WO2009093467A1 - エポキシ重合性組成物、それを含むシール材組成物 - Google Patents

エポキシ重合性組成物、それを含むシール材組成物 Download PDF

Info

Publication number
WO2009093467A1
WO2009093467A1 PCT/JP2009/000264 JP2009000264W WO2009093467A1 WO 2009093467 A1 WO2009093467 A1 WO 2009093467A1 JP 2009000264 W JP2009000264 W JP 2009000264W WO 2009093467 A1 WO2009093467 A1 WO 2009093467A1
Authority
WO
WIPO (PCT)
Prior art keywords
epoxy
compound
polymerizable composition
thiol
cured product
Prior art date
Application number
PCT/JP2009/000264
Other languages
English (en)
French (fr)
Inventor
Yasushi Takamatsu
Yugo Yamamoto
Yuichi Ito
Original Assignee
Mitsui Chemicals, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Chemicals, Inc. filed Critical Mitsui Chemicals, Inc.
Priority to EP09704686.6A priority Critical patent/EP2236539B1/en
Priority to CN200980101714.9A priority patent/CN101910236B/zh
Priority to JP2009550481A priority patent/JP5395677B2/ja
Priority to KR1020107015147A priority patent/KR101220789B1/ko
Priority to US12/864,418 priority patent/US8889803B2/en
Priority to KR1020127016296A priority patent/KR101258041B1/ko
Publication of WO2009093467A1 publication Critical patent/WO2009093467A1/ja
Priority to HK11103592.3A priority patent/HK1149284A1/xx

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/32Epoxy compounds containing three or more epoxy groups
    • C08G59/38Epoxy compounds containing three or more epoxy groups together with di-epoxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/22Di-epoxy compounds
    • C08G59/24Di-epoxy compounds carbocyclic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/22Di-epoxy compounds
    • C08G59/226Mixtures of di-epoxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/4007Curing agents not provided for by the groups C08G59/42 - C08G59/66
    • C08G59/4064Curing agents not provided for by the groups C08G59/42 - C08G59/66 sulfur containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/66Mercaptans
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B69/00Dyes not provided for by a single group of this subclass
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J163/00Adhesives based on epoxy resins; Adhesives based on derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/10Materials in mouldable or extrudable form for sealing or packing joints or covers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1339Gaskets; Spacers; Sealing of cells
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/02Applications for biomedical use
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2666/00Composition of polymers characterized by a further compound in the blend, being organic macromolecular compounds, natural resins, waxes or and bituminous materials, non-macromolecular organic substances, inorganic substances or characterized by their function in the composition
    • C08L2666/02Organic macromolecular compounds, natural resins, waxes or and bituminous materials
    • C08L2666/14Macromolecular compounds according to C08L59/00 - C08L87/00; Derivatives thereof
    • C08L2666/22Macromolecular compounds not provided for in C08L2666/16 - C08L2666/20
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/302Details of OLEDs of OLED structures
    • H10K2102/3023Direction of light emission
    • H10K2102/3026Top emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/842Containers
    • H10K50/8426Peripheral sealing arrangements, e.g. adhesives, sealants
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/87Passivation; Containers; Encapsulations
    • H10K59/871Self-supporting sealing arrangements
    • H10K59/8722Peripheral sealing arrangements, e.g. adhesives, sealants

