WO2018159564A1 - 樹脂組成物 - Google Patents

樹脂組成物 Download PDF

Info

Publication number
WO2018159564A1
WO2018159564A1 PCT/JP2018/007070 JP2018007070W WO2018159564A1 WO 2018159564 A1 WO2018159564 A1 WO 2018159564A1 JP 2018007070 W JP2018007070 W JP 2018007070W WO 2018159564 A1 WO2018159564 A1 WO 2018159564A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin composition
mass
less
component
resin
Prior art date
Application number
PCT/JP2018/007070
Other languages
English (en)
French (fr)
Inventor
賢 田村
Original Assignee
味の素株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 味の素株式会社 filed Critical 味の素株式会社
Priority to CN201880013475.0A priority Critical patent/CN110325589A/zh
Priority to JP2019502992A priority patent/JPWO2018159564A1/ja
Publication of WO2018159564A1 publication Critical patent/WO2018159564A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/40Glass
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/36Sulfur-, selenium-, or tellurium-containing compounds
    • C08K5/37Thiols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/10Materials in mouldable or extrudable form for sealing or packing joints or covers

Definitions

  • the present invention provides a resin composition particularly suitable for sealant applications, a cured product of the resin composition, and a cured product of the resin composition that seals a gap between peripheral edges of a pair of substrates that sandwich a display element.
  • Related display devices a resin composition particularly suitable for sealant applications, a cured product of the resin composition, and a cured product of the resin composition that seals a gap between peripheral edges of a pair of substrates that sandwich a display element.
  • An organic TFT can form an organic semiconductor layer at a lower temperature than a vapor deposition method for forming an inorganic semiconductor layer in a conventional inorganic TFT (thin film transistor using an inorganic semiconductor layer), so that a low heat-resistant plastic film, etc. There is an advantage that it can be mounted on a substrate.
  • a display device generally has a laminated structure in which a display element is sandwiched between a pair of substrates. For this reason, there is a gap between the opposing substrates at the peripheral edge portions of the pair of substrates, and usually the gap is sealed with a sealant made of a curable composition.
  • the sealant made of such a curable composition has a sufficiently low viscosity because it needs fluidity to enter the gap between the peripheral portions of the pair of substrates before curing, while curing after curing. The thing needs to have high moisture permeability resistance.
  • the composition is required to have low temperature curability.
  • Patent Document 1 discloses (i) an epoxy resin that is liquid at 23 ° C., (ii) a secondary amine or a tertiary amine that is solid at 23 ° C., Or a microcapsule containing a secondary amine or tertiary amine, and (iii) a filler, and (iii) is contained in an amount of 50 to 300 parts by mass with respect to 100 parts by mass of the total amount of (i) and (ii). Curable compositions have been proposed.
  • the curable composition used for this type of sealant is required to further improve moisture permeability, low-temperature curability, storage stability, and the like. Therefore, when talc or the like is blended in a high amount so as to improve the moisture resistance, the viscosity of the composition becomes high, the fluidity is lost, and the workability in the sealing work tends to be inferior. Accordingly, there is a need for such a balanced resin composition.
  • An object of the present invention is to provide a resin composition having high moisture resistance.
  • the present inventor has found that a resin composition containing an epoxy resin, a polythiol compound, and flaky glass acts extremely advantageously for solving the above problems. It came to complete. That is, the present invention is as follows.
  • a resin composition comprising (A) an epoxy resin, (B) a polythiol compound and (C) flaky glass.
  • Composition Composition.
  • [12] a display element; A pair of substrates sandwiching the display element; A cured product of the resin composition according to any one of [1] to [7] or a cured product according to [11], wherein a gap between the peripheral portions of the pair of substrates is sealed.
  • a display device comprising a cured product that has stopped.
  • the resin composition of the present invention has the above-mentioned excellent characteristics, it can be used as an adhesive, sealant, protective film, etc. in various technical fields. It is particularly useful as a sealant for display elements and display devices. For example, it is used as a sealant for sealing gaps between substrates in a peripheral portion of a display device having a structure in which a display element is sandwiched between a pair of substrates. For example, it is possible to realize a high-quality display device in which the performance degradation due to moisture of the display element hardly occurs.
  • the numerical range defined using the symbol “ ⁇ ” includes the numerical values at both ends (upper limit and lower limit) of “ ⁇ ”.
  • “0.01 to 5” represents 0.01 or more and 5 or less.
  • the resin composition of the present invention comprises (A) an epoxy resin (hereinafter sometimes abbreviated as “(A) component”), (B) a polythiol compound (hereinafter sometimes abbreviated as “(B) component”). And (C) a flaky glass (hereinafter sometimes abbreviated as “component (C)”) is a main feature.
  • the epoxy resin in the present invention is not particularly limited as long as it has an average of 2 or more epoxy groups per molecule.
  • the epoxy resin in the present invention is not particularly limited as long as it has an average of 2 or more epoxy groups per molecule.
  • bisphenol A type epoxy resin bisphenol F type epoxy resin, bisphenol S type epoxy resin, biphenyl type epoxy resin, biphenyl aralkyl type epoxy resin, naphthol type epoxy resin, naphthalene type epoxy resin, phosphorus-containing epoxy resin, aromatic glycidylamine Type epoxy resin (for example, tetraglycidyldiaminodiphenylmethane, triglycidyl-p-aminophenol, diglycidyltoluidine, diglycidylaniline, etc.), alicyclic epoxy resin, aliphatic chain epoxy resin, phenol novolac type epoxy resin, cresol novolac Type epoxy resin, bisphenol A novolac type epoxy resin, epoxy resin containing polyalkylene glycol ske
  • bisphenol A type epoxy resin bisphenol F type epoxy resin, glycidyl etherified product of phenols (for example, resorcinol diglycidyl) Ethers) and diglycidyl ethers of alcohols (for example, 1,4-cyclohexanedimethanol diglycidyl ether) are preferred.
  • the epoxy resin preferably has an epoxy equivalent in the range of 50 to 1500 g / eq, more preferably in the range of 70 to 500 g / eq, and still more preferably in the range of 100 to 200 g / eq.
  • epoxy equivalent in the present invention is the number of grams (g / eq) of a resin containing 1 gram equivalent of an epoxy group, and is measured according to a method defined in JIS K 7236. Epoxy resins may be used alone or in combination of two or more.
  • the resin composition of the present invention is intended as an example of its use as a sealant that seals the gap between the peripheral substrates in a display device having a structure in which a display element is sandwiched between a pair of substrates. .
  • the resin composition before hardening needs the fluidity
  • the epoxy resin ((A) component) which is a main component of a resin composition needs a fluidity
  • the epoxy resin (component (A)) may contain a solid epoxy resin, but 50 to 100% by mass of the total of component (A) is preferably a liquid epoxy resin, More preferably, 70 to 100% by mass is a liquid epoxy resin.
  • the solid epoxy resin means an epoxy resin that is solid at 23 ° C.
  • the liquid epoxy resin means an epoxy resin that is liquid at 23 ° C.
  • the epoxy resin has an epoxy equivalent of preferably 50 g / eq or more, more preferably 70 g / eq or more, and particularly preferably 100 g / eq or more from the viewpoint of low viscosity and moisture permeability resistance. Further, from the viewpoint of low viscosity and moisture permeability resistance, the epoxy equivalent is preferably 500 g / eq or less, more preferably 200 g / eq or less.
  • the content of the component (A) in the resin composition of the present invention is not particularly limited, but from the viewpoint of the viscosity of the composition, the content is 60% per 100% by mass of the total nonvolatile content in the resin composition. % By mass or less is preferable, 55% by mass or less is more preferable, 51% by mass or less is even more preferable, and 50% by mass or less is particularly preferable. On the other hand, from the viewpoint of the viscosity of the composition, the content is preferably 20% by mass or more, more preferably 25% by mass or more, and particularly preferably 30% by mass or more, per 100% by mass of the total nonvolatile content in the resin composition. preferable.
  • the resin composition of the present invention by using a polythiol compound as a curing agent, the resin composition can be cured at a low temperature range, and further greatly contributes to lowering the viscosity of the resin composition.
  • the polythiol compound is not particularly limited as long as it is a compound that crosslinks or polymerizes an epoxy group, but preferably has 2 to 6 (bifunctional to 6 functional) thiol groups in one molecule.
  • trimethylolpropane tris (3-mercaptopropionate) (abbreviation: TMTP), pentaerythritol tetrakis (3-mercaptopropionate) (abbreviation: PIMP), dipentaerythritol Hexakis (3-mercaptopropionate) (abbreviation: DPMP), tris-[(3-mercaptopropionyloxy) -ethyl] -isocyanurate (abbreviation: TEMPIC), tris (3-mercaptopropyl) isocyanurate (abbreviation: TMPIC), ethylene glycol bisthioglycolate (abbreviation: GTG), trimethylolpropane tristhioglycolate (abbreviation: TMTG), pentaerythritol tetrakisthioglycolate (abbreviation: PETG), pentaerythritol te
  • TMPIC tris (3-mercaptopropyl) isocyanurate
  • TMPIC 4,4′-isopropylidenebis [(3-mercaptopropoxy) benzene]
  • JP2012-153794A and International Publication 2001 / It can be synthesized by the method described in No. 00698.
  • PE-1 penentaerythritol tetrakis (3-mercaptobutyrate)
  • BD-1 (1,4-bis (3-mercaptobutyryloxy) butane
  • NR-1 (1,3, manufactured by Showa Denko KK , 5-tris (3-mercaptobutyryloxyethyl) -1,3,5-triazine-2,4,6 (1H, 3H, 5H) -trione)
  • TPMB TEMB
  • TS Shikoku Kasei Kogyo Co., Ltd.
  • -G 1,3,4,6-tetrakis (2-mercaptoethyl) glycoluril
  • Polythiol compounds may be used alone or in combination of two or more.
  • the polythiol compound preferably has a thiol group equivalent in the range of 50 to 500 g / eq, more preferably in the range of 75 to 300 g / eq, from the viewpoints of low viscosity and low temperature curability of the resin composition, moisture resistance of the cured product, and the like.
  • the range of 100 to 200 g / eq is more preferable.
  • the “thiol group equivalent” is the number of grams (g / eq) of a resin containing 1 gram equivalent of a thiol group, and can be measured by a known method, for example, an iodine solution titration method using starch as an indicator.
  • the content of the component (B) in the resin composition of the present invention is not particularly limited, but the molar ratio of epoxy group to thiol group in the resin composition (epoxy group / thiol group), that is, in the resin composition
  • the ratio (M2 / M1) of the total number of moles (M2) of the epoxy groups possessed by the component (A) in the resin composition to the total number of moles (M1) of the thiol groups possessed by the component (B) is 0.9-1
  • the content is preferably 0.5, and the ratio (M2 / M1) is more preferably 1.0 to 1.2.
