく、より好ましくは1500ppm、より好ましくは1000ppm以下であり、より好ましくは800ppm以下であり、より好ましくは500ppm、より好ましくは300ppm以下であり、より好ましくは200ppm以下であり、より好ましくは100ppm以下であり、さらに好ましくは50ppm以下である。本発明において全塩素量とは、化合物中に含まれる有機塩素及び無機塩素の総量のことであり、化合物に対する質量基準の値である。
本発明のエポキシ樹脂組成物において、エポキシ樹脂用硬化剤(C)および/またはマイクロカプセル型エポキシ樹脂用硬化剤(D)、エポキシ樹脂(E)、および環状ホウ酸エステル化合物(L)を含有することが望ましい。
これにより、エポキシ樹脂組成物の貯蔵安定性、特に高温時における貯蔵安定性を向上させることができる。
上記環状ホウ酸エステル化合物(L)の含有量としては、エポキシ樹脂(E)100質量部に対して0.001〜10質量部、好ましくは0.01〜2質量部、さらに好ましくは0.05〜0.9質量部である。この範囲で用いることで組成物の高温時の貯蔵安定性に優れた硬化を与え、かつ、本来の短時間硬化性、耐熱性、接着性、接続信頼性を損なわない、優れた硬化物を得ることができる。
エポキシ樹脂(J)に、本発明のエポキシ樹脂用硬化剤(C)、マイクロカプセル型エポキシ樹脂用硬化剤(D)、マスターバッチ型エポキシ樹脂用硬化剤組成物(F)から選ばれる少なくとも1種を混合して一液性エポキシ樹脂組成物が得られる。
ェノールAノボラック等のノボラック類をグリシジル化したノボラック型エポキシ樹脂等;多価フェノール類をグリシジル化したエポキシ樹脂;グリセリンやポリエチレングリコールのような多価アルコールをグリシジル化した脂肪族エーテル型エポキシ樹脂;p−オキシ安息香酸、β−オキシナフトエ酸のようなヒドロキシカルボン酸をグリシジル化したエーテルエステル型エポキシ樹脂;フタル酸、テレフタル酸のようなポリカルボン酸をグリシジル化したエステル型エポキシ樹脂;4,4−ジアミノジフェニルメタンやm−アミノフェノール等のアミン化合物のグリシジル化物やトリグリシジルイソシアヌレート等のアミン型エポキシ樹脂と、3,4−エポキシシクロヘキシルメチル−3’,4’−エポキシシクロヘキサンカルボキシレート等の脂環族エポキサイド等が例示される。
また、本発明に用いられるマスターバッチ型エポキシ樹脂用硬化剤組成物(F)には、エポキシ樹脂の高分子量体で、自己成膜性を有する一般にフェノキシ樹脂と呼ばれる樹脂をも混合することができる。
酸無水物類としては、例えば、無水フタル酸、無水トリメリット酸、無水ピロメリット酸、無水ヘキサヒドロフタル酸、無水テトラヒドロフタル酸、無水−3−クロロフタル酸、無水−4−クロロフタル酸、無水ベンゾフェノンテトラカルボン酸、無水コハク酸、無水メチルコハク酸、無水ジメチルコハク酸、無水ジクロールコハク酸、メチルナジック酸、ドテシルコハク酸、無水クロレンデックク酸、無水マレイン酸等;フェノール類としては、例えば、フェノールノボラック、クレゾールノボラック、ビスフェノールAノボラック等;ヒドラジン類としては、例えば、コハク酸ジヒドラジド、アジピン酸ジヒドラジド、フタル酸ジヒドラジド、イソフタル酸ジヒドラジドテレフタル酸ジヒドラジド、p−オキシ安息香酸ヒドラジド、サリチル酸ヒドラジド、フェニルアミノプロピオン酸ヒドラジド、マレイン酸ジヒドラジド等;グアニジン類としては、例えば、ジシアンジアミド、メチルグアニジン、エチルグアニジン、プロピルグアニジン、ブチルグアニジン、ジメチルグアニジン、トリメチルグアニジン、フェニルグアニジン、ジフェニルグアニジン、トルイルグアニジン等が例示される。
硬化剤(K)を使用する場合、硬化剤(K)を1〜200質量部に対して、本発明のエポキシ樹脂用硬化剤(C)および/またはマイクロカプセル型エポキシ樹脂用硬化剤(D)および/またはマスターバッチ型エポキシ樹脂用硬化剤組成物(F)が0.1〜200質量部となる量で用いるのが好ましい。
この範囲で用いることで硬化性と貯蔵安定性に優れた組成物を与え、耐熱性、耐水性に
優れた硬化物を得ることができる。
一液性エポキシ樹脂組成物の内、硬化に関与しない成分としては、例えば、増量剤、補強材、充填材、導電材料、顔料、有機溶剤、樹脂類等が挙げられるが、これらの成分は一液性エポキシ樹脂組成物全体に対して0〜90質量%の範囲で使用されるのが好ましい。
接着剤および/または接合用ペースト、接合用フィルムとしては、液状接着剤やフィルム状接着剤、ダイボンディング材等として有用である。フィルム状接着剤の製造方法としては、例えば、特開昭62−141083号や、特開平05−295329号などに記載された方法がある。より具体的には、固形エポキシ樹脂、液状エポキシ樹脂、さらに固形のウレタン樹脂を、50重量%になるようにトルエンに溶解・混合・分散させた溶液を作成する。これに本発明のマスターバッチ型エポキシ樹脂用硬化剤組成物(F)を溶液に対して30重量%添加・分散させたワニスを調製する。この溶液、例えば厚さ50μmの剥離用ポリエチレンテレフタレート基材にトルエンが乾燥後に厚さ30μmとなるように塗布する。トルエンを乾燥させることにより、常温では不活性であり、加熱することにより潜在性硬化剤の作用により接着性を発揮する、接合用フィルムを得ることができる。
封止材としては、固形封止材や液状封止材、フィルム状封止材等として有用であり、液状封止材としては、アンダーフィル材、ポッティング材、ダム材等として有用である。封止材の製造方法としては、例えば、特開平5−43661号、特開2002−226675号などにおいて、電気・電子部品の封止・含浸用成形材料としての記載がある。より具体的には、ビスフェノールA型エポキシ樹脂、硬化剤として例えば酸無水物硬化剤として無水メチルヘキサヒドロフタル酸、さらに球状溶融シリカ粉末を加えて均一に混合し、それに本発明で得られたマスターバッチ型エポキシ樹脂用硬化剤組成物(F)を加え均一に混合し、封止材料を得ることができる。
種類は特に限定しないが、例えば、紙、ガラス布、ガラス不織布、アラミド布、液晶ポリマーなどが例としてあげられる。樹脂組成物分と補強基材の割合も特に限定されないが、通常、プリプレグ中の樹脂分が20〜80重量%となるように調製するのが好ましい。
以下に述べる手法により、本実施例および比較例に係る樹脂およびその硬化物の物性評価試験を行った。
(1)エポキシ当量