Definitions

  • the present invention relates to an epoxy polymerizable composition, a transparent resin for optical materials and a sealing material composition containing the same, and an optical device having a sealing member made of a cured product thereof.
  • Organic EL displays are expected as next-generation displays or lighting devices because of their low power consumption and low viewing angle dependency.
  • the organic EL element has a problem that it is easily degraded by moisture and oxygen in the atmosphere. Therefore, the organic EL element is used after being sealed with a seal member.
  • the method for sealing the organic EL element includes a method called “frame sealing” and a method called “surface sealing”.
  • Frame sealing is a method in which a peripheral portion of a sealing cap is sealed with a sealing member in a structure in which a sealing cap is disposed on an organic EL element disposed on a substrate (Patent Document 1, etc.) See).
  • the sealing cap is a plate-like member made of stainless steel or glass processed into a certain shape. Since this process requires a lot of labor, the method is not sufficiently productive.
  • the sealing cap since a space is generated between the sealing cap and the organic EL element, the sealing cap is easily bent. Therefore, there is a problem that it is difficult to apply to the manufacture of a large organic EL panel.
  • Surface sealing which is a method that can solve this problem, is a structure in which a sealing plate is arranged on an organic EL element arranged on a substrate, between the sealing plate and the substrate, and an organic EL element.
  • a space existing between the sealing plate and the sealing plate is filled with a sealing material composition and sealed (see Patent Document 2).
  • Patent Document 2 since it is not necessary to process the sealing cap, there is an advantage that the sealing plate is not bent because the productivity is excellent and there is no space inside the sealing plate.
  • the sealing member for surface sealing is disposed in the space formed between the organic EL element and the sealing plate, it needs to have a high refractive index (small difference in refractive index from the transparent cathode electrode). (Especially elements with a top emission structure). This is because if the refractive index of the sealing member is low, total reflection occurs between the cathode electrode and the sealing member, and the extraction efficiency of light emission from the organic EL element decreases.
  • a sealing material composition for producing a surface-sealing seal member is also required to have a low curing shrinkage rate. This is because if the cure shrinkage rate is high, a fine gap is formed between the sealing member, which is a cured product, and the substrate due to internal stress, adhesive strength is lowered, and moisture permeability resistance is further lowered.
  • a sealing material composition for producing a surface-sealing seal member is required to be liquid at a temperature near room temperature. If the sealing material composition is not liquid at a temperature near room temperature, workability is poor, and it is necessary to heat and seal the sealing material composition when sealing the organic EL element. In that case, since heat distortion of the display member occurs, it may not be sufficiently sealed. Further, when the sealing material composition is heated, the curing reaction proceeds and the viscosity tends to become unstable.
  • an epoxy resin composition suitable for optical use for example, an epoxy resin composition containing an epoxy resin having a fluorene skeleton and an acid anhydride has been proposed (see Patent Document 3). Since this epoxy resin composition includes an epoxy resin having a fluorene skeleton in the molecular structure, the cured product is said to have excellent heat resistance and high transparency. Moreover, from the composition of the epoxy resin composition, the cured product is considered to have a high refractive index of about 1.63. However, this epoxy resin composition has a high softening point and is solid at room temperature. For this reason, when using this epoxy resin composition as a sealing material composition, there existed a problem that workability
  • a photocurable adhesive composition suitable for bonding optical parts a photocurable adhesive composition containing a thiol compound and an epoxy compound has been proposed (see Patent Document 4). Since this photocurable adhesive composition contains a large amount of elemental sulfur, the cured product is said to have a high refractive index. In addition, the photocurable adhesive composition does not have a rigid molecular structure like a fluorene skeleton, and thus has a low softening point and excellent workability at room temperature, but has a problem of low heat resistance. .
  • a sulfur-containing urethane resin containing a polyisocyanate compound and a thiol compound has been proposed as a resin suitable for lens applications (see Patent Document 5, etc.). Since this sulfur-containing urethane resin contains a large amount of sulfur element, the cured product has a high refractive index and is said to have a certain heat resistance by containing a polyisocyanate compound. Furthermore, since this sulfur-containing urethane resin has a low softening point, it is said that it is excellent in workability
  • Patent Document 6 Japanese Patent Laid-Open No. 11-45778 JP 2001-357773 A JP-A-2005-41925 JP 2004-35857 A JP-A-2-270869 Japanese Patent Laid-Open No. 10-60397
  • a sealing member of a surface-sealing type organic EL element (particularly an organic EL element having a top emission structure) is required to have a high refractive index and high heat resistance.
  • the resin composition for producing the seal member is required to have low curing shrinkage and high workability.
  • a seal member that sufficiently satisfies these performances or a resin composition for producing the seal member has not been proposed.
  • the present invention is a resin composition having low curing shrinkage and high workability, and a cured product having a high refractive index and high heat resistance; It is an object of the present invention to provide a composition having a high refractive index as a cured resin composition.
  • the sealing member for sealing elements of optical equipment and precision equipment particularly the sealing member of the surface sealing type organic EL element (particularly the organic EL element having a top emission structure) has a high refractive index, Low moisture permeability is required.
  • a seal member that sufficiently satisfies this performance and a resin composition for producing the seal member have not been proposed.
  • the present invention is a composition having a low moisture permeability, a cured product having a high refractive index and a high heat resistance; in particular, a composition in which the cured product has a low moisture permeability and a high refractive index. The purpose is to provide.
  • the first of the present invention relates to an epoxy polymerizable composition shown below, a transparent resin for optical materials containing the same, or a cured product thereof.
  • R 4 each independently represents an alkyl group having 1 to 5 carbon atoms; n represents each independently an integer of 0 to 3; m represents each independently an integer of 1 to 3; p represents each independently an integer of 0 to 4; q represents each independently an integer of 0 to 4] [Wherein Y represents a single bond, an oxygen atom or a sulfur atom; R 1 to R 4 , m, n, p, and q are defined in the same manner as in the general formula (1)] (A3) 30 An epoxy polymerizable composition comprising an epoxy compound having a softening point of 0 ° C. or less and (B1) a thiol compound having two or more thiol groups in one molecule.
  • a transparent resin for optical materials comprising the epoxy polymerizable composition according to any one of [1] to [7].
  • [9] A sealing material composition comprising the epoxy polymerizable composition according to any one of [1] to [7].
  • [10] A cured product obtained by curing the transparent resin for optical materials according to [8]. [11] The cured product according to [10], wherein the refractive index is 1.64 or more. [12] The step of heating and mixing the (A2) fluorene type epoxy compound and the (A3) epoxy compound, and the mixture of the epoxy compound obtained in the step and the (B1) thiol compound are mixed at 30 ° C. or less. A process for producing an epoxy polymerizable composition according to any one of [1] to [7].
  • the second of the present invention relates to the following epoxy polymerizable composition, a transparent resin for optical materials containing the same, or a cured product thereof.
  • (A1) An epoxy compound having two or more epoxy groups in one molecule, (B2) a thiol compound having four or more thiol groups in one molecule, and (C) a curing accelerator.
  • An epoxy polymerizable composition comprising.
  • (B2) The epoxy polymerizable composition according to [13], further comprising (D) a silane coupling agent.
  • the epoxy polymerizable composition according to any one of [13] to [15], wherein the (A1) epoxy compound is a fluorene type epoxy compound.
  • the content of the component (A1) is 100 to 300 parts by mass and the content of the component (C) is 0.02 to 40 parts by mass with respect to 100 parts by mass of the component (B2).
  • the content of the component (D) is 0.02 to 40 parts by mass, and the molar ratio of the epoxy group to the thiol group is 1: 0.9 to 1.1.
  • the epoxy polymerizable composition according to any one of the above.
  • [21] A cured product obtained by curing the transparent resin for optical materials according to [19].
  • [22] The cured product according to [21], which has a refractive index of 1.64 or more.
  • the third of the present invention relates to the following optical device and organic EL panel.
  • An optical device comprising the cured product according to any one of [10], [11] and [21] to [23].
  • An organic EL panel including a sealing member filled in a space formed therebetween, wherein the sealing member is any one of [10], [11], and [21] to [23]
  • the epoxy polymerizable composition provided by the present invention has low cure shrinkage and high workability. Further, when an optical device, particularly an organic EL element having a top emission structure, is sealed using the epoxy polymerizable composition, the light extraction efficiency can be increased. In addition, when an organic EL device having a top emission structure is sealed using the epoxy polymerizable composition provided by the present invention, not only the light extraction efficiency can be improved, but also the penetration of moisture into the device can be suppressed. .
  • Epoxy polymerizable composition The cured product of the epoxy polymerizable composition of the present invention is preferably transparent.
  • transparent may be at least transparent enough to be used as a sealing member or an optical material through which light from an optical device passes.
  • the epoxy polymerizable composition of the present invention contains (A) an epoxy compound, (B) a thiol compound, and, if necessary, other optional components (for example, (C) a curing accelerator).
  • the epoxy polymerizable composition of the present invention is roughly classified into two.
  • the first epoxy polymerizable composition of the present invention has high workability at room temperature and gives a cured product having a high refractive index.
  • the first epoxy polymerizable composition comprises (A2) a fluorene type epoxy compound represented by the general formula (1) or (2), (A3) an epoxy compound having a softening point of 30 ° C. or less, and (B1) And a thiol compound having two or more thiol groups in one molecule.
  • Fluorene type epoxy compound can increase the refractive index of the cured product of the resin composition containing the fluorene type epoxy compound. Moreover, since fluorene is a rigid aromatic group, the cured product of the resin composition containing a fluorene type epoxy compound is considered to have high heat resistance.
  • the softening point of the fluorene type epoxy compound is preferably 50 ° C. to 200 ° C., and more preferably 80 ° C. to 160 ° C. This is for improving the workability of the composition of the present invention and enhancing the heat resistance of the cured product.
  • the fluorene type epoxy compound is represented by the general formula (1) or (2).
  • R 1 in the general formula (1) independently represents a hydrogen atom or a methyl group, and is preferably a hydrogen atom in order to increase the reactivity of the epoxy group. “Independently” means that two or more R 1 present in a compound may be the same or different (the same applies hereinafter).
  • R 2 in the general formula (1) is independently a hydrogen atom or a methyl group, but R 2 is preferably a hydrogen atom because of excellent reactivity of the epoxy group.
  • N in the general formula (1) represents the number of repeating alkylene ether units.
  • n is each independently an integer of 0 to 3. Since the softening point of a compound falls, so that n is large, workability
  • m represents the number of substitutions of the epoxy group-containing substituent, and each independently represents an integer of 1 to 3.
  • the “epoxy group-containing substituent” means a substituent containing an epoxy group that is substituted on a benzene ring.
  • m is preferably 1.
  • P in the general formula (1) represents the number of substitutions of R 3 and is independently an integer of 0 to 4.
  • p is preferably 0 or 1, and more preferably 0.
  • R 3 in the general formula (1) independently represents an alkyl group having 1 to 5 carbon atoms. When the number of carbon atoms is large, the softening point is lowered and the workability is improved. However, since the heat resistance and refractive index of the cured product may be too low, R 3 is preferably a methyl group.
  • Q in the general formula (1) represents the number of substitutions of R 4 and is each independently an integer of 0 to 4.
  • q is preferably 0 or 1, and more preferably 0.
  • R 4 in the general formula (1) independently represents an alkyl group having 1 to 5 carbon atoms. When the number of carbon atoms is large, the softening point is lowered and the workability is improved. However, since the heat resistance and refractive index of the cured product may be too low, R 4 is preferably a methyl group.
  • Y in the general formula (2) represents a single bond, an oxygen atom or a sulfur atom.
  • R 1 to R 4 , m, n, p, and q in the general formula (2) are defined in the same manner as in the general formula (1).
  • the compound represented by the general formula (2) has a rigid molecular structure as compared with the molecular structure of the compound represented by the general formula (1). Therefore, the heat resistance of the cured product of the compound represented by the general formula (2) is increased. In particular, when Y is a single bond, the heat resistance of the cured product is significantly improved, but the softening point becomes too high and workability may be reduced. On the other hand, when Y is an oxygen atom or a sulfur atom, the above balance is excellent.
  • the fluorene type epoxy compound can be obtained, for example, by reacting phenol having a fluorene skeleton with epichlorohydrin (also referred to as “3-chloro-1,2-epoxypropane”) by a known method.
  • epichlorohydrin also referred to as “3-chloro-1,2-epoxypropane”
  • a desired epoxy compound can be synthesized by appropriately selecting the structure of a phenol having epichlorohydrin and a fluorene skeleton.
  • R 1 in the general formula (1) can be appropriately changed by using an epichlorohydrin derivative instead of epichlorohydrin as a raw material.
  • an epichlorohydrin derivative having a methyl group substituted at the 2-position of 3-chloro-1,2-epoxypropane is used as a raw material
  • a fluorene type epoxy compound in which R 1 in the general formula (1) is a methyl group can be synthesized. .
  • Phenol having a fluorene skeleton can be synthesized according to the method described in JP-A-2001-206862. If a phenol skeleton having a fluorene skeleton is selected, m, R 3 and p in the general formula (1) can be appropriately changed.
  • A3 Epoxy compound having a softening point of 30 ° C. or lower An epoxy compound having a softening point of 30 ° C. or lower (preferably 25 ° C. or lower) can further improve the workability of the epoxy polymerizable composition.
  • the softening point is measured by the ring and ball method (according to JIS K7234).
  • the epoxy compound having a softening point of 30 ° C. or lower is not particularly limited, but may be a bisphenol type epoxy compound.
  • the bisphenol type epoxy compound preferably has two or more epoxy groups in the molecule.
  • a cured product of the resin composition containing such a compound has a high crosslinking density and excellent heat resistance.
  • the bisphenol type epoxy compound is more preferably a compound represented by the following general formula (3).
  • X represents a single bond, a methylene group, an isopropylidene group, —S—, or —SO 2 —.
  • a bisphenol F type epoxy compound or a bisphenol A type epoxy compound in which X is a methylene group or an isopropylidene group is a liquid at room temperature. Therefore, since it is easy to dissolve a fluorene type epoxy compound, it is preferable to use it mixed with a fluorene type epoxy compound. In particular, a bisphenol F type epoxy compound is preferable.
  • p is the number of substitutions of the substituent R 10 and is an integer of 0 to 4. From the viewpoint of heat resistance and moisture permeability resistance, p is preferably 0.
  • Each R 10 is independently an alkyl group having 1 to 5 carbon atoms, preferably a methyl group.
  • the bisphenol type epoxy compound can be synthesized by a reaction between bisphenol and epichlorohydrin.
  • the structure of the bisphenol-type epoxy compound to be synthesized can be adjusted by appropriately changing the structure of the bisphenol used as a raw material.
  • the thiol compound has two or more thiol groups in one molecule.
  • the (B1) thiol compound can act as a curing agent for (A2) a fluorene type epoxy compound and (A3) an epoxy compound having a softening point of 30 ° C. or less.
  • the thiol group of (B1) thiol compound reacts with the epoxy group of (A2) fluorene type epoxy compound, or (A3) the epoxy group of an epoxy compound having a softening point of 30 ° C. or lower.
  • a cured product excellent in heat resistance, adhesive strength, and the like can be obtained by crosslinking reaction with each other.
  • the compound having two or more thiol groups in one molecule is not particularly limited.
  • the number of thiol groups is large, the cross-linked density of a cured product of the resulting epoxy compound (hereinafter also simply referred to as “cured product”) is improved, so that the heat resistance of the cured product is improved.
  • the number of thiol groups is too large, the thiol groups are close to each other in the molecule of the thiol compound and steric hindrance is likely to occur, and the reactivity with the epoxy group is lowered.
  • cured material will fall.
  • the content of thiol groups in the molecule is represented by thiol equivalent (g / eq).
  • the thiol equivalent of the thiol compound is 80 to 100 g / eq, preferably 85 to 95 g / eq, more preferably 86 to 92 g / eq.
  • the thiol equivalent is a value obtained by dividing the molecular weight of (B1) thiol compound by the number of thiol groups contained in the molecule.
  • the thiol equivalent is less than 80 g / eq, the distance between the cross-linking points of the cured product is shortened, so that the reactivity with the epoxy group is lowered and the conversion rate may not be increased.
  • the thiol equivalent exceeds 100 g / eq, the distance between the crosslinking points of the cured product becomes too long, and the heat resistance of the cured product may be reduced.
  • the thiol compound containing sulfur element in the molecule increases the refractive index of the cured product of the epoxy polymerizable composition. Therefore, the sulfur content of the (B1) thiol compound in the epoxy polymerizable composition is 50 to 80%, preferably 60 to 75%.
  • the sulfur content is determined from the ratio of each element obtained by mass spectrometry of the thiol compound (the ratio of sulfur element to all elements). When the sulfur content is less than 50%, the refractive index of the cured product of the resin composition containing the sulfur content may not be sufficiently increased.
  • the cured product of the resin composition containing the thiol compound since many thiol compounds having a sulfur content exceeding 80% contain an SS bond in the molecule, the cured product of the resin composition containing the thiol compound generates radicals or has chemical stability. May be inferior.
  • the molecular weight of the thiol compound is preferably 140 to 500. (B1) If the molecular weight of the thiol compound is high, the viscosity may be too high or uniform curing may not be achieved. The molecular weight may be obtained by mass spectrometry.
  • the thiol compound is not particularly limited as long as the thiol equivalent and the sulfur content are within the above ranges.
  • Specific examples of (B1) thiol compounds include compounds represented by the following formulas (4), (5) and (6).
  • the compounds represented by the formulas (4), (5) and (6) can be synthesized by known methods, but are also commercially available.
  • the thiol equivalent of the compound of formula (4) is 87 g / eq and the sulfur content is 62%; the thiol equivalent of the compound of formula (5) is 91 g / eq and the sulfur content is 61%;
  • the compound has a thiol equivalent of 89 g / eq and a sulfur content of 72%.
  • the first epoxy polymerizable composition 20 to 100 parts by mass (preferably 20 to 70 parts by mass) of (A3) an epoxy compound having a softening point of 30 ° C. or lower with respect to 100 parts by mass of (A2) fluorene type epoxy compound. Part).
  • (A2) Fluorene type epoxy compounds are often solid at room temperature, and (A3) epoxy compounds having a softening point of 30 ° C. or lower are often liquid at room temperature.
  • the viscosity of the epoxy polymerizable composition is adjusted to an appropriate range (specifically, 0.1 to 100 Pa ⁇ s).
  • the content of the thiol compound is preferably determined by the molar ratio between the thiol group contained in the composition and the epoxy group. This is because it acts as a curing agent for the epoxy compound. That is, when an thiol group is excessively contained in the epoxy polymerizable composition, a thiol group that cannot react with the epoxy group remains in the cured product. For this reason, when the sealing member is used, the member to be sealed may be contaminated. On the other hand, when the thiol group is too small, the crosslinking density cannot be sufficiently increased, and the heat resistance of the obtained cured product may be lowered.
  • composition ratio of (A2), (A3) and (B1) in the composition is not limited to these.
  • the hardening accelerator may be contained in the 1st epoxy polymerizable composition.
  • Examples of the curing accelerator include imidazole compounds and amine compounds. Examples of the imidazole compound include 2-ethyl-4-methylimidazole, and examples of the amine compound include trisdimethylaminomethylphenol.
  • the curing accelerator may be a Lewis base compound.
  • the content of the (C) curing accelerator in the first epoxy polymerizable composition is based on 100 parts by mass of the total amount of (A2) a fluorene type epoxy compound and (A3) an epoxy compound having a softening point of 30 ° C. or less.
  • the amount is preferably 0.1 to 5 parts by mass. This is because the epoxy polymerizable composition has an excellent balance between curability and storage stability.
  • the (D) silane coupling agent may be contained in the first epoxy polymerizable composition.
  • the epoxy polymerizable composition containing a silane coupling agent has high adhesion to the substrate when it is used as a sealing material composition for organic EL.
  • Examples of silane coupling agents include silane compounds having reactive groups such as epoxy groups, carboxyl groups, methacryloyl groups, and isocyanate groups.
  • silane compounds include trimethoxysilylbenzoic acid, ⁇ -methacryloxypropyltrimethoxysilane, vinyltriacetoxysilane, vinyltrimethoxysilane, ⁇ -isocyanatopropyltriethoxysilane, ⁇ -glycidoxypropyltrimethoxy.