  • the content of the component (B) in the resin composition is preferably 10% by mass or more when the nonvolatile content of the resin composition is 100% by mass. 20 mass% or more is more preferable, 25 mass% or more is still more preferable, and 30 mass% or more is especially preferable.
  • the content is preferably 60% by mass or less, more preferably 50% by mass or less, and more preferably 45% by mass when the nonvolatile content of the resin composition is 100% by mass. % Or less is even more preferable, and 40% by mass or less is particularly preferable.
  • the resin composition of the present invention can improve the moisture permeation resistance of the cured product of the resin composition to an extremely high level by containing flaky glass.
  • the glass composition of the flaky glass various glass compositions represented by A glass, C glass, E glass and the like are applied, and among them, E glass is particularly preferable.
  • the flaky glass is also generally called “glass flake”.
  • the average thickness of the flaky glass is preferably 0.1 to 5 ⁇ m, more preferably 1 to 3 ⁇ m.
  • the average thickness is measured by the following method. Using a scanning electron microscope (SEM), each thickness is measured for 100 or more glass flakes, and the measured values are averaged.
  • the glass flake alone may be measured by observing with a scanning electron microscope, or the glass flake may be filled with a resin, molded, and then broken and observed by observing the fracture surface. .
  • the sample stage of the scanning electron microscope is prepared by the sample stage fine movement device so that the glass flake cross section (thickness surface) is perpendicular to the irradiation electron beam axis of the scanning electron microscope.
  • the average particle diameter of the flaky glass is preferably 5 ⁇ m or more, more preferably 20 ⁇ m or more, and particularly preferably 40 ⁇ m or more from the viewpoint of moisture resistance. Further, from the viewpoint of sealing properties such as a gap between substrates at the peripheral edge of the display device, it is preferably 300 ⁇ m or less, more preferably 200 ⁇ m or less, and particularly preferably 160 ⁇ m or less.
  • the average particle diameter of the flaky glass can be measured by a laser diffraction / scattering method based on Mie scattering theory. Specifically, the particle size distribution of the flaky glass is prepared on a volume basis by a laser diffraction particle size distribution measuring device, and the median diameter can be measured as the average particle diameter.
  • a flaky glass dispersed in water by ultrasonic waves can be preferably used.
  • a laser diffraction / scattering type particle size distribution measuring apparatus for example, LA-500 manufactured by Horiba Ltd. can be used.
  • the aspect ratio (average particle diameter / average thickness) of the flaky glass is preferably 10 or more, more preferably 13 or more, and the fluidity of the resin composition from the viewpoint that the cured product exhibits sufficiently high moisture permeability. From the viewpoint, it is preferably 100 or less, more preferably 45 or less, and still more preferably 40 or less.
  • the content of the component (C) in the resin composition of the present invention is not particularly limited, but from the viewpoint of sufficiently enhancing the moisture permeability of the cured product of the resin composition, the content is non-volatile in the resin composition.
  • the content is 100% by mass, 5% by mass or more is preferable, 7% by mass or more is more preferable, 10% by mass or more is further preferable, and 15% by mass or more is even more preferable.
  • the content is preferably 40% by mass or less, more preferably 3% by mass or less, and more preferably 30% by mass when the nonvolatile content of the resin composition is 100% by mass. The following is more preferable, and 25% by mass or less is particularly preferable.
  • the resin composition of the present invention can improve low-temperature curability by further containing (D) a curing accelerator (hereinafter sometimes referred to as “(D) component”) as necessary.
  • (D) component a curing accelerator
  • (D) component a curing accelerator
  • An amine hardening accelerator, a guanidine hardening accelerator, an imidazole hardening accelerator, a phosphonium hardening accelerator, etc. are mentioned. These may be used alone or in combination of two or more.
  • the amine curing accelerator is not particularly limited, but trialkylamines such as triethylamine and tributylamine, 4-dimethylaminopyridine, benzyldimethylamine, 2,4,6, -tris (dimethylaminomethyl) Amine compounds such as phenol, 1,8-diazabicyclo (5,4,0) -undecene (hereinafter abbreviated as DBU), organic acid dihydrazides (Amicure VDH-J, Amicure UDH, Amicure LDH, etc. (all of which are Ajinomoto Fine) Techno Corp.)) and the like.
  • trialkylamines such as triethylamine and tributylamine, 4-dimethylaminopyridine, benzyldimethylamine, 2,4,6, -tris (dimethylaminomethyl) Amine compounds such as phenol, 1,8-diazabicyclo (5,4,0) -undecene (hereinafter abbrevi
  • modified polyamines such as tertiary amino group-containing modified polyamines, urea bond-containing modified polyamines, and imidazole-containing modified polyamines can be exemplified.
  • the tertiary amino group-containing modified polyamine is an amine adduct obtained by reacting an excess amount of a polyamine having a tertiary amine skeleton with an epoxy resin and / or a phenol resin.
  • EH4380S, EH3616S manufactured by ADEKA Corporation. EH5001P, EH4357S, and the like.
  • the imidazole group-containing modified polyamine is an amine adduct obtained by reacting an epoxy resin and / or a phenol resin with an excess amount of a polyamine having an imidazole skeleton.
  • the urea bond-containing modified polyamine is an adduct obtained by reacting an excess amount of a polyamine with an isocyanate compound, and examples thereof include FXR-1020 and FXR-1081 manufactured by T & K TOKA. You may use an amine hardening accelerator 1 type or in combination of 2 or more types.
  • the guanidine curing accelerator is not particularly limited, but dicyandiamide, 1-methylguanidine, 1-ethylguanidine, 1-cyclohexylguanidine, 1-phenylguanidine, 1- (o-tolyl) guanidine, dimethylguanidine.
  • Diphenylguanidine trimethylguanidine, tetramethylguanidine, pentamethylguanidine, 1,5,7-triazabicyclo [4.4.0] dec-5-ene, 7-methyl-1,5,7-triazabicyclo [4.4.0] Deca-5-ene, 1-methyl biguanide, 1-ethyl biguanide, 1-n-butyl biguanide, 1-n-octadecyl biguanide, 1,1-dimethyl biguanide, 1,1-diethyl biguanide 1-cyclohexyl biguanide, 1-allyl biguanide, 1-fur Nirubiguanido, 1-(o-tolyl) biguanide, and the like. These may be used alone or in combination of two or more.
  • the imidazole curing accelerator is not particularly limited, but 2-methylimidazole, 2-undecylimidazole, 2-heptadecylimidazole, 1,2-dimethylimidazole, 2-ethyl-4-methylimidazole, 2-phenylimidazole, 2-phenyl-4-methylimidazole, 1-benzyl-2-methylimidazole, 1-benzyl-2-phenylimidazole, 1-cyanoethyl-2-methylimidazole, 1-cyanoethyl-2-undecylimidazole 1-cyanoethyl-2-ethyl-4-methylimidazole, 1-cyanoethyl-2-phenylimidazole, 1-cyanoethyl-2-undecylimidazolium trimellitate, 1-cyanoethyl-2-phenylimidazolium trimellitate, , 4-Diamino-6- [2′-methylimidazolyl- (1 ′)]
  • the phosphonium curing accelerator is not particularly limited, but triphenylphosphine, phosphonium borate compound, tetraphenylphosphonium tetraphenylborate, n-butylphosphonium tetraphenylborate, tetrabutylphosphonium decanoate, (4- Methylphenyl) triphenylphosphonium thiocyanate, tetraphenylphosphonium thiocyanate, butyltriphenylphosphonium thiocyanate, and the like. These may be used alone or in combination of two or more.
  • the curing accelerator is preferably an amine-based curing accelerator, more preferably a modified polyamine, particularly preferably an imidazole group-containing modified polyamine, a urea bond-containing modified polyamine curing accelerator, or the like.
  • the content of the component (D) in the resin composition is not particularly limited, but when the nonvolatile content of the resin composition is 100% by mass, the content is From the viewpoint of improving the storage stability, it is preferably 20% by mass or less, more preferably 10% by mass or less, and still more preferably 5% by mass or less.
  • the nonvolatile content of the resin composition is 100% by mass, 0.1% by mass or more is preferable, and 1% by mass or more is preferable. Is more preferable, and 2 mass% or more is still more preferable.
  • the resin composition of the present invention may optionally contain various additives (component (E)) other than the components (A) to (D) described above within a range not impairing the effects of the present invention.
  • various additives include storage stabilizers, organic fillers, thickeners, leveling agents, adhesion promoters, and inorganic fillers other than flaky glass (component (C)).
  • Examples of the storage stabilizer include borate ester compounds, titanate ester compounds, aluminate compounds, zirconate compounds and the like.
  • boric acid ester compounds include trimethyl borate, triethyl borate, tri-n-propyl borate, triisopropyl borate, tri-n-butyl borate, tripentyl borate, triallyl borate, trihexyl borate, tricyclohexyl borate, Trioctyl borate, trinonyl borate, tridecyl borate, tridodecyl borate, trihexadecyl borate, trioctadecyl borate, tris (2-ethylhexyloxy) borane, bis (1,4,7,10-tetraoxaundecyl) (1,4,7,10,13-pentaoxatetradecyl) (1,4,7-trioxaundecyl) borane, tribenzyl borate, triphenyl borate, tri-o-tolyl borate, tri-m-tolyl Borate Triethanolamine borate, tri
  • titanic acid compounds include tetraethyl titanate, tetrapropyl titanate, tetraisopropyl titanate, tetrabutyl titanate, tetraoctyl titanate and the like.
  • aluminate compound include triethyl aluminate, tripropyl aluminate, triisopropyl aluminate, tributyl aluminate, trioctyl aluminate and the like.
  • zirconate compound examples include tetraethyl zirconate, tetrapropyl zirconate, tetraisopropyl zirconate, tetrabutyl zirconate and the like.
  • boric acid esters are preferable from the viewpoint of high versatility / safety and excellent storage stability, and triethyl borate, tri-n-propyl borate, triisopropyl borate, and tri-n-butyl borate are more preferable.
  • Triethyl borate is particularly preferred.
  • Examples of the organic filler include rubber particles, silicone powder, nylon powder, fluororesin powder, and the like.
  • Examples of the thickener include olben, Benton, and the like.
  • As the antifoaming agent or leveling agent examples thereof include silicon-based, fluorine-based, and polymer-based antifoaming agents or leveling agents, and examples of the adhesion imparting agent include triazole compounds, thiazole compounds, triazine compounds, porphyrin compounds, and the like.
  • inorganic fillers other than flaky glass examples include silica, alumina, barium sulfate, talc, clay, mica powder, aluminum hydroxide, magnesium hydroxide, calcium carbonate, magnesium carbonate, magnesium oxide, boron nitride, and boron.
  • examples thereof include aluminum oxide, barium titanate, strontium titanate, calcium titanate, magnesium titanate, bismuth titanate, titanium oxide, barium zirconate, and calcium zirconate, and silica is generally used. These may be used alone or in combination of two or more.
  • hydrophilic fumed silica such as “200”, “200CF”, “300”, “300CF”, “380” manufactured by Nippon Aerosil Co., Ltd., “R-805”, “ Hydrophobic fumed silica such as “R-812”, “RY-200”, “RY-300”, “RX-200”, “RX-300”, “SOC2”, “SOC1” manufactured by ADMATEX Can be mentioned.
  • the content is preferably 5% by mass or less, more preferably 3% by mass or less, and more preferably 1% by mass or less when the nonvolatile content of the resin composition is 100% by mass. Even more preferable is 0.5% by mass or less.