1当量のエポキシ基を含むエポキシ樹脂の質量(g)であり、JIS K−7236に準拠して求めた。
試料1gを25mlのエチレングリコールモノブチルエーテルに溶解し、これに1規定KOHのプロピレングリコール溶液25mlを加えて20分間煮沸したのち、硝酸銀水溶液で滴定した。
(3)エポキシ樹脂(N)・(E)およびマスターバッチ型エポキシ樹脂用硬化剤組成物(F)の全塩素量
エポキシ樹脂またはエポキシ樹脂組成物を、キシレンを用いて、エポキシ樹脂が無くなるまで洗浄と濾過を繰り返す。次にろ液を100℃以下で減圧留去し、エポキシ樹脂を得る。
得られたエポキシ樹脂試料1〜10gを滴定量が3〜7mlになるよう精秤し、25mlのエチレングリコールモノブチルエーテルに溶解し、これに1規定KOHのプロピレングリコール溶液25mlを加えて20分間煮沸したのち、硝酸銀水溶液で滴定した。
試料3gを50mlのトルエンに溶解し、これに0.1規定KOHのメタノール溶液20mlを加えて15分間煮沸した後、硝酸銀水溶液で滴定した。
(5)粘度
25℃でBM型粘度計を使用して測定した。
(6)軟化点
JIS K−7234(環球法)に準拠した。
(7)FT−IR測定
日本分光(株)社製FT/IR−410を使用し吸光度を測定した。
東ソー(株)製HLC8220GPC(検出器:RI)を用い、カラム:PLgel3μMIXED−E(ポリマーラボラトリー社製)2本、溶離液:ジメチルホルムアミド1%リチウムブロマイド溶液、検量線:ポリスチレンの条件でゲルパーミッションクロマトグラフィーを行い、重量平均分子量を数平均分子量で割った値で分子量分布を示した。
(9)ゲルタイム測定
(株)テイ・エスエンジニアリング社製のキュラストメーターV型を使用し、JIS K6300に準拠して求めた。
エポキシ樹脂組成物を、キシレンを用いてエポキシ樹脂が無くなるまで洗浄と濾過を繰り返す。次にろ液を100℃以下で減圧留去し、エポキシ樹脂を得る。
得られたエポキシ樹脂を、以下の方法で分析して定量する。東ソー製高速液体クロマトグラフィ(AS−8021、検出器UV−8020、以下HPLC)で、カラムはミリポア社製のノバパックC−18を使用する。移動相は水/アセトニトリル=70/30〜0/100にグラジェントをかける。尚、検出波長を254nmとした。HPLC分析して両方の末端構造の違いによる分離条件を選定して、分離液について切り替え弁を使用して分取する。分取した分離液をフラクションごとに減圧、留去し残渣をMSで分析する。MSスペクトルにより、基準ピークの質量数に18の差があるもの同士について、18小さいものを基本構造成分と認める。この基本構造成分について、HPLC分析チャート上のピーク強度より、その面積比率でエポキシ樹脂(E)の基本構造成分含有量を求める。
エポキシ樹脂(E)の基本構造成分の定量と同様にして、分離液をMSで分析する。MSスペクトルにより、基準ピークの質量数に18の差があるもの同士について、18大きいものをジオール末端不純成分と認める。HPLC分析チャート上のジオール末端不純成分ピークの強度を示す面積と、基本構造成分を示すピーク強度の面積比でエポキシ樹脂(E)中の基本構造成分に対する、ジオール末端不純成分の含有量を求める。尚、検出波長を254nmとした。
ここでいうジオール末端不純成分の構造とは、どちらか一方、または両方の末端のエポキシ基が開環して、1,2−グリコールを形成した構造をいう。
マスターバッチ型エポキシ樹脂用硬化剤(F)を、キシレンを用いて、エポキシ樹脂が無くなるまで洗浄と濾過を繰り返す。次に、キシレンが無くなるまでシクロヘキサンで洗浄と濾過を繰り返す。シクロヘキサンを濾別し、50℃以下の温度でシクロヘキサンを完全に除去乾燥する。
(13)マイクロカプセル型エポキシ樹脂用硬化剤(D)からのカプセル膜の分離
マイクロカプセル型エポキシ樹脂用硬化剤(D)を、メタノールを用いて、エポキシ樹脂用硬化剤が無くなるまで洗浄と濾過を繰り返し、50℃以下の温度でメタノールを完全に除去乾燥する。
実施例または比較例で製造したマスターバッチ型エポキシ樹脂用硬化剤(F)30部を、ビスフェノールA型エポキシ樹脂(エポキシ当量189g/当量、全塩素量1200ppm:以下エポキシ樹脂(M)と称す)100部と混合、一液性エポキシ樹脂組成物を製造し、45℃で1週間貯蔵し、貯蔵後の粘度を貯蔵前粘度割った値(以下粘度倍率と称す)により貯蔵安定性を評価した。粘度倍率が1.5倍未満を◎、2倍未満を○、2倍以上3倍未満を△、3倍以上を×、貯蔵途中でゲル化したものを××とした。
エポキシ樹脂(M)の100質量部に無水メチルヘキサヒドロフタル酸80質量部、球状溶融シリカ粉末(平均粒径10μm)300質量部を加えて均一に混合し、それに実施例および比較例で得られたマスターバッチ型エポキシ樹脂用硬化剤の6質量部を加え均一に混合し、液状封止材を得た。得られた液状封止材を基板とLSIとの間に挟み、100℃
で3時間加熱した後更に150℃で3時間加熱して、液状封止材を硬化した。得られた硬化物を150℃湿度90%の恒温恒湿状態で硬化物を3時間保持し、硬化物の状態およびLSIの配線接続性を評価した。
耐湿耐熱性として硬化物に割れや欠けが生じないものを○、硬化物に割れや欠けが生じたものを×とする。
接続性として接続不良がないものを○、接続不良が発生したものを×とする。
(アミンアダクト(A−1)の製造)
ビスフェノールA型エポキシ樹脂(エポキシ当量185g/当量、全塩素量1900ppm:以下エポキシ樹脂a1−1と称す)5当量と、2−メチルイミダゾール1当量(活性水素換算)を、n−ブタノールとトルエンの1/1混合溶媒中(樹脂分50%)、80℃で反応させた。その後減圧下で2−メチルイミダゾールの含有量が1ppm未満になるまで溶剤と共に留去し、固体状のアミンアダクトA−1を得た。得られたアミンアダクトの分子量分布は9.5であった。
(アミンアダクト(A−2)の製造)
以下エポキシ樹脂a1−1を3当量とビスフェノールA型エポキシ樹脂(エポキシ当量470g/当量、全塩素量1300ppm:以下エポキシ樹脂a1−2と称す)2当量と、トリエチレンテトラミン1当量を2−プロパノールとキシレンの1/2混合溶媒中(樹脂分50%)、80℃で反応させた。その後、減圧下で溶剤と未反応低分子アミン化合物を留去し、トリエチレンテトラミンが0.3%(樹脂分100%に対して)になった時点で蒸留を終了し、固体状のアミンアダクトA−2を得た。得られたアミンアダクトの分子量分布は10.5であった。