  • Silane, ⁇ - (3,4-epoxycyclohexyl) ethyltrimethoxysilane and the like are included.
  • the silane coupling agent may be a single type or a combination of two or more types.
  • the content of the (D) silane coupling agent in the first epoxy polymerizable composition is preferably 0.05 to 30 parts by mass with respect to 100 parts by mass of the epoxy polymerizable composition, and 0.3 to The amount is more preferably 20 parts by mass, and further preferably 0.1 to 10 parts by mass.
  • the first epoxy polymerizable composition may further contain optional components such as other resin components, fillers, modifiers, stabilizers and the like as long as the effects of the present invention are not impaired. it can.
  • other resin components include polyamide, polyamideimide, polyurethane, polybutadiene, polychloroprene, polyether, polyester, styrene-butadiene-styrene block copolymer, petroleum resin, xylene resin, ketone resin, cellulose resin, fluorine series Oligomer, silicon oligomer and polysulfide oligomer are included. These 1 type can be contained individually or in combination of multiple types.
  • the filler examples include glass beads, styrene polymer particles, methacrylate polymer particles, ethylene polymer particles, and propylene polymer particles.
  • the filler may be a combination of a plurality of types.
  • modifiers include polymerization initiation aids, anti-aging agents, leveling agents, wettability improvers, surfactants, plasticizers, and the like. You may use these in combination of multiple types.
  • stabilizer include ultraviolet absorbers, preservatives, and antibacterial agents.
  • the modifier may be a combination of a plurality of types.
  • the first epoxy polymerizable composition can be quickly cured. This is to improve workability when sealing a sealing material such as an organic EL element. “Cure quickly” means, for example, curing within 120 minutes under heating conditions ( ⁇ 100 ° C.).
  • Whether or not the epoxy polymerizable composition is cured may be determined by confirming with a finger whether the cured product is cured on a hot plate and gelled. Whether the epoxy polymerizable composition is cured may be determined from the conversion rate of the epoxy group. The conversion rate of the epoxy group can be calculated from the calorific value of the uncured exothermic peak by thermally analyzing the epoxy polymerizable composition before and after the curing reaction by DSC. It is easier to check whether or not gelation has occurred by finger touch.
  • the curability of the first epoxy polymerizable composition is, for example, a composition ratio of (A2) a fluorene type epoxy compound and (A3) a mixture of epoxy compounds having a softening point of 30 ° C. or less, and (B1) a thiol compound, It is controlled by adjusting the content of the (C) curing accelerator as necessary.
  • the viscosity of the first epoxy polymerizable composition at 25 ° C. is preferably 0.1 to 100 Pa ⁇ s, preferably 0.2 to 70 Pa ⁇ s, and 0.5 to 40 Pa ⁇ s. More preferably, it is 1 to 10 Pa ⁇ s.
  • An epoxy polymerizable composition having a viscosity in this range is excellent in workability.
  • the viscosity is measured with an E-type viscometer (RC-500 manufactured by Toki Sangyo Co., Ltd.) at a measurement temperature of 25 ° C.
  • the first epoxy polymerizable composition preferably has a small curing shrinkage.
  • the cure shrinkage is preferably 10% or less, and more preferably 8% or less.
  • the curing shrinkage rate can be determined by applying the specific gravity of the composition before curing and the specific gravity of the cured product after curing to the following formula.
  • the refractive index of the cured product of the first epoxy polymerizable composition is preferably more than 1.60, and more preferably 1.64 or more.
  • the refractive index refers to a value measured with sodium D line (589 nm). Although the refractive index can be measured by a known method, it can generally be measured by a critical angle method using an Abbe refractometer.
  • the extraction efficiency of light emitted from the organic EL element is enhanced. That is, in the organic EL element having the top emission structure, a transparent cathode electrode layer such as ITO is disposed on the organic EL layer. Since the refractive index of ITO is about 1.8, if the refractive index of the seal member disposed on the cathode electrode layer is too low, the extraction efficiency of light emitted from the organic EL element is lowered.
  • the cured product of the epoxy polymerizable composition is preferably transparent in the visible light region. Transparency can be evaluated by light transmittance using an ultraviolet / visible spectrophotometer.
  • the light transmittance of the cured product of the present invention is more preferably 90% or more at 450 nm. This is for improving the display properties when used as a sealing member of an optical device (including an organic EL element).
  • the first epoxy polymerizable composition contains (A3) an epoxy compound having a softening point of 30 ° C. or lower. Therefore, a mixture of (A2) a fluorene type epoxy compound (having a relatively high softening point) and (A3) an epoxy compound having a softening point of 30 ° C. or lower is uniform with each other without impairing fluidity even at 30 ° C. or lower. Can dissolve. Moreover, since an epoxy compound and a thiol compound can be mixed even at 30 ° C. or lower, a curing reaction does not occur, and workability at room temperature is excellent.
  • the second epoxy polymerizable composition of the present invention can be a cured product having a particularly high refractive index and low moisture permeability.
  • the second epoxy polymerizable composition includes (A1) an epoxy compound having two or more epoxy groups in the molecule, (B2) a thiol compound having four or more thiol groups in the molecule, and (C) curing.
  • An accelerator but may contain other optional components. Examples of the optional component include the aforementioned (D) silane coupling agent.
  • (A1) Epoxy Compound The (A1) epoxy compound contained in the second epoxy polymerizable composition has two or more epoxy groups in one molecule.
  • the (A1) epoxy compound is crosslinked and cured by the (B2) thiol compound.
  • a part or all of the epoxy compound may be (A2) a fluorene type epoxy compound containing a fluorene skeleton in its molecular structure.
  • (A2) fluorene type epoxy compounds include the compounds represented by the aforementioned general formulas (1) and (2).
  • the part or all of the (A1) epoxy compound contained in the second epoxy polymerizable composition may be (A3) an epoxy compound having a softening point of 30 ° C. or lower (preferably 25 ° C. or lower).
  • (A3) Examples of the epoxy compound having a softening point of 30 ° C. or lower (preferably 25 ° C. or lower) include the bisphenol type epoxy compound represented by the general formula (3).
  • the second epoxy polymerizable composition preferably contains an epoxy compound having a softening point of 30 ° C. or less for obtaining fluidity at room temperature.
  • the (B2) thiol compound contained in the second epoxy polymerizable composition has four or more thiol groups in one molecule.
  • the (B2) thiol compound can act as a curing agent for the (A1) epoxy compound. That is, the thiol group of the (B2) thiol compound reacts with the epoxy group of the (A1) epoxy compound, thereby cross-linking the (A1) epoxy compounds to obtain a cured product having excellent heat resistance and adhesive strength. be able to.
  • (B2) thiol compound contains four or more thiol groups in one molecule, the crosslinking density of the cured product of the epoxy resin is increased and the moisture permeability is decreased.
  • the thiol equivalent of the thiol compound is 80 to 100 g / eq, preferably 85 to 95 g / eq, and more preferably 86 to 92 g / eq.
  • the molecular weight of the (B2) thiol compound is preferably 140 to 500 as described above.
  • the (B2) thiol compound examples include the compounds represented by the above formulas (5) and (6).
  • the (B2) thiol compound may have 5 or more thiol groups.
  • the (C) curing accelerator contained in the second epoxy polymerizable composition has a function of adjusting the balance between curability and storage stability of the epoxy polymerizable composition.
  • Examples of the (C) curing accelerator include those similar to the (C) curing accelerator as described above.
  • the second epoxy polymerizable composition may contain (D) a silane coupling agent.
  • Examples of (D) silane coupling agents include those similar to (D) silane coupling agents similar to those described above.
  • the content of the (A1) epoxy compound in the second epoxy polymerizable composition is preferably 100 to 300 parts by mass with respect to 100 parts by mass of (B2) thiol compound.
  • the second epoxy polymerizable composition comprises (A3) softening at 30 ° C. or less of 20 to 100 parts by mass (preferably 20 to 70 parts by mass) with respect to 100 parts by mass of (A2) fluorene type epoxy compound. It is preferable that the epoxy compound which has a point is included. This is for appropriately adjusting the viscosity of the epoxy polymerizable composition.
  • the content of the (C) curing accelerator in the second epoxy polymerizable composition is preferably 0.02 to 40 parts by mass with respect to 100 parts by mass of (B2) thiol compound. Further, the amount is preferably 0.1 to 5 parts by mass with respect to 100 parts by mass in total of (B2) thiol compound and (A1) epoxy compound.
  • the content of (D) the silane coupling agent in the second epoxy polymerizable composition is preferably 0.02 to 40 parts by mass with respect to 100 parts by mass of (B2) thiol compound.
  • the content of (D) the silane coupling agent is preferably 0.05 to 30 parts by mass and preferably 0.1 to 20 parts by mass with respect to 100 parts by mass of (B2) thiol compound. More preferably, it is 0.3 to 10 parts by mass.
  • the second epoxy polymerizable composition may further contain optional components such as other resin components, fillers, modifiers, stabilizers and the like as long as the effects of the present invention are not impaired. it can. Specific examples of other resin components, fillers, modifiers, stabilizers, and the like and the content in the epoxy polymerizable composition are the same as described above.
  • the second epoxy polymerizable composition can be quickly cured as described above.
  • the curability of the second epoxy polymerizable composition is controlled, for example, by adjusting the composition ratio of (A1) epoxy compound and (B2) thiol compound and (C) the content of the curing accelerator. .
  • the viscosity of the second epoxy polymerizable composition at 25 ° C. is preferably 0.1 to 100 Pa ⁇ s.
  • the curability and viscosity of the second epoxy polymerizable composition can be measured in the same manner as described above.
  • the cured product of the second epoxy polymerizable composition preferably has a high refractive index exceeding 1.60 (preferably 1.64 or more), as described above. Further, the cured product preferably has a high light transmittance of 90% or more at 450 nm, as described above. Further, the curing shrinkage rate of the cured product is preferably 10% or less, more preferably 8% or less, as described above. The refractive index, light transmittance and cure shrinkage of the cured product can be measured in the same manner as described above.
  • the cured product of the thickness of 100 [mu] m, JIS Z0208 60 ° C. conforming to moisture permeability in 90% RH is preferably not more than 20g / m 2 / 24h, more preferably at most 15g / m 2 / 24h.
  • the second epoxy polymerizable composition contains a thiol compound having four or more thiol groups in one molecule. For this reason, a hardened
  • the epoxy polymerizable composition of the present invention can be produced by any method as long as the effects of the invention are not impaired.
  • the epoxy polymerizable composition includes 1) a step of preparing (A) an epoxy compound, 2) a step of mixing (A) the epoxy compound and (B) a thiol compound at a temperature at which no curing reaction occurs, It is manufactured by the method containing. Mixing includes a method in which these components are charged into a flask and agitated, and a method in which the components are kneaded with three rolls.
  • the epoxy polymerizable composition containing (C) a curing accelerator, or (E) other optional component is, after 2) step, 3) (C) a step of mixing with a curing accelerator, or 4) (E) other optional. And a step of mixing with the components.
  • step 1) when (A) the epoxy compound contains a large amount of an epoxy compound having a high softening point (for example, a fluorene type epoxy compound having a softening point of 50 ° C. or higher), the epoxy compound is heated under a heating condition (for example, 60 ° C. or higher). It is preferable to mix the compounds.
  • an epoxy compound having a high softening point for example, a fluorene type epoxy compound having a softening point of 50 ° C. or higher
  • the epoxy compound is heated under a heating condition (for example, 60 ° C. or higher). It is preferable to mix the compounds.
  • step 2) (A) epoxy compound and (B) thiol compound are mixed, for example, under non-heating conditions (30 ° C. or lower), and (A) epoxy compound and (B) thiol compound curing reaction. It is preferable to suppress the progress (gelation, etc.) of (C) It is preferable that a hardening accelerator is similarly mixed at 30 degrees C or less.
  • the (A) epoxy compound contains (A3) an epoxy compound having a softening point of 30 ° C. or lower because it is easy to mix with the (B) thiol compound under non-heating conditions.
  • the epoxy polymerizable composition of this invention can be used as a sealing member especially by hardening
  • the seal member include organic EL panels, liquid crystal displays, LEDs, seal members for electronic paper use; solar cells, seal members for CCD use, and the like.
  • the optical material include an optical adhesive, an optical film, a hologram material, a photonic crystal, a diffraction grating, a prism, a refractive index distribution lens, an optical fiber, and an optical waveguide film.
  • the epoxy polymerizable composition of the present invention is preferably used as, for example, a sealing material composition (or a transparent resin composition for optical materials) that serves as a sealing member of a light emitting device (in particular, an organic EL device having a top emission structure).
  • the sealing material composition of the present invention is useful as a composition for producing a sealing member of an organic EL element having a top emission structure. That is, the organic EL panel of the present invention is interposed between the display substrate on which the organic EL element is disposed, the counter substrate paired with the display substrate, the display substrate and the counter substrate, and seals the organic EL element. And a sealing member.
  • a sealing member that exists on the peripheral edge of the counter substrate is referred to as a frame-sealed organic EL panel.
  • a sealing member filled in a space formed between an organic EL element and a counter substrate is called a surface-sealing type organic EL panel. Since the cured product has a high refractive index, the sealing material composition of the present invention is particularly suitable for producing a surface-sealing type sealing member of an organic EL panel having a top emission structure.
  • FIG. 1 is a cross-sectional view schematically showing a surface-sealing type organic EL element having a top emission structure.
  • 1 is a sealing member; 20 is an organic EL layer; 21 is a cathode transparent electrode layer (made of ITO, IZO, etc.); 22 is an anode reflective electrode layer (made of aluminum, silver, etc.) 30 is a display substrate; 31 is a counter substrate (sealing plate).
  • the substrate is usually made of glass.
  • the sealing member 1 in FIG. 1 is a cured product of the above-described sealing material composition.
  • the cathode transparent electrode layer 21 may be made of silicon oxide, silicon nitride, or the like and covered with a protective film.
  • organic EL panel using a cured product of the sealing material composition of the present invention as a sealing member can be produced by any method.
  • the organic EL panel of the present invention is paired on 1) a step of applying a sealing material composition to a display substrate on which organic EL elements are arranged, and 2) on a display substrate on which the sealing material composition is applied. It can be manufactured by a method including a step of obtaining a laminate by superimposing a counter substrate (sealing plate), and a step of curing a sealing material composition of the obtained laminate. Each step may be performed according to a known method. Examples of the method of applying the sealing material composition include screen printing and a method using a dispenser. The curing step is preferably performed at 25 to 100 ° C. for 0.1 to 2 hours.
  • the organic EL panel of the present invention is 1) a step of obtaining a laminate in which a display substrate on which organic EL elements are arranged and a counter substrate (sealing plate) paired with the substrate are overlapped with a spacer. It may be produced by a method including 2) a step of filling a sealing material composition between the display substrate and the counter substrate of the obtained laminate, and 3) a step of curing the filled sealing material composition.
  • the compound is represented by the following formula (7).
  • the softening point of the compound was 91.5 ° C., and the epoxy value was 3.89 eq / kg (epoxy equivalent 257 g / eq).
  • Bisphenol type epoxy compound YL-983U (manufactured by Japan Epoxy Resin Co., Ltd.)
  • the compound is a bisphenol F type epoxy compound.
  • the compound was liquid at room temperature and the epoxy equivalent was 169 g / eq.
  • 1,1,3,3-tetrakis (mercaptomethylthio) propane (Mitsui Chemicals)
  • the compound represented by the following formula (6) is described in Japanese Patent No. 399427.
  • the molecular weight of the compound is 356. Since the compound has four thiol groups in the molecule, the thiol equivalent is 89.0 g / eq.
  • the sulfur content of the compound is 71.9%.
  • FSH (Mitsui Chemicals)
  • the compound represented by the following formula (5) is described in Japanese Patent No. 3444682.
  • the molecular weight of the compound is 366. Since the compound has four thiol groups in the molecule, the thiol equivalent is 91.5 g / eq.
  • the sulfur content of the compound is 61.2%.
  • Curing accelerator 2E4MZ (2-ethyl-4-4methylimidazole) (manufactured by Shikoku Chemicals) JER Cure 3010 (Trisdimethylaminomethylphenol) (Japan Epoxy Resin Co., Ltd.)
  • Example 1 50 parts by mass of YL-983U and 50 parts by mass of PG-100 were charged into the flask and mixed while heating. To this, 44.2 parts by mass of the compound represented by formula (4) (hereinafter referred to as “GST”) was added and mixed at room temperature, and 2.0 parts by mass of 2E4MZ was added and stirred at room temperature. Thus, an epoxy polymerizable composition was obtained.
  • GST the compound represented by formula (4)
  • Example 2 The composition ratio (weight ratio) as shown in Table 1 was mixed under the same conditions as in Example 1 to obtain an epoxy polymerizable composition.
  • Example 6 the ratio of epoxy equivalent to thiol equivalent in the epoxy polymerizable composition was 1: 0.8, and in Example 7, it was 1: 1.2.
  • Solubility A case where the epoxy polymerizable composition was a transparent and uniform solution was visually evaluated as ⁇ , and a case where it was not transparent (such as cloudy) was evaluated as ⁇ .
  • the epoxy polymerizable composition was poured into a mold and heated at 80 ° C. for 2 hours to obtain a cured product having a thickness of 0.2 mm.
  • the refractive index of the cured product was measured using a refractometer (multi-wavelength Abbe refractometer DR-M4 manufactured by Atago Co., Ltd.). The measurement was performed using sodium D line (589 nm), and the refractive index of the cured product was used.
  • Light transmittance The light transmittance at 450 nm of the cured product prepared as described above was measured using an ultraviolet / visible spectrophotometer (MULTISPEC-1500 manufactured by Shimadzu Corporation).
  • Moisture permeability As described above, a cured product having a thickness of 100 ⁇ m was prepared, and the moisture permeability under conditions of 60 ° C. and 90% RH was measured according to JIS Z0208.
  • Table 1 in FIG. 2 shows the evaluation results of the epoxy polymerizable compositions of Examples 1 to 8 and their cured products.
  • the evaluation results of the epoxy polymerizable compositions of Comparative Examples 1 to 4 and their cured products are shown in Table 2 of FIG.
  • the cured products of Examples 1 to 8 (cured products of the first epoxy polymerizable composition of the present invention) have a high refractive index of 1.64 or more, heat resistance, and low curing shrinkage. The property is also good. Furthermore, since the epoxy polymerizable compositions of Examples 1 to 8 have a viscosity in an appropriate range at room temperature, they have good solubility and excellent curability. In particular, it can be seen that the epoxy polymerizable compositions of Examples 1, 3, and 6 to 8 have an appropriate viscosity, and the cured product has an extremely high refractive index of 1.65 or more.
  • the refractive index of the cured product of Comparative Example 2 is about 1.63. Moreover, since the composition of Comparative Example 1 did not contain a curing accelerator, it could not be cured. Since the compositions of Comparative Examples 3 and 4 did not contain a bisphenol type epoxy compound, the viscosity at room temperature was high, the solubility was low, and the curability and the like could not be evaluated.
  • Example 9 The flask was charged with 128 parts by mass of YL-983U and 86 parts by mass of PG-100, and mixed for 1 hour while heating at 90 to 100 ° C. 100 parts by weight of 1,1,3,3-tetrakis (mercaptomethylthio) propane was added and mixed for 1 hour at room temperature. Further, 0.5 parts by mass of 2E4MZ was added and stirred at room temperature for 5 minutes to obtain an epoxy polymerizable composition.
  • Example 10 to 12 Under the same composition ratio (weight ratio) as shown in Table 1, under the same conditions as in Example 9, (A1) an epoxy compound was mixed, and (B2) a thiol compound having four thiol groups in the molecule was added. Then, (C) a curing accelerator was added to obtain an epoxy polymerizable composition.
  • the cured products of Examples 9-12 are suppressed in moisture permeability 12 ⁇ 18g / m 2 / 24h .
  • the cured product of Comparative Example 5 and Example 1 described above has higher moisture permeability than the cured products of Examples 9-12. This is considered to be due to the number of thiol groups contained in the molecule of the thiol compound. That is, since there are many thiol groups contained in the thiol compound, it is considered that the crosslink density of the cured product was increased and the moisture permeability could be lowered.
  • the refractive index of the cured product obtained in Examples 9, 11, and 12 was 1.66, whereas the refractive index of the cured product obtained in Example 10 was 1.64.
  • cured material can be raised by using the epoxy compound which has a fluorene skeleton.
  • the cured product of the first epoxy polymerizable composition of the present invention is used as a sealing member for an organic EL element, particularly a surface sealing type sealing member for an organic EL element having a top emission structure, the light extraction efficiency is improved. . Furthermore, since the first epoxy polymerizable composition of the present invention has good workability, the productivity of the organic EL panel can be improved. If the cured product of the second epoxy polymerizable composition of the present invention is used as a surface-sealing type sealing member for an organic EL element having a top emission structure in particular, the transmission of moisture and the like is reduced and the light extraction efficiency is improved. To do.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Materials Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Epoxy Resins (AREA)
  • Electroluminescent Light Sources (AREA)
  • Liquid Crystal (AREA)