  • the total content of the flaky glass (component (C)) and the inorganic filler other than the flaky glass in the resin composition is preferably 40% by mass or less when the nonvolatile content of the resin composition is 100% by mass. 35 mass% or less is more preferable, 30 mass% or less is still more preferable, and 25 mass% or less is especially preferable.
  • the resin composition of the present invention is prepared by mixing a compounding component containing at least the components (A) to (C) with a kneading means such as a three-roll, ball mill, bead mill, sand mill, super mixer, planetary mixer or the like. It can be prepared by mixing with stirring means.
  • the compounding components may be mixed together, but from the viewpoint of the storage stability of the resin composition, an epoxy resin (component (A)) and flaky glass (component (C)) are mixed, and a polythiol compound (( The procedure of mixing component B) is preferred.
  • component (D) when preparing a resin composition further containing a curing accelerator (component (D)), other additives (component (E)), inorganic fillers other than the flaky glass of component (C) are dispersed. From the viewpoint of safety, it is preferable to mix with the epoxy resin (component (A)) together with the flaky glass (component (C)), and the storage accelerator for the curing accelerator (component (D)) and component (E), etc.
  • the resin composition of the present invention has extremely high moisture permeability resistance after cured. Moreover, the moisture permeation resistance of the examples described later is evaluated by the permeability of water vapor (gas). This evaluation is also the evaluation of the gas barrier property of the cured product, and the curing of the resin composition of the present invention. It also shows that the product has excellent gas barrier properties. Therefore, the resin composition of the present invention can be used as an adhesive, sealant, protective film and the like in various technical fields. For example, sealing of optical semiconductor elements such as adhesives, solar cells, high-brightness LEDs, LCDs, EL elements, and organic TFTs in electronic parts, semiconductor devices, optical circuit parts, etc. Can also be used for sealing HDDs (hard disk drives) (sealant to prevent the escape of gas when the HDD is filled with gas such as helium gas), printed wiring boards It can be used as an insulating protective film.
  • HDDs hard disk drives
  • the resin composition of the present invention has excellent low-temperature curability that cures quickly even in a low temperature range, and the curing temperature is not particularly limited, but is preferably 50 to 120 ° C., more preferably The curing time is preferably 30 to 120 minutes, more preferably 60 to 90 minutes. Since it can be cured at a low temperature and in a short time, it is possible to perform adhesion and sealing without causing such thermal degradation even on an adhesion target or a sealing target that is subject to thermal degradation.
  • an organic EL device having an organic EL element, etc. an intended sealing structure without causing thermal degradation of the organic TFT or organic EL element Can be formed.
  • the heating method at the time of curing is not particularly limited.
  • a hot air circulation oven, an infrared heater, a heat gun, a high frequency induction heating device, heating by pressure bonding of a heat tool, or the like can be used.
  • the resin composition of the present invention is, for example, a cured product obtained by thermosetting at 70 ° C. for 1 hour (60 minutes) with a thickness of 200 ⁇ m, conforming to the moisture permeability test method (cup method) described in JIS Z0208 When measured, the moisture permeability is 30 (g / m 2 ⁇ 24 h) or less (preferably 20 (g / m 2 ⁇ 24 h) or less). The lower the moisture permeability, the better. Therefore, the lower limit value is not particularly limited, but in reality, it is approximately 3 (g / m 2 ⁇ 24 h) or more, but is not limited thereto. Therefore, the sealing object sealed with such a cured product is extremely unlikely to deteriorate due to moisture.
  • the “cured product” as used in the present invention means a product obtained by reacting the resin composition before curing reaction by 90% or more by heating.
  • the resin composition before curing by differential scanning calorimetry (DSC).
  • the total calorific value (H 0 ) was measured, and the residual calorific value (H 1 ) was measured from the cured product obtained by heating the resin composition at 70 ° C. for 1 hour.
  • the reaction rate calculated by the following calculation formula was 90 % Or more.
  • Tg of the cured product obtained by thermosetting at 70 ° C. for 1 hour (60 minutes) the better the moisture permeation resistance.
  • cured material is not specifically limited, 30 degreeC or more is preferable, 40 degreeC or more is more preferable, and 50 degreeC or more is still more preferable.
  • the resin composition of the present invention has a viscosity of 15 Pa ⁇ s or less (preferably 0.1 Pa ⁇ s or more, preferably 10 Pa ⁇ s or less) at 25 ° C. and 20 rpm measured by an E-type viscometer before curing. And a thixotropic index (TI value) of less than 2.0 (preferably less than 1.5), a low-viscosity and low structural viscosity liquid that exhibits high fluidity at room temperature. .
  • TI value thixotropic index
  • the resin composition quickly penetrates into narrow recesses and gaps, for example, the gaps between the substrates formed in the peripheral part of the display device having a structure in which the display element is sandwiched between a pair of substrates It can be filled with a sufficient amount of the resin composition without leaving.
  • the gap between the pair of substrates that sandwich the display element is generally about 100 to 300 ⁇ m and is very narrow, but the resin composition of the present invention is used. If it exists, the sealing part which sealed the clearance gap between the board
  • the resin composition of the present invention has excellent storage stability and can be stored for a long period of time without causing gelation and with low viscosity.
  • the “storage stability” in the present invention means the stability in a state in which the product is used after production, and in a period in which the product is distributed and can be used at the purchaser. When the product is used after being distributed or stored for a long time, it is possible to increase the storage stability by storing it at a low temperature such as a refrigerator or a freezer. In general, the storage stability is at least 3 hours or more, preferably 6 hours or more, more preferably 12 hours or more, and even more preferably 1 day or more from the viewpoint of being able to endure circulation at an environmental temperature of 20 ° C. or more and 40 ° C.
  • the storage stability is preferably as long as the period during which low viscosity can be stored is long, and the upper limit is not particularly limited, but is preferably 2 weeks, more preferably 3 weeks, still more preferably 1 month, and even more preferably 2 months. Months are particularly preferred and 6 months is most preferred.
  • part means “part by mass”.
  • Component (C)] (C1) GF750E: GLASS FLAKE LIMITED scale glass, average particle diameter 160 ⁇ m, average thickness 5 ⁇ m, aspect ratio 32 (C2) GF003: GLASS FLAKE LIMITED scale glass, average particle size 40 ⁇ m, average thickness 3 ⁇ m, aspect ratio 13 (C3) GF-001: GLASS FLAKE LIMITED scale glass, average particle diameter 40 ⁇ m, average thickness 1 ⁇ m, aspect ratio 40
  • [(D) component] (D1) Amicure PN-23: imidazole group-containing modified polyamine (solid) manufactured by Ajinomoto Fine Techno Co., Ltd. (D2) Fujicure FXR-1081: T & K TOKA Co., Ltd. Urea bond-containing modified polyamine solid type (D3) Novacure HX-3722: Asahi Kasei Co., Ltd. Imidazole-modified microcapsule body
  • Viscosity was measured at 25 ° C. and 20 rpm with an E-type viscometer RE-80 (Toki Sangyo Co., Ltd., rotor: 3 ° ⁇ R9.7).
  • the composition was measured for the time during which the yarn was not pulled at 70 ° C. using a hot plate type gelation tester GT-D (manufactured by Nisshin Kagaku) according to JIS C6521. Specifically, about 0.5 g of the composition is placed on a hot plate type gelling test machine preheated to 70 ° C., a stopwatch is started, and contact circle motion is repeated with a spatula having a tip width of 5 mm. The time until gelation was measured.
  • ⁇ Evaluation criteria> ⁇ : Less than 10 minutes ⁇ : 10 minutes or more, less than 30 minutes ⁇ : 30 minutes or more
  • Moisture resistance moisture permeability
  • the composition is applied to the release surface of a release PET film (NS-80A), stretched to a thickness of approximately 200 ⁇ m with a glass rod, and heated in an oven at 70 ° C. for 60 minutes to produce a cured film of the composition did.
  • the cured film was obtained by reacting 90% or more of the resin composition constituting the film before heating.
  • an aluminum cup was prepared by a method in accordance with JIS Z0208, and the thickness before and after being left for 24 hours in a high-temperature and high-humidity bath at 60 ° C. and 80% RH was cured with a thickness of 200 ⁇ m according to the following formula.
  • the moisture permeability of the object was calculated.
  • Moisture permeability [(Aluminum cup mass after standing for 24 hr (g) ⁇ Aluminum cup mass before leaving (g)) / Area of film (m 2 )] ⁇ (film thickness Actual measurement ( ⁇ m) / 200 ( ⁇ m))
  • ⁇ Evaluation criteria> ⁇ : Less than 20 (g / m 2 ⁇ 24 hr) ⁇ : 20 (g / m 2 ⁇ 24 hr) or more, less than 30 (g / m 2 ⁇ 24 hr) ⁇ : 30 (g / m 2 ⁇ 24 hr) or more
  • the resin composition was prepared by mixing (A) component, (C) component, and (E3) with a three roll mill, and adding (D) component and (E4) thereto. Furthermore, it mixed with the mixer, and after adding (B) component there and fully disperse
  • Example 16 About Example 16, (A) component, (B) component, (C) component, and (E3) were mixed with a 3 roll mill, and (D) component and (E4) were added there and fully disperse
  • the mixing means, temperature, and total mixing time were the same as in Examples 1-15.
  • Example 18 was prepared by mixing the components (A) and (C), adding the components (D) and (E4) thereto, and dispersing sufficiently, and then standing and degassing.
  • the mixing means, temperature, and total mixing time were the same as in Examples 1-15.
  • component (A) and (E1) were mixed, component (D) was added thereto, and further mixed, component (B) was added thereto and sufficiently dispersed, and then allowed to stand. Prepared by degassing.
  • the mixing means, temperature, and total mixing time were the same as in Examples 1-15.
  • the components (A), (E2), and (E3) are mixed, the components (C) and (E4) are added and further mixed, and the component (B) is added thereto. Then, after sufficiently dispersing, it was prepared by standing and defoaming.
  • the mixing means, temperature, and total mixing time were the same as in Examples 1-15.
  • the resin compositions of the present invention had low initial viscosity and thixotropic index (TI value), good storage stability, and excellent cured products. It turns out that it shows moisture permeability resistance.
  • the resin composition of Comparative Example 1 has poor storage stability, low-temperature curability, and moisture permeability of the cured product, and the resin compositions of Comparative Examples 2 and 3 have poor moisture permeability of the cured product. It can be seen that the resin composition of Comparative Example 4 has a high initial viscosity and a thixotropic index (TI value), and does not have a high level of performance like the resin composition of the present invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Epoxy Resins (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