(アミンアダクト(A−3)の製造)
エポキシ樹脂a1−2を7.5当量とクレゾールノバラック型エポキシ樹脂(エポキシ当量215g/当量、全塩素量1500ppm:以下エポキシ樹脂a1−3と称す)1.5当量と、N―メチルピペラジン1当量とした以外は製造例2と同様に反応させた後、蒸留留去して固体状のアミンアダクトA−3を得た。得られたアミンアダクトに含有されるN−メチルピペラジンは0.4%(樹脂分100%に対して)、分子量分布は10.1であった。
(アミンアダクト(A−4)の製造)
エポキシ樹脂a1−1を3当量と、2−メチルイミダゾール0.7当量とし、溶剤を製造例1と同様にした以外は製造例2と同様に反応させた後、蒸留留去して固体状のアミンアダクトA−4を得た。得られたアミンアダクトに含有される2−メチルイミダゾールは0.2%(樹脂分100%に対して)で、分子量分布は8.9であった。
(アミンアダクト(A−5)の製造)
ビスフェノールF型エポキシ樹脂(エポキシ当量165g/当量、全塩素量300ppm :以下エポキシ樹脂a1−4と称す)5当量と、2−メチルイミダゾール1当量を、製造例4と同様に反応させた後、蒸留留去して固体状のアミンアダクトA−5を得た。得られたアミンアダクトに含有される2−メチルイミダゾールは0.15%(樹脂分100%に対して)で、分子量分布は9.1であった。
(アミンアダクト(A−6)の製造)
エポキシ樹脂a1−1を8当量と、2−メチルイミダゾール1当量を、製造例4と同様に反応させた後、蒸留留去して固体状のアミンアダクトA−6を得た。得られたアミンアダクトに含有される2−メチルイミダゾールは0.45%(樹脂分100%に対して)で、分子量分布は16.5であった。
(アミンアダクト(A−7)の製造)
エポキシ樹脂a1−1を15当量と、2−メチルイミダゾール1当量を、製造例4と同様に反応させた後、蒸留留去して固体状のアミンアダクトA−7を得た。得られたアミンアダクトに含有される2−メチルイミダゾールは0.1%(樹脂分100%に対して)で、分子量分布は49.5であった。
(アミンアダクト(A−8)の製造)
エポキシ樹脂a1−1を1当量と、2−メチルイミダゾール1当量を、製造例4と同様に反応させた後、蒸留留去して固体状のアミンアダクトA−8を得た。得られたアミンアダクトに含有される2−メチルイミダゾールは12%(樹脂分100%に対して)で、分子量分布は1.5であった。
製造例1で得たアミンアダクトA−1の100質量部を溶融し、これに2.4質量部の2−エチル−4−メチルイミダゾールを均一に混合し、室温に冷却後粉砕して、軟化点が99℃、平均粒径2.5μmのエポキシ樹脂用硬化剤C−1を得た。200質量部のエポキシ樹脂E−1に、エポキシ樹脂用硬化剤C−1を100質量部、水1質量部、トリレンジイソシアネート7質量部を加えて、40℃で攪拌しながら3時間反応を続けた。その後、シェル形成反応を50℃で8時間行い、マスターバッチ型エポキシ樹脂用硬化剤F−1を得た。
更に、100部のエポキシ樹脂(M)に、得られたマスターバッチ型エポキシ樹脂用硬化剤F−1を30部配合したときの一液性エポキシ樹脂組成物の貯蔵安定性、上記(15)で述べた組成とした時の封止材用硬化物の耐湿耐熱性、接続性を評価した。得られた結果を表−1に示す。
製造例2で得たアミンアダクトA−2の100質量部を溶融し、これに1.0質量部のトリエチレンテトラミンを均一に混合し、室温に冷却後粉砕して、軟化点が113℃、平均粒径2.0μmのエポキシ樹脂用硬化剤C−2を得た。得られたエポキシ樹脂用硬化剤C−2を表−1で示した配合で、実施例1と同様にしてマスターバッチ型エポキシ樹脂用硬化剤F−2を得た。実施例1と同様にして結合基(x)、(y)、(z)を有することを確認し、実施例1と同様にしてマスターバッチ型エポキシ樹脂用硬化剤F−2の一液性エポキシ樹脂組成物の貯蔵安定性、封止材用硬化物の耐湿耐熱性、接続性を評価した。得られた結果を表−1に示す。
製造例3〜5で得たアミンアダクトA−2〜5を溶融して、表−1記載の低分子アミン
化合物含有量となるようにそれぞれの低分子アミン化合物(B)を均一に混合し、室温に冷却粉砕して、エポキシ樹脂用硬化剤C−2〜5を得た。得られたエポキシ樹脂用硬化剤の特性を表−1に示す。
更に、表−1で示した配合で、実施例1と同様にしてマスターバッチ型エポキシ樹脂用硬化剤F−3〜5を得た。何れも実施例1と同様にして結合基(x)、(y)、(z)を有することを確認し、実施例1と同様にしてマスターバッチ型エポキシ樹脂用硬化剤F−4〜5を硬化剤としたときの一液性エポキシ樹脂組成物の貯蔵安定性、封止材用硬化物の耐湿耐熱性、接続性を評価した。得られた結果を表−1に示す。
製造例6で得たアミンアダクトA−6を粉砕して、表−1記載のエポキシ樹脂用硬化剤C−6を得た。得られたエポキシ樹脂用硬化剤の特性を表−1に示す。
更に、表−1で示した配合で、実施例1と同様にしてマスターバッチ型エポキシ樹脂用硬化剤F−6を得た。何れも実施例1と同様にして結合基(x)、(y)、(z)を有することを確認し、実施例1と同様にしてマスターバッチ型エポキシ樹脂用硬化剤F−6を硬化剤としたときの一液性エポキシ樹脂組成物の硬化性と貯蔵安定性とせん断接着強さを評価した。評価結果を表−1に示す。
製造例1で得たアミンアダクトA−1の100質量部を溶融し、これに5.0質量部の2−メチルイミダゾールを均一に混合し、室温に冷却後粉砕して、軟化点が93℃、平均粒径2.4μmのエポキシ樹脂用硬化剤C−7を得た。得られたエポキシ樹脂用硬化剤C−7を100質量部、水2質量部、MR−200を11質量部加えて、40℃で攪拌しながら3時間反応を続けた。その後、環状ホウ酸エステル化合物(L)を0.25部加えて、さらにシェル形成反応を50℃で8時間行い、マスターバッチ型エポキシ樹脂用硬化剤F−7を得た。実施例1と同様にして結合基(x)、(y)、(z)を有することを確認し、実施例1と同様にしてマスターバッチ型エポキシ樹脂用硬化剤F−7の一液性エポキシ樹脂組成物の貯蔵安定性、封止材用硬化物の耐湿耐熱性、接続性を評価した。得られた結果を表−1に示す。
製造例8で得たアミンアダクトA−8を粉砕して、表−1記載のエポキシ樹脂用硬化剤C−8を得た。得られたエポキシ樹脂用硬化剤の特性を表−1に示す。