Abstract

 本発明の目的の一つは、低硬化収縮性であって高作業性であるエポキシ重合性組成物であり、かつその硬化物が高屈折率かつ高耐熱性である組成物を提供することである。エポキシ重合性組成物は、(A2)下記一般式(1)または(2)で表されるフルオレン型エポキシ化合物と、(A3)30°C以下の軟化点を有するエポキシ化合物と、(B1)1分子内に2つ以上のチオール基を有するチオール化合物と、を含む。  

Description

エポキシ重合性組成物、それを含むシール材組成物
 本発明は、エポキシ重合性組成物、それを含む光学材料用透明樹脂およびシール材組成物、ならびにその硬化物からなるシール部材を有する光デバイスに関する。
 有機ELディスプレイは、消費電力が少なく、かつ視野角依存性が低いことから、次世代のディスプレイまたは照明装置として期待されている。しかし、有機EL素子は、大気中の水分や酸素によって劣化しやすいという問題がある。そのため有機EL素子はシール部材で封止されて使用される。
 有機EL素子を封止する方法には、「枠封止」と称される方法と、「面封止」と称される方法とがある。枠封止とは、基板上に配置された有機EL素子の上に、封止キャップを配した構造体において、封止キャップの周縁部をシール部材で封止する方法である(特許文献1などを参照)。封止キャップは、一定の形状に加工されたステンレスやガラスの板状部材である。この加工に多くの労力が必要とされるため、当該方法は生産性が十分でない。また、当該方法によれば封止キャップと有機EL素子の間に空間が生じるため、封止キャップがたわみやすい。そのため、大型の有機ELパネルの製造には適用しにくいという問題があった。
 この問題を改善しうる方法である面封止とは、基板上に配置された有機EL素子の上に封止板を配した構造体において、封止板と基板との間、および有機EL素子と封止板との間に存在する空間に、シール材組成物を充填してシールする方法である(特許文献2などを参照)。当該方法では、封止キャップを加工する必要がないため、生産性に優れ、かつ封止板内部に空間を有さないため、封止板がたわまないという利点がある。
 面封止のシール部材は、有機EL素子と封止板との間に形成される空間に配置されるため、屈折率が高い(透明なカソード電極との屈折率の差が小さい)ことが必要とされる(特にトップエミッション構造の素子)。シール部材の屈折率が低いと、カソード電極とシール部材との間で全反射が生じて、有機EL素子からの発光の取り出し効率が低下するからである。
 また、面封止のシール部材を作製するためのシール材組成物には、硬化収縮率が低いことも求められる。硬化収縮率が高いと、内部応力によって硬化物であるシール部材と基板との間に微細な隙間ができ、接着強度が低下し、さらには耐透湿性が低下するからである。
 また、面封止のシール部材には、一定の耐熱性が要求される。シール部材の耐熱性が低いと、得られる有機ELパネルの信頼性が低下するからである。
 さらに、面封止のシール部材を作製するためのシール材組成物には、室温付近の温度で液状であることが要求される。シール材組成物が室温付近の温度で液状でないと、作業性が悪く、有機EL素子を封止する際に、シール材組成物を加熱して溶融させる必要がある。その場合、ディスプレイ部材の熱歪みが生じるため、十分に封止できないことがある。また、シール材組成物を加熱すると、硬化反応が進み粘度が不安定になりやすいからである。
 光学用途に適した樹脂組成物としては、例えば、フルオレン骨格を有するエポキシ樹脂と、酸無水物とを含むエポキシ樹脂組成物が提案されている(特許文献3などを参照)。このエポキシ樹脂組成物は、分子構造内にフルオレン骨格を有するエポキシ樹脂を含むため、その硬化物は耐熱性に優れ、高い透明度を有するとされている。また、エポキシ樹脂組成物の組成から、その硬化物は1.63程度の高い屈折率を有すると考えられる。しかし、このエポキシ樹脂組成物の軟化点は高く、室温で固体である。このため、このエポキシ樹脂組成物をシール材組成物として使用する場合、作業性が悪いという問題点があった。
 また、光学部品の張り合わせに適した接着剤組成物として、チオール化合物と、エポキシ化合物とを含む光硬化型接着剤組成物が提案されている(特許文献4などを参照)。この光硬化型接着剤組成物は、硫黄元素を多く含むため、その硬化物は高い屈折率を有するとされている。また、光硬化型接着剤組成物は、フルオレン骨格のような剛直な分子構造を有しないため軟化点が低く、室温での作業性に優れるが、一方で耐熱性が低いという問題点があった。
 また、レンズ用途に適した樹脂として、ポリイソシアナート化合物と、チオール化合物とを含む含硫黄ウレタン樹脂が提案されている(特許文献5などを参照)。この含硫黄ウレタン樹脂は、硫黄元素を多く含むため、その硬化物は高い屈折率を有し、かつポリイソシアナート化合物を含むことで一定の耐熱性を有するとされている。さらに、この含硫黄ウレタン樹脂は、低い軟化点を有するため室温での作業性に優れるとされている。しかし、含硫黄ウレタン樹脂は、エポキシ樹脂と異なり、重合による硬化収縮が大きく、シール部材としての用途に適さないという問題点があった。
 さらに、液晶ディスプレイを始めとする光学機器や精密機器は、外気からの水分により素子の劣化や故障が生じる。よって、これらの光学素子や精密機械を水分から保護する低透湿なシール部材が提案されている(特許文献6などを参照)。
特開平11-45778号公報 特開2001-357973号公報 特開2005-41925号公報 特開2004-35857号公報 特開平2-270869号公報 特開平10-60397号公報
 前述の通り、特に、面封止型の有機EL素子(特にトップエミッション構造の有機EL素子)のシール部材には、高屈折率および高耐熱性が求められる。また、当該シール部材を作製するための樹脂組成物には、低硬化収縮性および高作業性が求められる。ところが、これらの性能を充分に満足するシール部材または該シール部材を作製するための樹脂組成物は提案されていない。このような事情に鑑み、本発明は、低硬化収縮性であって高作業性である樹脂組成物であり、かつその硬化物が高屈折率かつ高耐熱性である組成物;特に、高作業性である樹脂組成物であり、かつその硬化物が高屈折率である組成物を提供することを目的とする。
 また、光学用機器や精密機器の素子をシールするシール部材、特に面封止型の有機EL素子(特にトップエミッション構造の有機EL素子)のシール部材には、高屈折率であるだけでなく、低透湿性が求められる。ところが、この性能を充分に満足するシール部材および該シール部材を作製するための樹脂組成物は提案されていない。このような事情に鑑み、本発明は、低い透湿性を有し、高屈折率かつ高耐熱性である硬化物となる組成物;特に、硬化物が低透湿性かつ高屈折率である組成物を提供することを目的とする。
 本発明者らは、鋭意検討した結果、特定の骨格を有するエポキシ化合物と、特定のチオール化合物とを含むエポキシ重合性組成物が、上記課題を解決することを見出した。本発明の第一は、以下に示すエポキシ重合性組成物、それを含む光学材料用透明樹脂あるいはその硬化物等に関する。
 [1] (A2)下記一般式(1)または(2)で表されるフルオレン型エポキシ化合物と、
Figure JPOXMLDOC01-appb-C000001
[式中、Rは、それぞれ独立に水素原子またはメチル基を表し;Rは、それぞれ独立に水素原子またはメチル基を表し;Rは、それぞれ独立に炭素数が1~5のアルキル基を表し;Rは、それぞれ独立に炭素数が1~5のアルキル基を表し;nは、それぞれ独立に0~3の整数を表し;mは、それぞれ独立に1~3の整数を表し;pは、それぞれ独立に0~4の整数を表し;qは、それぞれ独立に0~4の整数を表す]
Figure JPOXMLDOC01-appb-C000002
[式中、Yは、単結合、酸素原子または硫黄原子を表し;R~R、m、n、p、およびqは、一般式(1)と同様に定義される](A3)30℃以下の軟化点を有するエポキシ化合物と、(B1)1分子内に2つ以上のチオール基を有するチオール化合物と、を含む、エポキシ重合性組成物。
 [2] E型粘度計で測定された、25℃での粘度が0.1~100Pa・sである、[1]に記載のエポキシ重合性組成物。
 [3] 前記(B1)チオール化合物のチオール当量が、80~100g/eqであり、かつ、前記(B1)チオール化合物の硫黄含有率が、50~80%である、[1]または[2]に記載のエポキシ重合性組成物。
 [4] 前記(B1)チオール化合物のチオール当量が、85~95g/eqであり、かつ、前記硫黄含有率が、60~75%である、[1]~[3]のいずれかに記載のエポキシ重合性組成物。
 [5] 前記(A3)エポキシ化合物が、ビスフェノール型エポキシ化合物である、[1]~[4]のいずれかに記載のエポキシ重合性組成物。
 [6] 前記(A2)成分100質量部に対して、前記(A3)成分の含有量が、20~70質量部である、[1]~[5]のいずれかに記載のエポキシ重合性組成物。
 [7] 前記(B1)チオール化合物の分子量が、140~500である、[1]~[6]のいずれかに記載のエポキシ重合性組成物。
 [8] [1]~[7]のいずれかに記載のエポキシ重合性組成物を含む、光学材料用透明樹脂。
 [9] [1]~[7]のいずれかに記載のエポキシ重合性組成物からなる、シール材組成物。
 [10] [8]に記載の光学材料用透明樹脂を硬化してなる、硬化物。
 [11] 屈折率が1.64以上である、[10]に記載の硬化物。
 [12] 前記(A2)フルオレン型エポキシ化合物と前記(A3)エポキシ化合物とを加熱混合する工程と、前記工程で得られたエポキシ化合物の混合物と前記(B1)チオール化合物とを30℃以下で混合する工程と、を含む、[1]~[7]のいずれかに記載のエポキシ重合性組成物の製造方法。
 本発明の第二は、以下に示すエポキシ重合性組成物、それを含む光学材料用透明樹脂、あるいはその硬化物等に関する。
 [13] (A1)1分子内に2つ以上のエポキシ基を有するエポキシ化合物と、(B2)1分子内に4つ以上のチオール基を有するチオール化合物と、(C)硬化促進剤と、を含むエポキシ重合性組成物。
 [14] (D)シランカップリング剤をさらに含む、[13]に記載のエポキシ重合性組成物。
 [15] 前記(B2)チオール化合物のチオール当量が、80~100g/eqである、[13]または[14]に記載のエポキシ重合性組成物。
 [16] 前記(A1)エポキシ化合物がフルオレン型エポキシ化合物である、[13]~[15]のいずれかに記載のエポキシ重合性組成物。
 [17] 前記(B2)成分100質量部に対して、前記(A1)成分の含有量が100~300質量部であり、前記(C)成分の含有量が0.02~40質量部であり、前記(D)成分の含有量が0.02~40質量部であり、かつエポキシ基とチオール基のモル比が1:0.9~1.1である、[14]~[16]のいずれかに記載のエポキシ重合性組成物。
 [18] 前記(B2)チオール化合物の分子量が、140~500である、[13]~[17]のいずれかに記載のエポキシ重合性組成物。
 [19] [13]~[18]のいずれかに記載のエポキシ重合性組成物を含む光学材料用透明樹脂。
 [20] [13]~[18]のいずれかに記載のエポキシ重合性組成物からなる、シール材組成物。
 [21] [19]に記載の光学材料用透明樹脂を硬化してなる、硬化物。
 [22] 屈折率が1.64以上である、[21]に記載の硬化物。
 [23] 厚み100μmの硬化物の、JIS Z0208に準拠した60℃、90%RHにおける透湿度が20g/m/24h以下であり、かつ、前記(B2)チオール化合物の硫黄含有量が50~80%である、[21]または[22]に記載の硬化物。
 本発明の第三は、以下に示す光デバイスおよび有機ELパネルに関する。
 [24] [10]、[11]および[21]~[23]のいずれかに記載の硬化物を含む光デバイス。
 [25] 有機EL素子が配置された表示基板と、前記表示基板と対になる対向基板と、前記表示基板と前記対向基板との間に介在し、かつ前記有機EL素子と前記対向基板との間に形成される空間に充填されているシール部材と、を含む有機ELパネルであって、前記シール部材は、[10]、[11]および[21]~[23]のいずれかに記載の硬化物である、有機ELパネル。
 [26] 有機EL素子はトップエミッション構造である、[25]に記載の有機ELパネル。
 本発明により提供されるエポキシ重合性組成物は、低硬化収縮性であって高作業性である。また、エポキシ重合性組成物を用いて、光デバイス、特にトップエミッション構造の有機EL素子を封止すると、光の取り出し効率を高めることができる。
 また、本発明により提供されるエポキシ重合性組成物を用いて、特にトップエミッション構造の有機EL素子を封止すると、光の取り出し効率を高めるだけでなく、素子内部への水分の透過を抑制できる。
本発明の面封止型有機ELパネルの一例を示す断面図である。 本発明の実施例の結果を示す表である。 本発明の比較例の結果を示す表である。
 [符号の説明]
 1  シール部材
 20 有機EL層
 21 カソード透明電極層
 22 アノード反射電極層
 30 基板
 31 封止板
 1.エポキシ重合性組成物
 本発明のエポキシ重合性組成物の硬化物は、透明となることが好ましい。透明とは、少なくとも光デバイスからの光が通過するシール部材や光学材料として用いられる程度に透明であればよい。本発明のエポキシ重合性組成物は、(A)エポキシ化合物と、(B)チオール化合物と、必要に応じて他の任意成分(例えば(C)硬化促進剤)と、を含む。本発明のエポキシ重合性組成物は、2つに大別される。
 まず、本発明の第1のエポキシ重合性組成物について説明する。第1のエポキシ重合性組成物は、室温での作業性が高く、高屈折率の硬化物を与える。第1のエポキシ重合性組成物は、(A2)一般式(1)または(2)で表されるフルオレン型エポキシ化合物と、(A3)30℃以下の軟化点を有するエポキシ化合物と、(B1)1分子内に2つ以上のチオール基を有するチオール化合物と、を含む。
 (A2)フルオレン型エポキシ化合物
 フルオレン型エポキシ化合物は、それを含む樹脂組成物の硬化物の屈折率を高めることができる。また、フルオレンは剛直な芳香族基であるため、フルオレン型エポキシ化合物を含む樹脂組成物の硬化物は、耐熱性が高くなると考えられる。
 フルオレン型エポキシ化合物の軟化点は、50℃~200℃であることが好ましく、80℃~160℃であることがより好ましい。本発明の組成物の作業性をよくして、かつ硬化物の耐熱性を高めるためである。
 フルオレン型エポキシ化合物は、一般式(1)または(2)で表される。
Figure JPOXMLDOC01-appb-C000003
 一般式(1)におけるRは、それぞれ独立して水素原子またはメチル基を表すが、エポキシ基の反応性を高めるために、水素原子であることが好ましい。「それぞれ独立して」とは、化合物中に2以上存在するRが互いに同一であっても異なってもいてもよいことを意味する(以下において同様である)。
 一般式(1)におけるRは、それぞれ独立して水素原子またはメチル基であるが、エポキシ基の反応性に優れるため、Rは水素原子であることが好ましい。
 一般式(1)におけるnは、アルキレンエーテルユニットの繰り返し数を表す。nはそれぞれ独立して0~3の整数である。nが大きいほど化合物の軟化点が低下するので、後述するように、樹脂組成物としたときの作業性が向上する。しかし、nが大きすぎると、その硬化物の耐熱性が低下することがある。よってnは0または1であることが好ましい。
 一般式(1)におけるmは、エポキシ基含有置換基の置換数を表し、それぞれ独立して1~3の整数である。「エポキシ基含有置換基」とは、ベンゼン環に置換されている、エポキシ基を含む置換基を意味する。mが大きいと硬化物としたときの耐熱性に優れるが、硬化収縮率が高くなりすぎることがある。よってmは1であることが好ましい。
 一般式(1)におけるpは、Rの置換数を表し、それぞれ独立に0~4の整数である。pが大きいと軟化点が下がり作業性が向上するが、硬化物としたときの耐熱性や屈折率が低くなりすぎることがある。よってpは0または1であることが好ましく、0であることがより好ましい。一般式(1)おけるRは、それぞれ独立に炭素数が1~5のアルキル基を表す。炭素数が大きいと、軟化点が下がり作業性が向上するが、硬化物としたときの耐熱性や屈折率が低くなりすぎることがあるため、Rはメチル基であることが好ましい。
 一般式(1)におけるqは、Rの置換数を表し、それぞれ独立に0~4の整数である。qが大きいと軟化点が下がり作業性が向上するが、硬化物としたときの耐熱性や屈折率が低くなりすぎることがある。よってqは0または1であることが好ましく、0であることがより好ましい。一般式(1)おけるRは、それぞれ独立に炭素数が1~5のアルキル基を表す。炭素数が大きいと、軟化点が下がり作業性が向上するが、硬化物としたときの耐熱性や屈折率が低くなりすぎることがあるため、Rはメチル基であることが好ましい。
Figure JPOXMLDOC01-appb-C000004
 一般式(2)におけるYは、単結合、酸素原子または硫黄原子を表す。一般式(2)におけるR~R、m、n、p、およびqは、一般式(1)と同様に定義される。
 一般式(2)で表される化合物は、一般式(1)で表される化合物の分子構造に比べて、剛直な分子構造を有する。そのため、一般式(2)で表される化合物の硬化物の耐熱性は高くなる。特に、Yが単結合である場合は、硬化物の耐熱性が著しく向上するが、軟化点が高くなり過ぎて作業性が低下することがある。一方で、Yが酸素原子または硫黄原子である場合は、上記のバランスに優れる。
 フルオレン型エポキシ化合物は、例えば、フルオレン骨格を有するフェノールと、エピクロルヒドリン(「3-クロロ-1,2-エポキシプロパン」ともいう)を公知の方法で反応させて得ることができる。エピクロルヒドリンとフルオレン骨格を有するフェノールの構造を適宜選択することで、所望のエポキシ化合物を合成できる。
 すなわち、エピクロロヒドリンの代わりに、エピクロルヒドリン誘導体を原料とすれば一般式(1)におけるRを適宜変更できる。例えば、3-クロロ-1,2-エポキシプロパンの2位にメチル基が置換されたエピクロルヒドリン誘導体を原料とすれば、一般式(1)におけるRがメチル基であるフルオレン型エポキシ化合物を合成できる。
 フルオレン骨格を有するフェノールは、特開2001-206862号公報に記載されている方法に準じて合成できる。フルオレン骨格を有するフェノールの骨格を選択すれば、一般式(1)におけるmとRとpを適宜変更できる。
 また、特許文献3に記載の多官能水酸基含有フルオレン化合物を原料とすれば、一般式(1)におけるRが水素原子またはメチル基であって、nが0でないフルオレン型エポキシ化合物を合成できる。
 (A3)30℃以下の軟化点を有するエポキシ化合物
 30℃以下(好ましくは25℃以下)の軟化点を有するエポキシ化合物は、エポキシ重合性組成物の作業性をさらに向上させうる。軟化点は環球法(JIS K7234に準拠)により測定される。
 30℃以下の軟化点を有するエポキシ化合物は、特に限定されないが、ビスフェノール型エポキシ化合物であってもよい。
 ビスフェノール型エポキシ化合物は、分子内に2つ以上のエポキシ基を有することが好ましい。このような化合物を含む樹脂組成物の硬化物は、架橋密度が高くなり耐熱性に優れる。さらに、ビスフェノール型エポキシ化合物は、下記一般式(3)で示される化合物がより好ましい。
Figure JPOXMLDOC01-appb-C000005
 一般式(3)において、Xは単結合、メチレン基、イソプロピリデン基、-S-、または-SO-を表す。Xがメチレン基またはイソプロピリデン基であるビスフェノールF型エポキシ化合物、またはビスフェノールA型エポキシ化合物は室温で液体である。そのため、フルオレン型エポキシ化合物を溶解させやすいため、フルオレン型エポキシ化合物と混合して用いることが好ましい。特に、ビスフェノールF型エポキシ化合物が好ましい。
 一般式(3)において、pは置換基R10の置換数であり、0~4の整数である。耐熱性や耐透湿性の観点から、pは0であることが好ましい。R10はそれぞれ独立して、炭素数が1~5のアルキル基であり、メチル基であることが好ましい。
 ビスフェノール型エポキシ化合物とは、ビスフェノールとエピクロロヒドリンとの反応によって合成されうる。合成されるビスフェノール型エポキシ化合物の構造は、原料となるビスフェノールの構造を適宜変更することにより調整することができる。
 (B1)チオール化合物
 (B1)チオール化合物は、1分子内に2以上のチオール基を有することを特徴とする。(B1)チオール化合物は、(A2)フルオレン型エポキシ化合物および(A3)軟化点が30℃以下のエポキシ化合物の硬化剤として作用しうる。つまり(B1)チオール化合物のチオール基は、(A2)フルオレン型エポキシ化合物のエポキシ基、または、(A3)軟化点が30℃以下のエポキシ化合物のエポキシ基と反応することにより、これらのエポキシ化合物を互いに架橋反応させて、耐熱性や接着強度等に優れた硬化物とすることができる。
 1分子内に2つ以上のチオール基を有する化合物は、特に限定されない。チオール基の数が多いと、得られるエポキシ化合物の硬化物(以下単に「硬化物」ともいう)の架橋密度が向上するため、硬化物の耐熱性が向上する。しかし、チオール基の数が多すぎると、チオール化合物の分子内にチオール基が接近して存在することとなり立体障害が起こりやすくなり、エポキシ基との反応性が低下する。一方、チオール基の数が少なすぎると、硬化物の耐熱性が低下する。分子内のチオール基の含有量はチオール当量(g/eq)で表される。
 (B1)チオール化合物のチオール当量は、80~100g/eqであり、好ましくは85~95g/eqであり、より好ましくは86~92g/eqである。チオール当量とは、(B1)チオール化合物の分子量を、その分子に含まれるチオール基の数で除して得られる値である。チオール当量が80g/eq未満であると、硬化物の架橋点同士の距離が短くなるため、エポキシ基との反応性が低下して、転化率が上がらないことがある。一方、チオール当量が100g/eqを超えると、硬化物の架橋点同士の距離が長くなりすぎるため、硬化物の耐熱性が低下することがある。
 分子内に硫黄元素を含むチオール化合物は、エポキシ重合性組成物の硬化物の屈折率を高める。このため、エポキシ重合性組成物における(B1)チオール化合物の硫黄含有率は50~80%であり、好ましくは60~75%である。硫黄含有率は、チオール化合物を質量分析して得た各元素の割合(全元素に対する硫黄元素の割合)から求められる。前記硫黄含有率が50%未満であると、これを含む樹脂組成物の硬化物の屈折率が十分に高まらないことがある。また、前記硫黄含有率が80%を超えるチオール化合物は、分子内にS-S結合を含むものが多いため、これを含む樹脂組成物の硬化物は、ラジカルを生成したり、化学的安定性が劣ったりする場合がある。
 (B1)チオール化合物の分子量は、140~500であることが好ましい。(B1)チオール化合物の分子量が高いと粘度が高くなりすぎたり、均一硬化しなくなったりすることがある。分子量は、質量分析により求めればよい。
 (B1)チオール化合物は、チオール当量と硫黄含有率が前記範囲にあるものであれば、特に限定されない。(B1)チオール化合物の具体例には、以下の式(4)、(5)および(6)で示される化合物が含まれる。式(4)、(5)および(6)で示される化合物は公知の方法で合成されうるが、市販もされている。式(4)の化合物のチオール当量は87g/eq、硫黄含有率は62%であり;式(5)の化合物のチオール当量は91g/eq、硫黄含有率は61%であり;式(6)の化合物のチオール当量は89g/eq、硫黄含有率は72%である。
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000008
 第1のエポキシ重合性組成物において、(A2)フルオレン型エポキシ化合物100質量部に対して、(A3)30℃以下の軟化点を有するエポキシ化合物が20~100質量部(好ましくは20~70質量部)含まれることが好ましい。(A2)フルオレン型エポキシ化合物は室温で固体である場合が多く、(A3)30℃以下の軟化点を有するエポキシ化合物は室温で液体である場合が多い。このように、エポキシ重合性組成物の粘度を適切な範囲(具体的には0.1~100Pa・s)に調整するためである。
 (B1)チオール化合物の含有量は、組成物中に含まれるチオール基と、エポキシ基とのモル比率で決定されることが好ましい。エポキシ化合物の硬化剤として作用するためである。つまり、エポキシ重合性組成物中にチオール基を過剰に含むと、硬化物中にエポキシ基と反応できないチオール基が残存する。そのため、シール部材としたときに、被封止部材を汚染することがある。一方、チオール基が過少であると、架橋密度を十分に高めることができず、得られる硬化物の耐熱性が低下することがある。
 そこで、組成物全体に含まれるエポキシ基1モルに対して、0.9~1.1モルのチオール基が含まれることが好ましく、0.95~1.05モルのチオール基が含まれることがより好ましく、1モルのチオール基が含まれることが特に好ましい。なお、組成物中における(A2)、(A3)および(B1)の組成比は、これらに限定されるものではない。
 つまり、(A2)フルオレン型エポキシ化合物100質量部に対して、(A3)30℃以下の軟化点を有するエポキシ化合物が、20~100質量部(好ましくは20~70質量部)含まれ、かつ(B1)チオール化合物が、組成物全体に含まれるエポキシ基1モルに対して、チオール基が0.9~1.1モルとなるように含まれることが特に好ましい。
 (C)硬化促進剤
 第1のエポキシ重合性組成物には、(C)硬化促進剤が含まれていてもよい。(C)硬化促進剤の例には、イミダゾール化合物やアミン化合物が含まれる。イミダゾール化合物の例には、2-エチル-4-メチルイミダゾールなどが含まれ、アミン化合物の例には、トリスジメチルアミノメチルフェノールなどが含まれる。(C)硬化促進剤は、ルイス塩基化合物であってもよい。
 第1のエポキシ重合性組成物における(C)硬化促進剤の含有量は、(A2)フルオレン型エポキシ化合物と(A3)30℃以下の軟化点を有するエポキシ化合物の合計量100質量部に対し、0.1~5質量部であることが好ましい。エポキシ重合性組成物の硬化性と保存安定性のバランスに優れるからである。
 (D)シランカップリング剤
 第1のエポキシ重合性組成物には、(D)シランカップリング剤が含まれていてもよい。(D)シランカップリング剤を含むエポキシ重合性組成物は、有機EL用シール材組成物としたときに基板との密着性が高い。(D)シランカップリング剤の例には、エポキシ基、カルボキシル基、メタクリロイル基、イソシアネート基などの反応性基を有するシラン化合物が含まれる。シラン化合物の具体例には、トリメトキシシリル安息香酸、γ-メタクリロキシプロピルトリメトキシシラン、ビニルトリアセトキシシラン、ビニルトリメトキシシラン、γ-イソシアナトプロピルトリエトキシシラン、γ-グリシドキシプロピルトリメトキシシラン、β-(3,4-エポキシシクロヘキシル)エチルトリメトキシシランなどが含まれる。シランカップリング剤は、1種単独であっても、2種以上の組み合わせであってもよい。
 第1のエポキシ重合性組成物における(D)シランカップリング剤の含有量は、エポキシ重合性組成物100質量部に対して、0.05~30質量部であることが好ましく、0.3~20質量部であることがより好ましく、0.1~10質量部であることがさらに好ましい。
 (E)その他の任意成分
 第1のエポキシ重合性組成物は、本発明の効果を損なわない範囲で、その他樹脂成分、充填剤、改質剤、安定剤などの任意成分をさらに含有することができる。
 他の樹脂成分の例には、ポリアミド、ポリアミドイミド、ポリウレタン、ポリブタジェン、ポリクロロプレン、ポリエーテル、ポリエステル、スチレン-ブタジエン-スチレンブロック共重合体、石油樹脂、キシレン樹脂、ケトン樹脂、セルロース樹脂、フッ素系オリゴマー、シリコン系オリゴマー、ポリスルフィド系オリゴマーが含まれる。これらの1種単独を、または複数種の組み合わせを含有することができる。
 充填剤の例には、ガラスビーズ、スチレン系ポリマー粒子、メタクリレート系ポリマー粒子、エチレン系ポリマー粒子、プロピレン系ポリマー粒子が含まれる。充填剤は、複数種の組み合わせであってもよい。
 改質剤の例には、重合開始助剤、老化防止剤、レベリング剤、濡れ性改良剤、界面活性剤、可塑剤などが含まれる。これらは、複数種を組み合わせて使用してもよい。安定剤の例には、紫外線吸収剤、防腐剤、抗菌剤が含まれる。改質剤は、複数種の組み合わせであってもよい。
 [組成物の物性]
 第1のエポキシ重合性組成物は、速やかに硬化できることが好ましい。有機EL素子などの被封止材を封止するときの作業性を高めるためである。速やかに硬化できるとは、例えば、加熱条件下(~100℃)において、120分以内に硬化することをいう。
 エポキシ重合性組成物が硬化したかどうかは、硬化物をホットプレート上で硬化させ、ゲル化したかどうかを指触にて確認して判断すればよい。エポキシ重合性組成物が硬化したかどうかはエポキシ基の転化率から求めてもよい。エポキシ基の転化率は、硬化反応させる前と硬化反応させた後のエポキシ重合性組成物をDSCで熱分析して、未硬化の発熱ピークの熱量から算出できる。指触によりゲル化したかどうかを確認するほうが簡便である。
 第1のエポキシ重合性組成物の硬化性は、例えば、(A2)フルオレン型エポキシ化合物と(A3)30℃以下の軟化点を有するエポキシ化合物の混合物と、(B1)チオール化合物との組成比、必要に応じて(C)硬化促進剤の含有量を調節することによって制御される。
 第1のエポキシ重合性組成物の25℃での粘度は、0.1~100Pa・sであることが好ましく、0.2~70Pa・sであることが好ましく、0.5~40Pa・sであることがより好ましく、1~10Pa・sが特に好ましい。この範囲の粘度を有するエポキシ重合性組成物は、作業性が優れる。粘度は、E型粘度計(東機産業製 RC-500)によって、25℃の測定温度で測定される。
 第1のエポキシ重合性組成物は、硬化収縮が小さいことが好ましい。硬化収縮率は10%以下であることが好ましく、8%以下であることがより好ましい。硬化収縮率は、硬化前の組成物の比重と、硬化後の硬化物の比重とを、下記式に当てはめることにより求めることができる。
Figure JPOXMLDOC01-appb-M000001
 [硬化物の物性]
 第1のエポキシ重合性組成物の硬化物の屈折率は、1.60を超えることが好ましく、1.64以上であることがより好ましい。屈折率は、ナトリウムD線(589nm)で測定した値をいう。屈折率は公知の方法で測定できるが、一般的にアッベ屈折率計による臨界角法で測定することができる。
 特に、トップエミッション構造の有機EL素子のシール部材としたときに、有機EL素子から発した光の取り出し効率を高めるためである。すなわち、トップエミッション構造の有機EL素子は、有機EL層の上に、ITOなどの透明なカソード電極層が配置される。ITOの屈折率は約1.8であるため、カソード電極層上に配置されるシール部材の屈折率が低すぎると、有機EL素子から発した光の取り出し効率が低下する。
 エポキシ重合性組成物の硬化物は、可視光領域において透明であることが好ましい。透明性は、紫外/可視分光光度計を用いて光線透過率により評価できる。本発明の硬化物の光線透過率は、450nmにおいて90%以上であることがより好ましい。光デバイス(有機EL素子を含む)のシール部材としたときに、その表示性を良くするためである。
 本発明の第1のエポキシ重合性組成物の硬化物は、フルオレン型エポキシ化合物を含むため、その硬化物は高い屈折率を有する。また、第1のエポキシ重合性組成物は、(A3)30℃以下の軟化点を有するエポキシ化合物を含む。このため、(A2)(軟化点が比較的高い)フルオレン型エポキシ化合物と、(A3)30℃以下の軟化点を有するエポキシ化合物との混合物は、30℃以下でも流動性を損なわず、互いに均一溶解しうる。また、30℃以下でもエポキシ化合物とチオール化合物とを混合できるので、硬化反応も生じることなく、室温での作業性に優れる。
 (A3)30℃以下の軟化点を有するエポキシ化合物がビスフェノール型エポキシ化合物である樹脂組成物は、速やかに硬化反応する。このため、例えば有機EL用のシール部材としたときに、未硬化の化合物と有機EL素子の接触する時間が短くなり、当該素子が汚染されることを抑制できる。
 次に、本発明の第2のエポキシ重合性組成物について説明する。第2のエポキシ重合性組成物は、特に高屈折率かつ低透湿性の硬化物となりうる。
 第2のエポキシ重合性組成物は、(A1)分子内に2つ以上のエポキシ基を有するエポキシ化合物と、(B2)分子内に4つ以上のチオール基を有するチオール化合物と、(C)硬化促進剤と、を含むが、他の任意成分を含有していてもよい。任意成分の例には、前述の(D)シランカップリング剤などが含まれる。
 (A1)エポキシ化合物
 第2のエポキシ重合性組成物に含まれる(A1)エポキシ化合物は、1分子内に2つ以上のエポキシ基を有する。(A1)エポキシ化合物は、(B2)チオール化合物によって架橋されて硬化する。
 (A1)エポキシ化合物の一部または全部は、その分子構造にフルオレン骨格を含む、(A2)フルオレン型エポキシ化合物であってもよい。(A2)フルオレン型エポキシ化合物の例には、前述の一般式(1)および(2)で示される化合物が含まれる。
 第2のエポキシ重合性組成物に含まれる(A1)エポキシ化合物の一部または全部は、(A3)30℃以下(好ましくは25℃以下)の軟化点を有するエポキシ化合物であってもよい。(A3)30℃以下(好ましくは25℃以下)の軟化点を有するエポキシ化合物の例には、前述の一般式(3)で示されるビスフェノール型エポキシ化合物が含まれる。
 第2のエポキシ重合性組成物は、室温での流動性を得る上で、軟化点が30℃以下であるエポキシ化合物を含むことが好ましい。
 (B2)チオール化合物
 第2のエポキシ重合性組成物に含まれる(B2)チオール化合物は、1分子内に4つ以上のチオール基を有することを特徴とする。(B2)チオール化合物は、(A1)エポキシ化合物の硬化剤として作用しうる。つまり、(B2)チオール化合物のチオール基は、(A1)エポキシ化合物のエポキシ基と反応することにより、(A1)エポキシ化合物を互いに架橋させて、耐熱性や接着強度などに優れた硬化物とすることができる。また、(B2)チオール化合物は、1分子内に4つ以上のチオール基を含むことから、エポキシ樹脂の硬化物の架橋密度を高め、透湿度を低下させる。
 (B2)チオール化合物のチオール当量は、80~100g/eqであり、85~95g/eqであることが好ましく、86~92g/eqであることがより好ましい。(B2)チオール化合物の分子量は、前述と同様に、140~500であることが好ましい。
 (B2)チオール化合物の具体例には、前述した式(5)および(6)で示される化合物が含まれる。もちろん、(B2)チオール化合物は、5以上のチオール基を有していてもよい。
 (C)硬化促進剤
 第2のエポキシ重合性組成物に含まれる(C)硬化促進剤は、エポキシ重合性組成物の硬化性と保存安定性とのバランスを調整する機能を有する。(C)硬化促進剤の例には、前述と同様の(C)硬化促進剤と同様のものが含まれる。
 (D)シランカップリング剤
 第2のエポキシ重合性組成物には、(D)シランカップリング剤が含まれてもよい。(D)シランカップリング剤の例には、前述と同様の(D)シランカップリング剤と同様のものが含まれる。
 第2のエポキシ重合性組成物における(A1)エポキシ化合物の含有量は、(B2)チオール化合物100質量部に対して、100~300質量部であることが好ましい。また、第2のエポキシ重合性組成物は、(A2)フルオレン型エポキシ化合物100質量部に対して、20~100質量部(好ましくは20~70質量部)の、(A3)30℃以下の軟化点を有するエポキシ化合物を含むことが好ましい。エポキシ重合性組成物の粘度を適切に調整するためである。
 第2のエポキシ重合性組成物における(C)硬化促進剤の含有量は、(B2)チオール化合物100質量部に対して、0.02~40質量部であることが好ましい。また、(B2)チオール化合物と(A1)エポキシ化合物の合計100質量部に対して、0.1~5質量部であることが好ましい。
 第2のエポキシ重合性組成物における(D)シランカップリング剤の含有量は、(B2)チオール化合物100質量部に対して、0.02~40質量部であることが好ましい。また、(D)シランカップリング剤の含有量は、(B2)チオール化合物100質量部に対して、0.05~30質量部であることが好ましく、0.1~20質量部であることがより好ましく、0.3~10質量部であることがさらに好ましい。
 (E)その他の任意成分
 第2のエポキシ重合性組成物は、本発明の効果を損なわない範囲で、その他樹脂成分、充填剤、改質剤、安定剤などの任意成分をさらに含有することができる。その他樹脂成分、充填剤、改質剤、安定剤などの具体例、およびエポキシ重合性組成物における含有量は、前述と同様である。
 [組成物の物性]
 第2のエポキシ重合性組成物は、前述と同様に、速やかに硬化できることが好ましい。第2のエポキシ重合性組成物の硬化性は、例えば、(A1)エポキシ化合物と、(B2)チオール化合物との組成比や、(C)硬化促進剤の含有量を調節することによって制御される。
 第2のエポキシ重合性組成物の25℃での粘度は、0.1~100Pa・sであることが好ましい。
 第2のエポキシ重合性組成物の硬化性や粘度は、前述と同様に測定することができる。
 [硬化物の物性]
 第2のエポキシ重合性組成物の硬化物は、前述と同様に、1.60を超える(好ましくは1.64以上の)高い屈折率を有することが好ましい。また硬化物は、前述と同様に、450nmにおいて90%以上の高い光線透過率を有することが好ましい。また硬化物の硬化収縮率は、前述と同様に、10%以下であることが好ましく、8%以下であることがより好ましい。硬化物の屈折率、光線透過率および硬化収縮率は、前述と同様に測定することができる。
 厚み100μmの硬化物の、JIS Z0208に準拠した60℃、90%RHにおける透湿度は、20g/m/24h以下であることが好ましく、15g/m/24h以下であることがより好ましい。
 このように、第2のエポキシ重合性組成物は、1分子内に4つ以上のチオール基を有するチオール化合物を含む。このため、架橋密度の高い硬化物が得られ、水分等の透過も少ない。さらに、エポキシ化合物として、フルオレン型エポキシ化合物を含むことで、高い屈折率の硬化物が得られる。
 2.組成物の製造方法
 本発明のエポキシ重合性組成物は、発明の効果を損なわない限り、任意の方法で製造されうる。例えば、エポキシ重合性組成物は、1)(A)エポキシ化合物を準備する工程と、2)(A)エポキシ化合物と(B)チオール化合物を、硬化反応が生じない温度下で混合する工程と、を含む方法で製造される。混合は、これらの成分をフラスコに装入して攪拌する方法や、三本ロールで混練する方法が含まれる。
 (C)硬化促進剤、または(E)その他任意成分を含むエポキシ重合性組成物は、2)工程の後に、3)(C)硬化促進剤と混合する工程、または4)(E)その他任意成分と混合する工程、を含む方法で製造される。
 1)工程では、(A)エポキシ化合物が、軟化点が高いエポキシ化合物(例えば、軟化点が50℃以上であるフルオレン型エポキシ化合物)を多く含む場合、加熱条件下(例えば60℃以上)でエポキシ化合物を混合させることが好ましい。
 一方、2)工程では、(A)エポキシ化合物と(B)チオール化合物とを、例えば非加熱条件下(30℃以下)で混合させて、(A)エポキシ化合物と(B)チオール化合物の硬化反応の進行(ゲル化など)を抑制することが好ましい。(C)硬化促進剤も同様に、30℃以下で混合されることが好ましい。
 したがって、(A)エポキシ化合物が、(A3)30℃以下の軟化点を有するエポキシ化合物を含んでいると、非加熱条件下で(B)チオール化合物と混合し易いため、好ましい。
 3.硬化物の用途
 本発明のエポキシ重合性組成物は、硬化されることにより、特にシール部材として用いられうる。さらに、光デバイスからの光が通過するシール部材または光学材料に適用されることが好ましい。シール部材の例には、有機ELパネル、液晶ディスプレイ、LED、電子ペーパー用途のシール部材;太陽電池、CCD用途のシール部材などが含まれる。光学材料の例には、光学接着剤、光学フィルム、ホログラム材料、フォトニック結晶、回折格子、プリズム、屈折率分布レンズ、光ファイバー、光導波路フィルム等が含まれる。
 本発明のエポキシ重合性組成物は、例えば、発光素子(特にトップエミッション構造の有機EL素子)のシール部材となるシール材組成物(または光学材料用透明樹脂組成物)として用いられることが好ましい。
 4.有機ELパネル
 前記の通り、本発明のシール材組成物は、トップエミッション構造の有機EL素子のシール部材を作製するための組成物として有用である。つまり本発明の有機ELパネルは、有機EL素子が配置された表示基板と、表示基板と対になる対向基板と、表示基板と対向基板との間に介在し、前記有機EL素子を封止するシール部材とを有する。前述の通り、シール部材が、対向基板の周縁部に存在するものを枠封止型の有機ELパネルという。一方、シール部材が有機EL素子と対向基板との間に形成される空間に充填されているものを、面封止型の有機ELパネルという。本発明のシール材組成物は、その硬化物の屈折率が高いため、トップエミッション構造の有機ELパネルの、面封止型のシール部材の作製に特に適する。
 図1は、トップエミッション構造であって、面封止型の有機EL素子を模式的に示す断面図である。図1において、1はシール部材であり;20は有機EL層であり;21はカソード透明電極層(ITOやIZOなどからなる)であり;22はアノード反射電極層(アルミニウムや銀などからなる)であり;30は表示基板であり;31は対向基板(封止板)である。基板は通常、ガラスからなる。本発明の有機ELパネルでは、図1におけるシール部材1が、前述のシール材組成物の硬化物となる。図示はされないが、カソード透明電極層21は、酸化シリコンや、窒化シリコンなどからなり保護膜で覆われていてもよい。
 本発明のシール材組成物の硬化物をシール部材とする有機ELパネル(以下「本発明の有機ELパネル」ともいう)は、任意の方法で製造されうる。例えば、本発明の有機ELパネルは、1)有機EL素子が配置された表示基板にシール材組成物を塗布する工程、2)シール材組成物が塗布された表示基板の上に、対になる対向基板(封止板)を重ね合わせて積層体を得る工程、3)得られた積層体のシール材組成物を硬化させる工程、を含む方法で製造されうる。各工程は、公知の方法に準じて行えばよい。シール材組成物を塗布する方法の例には、スクリーン印刷やディスペンサーを使用する方法が含まれる。硬化工程は、25~100℃で0.1~2時間とすることが好ましい。
 また、本発明の有機ELパネルは、1)有機EL素子が配置された表示基板と、当該基板と対になる対向基板(封止板)とをスペーサーを介して重ね合わせた積層体を得る工程、2)得られた積層体の表示基板と対向基板との間にシール材組成物を充填する工程、3)充填したシール材組成物を硬化させる工程、を含む方法で製造してもよい。
 以下において、実施例および比較例を参照してさらに本発明を説明する。本発明の技術的範囲は、これらによって限定して解釈されない。まず、実施例および比較例で使用した各成分を示す。
 (A)エポキシ化合物
 フルオレン型エポキシ化合物
 PG100(大阪ガスケミカル社製)
 当該化合物は、下記式(7)で表される。当該化合物の軟化点は91.5℃であり、エポキシ価は3.89eq/kg(エポキシ当量257g/eq)であった。
Figure JPOXMLDOC01-appb-C000009
 EG210(大阪ガスケミカル社製)
 当該化合物の軟化点は50℃であり、エポキシ価は3.26eq/kg(エポキシ当量307g/eq)であった。
 ビスフェノール型エポキシ化合物
 YL-983U(ジャパンエポキシレジン社製)
 当該化合物は、ビスフェノールF型エポキシ化合物である。当該化合物は室温で液体であり、エポキシ当量は169g/eqであった。
 (B)チオール化合物
 GST(三井化学株式会社製)
 下記の式(4)で示される化合物であり、特許第2621991号公報に記載されている。当該化合物の分子量は260である。当該化合物は、分子内に3つのチオール基を有しているため、チオール当量は86.7g/eqである。当該化合物の硫黄含有率は61.5%である。
Figure JPOXMLDOC01-appb-C000010
 1,1,3,3-テトラキス(メルカプトメチルチオ)プロパン(三井化学株式会社製)
 下記の式(6)で示される化合物であり、特許3995427号に記載されている。当該化合物の分子量は356である。当該化合物は、分子内に4つのチオール基を有しているため、チオール当量は89.0g/eqである。当該化合物の硫黄含有率は71.9%である。
Figure JPOXMLDOC01-appb-C000011
 FSH(三井化学株式会社製)
 下記の式(5)で示される化合物であり、特許第3444682号公報に記載されている。当該化合物の分子量は366である。当該化合物は、分子内に4つのチオール基を有しているため、チオール当量は91.5g/eqである。当該化合物の硫黄含有率は61.2%である。
Figure JPOXMLDOC01-appb-C000012
 (C)硬化促進剤
 2E4MZ(2-エチル-4-4メチルイミダゾール)(四国化成社製)
 JERキュア3010(トリスジメチルアミノメチルフェノール)(ジャパンエポキシレジン社製)
 [実施例1]
 フラスコに、50質量部のYL-983Uと、50質量部のPG-100とを装入し、加温しながら混合した。これに44.2質量部の式(4)で表される化合物(以下、「GST」と記す)を添加して室温で混合し、2.0質量部の2E4MZを添加して室温で攪拌してエポキシ重合性組成物を得た。
 [実施例2~8]
 表1に示される通りの組成比率(重量比)で、実施例1と同様の条件下で混合して、エポキシ重合性組成物を得た。実施例6では、エポキシ重合性組成物中のエポキシ当量とチオール当量の比率が1:0.8であり、実施例7では、1:1.2であった。
 [比較例1]
 フラスコに、100質量部のYL-983Uと、51質量部のGSTとを装入し、室温で攪拌してエポキシ重合性組成物を得た。
 [比較例2]
 比較例1で得たエポキシ重合性組成物に、実施例1と同様の条件下で、2質量部のJERキュア3010を混合してエポキシ重合性組成物を得た。
 [比較例3]
 100質量部のPG100と、38質量部のGSTと、2質量部の2E4MZとを、実施例1と同様の条件下で混合してエポキシ重合性組成物を得た。
 [比較例4]
 100質量部のEG210と、32質量部のGSTと、2質量部の2E4MZを、実施例1と同様の条件下で混合してエポキシ重合性組成物を得た。
 実施例および比較例で得られたエポキシ重合性組成物は、以下のように評価された。
 (1)溶解性
 エポキシ重合性組成物が、目視による観測で、透明で均一な溶液である場合を○、透明でない(白濁している等)場合を×と評価した。
 (2)硬化性
 エポキシ重合性組成物を室温(25℃)で放置し、一定時間経過後の組成物について指触にてゲルの状態を測定し、ゲル化するまでの時間(硬化時間)を求めた。同様にエポキシ重合性組成物を80℃に加熱し、80℃における硬化時間を測定した。これらの硬化時間が30分以内の場合を○、30分以上の場合を×と評価した。
 (3)粘度
 E型粘度計(BROOKFIEL社製のデジタルレオメータ型式DII-III ULTRA)を用いて、25℃におけるエポキシ重合性組成物の粘度を測定した。
 (4)硬化物の屈折率
 エポキシ重合性組成物を型に流し込み、80℃で2h加熱して厚み0.2mmの硬化物を得た。屈折率測定計(アタゴ社製の多波長アッベ屈折計DR-M4)を用いて当該硬化物の屈折率を測定した。測定はナトリウムD線(589nm)を用いて行い、硬化物の屈折率とした。
 (5)光線透過率
 前記の通り調製された硬化物について、紫外/可視分光光度計(島津製作所製のMULTISPEC-1500)を用いて450nmにおける光線透過率を測定した。
 (6)ガラス転移温度Tg
 前記の通り調製された硬化物について、TMA(セイコーインスツルメンツ社製のTMA/SS6000)を用いて、昇温速度5℃/分の条件で線膨張係数を測定し、その変曲点からTgを求めた。
 (7)硬化収縮率
 前記の通り調製された硬化前の組成物の比重と、硬化後の硬化物の比重とを、下記式に当てはめることにより求めた。
Figure JPOXMLDOC01-appb-M000002
 (8)透湿度
 前記の通りに厚み100μmの硬化物を調製して、JIS Z0208に準じて、60℃90%RH条件での透湿量を測定した。
 実施例1~8のエポキシ重合性組成物およびその硬化物の評価結果を図2の表1に示す。比較例1~4のエポキシ重合性組成物およびその硬化物の評価結果を図3の表2に示す。
 表1に示されるように、実施例1~8の硬化物(本発明の第1のエポキシ重合性組成物の硬化物)は、屈折率が1.64以上と高く、耐熱性、低硬化収縮性も良好である。さらに、実施例1~8のエポキシ重合性組成物は、室温で適切な範囲の粘度を有するため溶解性がよく、硬化性にも優れている。特に、実施例1、3、6~8のエポキシ重合性組成物は適切な粘度を有し、その硬化物の屈折率は1.65以上と極めて高いことがわかる。
 これに対して、表2に示されるように、比較例2の硬化物の屈折率は1.63程度である。また、比較例1の組成物は、硬化促進剤を含まないため、硬化できなかった。比較例3および4の組成物は、ビスフェノール型エポキシ化合物を含まないため、室温での粘度が高く、溶解性が低く、硬化性等の評価ができなかった。
 [実施例9]
 フラスコに、128質量部のYL-983Uと、86質量部のPG-100とを装入し、90~100℃で加温しながら1時間混合した。100質量部の1,1,3,3-テトラキス(メルカプトメチルチオ)プロパンを添加し、室温で1時間混合した。さらに、0.5質量部の2E4MZを加え、室温で5分攪拌してエポキシ重合性組成物を得た。
 [実施例10~12]
 表1に示される通りの組成比率(重量比)で、実施例9と同様の条件下で、(A1)エポキシ化合物を混合し、(B2)分子内に4つのチオール基を有するチオール化合物を添加および混合し、(C)硬化促進剤を加えて、エポキシ重合性組成物を得た。
 [比較例5]
 表2に示される通りの組成比率(重量比)で、実施例9と同様の条件下で、(A1)エポキシ化合物を混合し、(B1)分子内に3つのチオール基を有するチオール化合物を添加および混合し、(C)硬化促進剤を加えて、エポキシ重合性組成物を得た。
 実施例および比較例で得られたエポキシ重合性組成物の(3)粘度、(4)硬化物の屈折率、(6)硬化物のガラス転移温度Tgおよび(8)硬化物の透湿度を、前述と同様の方法で評価した。この結果を、図2の表1および図3の表2に示す。
 表1に示されるように、実施例9~12の硬化物では透湿度が12~18g/m/24hに抑制されている。これに対して、表2に示されるように、比較例5および前述の実施例1の硬化物では、実施例9~12の硬化物よりも透湿度が高い。これは、チオール化合物の分子に含まれるチオール基の数によるものと考えられる。つまり、チオール化合物に含まれるチオール基が多いため、硬化物の架橋密度を高め、透湿度を低くすることができたと考えられる。
 また、実施例9、11および12で得られた硬化物の屈折率は1.66であったのに対し、実施例10で得られた硬化物の屈折率は1.64であった。このように、フルオレン骨格を有するエポキシ化合物を用いることで、硬化物の屈折率を高めることができる。
 本出願は、2008年1月25日出願の特願2008-015550、および2008年4月8日出願の特願2008-100355に基づく優先権を主張する。当該出願明細書および図面に記載された内容は、すべて本願明細書に援用される。
 本発明の第1のエポキシ重合性組成物の硬化物を、有機EL素子のシール部材、特にトップエミッション構造の有機EL素子の面封止型のシール部材とすれば、光の取り出し効率が向上する。さらに、本発明の第1のエポキシ重合性組成物は作業性もよいため、有機ELパネルの生産性を向上させうる。
 本発明の第2のエポキシ重合性組成物の硬化物を、特にトップエミッション構造の有機EL素子の面封止型のシール部材とすれば、水分等の透過が少なく、かつ光の取り出し効率が向上する。
 

Claims (26)

  1.  (A2)下記一般式(1)または一般式(2)で表されるフルオレン型エポキシ化合物と、
    Figure JPOXMLDOC01-appb-C000013
    [式中、Rは、それぞれ独立に水素原子またはメチル基を表し;
     Rは、それぞれ独立に水素原子またはメチル基を表し;
     Rは、それぞれ独立に炭素数が1~5のアルキル基を表し;
     Rは、それぞれ独立に炭素数が1~5のアルキル基を表し;
     nは、それぞれ独立に0~3の整数を表し;
     mは、それぞれ独立に1~3の整数を表し;
     pは、それぞれ独立に0~4の整数を表し;
     qは、それぞれ独立に0~4の整数を表す]
    Figure JPOXMLDOC01-appb-C000014
    [式中、Yは、単結合、酸素原子または硫黄原子を表し;
     R~R、m、n、p、およびqは、一般式(1)と同様に定義される]
     (A3)30℃以下の軟化点を有するエポキシ化合物と、
     (B1)1分子内に2つ以上のチオール基を有するチオール化合物と、を含む、エポキシ重合性組成物。
  2.  E型粘度計で測定された、25℃での粘度が0.1~100Pa・sである、請求項1に記載のエポキシ重合性組成物。
  3.  前記(B1)チオール化合物のチオール当量が、80~100g/eqであり、かつ、
     前記(B1)チオール化合物の硫黄含有率が、50~80%である、請求項1に記載のエポキシ重合性組成物。
  4.  前記(B1)チオール化合物のチオール当量が、85~95g/eqであり、かつ、
     前記(B1)チオール化合物の硫黄含有率が、60~75%である、請求項1に記載のエポキシ重合性組成物。
  5.  前記(A3)エポキシ化合物が、ビスフェノール型エポキシ化合物である、請求項1に記載のエポキシ重合性組成物。
  6.  前記(A2)成分100質量部に対して、
     前記(A3)成分の含有量が、20~70質量部である、請求項1に記載のエポキシ重合性組成物。
  7.  前記(B1)チオール化合物の分子量が、140~500である、請求項1に記載のエポキシ重合性組成物。
  8.  請求項1に記載のエポキシ重合性組成物を含む、光学材料用透明樹脂。
  9.  請求項1に記載のエポキシ重合性組成物からなる、シール材組成物。
  10.  請求項8に記載の光学材料用透明樹脂を硬化してなる、硬化物。
  11.  屈折率が1.64以上である、請求項10に記載の硬化物。
  12.  前記(A2)フルオレン型エポキシ化合物と前記(A3)エポキシ化合物とを加熱混合する工程と、
     前記工程で得られたエポキシ化合物の混合物と、前記(B1)チオール化合物とを30℃以下で混合する工程と、
     を含む、請求項1に記載のエポキシ重合性組成物の製造方法。
  13.  (A1)1分子内に2つ以上のエポキシ基を有するエポキシ化合物と、
     (B2)1分子内に4つ以上のチオール基を有するチオール化合物と、
     (C)硬化促進剤と、
     を含む、エポキシ重合性組成物。
  14.  (D)シランカップリング剤をさらに含む、請求項13に記載のエポキシ重合性組成物。
  15.  前記(B2)チオール化合物のチオール当量が、80~100g/eqである、請求項13に記載のエポキシ重合性組成物。
  16.  前記(A1)エポキシ化合物がフルオレン型エポキシ化合物である、請求項13に記載のエポキシ重合性組成物。
  17.  前記(B2)成分100質量部に対して、
     前記(A1)成分の含有量が、100~300質量部であり、
     前記(C)成分の含有量が、0.02~40質量部であり、
     前記(D)成分の含有量が、0.02~40質量部であり、かつ
     エポキシ基とチオール基のモル比が1:0.9~1.1である、請求項14に記載のエポキシ重合性組成物。
  18.  前記(B2)チオール化合物の分子量が、140~500である、請求項13に記載のエポキシ重合性組成物。
  19.  請求項13に記載のエポキシ重合性組成物を含む、光学材料用透明樹脂。
  20.  請求項13に記載のエポキシ重合性組成物からなる、シール材組成物。
  21.  請求項19に記載の光学材料用透明樹脂を硬化してなる、硬化物。
  22.  屈折率が1.64以上である、請求項21に記載の硬化物。
  23.  厚み100μmの硬化物の、JIS Z0208に準拠した60℃、90%RHにおける透湿度が20g/m/24h以下であり、かつ、
     前記(B2)チオール化合物の硫黄含有量が50~80%である、請求項22に記載の硬化物。
  24.  請求項10または21に記載の硬化物を含む光デバイス。
  25.  有機EL素子が配置された表示基板と、
     前記表示基板と対になる対向基板と、
     前記表示基板と前記対向基板との間に介在し、かつ前記有機EL素子と前記対向基板との間に形成される空間に充填されているシール部材と、を含む有機ELパネルであって、
     前記シール部材は、請求項11または22に記載の硬化物である、有機ELパネル。
  26.  有機EL素子はトップエミッション構造である、請求項25に記載の有機ELパネル。
PCT/JP2009/000264 2008-01-25 2009-01-23 エポキシ重合性組成物、それを含むシール材組成物 WO2009093467A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
EP09704686.6A EP2236539B1 (en) 2008-01-25 2009-01-23 Polymerizable epoxy composition, and sealing material composition comprising the same
CN200980101714.9A CN101910236B (zh) 2008-01-25 2009-01-23 环氧聚合性组合物、含有该组合物的密封材料组合物
JP2009550481A JP5395677B2 (ja) 2008-01-25 2009-01-23 エポキシ重合性組成物、それを含むシール材組成物
KR1020107015147A KR101220789B1 (ko) 2008-01-25 2009-01-23 에폭시 중합성 조성물, 그것을 포함하는 시일재 조성물
US12/864,418 US8889803B2 (en) 2008-01-25 2009-01-23 Polymerizable epoxy composition, and sealing material composition comprising the same
KR1020127016296A KR101258041B1 (ko) 2008-01-25 2009-01-23 에폭시 중합성 조성물, 그것을 포함하는 시일재 조성물
HK11103592.3A HK1149284A1 (en) 2008-01-25 2011-04-08 Polymerizable epoxy composition, and sealing material composition comprising the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2008-015550 2008-01-25
JP2008015550 2008-01-25
JP2008100355 2008-04-08
JP2008-100355 2008-04-08

Publications (1)

Publication Number Publication Date
WO2009093467A1 true WO2009093467A1 (ja) 2009-07-30

Family

ID=40900976

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/000264 WO2009093467A1 (ja) 2008-01-25 2009-01-23 エポキシ重合性組成物、それを含むシール材組成物

Country Status (9)

Country Link
US (1) US8889803B2 (ja)
EP (1) EP2236539B1 (ja)
JP (1) JP5395677B2 (ja)
KR (2) KR101220789B1 (ja)
CN (2) CN103865034B (ja)
HK (1) HK1149284A1 (ja)
RU (1) RU2444538C1 (ja)
TW (1) TWI439482B (ja)
WO (1) WO2009093467A1 (ja)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010163566A (ja) * 2009-01-16 2010-07-29 Three M Innovative Properties Co エポキシ樹脂組成物
WO2011102286A1 (ja) * 2010-02-16 2011-08-25 ダイセル化学工業株式会社 硬化性組成物及び硬化物
WO2013005441A1 (ja) * 2011-07-06 2013-01-10 三井化学株式会社 エポキシ重合性組成物、および有機elデバイス
WO2013108629A1 (ja) * 2012-01-18 2013-07-25 三井化学株式会社 組成物、組成物からなる表示デバイス端面シール剤用組成物、表示デバイス、およびその製造方法
JP2013209437A (ja) * 2012-03-30 2013-10-10 Sumitomo Bakelite Co Ltd 透明シートおよび電子部品用基板
JP2014063144A (ja) * 2012-08-27 2014-04-10 Asahi Glass Co Ltd 光学フィルタおよび固体撮像装置
US20150034928A1 (en) * 2012-02-24 2015-02-05 Mitsui Chemicals, Inc. Optical-device surface-sealing composition, optical-device surface-sealing sheet, display, and display manufacturing method
WO2018159564A1 (ja) * 2017-02-28 2018-09-07 味の素株式会社 樹脂組成物
WO2018190347A1 (ja) * 2017-04-13 2018-10-18 Jnc株式会社 熱硬化性樹脂組成物、硬化膜、硬化膜付き基板、電子部品およびインクジェット用インク
JP2020064867A (ja) * 2010-12-16 2020-04-23 株式会社半導体エネルギー研究所 発光装置
JP2020164562A (ja) * 2019-03-28 2020-10-08 味の素株式会社 一液型樹脂組成物

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB201217226D0 (en) * 2012-09-26 2012-11-07 Hexcel Composites Ltd Resin composition and composite structure containing resin
JP6026347B2 (ja) * 2013-04-23 2016-11-16 日東電工株式会社 感光性エポキシ樹脂組成物および光導波路コア層形成用硬化性フィルム、ならびにそれを用いた光導波路、光・電気伝送用混載フレキシブルプリント配線板
JP6034742B2 (ja) * 2013-04-26 2016-11-30 日東電工株式会社 光導波路用感光性エポキシ樹脂組成物、光導波路形成用硬化性フィルム、およびそれを用いた光導波路ならびに光・電気伝送用混載フレキシブルプリント配線板、およびその光導波路の製法
JP2015113348A (ja) * 2013-12-06 2015-06-22 信越化学工業株式会社 硬化性組成物および光半導体装置
CN103915571A (zh) * 2014-01-27 2014-07-09 上海天马有机发光显示技术有限公司 一种amoled显示面板及膜层制作方法、显示装置
TWI509844B (zh) * 2014-09-19 2015-11-21 Unity Opto Technology Co Ltd Applied to the backlight of the LED light-emitting structure
CN105837798B (zh) * 2015-01-14 2018-02-13 中国科学院宁波材料技术与工程研究所 潜伏型多硫醇固化剂、其合成方法及应用
EP3816257A4 (en) * 2018-06-26 2022-07-06 Nitto Denko Corporation SEAL SHEET
JP2020026515A (ja) 2018-08-10 2020-02-20 Jsr株式会社 硬化性組成物及び化合物
EP3632663A1 (en) 2018-10-05 2020-04-08 Essilor International (Compagnie Generale D'optique) Method for the manufacturing of an optical element, optical element thus obtained
CN110028919B (zh) * 2019-04-01 2021-08-06 中昊(大连)化工研究设计院有限公司 一种高折射率led环氧灌封胶及其制备方法
CN110330927A (zh) * 2019-08-12 2019-10-15 山东益丰生化环保股份有限公司 一种led用双组分灌封胶及其制备方法
CN111518504B (zh) * 2020-03-27 2021-12-24 顺德职业技术学院 光通讯器件专用高折射高透明光路胶

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02270869A (ja) 1989-04-11 1990-11-05 Canon Inc 液晶性化合物、これを含む液晶組成物及びこれを使用した液晶素子
JP2621991B2 (ja) 1988-12-22 1997-06-18 三井東圧化学株式会社 メルカプト化合物及びその製造方法
JPH1060397A (ja) 1996-08-13 1998-03-03 Toray Ind Inc シール材料および液晶表示装置
JPH1145778A (ja) 1997-07-28 1999-02-16 Fuji Electric Co Ltd 有機エレクトロルミネッセンス素子およびその製造方法
JP2001206862A (ja) 2000-01-25 2001-07-31 Osaka Gas Co Ltd フルオレン化合物およびその製造方法
JP2001357973A (ja) 2000-06-15 2001-12-26 Sony Corp 表示装置
WO2001098411A1 (fr) * 2000-06-21 2001-12-27 Mitsui Chemicals Inc. Materiau de scellement pour cellules d'affichage a cristaux liquides plastiques
JP3444682B2 (ja) 1994-01-26 2003-09-08 三井化学株式会社 新規なポリチオール及びそれを用いた含硫ウレタン系プラスチックレンズ
JP2004035857A (ja) 2002-07-08 2004-02-05 Ricoh Co Ltd 光硬化型光学用接着剤組成物
WO2004090621A1 (ja) * 2003-04-08 2004-10-21 Nippon Kayaku Kabushiki Kaisha 液晶シール剤およびそれを用いた液晶表示セル
JP2005041925A (ja) 2003-07-23 2005-02-17 Nagase Chemtex Corp エポキシ樹脂封止材組成物
JP2005089595A (ja) * 2003-09-17 2005-04-07 Ricoh Co Ltd 光硬化型表示素子用シール剤
WO2005052021A1 (ja) * 2003-11-26 2005-06-09 Mitsui Chemicals, Inc. 1液型の光及び熱併用硬化性樹脂組成物及びその用途
JP2005314692A (ja) * 2004-04-02 2005-11-10 Osaka Gas Co Ltd 光重合性樹脂組成物およびその硬化物
JP3995427B2 (ja) 2000-03-27 2007-10-24 三井化学株式会社 新規なポリチオールを含有する重合性組成物、及びそれを重合させてなる樹脂、並びにレンズ

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4707534A (en) * 1986-12-09 1987-11-17 Minnesota Mining And Manufacturing Company Glycidylethers of fluorene-containing bisphenols
RU2071495C1 (ru) * 1993-09-07 1997-01-10 Днепровский Сергей Никитович Эпоксидный компаунд для изготовления оптоэлектронных приборов
JP3403592B2 (ja) * 1996-10-25 2003-05-06 三井化学株式会社 含硫エポキシ化合物及び含硫エポキシ樹脂
EP1138670B1 (en) 2000-03-27 2005-05-25 Mitsui Chemicals, Inc. Polythiol, polymerizable composition, resin and lens, and process for preparing thiol compound
US6770734B2 (en) 2000-03-27 2004-08-03 Mitsui Chemicals, Inc. Polythiol compound
JP2004168945A (ja) 2002-11-21 2004-06-17 Sumitomo Bakelite Co Ltd 透明複合体組成物
JP4909581B2 (ja) * 2005-01-20 2012-04-04 三井化学株式会社 有機el素子のシール方法
WO2006095469A1 (en) * 2005-03-11 2006-09-14 Seiko Epson Corporation Plastic lens and method for producing plastic lens
JP4946336B2 (ja) * 2005-11-14 2012-06-06 東レ株式会社 エポキシ樹脂組成物、プリプレグおよび繊維強化複合材料

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2621991B2 (ja) 1988-12-22 1997-06-18 三井東圧化学株式会社 メルカプト化合物及びその製造方法
JPH02270869A (ja) 1989-04-11 1990-11-05 Canon Inc 液晶性化合物、これを含む液晶組成物及びこれを使用した液晶素子
JP3444682B2 (ja) 1994-01-26 2003-09-08 三井化学株式会社 新規なポリチオール及びそれを用いた含硫ウレタン系プラスチックレンズ
JPH1060397A (ja) 1996-08-13 1998-03-03 Toray Ind Inc シール材料および液晶表示装置
JPH1145778A (ja) 1997-07-28 1999-02-16 Fuji Electric Co Ltd 有機エレクトロルミネッセンス素子およびその製造方法
JP2001206862A (ja) 2000-01-25 2001-07-31 Osaka Gas Co Ltd フルオレン化合物およびその製造方法
JP3995427B2 (ja) 2000-03-27 2007-10-24 三井化学株式会社 新規なポリチオールを含有する重合性組成物、及びそれを重合させてなる樹脂、並びにレンズ
JP2001357973A (ja) 2000-06-15 2001-12-26 Sony Corp 表示装置
WO2001098411A1 (fr) * 2000-06-21 2001-12-27 Mitsui Chemicals Inc. Materiau de scellement pour cellules d'affichage a cristaux liquides plastiques
JP2004035857A (ja) 2002-07-08 2004-02-05 Ricoh Co Ltd 光硬化型光学用接着剤組成物
WO2004090621A1 (ja) * 2003-04-08 2004-10-21 Nippon Kayaku Kabushiki Kaisha 液晶シール剤およびそれを用いた液晶表示セル
JP2005041925A (ja) 2003-07-23 2005-02-17 Nagase Chemtex Corp エポキシ樹脂封止材組成物
JP2005089595A (ja) * 2003-09-17 2005-04-07 Ricoh Co Ltd 光硬化型表示素子用シール剤
WO2005052021A1 (ja) * 2003-11-26 2005-06-09 Mitsui Chemicals, Inc. 1液型の光及び熱併用硬化性樹脂組成物及びその用途
JP2005314692A (ja) * 2004-04-02 2005-11-10 Osaka Gas Co Ltd 光重合性樹脂組成物およびその硬化物

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2236539A4

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010163566A (ja) * 2009-01-16 2010-07-29 Three M Innovative Properties Co エポキシ樹脂組成物
WO2011102286A1 (ja) * 2010-02-16 2011-08-25 ダイセル化学工業株式会社 硬化性組成物及び硬化物
JP2020064867A (ja) * 2010-12-16 2020-04-23 株式会社半導体エネルギー研究所 発光装置
WO2013005441A1 (ja) * 2011-07-06 2013-01-10 三井化学株式会社 エポキシ重合性組成物、および有機elデバイス
US20140131691A1 (en) * 2011-07-06 2014-05-15 Mitsui Chemicals, Inc. Polymerizable epoxy composition and organic el device
JPWO2013005441A1 (ja) * 2011-07-06 2015-02-23 三井化学株式会社 エポキシ重合性組成物、および有機elデバイス
WO2013108629A1 (ja) * 2012-01-18 2013-07-25 三井化学株式会社 組成物、組成物からなる表示デバイス端面シール剤用組成物、表示デバイス、およびその製造方法
JPWO2013108629A1 (ja) * 2012-01-18 2015-05-11 三井化学株式会社 組成物、組成物からなる表示デバイス端面シール剤、表示デバイス、およびその製造方法
US10050224B2 (en) 2012-02-24 2018-08-14 Mitsui Chemicals, Inc. Optical-device surface-sealing composition, optical-device surface-sealing sheet, display, and display manufacturing method
US20150034928A1 (en) * 2012-02-24 2015-02-05 Mitsui Chemicals, Inc. Optical-device surface-sealing composition, optical-device surface-sealing sheet, display, and display manufacturing method
JP2013209437A (ja) * 2012-03-30 2013-10-10 Sumitomo Bakelite Co Ltd 透明シートおよび電子部品用基板
JP2014063144A (ja) * 2012-08-27 2014-04-10 Asahi Glass Co Ltd 光学フィルタおよび固体撮像装置
WO2018159564A1 (ja) * 2017-02-28 2018-09-07 味の素株式会社 樹脂組成物
JPWO2018159564A1 (ja) * 2017-02-28 2019-12-19 味の素株式会社 樹脂組成物
WO2018190347A1 (ja) * 2017-04-13 2018-10-18 Jnc株式会社 熱硬化性樹脂組成物、硬化膜、硬化膜付き基板、電子部品およびインクジェット用インク
JP2020164562A (ja) * 2019-03-28 2020-10-08 味の素株式会社 一液型樹脂組成物
JP7148848B2 (ja) 2019-03-28 2022-10-06 味の素株式会社 一液型樹脂組成物

Also Published As

Publication number Publication date
TW200940587A (en) 2009-10-01
EP2236539B1 (en) 2014-12-03
JPWO2009093467A1 (ja) 2011-05-26
CN101910236B (zh) 2014-04-16
CN103865034B (zh) 2016-08-17
RU2444538C1 (ru) 2012-03-10
TWI439482B (zh) 2014-06-01
US8889803B2 (en) 2014-11-18
EP2236539A1 (en) 2010-10-06
HK1149284A1 (en) 2011-09-30
CN103865034A (zh) 2014-06-18
KR20120088859A (ko) 2012-08-08
KR20100102642A (ko) 2010-09-24
KR101258041B1 (ko) 2013-04-24
JP5395677B2 (ja) 2014-01-22
KR101220789B1 (ko) 2013-01-11
EP2236539A4 (en) 2012-11-28
CN101910236A (zh) 2010-12-08
US20110001419A1 (en) 2011-01-06

Similar Documents

Publication Publication Date Title
JP5395677B2 (ja) エポキシ重合性組成物、それを含むシール材組成物
KR101563827B1 (ko) 에폭시 중합성 조성물, 및 유기 el 디바이스
JPWO2013005441A6 (ja) エポキシ重合性組成物、および有機elデバイス
KR101806152B1 (ko) 신규 열래디컬 발생제, 그 제조방법, 액정 실링제 및 액정 표시셀
JP5905014B2 (ja) 放射線硬化性組成物
JP6363508B2 (ja) 樹脂組成物及びその硬化物(1)
JP5696038B2 (ja) 封止用組成物および封止用シート
US20100152315A1 (en) Sealing material for flat panel display
WO2013125235A1 (ja) 光デバイス面封止用組成物、光デバイス面封止用シート、ディスプレイ、およびディスプレイの製造方法
TWI440555B (zh) Transparent composite sheet
WO2014083844A1 (ja) 樹脂組成物及びその硬化物(2)
US20140367670A1 (en) Surface sealing agent for organic el element, organic el device using same, and manufacturing method for same
JPWO2013027389A1 (ja) シート状エポキシ樹脂組成物、及びこれを含む封止用シート
WO2014083845A1 (ja) 樹脂組成物及びその硬化物(3)
JP2015185272A (ja) 有機光デバイスの製造方法及び硬化性樹脂組成物
KR102448613B1 (ko) 수지 조성물
JP2011099031A (ja) 接着性組成物

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980101714.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09704686

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2009550481

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20107015147

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 12864418

Country of ref document: US

Ref document number: PI 2010003492

Country of ref document: MY

Ref document number: 2009704686

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2010135520

Country of ref document: RU