粘度が低く、高流動性であり、保存安定性及び低温硬化性に優れ、しかも、その硬化物が極めて高い耐透湿性を有する樹脂組成物を提供する。 (A)エポキシ樹脂、(B)ポリチオール化合物及び(C)フレーク状ガラスを含む樹脂組成物。

Description

樹脂組成物
 本発明は特に封止剤用途に好適な樹脂組成物、該樹脂組成物の硬化物、及び、該樹脂組成物の硬化物により、表示素子を挟持する一対の基板の周縁部の隙間が封止された表示デバイスに関する。
 近年、有機ELディスプレイ、電子ペーパーなどの各種表示デバイスの分野において有機半導体層を用いた薄膜トランジスタ(TFT)が注目されており、該薄膜トランジスタは有機TFTと呼ばれている。有機TFTは、従来の無機TFT(無機半導体層を用いた薄膜トランジスタ)における無機半導体層を形成するための蒸着法などよりも低い温度で有機半導体層を形成できるため、低耐熱性のプラスチックフィルムなどの基材にも実装できるという利点がある。
 ところで、表示デバイスは、一般に、表示素子を一対の基板が挟持した積層構造を有する。このため、一対の基板の周縁部では対向する基板の間に隙間があり、通常、この隙間を硬化性組成物からなる封止剤等で封止することが行われる。このような硬化性組成物からなる封止剤は、硬化前は一対の基板の周縁部の基板間の隙間に侵入する流動性が必要なため、粘度が十分に低く、一方、硬化後の硬化物は高い耐透湿性を有することが必要である。また、表示素子に有機TFTを用いた表示デバイスの場合、組成物には低温硬化性が要求される。このような硬化性組成物からなる封止剤として、例えば、特許文献1には、(i)23℃において液状のエポキシ樹脂、(ii)23℃において固体である2級アミンもしくは3級アミン、または2級アミンもしくは3級アミンを内包するマイクロカプセル、及び(iii)フィラーを含み、(i)及び(ii)の合計量100質量部に対して、(iii)を50~300質量部含有する硬化性組成物が提案されている。
国際公開2013/108629号パンフレット
 しかし、この種の封止剤に使用する硬化性組成物には、耐透湿性、低温硬化性及び保存安定性等において、さらなる向上が求められている。そこで、耐透湿性を向上させようと例えばタルク等を高配合すると、組成物の粘度が高くなり、流動性が失われて、封止作業での作業性が劣る傾向となる。従って、これらのバランスのとれた樹脂組成物が求められている。
 本発明はこのような事情に鑑みて為されたものであり、その解決しようとする課題は、粘度が低く、高流動性であり、保存安定性及び低温硬化性に優れ、しかも、その硬化物が高い耐透湿性を有する樹脂組成物を提供することにある。
 本発明者は、上記の課題を解決するために鋭意研究した結果、エポキシ樹脂、ポリチオール化合物及びフレーク状ガラスを含む樹脂組成物は、上記の課題解決に極めて有利に作用することを見出し、本発明を完成するに至った。すなわち、本発明は以下の通りである。
[1] (A)エポキシ樹脂、(B)ポリチオール化合物及び(C)フレーク状ガラスを含む樹脂組成物。
[2] E型粘度計により測定される25℃、20rpmにおける粘度が0.1~10Pa・sである、上記[1]記載の樹脂組成物。
[3] 樹脂組成物中のエポキシ樹脂の含有量が、樹脂組成物の不揮発分を100質量%とした場合に、20~60質量%である、上記[1]又は[2]に記載の樹脂組成物。
[4] 樹脂組成物中のエポキシ基とチオール基のモル比(エポキシ基/チオール基)が0.9~1.5である、上記[1]~[3]のいずれか1つに記載の樹脂組成物。
[5] 樹脂組成物中のフレーク状ガラスの含有量が、樹脂組成物の不揮発成分を100質量%とした場合に、5~40質量%である、上記[1]~[4]のいずれか1つに記載の樹脂組成物。
[6] フレーク状ガラスのアスペクト比が、10以上、100以下である、上記[1]~[5]のいずれか1つに記載の樹脂組成物。
[7] 樹脂組成物を70℃で1時間熱硬化させた硬化物の200μmの厚さでの透湿度が30g/m・24h以下である、上記[1]~[6]のいずれか1つに記載の樹脂組成物。
[8] 封止剤用である、上記[1]~[7]のいずれか1つに記載の樹脂組成物。
[9] 表示デバイスの封止剤用である、上記[1]~[7]のいずれか1つに記載の樹脂組成物。
[10] 表示デバイスが電子ペーパーである、上記[9]に記載の樹脂組成物。
[11] 上記[1]~[6]のいずれか1つに記載の樹脂組成物の硬化物であって、200μmの厚さでの透湿度が30g/m・24h以下である硬化物。
[12] 表示素子と、
 前記表示素子を挟持する一対の基板と、
 上記[1]~[7]のいずれか1つに記載の樹脂組成物の硬化物、または上記[11]記載の硬化物であって、前記一対の基板の周縁部における基板間の隙間を封止した硬化物とを含む、表示デバイス。
 本発明によれば、硬化前は十分に粘度が低く、流動性に優れ、保存安定性も良好であり、しかも、その硬化物が極めて高い耐透湿性を有する樹脂組成物を得ることができる。
 本発明の樹脂組成物は、上記の優れた特性を有するので、種々の技術分野における接着剤、封止剤、保護膜等として使用できる。特に表示素子や表示デバイスの封止剤として有用であり、例えば、一対の基板間に表示素子を挟持した構造を有する表示デバイスにおける周縁部の基板間の隙間を封止する封止剤に使用すれば、表示素子の水分による性能劣化が極めて生じ難い、高品位の表示デバイスを実現することができる。
 以下、本発明をその好適な実施形態に即して説明する。
 なお、本明細書において記号「~」を用いて規定された数値範囲は「~」の両端(上限および下限)の数値を含むものとする。例えば「0.01~5」は0.01以上5以下を表す。
 本発明の樹脂組成物は、(A)エポキシ樹脂(以下「(A)成分」と略称することがある)、(B)ポリチオール化合物(以下、「(B)成分」と略称することがある)及び(C)フレーク状ガラス(以下、「(C)成分」と略称することがある)を少なくとも含むことが主たる特徴である。
<(A)エポキシ樹脂>
 本発明におけるエポキシ樹脂は、平均して1分子当り2個以上のエポキシ基を有するものであれば特に限定されない。例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、ビフェニル型エポキシ樹脂、ビフェニルアラルキル型エポキシ樹脂、ナフトール型エポキシ樹脂、ナフタレン型エポキシ樹脂、リン含有エポキシ樹脂、芳香族グリシジルアミン型エポキシ樹脂(例えば、テトラグリシジルジアミノジフェニルメタン、トリグリシジル-p-アミノフェノール、ジグリシジルトルイジン、ジグリシジルアニリン等)、脂環式エポキシ樹脂、脂肪族鎖状エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ビスフェノールAノボラック型エポキシ樹脂、ポリアルキレングリコール骨格含有エポキシ樹脂、ブタジエン構造を有するエポキシ樹脂、ビスフェノールのジグリシジルエーテル化物、ナフタレンジオールのジグリシジルエーテル化物、フェノール類のグリシジルエーテル化物、及びアルコール類のジグリシジルエーテル化物、並びにこれらのエポキシ樹脂のアルキル置換体、ハロゲン化物及び水素添加物等が挙げられる。中でも、結晶性が低く、得られる樹脂組成物の粘度を低粘度にすることができるという観点から、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、フェノール類のグリシジルエーテル化物(例えば、レゾルシノールジグリシジルエーテル等)、アルコール類のジグリシジルエーテル化物(例えば、1,4-シクロヘキサンジメタノールジグリシジルエーテル等)が好ましい。エポキシ樹脂は、エポキシ当量が50~1500g/eqの範囲が好ましく、70~500g/eqの範囲がより好ましく、100~200g/eqの範囲が更に好ましい。なお、本発明における「エポキシ当量」とは1グラム当量のエポキシ基を含む樹脂のグラム数(g/eq)であり、JIS K 7236に規定された方法に従って測定される。エポキシ樹脂は1種または2種以上を組み合わせて使用してもよい。
 本発明の樹脂組成物は、その用途の一例として、一対の基板の間に表示素子が挟持された構造の表示デバイスにおける周縁部の基板間の隙間を封止する封止剤を意図している。このため、硬化前の樹脂組成物は該基板間の隙間に侵入する流動性が必要であり、樹脂組成物の主成分であるエポキシ樹脂((A)成分)は流動性が必要である。従って、エポキシ樹脂((A)成分)は、固形状のエポキシ樹脂を含んでもよいが、(A)成分全体の50~100質量%が液状エポキシ樹脂であることが好ましく、(A)成分全体の70~100質量%が液状エポキシ樹脂であることがより好ましい。ここで、固形状のエポキシ樹脂とは23℃で固体のエポキシ樹脂を意味し、液状エポキシ樹脂とは23℃で液体のエポキシ樹脂を意味する。
 また、エポキシ樹脂は、低粘性、耐透湿性の観点から、エポキシ当量が50g/eq以上が好ましく、70g/eq以上がより好ましく、100g/eq以上が特に好ましい。また、低粘性、耐透湿性の観点から、エポキシ当量が500g/eq以下が好ましく、200g/eq以下がより好ましい。
 本発明の樹脂組成物中の(A)成分の含有量は特に制限はないが、組成物の粘度の観点から、該含有量は、樹脂組成物中の不揮発分の合計100質量%当たり、60質量%以下が好ましく、55質量%以下がより好ましく、51質量%以下がさらに一層好ましく、50質量%以下が特に好ましい。一方、組成物の粘度の観点から、該含有量は、樹脂組成物中の不揮発分の合計100質量%あたり、20質量%以上が好ましく、25質量%以上がより好ましく、30質量%以上が特に好ましい。
<(B)ポリチオール化合物>
 本発明の樹脂組成物において、硬化剤としてポリチオール化合物を用いることで、樹脂組成物を低温度域で硬化させることができ、さらに樹脂組成物の低粘度化にも大きく寄与する。ポリチオール化合物は、エポキシ基を架橋もしくは重合する化合物であれば特に限定されないが、1分子中のチオール基数が2~6(2官能~6官能)であるものが好ましく、3~6(3官能~6官能)であるものがより好ましく、例えば、トリメチロールプロパントリス(3-メルカプトプロピオネート)(略称:TMTP)、ペンタエリスリトールテトラキス(3-メルカプトプロピオネート)(略称:PEMP)、ジペンタエリスリトールヘキサキス(3-メルカプトプロピオネート)(略称:DPMP)、トリス-[(3-メルカプトプロピオニルオキシ)-エチル]-イソシアヌレート(略称:TEMPIC)、トリス(3-メルカプトプロピル)イソシアヌレート(略称:TMPIC)、エチレングリコールビスチオグリコレート(略称:EGTG)、トリメチロールプロパントリスチオグリコレート(略称:TMTG)、ペンタエリスリトールテトラキスチオグリコレート(略称:PETG)、ペンタエリスリトールテトラキス(3-メルカプトブチレート)、1,4-ビス(3-メルカプトブチリルオキシ)ブタン、1,3,5-トリス(3-メルカプトブチリルオキシエチル)-1,3,5-トリアジン-2,4,6(1H,3H,5H)-トリオン、トリメチロールプロパントリス(3-メルカプトブチレート)(略称:TPMB)、トリメチロールエタントリス(3-メルカプトブチレート)(略称:TEMB)、1,3,4,6-テトラキス(2-メルカプトエチル)グリコールウリル、4,4’-イソプロピリデンビス[(3-メルカプトプロポキシ)ベンゼン]等が挙げられる。