更に、表−1で示した配合で、実施例1と同様にしてマスターバッチ型エポキシ樹脂用硬化剤F−8を得た。
実施例1と同様にしてマスターバッチ型硬化剤F−8を硬化剤としたときの一液性エポキシ樹脂組成物の貯蔵安定性、封止材用硬化物の耐湿耐熱性、接続性を評価した。得られた結果を表−2に示す。
製造例8で得たアミンアダクトA−8を粉砕して得た表−1記載のエポキシ樹脂用硬化剤C−8を用いて、更に表−2で示した配合で、実施例7と同様にしてマスターバッチ型エポキシ樹脂用硬化剤F−9を得た。
実施例1と同様にしてマスターバッチ型エポキシ樹脂用硬化剤F−9を硬化剤としたときの一液性エポキシ樹脂組成物の貯蔵安定性、封止材用硬化物の耐湿耐熱性、接続性を評価した。得られた結果を表−2に示す。
製造例7で得たアミンアダクトA−7を粉砕して、表−1記載のエポキシ樹脂用硬化剤C−9を得た。得られたエポキシ樹脂用硬化剤の特性を表−2に示す。
更に、表−2で示した配合で、実施例1と同様にしてマスターバッチ型エポキシ樹脂用硬化剤F−10を得た。
実施例1と同様にしてマスターバッチ型エポキシ樹脂用硬化剤F−10を硬化剤としたときの一液性エポキシ樹脂組成物の貯蔵安定性、封止材用硬化物の耐湿耐熱性、接続性を評価した。得られた結果を表−2に示す。
製造例7得たアミンアダクトA−7の100質量部を溶融し、これに11.0質量部の2−メチルイミダゾールを均一に混合し2−メチルイミダゾール含有量は合計で11.1部となるようにし、室温に冷却後粉砕して、軟化点が97℃、平均粒径3.5μmのエポキシ樹脂用硬化剤C−10を得た。200質量部のエポキシ樹脂E−1に、エポキシ樹脂用硬化剤C−9を100質量部、水2質量部、MR−200を9質量部を加えて、40℃で攪拌しながら3時間反応を続けた。その後、シェル形成反応を50℃で8時間行い、マスターバッチ型エポキシ樹脂用硬化剤F−11を得た。
実施例1と同様にして、100部のエポキシ樹脂E−1に、得られたマスターバッチ型エポキシ樹脂用硬化剤F−11を30部配合したときの一液性エポキシ樹脂組成物の貯蔵安定性、封止材用硬化物の耐湿耐熱性、接続性を評価した。得られた結果を表−2に示す。
比較例4と同じエポキシ樹脂用硬化剤C−10を用いて、マスターバッチ型エポキシ樹脂用硬化剤F−12を製造する際、実施例7と同様に、環状ホウ酸エステル化合物(L)を0.1部加えて、さらにシェル形成反応を50℃で8時間行い、マスターバッチ型エポキシ樹脂用硬化剤F−12を得た。
実施例1と同様にして、100部のエポキシ樹脂E−1に、得られたマスターバッチ型エポキシ樹脂用硬化剤F−12を30部配合したときの一液性エポキシ樹脂組成物の貯蔵安定性、封止材用硬化物の耐湿耐熱性、接続性を評価した。得られた結果を表−2に示す。
ビスフェノールA型エポキシ樹脂(旭化成ケミカルズ製AER−2603)10部、フェノールノボラック樹脂(昭和高分子社製、商品名「BRG−558」)6部、合成ゴム(日本ゼオン社製商品名「ニポール1072」、重量平均分子量30万)4部を、メチルエチルケトンとブチルセロソルブアセテートの1:1(重量比)混合溶剤20部に溶解した
。この溶液に銀粉末74部を混合し、さらに三本ロールにより混練した。これにさらに実施例1で得られたマスターバッチ型エポキシ樹脂用硬化剤F−1を40部加えて、さらに均一に混合させて、導電性接着剤を得た。得られた導電性接着剤を用いて、厚さ40μm のポリプロピレンフィルム上にキャストして、80℃で60分間、乾燥半硬化させ厚さ35μm の導電性接着剤層を有する導電性フィルムを得た。この導電性フィルムを用い、80℃のヒートブロック上でシリコンウェハー裏面に導電性接着剤層を導電性フィルムを転写させた。さらにシリコンウェハーをフルダイシングし、ヒートブロック上でリードフレームに導電性接着剤付半導体チップを、200 ℃、3分間の条件で接着硬化させたところ、チップの導電性の問題がなかった。
85部のエポキシ樹脂(M)に、実施例1で得られたマスターバッチ型エポキシ樹脂用硬化剤F−1を45部に、平均粒子径が14μm、アスペクト比が11の鱗片状銀粉(徳力化学研究所(株)製)150g及び平均粒子径が10μm、アスペクト比が9の鱗片状ニッケル粉(高純度化学(株)製、商品名「NI110104」)60gを添加し、均一になるまで撹拌後、三本ロールで均一に分散して導電ペーストとした。得られた導電ペーストを、厚さ1.4mmのポリイミドフィルム基板上にスクリーン印刷した後、200℃で1時間、加熱硬化させた。得られた配線板の導電性を測定した結果、導電性ペーストとして有用なものであった。
ビスフェノールA型エポキシ樹脂(旭化成ケミカルズ製AER6097、エポキシ当量42500g/eq)30重量部、フェノキシ樹脂(東都化成製、YP−50)30重量部を酢酸エチル30部に溶解し、それに、実施例1で得られたマスターバッチ型エポキシ樹脂用硬化剤F−1を40部に、粒径8μmの導電粒子(金メッキを施した架橋ポリスチレン)5部とを加え均一に混合し、一液性エポキシ樹脂組成物を得た。これをポリエステルフィルム上に塗布し、70℃で酢酸エチルを乾燥除去し、異方導電性フィルムを得た。
得られた異方導電性フィルムをICチップと電極間に挟み、210℃のホットプレート上で30kg/cm2、25秒間熱圧着を行った結果、電極間が接合し、導通がとれ、異方導電性材料として有用であった。
ビスフェノールA型エポキシ樹脂(旭化成ケミカルズ製AER6091、エポキシ当量480g/eq)50重量部、ビスフェノールA型エポキシ樹脂(旭化成ケミカルズ製AER2603)40重量部と導電粒子としてミクロパールAu−205(積水化学製、比重2.67)5重量部を混合後、実施例2で得られたマスターバッチ型エポキシ樹脂用硬化剤F−2を45部加えて、さらに均一に混合させて、異方導電性ペーストを得た。得られた異方導電性ペーストを、ITO電極を有する低アルカリガラス上に塗布した。230℃のセラミックツールで、45秒間、2MPaの圧力にて試験用TAB(Tape Automated Bonding)フィルムと圧着し貼り合わせを行った。隣接するITO電極間の抵抗値を測定したところ、異方導電性ペーストとして有用であった。
ビスフェノールF型エポキシ樹脂(油化シェルエポキシ株式会社製、商品名「YL983U」)100重量部、ジシアンジアミドを4重量部、シリカ粉末100重量部、希釈剤としてフェニルグリシジルエーテル10重量部、および有機リン酸エステル(日本化薬社製、商品名「PM−2」)1重量部を十分混合した後、さらに三本ロールで混練する。さらに、そこに実施例2で得られたマスターバッチ型エポキシ樹脂用硬化剤F−2を45部加えて、さらに均一に混合させて、減圧脱泡および遠心脱泡処理を行い、絶縁性ペーストを製造した。得られた絶縁性ペーストを用いて、半導体チップを樹脂基板に220℃で1
時間加熱硬化させて接着したところ、絶縁性ペーストとして有用であった。
フェノキシ樹脂(東都化成株式会社製、商品名「YP−50」)180重量部、クレゾールノボラック型エポキシ樹脂(エポキシ当量200g/eq、日本化薬株式会社製商品名「EOCN−1020−80」)40重量部、球状シリカ(平均粒径:2μm、アドマテック株式会社製、商品名 SE−5101)300重量部、メチルエチルケトン200重量部を調合し均一分散させた後、これに実施例1で得られたマスターバッチ型エポキシ樹脂用硬化剤F−1を250重量部加えてさらに攪拌・混合してエポキシ樹脂組成物を含む溶液を得る。得られた溶液を、離型処理を施したポリエチレンテレフタレート上に、乾燥後の厚さが50μmになるように塗布し、熱風循環式乾燥機の中で加熱乾燥を行い、半導体接着用の絶縁性フィルムを得た。得られた半導体接着用の絶縁性フィルムを5インチのウェハサイズよりも大きく支持基材ごと切断し、バンプ電極付きウェハの電極部側に樹脂フィルムを合わせる。次に離型処理付き支持基材を上に挟み、85℃、1MPa、加圧時間15秒で真空中加熱圧着し接着樹脂付きウェハを得る。続いて、ダイシングソー(DISCO製DAD−2H6M)を用いてスピンドル回転数30,000rpm、カッティングスピード20mm/secで切断分離した個片の接着フィルム付き半導体素子の樹脂剥がれがないことを観察した。得られたフィルムは絶縁性フィルムとして有用なものであった。
30部のエポキシ樹脂(M)、フェノキシ樹脂としてYP−50を30部(東都化成製)、メトキシ基含有シラン変性エポキシ樹脂のメチルエチルケトン溶液(荒川化学工業(株)製、商品名「コンポセランE103」)を50部、これに実施例1で得られたマスターバッチ型エポキシ樹脂用硬化剤F−1を30部加えて、メチルエチルケトンで50重量%に希釈・混合させた溶液を調製した。調製した溶液を、剥離PET(ポリエチレンテレフタレート)フィルム(パナック(株)製SG―1)上に、ロールコーターを用いて塗布し、150℃で15分、乾燥、硬化させ、剥離フィルム付き半硬化樹脂(ドライフィルム)膜厚100μmを作製した。これらのドライフィルムを先の銅張り積層板上に120℃で、15分間、6MPaで加熱圧着した後、室温に戻して剥離フィルムを除去し、200℃で2時間硬化させたところ、層間絶縁用のコーティング材として有用なものが得られた。
ビスフェノールA型エポキシ樹脂(旭化成ケミカルズ製AER6091、エポキシ当量480g/eq)45重量部に、二酸化チタン30重量部、タルク70重量部を配合し、混合溶剤としてMIBK/キシレンの1:1混合溶剤140重量部を添加、攪拌、混合して主剤とする。これに実施例1で得られたマスターバッチ型エポキシ樹脂用硬化剤F−1を40重量部添加、均一に分散させることにより、エポキシ塗料組成物として有用なものが得られた。
プリプレグの実施例
130℃のオイルバス中のフラスコ内にノボラック型エポキシ樹脂(大日本インキ化学工業製のEPICLON N−740)を15部、ビスフェノールF型エポキシ樹脂(JER製のエピコート4005)を40部、ビスフェノールA型液状エポキシ樹脂(旭化成ケミカルズ製AER2603)20部を溶解・混合し80℃まで冷やす。さらに実施例1で得られたマスターバッチ型エポキシ樹脂用硬化剤組成物F−1を25部加えて、十分、攪拌して混合する。室温に冷ました前記樹脂組成物を離型紙上にドクターナイフを用いて樹脂目付162g/m2で塗布し、樹脂フィルムとした。次にこの樹脂フィルム上に弾性率
24トン/mm2の炭素繊維を12.5本/インチで平織りした三菱レイヨン製CFクロス(型番:TR3110、目付200g/m2)を重ねて樹脂組成物を炭素繊維クロスに含浸させた後、ポリプロピレンフィルムを重ねて表面温度90℃のロール対の間を通して、クロスプリプレグを作製した。樹脂の含有率は45重量%だった。得られたプリプレグを、繊維方向を揃えてさらに積層し、硬化条件150℃×1時間で成形を行い、炭素繊維を補強繊維とするFRP成形体を得ることができ、作製したプリプレグは有用なものであった。
ビスフェノールA型エポキシ樹脂(旭化成ケミカルズ製AER2603)90部、エポキシ樹脂用硬化剤としてフェノールノボラック樹脂(荒川化学工業(株)製、商品名「タマノル759」)のメチルエチルケトン50%溶液を40重量部、鱗片状グラファイト粉末(ユニオンカーバイト社製の商品名HOPG)15重量部を均一になるまで攪拌後、3本ロールで均一に分散させた。これにさらに、実施例1で得られたマスターバッチ型エポキシ樹脂用硬化剤組成物F−1を25部加えて、十分、攪拌して混合する。得られた導電ペーストを、用いてCuリードフレーム上に半導体チップ(1.5mm角、厚み0.8mm)をマウントし、かつ、160℃、30分で加熱硬化させて評価用サンプルを得た。得られたサンプルの熱伝導性についてレーザフラッシュ法により測定する。すなわち、測定した熱拡散率α、比熱Cp、密度σから、以下の式、K=α×Cp×σ より熱伝導率Kを求めたところ、Kが5×10−3Cal/cm・sec・℃以上あり、熱伝導性ペーストとして、有用なものであった。
Claims (30)
- 10〜50000重量部のエポキシ樹脂(E)に、エポキシ樹脂用硬化剤(C)からなるコアを、イソシアネート化合物(G)と活性水素化合物(H)の反応により得られた皮膜(c1)およびエポキシ樹脂用硬化剤(C)とエポキシ樹脂(N)の反応より得られた皮膜(c2)からなるシェルで被覆した、波数1630〜1680cm -1 の赤外線を吸収する結合基(x)と波数1680〜1725cm -1 の赤外線を吸収する結合基(y)を少なくとも表面に有するマイクロカプセル型エポキシ樹脂用硬化剤(D)を100重量部と、酸無水物類を配合したマスターバッチ型エポキシ樹脂用硬化剤組成物であって、