 これらの化合物は公知の方法で合成することができ、また、市販品を使用することができる。例えば、トリス(3-メルカプトプロピル)イソシアヌレート(略称:TMPIC)や4,4’-イソプロピリデンビス[(3-メルカプトプロポキシ)ベンゼン]は、例えば、特開2012-153794号公報や国際公開2001/00698号に記載の方法で合成することができる。市販品としては、SC有機化学株式会社製のPEMP、淀化学株式会社製のOTG、EGTG、TMTG、PETG、3-MPA、TMTP、PETP、堺化学工業株式会社製のTEMP、PEMP、TEMPIC、DPMP、昭和電工株式会社製のPE-1(ペンタエリスリトールテトラキス(3-メルカプトブチレート))、BD-1(1,4-ビス(3-メルカプトブチリルオキシ)ブタン)、NR-1(1,3,5-トリス(3-メルカプトブチリルオキシエチル)-1,3,5-トリアジン-2,4,6(1H,3H,5H)-トリオン)、TPMB、TEMB、四国化成工業株式会社製のTS-G(1,3,4,6-テトラキス(2-メルカプトエチル)グリコールウリル)等が挙げられる。ポリチオール化合物は1種または2種以上を組み合わせて使用してもよい。
 ポリチオール化合物は、樹脂組成物の低粘性及び低温硬化性、硬化物の耐透湿性等の観点から、チオール基当量が50~500g/eqの範囲が好ましく、75~300g/eqの範囲がより好ましく、100~200g/eqの範囲が更に好ましい。なお、「チオール基当量」とは1グラム当量のチオール基を含む樹脂のグラム数(g/eq)であり、公知の方法、例えばでんぷんを指示薬として用いるヨウ素溶液滴定法により測定できる。
 本発明の樹脂組成物中の(B)成分の含有量は特に制限はないが、樹脂組成物中のエポキシ基とチオール基のモル比(エポキシ基/チオール基)、即ち、樹脂組成物中の(B)成分が有するチオール基の合計モル数(M1)に対する、樹脂組成物中の(A)成分が有するエポキシ基の合計モル数(M2)の比(M2/M1)が0.9~1.5となる含有量であることが好ましく、当該比(M2/M1)が1.0~1.2となる含有量であることがより好ましい。
 また、樹脂組成物を効率的に低温硬化させるという観点から、樹脂組成物中の(B)成分の含有量は、樹脂組成物の不揮発分を100質量%とした場合、10質量%以上が好ましく、20質量%以上がより好ましく、25質量%以上が更に好ましく、30質量%以上が特に好ましい。一方、樹脂組成物の保存安定性の観点からは、該含有量は、樹脂組成物の不揮発分を100質量%とした場合、60質量%以下が好ましく、50質量%以下がより好ましく、45質量%以下がより一層好ましく、40質量%以下が特に好ましい。
<(C)フレーク状ガラス>
 本発明の樹脂組成物はフレーク状ガラスを含有することで、樹脂組成物の硬化物の耐透湿性を極めて高いレベルに向上させることができる。フレーク状ガラスのガラス組成は、Aガラス、Cガラス、およびEガラス等に代表される各種のガラス組成が適用され、その中でもEガラスが特に好ましい。なお、フレーク状ガラスは一般に「ガラスフレーク」とも呼ばれる。
 フレーク状ガラスの平均厚さは、好ましくは0.1~5μm、より好ましくは1~3μmである。該平均厚さは以下の方法で測定される。
 走査型電子顕微鏡(SEM)を用い、100枚以上のガラスフレークにつき、それぞれの厚さを測定し、その測定値を平均することにより求める。この場合、ガラスフレーク単体を走査型電子顕微鏡で観察して測定しても良いし、ガラスフレークを樹脂に充填して成形し、これを破断し、その破断面を観察して測定しても良い。いずれの測定方法においても、ガラスフレーク断面(厚さ面)が走査型電子顕微鏡の照射電子線軸に垂直になるように、走査型電子顕微鏡の試料台を試料台微動装置により調製する。
 フレーク状ガラスの平均粒子径は、耐透湿性の観点から5μm以上が好ましく、20μm以上がさらに好ましく、40μm以上が特に好ましい。また、表示デバイスにおける周縁部の基板間の隙間等の封止性の観点から、300μm以下が好ましく、200μm以下がさらに好ましく、160μm以下が特に好ましい。
 フレーク状ガラスの平均粒子径は、ミー(Mie)散乱理論に基づくレーザー回折・散乱法により測定することができる。具体的には、レーザー回折式粒度分布測定装置により、フレーク状ガラスの粒度分布を体積基準で作成し、そのメディアン径を平均粒子径とすることで測定することができる。測定サンプルは、フレーク状ガラスを超音波により水中に分散させたものを好ましく使用することができる。レーザー回折散乱式粒度分布測定装置としては、(株)堀場製作所製 LA-500等を使用することができる。
 フレーク状ガラスのアスペクト比(平均粒子径/平均厚さ)は、硬化物が十分に高い耐透湿性を示すという観点から、10以上が好ましく、13以上がより好ましく、樹脂組成物の流動性の観点から、100以下が好ましく、45以下がより好ましく、40以下が更に好ましい。
 本発明の樹脂組成物中の(C)成分の含有量は特に制限はないが、樹脂組成物の硬化物の耐透湿性を十分に高めるという観点から、該含有量は、樹脂組成物の不揮発分を100質量%とした場合、5質量%以上が好ましく、7質量%以上がより好ましく、10質量%以上が更に好ましく、15質量%以上が更に一層好ましい。一方、樹脂組成物の低粘性の観点からは、該含有量は、樹脂組成物の不揮発分を100質量%とした場合、40質量%以下が好ましく、3質量%以下がより好ましく、30質量%以下がより一層好ましく、25質量%以下が特に好ましい。
<(D)硬化促進剤>
 本発明の樹脂組成物は、必要に応じて、更に(D)硬化促進剤(以下「(D)成分」と略称することがある)を含有させることにより、低温硬化性を向上させることができる。硬化促進剤としては、特に限定されないが、アミン系硬化促進剤、グアニジン系硬化促進剤、イミダゾール系硬化促進剤、ホスホニウム系硬化促進剤等が挙げられる。これらは1種又は2種以上組み合わせて使用してもよい。
 アミン系硬化促進剤としては、特に限定されるものではないが、トリエチルアミン、トリブチルアミンなどのトリアルキルアミン、4-ジメチルアミノピリジン、ベンジルジメチルアミン、2,4,6,-トリス(ジメチルアミノメチル)フェノール、1,8-ジアザビシクロ(5,4,0)-ウンデセン(以下、DBUと略記する。)などのアミン化合物、有機酸ジヒドラジド(アミキュアVDH-J、アミキュアUDH、アミキュアLDH等(いずれも味の素ファインテクノ(株)製))等が挙げられる。また、3級アミノ基含有変性ポリアミン、尿素結合含有変性ポリアミン、イミダゾール含有変性ポリアミン等の変性ポリアミンを挙げることができる。3級アミノ基含有変性ポリアミンとは、エポキシ樹脂および/またはフェノール樹脂に、第3級アミン骨格を有するポリアミンを過剰量反応させて得られるアミンアダクトであり、例えば、(株)ADEKA製EH4380S、EH3616S、EH5001P、EH4357S等が挙げられる。イミダゾール基含有変性ポリアミンとは、エポキシ樹脂および/またはフェノール樹脂に、イミダゾール骨格を有するポリアミンを過剰量反応させて得られるアミンアダクトであり、例えば、味の素ファインテクノ(株)製PN-23、PN-H、PN-40、(株)ADEKA製EH4346S、(株)T&K TOKA製FXR-1121、エアープロダクツジャパン(株)製サンマイドLH210等が挙げられる。尿素結合含有変性ポリアミンとは、イソシアネート化合物に、ポリアミンを過剰量反応させて得られるアダクトであり、例えば、(株)T&K TOKA製FXR-1020、FXR-1081等が挙げられる。アミン系硬化促進剤は1種または2種以上を組み合わせて使用してもよい。
 グアニジン系硬化促進剤としては、特に限定されるものではないが、ジシアンジアミド、1-メチルグアニジン、1-エチルグアニジン、1-シクロヘキシルグアニジン、1-フェニルグアニジン、1-(o-トリル)グアニジン、ジメチルグアニジン、ジフェニルグアニジン、トリメチルグアニジン、テトラメチルグアニジン、ペンタメチルグアニジン、1,5,7-トリアザビシクロ[4.4.0]デカ-5-エン、7-メチル-1,5,7-トリアザビシクロ[4.4.0]デカ-5-エン、1-メチルビグアニド、1-エチルビグアニド、1-n-ブチルビグアニド、1-n-オクタデシルビグアニド、1,1-ジメチルビグアニド、1,1-ジエチルビグアニド、1-シクロヘキシルビグアニド、1-アリルビグアニド、1-フェニルビグアニド、1-(o-トリル)ビグアニド等が挙げられる。これらは1種または2種以上を組み合わせて使用してもよい。
 イミダゾール系硬化促進剤としては、特に限定されるものではないが、2-メチルイミダゾール、2-ウンデシルイミダゾール、2-ヘプタデシルイミダゾール、1,2-ジメチルイミダゾール、2-エチル-4-メチルイミダゾール、2-フェニルイミダゾール、2-フェニル-4-メチルイミダゾール、1-ベンジル-2-メチルイミダゾール、1-ベンジル-2-フェニルイミダゾール、1-シアノエチル-2-メチルイミダゾール、1-シアノエチル-2-ウンデシルイミダゾール、 1-シアノエチル-2-エチル-4-メチルイミダゾール、1-シアノエチル-2-フェニルイミダゾール、1-シアノエチル-2-ウンデシルイミダゾリウムトリメリテイト、1-シアノエチル-2-フェニルイミダゾリウムトリメリテイト、2,4-ジアミノ-6-[2’-メチルイミダゾリル-(1’)]-エチル-s-トリアジン、2,4-ジアミノ-6-[2’-ウンデシルイミダゾリル-(1’)]-エチル-s-トリアジン、2,4-ジアミノ-6-[2’-エチル-4’-メチルイミダゾリル-(1’)]-エチル-s-トリアジン、2,4-ジアミノ-6-[2’-メチルイミダゾリル-(1’)]-エチル-s-トリアジンイソシアヌル酸付加物、2-フェニルイミダゾールイソシアヌル酸付加物、2-フェニル-4,5-ジヒドロキシメチルイミダゾール、2-フェニル-4-メチル-5ヒドロキシメチルイミダゾール、2,3-ジヒドロ-1H-ピロロ[1,2-a]ベンズイミダゾール、1-ドデシル-2-メチル-3-ベンジルイミダゾリウムクロライド、2-メチルイミダゾリン、2-フェニルイミダゾリン、1-(2-ヒドロキシ)-3-フェノキシプロピル-2-メチルイミダゾール等のイミダゾール化合物及びイミダゾール化合物とエポキシ樹脂とのアダクト体が挙げられる。これらは1種または2種以上を組み合わせて使用してもよい。