エポキシ樹脂用硬化剤(C)が、アミンアダクト(A)と低分子アミン化合物(B)を主成分とし、アミンアダクト(A)の重量平均分子量と数平均分子量の比として定義される分子量分布が7を超えて30以下であって、かつ、低分子アミン化合物(B)の含有量がアミンダクト(A)100質量部に対して0.001〜10質量部未満であり、軟化点が160℃以下であり、該低分子アミン化合物(B)が、
メチルアミン、エチルアミン、プロピルアミン、ブチルアミン、エチレンジアミン、プロピレンジアミン、ヘキサメチレンジアミン、ジエチレントリアミン、トリエチレンテトラミン、エタノールアミン、プロパノールアミン、シクロヘキシルアミン、イソホロンジアミン、アニリン、トルイジン、ジアミノジフェニルメタン、ジアミノジフェニルスルホン、ジメチルアミン、ジエチルアミン、ジプロピルアミン、ジブチルアミン、ジペンチルアミン、ジヘキシルアミン、ジメタノールアミン、ジエタノールアミン、ジプロパノールアミン、ジシクロヘキシルアミン、ピペリジン、ピペリドン、ジフェニルアミン、フェニルメチルアミン、フェニルエチルアミン、
トリメチルアミン、トリエチルアミン、べンジルジメチルアミン、N,N' −ジメチルピペラジン、トリエチレンジアミン、1、8−ジアザビシクロ(5,4,0)−ウンデセン−7、1、5−ジアザビシクロ(4,3,0)−ノネン−5;
2−ジメチルアミノエタノール、1−メチル−2−ジメチルアミノエタノール、1−フェノキシメチル−2−ジメチルアミノエタノール、2−ジエチルアミノエタノール、1−ブトキシメチル−2−ジメチルアミノエタノール、メチルジエタノールアミン、トリエタノールアミン、N−β−ヒドロキシエチルモルホリン;
2−(ジメチルアミノメチル)フェノール、2,4,6−トリス(ジメチルアミノメチル)フェノール;
2−メチルイミダゾール、2−エチル−4−メチルイミダゾール、2−ウンデシルイミダゾール、2−ヘプタデシルイミダゾール、2−フェニルイミダゾール、1−アミノエチル
−2−メチルイミダゾール、1−(2−ヒドロキシ−3−フェノキシプロピル)−2−メチルイミダゾール、1−(2−ヒドロキシ−3−フェノキシプロピル)−2−エチル−4−メチルイミダゾール、1−(2−ヒドロキシ−3−ブトキシプロピル)−2−メチルイミダゾール、1−(2−ヒドロキシ−3−ブトキシプロピル)−2−エチル−4−メチルイミダゾール;
1−(2−ヒドロキシ−3−フェノキシプロピル)−2−フェニルイミダゾリン、1−(2−ヒドロキシ−3−ブトキシプロピル)−2−メチルイミダゾリン、2−メチルイミダゾリン、2,4−ジメチルイミダゾリン、2−エチルイミダゾリン、2−エチル−4−メチルイミダゾリン、2−ベンジルイミダゾリン、2−フェニルイミダゾリン、2−(o−トリル)−イミダゾリン、テトラメチレン−ビス−イミダゾリン、1,1,3−トリメチル−1,4−テトラメチレン−ビス−イミダゾリン、1,3,3−トリメチル−1,4−テトラメチレン−ビス−イミダゾリン、1,1,3−トリメチル−1,4−テトラメチレン−ビス−4−メチルイミダゾリン、1,3,3−トリメチル−1,4−テトラメチレン−ビス−4−メチルイミダゾリン、1,2−フェニレン−ビス−イミダゾリン、1,3−フェニレン−ビス−イミダゾリン、1,4−フェニレン−ビス−イミダゾリン、1,4−フェニレン−ビス−4−メチルイミダゾリン、
ジメチルアミノプロピルアミン、ジエチルアミノプロピルアミン、ジプロピルアミノプロピルアミン、ジブチルアミノプロピルアミン、ジメチルアミノエチルアミン、ジエチルアミノエチルアミン、ジプロピルアミノエチルアミン、ジブチルアミノエチルアミン、N−メチルピペラジン、N−アミノエチルピペラジン、ジエチルアミノエチルピペラジン;
2−ジメチルアミノエタンチオール、2−メルカプトベンゾイミダゾール、2−メルカプトベンゾチアゾール、2−メルカプトピリジン、4−メルカプトピリジン;
N,N−ジメチルアミノ安息香酸、N,N−ジメチルグリシン、ニコチン酸、イソニコチン酸、ピコリン酸;
N,N−ジメチルグリシンヒドラジド、ニコチン酸ヒドラジド、イソニコチン酸ヒドラジドの群より選択される1種以上からなることを特徴とするマスターバッチ型エポキシ樹脂用硬化剤組成物。 - エポキシ樹脂用硬化剤(C)が25℃で固体状であることを特徴とする請求項1記載のマスターバッチ型エポキシ樹脂用硬化剤組成物。
- アミンアダクト(A)がエポキシ樹脂(a1)とアミン化合物(b1)との反応により得られることを特徴とする請求項1又は2記載のマスターバッチ型エポキシ樹脂用硬化剤組成物。
- 低分子アミン化合物(B)がイミダゾール類であることを特徴とする請求項1〜3のいずれか1項に記載のマスターバッチ型エポキシ樹脂用硬化剤組成物。
- エポキシ樹脂(N)の全塩素量が2500ppm以下であることを特徴とする請求項4に記載のマスターバッチ型エポキシ樹脂用硬化剤組成物。
- マスターバッチ型エポキシ樹脂用硬化剤組成物(F)の全塩素量が2500ppm以下であることを特徴とする請求項1〜5のいずれか1項に記載のマスターバッチ型エポキシ樹脂用硬化剤組成物。
- エポキシ樹脂(E)の全塩素量が2500ppm以下であることを特徴とする請求項1〜6のいずれか1項に記載のマスターバッチ型エポキシ樹脂用硬化剤組成物。
- エポキシ樹脂(E)のジオール末端不純成分が、エポキシ樹脂(E)の基本構造成分の0.001〜30質量%であることを特徴とする請求項1〜7のいずれか1項に記載のマ
スターバッチ型エポキシ樹脂用硬化剤組成物。 - さらに、環状ホウ酸エステル化合物(L)を含有することを特徴とする請求項1〜8のいずれか1項に記載のマスターバッチ型エポキシ樹脂用硬化剤組成物。
- 前記の環状ホウ酸エステル化合物(L)は、2,2’−オキシビス(5,5’−ジメチル−1,3,2−オキサボリナン)である請求項9に記載のマスターバッチ型エポキシ樹脂用硬化剤組成物。
- 前記の環状ホウ酸エステル化合物(L)の配合量は、エポキシ樹脂(E)100質量部に対して0.001〜10質量部である請求項9又は10のいずれか1項に記載のマスターバッチ型エポキシ樹脂用硬化剤組成物。
- エポキシ樹脂(J)100質量部に対して、請求項1〜11のいずれか1項に記載のマスターバッチ型エポキシ樹脂用硬化剤組成物を0.1〜1000質量部含有し、それらを主成分とすることを特徴とするエポキシ樹脂組成物。
- エポキシ樹脂(J)100質量部に対して、フェノール類、ヒドラジド類、およびグアニジン類よりなる群より選ばれる少なくとも1種の硬化剤(K)を1〜200質量部と、請求項1〜11のいずれか1項に記載のマスターバッチ型エポキシ樹脂用硬化剤組成物を、0.1〜200質量部を含有し、それらを主成分とするエポキシ樹脂組成物。
- さらに、環状ホウ酸エステル化合物(L)を含有することを特徴とする請求項12または13に記載のエポキシ樹脂組成物。
- 前記の環状ホウ酸エステル化合物(L)は、2,2’−オキシビス(5,5’−ジメチル−1,3,2−オキサボリナン)であることを特徴とする請求項14に記載のエポキシ樹脂組成物。
- 前記の環状ホウ酸エステル化合物(L)の配合量は、エポキシ樹脂(E)100質量部に対して0.001〜10質量部であることを特徴とする請求項14または15に記載のエポキシ樹脂組成物。
- 請求項12〜16のいずれか1項に記載のエポキシ樹脂組成物を含有することを特徴とするペースト状組成物。
- 請求項12〜16のいずれか1項に記載のエポキシ樹脂組成物を含有することを特徴とするフィルム状組成物。
- 請求項12〜16のいずれか1項に記載のエポキシ樹脂組成物を含有することを特徴とする接着剤。
- 請求項12〜16のいずれか1項に記載のエポキシ樹脂組成物を含有することを特徴とする接合用ペースト。
- 請求項12〜16のいずれか1項に記載のエポキシ樹脂組成物を含有することを特徴とする接合用フィルム。
- 請求項12〜16のいずれか1項に記載のエポキシ樹脂組成物を含有することを特徴とする導電性材料。
- 請求項12〜16のいずれか1項に記載のエポキシ樹脂組成物を含有することを特徴とする異方導電性材料。
- 請求項12〜16のいずれか1項に記載のエポキシ樹脂組成物を含有することを特徴とする異方導電性フィルム。
- 請求項12〜16のいずれか1項に記載のエポキシ樹脂組成物を含有することを特徴とする絶縁性材料。
- 請求項12〜16のいずれか1項に記載のエポキシ樹脂組成物を含有することを特徴とする封止材料。
- 請求項12〜16のいずれか1項に記載のエポキシ樹脂組成物を含有することを特徴とするコーティング用材料。
- 請求項12〜16のいずれか1項に記載のエポキシ樹脂組成物を含有することを特徴とする塗料組成物。
- 請求項12〜16のいずれか1項に記載のエポキシ樹脂組成物を含有することを特徴とするプリプレグ。
- 請求項12〜16のいずれか1項に記載のエポキシ樹脂組成物を含有することを特徴とする熱伝導性材料。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005283593A JP4877717B2 (ja) | 2005-09-29 | 2005-09-29 | 緩反応性エポキシ樹脂用硬化剤およびエポキシ樹脂組成物 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005283593A JP4877717B2 (ja) | 2005-09-29 | 2005-09-29 | 緩反応性エポキシ樹脂用硬化剤およびエポキシ樹脂組成物 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2007091901A JP2007091901A (ja) | 2007-04-12 |
JP4877717B2 true JP4877717B2 (ja) | 2012-02-15 |
Family
ID=37977979
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005283593A Active JP4877717B2 (ja) | 2005-09-29 | 2005-09-29 | 緩反応性エポキシ樹脂用硬化剤およびエポキシ樹脂組成物 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4877717B2 (ja) |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100961417B1 (ko) * | 2005-09-29 | 2010-06-09 | 아사히 가세이 케미칼즈 가부시키가이샤 | 고-안정성 마이크로캡슐화 에폭시 수지용 경화제 및 에폭시수지 조성물 |
CN102936331A (zh) * | 2007-09-20 | 2013-02-20 | 日立化成工业株式会社 | 环氧树脂用微囊型潜在性固化剂及其制造方法 |
CN104194454B (zh) * | 2009-02-16 | 2019-01-08 | 塞特克技术公司 | 用于热固性复合材料的雷击及电磁干扰屏蔽的共固化导电表面膜 |
JP2011231146A (ja) * | 2010-04-23 | 2011-11-17 | Asahi Kasei E-Materials Corp | 異方導電性フィルム |
JP5543879B2 (ja) * | 2010-09-02 | 2014-07-09 | 旭化成イーマテリアルズ株式会社 | エポキシ樹脂用硬化剤組成物及び一液性エポキシ樹脂組成物 |
TW201309745A (zh) * | 2011-04-15 | 2013-03-01 | Dow Global Technologies Llc | 交聯反應性聚合物微粒子 |
CN104411790B (zh) * | 2012-07-05 | 2019-10-18 | 三键精密化学有限公司 | 片状粘合剂以及使用该片状粘合剂的有机el面板 |
JP2014129516A (ja) * | 2012-11-30 | 2014-07-10 | Sanyo Chem Ind Ltd | 一液硬化型エポキシエマルション |
JP5758463B2 (ja) * | 2013-03-26 | 2015-08-05 | 太陽インキ製造株式会社 | エポキシ樹脂組成物、穴埋め充填用組成物およびこれらを用いたプリント配線板 |
TWI723252B (zh) | 2017-03-17 | 2021-04-01 | 日商旭化成股份有限公司 | 熱硬化性樹脂組合物 |
JP2018168310A (ja) * | 2017-03-30 | 2018-11-01 | 田岡化学工業株式会社 | 一液型エポキシ樹脂組成物 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3168016B2 (ja) * | 1991-03-11 | 2001-05-21 | ナショナル スターチ アンド ケミカル インベストメント ホールディング コーポレイション | エポキシ樹脂用硬化剤マスターバッチ |