 ホスホニウム系硬化促進剤としては、特に限定されるものではないが、トリフェニルホスフィン、ホスホニウムボレート化合物、テトラフェニルホスホニウムテトラフェニルボレート、n-ブチルホスホニウムテトラフェニルボレート、テトラブチルホスホニウムデカン酸塩、(4-メチルフェニル)トリフェニルホスホニウムチオシアネート、テトラフェニルホスホニウムチオシアネート、ブチルトリフェニルホスホニウムチオシアネート等が挙げられる。これらは1種または2種以上を組み合わせて使用してもよい。
 (D)硬化促進剤は、なかでも、アミン系硬化促進剤が好ましく、変性ポリアミンがより好ましく、イミダゾール基含有変性ポリアミン、尿素結合含有変性ポリアミン硬化促進剤等が特に好ましい。
 本発明の樹脂組成物において、樹脂組成物中の(D)成分の含有量は特に制限はないが、樹脂組成物の不揮発分を100質量%とした場合、該含有量は、樹脂組成物の保存安定性を向上させるという観点から、20質量%以下が好ましく、10質量%以下がより好ましく、5質量%以下が更に好ましい。一方で、効率的に樹脂組成物を硬化させ、低温硬化性を向上させるという観点から、樹脂組成物の不揮発分を100質量%とした場合、0.1質量%以上が好ましく、1質量%以上がより好ましく、2質量%以上が更に好ましい。
<(E)その他>
 本発明の樹脂組成物には、本発明の効果を阻害しない範囲で、上述した(A)~(D)成分以外の各種添加剤((E)成分)を任意で含有させてもよい。各種添加剤としては、保存安定剤、有機充填剤、増粘剤、レベリング剤、密着性付与剤、フレーク状ガラス((C)成分)以外の無機充填材等を挙げることができる。
 保存安定剤としては、ホウ酸エステル化合物、チタン酸エステル化合物、アルミネート化合物、ジルコネート化合物などが挙げられる。
 ホウ酸エステル化合物の代表例としては、トリメチルボレート、トリエチルボレート、トリ-n-プロピルボレート、トリイソプロピルボレート、トリ-n-ブチルボレート、トリペンチルボレート、トリアリルボレート、トリヘキシルボレート、トリシクロヘキシルボレート、トリオクチルボレート、トリノニルボレート、トリデシルボレート、トリドデシルボレート、トリヘキサデシルボレート、トリオクタデシルボレート、トリス(2-エチルヘキシロキシ)ボラン、ビス(1,4,7,10-テトラオキサウンデシル)(1,4,7,10,13-ペンタオキサテトラデシル)(1,4,7-トリオキサウンデシル)ボラン、トリベンジルボレート、トリフェニルボレート、トリ-o-トリルボレート、トリ-m-トリルボレート、トリエタノールアミンボレート等が挙げられる。チタン酸化合物の代表例としては、テトラエチルチタネート、テトラプロピルチタネート、テトライソプロピルチタネート、テトラブチルチタネート、テトラオクチルチタネート等が挙げられる。アルミネート化合物の代表例としては、トリエチルアルミネート、トリプロピルアルミネート、トリイソプロピルアルミネート、トリブチルアルミネート、トリオクチルアルミネート等が挙げられる。ジルコネート化合物の代表例としては、テトラエチルジルコネート、テトラプロピルジルコネート、テトライソプロピルジルコネート、テトラブチルジルコネート等が挙げられる。これらのうち、汎用性・安全性が高く、保存安定性に優れるという観点でホウ酸エステル類が好ましく、トリエチルボレート、トリ-n-プロピルボレート、トリイソプロピルボレート、トリ-n-ブチルボレートがより好ましく、トリエチルボレートが特に好ましい。
 樹脂組成物中の保存安定剤の含有量は特に制限はないが、樹脂組成物の保存安定性を向上させるという観点から、エポキシ樹脂100質量部に対して0.01質量部以上が好ましく、0.05質量部以上がより好ましく、0.1質量部以上が更に好ましい。一方で、硬化時間の遅延をもたらさないという観点から、エポキシ樹脂100質量部に対して5質量部以下が好ましく、3質量部以下がより好ましく、1質量部以下が更に好ましい。
 有機充填剤としては、例えば、ゴム粒子、シリコーンパウダー、ナイロンパウダー、フッ素樹脂パウダー等が挙げられ、増粘剤としては、例えば、オルベン、ベントン等が挙げられ;消泡剤またはレベリング剤としては、例えば、シリコン系、フッ素系、高分子系の消泡剤またはレベリング剤が挙げられ、密着性付与剤としては、例えば、トリアゾール化合物、チアゾール化合物、トリアジン化合物、ポルフィリン化合物等が挙げられる。
 また、フレーク状ガラス以外の無機充填材としては、例えば、シリカ、アルミナ、硫酸バリウム、タルク、クレー、雲母粉、水酸化アルミニウム、水酸化マグネシウム、炭酸カルシウム、炭酸マグネシウム、酸化マグネシウム、窒化ホウ素、ホウ酸アルミニウム、チタン酸バリウム、チタン酸ストロンチウム、チタン酸カルシウム、チタン酸マグネシウム、チタン酸ビスマス、酸化チタン、ジルコン酸バリウム、ジルコン酸カルシウムなどが挙げられ、特にシリカが一般的に使用される。これらは1種または2種以上を組み合わせて使用してもよい。市販されている無機充填材として、日本アエロジル(株)製「200」、「200CF」、「300」、「300CF」、「380」などの親水性ヒュームドシリカや、「R-805」、「R-812」「RY-200」、「RY-300」、「RX-200」、「RX-300」などの疎水性ヒュームドシリカ、(株)アドマテックス製「SOC2」、「SOC1」等が挙げられる。
 フレーク状ガラス以外の無機充填材を含む場合、その含有量は樹脂組成物の不揮発分を100質量%とした場合、5質量%以下が好ましく、3質量%以下がより好ましく、1質量%以下がより一層好ましく、0.5質量%以下が特に好ましい。また樹脂組成物中のフレーク状ガラス((C)成分)とフレーク状ガラス以外の無機充填材の合計含有量は、樹脂組成物の不揮発分を100質量%とした場合、40質量%以下が好ましく、35質量%以下がより好ましく、30質量%以下がより一層好ましく、25質量%以下が特に好ましい。
<樹脂組成物の製造方法>
 本発明の樹脂組成物は、例えば、少なくとも(A)~(C)成分を含有する配合成分を、3本ロール、ボールミル、ビーズミル、サンドミル等の混錬手段、あるいはスーパーミキサー、プラネタリーミキサー等の撹拌手段により混合することによって調製することができる。配合成分は一括混合してもよいが、樹脂組成物の保存安定性の観点から、エポキシ樹脂((A)成分)とフレーク状ガラス((C)成分)を混合し、そこへポリチオール化合物((B)成分)を混合する手順が好ましい。
 また、硬化促進剤((D)成分)、その他の添加剤((E)成分)等をさらに含有する樹脂組成物を調製する場合、(C)成分のフレーク状ガラス以外の無機充填材は分散性の観点から、フレーク状ガラス((C)成分)とともにエポキシ樹脂((A)成分)と混合するのが好ましく、硬化促進剤((D)成分)及び(E)成分の保存安定剤等は、樹脂組成物の保存安定性の観点から、ポリチオール化合物((B)成分)を混合する前に、エポキシ樹脂((A)成分)とフレーク状ガラス((C)成分)の混合物((E)成分のフレーク状ガラス以外の無機充填材を使用する場合は、エポキシ樹脂((A)成分)とフレーク状ガラス((C)成分)とフレーク状ガラス以外の無機充填材との混合物)に、混合するのが好ましい。
<樹脂組成物とその用途>
 本発明の樹脂組成物は、硬化後の硬化物の耐透湿性が極めて高い。また後掲実施例の耐透湿性の評価は、水蒸気(気体)の透過度で行っており、この評価は同時に硬化物のガスバリア性の評価にもなっており、本発明の樹脂組成物の硬化物がガスバリア性に優れることも示している。従って、本発明の樹脂組成物は、種々の技術分野における接着剤、封止剤、保護膜等として使用できる。例えば、電子部品、半導体装置、光回路部品等における接着剤、太陽電池、高輝度LED、LCD、EL素子、有機TFT等の光半導体素子の封止(素子を被覆して素子を空気雰囲気から隔絶する封止剤)に使用でき、また、HDD(ハードディスクドライブ)の封止(HDDの内部をヘリウムガス等のガスで充填した際、ガスが抜けることを防ぐための封止剤)、プリント配線板の絶縁保護膜等に使用することができる。
 本発明の樹脂組成物は、低温度域でも速やかに硬化する優れた低温硬化性を有しており、硬化温度は、特に限定されるものではないが、好ましくは50~120℃、より好ましくは70~100℃であり、硬化時間は好ましくは30~120分、より好ましくは60~90分である。低温かつ短時間で硬化できるため、熱劣化し易い接着対象物や封止対象物に対しても、それらの熱劣化を生じさせることなく、接着や封止を行うことができる。従って、例えば、表示素子に有機TFTを用いた表示デバイス(電子ペーパー等)や有機EL素子を有する有機ELデバイス等に対して、有機TFTや有機EL素子を熱劣化させることなく意図した封止構造を形成することができる。硬化時の加熱方法は特に限定されず、例えば、熱風循環式オーブン、赤外線ヒーター、ヒートガン、高周波誘導加熱装置、ヒートツールの圧着による加熱などが使用可能である。
 本発明の樹脂組成物は、例えば、70℃で1時間(60分)熱硬化して得られた硬化物を200μmの厚さで、JIS Z0208に記載の透湿度試験方法(カップ法)に準拠して測定した際に透湿度が30(g/m・24h)以下(好ましくは20(g/m・24h)以下)を示す。透湿度は低ければ低いほど好ましいため、下限値は特に限定されないが、現実的には概ね3(g/m・24h)以上であるが、これに限定されない。従って、かかる硬化物で封止された封止対象物は水分による劣化が極めて生じにくいものになる。なお、本発明でいう「硬化物」とは、硬化反応前の樹脂組成物が加熱によって90%以上反応したものを意味し、例えば、示差走査熱量測定(DSC)により、硬化前の樹脂組成物から総発熱量(H)、樹脂組成物を70℃で1時間加熱して得られた硬化物から残留発熱量(H)を測定し、以下の計算式により算出される反応率が90%以上を示すことである。
 反応率(%)=(H-H)/H×100
 本発明の樹脂組成物は、例えば、70℃で1時間(60分)熱硬化して得られた硬化物のTgが高い程、耐透湿性が良好となる。当該硬化物のTgは特に限定されるものではないが、30℃以上が好ましく、40℃以上がより好ましく、50℃以上が更に好ましい。
 また、本発明の樹脂組成物は、硬化前は、E型粘度計により測定される25℃、20rpmにおける組成物の粘度が15Pa・s以下(好ましくは、0.1Pa・s以上、10Pa・s以下)を示し、かつ、チキソトロピックインデックス(TI値)が2.0未満(好ましくは1.5未満)を示す、低粘度かつ構造粘性の低い液状物であり、室温にて高い流動性を示す。このため、狭小な凹部や隙間にも樹脂組成物が速やかに浸入するので、例えば、一対の基板間に表示素子を挟持した構造を有する表示デバイスの周縁部に形成される基板間の隙間を空隙を残すことなく十分量の樹脂組成物で埋めることができる。表示素子に有機TFTを用いた表示デバイス(特に電子ペーパー)における表示素子を挟持する一対の基板の基板間の隙間は一般に100~300μm程度で非常に狭小であるが、本発明の樹脂組成物であれば、かかる電子ペーパーの一対の基板の周縁部に形成される基板間の隙間を空隙を残すことなく封止した封止部を形成できる。そして、硬化後の硬化物は耐透湿性が極めて高いので、表示素子の水分による性能劣化が極めて生じ難い、高品位の電子ペーパーを得ることができる。
 また、本発明の樹脂組成物は、優れた保存安定性を有し、長期間、ゲル化を生じることなく、低粘性のまま保存することができる。本発明における「保存安定性」とは、生産してから使用する状態、更には商品を流通させて購入先で使用に耐えうる期間の安定性を意味する。商品流通あるいは長期に保管した後に使用する場合、冷蔵庫、冷凍庫など低温化で保管することで保存安定性を伸ばすことも可能である。一般的には20℃以上40℃以下の環境温度において流通に耐えうるという観点で、保存安定性は少なくとも3時間以上、好ましくは6時間以上、より好ましく12時間以上、更に一層好ましくは1日以上、殊更好ましくは3日以上、特に好ましくは7日以上である。保存安定性は低粘性のまま保存できる期間が長ければ長い程よく、その上限は特に制限されないが、2週間が好ましく、3週間がより好ましく、1ヶ月が更に一層好ましく、2ヶ月が殊更好ましく、3ヶ月が特に好ましく、6ヶ月が最も好ましい。
 以下、実施例及び比較例を示して本発明をより具体的に説明するが、本発明は以下の実施例に限定されるものではない。なお、以下の記載中の「部」は「質量部」を意味する。
1.原材料
[(A)成分]
(A1)「jER807」:三菱化学株式会社製 ビスフェノールF型エポキシ樹脂 エポキシ当量(EPW)160-175g/eq 液状
(A2)「jER828」:三菱化学株式会社製 ビスフェノールA型エポキシ樹脂 エポキシ当量(EPW)184-194g/eq 液状
(A3)「EX-201」:ナガセケムテックス株式会社製 レゾルシノールジグリシジルエーテル エポキシ当量(EPW)117g/eq 液状
(A4)「DME-100」:新日本理化株式会社製 1,4-シクロヘキサンジメタノールジグリシジルエーテル エポキシ当量(EPW)145-170g/eq 液状
[(B)成分]
(B1)PEMP:SC有機化学株式会社製 ペンタエリスリトールテトラキス(3-メルカプトプロピオナート)、チオール当量122g/eq
(B2)TMTP:淀化学工業株式会社製 トリメチロールプロパントリス(3-メルカプトプロピオナート)、チオール当量140g/eq
(B3)DPMP:ジペンタエリスリトールヘキサキス(3-メルカプトプロピオネート)、チオール当量131g/eq
(B4)PE1:昭和電工株式会社製「カレンズMT」 ペンタエリスリトールテトラキス(3-メルカプトブチレート)、チオール当量136g/eq
(B5)TMPIC:トリス(3-メルカプトプロピル)イソシアヌレート、チオール当量117g/eq
(B6)TS-G:四国化成工業株式会社製 1,3,4,6-テトラキス(2-メルカプトエチル)グリコールウリル、チオール当量94g/eq
(B7)4,4’-イソプロピリデンビス[(3-メルカプトプロポキシ)ベンゼン]:チオール当量189g/eq
[(C)成分]
(C1)GF750E:GLASS FLAKE LIMITED製 鱗片状ガラス、平均粒子径160μm、平均厚み5μm、アスペクト比32
(C2)GF003:GLASS FLAKE LIMITED製 鱗片状ガラス、平均粒子径40μm、平均厚み3μm、アスペクト比13
(C3)GF-001:GLASS FLAKE LIMITED製 鱗片状ガラス、平均粒子径40μm、平均厚み1μm、アスペクト比40
[(D)成分]
(D1)アミキュアPN-23:味の素ファインテクノ株式会社製 イミダゾール基含有変性ポリアミン(固体)
(D2)フジキュアーFXR-1081:株式会社T&K TOKA製 尿素結合含有変性ポリアミン 固形タイプ
(D3)ノバキュアHX-3722:旭化成株式会社製 イミダゾール変性マイクロカプセル体
[その他((E)成分)]
(E1)RD-8AL:株式会社龍森製 二酸化珪素、平均粒子径15μm
(E2)タルクMS:日本タルク株式会社製 タルク、平均粒子径14μm
(E3)アエロジル200:日本アエロジル株式会社製 フュームドシリカ
(E4)TEB:純正化学工業株式会社製 トリエチルボレート
(E5)HN-2200:日立化成株式会社製 3又は4-メチル-1,2,3,6-テトラヒドロ無水フタル酸、分子量166
2.評価試験
(1)粘度
 E型粘度計RE-80(東機産業社製、ローター:3°×R9.7)により、25℃、20rpmで測定した。
(2)チキソトロピックインデックス(TI値)
 E型粘度計RE-80(東機産業社製、ローター:3°×R9.7)により、25℃で、2rpm、20rpmの粘度をそれぞれ測定し、2rpmの粘度と20rpmの粘度の比(2rpm/20rpm)をチキソトロピックインデックス(TI値)とした。
 <評価基準>
○:1.5未満
△:1.5以上、2.0未満
×:2.0以上
(3)保存安定性
 組成物をプラスティック製密閉容器に25℃にて7日間保管し、E型粘度計RE-80(東機産業社製、ローター:3°×R9.7)により、25℃、20rpmで測定し、初期粘度からの増粘率を7日後の粘度/初期粘度により算出した。
 <評価基準>
 ○:1.2倍未満
 △:1.2以上、1.5倍未満
 ×:1.5倍以上
(4)低温硬化性
 組成物をJIS C6521に準じてホットプレート式ゲル化試験機GT-D(日新科学社製)により、70℃で糸を引かなくなった時間を測定した。具体的には、約0.5gの組成物を70℃に予め加熱しておいたホットプレート式ゲル化試験機上に置き、ストップウォッチを始動し、先端幅5mmのへらで接触円運動を繰り返し、ゲル化するまでの時間を測定した。
 <評価基準>
 ○:10分未満
 △:10分以上、30分未満
 ×:30分以上
(5)耐透湿性(透湿度)
 離形PETフィルム(NS-80A)の離形面に組成物を塗布し、ガラス棒により約200μmの厚さに伸ばし、70℃のオーブンで60分間加熱することにより、組成物の硬化フィルムを作製した。硬化フィルムは加熱前のフィルムを構成する樹脂組成物が90%以上反応したものであった。作製した硬化フィルムを用いて、JIS Z0208に準拠した方法でアルミカップを作製し、60℃、80%RHの高温高湿槽に24hr放置した前後の質量から、下記計算式により厚さ200μmの硬化物の透湿度を算出した。
 透湿度(g/m・24hr)=[(24hr放置後のアルミカップ質量(g)-放置前のアルミカップ質量(g))/フィルムの面積(m)]×(フィルムの厚さの実測値(μm)/200(μm))
 <評価基準>
 ○:20(g/m・24hr)未満
 △:20(g/m・24hr)以上、30(g/m・24hr)未満
 ×:30(g/m・24hr)以上
3.実施例および比較例
 下記表1、2の上欄に示す配合で各成分を混合して、実施例1~18、比較例1~4、および参考例1~2に係る樹脂組成物を調製した。表中の(部)は質量部を示し、(%)は質量%を示す。
 樹脂組成物は、実施例1~15、17については、(A)成分、(C)成分、(E3)を3本ロールミルにより混合し、そこへ(D)成分、(E4)を添加してさらにミキサーにより混合し、そこへ(B)成分を添加してミキサーにより十分に分散した後、静置脱泡して調製した。なお、調製作業は25℃で行い、トータルの混合時間は30分であった。
 実施例16については、(A)成分、(B)成分、(C)成分、(E3)を3本ロールミルにより混合し、そこへ(D)成分、(E4)を添加して十分に分散した後、静置脱泡して調製した。混合手段、温度、及び総混合時間は実施例1~15と同様にした。
 実施例18については、(A)成分、(C)成分を混合し、そこへ(D)成分、(E4)を添加して十分に分散した後、静置脱泡して調製した。混合手段、温度、及び総混合時間は実施例1~15と同様にした。
 比較例1については、(A)成分、(E1)を混合し、そこへ(D)成分を添加してさらに混合し、そこへ(E5)を添加して十分に分散した後、静置脱泡して調製した。混合手段、温度、及び総混合時間は実施例1~15と同様にした。
 比較例2については、(A)成分、(E1)を混合し、そこへ(D)成分を添加してさらに混合し、そこへ(B)成分を添加して十分に分散した後、静置脱泡して調製した。混合手段、温度、及び総混合時間は実施例1~15と同様にした。
 比較例3~4については、(A)成分、(E2)、(E3)を混合し、そこへ(C)成分、(E4)を添加してさらに混合し、そこへ(B)成分を添加して十分に分散した後、静置脱泡して調製した。混合手段、温度、及び総混合時間は実施例1~15と同様にした。
 参考例1については、(A)成分、(C)成分を混合し、そこへ(D)成分を添加してさらに混合し、そこへ(E5)を添加して十分に分散した後、静置脱泡して調製した。混合手段、温度、及び総混合時間は実施例1~15と同様にした。
 参考例2については、(A)成分、(C)成分を混合し、そこへ(D)成分を添加してさらに混合した後、静置脱泡して調製した。混合手段、温度、及び総混合時間は実施例1~15と同様にした。
 実施例1~18、比較例1~4及び参考例1~2の樹脂組成物を前述の評価試験に供した結果が表1、2の下欄である。なお、比較例1、参考例1は硬化物が脆すぎるために試験片を作成できず、硬化物の透湿度を測定できなかった。 
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 表1、2から、実施例1~18の結果の通り、本発明の樹脂組成物は、初期粘度及びチキソトロピックインデックス(TI値)が低く、保存安定性も良好であり、硬化物が優れた耐透湿性を示すことがわかる。これに対し、比較例1の樹脂組成物は、保存安定性、低温硬化性、及び硬化物の耐透湿性が悪く、比較例2、3の樹脂組成物は硬化物の耐透湿性が悪く、比較例4の樹脂組成物は初期粘度、チキソトロピックインデックス(TI値)が高く、本発明の樹脂組成物のような高いレベルの性能を有していないことがわかる。
 本出願は日本で出願された特願2017-037013を基礎としており、その内容は本明細書に全て包含される。

Claims (12)

  1.  (A)エポキシ樹脂、(B)ポリチオール化合物及び(C)フレーク状ガラスを含む樹脂組成物。
  2.  E型粘度計により測定される25℃、20rpmにおける粘度が0.1~10Pa・sである、請求項1記載の樹脂組成物。
  3.  樹脂組成物中のエポキシ樹脂の含有量が、樹脂組成物の不揮発分を100質量%とした場合に、20~60質量%である、請求項1又は2に記載の樹脂組成物。
  4.  樹脂組成物中のエポキシ基とチオール基のモル比(エポキシ基/チオール基)が0.9~1.5である、請求項1~3のいずれか1項に記載の樹脂組成物。
  5.  樹脂組成物中のフレーク状ガラスの含有量が、樹脂組成物の不揮発成分を100質量%とした場合に、5~40質量%である、請求項1~4のいずれか1項記載の樹脂組成物。
  6.  フレーク状ガラスのアスペクト比が、10以上、100以下である、請求項1~5のいずれか1項記載の樹脂組成物。
  7.  樹脂組成物を70℃で1時間熱硬化させた硬化物の200μmの厚さでの透湿度が30(g/m・24h)以下である、請求項1~6のいずれか1項に記載の樹脂組成物。
  8.  封止剤用である、請求項1~7のいずれか1項に記載の樹脂組成物。
  9.  表示デバイスの封止剤用である、請求項1~7のいずれか1項に記載の樹脂組成物。
  10.  表示デバイスが電子ペーパーである、請求項9に記載の樹脂組成物。
  11.  請求項1~6のいずれか1項記載の樹脂組成物の硬化物であって、200μmの厚さでの透湿度が30(g/m・24h)以下である硬化物。
  12.  表示素子と、
     前記表示素子を挟持する一対の基板と、
     請求項1~7のいずれか1項に記載の樹脂組成物の硬化物、または請求項11記載の硬化物であって、前記一対の基板の周縁部における基板間の隙間を封止した硬化物とを含む、表示デバイス。
PCT/JP2018/007070 2017-02-28 2018-02-27 樹脂組成物 WO2018159564A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201880013475.0A CN110325589A (zh) 2017-02-28 2018-02-27 树脂组合物
JP2019502992A JPWO2018159564A1 (ja) 2017-02-28 2018-02-27 樹脂組成物

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017037013 2017-02-28
JP2017-037013 2017-02-28

Publications (1)

Publication Number Publication Date
WO2018159564A1 true WO2018159564A1 (ja) 2018-09-07

Family

ID=63369963

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/007070 WO2018159564A1 (ja) 2017-02-28 2018-02-27 樹脂組成物

Country Status (4)

Country Link
JP (1) JPWO2018159564A1 (ja)
CN (1) CN110325589A (ja)
TW (1) TW201839027A (ja)
WO (1) WO2018159564A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020191579A1 (en) * 2019-03-25 2020-10-01 3M Innovative Properties Company Curable compositions, articles therefrom, and methods of making and using same

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997006199A1 (fr) * 1995-08-04 1997-02-20 Asahi Denka Kogyo Kabushiki Kaisha Composition solidifiable de resine epoxy
JP2002527552A (ja) * 1998-10-13 2002-08-27 インターナショナル コーティングズ リミテッド 硬化可能なコーティング組成物
JP2004035857A (ja) * 2002-07-08 2004-02-05 Ricoh Co Ltd 光硬化型光学用接着剤組成物
WO2009093467A1 (ja) * 2008-01-25 2009-07-30 Mitsui Chemicals, Inc. エポキシ重合性組成物、それを含むシール材組成物
JP2011057867A (ja) * 2009-09-10 2011-03-24 Sekisui Chem Co Ltd 透明複合材料及び透明シート
JP2011068781A (ja) * 2009-09-25 2011-04-07 Sekisui Chem Co Ltd 透明複合材料及び透明シート
JP2011520764A (ja) * 2008-05-27 2011-07-21 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツング 顔料における使用のためのガラス−セラミックフレーク

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8178643B2 (en) * 2005-06-30 2012-05-15 Jeld-Wen, Inc. Molded polymeric structural members and compositions and methods for making them
CN101277992A (zh) * 2005-09-30 2008-10-01 住友电木株式会社 环氧树脂组合物和半导体器件
JP2007134321A (ja) * 2005-10-14 2007-05-31 Matsushita Electric Ind Co Ltd 発光装置、発光装置の製造方法および露光装置、画像形成装置
CN100497513C (zh) * 2006-03-29 2009-06-10 湖南神力实业有限公司 棒状单包装环氧胶粘剂及制备方法
EP2149586B1 (en) * 2007-05-21 2018-01-03 Mitsubishi Gas Chemical Company, Inc. Amine epoxy resin curing agent, gas barrier epoxy resin composition comprising the curing agent, coating agent, and adhesive agent for laminate
JP2010055861A (ja) * 2008-08-27 2010-03-11 Panasonic Corp 発光装置及び発光装置の製造方法
US9272497B2 (en) * 2010-07-22 2016-03-01 Ferro Corporation Hermetically sealed electronic device using coated glass flakes
WO2013108629A1 (ja) * 2012-01-18 2013-07-25 三井化学株式会社 組成物、組成物からなる表示デバイス端面シール剤用組成物、表示デバイス、およびその製造方法
CN103205046B (zh) * 2013-04-10 2015-03-11 杭州五源科技实业有限公司 Pe粉末
TWI657113B (zh) * 2013-10-25 2019-04-21 日商味之素股份有限公司 耐熱性環氧樹脂組成物

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997006199A1 (fr) * 1995-08-04 1997-02-20 Asahi Denka Kogyo Kabushiki Kaisha Composition solidifiable de resine epoxy
JP2002527552A (ja) * 1998-10-13 2002-08-27 インターナショナル コーティングズ リミテッド 硬化可能なコーティング組成物
JP2004035857A (ja) * 2002-07-08 2004-02-05 Ricoh Co Ltd 光硬化型光学用接着剤組成物
WO2009093467A1 (ja) * 2008-01-25 2009-07-30 Mitsui Chemicals, Inc. エポキシ重合性組成物、それを含むシール材組成物
JP2011520764A (ja) * 2008-05-27 2011-07-21 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツング 顔料における使用のためのガラス−セラミックフレーク
JP2011057867A (ja) * 2009-09-10 2011-03-24 Sekisui Chem Co Ltd 透明複合材料及び透明シート
JP2011068781A (ja) * 2009-09-25 2011-04-07 Sekisui Chem Co Ltd 透明複合材料及び透明シート

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020191579A1 (en) * 2019-03-25 2020-10-01 3M Innovative Properties Company Curable compositions, articles therefrom, and methods of making and using same

Also Published As

Publication number Publication date
JPWO2018159564A1 (ja) 2019-12-19
TW201839027A (zh) 2018-11-01
CN110325589A (zh) 2019-10-11

Similar Documents

Publication Publication Date Title
JP6534189B2 (ja) 樹脂組成物
JP3913476B2 (ja) 樹脂組成物
JP6216345B2 (ja) 樹脂組成物
WO2013111697A1 (ja) 樹脂組成物およびそれを成型してなる半導体実装基板
JP6742027B2 (ja) 樹脂組成物
EP2640765A1 (en) One component epoxy resin composition
JP5736122B2 (ja) 構造用接着剤
JP6013906B2 (ja) 液状エポキシ樹脂組成物
JP2007294712A (ja) ダイボンディングペーストおよびそれを用いた半導体装置
CN113831872A (zh) 环氧胶粘剂组合物、环氧胶粘剂、和制备环氧胶粘剂的方法
TWI817988B (zh) 環氧樹脂組成物
WO2018159564A1 (ja) 樹脂組成物
JP6303627B2 (ja) エポキシ樹脂組成物および硬化物
JP2007284472A (ja) エンドシール材
JP2014173008A (ja) 硬化性樹脂組成物
JP2019178209A (ja) 樹脂組成物及びその硬化体
JP6539017B2 (ja) 2液型エポキシ樹脂組成物およびケースモールド型コンデンサの製造方法
JP2012087226A (ja) 液状封止材、それを用いた半導体装置
JP2019129275A (ja) アンダーフィル材、半導体パッケージ及び半導体パッケージの製造方法
JP6653152B2 (ja) エポキシ樹脂組成物
JP2023059131A (ja) エポキシ樹脂組成物
JP2016125007A (ja) エポキシ樹脂組成物、硬化物、電気部品及び電子部品
JP2023048215A (ja) 熱硬化性液状樹脂組成物
CN115124813A (zh) 树脂组合物
JP2023143317A (ja) 樹脂組成物および熱硬化型接着シート

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18761125

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019502992

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18761125

Country of ref document: EP

Kind code of ref document: A1