JP3454437B2 (ja) * | 1992-10-02 | 2003-10-06 | ナショナル スターチ アンド ケミカル インベストメント ホールディング コーポレイション | 低粘度無溶媒の一液型エポキシ樹脂接着性組成物 |
JP3471395B2 (ja) * | 1993-12-17 | 2003-12-02 | 旭化成エポキシ株式会社 | 低発煙性難燃性化合物 |
JP4037228B2 (ja) * | 2002-09-27 | 2008-01-23 | 住友ベークライト株式会社 | 一液型エポキシ樹脂組成物 |
KR100809799B1 (ko) * | 2002-10-25 | 2008-03-04 | 아사히 가세이 케미칼즈 가부시키가이샤 | 캡슐형 경화제 및 조성물 |
-
2005
- 2005-09-29 JP JP2005283593A patent/JP4877717B2/ja active Active
Also Published As
Publication number | Publication date |
---|---|
JP2007091901A (ja) | 2007-04-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4911981B2 (ja) | 高含水含溶剤エポキシ樹脂用硬化剤およびエポキシ樹脂組成物 | |
JP4753934B2 (ja) | エポキシ樹脂用潜在性硬化剤およびエポキシ樹脂組成物 | |
JP4877717B2 (ja) | 緩反応性エポキシ樹脂用硬化剤およびエポキシ樹脂組成物 | |
JP2007091899A (ja) | 高安定性エポキシ樹脂用硬化剤およびエポキシ樹脂組成物 | |
JP4326524B2 (ja) | カプセル型硬化剤及び組成物 | |
JP4583373B2 (ja) | エポキシ樹脂用硬化剤及びエポキシ樹脂組成物 | |
JP5558118B2 (ja) | マイクロカプセル型エポキシ樹脂用硬化剤、及びそれを含むマスターバッチ型エポキシ樹脂用硬化剤組成物 | |
JP5148292B2 (ja) | マイクロカプセル型エポキシ樹脂用硬化剤、マスタ−バッチ型エポキシ樹脂用硬化剤組成物、一液性エポキシ樹脂組成物、および加工品 | |
JP4877716B2 (ja) | 速硬化性エポキシ樹脂用硬化剤およびエポキシ樹脂組成物 | |
JP5258018B2 (ja) | 高安定性マイクロカプセル型エポキシ樹脂用硬化剤及びエポキシ樹脂組成物 | |
JP5763527B2 (ja) | イミダゾール化合物含有マイクロカプセル化組成物、それを用いた硬化性組成物及びマスターバッチ型硬化剤 | |
JP2007204669A (ja) | 特定小粒径粒度分布エポキシ樹脂用硬化剤およびエポキシ樹脂組成物 | |
JP6085130B2 (ja) | 液状樹脂組成物、及び加工品 | |
JP6484446B2 (ja) | エポキシ樹脂用硬化剤、エポキシ樹脂組成物及びこれを含有する材料 | |
JP2010053353A (ja) | エポキシ樹脂用マイクロカプセル型潜在性硬化剤及びその製造方法、一液性エポキシ樹脂組成物、エポキシ樹脂硬化物、接着剤、接合用フィルム、導電性材料並びに異方導電性材料 | |
JP5138685B2 (ja) | エポキシ樹脂用硬化剤及びエポキシ樹脂用硬化剤組成物 | |
JP2011208098A (ja) | イミダゾール化合物含有マイクロカプセル化組成物、それを用いた硬化性組成物及びマスターバッチ型硬化剤 | |
JP6063304B2 (ja) | エポキシ樹脂用マイクロカプセル型硬化剤 | |
JP2015117333A (ja) | マスターバッチ型潜在性エポキシ樹脂硬化剤組成物及びこれを用いたエポキシ樹脂組成物 | |
JP2005344046A (ja) | 潜在性硬化剤および組成物 | |
JP2024115217A (ja) | エポキシ樹脂組成物 | |
JP2023137042A (ja) | 一液性エポキシ樹脂組成物用マスターバッチ型硬化剤、及びエポキシ樹脂組成物 | |
JP2013053230A (ja) | エポキシ樹脂組成物、及びこれを用いたペースト状組成物、フィルム状組成物 | |
JP2019189834A (ja) | エポキシ樹脂用硬化剤、マスターバッチ型エポキシ樹脂用硬化剤組成物、一液性エポキシ樹脂組成物、及び加工品 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080916 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20090401 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20110124 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110201 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110330 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110621 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110811 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20111122 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20111122 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4877717 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20141209 Year of fee payment: 3 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |