US7663116B2 - Sensor and image pickup device - Google Patents

Sensor and image pickup device Download PDF

Info

Publication number
US7663116B2
US7663116B2 US12/368,592 US36859209A US7663116B2 US 7663116 B2 US7663116 B2 US 7663116B2 US 36859209 A US36859209 A US 36859209A US 7663116 B2 US7663116 B2 US 7663116B2
Authority
US
United States
Prior art keywords
film
amorphous oxide
sensor
ray
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
US12/368,592
Other versions
US20090146072A1 (en
Inventor
Keishi Saito
Hideo Hosono
Toshio Kamiya
Kenji Nomura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Japan Science and Technology Agency
Tokyo Institute of Technology NUC
Original Assignee
Canon Inc
Tokyo Institute of Technology NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc, Tokyo Institute of Technology NUC filed Critical Canon Inc
Priority to US12/368,592 priority Critical patent/US7663116B2/en
Publication of US20090146072A1 publication Critical patent/US20090146072A1/en
Application granted granted Critical
Publication of US7663116B2 publication Critical patent/US7663116B2/en
Assigned to CANON KABUSHIKI KAISHA, TOKYO INSTITUTE OF TECHNOLOGY, JAPAN SCIENCE AND TECHNOLOGY AGENCY reassignment CANON KABUSHIKI KAISHA ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: CANON KABUSHIKI KAISHA, TOKYO INSTITUTE OF TECHNOLOGY
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14643Photodiode arrays; MOS imagers
    • H01L27/14658X-ray, gamma-ray or corpuscular radiation imagers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/7869Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising an oxide semiconductor material, e.g. zinc oxide, copper aluminium oxide, cadmium stannate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0232Optical elements or arrangements associated with the device
    • H01L31/02322Optical elements or arrangements associated with the device comprising luminescent members, e.g. fluorescent sheets upon the device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/085Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors the device being sensitive to very short wavelength, e.g. X-ray, Gamma-rays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/09Devices sensitive to infrared, visible or ultraviolet radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/115Devices sensitive to very short wavelength, e.g. X-rays, gamma-rays or corpuscular radiation
    • H01L31/118Devices sensitive to very short wavelength, e.g. X-rays, gamma-rays or corpuscular radiation of the surface barrier or shallow PN junction detector type, e.g. surface barrier alpha-particle detectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14632Wafer-level processed structures

Definitions

  • the present invention relates to a sensor for detecting a received electromagnetic wave such as an optical sensor, a solar cell, or an X-ray sensor.
  • the present invention also relates to a non-flat image pickup device.
  • the thin film can be formed at a low temperature, and is transparent with respect to visible light. Accordingly, a flexible and transparent TFT can be formed on a substrate such as a plastic plate or a film.
  • a substrate such as a plastic plate or a film.
  • ZnO for an optical sensor and a solar cell.
  • a non-flat imager is generally constituted by a thin film transistor and an X-ray sensor.
  • the thin film transistor is a three-terminal device equipped with a gate terminal, a source terminal, and a drain terminal.
  • the TFT is combined with a sensor to be used as a switch for selecting a sensor or as an amplifier.
  • a more flexible one having better performance has been requested as a sensor for detecting an electromagnetic wave or a non-flat X-ray image pickup device.
  • An object of the present invention is to provide a novel sensor or image pickup device using an amorphous oxide.
  • Another object of the present invention is to provide a sensor or non-flat image pickup device using an amorphous oxide having an electron carrier concentration of less than 10 18 /cm 3 or an amorphous oxide whose electron mobility tends to increase with increasing electron carrier concentration.
  • Another object of the present invention is to provide an image pickup device comprising an X-ray sensor and a normally-off field effect transistor.
  • the sensors for detecting a received electromagnetic wave in the present invention includes, of course, an optical sensor, and a sensor for detecting non-visible light such as an ultraviolet optical sensor and a sensor for detecting a radiant ray such as an X-ray sensor.
  • a sensor for detecting a received electromagnetic wave including a first electrode; a second electrode; and an amorphous oxide layer interposed between the first electrode and the second electrode.
  • the amorphous oxide layer has an electron carrier concentration of less than 10 18 /cm 3 .
  • the first electrode desirably has transmissivity with respect to light in a wavelength range to which the amorphous oxide layer is sensitive.
  • the present invention also includes a sensor in which the amorphous oxide layer has an organic pigment.
  • a sensor including a first electrode; a second electrode; and an amorphous oxide semiconductor layer interposed between the first electrode and the second electrode, in which the amorphous oxide layer is an amorphous oxide whose electron mobility tends to increase with increasing electron carrier concentration.
  • an image pickup device including:
  • the field effect transistor has an amorphous oxide semiconductor as an active layer
  • the amorphous oxide semiconductor has an electron carrier concentration of less than 10 18 /cm 3 or is an oxide whose electron mobility tends to increase with increasing electron carrier concentration.
  • the image pickup device more preferably has a non-flat imaging region.
  • the present invention also includes a non-flat imager in which the X-ray sensor includes a scintillator for converting X-ray into light and an opto-electric conversion element.
  • the present invention also includes an image pickup device, wherein the X-ray sensor comprises a semiconductor layer, and the semiconductor layer also comprises an amorphous oxide.
  • an image pickup device comprising:
  • the field effect transistor is a normally-off transistor having an active layer composed of an amorphous oxide.
  • an inorganic thin film transistor is formed on a flat surface and is used in a flat shape.
  • a conventional inorganic thin film transistor typified by amorphous silicon requires a high-temperature process for its formation, and it has been difficult to form such transistor on a flexible substrate such as a plastic resin.
  • the inventors of the present invention have made investigation into an oxide semiconductor. As a result, they have found that ZnO cannot generally form a stable amorphous phase. In addition, most ZnO shows a polycrystalline phase. Therefore, a carrier is scattered at an interface between polycrystalline particles, with the result that an electron-mobility cannot be increased.
  • the inventors of the present invention have examined an amorphous oxide film Zn x M y In z O (x+3y/2+3z/2) (where M represents at least one element of Al and Ga) described in Japanese Patent Application Laid-Open No. 2000-044236.
  • the material has an electron carrier concentration of 10 18 /cm 3 or more, so it is suitable for a mere transparent electrode.
  • a conventional amorphous oxide film has been unable to provide a film having an electron carrier concentration of less than 10 18 /cm 3 .
  • the inventors of the present invention have produced a TFT using an amorphous oxide having an electron carrier concentration of less than 10 18 /cm 3 for an active layer of a field effect transistor. As a result, they have obtained a TFT having desired characteristics, and have discovered that the TFT is applicable to an image display device such as a light-emitting device.
  • the inventors of the present invention have conducted vigorous research and development concerning InGaO 3 (ZnO) m and conditions under which the material is formed into a film. As a result, they have found that an electron carrier concentration of less than 10 18 /cm 3 can be achieved by controlling the conditions of an oxygen atmosphere upon film formation.
  • the present invention relates to a sensor or image pickup device using a film that has realized a desired electron carrier concentration.
  • FIG. 1 is a graph showing a relationship between the electron carrier concentration of an In—Ga—Zn—O-based amorphous oxide semiconductor formed by means of a pulse laser deposition method and an oxygen partial pressure during film formation;
  • FIG. 2 is a graph showing a relationship between the electron carrier concentration and electron mobility of an In—Ga—Zn—O-based amorphous oxide semiconductor formed by means of a pulse laser deposition method
  • FIG. 3 is a graph showing a relationship between the electric conductivity of an In—Ga—Zn—O-based amorphous oxide semiconductor formed by means of a sputtering method using an argon gas and an oxygen partial pressure during film formation;
  • FIG. 4 shows graphs showing changes in electric conductivity, carrier concentration, and electron mobility with the value for x of InGaO 3 (Zn 1 ⁇ x Mg x O) formed into a film by means of a pulse laser deposition method in an atmosphere having an oxygen partial pressure of 0.8 Pa;
  • FIG. 5 is a schematic structural view of a TFT produced for evaluating an amorphous oxide semiconductor used for an optical sensor of the present invention
  • FIG. 6 is a graph showing the current-voltage characteristics of a top gate MISFET device
  • FIG. 7 is a graph showing the transmittance of an amorphous semiconductor layer (200 nm) constituted by In—Ga—Zn—O;
  • FIG. 8 is a schematic explanatory view showing a first example of the optical sensor of the present invention.
  • FIG. 9 is a second schematic explanatory view showing a second example of the optical sensor of the present invention.
  • FIG. 10 is a schematic structural view of an X-ray sensor of the present invention.
  • FIG. 11 is a pixel circuit diagram of a non-flat imager of the present invention.
  • FIG. 12 is a schematic explanatory view for explaining a method of producing the non-flat imager of the present invention.
  • FIG. 13 is a schematic explanatory view of X-ray measurement by means of the non-flat imager of the present invention.
  • FIG. 14 is a schematic view showing a pulse laser deposition apparatus.
  • FIG. 15 is a schematic view showing a sputter film forming apparatus.
  • the present invention relates to a sensor and a non-flat imager each using an amorphous oxide.
  • an optical sensor will be described in detail in a first embodiment, and then a non-flat imager will be described in a second embodiment.
  • FIG. 8 shows a first schematic structural view of a sensor for detecting a received electromagnetic wave according to the present invention.
  • the sensor according to the present invention is constituted of a lower electrode ( 702 ), an amorphous oxide semiconductor layer ( 703 ), and an upper electrode ( 704 ) on a substrate ( 701 ).
  • the upper electrode may be referred to as the first electrode, and the lower electrode may be referred to as the second electrode.
  • an oxide having an electron carrier concentration of less than 10 18 /cm 3 is used for the amorphous oxide layer.
  • the thickness of the amorphous oxide semiconductor layer which is appropriately optimized depending on the wavelength of light with which the layer is irradiated or a pigment for pigment sensitization, is preferably 10 nm to 1 ⁇ m, or more preferably 10 nm to 500 nm.
  • the amorphous oxide semiconductor shows n-type conduction when it is a semiconductor containing In—Ga—Zn—O. It is also preferable to form a junction between the amorphous oxide semiconductor and a metal having a large work function such as Pt to constitute a photodiode.
  • the oxide semiconductor as an n-type oxide semiconductor and SrCu 2 O 2 as a p-type oxide semiconductor may be laminated to form a semiconductor junction, thereby constituting a photodiode.
  • the senor according to the present invention can be used as an optical sensor for ultraviolet light or for X-rays.
  • the sensor can be used as an optical sensor for visible light when it uses an organic pigment to be described later.
  • FIG. 9 shows a second schematic structural view of the sensor in the present invention.
  • the second sensor of the present invention is constituted of a lower electrode ( 802 ), a semiconductor layer ( 803 ) having a multilayer structure which is constituted by laminating multiple amorphous oxide semiconductor layers, and an upper electrode ( 804 ) on a substrate ( 801 ).
  • each semiconductor layer constituting the semiconductor layer having a multilayer structure is preferably 1 nm to 100 nm, or more preferably 5 nm to 50 nm.
  • the entire thickness of the semiconductor layer having a multilayer structure is preferably 10 nm to 1 ⁇ m, or more preferably 10 nm to 500 nm.
  • the semiconductor layer having a multilayer structure is constituted of, for example, amorphous oxide layers composed of mutually different materials, or amorphous oxide layers having mutually different thicknesses.
  • an oxide transparent conductive film is preferable.
  • a quartz material, an acrylic resin, or the like which are excellent in translucency is a preferable material for the substrate.
  • an oxide transparent conductive film having a wide band gap is preferably used for the lower electrode.
  • the amorphous oxide semiconductor film is deposited and then immersed in an organic solvent into which an organic pigment is dissolved to cause the organic pigment to adsorb to the semiconductor.
  • the organic pigment is deposited from the vapor onto the semiconductor by means of a vacuum deposition method.
  • the upper electrode is formed by means of a vacuum deposition method or a sputtering method.
  • the organic pigment is caused to adsorb to the lower electrode.
  • the amorphous oxide semiconductor is formed by means of a laser ablation method or a sputtering method.
  • the semiconductor layer having a multilayer structure can be formed by repeatedly laminating organic pigments by means of an immersion method, a deposition method, or the like every time each semiconductor layer is laminated.
  • the substrate to be used in the present invention may be conductive or electrically insulating properties.
  • a conductive substrate include metals and alloys of the metals such as NiCr, stainless steel, Al, Cr, Mo, Au, Nb, Ta, V, Ti, Pt, and Pb.
  • an electrically insulating substrate include films made of synthetic resins such as an acrylic resin, polyester, polyethylene, polycarbonate, cellulose acetate, polypropylene, polyvinyl chloride, polyvinylidene chloride, polystyrene, and polyamide; sheets; glass; ceramics; and paper. At least one surface of each of those electrically insulating substrates is preferably subjected to a conductive treatment, and a light-receiving layer is desirably arranged on the surface subjected to the conductive treatment.
  • a thin film composed of NiCr, Al, Cr, Mo, Au, Ir, Nb, Ta, V, Ti, Pt, Pd, InO 3 , ITO (In 2 O 3 +Sn) or the like is arranged on the surface of glass to impart conductivity.
  • a thin film composed of a metal such as NiCr, Al, Ag, Pb, Zn, Ni, Au, Cr, Mo, Ir, Nb, Ta, V, Tl, or Pt is arranged on the surface of a synthetic resin film such as a polyester film by means of vacuum deposition, electron beam deposition, sputtering, or the like, or the surface is subjected to lamination with the metal, to impart conductivity to the surface.
  • the substrate is preferably a substrate having flexibility, that is, the substrate is preferably deformable (especially bendable).
  • the light transmittance of an oxide transparent conductive film to be used in the present invention is preferably 60% or more, or more preferably 85% or more.
  • the film desirably has a sheet resistance of 100 ⁇ or less so as not to serve as an electrical resistance component with respect to the output of a photovoltaic device.
  • the term “light transmittance” mentioned above refers to the transmittance of light in a wavelength range to be detected by an optical sensor.
  • Examples of a material having such properties include extremely thin and transparent metal films formed of metal oxides such as SnO 2 , In 2 O, ITO (SnO 2 +In 2 O 3 ), ZnO, CdO, Cd 2 SnO 4 , TiO 2 , and Ti 3 N 4 ; and metals such as Au, Al, and Cu.
  • metal oxides such as SnO 2 , In 2 O, ITO (SnO 2 +In 2 O 3 ), ZnO, CdO, Cd 2 SnO 4 , TiO 2 , and Ti 3 N 4 ; and metals such as Au, Al, and Cu.
  • a transparent electrode made of an indium oxide or an indium-tin oxide is particularly suitable.
  • Examples of an available method of producing the electrode include a resistance heating deposition method, an electron beam heating deposition method, a sputtering method, and a spray method, and the methods are appropriately selected as desired.
  • a sputtering method and a vacuum deposition method are optimum deposition methods.
  • the organic pigment is selected from a cyanine pigment, a merocyanine pigment, a phthalocyanine pigment, a naphthalocyanine pigment, a phthalo/naphthalo-mixed phthalocyanine pigment, a dipyridyl Ru complex pigment, a terpyridyl Ru complex pigment, a phenanthroline Ru complex pigment, a phenylxanthene pigment, a triphenylmethane pigment, a coumarin pigment, an acridine pigment, and an azo metal complex pigment each of which can chemically bond to the semiconductor.
  • a cyanine pigment a merocyanine pigment, a phthalocyanine pigment, a naphthalocyanine pigment, a phthalo/naphthalo-mixed phthalocyanine pigment
  • dipyridyl Ru complex pigment a terpyridyl Ru complex pigment
  • a phenanthroline Ru complex pigment a phenylxanthen
  • An organic pigment sensitizer suitable for the present invention is preferably one capable of forming a bond with the amorphous oxide semiconductor mainly composed of In—Ga—Zn—O of the present invention, the bond facilitating the movement of photo-excited charge.
  • a pigment that adsorbs to a semiconductor layer to function as a photosensitizer is one showing absorption in various visible light regions and/or an infrared light region.
  • a pigment preferably has, in a pigment molecule, a carboxylic group, a carboxylic anhydride group, an alkoxy group, a hydroxyalkyl group, a sulfonic group, a hydroxyl group, an ester group, a mercapto group, a phosphonyl group, or the like in order to cause the pigment to strongly adsorb to the semiconductor layer.
  • each of the groups provides an electrical bond that facilitates the movement of an electron between a pigment in an excited state and the conduction band of the amorphous oxide semiconductor.
  • pigments having the groups include a ruthenium bipyridine-based pigment, an azo-based pigment, a quinone-based pigment, a quinoneimine-based pigment, a quinacridone-based pigment, a triphenylmethane-based pigment, and a xanthene-based pigment.
  • the examples further include a squarilium-based pigment, a cyanine-based pigment, a merocyanine-based pigment, a porphyrin-based pigment, a phthalocyanine-based pigment, a perylene-based pigment, an indigo-based pigment, and a naphthalocyanine-based pigment.
  • Examples of a method of causing the pigment to adsorb to the semiconductor layer include a method involving immersing a semiconductor layer formed on a conductive substrate into a solution into which a pigment is dissolved (a solution for pigment adsorption); and a method involving depositing an organic pigment from the vapor.
  • the examples further include a method involving heating an organic pigment, transporting the organic pigment by means of an inert gas such as helium or nitrogen, and causing the organic pigment to adsorb to a semiconductor. It is preferable to form an organic pigment on an amorphous oxide semiconductor in a monomolecular layer fashion.
  • Any solvent can be used as long as it is capable of dissolving a pigment, and specific examples of such solvent include alcohols such as ethanol; ketones such as acetone; ethers such as diethyl ether and tetrahydrofuran; and nitrogen compounds such as acetonitrile.
  • the examples further include halogenated aliphatic hydrocarbons such as chloroform; aliphatic hydrocarbons such as hexane; aromatic hydrocarbons such as benzene; esters such as ethyl acetate; and water. Two or more kinds of those solvents may be used as a mixture.
  • the pigment concentration in a solution which can be appropriately adjusted depending on the pigment to be used and a kind of solvent, is preferably as high as possible in order to enhance adsorption function.
  • the pigment concentration is preferably 1 ⁇ 10 ⁇ 5 mol/l or more, or more preferably 1 ⁇ 10 ⁇ 4 mol/l or more.
  • an organic pigment corresponding to a wavelength range as a target for an optical sensor device is preferably selected and used in an appropriate manner.
  • a single pigment may be used for the pigment, or multiple pigments may be used in combination for the pigment.
  • FIG. 10 shows a schematic view of an image pickup device according to the present invention.
  • the invention according to this embodiment is, for example, an X-ray image sensor.
  • the image pickup device of the present invention is constituted of a lower electrode 902 , a semiconductor layer 903 to serve as an opto-electric conversion element, an upper electrode 904 , and a scintillator 905 on a deformable substrate 901 .
  • the constitution shown in FIG. 8 or 9 can be used for the constitution from the substrate 901 to the upper electrode 904 .
  • the semiconductor layer is formed of, for example, an amorphous oxide containing at least In—Ga—Zn—O.
  • At least part of the image pickup device according to the present invention preferably has a non-flat portion.
  • an image pickup device which instantaneously has a flat shape but can be deformed into a non-flat shape is also preferable.
  • An amorphous oxide (to be described in detail later) may be used for the semiconductor layer 903 , or amorphous silicon or the like may be used for the layer.
  • an oxide having an electron carrier concentration of less than 10 18 /cm 3 or an oxide whose electron mobility tends to increase with increasing electron carrier concentration can be used for the amorphous oxide.
  • a resin, plastic, or polyethylene terephthalate (PET) is applicable to the substrate.
  • the substrate is preferably a flexible substrate.
  • the scintillator 905 mainly using a phosphor is used as required, and may be omitted when the above-described semiconductor layer is sensitive to X-ray.
  • the thickness of the scintillator layer is preferably in the range of 100 ⁇ m to 500 ⁇ m because the thickness in the range allows the layer to sufficiently absorb X-ray.
  • the scintillator layer is preferably formed by means of a sputtering method. Before a deliquescent scintillator is used, the scintillator needs to be subjected to a dampproofing treatment.
  • a preferable dampproofing treatment involves laminating a dampproofing layer (such as a silicon nitride layer or a silicon oxide layer) having a thickness of 100 nm or more on each of the rear surface of the substrate 901 and the surface of the scintillator.
  • a dampproofing layer such as a silicon nitride layer or a silicon oxide layer
  • FIG. 11 shows a circuit per one pixel using a TFT using an amorphous oxide such as In—Ga—Zn—O according to the present invention for an active layer; and an X-ray sensor composed of a scintillator and an opto-electric conversion element using an oxide semiconductor containing In—Ga—Zn—O.
  • an amorphous oxide such as In—Ga—Zn—O according to the present invention for an active layer
  • an X-ray sensor composed of a scintillator and an opto-electric conversion element using an oxide semiconductor containing In—Ga—Zn—O.
  • the TFT is preferably of a normally-off TFT in which the amorphous oxides as described later are used for an active layer of the TFT.
  • the sensing operation of an imaging sensor having such a three-transistor pixel structure is as follows.
  • an X-ray enters a scintillator to be converted into visible light.
  • the light is converted into electricity by an In—Ga—Zn—O-containing oxide semiconductor sensitized with a pigment.
  • the converted signal charge changes the potential of a floating node 1005 as a source end of a reset TFT 1001 .
  • the gate potential of a select TFT 1004 as a driver for a pixel level source follower is changed.
  • the bias of the source end of the select TFT 1004 or of the drain node of an access TFT 1007 is changed.
  • the active layer of the above TFT can be formed of, for example, an amorphous oxide to be described later.
  • an oxide having an electron carrier concentration of less than 10 18 /cm 3 or an oxide whose electron mobility tends to increase with increasing electron carrier concentration can be used for the amorphous oxide.
  • the above TFT can be arranged on one side of the opto-electric conversion element with the aid of the upper electrode 904 , the semiconductor layer 903 , and the lower electrode 902 .
  • a layer for the above TFT may be separately arranged between the substrate 901 and the lower electrode 902 .
  • the thickness of the oxide semiconductor layer in respect of X-ray absorption is 50 ⁇ m or larger, preferably 100 ⁇ m or larger, and more preferably 300 ⁇ m or larger.
  • Both the semiconductor of the X-ray sensor and the active layer of the TFT for receiving (or reading) a signal from the sensor can be comprised of an amorphous oxide, which is a preferable constitution in the case where higher flatness is required.
  • FIG. 11 shows an example of a method of producing the non-flat imager. As shown on the left side of FIG. 12 , sensor units produced on a flat surface are cut at broken lines to constitute a spherical shape as shown on the right side of the figure. Thus, a semispherical non-flat imager is constituted.
  • Reference numeral 1101 denotes a TFT and a sensor formed on a flat surface.
  • Reference numeral 1102 denotes a TFT and a sensor unit.
  • Reference numeral 1103 denotes a semispherical non-flat imager provided with the TFT and the sensor described above.
  • a TFT and a sensor portion on the non-flat surface of the non-flat imager can be realized as follows. For example, at first, a TFT and the like are arranged on a flexible substrate made of plastic, PET, or the like, that is, on a flat surface. After that, the flexible substrate is pressed against a non-flat mold while the substrate is heated, to thereby deform the flat substrate into a non-flat substrate.
  • the term “non-flat imager” as used herein comprehends both an imager having a flat region and a non-flat region and an imager that can be deformed from a flat state to a non-flat state.
  • FIG. 13 shows an example of a measurement method by means of the non-flat imager of the present invention.
  • a measuring object 1203 is fed into a non-flat imager 1201 formed in FIG. 12 , and the resultant is irradiated with an external X-ray 1204 to subject the measuring object 1203 to measurement.
  • an amorphous oxide semiconductor having a desired electron carrier concentration is used as an optical sensor portion itself or as an active layer of a field effect transistor to be used for an optical sensor.
  • the amorphous oxide semiconductor may be used as each of them.
  • the electron carrier concentration of the amorphous oxide semiconductor according to the present invention is a value measured at room temperature.
  • Room temperature is, for example, 25° C., and, specifically, is a temperature appropriately selected from the range of about 0° C. to 40° C.
  • the electron carrier concentration of the amorphous oxide semiconductor according to the present invention there is no need for the electron carrier concentration of the amorphous oxide semiconductor according to the present invention to have a value of less than 10 18 /cm 3 in the entire range of 0° C. to 40° C.
  • an electron carrier concentration of less than 10 18 /cm 3 has only to be realized at 25° C.
  • reducing the electron carrier concentration to 10 17 /cm 3 or less, or more preferably 10 16 /cm 3 or less provides a normally-off TFT with high yield.
  • the electron carrier concentration can be measured through Hall effect measurement.
  • amorphous oxide refers to an oxide having a halo pattern to be observed, and showing no specific diffraction ray, in an X-ray diffraction spectrum.
  • the lower limit for the electron carrier concentration in the amorphous oxide semiconductor of the present invention is not particularly limited as long as the amorphous oxide semiconductor is applicable to a channel layer of a TFT.
  • the lower limit is, for example, 10 12 /cm 3 .
  • the electron carrier concentration is set to fall within the range of, for example, preferably 10 12 /cm 3 (inclusive) to 10 18 /cm 3 (exclusive), more preferably 10 13 /cm 3 to 10 17 /cm 3 (both inclusive), or still more preferably 10 15 /cm 3 to 10 16 /cm 3 (both inclusive) by controlling the material, composition ratio, production conditions, and the like of the amorphous oxide.
  • the amorphous oxide can be appropriately selected from an In oxide, an In x Zn 1 ⁇ x oxide (0.2 ⁇ x ⁇ 1), an In x Sn 1 ⁇ x oxide (0.8 ⁇ x ⁇ 1), and an In x (Zn, Sn) 1 ⁇ x oxide (0.15 ⁇ x ⁇ 1).
  • the In x (Zn, Sn) 1 ⁇ x oxide can be described as an In x (Zn y Sn 1 ⁇ y ) 1 ⁇ x oxide, and y ranges from 1 to 0.
  • Part of In in an In oxide containing none of Zn and Sn can be replaced with Ga. That is, the In oxide can be turned into an In x Ga 1 ⁇ x oxide (0 ⁇ x ⁇ 1).
  • the oxide contains In—Ga—Zn—O, its composition in a crystalline state is represented by InGaO 3 (ZnO) m (where m represents a natural number of less than 6), and its electron carrier concentration is less than 10 18 /cm 3 .
  • the oxide contains In—Ga—Zn—Mg—O, its composition in a crystalline state is represented by InGaO 3 (Zn 1 ⁇ x Mg x O) m (where m represents a natural number of less than 6 and 0 ⁇ x ⁇ 1), and its electron carrier concentration is less than 10 18 /cm 3 .
  • a film constituted of each of those oxides is preferably designed to have an electron mobility in excess of 1 cm 2 /(V ⁇ sec).
  • the use of the film for a channel layer enables transistor characteristics including a gate current at the time of turning a transistor off of less than 0.1 ⁇ A (that is, normally off) and an on-off ratio in excess of 10 3 .
  • the use realizes a flexible TFT, which is transparent, or has transmissivity, with respect to visible light.
  • a glass substrate, a plastic substrate made of a resin, a plastic film, or the like can be used as a substrate for forming a transparent film.
  • one of Al 2 O 3 , Y 2 O 3 , and HfO 2 , or a mixed crystal compound containing at least two kinds of these compounds can be used for a gate insulation film.
  • amorphous oxide into a film in an atmosphere containing an oxygen gas without intentionally adding any impurity ion for increasing an electrical resistance of the oxide.
  • the inventors of the present invention have found that the semi-insulating oxide amorphous thin film has specific property with which the electron mobility of the film increases with increasing number of conduction electrons. Furthermore, the inventors have found that a TFT produced by means of the film is provided with additionally improved transistor characteristics including on-off ratio, saturation current in a pinch-off state, and switching speed. That is, the inventors have found that a normally-off TFT can be realized by using an amorphous oxide.
  • the use of the amorphous oxide thin film for a channel layer of a film transistor provides an electron mobility in excess of 1 cm 2 /(V ⁇ sec), preferably in excess of 5 cm 2 /(V ⁇ sec).
  • a current between drain and source terminals at the time of off can be set to be less than 10 ⁇ A, or preferably less than 0.1 ⁇ A.
  • the use of the film provides saturation current after pinch-off in excess of 10 ⁇ A and an on-off ratio in excess of 10 3 when the electron mobility exceeds 1 cm 2 /(V ⁇ sec), or preferably exceeds 5 cm 2 /(V ⁇ sec).
  • a high voltage is applied to a gate terminal in a pinch-off state, and electrons are present in a channel at a high density.
  • saturation current value can be increased by an amount corresponding to an increase in electron mobility.
  • improvements of transistor characteristics including an increase in on-off ratio, an increase in saturation current, and an increase in switching speed can be expected.
  • Examples of a structure that can be used for the TFT include a stagger (top gate) structure in which a gate insulation film and a gate terminal are formed in order on a semiconductor channel layer; and an inversely staggered (bottom gate) structure in which a gate insulation film and a semiconductor channel layer are formed in order on a gate terminal.
  • a stagger (top gate) structure in which a gate insulation film and a gate terminal are formed in order on a semiconductor channel layer
  • an inversely staggered (bottom gate) structure in which a gate insulation film and a semiconductor channel layer are formed in order on a gate terminal.
  • the amorphous state of an amorphous oxide thin film whose composition in a crystalline state is represented by InGaO 3 (ZnO) m (where m represents a natural number of less than 6) is stably maintained up to a high temperature equal to or higher than 800° C. when the value of m is less than 6.
  • ZnO InGaO 3
  • m represents a natural number of less than 6
  • the thin film is apt to crystallize.
  • a value of m of less than 6 is preferable for a channel layer of an amorphous TFT.
  • a vapor phase deposition method involving the use of a polycrystalline sintered material having an InGaO 3 (ZnO) m composition as a target is a desirable film forming method.
  • a sputtering method and a pulse laser deposition method are suitable.
  • a sputtering method is most suitable from the viewpoint of mass productivity.
  • the inventors of the present invention have produced In—Ga—Zn—O by means of a pulse laser deposition method with the aid of an apparatus shown in FIG. 14 .
  • Film formation was performed by means of such PLD film forming apparatus as shown in FIG. 14 .
  • reference numeral 701 denotes a rotary pump (RP); 702 , a turbo-molecular pump (TMP); 703 , a preparatory chamber; 704 , an electron gun for RHEED; 705 , substrate holding means for rotating, and moving vertically, a substrate; 706 , a laser entrance window; 707 , the substrate; 708 , a target; 709 , a radical source; 710 , a gas inlet; 711 , target holding means for rotating, and moving vertically, the target; 712 , a bypass line; 713 , a main line; 714 , a turbo-molecular pump (TMP); 715 , a rotary pump (RP); 716 , a titanium getter pump; and 717 , a shutter.
  • RP rotary pump
  • TMP turbo-molecular pump
  • reference numeral 718 denotes an ion vacuum gauge (IG); 719 , a Pirani vacuum gauge (PG); 720 , a baratron vacuum gauge (BG); and 721 , a growth chamber (chamber).
  • IG ion vacuum gauge
  • PG Pirani vacuum gauge
  • BG baratron vacuum gauge
  • 721 a growth chamber (chamber).
  • An In—Ga—Zn—O-based amorphous oxide semiconductor thin film was deposited on an SiO 2 glass substrate (1737 manufactured by Corning Inc.) by means of a pulse laser deposition method using a KrF excimer laser. Prior to the deposition, the substrate was subjected to degreasing washing by means of an ultrasonic wave for 5 minutes in each of acetone, ethanol, and ultrapure water, and then was dried in the air at 100° C.
  • An InGaO 3 (ZnO) 4 sintered material target (having a diameter of 20 mm and a thickness of 5 mm) was used as the polycrystalline target.
  • the target was produced by wet-mixing 4N reagents of In 2 O 3 , Ga 2 O 3 , and ZnO as starting materials in ethanol as a solvent; calcining the mixture at 1,000° C. for 2 hours; dry-pulverizing the resultant; and sintering the pulverized product at 1,550° C. for 2 hours.
  • the target thus produced had an electric conductivity of 90 (S/cm).
  • Film formation was performed with the ultimate pressure in the growth chamber set to 2 ⁇ 10 ⁇ 6 (Pa) and the oxygen partial pressure during growth controlled to be 6.5 (Pa).
  • the oxygen partial pressure in the chamber 721 was 6.5 Pa and the substrate temperature was 25° C.
  • the distance between the target 708 and the deposition substrate 707 was 30 (mm), and the power of the KrF excimer laser incident from the entrance window 706 was in the range of 1.5 to 3 (mJ/cm 2 /pulse).
  • the pulse width, pulse rate, and irradiation spot diameter were set to 20 (nsec), 10 (Hz), and 1 ⁇ 1 (mm square), respectively.
  • film formation was performed at a film-forming rate of 7 (nm/min).
  • the thin film was found to have a mean square roughness (Rrms) of about 0.5 nm and a thickness of about 120 nm.
  • the film had an electric conductivity of less than about 10 ⁇ 2 S/cm.
  • the electron carrier concentration and electron mobility of the film are estimated to be about 10 16 /cm 3 or less and about 5 cm 2 /(V ⁇ sec), respectively.
  • the forbidden band energy width of the produced amorphous thin film was determined to be about 3 eV.
  • the foregoing shows that the produced In—Ga—Zn—O-based thin film is a transparent and flat thin film showing an amorphous phase close to the composition of InGaO 3 (ZnO) 4 as a crystal, having little oxygen defect, and having a small electric conductivity.
  • FIG. 1 The figure shows change of the electron carrier concentration of a transparent amorphous oxide thin film formed with changing oxygen partial pressure under the same conditions as those of this embodiment, which film is composed of In—Ga—Zn—O and has a composition in an assumed crystalline state represented by InGaO 3 (ZnO) m (where m represents a number of less than 6).
  • Film formation was performed in an atmosphere having a high oxygen partial pressure in excess of 4.5 Pa under the same conditions as those of this embodiment. As a result, as shown in FIG. 1 , it was able to reduce the electron carrier concentration to less than 10 18 /cm 3 .
  • the substrate had a temperature maintained at a temperature nearly equal to room temperature unless intentionally heated.
  • the substrate temperature is preferably kept at a temperature lower than 100° C. in order to use a flexible plastic film as a substrate.
  • an InGaO 3 (ZnO) 4 thin film formed at a substrate temperature of 25° C. and an oxygen partial pressure of 5 Pa had a number of electron carriers reduced to 10 16 /cm 3 .
  • the resultant thin film had an electron mobility in excess of 1 cm 2 /(V ⁇ sec).
  • the oxygen partial pressure is 6.5 Pa or more, the surface of the deposited film becomes irregular, so it becomes difficult to use the film as a channel layer of a TFT.
  • a normally-off transistor can be constituted by using a transparent amorphous oxide thin film having a composition in a crystalline state represented by InGaO 3 (ZnO) m (where m represents a number of less than 6) by means of a pulse laser deposition method in an atmosphere having an oxygen partial pressure in excess of 4.5 Pa, or desirably in excess of 5 Pa and less than 6.5 Pa.
  • ZnO Zinc Oxide
  • the thin film had an electron mobility in excess of 1 cm 2 /V ⁇ sec, so the on-off ratio was able to exceed 10 3 .
  • the oxygen partial pressure is desirably controlled to be 4.5 Pa or more and less than 6.5 Pa.
  • an electron carrier concentration of less than 10 18 /cm 3 depends on, for example, a condition for an oxygen partial pressure, the structure of a film forming apparatus, and a material and a composition to be formed into a film.
  • an amorphous oxide was produced at an oxygen partial pressure of 6.5 Pa in the above apparatus, and then a top gate MISFET device shown in FIG. 5 was produced.
  • a semi-insulating amorphous InGaO 3 (ZnO) 4 film having a thickness of 120 nm to be used as a channel layer 2 was formed on a glass substrate 1 by means of the above-described method of producing an amorphous In—Ga—Zn—O thin film.
  • InGaO 3 (ZnO) 4 and a gold film each having a large electric conductivity and a thickness of 30 nm were laminated on the film by means of a pulse laser deposition method with the oxygen partial pressure in the chamber set to be less than 1 Pa, to thereby form a drain terminal 5 and a source terminal 6 by means of a photolithography method and a lift-off method.
  • a Y 2 O 3 film to be used as a gate insulation film 3 (thickness: 90 nm, relative dielectric constant: about 15, leak current density: 10 ⁇ 3 A/cm 2 upon application of 0.5 MV/cm) was formed by means of an electron beam deposition method.
  • a gold film was formed on the Y 2 O 3 film, to thereby form a gate terminal 4 by means of a photolithography method and a lift-off method.
  • FIG. 6 shows the current-voltage characteristics of an MISFET device measured at room temperature.
  • a drain current I DS increased with increasing drain voltage V DS shows that the channel is an n-type semiconductor.
  • the saturation is a typical behavior of a semiconductor transistor.
  • the transistor had an on-off ratio in excess of 10 3 .
  • the field effect mobility was calculated from an output characteristic. As a result, a field effect mobility of about 7 cm 2 (Vs) ⁇ 1 was obtained in the saturation region.
  • the produced device was irradiated with visible light to perform similar measurement. However, no changes in transistor characteristics were observed.
  • a thin film transistor having a channel layer with a small electron carrier concentration (that is, a high electrical resistance) and a large electron mobility can be realized.
  • the above-described amorphous oxide had excellent properties. That is, electron mobility increased with increasing electron carrier concentration, and degenerate conduction was exhibited.
  • a thin film transistor was formed on a glass substrate.
  • a substrate such as a plastic plate or a film can also be used because film formation itself can be performed at room temperature.
  • the amorphous oxide obtained in this embodiment absorbs nearly no visible light and can realize a transparent and flexible TFT.
  • reference numeral 807 denotes a deposition substrate; 808 , a target; 805 , substrate holding means equipped with a cooling mechanism; 814 , a turbo-molecular pump; 815 , a rotary pump; 817 , a shutter; 818 , an ion vacuum gauge; 819 , a Pirani vacuum gauge; 821 , a growth chamber (chamber); and 830 , a gate valve.
  • An SiO 2 glass substrate (1737 manufactured by Corning Inc.) was prepared as the deposition substrate 807 . Prior to film formation, the substrate was subjected to degreasing washing by means of an ultrasonic wave for 5 minutes in each of acetone, ethanol, and ultrapure water, and then was dried in the air at 100° C.
  • a polycrystalline sintered material having an InGaO 3 (ZnO) 4 composition (having a diameter of 20 mm and a thickness of 5 mm) was used for the target.
  • the sintered material was produced by wet-mixing 4N reagents of In 2 O 3 , Ga 2 O 3 , and ZnO as starting materials in ethanol as a solvent; calcining the mixture at 1,000° C. for 2 hours; dry-pulverizing the resultant; and sintering the pulverized product at 1,550° C. for 2 hours.
  • the target 808 had an electric conductivity of 90 (S/cm), and was in a semi-insulating state.
  • the ultimate pressure in the growth chamber 821 was 1 ⁇ 10 ⁇ 4 (Pa) and the total pressure of an oxygen gas and the argon gas during growth was maintained at a constant value in the range of 4 to 0.1 ⁇ 10 ⁇ 1 (Pa). Then, the ratio between the partial pressure of the argon gas and the oxygen partial pressure was changed to change the oxygen partial pressure in the range of 10 ⁇ 3 to 2 ⁇ 10 ⁇ 1 (Pa).
  • the substrate temperature was set to be room temperature, and the distance between the target 808 and the deposition substrate 807 was 30 (mm).
  • Supplied power was RF180 W, and film formation was performed at a film forming rate of 10 (nm/min).
  • the thin film was found to have a mean square roughness (Rrms) of about 0.5 nm and a thickness of about 120 nm.
  • FIG. 3 shows the results.
  • film formation in an atmosphere having a high oxygen partial pressure in excess of 3 ⁇ 10 ⁇ 2 Pa was able to reduce an electric conductivity to less than 10 S/cm.
  • an InGaO 3 (ZnO) 4 thin film formed at a substrate temperature of 25° C. and an oxygen partial pressure of 10 ⁇ 1 Pa had an electric conductivity additionally reduced to about 10 ⁇ 10 S/cm.
  • an InGaO 3 (ZnO) 4 thin film formed at an oxygen partial pressure in excess of 10 ⁇ 1 Pa had so high an electrical resistance that its electric conductivity could not be measured.
  • the electron mobility, which could not be measured was estimated to be about 1 cm 2 /V ⁇ sec as a result of extrapolation from a value in a film having a large electron carrier concentration.
  • a normally-off transistor having an on-off ratio in excess of 10 3 was able to constitute a normally-off transistor having an on-off ratio in excess of 10 3 by using a transparent amorphous oxide thin film which is constituted of In—Ga—Zn—O produced by means of a sputtering deposition method in an argon gas atmosphere having an oxygen partial pressure in excess of 3 ⁇ 10 ⁇ 2 Pa, or desirably in excess of 5 ⁇ 10 ⁇ 1 Pa, and has a composition in a crystalline state represented by InGaO 3 (ZnO) m (where m represents a natural number of less than 6).
  • the oxygen partial pressure upon film formation by means of sputtering is, for example, in the range of 3 ⁇ 10 ⁇ 2 Pa to 5 ⁇ 10 ⁇ 1 Pa (both inclusive).
  • the electron mobility increases with increasing number of conduction electrons in a thin film produced by means of each of the pulse laser deposition method and the sputtering method.
  • controlling an oxygen partial pressure can reduce the number of oxygen defects, thereby reducing an electron carrier concentration.
  • substantially no particle interface is present, so an amorphous thin film having a high electron mobility can be obtained.
  • an InGaO 3 (ZnO) 4 amorphous oxide film obtained by using a polyethylene terephthalate (PET) film having a thickness of 200 ⁇ m instead of a glass substrate also showed similar characteristics.
  • the electron carrier concentration of a film obtained by means of a pulse laser deposition method in an atmosphere having an oxygen partial pressure of 0.8 Pa can be less than 10 16 /cm 3 (the electrical resistance is about 10 ⁇ 2 S/cm).
  • the electron mobility of such film reduces as compared to a film with no additional Mg, but the degree of the reduction is small: the electron mobility at room temperature is about 5 cm 2 /(V ⁇ sec), which is about one order of magnitude larger than that of amorphous silicon.
  • the electric conductivity and the electron mobility reduce with increasing Mg content. Therefore, the Mg content is preferably in excess of 20% and less than 85% (that is, 0.2 ⁇ x ⁇ 0.85).
  • one of Al 2 O 3 , Y 2 O 3 , and HfO 2 , or a mixed crystal compound containing at least two kinds of these compounds is preferably used for a gate insulation film.
  • each of a gate insulation film forming process and a channel layer forming process can be performed at room temperature, so each of a staggered structure and an inversely staggered structure can be formed as a TFT structure.
  • the TFT thus formed is a three-terminal device equipped with a gate terminal, a source terminal, and a drain terminal, and is an active device which uses a semiconductor thin film formed on an insulating substrate such as a ceramic, glass, or plastic as a channel layer in which an electron or a hole moves, and provides a switching function for a current between the source terminal and the drain terminal by applying a voltage to the gate terminal to control a current flowing in the channel layer.
  • an insulating substrate such as a ceramic, glass, or plastic
  • the amount of oxygen in an amorphous oxide film is controlled in an atmosphere containing a predetermined concentration of oxygen upon film formation. It is also preferable to control (reduce or increase) the oxygen defective amount by subjecting the oxide film to a post treatment in an atmosphere containing oxygen after the film formation.
  • the temperature in the atmosphere containing oxygen is in the range of desirably 0° C. to 300° C. (both inclusive), preferably 25° C. to 250° C. (both inclusive), or more preferably 100° C. to 200° C. (both inclusive).
  • the oxygen defective amount may be controlled in the atmosphere containing oxygen upon film formation and then controlled through a post treatment in the atmosphere containing oxygen after the film formation.
  • the oxygen partial pressure may be controlled not upon film formation but after the film formation through a post treatment in the atmosphere containing oxygen as long as a desired electron carrier concentration (less than 10 18 /cm 3 ) can be obtained.
  • the lower limit for the electron carrier concentration in the present invention which varies depending on what kind of device, circuit, or apparatus an oxide film to be obtained is used for, is, for example, 10 14 /cm 3 or more.
  • an amorphous oxide film having a small electron carrier concentration and a large electron mobility can be produced by means of an amorphous oxide composed of an oxide of at least one element of Zn, In, and Sn.
  • the amorphous oxide film has a specific property with which the electron mobility increases with increasing number of conduction electrons.
  • a normally-off TFT excellent in transistor characteristics including on-off ratio, saturation current in a pinch-off state, and switching speed can be produced by means of the film.
  • a composite oxide containing at least one element of the following elements can be constituted by using the above-described amorphous oxide containing at least one element of Zn, In, and Sn.
  • the elements are a Group II element M2 having an atomic number smaller than that of Zn (M2 represents Mg or Ca); a Group III element M3 having an atomic number smaller than that of In (M3 represents B, Al, Ga, or Y); a Group IV element M4 having an atomic number smaller than that of Sn (M4 represents Si, Ge, or Zr); a Group V element M5 (M5 represents V, Nb, or Ta); Lu; and W.
  • M2 represents Mg or Ca
  • M3 having an atomic number smaller than that of In
  • M4 represents Si, Ge, or Zr
  • M5 represents V, Nb, or Ta
  • Lu Lu
  • An oxide having any one of the following characteristics (a) to (h) can be used in the present invention.
  • room temperature refers to a temperature of about 0° C. to 40° C.
  • amorphous refers to a compound having only a halo pattern to be observed, and showing no specific diffraction ray, in an X-ray diffraction spectrum.
  • electron mobility refers to an electron mobility measured through Hall effect measurement.
  • the present invention relates to a field effect transistor using the amorphous oxide or amorphous oxide film described above for a channel layer.
  • An amorphous oxide film having an electron carrier concentration in excess of 10 15 /cm 3 and less than 10 18 /cm 3 is used for a channel layer to constitute a field effect transistor in which a source terminal, a drain terminal, and a gate terminal are arranged via a gate insulation film.
  • a voltage of about 5 V is applied between the source and drain terminals, the current between the source and drain terminals with no gate voltage applied can be about 10 ⁇ 7 A.
  • the electron mobility of an oxide crystal increases as the degree to which the s orbitals of metal ions overlap with each other increases.
  • the oxide crystal of Zn, In, or Sn having a large atomic number has a large electron mobility of 0.1 to 200 cm 2 /(V ⁇ sec).
  • oxygen and a metal ion bond to each other through an ionic bond.
  • the electron mobility can be comparable to the electron mobility in a crystalline state.
  • the electron mobility of the amorphous oxide according to the present invention is about 0.01 cm 2 /(V ⁇ sec) to 20 cm 2 /(V ⁇ sec).
  • one of Al 2 O 3 , Y 2 O 3 , and HfO 2 , or a mixed crystal compound containing at least two kinds of these compounds is preferably used for a gate insulation film in the transistor.
  • each of a gate insulation film forming process and a channel layer forming process can be performed at room temperature, so each of a staggered structure and an inversely staggered structure can be formed as a TFT structure.
  • An In 2 O 3 oxide film can be formed by means of a vapor phase method, and an amorphous film can be obtained by adding about 0.1 Pa of water to an atmosphere during film formation.
  • an amorphous film is hardly obtained from each of ZnO and SnO 2
  • an amorphous film can be obtained by adding about 20 at % of In 2 O 3 to ZnO or by adding about 90 at % of In 2 O 3 to SnO 2 .
  • about 0.1 Pa of nitrogen gas is desirably introduced into the atmosphere in order to obtain an Sn—In—O-based amorphous oxide film.
  • the above amorphous oxide film can has an additional element constituting a composite oxide of at least one element of a Group II element M2 having an atomic number smaller than that of Zn (M2 represents Mg or Ca); a Group III element M3 having an atomic number smaller than that of In (M3 represents B, Al, Ga, or Y); a Group IV element M4 having an atomic number smaller than that of Sn (M4 represents Si, Ge, or Zr); a Group V element M5 (M5 represents V, Nb, or Ta); Lu; and W.
  • M2 represents Mg or Ca
  • M3 having an atomic number smaller than that of In
  • M4 represents Si, Ge, or Zr
  • M5 represents V, Nb, or Ta
  • Lu Lu
  • the additional element can additionally stabilize the amorphous film at room temperature.
  • the addition can expand the composition range in which the amorphous film can be obtained.
  • the addition of B, Si, or Ge having strong covalency is effective in stabilizing an amorphous phase, and a composite oxide composed of ions different from each other in ionic radius to a large extent has a stabilized amorphous phase.
  • a stable amorphous oxide semiconductor film is hardly obtained at room temperature unless In accounts for more than about 20 at % of an In—Zn—O system.
  • the addition of Mg in an amount equivalent to that of In can provide a stable amorphous oxide film when In accounts for more than about 15 at %.
  • An amorphous oxide semiconductor film having electron carrier concentration in excess of 10 15 /cm 3 and less than 10 18 /cm 3 can be obtained by controlling an atmosphere in film formation by means of a vapor phase method.
  • An amorphous oxide semiconductor is desirably formed into a film by means of any one of the vapor phase methods such as a pulse laser deposition method (PLD method), a sputtering method (an SP method), and an electron beam deposition method.
  • PLD method pulse laser deposition method
  • SP method sputtering method
  • an electron beam deposition method e.g., a plasma source.
  • a PLD method is suitable because the composition of a material system can be easily controlled
  • an SP method is suitable in terms of mass productivity.
  • a film forming method is not limited to those methods.
  • Polycrystalline sintered materials each having an InGaO 3 (ZnO) composition or an InGaO 3 (ZnO) 4 composition were used as targets to deposit an In—Zn—Ga—O-based amorphous oxide film on a glass substrate (1737 manufactured by Corning Inc.) by means of a PLD method using a KrF excimer laser.
  • the film forming apparatus used was that shown in FIG. 14 described above, and film forming conditions were the same as those in the case where the apparatus was used.
  • the substrate temperature was 25° C.
  • X-ray diffraction was conducted on each of the resultant films by means of small angle X-ray scattering method (SAXS; thin film method, angle of incidence 0.5 degree). As a result, no clear diffraction peak was detected. Therefore, each of the In—Zn—Ga—O-based films produced from two kinds of targets was found to be an amorphous film.
  • each of the thin films was found to have a mean square roughness (Rrms) of about 0.5 nm and a thickness of about 120 nm.
  • the electron carrier concentration of the amorphous oxide semiconductor film obtained by using the polycrystalline sintered material having the InGaO 3 (ZnO) 4 composition as a target was measured with the oxygen partial pressure of the atmosphere during film formation changed.
  • FIG. 1 shows the results. Film formation in an atmosphere having an oxygen partial pressure in excess of 4.2 Pa was able to reduce the electron carrier concentration to less than 10 18 /cm 3 . In this case, the substrate had a temperature maintained at a temperature nearly equal to room temperature unless intentionally heated. When the oxygen partial pressure was less than 6.5 Pa, the surface of the resultant amorphous oxide film was flat.
  • the amorphous oxide film obtained by using the polycrystalline sintered material having the InGaO 3 (ZnO) 4 composition as a target had an electron carrier concentration of 10 16 /cm 3 and an electric conductivity of 10 ⁇ 2 S/cm.
  • its electron mobility was estimated to be about 5 cm 2 /V ⁇ sec.
  • the forbidden band energy width of the produced amorphous oxide film was determined to be about 3 eV.
  • an In—Zn—Ga—O-based amorphous oxide film formed at a substrate temperature of 25° C. and an oxygen partial pressure of 6 Pa had an electron carrier concentration reduced to 8 ⁇ 10 15 /cm 3 (electric conductivity: about 8 ⁇ 10 ⁇ 3 S/cm).
  • the electron mobility of the resultant film was estimated to be in excess of 1 cm 2 /(V ⁇ sec).
  • the oxygen partial pressure was 6.5 Pa or more, the surface of the deposited film became irregular, so it became difficult to use the film as a channel layer of a TFT.
  • FIG. 2 shows the results. It was found that the electron mobility increased from about 3 cm 2 /(V ⁇ sec) to about 11 cm 2 /(V ⁇ sec) as the electron carrier concentration increased from 10 16 /cm 3 to 10 20 /cm 3 . A similar tendency was observed in an amorphous oxide film obtained by using the polycrystalline sintered material having the InGaO 3 (ZnO) composition as a target.
  • An In—Zn—Ga—O-based amorphous oxide semiconductor film obtained by using a polyethylene terephthalate (PET) film having a thickness of 200 ⁇ m instead of a glass substrate also showed similar characteristics.
  • a polycrystal InGaO 3 (Zn 1 ⁇ x Mg x O) 4 (0 ⁇ x ⁇ 1) was used as a target to form an InGaO 3 (Zn 1 ⁇ x Mg x O) 4 (0 ⁇ x ⁇ 1) film on a glass substrate by means of the PLD method.
  • the apparatus shown in FIG. 14 was used as a film forming apparatus.
  • An SiO 2 glass substrate (1737 manufactured by Corning Inc.) was prepared as a deposition substrate.
  • the substrate was subjected to degreasing washing by means of an ultrasonic wave for 5 minutes in each of acetone, ethanol, and ultrapure water as a pretreatment, and then was dried in the air at 100° C.
  • the target was produced by wet-mixing 4N reagents of In 2 O 3 , Ga 2 O 3 , ZnO, and MgO as starting materials in ethanol as a solvent; calcining the mixture at 1,000° C. for 2 hours; dry-pulverizing the resultant; and sintering the pulverized product at 1,550° C. for 2 hours.
  • the ultimate pressure in the growth chamber was 2 ⁇ 10 ⁇ 6 (Pa), and an oxygen partial pressure during growth was set to be 0.8 (Pa).
  • the substrate temperature was room temperature (25° C.), and the distance between the target and the deposition substrate was 30 (mm).
  • the KrF excimer laser had a power of 1.5 (mJ/cm 2 /pulse), a pulse width of 20 (nsec), a pulse rate of 10 (Hz), and an irradiation spot diameter of 1 ⁇ 1 (mm square).
  • the film-forming rate was 7 (nm/min).
  • the oxygen partial pressure of the atmosphere was 0.8 Pa, and the substrate temperature was 25° C.
  • X-ray diffraction was conducted on the resultant film by means of small angle X-ray scattering method (SAXS; thin film method, angle of incidence 0.5 degree). As a result, no clear diffraction peak was detected. Therefore, the produced In—Zn—Ga—Mg—O-based film was found to be an amorphous film. The surface of the resultant film was flat.
  • Targets having different values of x were used to determine the x value dependence of each of the electric conductivity, electron carrier concentration, and electron mobility of the In—Zn—Ga—Mg—O-based amorphous oxide film formed in an atmosphere having an oxygen partial pressure of 0.8 Pa.
  • FIG. 4 shows the results.
  • the electron carrier concentration of an amorphous oxide film formed by means of the PLD method in an atmosphere having an oxygen partial pressure of 0.8 Pa was found to be less than 10 18 /cm 3 .
  • an amorphous oxide film having a value of x in excess of 0.4 had an electron mobility in excess of 1 cm 2 /V sec.
  • the electron carrier concentration of a film obtained by means of a pulse laser deposition method in an atmosphere having an oxygen partial pressure of 0.8 Pa can be less than 10 16 /cm 3 (the electrical resistance is about 10 ⁇ 2 S/cm).
  • the electron mobility of such film reduces as compared to a film with no additional Mg, but the degree of the reduction is small: the electron mobility at room temperature is about 5 cm 2 /(V ⁇ sec), which is about one order of magnitude larger than that of amorphous silicon.
  • the electric conductivity and the electron mobility reduce with increasing Mg content. Therefore, the Mg content is preferably in excess of 20 at % and less than 85 at % (that is, 0.2 ⁇ x ⁇ 0.85), more preferably 0.5 ⁇ x ⁇ 0.85.
  • An InGaO 3 (Zn 1 ⁇ x Mg x O) 4 (0 ⁇ x ⁇ 1) amorphous oxide film obtained by using a polyethylene terephthalate (PET) film having a thickness of 200 ⁇ m instead of a glass substrate also showed similar characteristics.
  • An In 2 O 3 polycrystalline sintered material was used as a target to form an In 2 O 3 film on a PET film having a thickness of 200 ⁇ m by means of the PLD method using a KrF excimer laser.
  • FIG. 14 The apparatus shown in FIG. 14 was used.
  • An SiO 2 glass substrate (1737 manufactured by Corning Inc.) was prepared as a deposition substrate.
  • the substrate was subjected to degreasing washing by means of an ultrasonic wave for 5 minutes in each of acetone, ethanol, and ultrapure water as a pretreatment, and then was dried in the air at 100° C.
  • An In 2 O 3 sintered material (having a diameter of 20 mm and a thickness of 5 mm) was used as a target.
  • the target was prepared by calcining a 4N reagent of In 2 O 3 as a starting material at 1,000° C. for 2 hours; dry-pulverizing the resultant; and sintering the pulverized product at 1,550° C. for 2 hours.
  • the ultimate pressure in the growth chamber was 2 ⁇ 10 ⁇ 6 (Pa), and the oxygen partial pressure during growth and the substrate temperature were set to be 5 (Pa) and room temperature, respectively.
  • the oxygen partial pressure and the vapor partial pressure were set to be 5 Pa and 0.1 Pa, respectively, and 200 W was applied to an oxygen-radical-generating apparatus to generate an oxygen radical.
  • the distance between the target and the deposition substrate was 40 (mm).
  • the KrF excimer laser had a power of 0.5 (mJ/cm 2 /pulse), a pulse width of 20 (nsec), a pulse rate of 10 (Hz), and an irradiation spot diameter of 1 ⁇ 1 (mm square).
  • the film forming rate was 3 (nm/min).
  • the produced In—O-based film was found to be an amorphous film.
  • the film had a thickness of 80 nm.
  • the resultant In—O-base amorphous oxide film had an electron carrier concentration of 5 ⁇ 10 17 /cm 3 and an electron mobility of about 7 cm 2 /V ⁇ sec.
  • An (In 0.9 Sn 0.1 )O 3.1 polycrystalline sintered material was used as a target to form an In—Sn—O-based oxide film on a PET film having a thickness of 200 ⁇ m by means of the PLD method using a KrF excimer laser.
  • an SiO 2 glass substrate (1737 manufactured by Corning Inc.) was prepared as a deposition substrate.
  • the substrate was subjected to degreasing washing by means of an ultrasonic wave for 5 minutes in each of acetone, ethanol, and ultrapure water as a pretreatment. After that, the substrate was then dried in the air at 100° C.
  • An In 2 O 3 —SnO 2 sintered material (having a diameter of 20 mm and a thickness of 5 mm) was prepared as a target.
  • the target was produced by wet-mixing a 4N reagent of In 2 O 3 —SnO 2 as a starting material in ethanol as a solvent; calcining the mixture at 1,000° C. for 2 hours; dry-pulverizing the resultant; and sintering the pulverized product at 1,550° C. for 2 hours.
  • the substrate temperature was room temperature.
  • the oxygen partial pressure and the nitrogen partial pressure were set to be 5 (Pa) and 0.1 (Pa), respectively, and 200 W was applied to an oxygen-radical-generating apparatus to generate oxygen radical.
  • the distance between the target and the deposition substrate was 30 (mm).
  • the KrF excimer laser had a power of 1.5 (mJ/cm 2 /pulse), a pulse width of 20 (nsec), a pulse rate of 10 (Hz), and an irradiation spot diameter of 1 ⁇ 1 (mm square).
  • the film-forming rate was 6 (nm/min).
  • SAXA small angle scattering method
  • the resultant In—Sn—O amorphous oxide film had an electron carrier concentration of 8 ⁇ 10 17 /cm 3 , an electron mobility of about 5 cm 2 /V ⁇ sec, and a thickness of 100 nm.
  • An SiO 2 glass substrate (1737 manufactured by Corning Inc.) was prepared as a deposition substrate.
  • the substrate was subjected to degreasing washing by means of an ultrasonic wave for 5 minutes in each of acetone, ethanol, and ultrapure water as a pretreatment, and then was dried in the air at 100° C.
  • the target is a (In 0.9 Ga 0.1 ) 2 O 3 polycrystalline sintered material.
  • the target was produced by wet-mixing a 4N reagent of In 2 O 3 —Ga 2 O 2 as a starting material in ethanol as a solvent; calcining the mixture at 1,000° C. for 2 hours; dry-pulverizing the resultant; and sintering the pulverized product at 1,550° C. for 2 hours.
  • the ultimate pressure in the growth chamber was 2 ⁇ 10 ⁇ 6 (Pa), and the oxygen partial pressure during growth was set to be 1 (Pa).
  • the substrate temperature was room temperature.
  • the distance between the target and the deposition substrate was 30 (mm).
  • the KrF excimer laser had a power of 1.5 (mJ/cm 2 /pulse), a pulse width of 20 (nsec), a pulse rate of 10 (Hz), and an irradiation spot diameter of 1 ⁇ 1 (mm square).
  • the film-forming rate was 6 (nm/min).
  • the substrate temperature was 25° C.
  • the oxygen partial pressure was 1 Pa.
  • X-ray diffraction was conducted on the resultant film by means of an X-ray at an angle of incidence as close as the surface of the film (thin film method, angle of incidence 0.5 degree). As a result, no clear diffraction peak was detected. Therefore, the produced In—Ga—O-based film was found to be an amorphous film.
  • the film had a thickness of 120 nm.
  • the resultant In—Ga—O amorphous oxide film had an electron carrier concentration of 8 ⁇ 10 ⁇ 6 /cm 3 and an electron mobility of about 1 cm 2 /V ⁇ sec.
  • a top gate TFT device shown in FIG. 5 was produced.
  • a polycrystalline sintered material having an InGaO 3 (ZnO) 4 composition was used as a target to form an In—Ga—Zn—O-based amorphous oxide film on a glass substrate 1 at an oxygen partial pressure of 5 Pa by means of the above-described PLD apparatus.
  • an In—Ga—Zn—O-based amorphous film having a thickness of 120 nm to be used as a channel layer 2 was formed.
  • An In—Ga—Zn—O-based amorphous film and a gold film each having a large electric conductivity and a thickness of 30 nm were laminated on the film by means of the PLD method with the oxygen partial pressure in the chamber set to be less than 1 Pa, to thereby form a drain terminal 5 and a source terminal 6 by means of a photolithography method and a lift-off method.
  • a Y 2 O 3 film to be used as a gate insulation film 3 (thickness: 90 nm, relative dielectric constant: about 15, leak current density: 10 ⁇ 3 A/cm 2 upon application of 0.5 MV/cm) was formed by means of an electron beam deposition method.
  • a gold film was formed on the Y 2 O 3 film, to thereby form a gate terminal 4 by means of a photolithography method and a lift-off method.
  • the channel length was 50 ⁇ m and the channel width was 200 ⁇ m.
  • FIG. 6 shows the current-voltage characteristics of a TFT device measured at room temperature.
  • the fact that a drain current I DS increased with increasing drain voltage V DS shows that the conduction of the channel is of an n-type.
  • the transistor had an on-off ratio in excess of 10 3 .
  • the field effect mobility was calculated from an output characteristic. As a result, a field effect mobility of about 7 cm 2 (Vs) ⁇ 1 was obtained in the saturation region.
  • the produced device was irradiated with visible light to perform similar measurement. However, no changes in transistor characteristics were observed.
  • An amorphous oxide having an electron carrier concentration of less than 10 18 /cm 3 is applicable to a channel layer of a TFT.
  • the electron carrier concentration was more preferably 10 17 /cm 3 or less, or still more preferably 10 16 /cm 3 or less.
  • a top gate TFT device shown in FIG. 5 was produced.
  • a polycrystalline sintered material having an InGaO 3 (ZnO) composition was used as a target to form an In—Zn—Ga—O-based amorphous oxide film having a thickness of 120 nm to be used as a channel layer 2 on a polyethylene terephthalate (PET) film 1 at an oxygen partial pressure of 5 Pa by means of the PLD method.
  • ZnO InGaO 3
  • An In—Zn—Ga—O-based amorphous oxide film and a gold film each having a large electric conductivity and a thickness of 30 nm were laminated on the film by means of the PLD method with the oxygen partial pressure in the chamber set to be less than 1 Pa, to thereby form a drain terminal 5 and a source terminal 6 by means of a photolithography method and a lift-off method.
  • a gate insulation film 3 was formed by means of an electron beam deposition method, and a gold film was formed on the film to thereby form a gate terminal 4 by means of a photolithography method and a lift-off method.
  • the channel length was 50 ⁇ m and the channel width was 200 ⁇ m.
  • Each of Y 2 O 3 (thickness: 140 nm), Al 2 O 3 (thickness: 130 ⁇ m), and HfO 2 (thickness: 140 ⁇ m) was used as a gate insulation film to produce three kinds of TFT's each having the above structure.
  • the transistor had an on-off ratio in excess of 10 3 .
  • the field effect mobility was calculated from an output characteristic. As a result, a field effect mobility of about 7 cm 2 (Vs) ⁇ 1 was obtained in a saturation region.
  • the device produced on the PET film was bent at a radius of curvature of 30 mm to perform similar measurement of transistor characteristics. However, no changes in transistor characteristics were observed.
  • the device was irradiated with visible light to perform similar measurement. However, no changes in transistor characteristics were observed.
  • the TFT using an Al 2 O 3 film as a gate insulation film showed transistor characteristics similar to those shown in FIG. 6 .
  • the transistor had an on-off ratio in excess of 10 2 .
  • the field effect mobility was calculated from an output characteristic. As a result, a field effect mobility of about 2 cm 2 (Vs) ⁇ 1 was obtained in a saturation region.
  • the TFT using an HfO 2 film as a gate insulation film showed transistor characteristics similar to those shown in FIG. 6 .
  • the transistor had an on-off ratio in excess of 10 2 .
  • the field effect mobility was calculated from an output characteristic. As a result, a field effect mobility of about 10 cm 2 (Vs) ⁇ 1 was obtained in a saturation region.
  • a top gate TFT device shown in FIG. 5 was produced.
  • an In 2 O 3 amorphous oxide film having a thickness of 80 nm to be used as a channel layer 2 was formed on a polyethylene terephthalate (PET) film 1 by means of the PLD method.
  • PET polyethylene terephthalate
  • an In 2 O 3 amorphous oxide film and a gold film each having a large electric conductivity and a thickness of 30 nm were laminated on the film by means of the PLD method with the oxygen partial pressure in the chamber set to be less than 1 Pa and a voltage to be applied to an oxygen-radical-generating apparatus set to zero, to thereby form a drain terminal 5 and a source terminal 6 by means of a photolithography method and a lift-off method.
  • a Y 2 O 3 film to be used as a gate insulation film 3 was formed by means of an electron beam deposition method, and a gold film was formed on the film to thereby form a gate terminal 4 by means of a photolithography method and a lift-off method.
  • the transistor had an on-off ratio of about 10 2 .
  • the field effect mobility was calculated from an output characteristic. As a result, a field effect mobility of about 10 cm 2 (Vs) ⁇ 1 was obtained in a saturation region.
  • a TFT device produced on a glass substrate showed similar characteristics.
  • the device produced on the PET film was bent at a radius of curvature of 30 mm to perform similar measurement of transistor characteristics. However, no changes in transistor characteristics were observed.
  • a top gate TFT device shown in FIG. 5 was produced. At first, an In—Sn—O-based amorphous oxide film having a thickness of 100 nm to be used as a channel layer 2 was formed on a polyethylene terephthalate (PET) film 1 by means of the PLD method.
  • PET polyethylene terephthalate
  • an In—Sn—O-based amorphous oxide film and a gold film each having a large electric conductivity and a thickness of 30 nm were laminated on the film by means of the PLD method with the oxygen partial pressure in the chamber set to be less than 1 Pa and a voltage to be applied to an oxygen-radical-generating apparatus set to zero, to thereby form a drain terminal 5 and a source terminal 6 by means of a photolithography method and a lift-off method.
  • a Y 2 O 3 film to be used as a gate insulation film 3 was formed by means of an electron beam deposition method, and a gold film was formed on the film to thereby form a gate terminal 4 by means of a photolithography method and a lift-off method.
  • the current-voltage characteristics of the TFT formed on the PET film were measured at room temperature.
  • the fact that a drain current I DS increased with increasing drain voltage V DS shows that the channel is an n-type semiconductor. This is not in contradiction to the fact that an In—Sn—O-based amorphous oxide film is an n-type conductor.
  • the transistor had an on-off ratio of about 10 3 .
  • the field effect mobility was calculated from an output characteristic. As a result, a field effect mobility of about 5 cm 2 (Vs) ⁇ 1 was obtained in a saturation region.
  • a TFT device produced on a glass substrate showed similar characteristics.
  • the device produced on the PET film was bent at a radius of curvature of 30 mm to perform similar measurement of transistor characteristics. However, no changes in transistor characteristics were observed.
  • a top gate TFT device shown in FIG. 5 was produced.
  • an In—Ga—O-based amorphous oxide film having a thickness of 120 nm to be used as a channel layer 2 was formed on a polyethylene terephthalate (PET) film 1 by means of a film forming method shown in Example 6.
  • PET polyethylene terephthalate
  • an In—Ga—O-based amorphous oxide film and a gold film each having a large electric conductivity and a thickness of 30 nm were laminated on the film by means of the PLD method with the oxygen partial pressure in the chamber set to be less than 1 Pa and the voltage to be applied to an oxygen-radical-generating apparatus set to zero, to thereby form a drain terminal 5 and a source terminal 6 by means of a photolithography method and a lift-off method.
  • a Y 2 O 3 film to be used as a gate insulation film 3 was formed by means of an electron beam deposition method, and a gold film was formed on the film to thereby form a gate terminal 4 by means of a photolithography method and a lift-off method.
  • the current-voltage characteristics of the TFT formed on the PET film were measured at room temperature.
  • the fact that a drain current I DS increased with increasing drain voltage V DS shows that the channel is an n-type semiconductor. This is not in contradiction to the fact that an In—Ga—O-based amorphous oxide film is an n-type conductor.
  • the transistor had an on-off ratio of about 10 2 .
  • a field effect mobility was calculated from an output characteristic. As a result, a field effect mobility of about 0.8 cm 2 (Vs) ⁇ 1 was obtained in a saturation region.
  • a TFT device produced on a glass substrate showed similar characteristics.
  • the device produced on the PET film was bent at a radius of curvature of 30 mm to perform similar measurement of transistor characteristics. However, no changes in transistor characteristics were observed.
  • An amorphous oxide semiconductor having an electron carrier concentration of less than 10 18 /cm 3 is applicable to a channel layer of a TFT.
  • the electron carrier concentration was more preferably 10 17 /cm 3 or less, or still more preferably 10 16 /cm 3 or less.
  • FIG. 7 shows the transmittance of an amorphous oxide semiconductor layer (200 nm in thickness) constituted of In—Ga—Zn—O and having a composition in a crystalline state represented by InGaO 3 (Zn) m (where m represents a natural number of less than 6).
  • the band gap is about 3 eV.
  • This layer has a strong sensitivity particularly to the ultraviolet light that has a wavelength shorter than 400 nm and has a transmission of 60% or less.
  • an organic pigment can expand the light sensitivity wavelength range of an amorphous oxide semiconductor mainly composed of In—Ga—Zn—O having a large electron mobility from an ultraviolet wavelength range to a visible light wavelength range, and causes the semiconductor to show high opto-electric conversion efficiency.
  • An optical sensor device shown in FIG. 8 is formed.
  • An Al electrode having a thickness of 100 nm is formed on a glass substrate (1737 manufactured by Corning Inc.) by means of a vacuum deposition method to serve as a lower electrode.
  • a polycrystalline sintered material having an InGaO 3 (ZnO) 4 composition is used as a target to deposit an In—Ga—Zn—O-based amorphous oxide semiconductor thin film on the electrode by means of a pulse laser deposition method using a Kr excimer laser.
  • In 2 O 3 (SnO 2 ) having a thickness of about 20 nm is laminated on the thin film at a substrate temperature of room temperature by means of a vacuum deposition method to serve as an upper electrode.
  • an optical sensor is formed.
  • the optical sensor device is irradiated with ultraviolet light having a wavelength of 365 nm from a mercury lamp. Thus, it can be confirmed that the device functions as an ultraviolet optical sensor.
  • An optical sensor device shown in FIG. 8 is formed.
  • An Al electrode having a thickness of 100 nm is formed on a glass substrate (1737 manufactured by Corning Inc.) by means of a vacuum deposition method to serve as a lower electrode.
  • a polycrystalline sintered material having an InGaO 3 (Zn 0.9 Mg 0.1 O) 4 composition is used as a target to deposit an In—Ga—Zn—O-based amorphous oxide semiconductor thin film on the electrode by means of a pulse laser deposition method using a Kr excimer laser.
  • the thickness of the amorphous oxide semiconductor film formed is 100 nm.
  • In 2 O 3 (SnO 2 ) having a thickness of about 20 nm is laminated on the thin film at a substrate temperature of room temperature by means of a vacuum deposition method to serve as an upper electrode.
  • a voltage of 1 V is applied to the optical sensor device thus formed.
  • a negative bias is applied to the upper electrode on a light incidence side, and a positive bias is applied to the lower electrode.
  • the optical sensor device is irradiated with ultraviolet light having a wavelength of 365 nm from a mercury lamp.
  • ultraviolet light having a wavelength of 365 nm from a mercury lamp.
  • An optical sensor device shown in FIG. 9 is formed.
  • An Al electrode having a thickness of 100 nm is formed on a glass substrate (1737 manufactured by Corning Inc.) by means of a vacuum deposition method to serve as a lower electrode.
  • a polycrystalline sintered material having an InGaO 3 (Zn 0.9 Mg 0.1 O) 4 composition is used as a target to deposit an In—Ga—Zn—O-based amorphous oxide semiconductor thin film having a thickness of 5 nm on the electrode by means of a pulse laser deposition method using a Kr excimer laser.
  • a polycrystalline sintered material having an InGaO 3 (ZnO) 4 composition is used as a target to deposit an In—Ga—Zn—O-based amorphous oxide semiconductor thin film having a thickness of 5 nm.
  • This operation is repeated 20 times to laminate a semiconductor layer having a multilayer structure (200 nm in thickness).
  • the total thickness of the amorphous oxide semiconductor films formed is 100 nm.
  • In 2 O 3 (SnO 2 ) having a thickness of about 20 nm is laminated on the semiconductor layer at a substrate temperature of room temperature by means of a vacuum deposition method to serve as an upper electrode.
  • the amorphous oxide semiconductor having a thickness of 100 nm is laminated, and is then immersed in a pigment solution prepared by dissolving 0.01% of a cyanine pigment into a mixed solution of methanol and chloroform to cause the organic pigment to adsorb and bond to the semiconductor.
  • a pigment solution prepared by dissolving 0.01% of a cyanine pigment into a mixed solution of methanol and chloroform to cause the organic pigment to adsorb and bond to the semiconductor.
  • In 2 O 3 (SnO 2 ) having a thickness of about 20 nm is laminated on the remainder at a substrate temperature of room temperature by means of a vacuum deposition method to serve as an upper electrode.
  • a voltage of 1 V is applied to the optical sensor device thus formed.
  • a negative bias is applied to the upper electrode on a light incidence side, and a positive bias is applied to the lower electrode.
  • the optical sensor device is irradiated with ultraviolet light having a wavelength of 365 nm from a mercury lamp
  • An optical sensor device shown in FIG. 9 is formed.
  • An Al electrode having a thickness of 100 nm is formed on a glass substrate (1737 manufactured by Corning Inc.) by means of a vacuum deposition method to serve as a lower electrode.
  • a polycrystalline sintered material having an InGaO 3 (Zn 0.9 Mg 0.1 O) 4 composition is used as a target to deposit an In—Ga—Zn—O-based amorphous oxide semiconductor thin film having a thickness of 5 nm on the electrode by means of a pulse laser deposition method using a Kr excimer laser.
  • a polycrystalline sintered material having an InGaO 3 (ZnO) 4 composition is used as a target to deposit an In—Ga—Zn—O-based amorphous oxide semiconductor thin film having a thickness of 5 nm.
  • This operation is repeated 20 times to laminate a semiconductor layer having a multilayer structure (200 nm in thickness).
  • a voltage of 1 V is applied to the optical sensor device thus formed.
  • a negative bias is applied to the upper electrode on a light incidence side, and a positive bias is applied to the lower electrode.
  • the optical sensor device is irradiated with ultraviolet light having a wavelength of 365 nm from a mercury lamp. Thus, it can be confirmed that the device functions as an ultraviolet optical sensor.
  • a top gate MISFET device shown in FIG. 5 is produced as a TFT of a non-flat imager.
  • a polyimide sheet having a thickness of 0.3 mm is used as a substrate.
  • a polycrystalline sintered material having an InGaO 3 (ZnO) 4 composition is used as a target to deposit an In—Ga—Zn—O-based amorphous oxide semiconductor thin film on the polyimide sheet by means of a pulse laser deposition method using a KrF excimer laser.
  • an InGaO 3 (ZnO) 4 amorphous oxide semiconductor thin film having a thickness of 120 nm to be used as a channel layer is formed.
  • InGaO 3 (ZnO) 4 and a gold film each having a large electric conductivity and a thickness of 30 nm are laminated on the film by means of a pulse laser deposition method with the oxygen partial pressure in a chamber set to be less than 1 Pa, to thereby form a drain terminal and a source terminal by means of a photolithography method and a lift-off method.
  • a Y 2 O 3 film to be used as a gate insulation film is formed by means of an electron beam deposition method.
  • a gold film is formed on the Y 2 O 3 film, to thereby form a gate terminal by means of a photolithography method and a lift-off method.
  • An optical sensor device shown in FIG. 8 is formed as a sensor of a non-flat imager.
  • An Al electrode having a thickness of 100 nm is formed on the polyimide substrate by means of a vacuum deposition method to serve as a lower electrode.
  • a polycrystalline sintered material having an InGaO 3 (ZnO) 4 composition is used as a target to deposit an In—Ga—Zn—O-based amorphous oxide semiconductor thin film on the electrode by means of a pulse laser deposition method using a Kr excimer laser.
  • the thickness of the amorphous oxide semiconductor film formed is 100 nm.
  • the amorphous oxide semiconductor is immersed in a pigment solution prepared by dissolving 0.01% of a cyanine pigment into a mixed solution of methanol and chloroform to cause the organic pigment to adsorb and bond to the semiconductor.
  • In 2 O 3 (SnO 2 ) having a thickness of about 20 nm is laminated on the thin film at a substrate temperature of room temperature by means of a vacuum deposition method to serve as an upper electrode.
  • a CdWO 4 layer having a thickness of 400 ⁇ m to serve as a scintillator is deposited on the upper electrode by means of a sputtering method.
  • an X-ray sensor shown in FIG. 10 is formed.
  • Such TFT and X-ray sensor are combined to form a circuit shown in FIG. 11 , thereby constituting a non-flat imager shown in FIG. 12 .
  • a small digital camera to serve a measuring object is placed in such non-flat imager to perform X-ray measurement.
  • An image having reduced distortion as compared to that of an image obtained by using a conventional flat X-ray imager can be obtained.
  • a top gate MISFET device shown in FIG. 5 is produced as a TFT of a non-flat imager.
  • a plastic sheet having a thickness of 0.3 mm is used as a substrate.
  • a polycrystalline sintered material having an InGaO 3 (Zn 0.9 Mg 0.1 O) 4 composition is used as a target to deposit an In—Ga—Zn—O-based amorphous oxide semiconductor thin film on the plastic sheet by means of a pulse laser deposition method using a KrF excimer laser.
  • an InGaO 3 (Zn 0.9 Mg 0.1 O) 4 amorphous oxide semiconductor thin film having a thickness of 120 nm to be used as a channel layer is formed.
  • InGaO 3 (Zn 0.9 Mg 0.1 O) 4 and a gold film each having a large electric conductivity and a thickness of 30 nm are laminated on the film by means of a pulse laser deposition method with the oxygen partial pressure in the chamber set to be less than 1 Pa, to thereby form a drain terminal and a source terminal by means of a photolithography method and a lift-off method.
  • a Y 2 O 3 film to be used as a gate insulation film is formed by means of an electron beam deposition method.
  • a gold film is formed on the Y 2 O 3 film, to thereby form a gate terminal by means of a photolithography method and a lift-off method.
  • An optical sensor device shown in FIG. 9 is formed as a sensor of a non-flat imager.
  • An Al electrode having a thickness of 100 nm is formed on the plastic substrate by means of a vacuum deposition method to serve as a lower electrode.
  • a polycrystalline sintered material having an InGaO 3 (Zn 0.9 Mg 0.1 O) 4 composition is used as a target to deposit an In—Ga—Zn—O-based amorphous oxide semiconductor thin film having a thickness of 5 nm on the electrode by means of a pulse laser deposition method using a Kr excimer laser.
  • a polycrystalline sintered material having an InGaO 3 (ZnO) 4 composition is used as a target to deposit an In—Ga—Zn—O-based amorphous oxide semiconductor thin film having a thickness of 5 nm.
  • This operation is repeated 20 times to laminate a semiconductor layer having a multilayer structure (200 nm in thickness).
  • the total thickness of the amorphous oxide semiconductor films formed is 100 nm.
  • a phthalocyanine pigment is vacuum-deposited to laminate about a monomolecular film of the pigment on the oxide semiconductor layer.
  • In 2 O 3 (SnO 2 ) having a thickness of about 20 nm is laminated on the resultant at a substrate temperature of room temperature by means of a vacuum deposition method to serve as an upper electrode.
  • Such TFT and X-ray sensor are combined to form a circuit shown in FIG. 11 , thereby constituting a non-flat imager shown in FIG. 12 .
  • a small digital camera to serve a measuring object is placed in such non-flat imager to perform X-ray measurement.
  • An image having reduced distortion as compared to that of an image obtained by using a conventional flat X-ray imager can be obtained.
  • the present invention is applicable to a sensor and a non-flat imager each having high sensitivity to ultraviolet light, visible light, and an X-ray.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Thin Film Transistor (AREA)
  • Light Receiving Elements (AREA)

Abstract

A sensor for detecting a received electromagnetic wave comprising a first electrode, a second electrode and an amorphous oxide layer interposed between the first electrode and the second electrode.

Description

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to a sensor for detecting a received electromagnetic wave such as an optical sensor, a solar cell, or an X-ray sensor.
The present invention also relates to a non-flat image pickup device.
2. Related Background Art
The development of a thin film transistor (TFT) using an oxide semiconductor thin film containing ZnO has been vigorously conducted (Japanese Patent Application Laid-Open No. 2003-298062).
The thin film can be formed at a low temperature, and is transparent with respect to visible light. Accordingly, a flexible and transparent TFT can be formed on a substrate such as a plastic plate or a film. In addition, attempts have been made to use ZnO for an optical sensor and a solar cell.
Meanwhile, there are tubes that are complicatedly laid in an atomic power plant or the like.
In addition, much cost and time have been spent for inspecting the corroded states and the like of the tubes. Therefore, a non-flat X-ray imager (image pickup device) that can be inserted into a gap between the complicated tubes has been desired.
In the medical field, at present, a large burden has been applied to a patient in X-ray diagnosis by means of mammography or the like. A non-flat X-ray imager as means for X-ray diagnosis imposing a reduced burden to a patient has been desired.
A non-flat imager is generally constituted by a thin film transistor and an X-ray sensor. The thin film transistor (TFT) is a three-terminal device equipped with a gate terminal, a source terminal, and a drain terminal. The TFT is combined with a sensor to be used as a switch for selecting a sensor or as an amplifier.
A more flexible one having better performance has been requested as a sensor for detecting an electromagnetic wave or a non-flat X-ray image pickup device.
SUMMARY OF THE INVENTION
An object of the present invention is to provide a novel sensor or image pickup device using an amorphous oxide.
Another object of the present invention is to provide a sensor or non-flat image pickup device using an amorphous oxide having an electron carrier concentration of less than 1018/cm3 or an amorphous oxide whose electron mobility tends to increase with increasing electron carrier concentration.
Another object of the present invention is to provide an image pickup device comprising an X-ray sensor and a normally-off field effect transistor.
The sensors for detecting a received electromagnetic wave in the present invention includes, of course, an optical sensor, and a sensor for detecting non-visible light such as an ultraviolet optical sensor and a sensor for detecting a radiant ray such as an X-ray sensor.
Hereinafter, the present invention will be described specifically.
According to one aspect of the present invention, there is provided a sensor for detecting a received electromagnetic wave, including a first electrode; a second electrode; and an amorphous oxide layer interposed between the first electrode and the second electrode.
It is desirable that the amorphous oxide layer has an electron carrier concentration of less than 1018/cm3.
The first electrode desirably has transmissivity with respect to light in a wavelength range to which the amorphous oxide layer is sensitive.
The present invention also includes a sensor in which the amorphous oxide layer has an organic pigment.
According to another aspect of the present invention, there is provided a sensor including a first electrode; a second electrode; and an amorphous oxide semiconductor layer interposed between the first electrode and the second electrode, in which the amorphous oxide layer is an amorphous oxide whose electron mobility tends to increase with increasing electron carrier concentration.
According to another aspect of the present invention, there is provided an image pickup device including:
a flexible substrate;
an X-ray sensor arranged on the flexible substrate; and
a field effect transistor electrically connected to the X-ray sensor, in which:
the field effect transistor has an amorphous oxide semiconductor as an active layer; and
the amorphous oxide semiconductor has an electron carrier concentration of less than 1018/cm3 or is an oxide whose electron mobility tends to increase with increasing electron carrier concentration.
In particular, the image pickup device more preferably has a non-flat imaging region.
The present invention also includes a non-flat imager in which the X-ray sensor includes a scintillator for converting X-ray into light and an opto-electric conversion element.
The present invention also includes an image pickup device, wherein the X-ray sensor comprises a semiconductor layer, and the semiconductor layer also comprises an amorphous oxide.
According to another aspect of the present invention, there is provided an image pickup device comprising:
a substrate having a non-flat region;
an X-ray sensor provided on the substrate; and
a field effect transistor for reading a signal from the X-ray sensor,
wherein the field effect transistor is a normally-off transistor having an active layer composed of an amorphous oxide.
By the way, in general, an inorganic thin film transistor is formed on a flat surface and is used in a flat shape. A conventional inorganic thin film transistor typified by amorphous silicon requires a high-temperature process for its formation, and it has been difficult to form such transistor on a flexible substrate such as a plastic resin.
Investigation has been made into a thin film transistor using an organic semiconductor such as pentacene as a thin film transistor that can be formed on a flexible substrate. However, the characteristics of the transistor have not been sufficient yet.
Recently, as described above, the development of a TFT using a polycrystalline oxide of ZnO for a channel layer has been vigorously conducted.
The inventors of the present invention have made investigation into an oxide semiconductor. As a result, they have found that ZnO cannot generally form a stable amorphous phase. In addition, most ZnO shows a polycrystalline phase. Therefore, a carrier is scattered at an interface between polycrystalline particles, with the result that an electron-mobility cannot be increased.
In addition, an oxygen defect is apt to enter ZnO. As a result, a large number of carrier electrons are generated, so it is difficult to reduce an electric conductivity. It has been found that, owing to the foregoing, even when no gate voltage is applied to a transistor, a large current flows between a source terminal and a drain terminal, so a normally-off operation of a TFT cannot be realized. It seems also difficult to increase on-off ratio of the transistor.
In addition, the inventors of the present invention have examined an amorphous oxide film ZnxMyInzO(x+3y/2+3z/2) (where M represents at least one element of Al and Ga) described in Japanese Patent Application Laid-Open No. 2000-044236. The material has an electron carrier concentration of 1018/cm3 or more, so it is suitable for a mere transparent electrode.
However, it has been found that, when an oxide semiconductor having an electron carrier concentration of 1018/cm3 or more is used for a channel layer of a TFT, sufficient on-off ratio cannot be secured, so the oxide is not appropriate for a normally-off TFT.
That is, a conventional amorphous oxide film has been unable to provide a film having an electron carrier concentration of less than 1018/cm3.
In view of the foregoing, the inventors of the present invention have produced a TFT using an amorphous oxide having an electron carrier concentration of less than 1018/cm3 for an active layer of a field effect transistor. As a result, they have obtained a TFT having desired characteristics, and have discovered that the TFT is applicable to an image display device such as a light-emitting device.
The inventors of the present invention have conducted vigorous research and development concerning InGaO3(ZnO)m and conditions under which the material is formed into a film. As a result, they have found that an electron carrier concentration of less than 1018/cm3 can be achieved by controlling the conditions of an oxygen atmosphere upon film formation.
The present invention relates to a sensor or image pickup device using a film that has realized a desired electron carrier concentration.
According to the present invention, there are provided a novel sensor and a novel image pickup device.
In particular, when a measuring object is subjected to X-ray transmittance measurement by means of a non-flat imager, an image having reduced distortion as compared to a flat imager can be obtained.
In addition, when a human body is subjected to X-ray measurement, a physical burden imposed on the measuring person is reduced.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 is a graph showing a relationship between the electron carrier concentration of an In—Ga—Zn—O-based amorphous oxide semiconductor formed by means of a pulse laser deposition method and an oxygen partial pressure during film formation;
FIG. 2 is a graph showing a relationship between the electron carrier concentration and electron mobility of an In—Ga—Zn—O-based amorphous oxide semiconductor formed by means of a pulse laser deposition method;
FIG. 3 is a graph showing a relationship between the electric conductivity of an In—Ga—Zn—O-based amorphous oxide semiconductor formed by means of a sputtering method using an argon gas and an oxygen partial pressure during film formation;
FIG. 4 shows graphs showing changes in electric conductivity, carrier concentration, and electron mobility with the value for x of InGaO3(Zn1−xMgxO) formed into a film by means of a pulse laser deposition method in an atmosphere having an oxygen partial pressure of 0.8 Pa;
FIG. 5 is a schematic structural view of a TFT produced for evaluating an amorphous oxide semiconductor used for an optical sensor of the present invention;
FIG. 6 is a graph showing the current-voltage characteristics of a top gate MISFET device;
FIG. 7 is a graph showing the transmittance of an amorphous semiconductor layer (200 nm) constituted by In—Ga—Zn—O;
FIG. 8 is a schematic explanatory view showing a first example of the optical sensor of the present invention;
FIG. 9 is a second schematic explanatory view showing a second example of the optical sensor of the present invention;
FIG. 10 is a schematic structural view of an X-ray sensor of the present invention;
FIG. 11 is a pixel circuit diagram of a non-flat imager of the present invention;
FIG. 12 is a schematic explanatory view for explaining a method of producing the non-flat imager of the present invention;
FIG. 13 is a schematic explanatory view of X-ray measurement by means of the non-flat imager of the present invention;
FIG. 14 is a schematic view showing a pulse laser deposition apparatus; and
FIG. 15 is a schematic view showing a sputter film forming apparatus.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
The present invention relates to a sensor and a non-flat imager each using an amorphous oxide. Hereinafter, an optical sensor will be described in detail in a first embodiment, and then a non-flat imager will be described in a second embodiment.
After that, an amorphous oxide common to both the embodiments and the properties of the amorphous oxide will be described in detail.
First Embodiment
FIG. 8 shows a first schematic structural view of a sensor for detecting a received electromagnetic wave according to the present invention.
The sensor according to the present invention is constituted of a lower electrode (702), an amorphous oxide semiconductor layer (703), and an upper electrode (704) on a substrate (701).
The upper electrode may be referred to as the first electrode, and the lower electrode may be referred to as the second electrode.
In this embodiment, for example, an oxide having an electron carrier concentration of less than 1018/cm3 is used for the amorphous oxide layer.
The thickness of the amorphous oxide semiconductor layer, which is appropriately optimized depending on the wavelength of light with which the layer is irradiated or a pigment for pigment sensitization, is preferably 10 nm to 1·m, or more preferably 10 nm to 500 nm.
The amorphous oxide semiconductor shows n-type conduction when it is a semiconductor containing In—Ga—Zn—O. It is also preferable to form a junction between the amorphous oxide semiconductor and a metal having a large work function such as Pt to constitute a photodiode. The oxide semiconductor as an n-type oxide semiconductor and SrCu2O2 as a p-type oxide semiconductor may be laminated to form a semiconductor junction, thereby constituting a photodiode.
Of course, the sensor according to the present invention can be used as an optical sensor for ultraviolet light or for X-rays. In addition, the sensor can be used as an optical sensor for visible light when it uses an organic pigment to be described later.
FIG. 9 shows a second schematic structural view of the sensor in the present invention.
The second sensor of the present invention is constituted of a lower electrode (802), a semiconductor layer (803) having a multilayer structure which is constituted by laminating multiple amorphous oxide semiconductor layers, and an upper electrode (804) on a substrate (801).
It is also preferable to form the semiconductor layer having a multilayer structure by appropriately optimizing the thickness of each semiconductor layer depending on the wavelength of light with which the layer is irradiated. The thickness of each semiconductor layer constituting the semiconductor layer having a multilayer structure is preferably 1 nm to 100 nm, or more preferably 5 nm to 50 nm. The entire thickness of the semiconductor layer having a multilayer structure is preferably 10 nm to 1 ·m, or more preferably 10 nm to 500 nm.
The semiconductor layer having a multilayer structure is constituted of, for example, amorphous oxide layers composed of mutually different materials, or amorphous oxide layers having mutually different thicknesses.
When light is applied from the upper electrode, a material and a thickness through each of which applied light can transmit needs to be selected for the upper electrode. For example, an oxide transparent conductive film is preferable. When light is applied from the side of the substrate, a quartz material, an acrylic resin, or the like which are excellent in translucency is a preferable material for the substrate. In this case, an oxide transparent conductive film having a wide band gap is preferably used for the lower electrode.
The case where the amorphous oxide semiconductor of the present invention is sensitized with an organic pigment will be described.
As shown in FIG. 8, in the case where light incidence takes place from an upper portion of the optical sensor device, the amorphous oxide semiconductor film is deposited and then immersed in an organic solvent into which an organic pigment is dissolved to cause the organic pigment to adsorb to the semiconductor. Alternatively, the organic pigment is deposited from the vapor onto the semiconductor by means of a vacuum deposition method. After that, the upper electrode is formed by means of a vacuum deposition method or a sputtering method.
In the case where light incidence takes place from the side of the substrate, the organic pigment is caused to adsorb to the lower electrode. After that, the amorphous oxide semiconductor is formed by means of a laser ablation method or a sputtering method.
Furthermore, as shown in FIG. 9, in the case where a semiconductor layer having a multilayer structure is to be sensitized with an organic pigment, the semiconductor layer having a multilayer structure can be formed by repeatedly laminating organic pigments by means of an immersion method, a deposition method, or the like every time each semiconductor layer is laminated.
In that case, it is preferable to make such a distribution as to change from a pigment capable of absorbing light having a short wavelength to a pigment capable of absorbing light having a long wavelength as light enters a deeper portion of the semiconductor layer from its incidence side.
The substrate to be used in the present invention may be conductive or electrically insulating properties. Examples of a conductive substrate include metals and alloys of the metals such as NiCr, stainless steel, Al, Cr, Mo, Au, Nb, Ta, V, Ti, Pt, and Pb. Examples of an electrically insulating substrate include films made of synthetic resins such as an acrylic resin, polyester, polyethylene, polycarbonate, cellulose acetate, polypropylene, polyvinyl chloride, polyvinylidene chloride, polystyrene, and polyamide; sheets; glass; ceramics; and paper. At least one surface of each of those electrically insulating substrates is preferably subjected to a conductive treatment, and a light-receiving layer is desirably arranged on the surface subjected to the conductive treatment.
For example, a thin film composed of NiCr, Al, Cr, Mo, Au, Ir, Nb, Ta, V, Ti, Pt, Pd, InO3, ITO (In2O3+Sn) or the like is arranged on the surface of glass to impart conductivity. Alternatively, a thin film composed of a metal such as NiCr, Al, Ag, Pb, Zn, Ni, Au, Cr, Mo, Ir, Nb, Ta, V, Tl, or Pt is arranged on the surface of a synthetic resin film such as a polyester film by means of vacuum deposition, electron beam deposition, sputtering, or the like, or the surface is subjected to lamination with the metal, to impart conductivity to the surface. The substrate is preferably a substrate having flexibility, that is, the substrate is preferably deformable (especially bendable).
The light transmittance of an oxide transparent conductive film to be used in the present invention is preferably 60% or more, or more preferably 85% or more. In addition, the film desirably has a sheet resistance of 100· or less so as not to serve as an electrical resistance component with respect to the output of a photovoltaic device. The term “light transmittance” mentioned above refers to the transmittance of light in a wavelength range to be detected by an optical sensor. Examples of a material having such properties include extremely thin and transparent metal films formed of metal oxides such as SnO2, In2O, ITO (SnO2+In2O3), ZnO, CdO, Cd2SnO4, TiO2, and Ti3N4; and metals such as Au, Al, and Cu.
Of those, a transparent electrode made of an indium oxide or an indium-tin oxide is particularly suitable. Examples of an available method of producing the electrode include a resistance heating deposition method, an electron beam heating deposition method, a sputtering method, and a spray method, and the methods are appropriately selected as desired. Of those, a sputtering method and a vacuum deposition method are optimum deposition methods.
The organic pigment is selected from a cyanine pigment, a merocyanine pigment, a phthalocyanine pigment, a naphthalocyanine pigment, a phthalo/naphthalo-mixed phthalocyanine pigment, a dipyridyl Ru complex pigment, a terpyridyl Ru complex pigment, a phenanthroline Ru complex pigment, a phenylxanthene pigment, a triphenylmethane pigment, a coumarin pigment, an acridine pigment, and an azo metal complex pigment each of which can chemically bond to the semiconductor. Of course, multiple pigments may be used in combination.
An organic pigment sensitizer suitable for the present invention is preferably one capable of forming a bond with the amorphous oxide semiconductor mainly composed of In—Ga—Zn—O of the present invention, the bond facilitating the movement of photo-excited charge.
A pigment that adsorbs to a semiconductor layer to function as a photosensitizer is one showing absorption in various visible light regions and/or an infrared light region.
A pigment preferably has, in a pigment molecule, a carboxylic group, a carboxylic anhydride group, an alkoxy group, a hydroxyalkyl group, a sulfonic group, a hydroxyl group, an ester group, a mercapto group, a phosphonyl group, or the like in order to cause the pigment to strongly adsorb to the semiconductor layer.
Of those, a carboxylic group and a carboxylic anhydride group are particularly preferable. It should be noted that each of the groups provides an electrical bond that facilitates the movement of an electron between a pigment in an excited state and the conduction band of the amorphous oxide semiconductor.
Examples of pigments having the groups include a ruthenium bipyridine-based pigment, an azo-based pigment, a quinone-based pigment, a quinoneimine-based pigment, a quinacridone-based pigment, a triphenylmethane-based pigment, and a xanthene-based pigment. The examples further include a squarilium-based pigment, a cyanine-based pigment, a merocyanine-based pigment, a porphyrin-based pigment, a phthalocyanine-based pigment, a perylene-based pigment, an indigo-based pigment, and a naphthalocyanine-based pigment.
Examples of a method of causing the pigment to adsorb to the semiconductor layer include a method involving immersing a semiconductor layer formed on a conductive substrate into a solution into which a pigment is dissolved (a solution for pigment adsorption); and a method involving depositing an organic pigment from the vapor. The examples further include a method involving heating an organic pigment, transporting the organic pigment by means of an inert gas such as helium or nitrogen, and causing the organic pigment to adsorb to a semiconductor. It is preferable to form an organic pigment on an amorphous oxide semiconductor in a monomolecular layer fashion.
Any solvent can be used as long as it is capable of dissolving a pigment, and specific examples of such solvent include alcohols such as ethanol; ketones such as acetone; ethers such as diethyl ether and tetrahydrofuran; and nitrogen compounds such as acetonitrile. The examples further include halogenated aliphatic hydrocarbons such as chloroform; aliphatic hydrocarbons such as hexane; aromatic hydrocarbons such as benzene; esters such as ethyl acetate; and water. Two or more kinds of those solvents may be used as a mixture.
The pigment concentration in a solution, which can be appropriately adjusted depending on the pigment to be used and a kind of solvent, is preferably as high as possible in order to enhance adsorption function. For example, the pigment concentration is preferably 1×10−5 mol/l or more, or more preferably 1×10−4 mol/l or more.
In the present invention, an organic pigment corresponding to a wavelength range as a target for an optical sensor device is preferably selected and used in an appropriate manner. A single pigment may be used for the pigment, or multiple pigments may be used in combination for the pigment.
Second Embodiment
FIG. 10 shows a schematic view of an image pickup device according to the present invention. The invention according to this embodiment is, for example, an X-ray image sensor. The image pickup device of the present invention is constituted of a lower electrode 902, a semiconductor layer 903 to serve as an opto-electric conversion element, an upper electrode 904, and a scintillator 905 on a deformable substrate 901. The constitution shown in FIG. 8 or 9 can be used for the constitution from the substrate 901 to the upper electrode 904. The semiconductor layer is formed of, for example, an amorphous oxide containing at least In—Ga—Zn—O.
At least part of the image pickup device according to the present invention preferably has a non-flat portion. Of course, an image pickup device which instantaneously has a flat shape but can be deformed into a non-flat shape is also preferable.
An amorphous oxide (to be described in detail later) may be used for the semiconductor layer 903, or amorphous silicon or the like may be used for the layer. As described later, an oxide having an electron carrier concentration of less than 1018/cm3 or an oxide whose electron mobility tends to increase with increasing electron carrier concentration can be used for the amorphous oxide.
In addition to a glass substrate or the like, a resin, plastic, or polyethylene terephthalate (PET) is applicable to the substrate. The substrate is preferably a flexible substrate.
In the X-ray sensor, the scintillator 905 mainly using a phosphor is used as required, and may be omitted when the above-described semiconductor layer is sensitive to X-ray.
NaI (Tl) (deliquescent), CsI (Tl) (deliquescent), Cs (Na) (deliquescent), CsI (pure), CaF2 (Eu), BaF2, CdWO4, or the like is used for the scintillator. The thickness of the scintillator layer is preferably in the range of 100·m to 500·m because the thickness in the range allows the layer to sufficiently absorb X-ray. The scintillator layer is preferably formed by means of a sputtering method. Before a deliquescent scintillator is used, the scintillator needs to be subjected to a dampproofing treatment. A preferable dampproofing treatment involves laminating a dampproofing layer (such as a silicon nitride layer or a silicon oxide layer) having a thickness of 100 nm or more on each of the rear surface of the substrate 901 and the surface of the scintillator.
FIG. 11 shows a circuit per one pixel using a TFT using an amorphous oxide such as In—Ga—Zn—O according to the present invention for an active layer; and an X-ray sensor composed of a scintillator and an opto-electric conversion element using an oxide semiconductor containing In—Ga—Zn—O.
The TFT is preferably of a normally-off TFT in which the amorphous oxides as described later are used for an active layer of the TFT.
The sensing operation of an imaging sensor having such a three-transistor pixel structure is as follows.
In an X-ray sensor 1006, an X-ray enters a scintillator to be converted into visible light. The light is converted into electricity by an In—Ga—Zn—O-containing oxide semiconductor sensitized with a pigment. The converted signal charge changes the potential of a floating node 1005 as a source end of a reset TFT 1001. As a result, the gate potential of a select TFT 1004 as a driver for a pixel level source follower is changed. The bias of the source end of the select TFT 1004 or of the drain node of an access TFT 1007 is changed.
While signal charge is accumulated in this way, the potentials of the source end of the reset TFT 1001 and the source end of the select TFT 1004 change. At this time, if a low selection signal is inputted to the gate of the access TFT 1007 via a low selection signal input terminal 1008, a potential difference due to the signal charge generated by the X-ray sensor 1006 will be outputted toward a column selection line 1009.
In this way, a signal level due to the generation of charge by the X-ray sensor 1006 is detected. After that, a reset signal via a reset signal input terminal 1002 changes a reset transistor 1 into an on state. Thus, the signal charge accumulated in the X-ray sensor 1006 is entirely reset.
When a semiconductor layer which is sensitive to X-ray is used, of course, the scintillator can be omitted. In addition, the organic pigment can be omitted. The active layer of the above TFT can be formed of, for example, an amorphous oxide to be described later. For example, an oxide having an electron carrier concentration of less than 1018/cm3 or an oxide whose electron mobility tends to increase with increasing electron carrier concentration can be used for the amorphous oxide. The above TFT can be arranged on one side of the opto-electric conversion element with the aid of the upper electrode 904, the semiconductor layer 903, and the lower electrode 902. A layer for the above TFT may be separately arranged between the substrate 901 and the lower electrode 902.
The thickness of the oxide semiconductor layer in respect of X-ray absorption is 50·m or larger, preferably 100·m or larger, and more preferably 300·m or larger.
Both the semiconductor of the X-ray sensor and the active layer of the TFT for receiving (or reading) a signal from the sensor can be comprised of an amorphous oxide, which is a preferable constitution in the case where higher flatness is required.
Multiple imaging sensor units shown in FIG. 11 each formed on a deformable substrate were arranged to constitute a non-flat imager. The resolution of the imager was set to be equal to or larger than XGA (1,024×768), SXGA (1,280×1,024), or the like. FIG. 12 shows an example of a method of producing the non-flat imager. As shown on the left side of FIG. 12, sensor units produced on a flat surface are cut at broken lines to constitute a spherical shape as shown on the right side of the figure. Thus, a semispherical non-flat imager is constituted. Reference numeral 1101 denotes a TFT and a sensor formed on a flat surface. Reference numeral 1102 denotes a TFT and a sensor unit. Reference numeral 1103 denotes a semispherical non-flat imager provided with the TFT and the sensor described above.
The arrangement of a TFT and a sensor portion on the non-flat surface of the non-flat imager can be realized as follows. For example, at first, a TFT and the like are arranged on a flexible substrate made of plastic, PET, or the like, that is, on a flat surface. After that, the flexible substrate is pressed against a non-flat mold while the substrate is heated, to thereby deform the flat substrate into a non-flat substrate. Of course, the term “non-flat imager” as used herein comprehends both an imager having a flat region and a non-flat region and an imager that can be deformed from a flat state to a non-flat state.
FIG. 13 shows an example of a measurement method by means of the non-flat imager of the present invention. A measuring object 1203 is fed into a non-flat imager 1201 formed in FIG. 12, and the resultant is irradiated with an external X-ray 1204 to subject the measuring object 1203 to measurement. It is also preferable to form a sensor unit in one half of the semispherical non-flat imager in such a manner that no sensor unit enters a gap between an X-ray source and the measuring object.
(Amorphous Oxide Semiconductor)
As described above, in the present invention, an amorphous oxide semiconductor having a desired electron carrier concentration is used as an optical sensor portion itself or as an active layer of a field effect transistor to be used for an optical sensor. Of course, the amorphous oxide semiconductor may be used as each of them.
The electron carrier concentration of the amorphous oxide semiconductor according to the present invention is a value measured at room temperature. Room temperature is, for example, 25° C., and, specifically, is a temperature appropriately selected from the range of about 0° C. to 40° C. It should be noted that there is no need for the electron carrier concentration of the amorphous oxide semiconductor according to the present invention to have a value of less than 1018/cm3 in the entire range of 0° C. to 40° C. For example, an electron carrier concentration of less than 1018/cm3 has only to be realized at 25° C. In addition, reducing the electron carrier concentration to 1017/cm3 or less, or more preferably 1016/cm3 or less provides a normally-off TFT with high yield.
The electron carrier concentration can be measured through Hall effect measurement.
The term “amorphous oxide” as used herein refers to an oxide having a halo pattern to be observed, and showing no specific diffraction ray, in an X-ray diffraction spectrum.
The lower limit for the electron carrier concentration in the amorphous oxide semiconductor of the present invention is not particularly limited as long as the amorphous oxide semiconductor is applicable to a channel layer of a TFT. The lower limit is, for example, 1012/cm3.
Therefore, in the present invention, as in each of the examples to be described later, the electron carrier concentration is set to fall within the range of, for example, preferably 1012/cm3 (inclusive) to 1018/cm3 (exclusive), more preferably 1013/cm3 to 1017/cm3 (both inclusive), or still more preferably 1015/cm3 to 1016/cm3 (both inclusive) by controlling the material, composition ratio, production conditions, and the like of the amorphous oxide.
In addition to an InZnGa oxide, the amorphous oxide can be appropriately selected from an In oxide, an InxZn1−x oxide (0.2·x·1), an InxSn1−x oxide (0.8·x·1), and an Inx(Zn, Sn)1−x oxide (0.15·x·1).
The Inx(Zn, Sn)1−x oxide can be described as an Inx(ZnySn1−y)1−x oxide, and y ranges from 1 to 0.
Part of In in an In oxide containing none of Zn and Sn can be replaced with Ga. That is, the In oxide can be turned into an InxGa1−x oxide (0·x·1).
Hereinafter, an amorphous oxide having an electron carrier concentration of less than 1018/cm3 that the inventors of the present invention have succeeded in producing will be described in detail.
The oxide contains In—Ga—Zn—O, its composition in a crystalline state is represented by InGaO3(ZnO)m (where m represents a natural number of less than 6), and its electron carrier concentration is less than 1018/cm3.
The oxide contains In—Ga—Zn—Mg—O, its composition in a crystalline state is represented by InGaO3(Zn1−xMgxO)m (where m represents a natural number of less than 6 and 0<x·1), and its electron carrier concentration is less than 1018/cm3.
A film constituted of each of those oxides is preferably designed to have an electron mobility in excess of 1 cm2/(V·sec).
The use of the film for a channel layer enables transistor characteristics including a gate current at the time of turning a transistor off of less than 0.1·A (that is, normally off) and an on-off ratio in excess of 103. In addition, the use realizes a flexible TFT, which is transparent, or has transmissivity, with respect to visible light.
The electron mobility of the film increases with increasing number of conduction electrons. A glass substrate, a plastic substrate made of a resin, a plastic film, or the like can be used as a substrate for forming a transparent film.
When the amorphous oxide semiconductor film is used for a channel layer, one of Al2O3, Y2O3, and HfO2, or a mixed crystal compound containing at least two kinds of these compounds can be used for a gate insulation film.
It is also preferable to form the amorphous oxide into a film in an atmosphere containing an oxygen gas without intentionally adding any impurity ion for increasing an electrical resistance of the oxide.
The inventors of the present invention have found that the semi-insulating oxide amorphous thin film has specific property with which the electron mobility of the film increases with increasing number of conduction electrons. Furthermore, the inventors have found that a TFT produced by means of the film is provided with additionally improved transistor characteristics including on-off ratio, saturation current in a pinch-off state, and switching speed. That is, the inventors have found that a normally-off TFT can be realized by using an amorphous oxide.
The use of the amorphous oxide thin film for a channel layer of a film transistor provides an electron mobility in excess of 1 cm2/(V·sec), preferably in excess of 5 cm2/(V·sec).
When the electron carrier concentration is less than 1018/cm3, or preferably less than 1016/cm3, a current between drain and source terminals at the time of off (when no gate voltage is applied) can be set to be less than 10·A, or preferably less than 0.1·A.
The use of the film provides saturation current after pinch-off in excess of 10·A and an on-off ratio in excess of 103 when the electron mobility exceeds 1 cm2/(V·sec), or preferably exceeds 5 cm2/(V·sec).
In a TFT, a high voltage is applied to a gate terminal in a pinch-off state, and electrons are present in a channel at a high density.
Therefore, according to the present invention, saturation current value can be increased by an amount corresponding to an increase in electron mobility. As a result, improvements of transistor characteristics including an increase in on-off ratio, an increase in saturation current, and an increase in switching speed can be expected.
In a typical compound, when the number of electrons increases, electron mobility reduces owing to a collision between electrons.
Examples of a structure that can be used for the TFT include a stagger (top gate) structure in which a gate insulation film and a gate terminal are formed in order on a semiconductor channel layer; and an inversely staggered (bottom gate) structure in which a gate insulation film and a semiconductor channel layer are formed in order on a gate terminal.
(First Film Forming Method: PLD Method)
The amorphous state of an amorphous oxide thin film whose composition in a crystalline state is represented by InGaO3(ZnO)m (where m represents a natural number of less than 6) is stably maintained up to a high temperature equal to or higher than 800° C. when the value of m is less than 6. However, as the value of m increases, that is, as the ratio of ZnO to InGaO3 increases to cause the composition to be close to a ZnO composition, the thin film is apt to crystallize.
Therefore, a value of m of less than 6 is preferable for a channel layer of an amorphous TFT.
A vapor phase deposition method involving the use of a polycrystalline sintered material having an InGaO3(ZnO)m composition as a target is a desirable film forming method. Of such vapor phase deposition methods, a sputtering method and a pulse laser deposition method are suitable. Furthermore, a sputtering method is most suitable from the viewpoint of mass productivity.
However, when the amorphous film is produced under typical conditions, an oxygen defect mainly occurs, so it has been unable to provide an electron carrier concentration of less than 1018/cm3, that is, an electric conductivity of 10 S/cm or less. The use of such film makes it impossible to constitute a normally-off transistor.
The inventors of the present invention have produced In—Ga—Zn—O by means of a pulse laser deposition method with the aid of an apparatus shown in FIG. 14.
Film formation was performed by means of such PLD film forming apparatus as shown in FIG. 14.
In the figure, reference numeral 701 denotes a rotary pump (RP); 702, a turbo-molecular pump (TMP); 703, a preparatory chamber; 704, an electron gun for RHEED; 705, substrate holding means for rotating, and moving vertically, a substrate; 706, a laser entrance window; 707, the substrate; 708, a target; 709, a radical source; 710, a gas inlet; 711, target holding means for rotating, and moving vertically, the target; 712, a bypass line; 713, a main line; 714, a turbo-molecular pump (TMP); 715, a rotary pump (RP); 716, a titanium getter pump; and 717, a shutter. In addition, in the figure, reference numeral 718 denotes an ion vacuum gauge (IG); 719, a Pirani vacuum gauge (PG); 720, a baratron vacuum gauge (BG); and 721, a growth chamber (chamber).
An In—Ga—Zn—O-based amorphous oxide semiconductor thin film was deposited on an SiO2 glass substrate (1737 manufactured by Corning Inc.) by means of a pulse laser deposition method using a KrF excimer laser. Prior to the deposition, the substrate was subjected to degreasing washing by means of an ultrasonic wave for 5 minutes in each of acetone, ethanol, and ultrapure water, and then was dried in the air at 100° C. An InGaO3(ZnO)4 sintered material target (having a diameter of 20 mm and a thickness of 5 mm) was used as the polycrystalline target. The target was produced by wet-mixing 4N reagents of In2O3, Ga2O3, and ZnO as starting materials in ethanol as a solvent; calcining the mixture at 1,000° C. for 2 hours; dry-pulverizing the resultant; and sintering the pulverized product at 1,550° C. for 2 hours. The target thus produced had an electric conductivity of 90 (S/cm).
Film formation was performed with the ultimate pressure in the growth chamber set to 2×10−6 (Pa) and the oxygen partial pressure during growth controlled to be 6.5 (Pa).
The oxygen partial pressure in the chamber 721 was 6.5 Pa and the substrate temperature was 25° C.
The distance between the target 708 and the deposition substrate 707 was 30 (mm), and the power of the KrF excimer laser incident from the entrance window 706 was in the range of 1.5 to 3 (mJ/cm2/pulse). The pulse width, pulse rate, and irradiation spot diameter were set to 20 (nsec), 10 (Hz), and 1×1 (mm square), respectively.
Thus, film formation was performed at a film-forming rate of 7 (nm/min).
X-ray diffraction was conducted on the resultant thin film by means of an X-ray at an angle of incidence as close as the thin film (thin film method, angle of incidence 0.5 degree). As a result, no clear diffraction peak was observed. Therefore, the produced In—Ga—Zn—O-based thin film can be said to be amorphous.
Furthermore, X-ray reflectance measurement was performed, and pattern analysis was performed. As a result, the thin film was found to have a mean square roughness (Rrms) of about 0.5 nm and a thickness of about 120 nm. X-ray fluorescence (XRF) analysis confirmed that the metal composition ratio of the thin film was In:Ga:Zn=0.98:1.02:4.
The film had an electric conductivity of less than about 10−2 S/cm. The electron carrier concentration and electron mobility of the film are estimated to be about 1016/cm3 or less and about 5 cm2/(V·sec), respectively.
Owing to the analysis of a light absorption spectrum, the forbidden band energy width of the produced amorphous thin film was determined to be about 3 eV. The foregoing shows that the produced In—Ga—Zn—O-based thin film is a transparent and flat thin film showing an amorphous phase close to the composition of InGaO3(ZnO)4 as a crystal, having little oxygen defect, and having a small electric conductivity.
Specific description will be made with reference to FIG. 1. The figure shows change of the electron carrier concentration of a transparent amorphous oxide thin film formed with changing oxygen partial pressure under the same conditions as those of this embodiment, which film is composed of In—Ga—Zn—O and has a composition in an assumed crystalline state represented by InGaO3(ZnO)m (where m represents a number of less than 6).
Film formation was performed in an atmosphere having a high oxygen partial pressure in excess of 4.5 Pa under the same conditions as those of this embodiment. As a result, as shown in FIG. 1, it was able to reduce the electron carrier concentration to less than 1018/cm3. In this case, the substrate had a temperature maintained at a temperature nearly equal to room temperature unless intentionally heated. The substrate temperature is preferably kept at a temperature lower than 100° C. in order to use a flexible plastic film as a substrate.
Additionally increasing the oxygen partial pressure can additionally reduce the electron carrier concentration. For example, as shown in FIG. 1, an InGaO3 (ZnO)4 thin film formed at a substrate temperature of 25° C. and an oxygen partial pressure of 5 Pa had a number of electron carriers reduced to 1016/cm3.
As shown in FIG. 2, the resultant thin film had an electron mobility in excess of 1 cm2/(V·sec). However, in the pulse laser deposition method of this embodiment, when the oxygen partial pressure is 6.5 Pa or more, the surface of the deposited film becomes irregular, so it becomes difficult to use the film as a channel layer of a TFT.
Therefore, a normally-off transistor can be constituted by using a transparent amorphous oxide thin film having a composition in a crystalline state represented by InGaO3(ZnO)m (where m represents a number of less than 6) by means of a pulse laser deposition method in an atmosphere having an oxygen partial pressure in excess of 4.5 Pa, or desirably in excess of 5 Pa and less than 6.5 Pa.
In addition, the thin film had an electron mobility in excess of 1 cm2/V·sec, so the on-off ratio was able to exceed 103.
As described above, when an InGaZn oxide is formed into a film by means of the PLD method under the conditions shown in this embodiment, the oxygen partial pressure is desirably controlled to be 4.5 Pa or more and less than 6.5 Pa.
The realization of an electron carrier concentration of less than 1018/cm3 depends on, for example, a condition for an oxygen partial pressure, the structure of a film forming apparatus, and a material and a composition to be formed into a film.
Next, an amorphous oxide was produced at an oxygen partial pressure of 6.5 Pa in the above apparatus, and then a top gate MISFET device shown in FIG. 5 was produced. To be specific, at first, a semi-insulating amorphous InGaO3(ZnO)4 film having a thickness of 120 nm to be used as a channel layer 2 was formed on a glass substrate 1 by means of the above-described method of producing an amorphous In—Ga—Zn—O thin film.
Then, InGaO3(ZnO)4 and a gold film each having a large electric conductivity and a thickness of 30 nm were laminated on the film by means of a pulse laser deposition method with the oxygen partial pressure in the chamber set to be less than 1 Pa, to thereby form a drain terminal 5 and a source terminal 6 by means of a photolithography method and a lift-off method. Finally, a Y2O3 film to be used as a gate insulation film 3 (thickness: 90 nm, relative dielectric constant: about 15, leak current density: 10−3 A/cm2 upon application of 0.5 MV/cm) was formed by means of an electron beam deposition method. A gold film was formed on the Y2O3 film, to thereby form a gate terminal 4 by means of a photolithography method and a lift-off method.
Evaluation of MISFET Device for Characteristics
FIG. 6 shows the current-voltage characteristics of an MISFET device measured at room temperature. The fact that a drain current IDS increased with increasing drain voltage VDS shows that the channel is an n-type semiconductor. This is not in contradiction to the fact that an amorphous In—Ga—Zn—O-based semiconductor is of an n-type. IDS saturated (pinched off) at VDS of about 6 V. The saturation is a typical behavior of a semiconductor transistor. Investigation into a gain characteristic showed that the threshold value for a gate voltage VGS was about −0.5 V upon application of VDS=4 V. A current IDS=1.0×10−5 A flowed when VG=10 V. This corresponds to the fact that a gate bias enabled a carrier to be induced in an In—Ga—Zn—O-based amorphous semiconductor thin film as an insulator.
The transistor had an on-off ratio in excess of 103. The field effect mobility was calculated from an output characteristic. As a result, a field effect mobility of about 7 cm2 (Vs)−1 was obtained in the saturation region. The produced device was irradiated with visible light to perform similar measurement. However, no changes in transistor characteristics were observed.
According to this embodiment, a thin film transistor having a channel layer with a small electron carrier concentration (that is, a high electrical resistance) and a large electron mobility can be realized.
The above-described amorphous oxide had excellent properties. That is, electron mobility increased with increasing electron carrier concentration, and degenerate conduction was exhibited.
In this embodiment, a thin film transistor was formed on a glass substrate. A substrate such as a plastic plate or a film can also be used because film formation itself can be performed at room temperature.
In addition, the amorphous oxide obtained in this embodiment absorbs nearly no visible light and can realize a transparent and flexible TFT.
(Second Film Forming Method: Sputtering Method (SP Method))
Description will be given of film formation by means of a high-frequency SP method using an argon gas as an atmospheric gas.
The SP method was performed by means of an apparatus shown in FIG. 15. In the figure, reference numeral 807 denotes a deposition substrate; 808, a target; 805, substrate holding means equipped with a cooling mechanism; 814, a turbo-molecular pump; 815, a rotary pump; 817, a shutter; 818, an ion vacuum gauge; 819, a Pirani vacuum gauge; 821, a growth chamber (chamber); and 830, a gate valve.
An SiO2 glass substrate (1737 manufactured by Corning Inc.) was prepared as the deposition substrate 807. Prior to film formation, the substrate was subjected to degreasing washing by means of an ultrasonic wave for 5 minutes in each of acetone, ethanol, and ultrapure water, and then was dried in the air at 100° C.
A polycrystalline sintered material having an InGaO3(ZnO)4 composition (having a diameter of 20 mm and a thickness of 5 mm) was used for the target.
The sintered material was produced by wet-mixing 4N reagents of In2O3, Ga2O3, and ZnO as starting materials in ethanol as a solvent; calcining the mixture at 1,000° C. for 2 hours; dry-pulverizing the resultant; and sintering the pulverized product at 1,550° C. for 2 hours. The target 808 had an electric conductivity of 90 (S/cm), and was in a semi-insulating state.
The ultimate pressure in the growth chamber 821 was 1×10−4 (Pa) and the total pressure of an oxygen gas and the argon gas during growth was maintained at a constant value in the range of 4 to 0.1×10−1 (Pa). Then, the ratio between the partial pressure of the argon gas and the oxygen partial pressure was changed to change the oxygen partial pressure in the range of 10−3 to 2×10−1 (Pa).
In addition, the substrate temperature was set to be room temperature, and the distance between the target 808 and the deposition substrate 807 was 30 (mm).
Supplied power was RF180 W, and film formation was performed at a film forming rate of 10 (nm/min).
X-ray diffraction was conducted on the resultant film by means of an X-ray at an angle of incidence as close as the surface of the film (thin film method, angle of incidence 0.5 degree). As a result, no clear diffraction peak was detected. Therefore, the produced In—Zn—Ga—O-based film was found to be an amorphous film.
Furthermore, X-ray reflectance measurement was performed, and pattern analysis was performed. As a result, the thin film was found to have a mean square roughness (Rrms) of about 0.5 nm and a thickness of about 120 nm. X-ray fluorescence (XRF) analysis confirmed that the metal composition ratio of the thin film was In:Ga:Zn=0.98:1.02:4.
The oxygen partial pressure in the atmosphere upon film formation was changed to measure the electric conductivity of the resultant amorphous oxide film. FIG. 3 shows the results.
As shown in FIG. 3, film formation in an atmosphere having a high oxygen partial pressure in excess of 3×10−2 Pa was able to reduce an electric conductivity to less than 10 S/cm.
Additionally increasing the oxygen partial pressure was able to reduce the number of electron carriers.
For example, as shown in FIG. 3, an InGaO3(ZnO)4 thin film formed at a substrate temperature of 25° C. and an oxygen partial pressure of 10−1 Pa had an electric conductivity additionally reduced to about 10−10 S/cm. In addition, an InGaO3(ZnO)4 thin film formed at an oxygen partial pressure in excess of 10−1 Pa had so high an electrical resistance that its electric conductivity could not be measured. In this case, the electron mobility, which could not be measured, was estimated to be about 1 cm2/V·sec as a result of extrapolation from a value in a film having a large electron carrier concentration.
That is, it was able to constitute a normally-off transistor having an on-off ratio in excess of 103 by using a transparent amorphous oxide thin film which is constituted of In—Ga—Zn—O produced by means of a sputtering deposition method in an argon gas atmosphere having an oxygen partial pressure in excess of 3×10−2 Pa, or desirably in excess of 5×10−1 Pa, and has a composition in a crystalline state represented by InGaO3(ZnO)m (where m represents a natural number of less than 6).
When the apparatus and the material shown in this embodiment are used, the oxygen partial pressure upon film formation by means of sputtering is, for example, in the range of 3×10−2 Pa to 5×10−1 Pa (both inclusive). As shown in FIG. 2, the electron mobility increases with increasing number of conduction electrons in a thin film produced by means of each of the pulse laser deposition method and the sputtering method.
As described above, controlling an oxygen partial pressure can reduce the number of oxygen defects, thereby reducing an electron carrier concentration. In addition, in an amorphous state, unlike a polycrystalline state, substantially no particle interface is present, so an amorphous thin film having a high electron mobility can be obtained.
It should be noted that an InGaO3(ZnO)4 amorphous oxide film obtained by using a polyethylene terephthalate (PET) film having a thickness of 200·m instead of a glass substrate also showed similar characteristics.
The use of a polycrystal InGaO3(Zn1−xMgxO)m (where m represents a natural number of less than 6 and 0<x·1) as a target provides a high-resistance amorphous InGaO3(Zn1−xMgxO)m film even at an oxygen partial pressure of less than 1 Pa.
For example, when a target obtained by replacing Zn with 80 at. % of Mg is used, the electron carrier concentration of a film obtained by means of a pulse laser deposition method in an atmosphere having an oxygen partial pressure of 0.8 Pa can be less than 1016/cm3 (the electrical resistance is about 10−2 S/cm).
The electron mobility of such film reduces as compared to a film with no additional Mg, but the degree of the reduction is small: the electron mobility at room temperature is about 5 cm2/(V·sec), which is about one order of magnitude larger than that of amorphous silicon. Upon film formation under the same conditions, the electric conductivity and the electron mobility reduce with increasing Mg content. Therefore, the Mg content is preferably in excess of 20% and less than 85% (that is, 0.2<x<0.85).
In the thin film transistor using the above-described amorphous oxide film, one of Al2O3, Y2O3, and HfO2, or a mixed crystal compound containing at least two kinds of these compounds is preferably used for a gate insulation film.
When a defect is present in an interface between the gate insulation thin film and the channel layer thin film, an electron mobility reduces and hysteresis occurs in transistor characteristics. In addition, leak current varies to a large extent depending on the kind of the gate insulation film. Therefore, a gate insulation film suitable for a channel layer needs to be selected. The use of an Al2O3 film can reduce leak current. In addition, the use of a Y2O3 film can reduce hysteresis. Furthermore, the use of an HfO2 film having a high dielectric constant can increase electron mobility. In addition, the use of a mixed crystal of those films can result in the formation of a TFT having a small leak current, small hysteresis, and large electron mobility. In addition, each of a gate insulation film forming process and a channel layer forming process can be performed at room temperature, so each of a staggered structure and an inversely staggered structure can be formed as a TFT structure.
The TFT thus formed is a three-terminal device equipped with a gate terminal, a source terminal, and a drain terminal, and is an active device which uses a semiconductor thin film formed on an insulating substrate such as a ceramic, glass, or plastic as a channel layer in which an electron or a hole moves, and provides a switching function for a current between the source terminal and the drain terminal by applying a voltage to the gate terminal to control a current flowing in the channel layer.
The fact that a desired electron carrier concentration can be achieved by controlling an oxygen defective amount is important in the present invention.
In the foregoing description, the amount of oxygen in an amorphous oxide film (oxygen defective amount) is controlled in an atmosphere containing a predetermined concentration of oxygen upon film formation. It is also preferable to control (reduce or increase) the oxygen defective amount by subjecting the oxide film to a post treatment in an atmosphere containing oxygen after the film formation.
To effectively control the oxygen defective amount, the temperature in the atmosphere containing oxygen is in the range of desirably 0° C. to 300° C. (both inclusive), preferably 25° C. to 250° C. (both inclusive), or more preferably 100° C. to 200° C. (both inclusive).
Of course, the oxygen defective amount may be controlled in the atmosphere containing oxygen upon film formation and then controlled through a post treatment in the atmosphere containing oxygen after the film formation. In addition, the oxygen partial pressure may be controlled not upon film formation but after the film formation through a post treatment in the atmosphere containing oxygen as long as a desired electron carrier concentration (less than 1018/cm3) can be obtained.
The lower limit for the electron carrier concentration in the present invention, which varies depending on what kind of device, circuit, or apparatus an oxide film to be obtained is used for, is, for example, 1014/cm3 or more.
(Expansion of Material System)
As a result of research on an expanded composition system, it has been found that an amorphous oxide film having a small electron carrier concentration and a large electron mobility can be produced by means of an amorphous oxide composed of an oxide of at least one element of Zn, In, and Sn.
It has also been found that the amorphous oxide film has a specific property with which the electron mobility increases with increasing number of conduction electrons.
A normally-off TFT excellent in transistor characteristics including on-off ratio, saturation current in a pinch-off state, and switching speed can be produced by means of the film.
A composite oxide containing at least one element of the following elements can be constituted by using the above-described amorphous oxide containing at least one element of Zn, In, and Sn.
The elements are a Group II element M2 having an atomic number smaller than that of Zn (M2 represents Mg or Ca); a Group III element M3 having an atomic number smaller than that of In (M3 represents B, Al, Ga, or Y); a Group IV element M4 having an atomic number smaller than that of Sn (M4 represents Si, Ge, or Zr); a Group V element M5 (M5 represents V, Nb, or Ta); Lu; and W.
An oxide having any one of the following characteristics (a) to (h) can be used in the present invention.
  • (a) An amorphous oxide having an electron carrier concentration of less than 1018/cm3 at room temperature.
  • (b) An amorphous oxide whose electron mobility increases with increasing electron carrier concentration.
The term “room temperature” as used herein refers to a temperature of about 0° C. to 40° C. The term “amorphous” as used herein refers to a compound having only a halo pattern to be observed, and showing no specific diffraction ray, in an X-ray diffraction spectrum. The term “electron mobility” as used herein refers to an electron mobility measured through Hall effect measurement.
  • (c) An amorphous oxide according to the above item (a) or (b) having electron mobility in excess of 0.1 cm2/V·sec at room temperature.
  • (d) An amorphous oxide according to the above item (b) or (c) exhibiting degenerate conduction. The term “degenerate conduction” as used herein refers to a state where heat activation energy in the temperature dependence of an electrical resistance is 30 meV or less.
  • (e) An amorphous oxide according any one of the above items (a) to (d) containing at least one element of Zn, In, and Sn as a constituent.
  • (f) An amorphous oxide film obtained by incorporating, into the amorphous oxide according to the above item (e), at least one element of a Group II element M2 having an atomic number smaller than that of Zn (M2 represents Mg or Ca); a Group III element M3 having an atomic number smaller than that of In (M3 represents B, Al, Ga, or Y); a Group IV element M4 having an atomic number smaller than that of Sn (M4 represents Si, Ge, or Zr); a Group V element M5 (M5 represents V, Nb, or Ta); Lu; and W.
  • (g) An amorphous oxide film according to any one of the above items (a) to (f), which is a single compound having a composition in a crystalline state represented by In1−xM3xO3(Zn1−yM2yO)m (where 0·x, y·1 and m represents 0 or a natural number of less than 6) or a mixture of compounds having different m's. M3 represents Ga or the like, and M2 represents Mg or the like.
  • (h) An amorphous oxide film according to any one of the above items (a) to (g) which is arranged on a glass substrate, a metal substrate, a plastic substrate, or a plastic film.
The present invention relates to a field effect transistor using the amorphous oxide or amorphous oxide film described above for a channel layer.
An amorphous oxide film having an electron carrier concentration in excess of 1015/cm3 and less than 1018/cm3 is used for a channel layer to constitute a field effect transistor in which a source terminal, a drain terminal, and a gate terminal are arranged via a gate insulation film. When a voltage of about 5 V is applied between the source and drain terminals, the current between the source and drain terminals with no gate voltage applied can be about 10−7 A.
The electron mobility of an oxide crystal increases as the degree to which the s orbitals of metal ions overlap with each other increases. The oxide crystal of Zn, In, or Sn having a large atomic number has a large electron mobility of 0.1 to 200 cm2/(V·sec).
Furthermore, in the oxide, oxygen and a metal ion bond to each other through an ionic bond.
As a result, even in an amorphous state in which a chemical bond has no directivity, a structure is random, and the direction of bonding is non-uniform, the electron mobility can be comparable to the electron mobility in a crystalline state.
On the other hand, replacing Zn, In, or Sn with an element having a small atomic number reduces the electron mobility. As a result, the electron mobility of the amorphous oxide according to the present invention is about 0.01 cm2/(V·sec) to 20 cm2/(V·sec).
When a channel layer of a transistor is produced by means of the above-described oxide, one of Al2O3, Y2O3, and HfO2, or a mixed crystal compound containing at least two kinds of these compounds is preferably used for a gate insulation film in the transistor.
When a defect is present in an interface between the gate insulation thin film and the channel layer thin film, electron mobility reduces and hysteresis occurs in transistor characteristics. In addition, leak current varies to a large extent depending on the kind of the gate insulation film. Therefore, a gate insulation film suitable for a channel layer needs to be selected. The use of an Al2O3 film can reduce leak current. In addition, the use of an Y2O3 film can reduce hysteresis. Furthermore, the use of an HfO2 film having a high dielectric constant can increase field effect mobility. In addition, the use of a film composed of a mixed crystal of those compounds can result in the formation of a TFT having small leak current, small hysteresis, and large field effect mobility. In addition, each of a gate insulation film forming process and a channel layer forming process can be performed at room temperature, so each of a staggered structure and an inversely staggered structure can be formed as a TFT structure.
An In2O3 oxide film can be formed by means of a vapor phase method, and an amorphous film can be obtained by adding about 0.1 Pa of water to an atmosphere during film formation.
Although an amorphous film is hardly obtained from each of ZnO and SnO2, an amorphous film can be obtained by adding about 20 at % of In2O3 to ZnO or by adding about 90 at % of In2O3 to SnO2. In particular, about 0.1 Pa of nitrogen gas is desirably introduced into the atmosphere in order to obtain an Sn—In—O-based amorphous oxide film.
The above amorphous oxide film can has an additional element constituting a composite oxide of at least one element of a Group II element M2 having an atomic number smaller than that of Zn (M2 represents Mg or Ca); a Group III element M3 having an atomic number smaller than that of In (M3 represents B, Al, Ga, or Y); a Group IV element M4 having an atomic number smaller than that of Sn (M4 represents Si, Ge, or Zr); a Group V element M5 (M5 represents V, Nb, or Ta); Lu; and W.
The additional element can additionally stabilize the amorphous film at room temperature. In addition, the addition can expand the composition range in which the amorphous film can be obtained.
In particular, the addition of B, Si, or Ge having strong covalency is effective in stabilizing an amorphous phase, and a composite oxide composed of ions different from each other in ionic radius to a large extent has a stabilized amorphous phase.
For example, a stable amorphous oxide semiconductor film is hardly obtained at room temperature unless In accounts for more than about 20 at % of an In—Zn—O system. However, the addition of Mg in an amount equivalent to that of In can provide a stable amorphous oxide film when In accounts for more than about 15 at %.
An amorphous oxide semiconductor film having electron carrier concentration in excess of 1015/cm3 and less than 1018/cm3 can be obtained by controlling an atmosphere in film formation by means of a vapor phase method.
An amorphous oxide semiconductor is desirably formed into a film by means of any one of the vapor phase methods such as a pulse laser deposition method (PLD method), a sputtering method (an SP method), and an electron beam deposition method. Of those vapor phase methods, a PLD method is suitable because the composition of a material system can be easily controlled, and an SP method is suitable in terms of mass productivity. However, a film forming method is not limited to those methods.
(Formation of In—Zn—Ga—O-Based Amorphous Oxide Film by Means of PLD Method)
Polycrystalline sintered materials each having an InGaO3(ZnO) composition or an InGaO3(ZnO)4 composition were used as targets to deposit an In—Zn—Ga—O-based amorphous oxide film on a glass substrate (1737 manufactured by Corning Inc.) by means of a PLD method using a KrF excimer laser.
The film forming apparatus used was that shown in FIG. 14 described above, and film forming conditions were the same as those in the case where the apparatus was used.
The substrate temperature was 25° C. X-ray diffraction was conducted on each of the resultant films by means of small angle X-ray scattering method (SAXS; thin film method, angle of incidence 0.5 degree). As a result, no clear diffraction peak was detected. Therefore, each of the In—Zn—Ga—O-based films produced from two kinds of targets was found to be an amorphous film.
Furthermore, X-ray scattering measurement was performed on each of the In—Zn—Ga—O-based films on the glass substrate, and pattern analysis was performed. As a result, each of the thin films was found to have a mean square roughness (Rrms) of about 0.5 nm and a thickness of about 120 nm.
X-ray fluorescence (XRF) analysis confirmed that the metal composition ratio of the film obtained by using the polycrystalline sintered material having the InGaO3(ZnO) composition as a target was In:Ga:Zn=1.1:1.1:0.9 and the metal composition ratio of the film obtained by using the polycrystalline sintered material having the InGaO(ZnO)4 composition as a target was In:Ga:Zn=0.98:1.02:4.
The electron carrier concentration of the amorphous oxide semiconductor film obtained by using the polycrystalline sintered material having the InGaO3(ZnO)4 composition as a target was measured with the oxygen partial pressure of the atmosphere during film formation changed. FIG. 1 shows the results. Film formation in an atmosphere having an oxygen partial pressure in excess of 4.2 Pa was able to reduce the electron carrier concentration to less than 1018/cm3. In this case, the substrate had a temperature maintained at a temperature nearly equal to room temperature unless intentionally heated. When the oxygen partial pressure was less than 6.5 Pa, the surface of the resultant amorphous oxide film was flat.
When the oxygen partial pressure was 5 Pa, the amorphous oxide film obtained by using the polycrystalline sintered material having the InGaO3(ZnO)4 composition as a target had an electron carrier concentration of 1016/cm3 and an electric conductivity of 10−2 S/cm. In addition, its electron mobility was estimated to be about 5 cm2/V·sec. Owing to the analysis of a light absorption spectrum, the forbidden band energy width of the produced amorphous oxide film was determined to be about 3 eV.
Additionally increasing the oxygen partial pressure was able to additionally reduce the electron carrier concentration. As shown in FIG. 1, an In—Zn—Ga—O-based amorphous oxide film formed at a substrate temperature of 25° C. and an oxygen partial pressure of 6 Pa had an electron carrier concentration reduced to 8×1015/cm3 (electric conductivity: about 8×10−3 S/cm). The electron mobility of the resultant film was estimated to be in excess of 1 cm2/(V·sec). However, in the PLD method, when the oxygen partial pressure was 6.5 Pa or more, the surface of the deposited film became irregular, so it became difficult to use the film as a channel layer of a TFT.
Investigation was made into the relationship between the electron carrier concentration and electron mobility of each of In—Zn—Ga—O-based amorphous oxide semiconductor films formed at different oxygen partial pressures by using the polycrystalline sintered material having the InGaO3(ZnO)4 composition as a target. FIG. 2 shows the results. It was found that the electron mobility increased from about 3 cm2/(V·sec) to about 11 cm2/(V·sec) as the electron carrier concentration increased from 1016/cm3 to 1020/cm3. A similar tendency was observed in an amorphous oxide film obtained by using the polycrystalline sintered material having the InGaO3(ZnO) composition as a target.
An In—Zn—Ga—O-based amorphous oxide semiconductor film obtained by using a polyethylene terephthalate (PET) film having a thickness of 200·m instead of a glass substrate also showed similar characteristics.
(Formation of In—Zn—Ga—Mg—O-Based Amorphous Oxide Film by Means of PLD Method)
A polycrystal InGaO3(Zn1−xMgxO)4 (0<x·1) was used as a target to form an InGaO3(Zn1−xMgxO)4 (0<x·1) film on a glass substrate by means of the PLD method.
The apparatus shown in FIG. 14 was used as a film forming apparatus.
An SiO2 glass substrate (1737 manufactured by Corning Inc.) was prepared as a deposition substrate. The substrate was subjected to degreasing washing by means of an ultrasonic wave for 5 minutes in each of acetone, ethanol, and ultrapure water as a pretreatment, and then was dried in the air at 100° C. An InGa(Zn1−xMgxO)4 (x=1 to 0) sintered material (having a diameter of 20 mm and a thickness of 5 mm) was used as a target.
The target was produced by wet-mixing 4N reagents of In2O3, Ga2O3, ZnO, and MgO as starting materials in ethanol as a solvent; calcining the mixture at 1,000° C. for 2 hours; dry-pulverizing the resultant; and sintering the pulverized product at 1,550° C. for 2 hours. The ultimate pressure in the growth chamber was 2×10−6 (Pa), and an oxygen partial pressure during growth was set to be 0.8 (Pa). The substrate temperature was room temperature (25° C.), and the distance between the target and the deposition substrate was 30 (mm).
The KrF excimer laser had a power of 1.5 (mJ/cm2/pulse), a pulse width of 20 (nsec), a pulse rate of 10 (Hz), and an irradiation spot diameter of 1×1 (mm square).
The film-forming rate was 7 (nm/min).
The oxygen partial pressure of the atmosphere was 0.8 Pa, and the substrate temperature was 25° C. X-ray diffraction was conducted on the resultant film by means of small angle X-ray scattering method (SAXS; thin film method, angle of incidence 0.5 degree). As a result, no clear diffraction peak was detected. Therefore, the produced In—Zn—Ga—Mg—O-based film was found to be an amorphous film. The surface of the resultant film was flat.
Targets having different values of x were used to determine the x value dependence of each of the electric conductivity, electron carrier concentration, and electron mobility of the In—Zn—Ga—Mg—O-based amorphous oxide film formed in an atmosphere having an oxygen partial pressure of 0.8 Pa.
FIG. 4 shows the results. When the value of x exceeded 0.4, the electron carrier concentration of an amorphous oxide film formed by means of the PLD method in an atmosphere having an oxygen partial pressure of 0.8 Pa was found to be less than 1018/cm3. In addition, an amorphous oxide film having a value of x in excess of 0.4 had an electron mobility in excess of 1 cm2/V sec.
As shown in FIG. 4, when a target obtained by replacing Zn with 80 at. % of Mg is used, the electron carrier concentration of a film obtained by means of a pulse laser deposition method in an atmosphere having an oxygen partial pressure of 0.8 Pa can be less than 1016/cm3 (the electrical resistance is about 10−2 S/cm). The electron mobility of such film reduces as compared to a film with no additional Mg, but the degree of the reduction is small: the electron mobility at room temperature is about 5 cm2/(V·sec), which is about one order of magnitude larger than that of amorphous silicon. Upon film formation under the same conditions, the electric conductivity and the electron mobility reduce with increasing Mg content. Therefore, the Mg content is preferably in excess of 20 at % and less than 85 at % (that is, 0.2<x<0.85), more preferably 0.5<x<0.85.
An InGaO3(Zn1−xMgxO)4 (0<x·1) amorphous oxide film obtained by using a polyethylene terephthalate (PET) film having a thickness of 200·m instead of a glass substrate also showed similar characteristics.
(Formation of In2O3 Amorphous Oxide Film by Means of PLD Method)
An In2O3 polycrystalline sintered material was used as a target to form an In2O3 film on a PET film having a thickness of 200·m by means of the PLD method using a KrF excimer laser.
The apparatus shown in FIG. 14 was used. An SiO2 glass substrate (1737 manufactured by Corning Inc.) was prepared as a deposition substrate.
The substrate was subjected to degreasing washing by means of an ultrasonic wave for 5 minutes in each of acetone, ethanol, and ultrapure water as a pretreatment, and then was dried in the air at 100° C.
An In2O3 sintered material (having a diameter of 20 mm and a thickness of 5 mm) was used as a target. The target was prepared by calcining a 4N reagent of In2O3 as a starting material at 1,000° C. for 2 hours; dry-pulverizing the resultant; and sintering the pulverized product at 1,550° C. for 2 hours.
The ultimate pressure in the growth chamber was 2×10−6 (Pa), and the oxygen partial pressure during growth and the substrate temperature were set to be 5 (Pa) and room temperature, respectively.
The oxygen partial pressure and the vapor partial pressure were set to be 5 Pa and 0.1 Pa, respectively, and 200 W was applied to an oxygen-radical-generating apparatus to generate an oxygen radical.
The distance between the target and the deposition substrate was 40 (mm). The KrF excimer laser had a power of 0.5 (mJ/cm2/pulse), a pulse width of 20 (nsec), a pulse rate of 10 (Hz), and an irradiation spot diameter of 1×1 (mm square).
The film forming rate was 3 (nm/min).
X-ray diffraction was conducted on the resultant film by means of an X-ray at an angle of incidence as close as the surface of the film (thin film method, angle of incidence 0.5 degree). As a result, no clear diffraction peak was detected. Therefore, the produced In—O-based film was found to be an amorphous film. The film had a thickness of 80 nm.
The resultant In—O-base amorphous oxide film had an electron carrier concentration of 5×1017/cm3 and an electron mobility of about 7 cm2/V·sec.
(Formation of In—Sn—O-Based Amorphous Oxide Film by Means of PLD Method)
An (In0.9Sn0.1)O3.1 polycrystalline sintered material was used as a target to form an In—Sn—O-based oxide film on a PET film having a thickness of 200·m by means of the PLD method using a KrF excimer laser.
To be specific, an SiO2 glass substrate (1737 manufactured by Corning Inc.) was prepared as a deposition substrate.
The substrate was subjected to degreasing washing by means of an ultrasonic wave for 5 minutes in each of acetone, ethanol, and ultrapure water as a pretreatment. After that, the substrate was then dried in the air at 100° C.
An In2O3—SnO2 sintered material (having a diameter of 20 mm and a thickness of 5 mm) was prepared as a target. The target was produced by wet-mixing a 4N reagent of In2O3—SnO2 as a starting material in ethanol as a solvent; calcining the mixture at 1,000° C. for 2 hours; dry-pulverizing the resultant; and sintering the pulverized product at 1,550° C. for 2 hours.
The substrate temperature was room temperature. The oxygen partial pressure and the nitrogen partial pressure were set to be 5 (Pa) and 0.1 (Pa), respectively, and 200 W was applied to an oxygen-radical-generating apparatus to generate oxygen radical.
The distance between the target and the deposition substrate was 30 (mm). The KrF excimer laser had a power of 1.5 (mJ/cm2/pulse), a pulse width of 20 (nsec), a pulse rate of 10 (Hz), and an irradiation spot diameter of 1×1 (mm square).
The film-forming rate was 6 (nm/min).
X-ray diffraction was conducted on the resultant film by means of small angle scattering method (SAXA; thin film method, angle of incidence 0.5 degree). As a result, no clear diffraction peak was detected. Therefore, the produced In—Sn—O-based film was found to be an amorphous film.
The resultant In—Sn—O amorphous oxide film had an electron carrier concentration of 8×1017/cm3, an electron mobility of about 5 cm2/V·sec, and a thickness of 100 nm.
(Formation of In—Ga—O-Based Amorphous Oxide Film by Means of PLD Method)
An SiO2 glass substrate (1737 manufactured by Corning Inc.) was prepared as a deposition substrate.
The substrate was subjected to degreasing washing by means of an ultrasonic wave for 5 minutes in each of acetone, ethanol, and ultrapure water as a pretreatment, and then was dried in the air at 100° C.
An (In2O3)1−x—(Ga2O3)x (x=0 to 1) sintered material (having a diameter of 20 mm and a thickness of 5 mm) was prepared as a target. For example, in the case of x=0.1, the target is a (In0.9Ga0.1)2O3 polycrystalline sintered material.
The target was produced by wet-mixing a 4N reagent of In2O3—Ga2O2 as a starting material in ethanol as a solvent; calcining the mixture at 1,000° C. for 2 hours; dry-pulverizing the resultant; and sintering the pulverized product at 1,550° C. for 2 hours.
The ultimate pressure in the growth chamber was 2×10−6 (Pa), and the oxygen partial pressure during growth was set to be 1 (Pa).
The substrate temperature was room temperature. The distance between the target and the deposition substrate was 30 (mm). The KrF excimer laser had a power of 1.5 (mJ/cm2/pulse), a pulse width of 20 (nsec), a pulse rate of 10 (Hz), and an irradiation spot diameter of 1×1 (mm square). The film-forming rate was 6 (nm/min).
The substrate temperature was 25° C. The oxygen partial pressure was 1 Pa. X-ray diffraction was conducted on the resultant film by means of an X-ray at an angle of incidence as close as the surface of the film (thin film method, angle of incidence 0.5 degree). As a result, no clear diffraction peak was detected. Therefore, the produced In—Ga—O-based film was found to be an amorphous film. The film had a thickness of 120 nm.
The resultant In—Ga—O amorphous oxide film had an electron carrier concentration of 8×10−6/cm3 and an electron mobility of about 1 cm2/V·sec.
(Production of TFT Device Using In—Zn—Ga—O-Based Amorphous Oxide Film (Glass Substrate))
Production of TFT Device
A top gate TFT device shown in FIG. 5 was produced.
At first, a polycrystalline sintered material having an InGaO3(ZnO)4 composition was used as a target to form an In—Ga—Zn—O-based amorphous oxide film on a glass substrate 1 at an oxygen partial pressure of 5 Pa by means of the above-described PLD apparatus. Thus, an In—Ga—Zn—O-based amorphous film having a thickness of 120 nm to be used as a channel layer 2 was formed.
An In—Ga—Zn—O-based amorphous film and a gold film each having a large electric conductivity and a thickness of 30 nm were laminated on the film by means of the PLD method with the oxygen partial pressure in the chamber set to be less than 1 Pa, to thereby form a drain terminal 5 and a source terminal 6 by means of a photolithography method and a lift-off method.
Finally, a Y2O3 film to be used as a gate insulation film 3 (thickness: 90 nm, relative dielectric constant: about 15, leak current density: 10−3 A/cm2 upon application of 0.5 MV/cm) was formed by means of an electron beam deposition method. A gold film was formed on the Y2O3 film, to thereby form a gate terminal 4 by means of a photolithography method and a lift-off method. The channel length was 50·m and the channel width was 200·m.
Evaluation of TFT Device for Characteristics
FIG. 6 shows the current-voltage characteristics of a TFT device measured at room temperature. The fact that a drain current IDS increased with increasing drain voltage VDS shows that the conduction of the channel is of an n-type.
This is not in contradiction to the fact that an amorphous In—Ga—Zn—O-based amorphous oxide film is an n-type conductor. IDS saturated (pinched off) at VDS of about 6 V. The saturation is a typical behavior of a semiconductor transistor. Investigation into a gain characteristic showed that the threshold value for a gate voltage VGS was about −0.5 V upon application of VDS=4 V.
A current IDS=1.0×10−5 A flowed when VG=10 V. This corresponds to the fact that a gate bias enabled a carrier to be induced in an In—Ga—Zn—O-based amorphous oxide film as an insulator.
The transistor had an on-off ratio in excess of 103. The field effect mobility was calculated from an output characteristic. As a result, a field effect mobility of about 7 cm2(Vs)−1 was obtained in the saturation region. The produced device was irradiated with visible light to perform similar measurement. However, no changes in transistor characteristics were observed.
An amorphous oxide having an electron carrier concentration of less than 1018/cm3 is applicable to a channel layer of a TFT. The electron carrier concentration was more preferably 1017/cm3 or less, or still more preferably 1016/cm3 or less.
(Production of TFT Device Using In—Zn—Ga—O-Based Amorphous Oxide Film (Amorphous Substrate))
A top gate TFT device shown in FIG. 5 was produced. At first, a polycrystalline sintered material having an InGaO3(ZnO) composition was used as a target to form an In—Zn—Ga—O-based amorphous oxide film having a thickness of 120 nm to be used as a channel layer 2 on a polyethylene terephthalate (PET) film 1 at an oxygen partial pressure of 5 Pa by means of the PLD method.
An In—Zn—Ga—O-based amorphous oxide film and a gold film each having a large electric conductivity and a thickness of 30 nm were laminated on the film by means of the PLD method with the oxygen partial pressure in the chamber set to be less than 1 Pa, to thereby form a drain terminal 5 and a source terminal 6 by means of a photolithography method and a lift-off method. Finally, a gate insulation film 3 was formed by means of an electron beam deposition method, and a gold film was formed on the film to thereby form a gate terminal 4 by means of a photolithography method and a lift-off method. The channel length was 50·m and the channel width was 200·m. Each of Y2O3 (thickness: 140 nm), Al2O3 (thickness: 130·m), and HfO2 (thickness: 140·m) was used as a gate insulation film to produce three kinds of TFT's each having the above structure.
Evaluation of TFT Device for Characteristics
The current-voltage characteristics of a TFT formed on the PET film measured at room temperature were the same as those shown in FIG. 6. That is, the fact that a drain current IDS increased with increasing drain voltage VDS shows that the conduction of the channel is of an n-type. This is not in contradiction to the fact that an amorphous In—Ga—Zn—O-based amorphous oxide film is an n-type conductor. IDS saturated (pinched off) at VDS of about 6 V. The saturation is a typical behavior of a transistor. A current Ids=10−8 A flowed when Vg=0, while a current IDS=2.0×10−5 A flowed when Vg=10 V. This corresponds to the fact that a gate bias enabled an electron carrier to be induced in an In—Ga—Zn—O-based amorphous oxide film as an insulator.
The transistor had an on-off ratio in excess of 103. The field effect mobility was calculated from an output characteristic. As a result, a field effect mobility of about 7 cm2 (Vs)−1 was obtained in a saturation region.
The device produced on the PET film was bent at a radius of curvature of 30 mm to perform similar measurement of transistor characteristics. However, no changes in transistor characteristics were observed. The device was irradiated with visible light to perform similar measurement. However, no changes in transistor characteristics were observed.
The TFT using an Al2O3 film as a gate insulation film showed transistor characteristics similar to those shown in FIG. 6. A current Ids=10−8 A flowed when Vg=0, while a current IDS=5.0×10−6 A flowed when Vg=10 V. The transistor had an on-off ratio in excess of 102. The field effect mobility was calculated from an output characteristic. As a result, a field effect mobility of about 2 cm2 (Vs)−1 was obtained in a saturation region.
The TFT using an HfO2 film as a gate insulation film showed transistor characteristics similar to those shown in FIG. 6. A current Ids=10−8 A flowed when Vg=0, while a current IDS=1.0×10−6 A flowed when Vg=10 V. The transistor had an on-off ratio in excess of 102. The field effect mobility was calculated from an output characteristic. As a result, a field effect mobility of about 10 cm2 (Vs)−1 was obtained in a saturation region.
(Production of TFT Device Using In2O3 Amorphous Oxide Film by Means of PLD Method)
A top gate TFT device shown in FIG. 5 was produced. At first, an In2O3 amorphous oxide film having a thickness of 80 nm to be used as a channel layer 2 was formed on a polyethylene terephthalate (PET) film 1 by means of the PLD method.
Then, an In2O3 amorphous oxide film and a gold film each having a large electric conductivity and a thickness of 30 nm were laminated on the film by means of the PLD method with the oxygen partial pressure in the chamber set to be less than 1 Pa and a voltage to be applied to an oxygen-radical-generating apparatus set to zero, to thereby form a drain terminal 5 and a source terminal 6 by means of a photolithography method and a lift-off method. Finally, a Y2O3 film to be used as a gate insulation film 3 was formed by means of an electron beam deposition method, and a gold film was formed on the film to thereby form a gate terminal 4 by means of a photolithography method and a lift-off method.
Evaluation of TFT Device for Characteristics
The current-voltage characteristics of the TFT formed on the PET film were measured at room temperature. The fact that a drain current IDS increased with increasing drain voltage VDS shows that the channel is an n-type semiconductor. This is not in contradiction to the fact that an In—O-based amorphous oxide film is an n-type conductor. IDS saturated (pinched off) at VDS of about 5 V. The saturation is a typical behavior of a transistor. A current IDS=2×10−8 A flowed when Vg=0 V, while a current IDS=2.0×10−6 A flowed when VG=10 V. This corresponds to the fact that a gate bias enabled an electron carrier to be induced in an In—O-based amorphous oxide film as an insulator.
The transistor had an on-off ratio of about 102. The field effect mobility was calculated from an output characteristic. As a result, a field effect mobility of about 10 cm2(Vs)−1 was obtained in a saturation region. A TFT device produced on a glass substrate showed similar characteristics.
The device produced on the PET film was bent at a radius of curvature of 30 mm to perform similar measurement of transistor characteristics. However, no changes in transistor characteristics were observed.
(Production of TFT Device Using In—Sn—O-Based Amorphous Oxide Film by Means of PLD Method)
A top gate TFT device shown in FIG. 5 was produced. At first, an In—Sn—O-based amorphous oxide film having a thickness of 100 nm to be used as a channel layer 2 was formed on a polyethylene terephthalate (PET) film 1 by means of the PLD method. Then, an In—Sn—O-based amorphous oxide film and a gold film each having a large electric conductivity and a thickness of 30 nm were laminated on the film by means of the PLD method with the oxygen partial pressure in the chamber set to be less than 1 Pa and a voltage to be applied to an oxygen-radical-generating apparatus set to zero, to thereby form a drain terminal 5 and a source terminal 6 by means of a photolithography method and a lift-off method. Finally, a Y2O3 film to be used as a gate insulation film 3 was formed by means of an electron beam deposition method, and a gold film was formed on the film to thereby form a gate terminal 4 by means of a photolithography method and a lift-off method.
Evaluation of TFT Device for Characteristics
The current-voltage characteristics of the TFT formed on the PET film were measured at room temperature. The fact that a drain current IDS increased with increasing drain voltage VDS shows that the channel is an n-type semiconductor. This is not in contradiction to the fact that an In—Sn—O-based amorphous oxide film is an n-type conductor. IDS saturated (pinched off) at VDS of about 6 V. The saturation is a typical behavior of a transistor. A current IDS=5×10−8 A flowed when Vg=0 V, while a current IDS=5.0×10−5 A flowed when VG=10 V. This corresponds to the fact that a gate bias enabled an electron carrier to be induced in an In—Sn—O-based amorphous oxide film as an insulator.
The transistor had an on-off ratio of about 103. The field effect mobility was calculated from an output characteristic. As a result, a field effect mobility of about 5 cm2 (Vs)−1 was obtained in a saturation region. A TFT device produced on a glass substrate showed similar characteristics.
The device produced on the PET film was bent at a radius of curvature of 30 mm to perform similar measurement of transistor characteristics. However, no changes in transistor characteristics were observed.
(Production of TFT Device Using In—Ga—O-Based Amorphous Oxide Film by Means of PLD Method)
A top gate TFT device shown in FIG. 5 was produced. At first, an In—Ga—O-based amorphous oxide film having a thickness of 120 nm to be used as a channel layer 2 was formed on a polyethylene terephthalate (PET) film 1 by means of a film forming method shown in Example 6. Then, an In—Ga—O-based amorphous oxide film and a gold film each having a large electric conductivity and a thickness of 30 nm were laminated on the film by means of the PLD method with the oxygen partial pressure in the chamber set to be less than 1 Pa and the voltage to be applied to an oxygen-radical-generating apparatus set to zero, to thereby form a drain terminal 5 and a source terminal 6 by means of a photolithography method and a lift-off method. Finally, a Y2O3 film to be used as a gate insulation film 3 was formed by means of an electron beam deposition method, and a gold film was formed on the film to thereby form a gate terminal 4 by means of a photolithography method and a lift-off method.
Evaluation of TFT Device for Characteristics
The current-voltage characteristics of the TFT formed on the PET film were measured at room temperature. The fact that a drain current IDS increased with increasing drain voltage VDS shows that the channel is an n-type semiconductor. This is not in contradiction to the fact that an In—Ga—O-based amorphous oxide film is an n-type conductor. IDS saturated (pinched off) at VDS of about 6 V. The saturation is a typical behavior of a transistor. A current IDS=1×10−8 A flowed when Vg=0 V, while a current IDS=1.0×10−6 A flowed when VG=10 V. This corresponds to the fact that a gate bias enabled an electron carrier to be induced in an In—Ga—O-based amorphous oxide film as an insulator.
The transistor had an on-off ratio of about 102. A field effect mobility was calculated from an output characteristic. As a result, a field effect mobility of about 0.8 cm2 (Vs)−1 was obtained in a saturation region. A TFT device produced on a glass substrate showed similar characteristics.
The device produced on the PET film was bent at a radius of curvature of 30 mm to perform similar measurement of transistor characteristics. However, no changes in transistor characteristics were observed.
An amorphous oxide semiconductor having an electron carrier concentration of less than 1018/cm3 is applicable to a channel layer of a TFT. The electron carrier concentration was more preferably 1017/cm3 or less, or still more preferably 1016/cm3 or less.
FIG. 7 shows the transmittance of an amorphous oxide semiconductor layer (200 nm in thickness) constituted of In—Ga—Zn—O and having a composition in a crystalline state represented by InGaO3(Zn)m (where m represents a natural number of less than 6). The band gap is about 3 eV. This layer has a strong sensitivity particularly to the ultraviolet light that has a wavelength shorter than 400 nm and has a transmission of 60% or less. An amorphous oxide semiconductor layer constituted of In—Ga—Zn—Mg—O and having a composition in a crystalline state represented by InGaO3(Zn1−xMgO)m (where m represents a natural number of less than 6 and 0<x·1) shows a similar transmittance, and shows sensitivity to ultraviolet light.
In addition, the use of an organic pigment can expand the light sensitivity wavelength range of an amorphous oxide semiconductor mainly composed of In—Ga—Zn—O having a large electron mobility from an ultraviolet wavelength range to a visible light wavelength range, and causes the semiconductor to show high opto-electric conversion efficiency.
Hereinafter, examples will be shown.
Example 1
An optical sensor device shown in FIG. 8 is formed. An Al electrode having a thickness of 100 nm is formed on a glass substrate (1737 manufactured by Corning Inc.) by means of a vacuum deposition method to serve as a lower electrode. Next, a polycrystalline sintered material having an InGaO3(ZnO)4 composition is used as a target to deposit an In—Ga—Zn—O-based amorphous oxide semiconductor thin film on the electrode by means of a pulse laser deposition method using a Kr excimer laser. In2O3(SnO2) having a thickness of about 20 nm is laminated on the thin film at a substrate temperature of room temperature by means of a vacuum deposition method to serve as an upper electrode. Thus, an optical sensor is formed. At the time of use, a negative bias is applied to the upper electrode on a light incidence side, and a positive bias is applied to the lower electrode. Then, the optical sensor device is irradiated with ultraviolet light having a wavelength of 365 nm from a mercury lamp. Thus, it can be confirmed that the device functions as an ultraviolet optical sensor.
Example 2
An optical sensor device shown in FIG. 8 is formed. An Al electrode having a thickness of 100 nm is formed on a glass substrate (1737 manufactured by Corning Inc.) by means of a vacuum deposition method to serve as a lower electrode. Next, a polycrystalline sintered material having an InGaO3(Zn0.9Mg0.1O)4 composition is used as a target to deposit an In—Ga—Zn—O-based amorphous oxide semiconductor thin film on the electrode by means of a pulse laser deposition method using a Kr excimer laser. The thickness of the amorphous oxide semiconductor film formed is 100 nm. In2O3(SnO2) having a thickness of about 20 nm is laminated on the thin film at a substrate temperature of room temperature by means of a vacuum deposition method to serve as an upper electrode. A voltage of 1 V is applied to the optical sensor device thus formed. At the time of use, a negative bias is applied to the upper electrode on a light incidence side, and a positive bias is applied to the lower electrode. Then, the optical sensor device is irradiated with ultraviolet light having a wavelength of 365 nm from a mercury lamp. Thus, it can be confirmed that the device functions as an ultraviolet optical sensor.
Example 3
An optical sensor device shown in FIG. 9 is formed. An Al electrode having a thickness of 100 nm is formed on a glass substrate (1737 manufactured by Corning Inc.) by means of a vacuum deposition method to serve as a lower electrode. A polycrystalline sintered material having an InGaO3(Zn0.9Mg0.1O)4 composition is used as a target to deposit an In—Ga—Zn—O-based amorphous oxide semiconductor thin film having a thickness of 5 nm on the electrode by means of a pulse laser deposition method using a Kr excimer laser. Next, a polycrystalline sintered material having an InGaO3(ZnO)4 composition is used as a target to deposit an In—Ga—Zn—O-based amorphous oxide semiconductor thin film having a thickness of 5 nm. This operation is repeated 20 times to laminate a semiconductor layer having a multilayer structure (200 nm in thickness). The total thickness of the amorphous oxide semiconductor films formed is 100 nm. In2O3(SnO2) having a thickness of about 20 nm is laminated on the semiconductor layer at a substrate temperature of room temperature by means of a vacuum deposition method to serve as an upper electrode.
Example 4
In the optical sensor device shown in Example 1, the amorphous oxide semiconductor having a thickness of 100 nm is laminated, and is then immersed in a pigment solution prepared by dissolving 0.01% of a cyanine pigment into a mixed solution of methanol and chloroform to cause the organic pigment to adsorb and bond to the semiconductor. After the organic solvent has been volatilized, In2O3(SnO2) having a thickness of about 20 nm is laminated on the remainder at a substrate temperature of room temperature by means of a vacuum deposition method to serve as an upper electrode. A voltage of 1 V is applied to the optical sensor device thus formed. A negative bias is applied to the upper electrode on a light incidence side, and a positive bias is applied to the lower electrode. Then, the optical sensor device is irradiated with ultraviolet light having a wavelength of 365 nm from a mercury lamp. Thus, it can be confirmed that the device functions as an ultraviolet optical sensor.
Example 5
An optical sensor device shown in FIG. 9 is formed. An Al electrode having a thickness of 100 nm is formed on a glass substrate (1737 manufactured by Corning Inc.) by means of a vacuum deposition method to serve as a lower electrode. A polycrystalline sintered material having an InGaO3(Zn0.9Mg0.1O)4 composition is used as a target to deposit an In—Ga—Zn—O-based amorphous oxide semiconductor thin film having a thickness of 5 nm on the electrode by means of a pulse laser deposition method using a Kr excimer laser. Next, a polycrystalline sintered material having an InGaO3(ZnO)4 composition is used as a target to deposit an In—Ga—Zn—O-based amorphous oxide semiconductor thin film having a thickness of 5 nm. This operation is repeated 20 times to laminate a semiconductor layer having a multilayer structure (200 nm in thickness). A voltage of 1 V is applied to the optical sensor device thus formed. A negative bias is applied to the upper electrode on a light incidence side, and a positive bias is applied to the lower electrode. Then, the optical sensor device is irradiated with ultraviolet light having a wavelength of 365 nm from a mercury lamp. Thus, it can be confirmed that the device functions as an ultraviolet optical sensor.
Example 6
A top gate MISFET device shown in FIG. 5 is produced as a TFT of a non-flat imager.
A polyimide sheet having a thickness of 0.3 mm is used as a substrate.
A polycrystalline sintered material having an InGaO3(ZnO)4 composition is used as a target to deposit an In—Ga—Zn—O-based amorphous oxide semiconductor thin film on the polyimide sheet by means of a pulse laser deposition method using a KrF excimer laser. Thus, an InGaO3(ZnO)4 amorphous oxide semiconductor thin film having a thickness of 120 nm to be used as a channel layer is formed. Furthermore, InGaO3(ZnO)4 and a gold film each having a large electric conductivity and a thickness of 30 nm are laminated on the film by means of a pulse laser deposition method with the oxygen partial pressure in a chamber set to be less than 1 Pa, to thereby form a drain terminal and a source terminal by means of a photolithography method and a lift-off method. Finally, a Y2O3 film to be used as a gate insulation film (thickness: 90 nm, relative dielectric constant: about 15, leak current density: 10−3 A/cm2 upon application of 0.5 MV/cm) is formed by means of an electron beam deposition method. A gold film is formed on the Y2O3 film, to thereby form a gate terminal by means of a photolithography method and a lift-off method.
An optical sensor device shown in FIG. 8 is formed as a sensor of a non-flat imager. An Al electrode having a thickness of 100 nm is formed on the polyimide substrate by means of a vacuum deposition method to serve as a lower electrode. Next, a polycrystalline sintered material having an InGaO3(ZnO)4 composition is used as a target to deposit an In—Ga—Zn—O-based amorphous oxide semiconductor thin film on the electrode by means of a pulse laser deposition method using a Kr excimer laser. The thickness of the amorphous oxide semiconductor film formed is 100 nm. The amorphous oxide semiconductor is immersed in a pigment solution prepared by dissolving 0.01% of a cyanine pigment into a mixed solution of methanol and chloroform to cause the organic pigment to adsorb and bond to the semiconductor.
In2O3(SnO2) having a thickness of about 20 nm is laminated on the thin film at a substrate temperature of room temperature by means of a vacuum deposition method to serve as an upper electrode. A CdWO4 layer having a thickness of 400·m to serve as a scintillator is deposited on the upper electrode by means of a sputtering method. Then, an X-ray sensor shown in FIG. 10 is formed. Such TFT and X-ray sensor are combined to form a circuit shown in FIG. 11, thereby constituting a non-flat imager shown in FIG. 12. A small digital camera to serve a measuring object is placed in such non-flat imager to perform X-ray measurement. An image having reduced distortion as compared to that of an image obtained by using a conventional flat X-ray imager can be obtained.
Example 7
A top gate MISFET device shown in FIG. 5 is produced as a TFT of a non-flat imager. A plastic sheet having a thickness of 0.3 mm is used as a substrate. A polycrystalline sintered material having an InGaO3(Zn0.9Mg0.1O)4 composition is used as a target to deposit an In—Ga—Zn—O-based amorphous oxide semiconductor thin film on the plastic sheet by means of a pulse laser deposition method using a KrF excimer laser. Thus, an InGaO3(Zn0.9Mg0.1O)4 amorphous oxide semiconductor thin film having a thickness of 120 nm to be used as a channel layer is formed. Furthermore, InGaO3(Zn0.9Mg0.1O)4 and a gold film each having a large electric conductivity and a thickness of 30 nm are laminated on the film by means of a pulse laser deposition method with the oxygen partial pressure in the chamber set to be less than 1 Pa, to thereby form a drain terminal and a source terminal by means of a photolithography method and a lift-off method. Finally, a Y2O3 film to be used as a gate insulation film (thickness: 90 nm, relative dielectric constant: about 15, leak current density: 10−1 A/cm2 upon application of 0.5 MV/cm) is formed by means of an electron beam deposition method. A gold film is formed on the Y2O3 film, to thereby form a gate terminal by means of a photolithography method and a lift-off method.
An optical sensor device shown in FIG. 9 is formed as a sensor of a non-flat imager. An Al electrode having a thickness of 100 nm is formed on the plastic substrate by means of a vacuum deposition method to serve as a lower electrode. A polycrystalline sintered material having an InGaO3(Zn0.9Mg0.1O)4 composition is used as a target to deposit an In—Ga—Zn—O-based amorphous oxide semiconductor thin film having a thickness of 5 nm on the electrode by means of a pulse laser deposition method using a Kr excimer laser. Next, a polycrystalline sintered material having an InGaO3(ZnO)4 composition is used as a target to deposit an In—Ga—Zn—O-based amorphous oxide semiconductor thin film having a thickness of 5 nm. This operation is repeated 20 times to laminate a semiconductor layer having a multilayer structure (200 nm in thickness). The total thickness of the amorphous oxide semiconductor films formed is 100 nm. Every time each oxide semiconductor layer is laminated, a phthalocyanine pigment is vacuum-deposited to laminate about a monomolecular film of the pigment on the oxide semiconductor layer. In2O3(SnO2) having a thickness of about 20 nm is laminated on the resultant at a substrate temperature of room temperature by means of a vacuum deposition method to serve as an upper electrode.
Such TFT and X-ray sensor are combined to form a circuit shown in FIG. 11, thereby constituting a non-flat imager shown in FIG. 12. A small digital camera to serve a measuring object is placed in such non-flat imager to perform X-ray measurement. An image having reduced distortion as compared to that of an image obtained by using a conventional flat X-ray imager can be obtained.
The present invention is applicable to a sensor and a non-flat imager each having high sensitivity to ultraviolet light, visible light, and an X-ray.
This application claims priority from Japanese Patent Application No. 2004-326681 filed Nov. 10, 2004, which is hereby incorporated by reference herein.

Claims (12)

1. A sensor for detecting a received electromagnetic wave, comprising:
a first electrode;
a second electrode; and
an amorphous oxide layer interposed between the first electrode and the second electrode, wherein the amorphous oxide layer contains at least one of In, Zn or Sn, and wherein the amorphous oxide layer comprises an amorphous oxide whose electron mobility tends to increase with increasing electron carrier concentration.
2. A sensor according to claim 1, wherein the amorphous oxide layer is a semiconductor layer comprising a metal oxide, wherein the metal is said at least one of In, Zn and Sn.
3. A sensor according to claim 1, wherein the first electrode has transmissivity with respect to light in a wavelength range to which the amorphous oxide layer is sensitive.
4. A sensor according to claim 1, wherein the amorphous oxide layer has an organic pigment.
5. A sensor according to claim 1, wherein the first and second electrodes and the amorphous oxide layer are provided on a flexible substrate and wherein the amorphous oxide layer comprises an amorphous oxide whose electron mobility tends to increase with increasing electron carrier concentration.
6. A sensor according to claim 1, wherein a plurality of amorphous oxide layers are interposed between the first electrode and the second electrode and wherein the amorphous oxide layer comprises an amorphous oxide whose electron mobility tends to increase with increasing electron carrier concentration.
7. An image pickup device comprising:
a sensor for detecting a received electromagnetic wave according to claim 1; and
a field effect transistor for reading a signal from said sensor.
8. An image pickup device according to claim 7, further comprising an imaging region which includes the sensor and is non-flat.
9. An image pickup device according to claim 7, wherein the sensor is an X-ray sensor, and the X-ray sensor includes a scintillator for converting X-ray into light, and the sensor detects the light as the electromagnetic wave.
10. An image pickup device comprising:
a sensor for detecting a received electromagnetic wave according to claim 1; and
a field effect transistor for reading a signal from the sensor,
wherein the field effect transistor is a normally-off transistor having an active layer composed of an amorphous oxide semiconductor.
11. An image pickup device according to claim 10, further comprising an imaging region which includes the sensor and is non-flat.
12. An image pickup device according to claim 10, wherein the sensor is an X-ray sensor, and the X-ray sensor includes a scintillator for converting X-ray into light, and the sensor detects the light as the electromagnetic wave.
US12/368,592 2004-11-10 2009-02-10 Sensor and image pickup device Active US7663116B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/368,592 US7663116B2 (en) 2004-11-10 2009-02-10 Sensor and image pickup device

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2004/326681 2004-11-10
JP2004-326681 2004-11-10
JP2004326681 2004-11-10
US11/269,648 US7453065B2 (en) 2004-11-10 2005-11-09 Sensor and image pickup device
US11/937,259 US7535010B2 (en) 2004-11-10 2007-11-08 Sensor and image pickup device
US12/368,592 US7663116B2 (en) 2004-11-10 2009-02-10 Sensor and image pickup device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US11/937,259 Continuation US7535010B2 (en) 2004-11-10 2007-11-08 Sensor and image pickup device

Publications (2)

Publication Number Publication Date
US20090146072A1 US20090146072A1 (en) 2009-06-11
US7663116B2 true US7663116B2 (en) 2010-02-16

Family

ID=36460114

Family Applications (4)

Application Number Title Priority Date Filing Date
US11/269,648 Active US7453065B2 (en) 2004-11-10 2005-11-09 Sensor and image pickup device
US11/937,259 Active US7535010B2 (en) 2004-11-10 2007-11-08 Sensor and image pickup device
US12/164,917 Active 2026-01-05 US8084743B2 (en) 2004-11-10 2008-06-30 Sensor and image pickup device
US12/368,592 Active US7663116B2 (en) 2004-11-10 2009-02-10 Sensor and image pickup device

Family Applications Before (3)

Application Number Title Priority Date Filing Date
US11/269,648 Active US7453065B2 (en) 2004-11-10 2005-11-09 Sensor and image pickup device
US11/937,259 Active US7535010B2 (en) 2004-11-10 2007-11-08 Sensor and image pickup device
US12/164,917 Active 2026-01-05 US8084743B2 (en) 2004-11-10 2008-06-30 Sensor and image pickup device

Country Status (2)

Country Link
US (4) US7453065B2 (en)
JP (1) JP2012142600A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080038882A1 (en) * 2006-08-09 2008-02-14 Kazushige Takechi Thin-film device and method of fabricating the same
US20110006297A1 (en) * 2007-12-12 2011-01-13 Idemitsu Kosan Co., Ltd. Patterned crystalline semiconductor thin film, method for producing thin film transistor and field effect transistor
US20110108706A1 (en) * 2009-11-06 2011-05-12 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and operating method thereof
US20110168905A1 (en) * 2010-01-14 2011-07-14 Canon Kabushiki Kaisha X-ray detector and method for manufacturing the same
US8916869B2 (en) 2009-11-06 2014-12-23 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device including an oxide semiconductor layer
US9564534B2 (en) 2010-02-19 2017-02-07 Semiconductor Energy Laboratory Co., Ltd. Transistor and display device using the same
US9871526B2 (en) 2010-01-15 2018-01-16 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and electronic device including analog/digital converter
US10283530B2 (en) 2011-05-05 2019-05-07 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US10304878B2 (en) 2011-07-15 2019-05-28 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for driving the same

Families Citing this family (1846)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7829444B2 (en) * 2004-11-10 2010-11-09 Canon Kabushiki Kaisha Field effect transistor manufacturing method
US7791072B2 (en) * 2004-11-10 2010-09-07 Canon Kabushiki Kaisha Display
WO2006051995A1 (en) * 2004-11-10 2006-05-18 Canon Kabushiki Kaisha Field effect transistor employing an amorphous oxide
EP2453480A2 (en) * 2004-11-10 2012-05-16 Canon Kabushiki Kaisha Amorphous oxide and field effect transistor
US7863611B2 (en) * 2004-11-10 2011-01-04 Canon Kabushiki Kaisha Integrated circuits utilizing amorphous oxides
US7579224B2 (en) * 2005-01-21 2009-08-25 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing a thin film semiconductor device
TWI390735B (en) 2005-01-28 2013-03-21 Semiconductor Energy Lab Semiconductor device, electronic device, and method of manufacturing semiconductor device
TWI412138B (en) * 2005-01-28 2013-10-11 Semiconductor Energy Lab Semiconductor device, electronic device, and method of manufacturing semiconductor device
US7858451B2 (en) 2005-02-03 2010-12-28 Semiconductor Energy Laboratory Co., Ltd. Electronic device, semiconductor device and manufacturing method thereof
US7948171B2 (en) 2005-02-18 2011-05-24 Semiconductor Energy Laboratory Co., Ltd. Light emitting device
EP1729280B1 (en) * 2005-03-31 2013-10-30 Semiconductor Energy Laboratory Co., Ltd. Display device, display module, electronic apparatus and driving method of the display device
US7928938B2 (en) * 2005-04-19 2011-04-19 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device including memory circuit, display device and electronic apparatus
US7710739B2 (en) 2005-04-28 2010-05-04 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and display device
CN102394049B (en) * 2005-05-02 2015-04-15 株式会社半导体能源研究所 Driving method of display device
EP1724751B1 (en) * 2005-05-20 2013-04-10 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device and electronic apparatus
US8059109B2 (en) * 2005-05-20 2011-11-15 Semiconductor Energy Laboratory Co., Ltd. Display device and electronic apparatus
US8629819B2 (en) 2005-07-14 2014-01-14 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and driving method thereof
EP1758072A3 (en) * 2005-08-24 2007-05-02 Semiconductor Energy Laboratory Co., Ltd. Display device and driving method thereof
JP5006598B2 (en) * 2005-09-16 2012-08-22 キヤノン株式会社 Field effect transistor
WO2007034935A1 (en) 2005-09-21 2007-03-29 Semiconductor Energy Laboratory Co., Ltd. Cyclic redundancy check circuit and semiconductor device having the cyclic redundancy check circuit
EP1998373A3 (en) 2005-09-29 2012-10-31 Semiconductor Energy Laboratory Co, Ltd. Semiconductor device having oxide semiconductor layer and manufacturing method thereof
WO2007043493A1 (en) 2005-10-14 2007-04-19 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
KR101103374B1 (en) * 2005-11-15 2012-01-05 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor Device
JP5395994B2 (en) * 2005-11-18 2014-01-22 出光興産株式会社 Semiconductor thin film, manufacturing method thereof, and thin film transistor
EP1843194A1 (en) 2006-04-06 2007-10-10 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device, semiconductor device, and electronic appliance
KR100785038B1 (en) * 2006-04-17 2007-12-12 삼성전자주식회사 Amorphous ZnO based Thin Film Transistor
JP3952076B1 (en) * 2006-04-25 2007-08-01 株式会社村田製作所 UV sensor
US20070252928A1 (en) * 2006-04-28 2007-11-01 Toppan Printing Co., Ltd. Structure, transmission type liquid crystal display, reflection type display and manufacturing method thereof
US7443202B2 (en) * 2006-06-02 2008-10-28 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and electronic apparatus having the same
US7651896B2 (en) 2006-08-30 2010-01-26 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
JP5116277B2 (en) 2006-09-29 2013-01-09 株式会社半導体エネルギー研究所 Semiconductor device, display device, liquid crystal display device, display module, and electronic apparatus
US7646015B2 (en) * 2006-10-31 2010-01-12 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of semiconductor device and semiconductor device
KR101146574B1 (en) * 2006-12-05 2012-05-16 캐논 가부시끼가이샤 Method for manufacturing thin film transistor using oxide semiconductor and display apparatus
WO2008072486A1 (en) * 2006-12-13 2008-06-19 Idemitsu Kosan Co., Ltd. Sputtering target and oxide semiconductor film
US8129714B2 (en) * 2007-02-16 2012-03-06 Idemitsu Kosan Co., Ltd. Semiconductor, semiconductor device, complementary transistor circuit device
KR101509663B1 (en) 2007-02-16 2015-04-06 삼성전자주식회사 Method of forming oxide semiconductor layer and method of manufacturing semiconductor device using the same
JP5320746B2 (en) * 2007-03-28 2013-10-23 凸版印刷株式会社 Thin film transistor
KR101334181B1 (en) * 2007-04-20 2013-11-28 삼성전자주식회사 Thin Film Transistor having selectively crystallized channel layer and method of manufacturing the same
JP2008277326A (en) * 2007-04-25 2008-11-13 Canon Inc Amorphous oxide semiconductor, semiconductor device and thin-film transistor
JP5522889B2 (en) 2007-05-11 2014-06-18 出光興産株式会社 In-Ga-Zn-Sn-based oxide sintered body and target for physical film formation
JP5542296B2 (en) 2007-05-17 2014-07-09 株式会社半導体エネルギー研究所 Liquid crystal display device, display module, and electronic device
JP5542297B2 (en) 2007-05-17 2014-07-09 株式会社半導体エネルギー研究所 Liquid crystal display device, display module, and electronic device
JP4989309B2 (en) 2007-05-18 2012-08-01 株式会社半導体エネルギー研究所 Liquid crystal display
US7897482B2 (en) * 2007-05-31 2011-03-01 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
EP2158608A4 (en) 2007-06-19 2010-07-14 Samsung Electronics Co Ltd Oxide semiconductors and thin film transistors comprising the same
US7935964B2 (en) * 2007-06-19 2011-05-03 Samsung Electronics Co., Ltd. Oxide semiconductors and thin film transistors comprising the same
US8354674B2 (en) * 2007-06-29 2013-01-15 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device wherein a property of a first semiconductor layer is different from a property of a second semiconductor layer
WO2009014155A1 (en) 2007-07-25 2009-01-29 Semiconductor Energy Laboratory Co., Ltd. Photoelectric conversion device and electronic device having the same
JP5235348B2 (en) * 2007-07-26 2013-07-10 富士フイルム株式会社 Radiation imaging device
JP2009123957A (en) * 2007-11-15 2009-06-04 Sumitomo Chemical Co Ltd Oxide semiconductor material and manufacturing method therefor, electronic device, and field-effect transistor
NO332409B1 (en) * 2008-01-24 2012-09-17 Well Technology As Apparatus and method for isolating a section of a wellbore
JP5121478B2 (en) * 2008-01-31 2013-01-16 株式会社ジャパンディスプレイウェスト Optical sensor element, imaging device, electronic device, and memory element
KR101496148B1 (en) 2008-05-15 2015-02-27 삼성전자주식회사 Semiconductor device and method of manufacturing the same
US9041202B2 (en) 2008-05-16 2015-05-26 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method of the same
KR101468591B1 (en) * 2008-05-29 2014-12-04 삼성전자주식회사 Oxide semiconductor and thin film transistor comprising the same
WO2009151003A1 (en) * 2008-06-10 2009-12-17 日鉱金属株式会社 Sintered-oxide target for sputtering and process for producing the same
US8314765B2 (en) 2008-06-17 2012-11-20 Semiconductor Energy Laboratory Co., Ltd. Driver circuit, display device, and electronic device
KR102267235B1 (en) 2008-07-10 2021-06-18 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Light-emitting device and electronic device using the same
US8945981B2 (en) 2008-07-31 2015-02-03 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
TWI491048B (en) 2008-07-31 2015-07-01 Semiconductor Energy Lab Semiconductor device
JP5616038B2 (en) 2008-07-31 2014-10-29 株式会社半導体エネルギー研究所 Method for manufacturing semiconductor device
TWI627757B (en) 2008-07-31 2018-06-21 半導體能源研究所股份有限公司 Semiconductor devices
TWI577027B (en) * 2008-07-31 2017-04-01 半導體能源研究所股份有限公司 Semiconductor device and method for manufacturing the same
TWI518800B (en) 2008-08-08 2016-01-21 半導體能源研究所股份有限公司 Method for manufacturing semiconductor device
TWI500160B (en) 2008-08-08 2015-09-11 Semiconductor Energy Lab Semiconductor device and method for manufacturing the same
JP5525778B2 (en) * 2008-08-08 2014-06-18 株式会社半導体エネルギー研究所 Semiconductor device
TWI508282B (en) 2008-08-08 2015-11-11 Semiconductor Energy Lab Semiconductor device and method for manufacturing the same
JP5480554B2 (en) 2008-08-08 2014-04-23 株式会社半導体エネルギー研究所 Semiconductor device
JP5627071B2 (en) 2008-09-01 2014-11-19 株式会社半導体エネルギー研究所 Method for manufacturing semiconductor device
US8021916B2 (en) * 2008-09-01 2011-09-20 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US9082857B2 (en) 2008-09-01 2015-07-14 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device comprising an oxide semiconductor layer
KR101489652B1 (en) * 2008-09-02 2015-02-06 삼성디스플레이 주식회사 Thin film transistor array substrate and method of fabricating the same
KR101665734B1 (en) * 2008-09-12 2016-10-24 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device and manufacturing method thereof
WO2010029859A1 (en) 2008-09-12 2010-03-18 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
KR101644406B1 (en) 2008-09-12 2016-08-01 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Display device
KR101657957B1 (en) * 2008-09-12 2016-09-20 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Display device
KR101681882B1 (en) * 2008-09-19 2016-12-05 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Display device
KR101722409B1 (en) * 2008-09-19 2017-04-03 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device
CN102160104B (en) 2008-09-19 2013-11-06 株式会社半导体能源研究所 Semiconductor device
KR101273913B1 (en) 2008-09-19 2013-06-17 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Display device
KR101999970B1 (en) 2008-09-19 2019-07-15 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device
KR101611643B1 (en) * 2008-10-01 2016-04-11 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device
EP2172977A1 (en) 2008-10-03 2010-04-07 Semiconductor Energy Laboratory Co., Ltd. Display device
CN103928476A (en) 2008-10-03 2014-07-16 株式会社半导体能源研究所 Display Device And Method For Manufacturing The Same
KR20110069831A (en) * 2008-10-03 2011-06-23 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Modulation circuit and semiconductor device including the same
EP2172804B1 (en) 2008-10-03 2016-05-11 Semiconductor Energy Laboratory Co, Ltd. Display device
KR101435501B1 (en) 2008-10-03 2014-08-29 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Display device
KR101652693B1 (en) * 2008-10-03 2016-09-01 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Display device
CN101719493B (en) 2008-10-08 2014-05-14 株式会社半导体能源研究所 Display device
JP5484853B2 (en) * 2008-10-10 2014-05-07 株式会社半導体エネルギー研究所 Method for manufacturing semiconductor device
WO2010044478A1 (en) * 2008-10-16 2010-04-22 Semiconductor Energy Laboratory Co., Ltd. Light-emitting display device
JP5361651B2 (en) 2008-10-22 2013-12-04 株式会社半導体エネルギー研究所 Method for manufacturing semiconductor device
US8106400B2 (en) 2008-10-24 2012-01-31 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
JP5442234B2 (en) 2008-10-24 2014-03-12 株式会社半導体エネルギー研究所 Semiconductor device and display device
WO2010047288A1 (en) 2008-10-24 2010-04-29 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductordevice
EP2180518B1 (en) 2008-10-24 2018-04-25 Semiconductor Energy Laboratory Co, Ltd. Method for manufacturing semiconductor device
JP5616012B2 (en) 2008-10-24 2014-10-29 株式会社半導体エネルギー研究所 Method for manufacturing semiconductor device
KR101259727B1 (en) 2008-10-24 2013-04-30 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device
KR101667909B1 (en) 2008-10-24 2016-10-28 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Method for manufacturing semiconductor device
US8741702B2 (en) * 2008-10-24 2014-06-03 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
KR101603303B1 (en) 2008-10-31 2016-03-14 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Conductive oxynitride and method for manufacturing conductive oxynitride film
WO2010050419A1 (en) * 2008-10-31 2010-05-06 Semiconductor Energy Laboratory Co., Ltd. Driver circuit and display device
KR101631454B1 (en) * 2008-10-31 2016-06-17 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Logic circuit
TWI496295B (en) 2008-10-31 2015-08-11 Semiconductor Energy Lab Semiconductor device and method for manufacturing the same
KR101711249B1 (en) * 2008-11-07 2017-02-28 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Method of manufacturing a semiconductor device
EP2184783B1 (en) * 2008-11-07 2012-10-03 Semiconductor Energy Laboratory Co, Ltd. Semiconductor device and method for manufacturing the same
JP2010135771A (en) * 2008-11-07 2010-06-17 Semiconductor Energy Lab Co Ltd Semiconductor device and method for manufacturing the same
TWI487104B (en) * 2008-11-07 2015-06-01 Semiconductor Energy Lab Semiconductor device and method for manufacturing the same
TWI589006B (en) 2008-11-07 2017-06-21 半導體能源研究所股份有限公司 Semiconductor device and manufacturing method thereof
CN101740631B (en) * 2008-11-07 2014-07-16 株式会社半导体能源研究所 Semiconductor device and method for manufacturing the semiconductor device
TWI656645B (en) 2008-11-13 2019-04-11 日商半導體能源研究所股份有限公司 Semiconductor device and method of manufacturing same
KR101432764B1 (en) * 2008-11-13 2014-08-21 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Method for manufacturing semiconductor device
US8232947B2 (en) 2008-11-14 2012-07-31 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device
JP2010153802A (en) 2008-11-20 2010-07-08 Semiconductor Energy Lab Co Ltd Semiconductor device and method of manufacturing the same
KR101671544B1 (en) 2008-11-21 2016-11-01 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device, display device, and electronic device
TWI483038B (en) * 2008-11-28 2015-05-01 Semiconductor Energy Lab Liquid crystal display device
US8344387B2 (en) 2008-11-28 2013-01-01 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
TWI585955B (en) * 2008-11-28 2017-06-01 半導體能源研究所股份有限公司 Photosensor and display device
WO2010064590A1 (en) * 2008-12-01 2010-06-10 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
TWI613489B (en) 2008-12-03 2018-02-01 半導體能源研究所股份有限公司 Liquid crystal display device
JP5491833B2 (en) 2008-12-05 2014-05-14 株式会社半導体エネルギー研究所 Semiconductor device
WO2010071034A1 (en) 2008-12-19 2010-06-24 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing transistor
JP5615540B2 (en) * 2008-12-19 2014-10-29 株式会社半導体エネルギー研究所 Method for manufacturing semiconductor device
EP2202802B1 (en) 2008-12-24 2012-09-26 Semiconductor Energy Laboratory Co., Ltd. Driver circuit and semiconductor device
KR101719350B1 (en) * 2008-12-25 2017-03-23 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device and manufacturing method thereof
US8114720B2 (en) 2008-12-25 2012-02-14 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US8383470B2 (en) 2008-12-25 2013-02-26 Semiconductor Energy Laboratory Co., Ltd. Thin film transistor (TFT) having a protective layer and manufacturing method thereof
US8441007B2 (en) 2008-12-25 2013-05-14 Semiconductor Energy Laboratory Co., Ltd. Display device and manufacturing method thereof
TWI474408B (en) 2008-12-26 2015-02-21 Semiconductor Energy Lab Semiconductor device and manufacturing method thereof
US8330156B2 (en) 2008-12-26 2012-12-11 Semiconductor Energy Laboratory Co., Ltd. Thin film transistor with a plurality of oxide clusters over the gate insulating layer
KR101648927B1 (en) * 2009-01-16 2016-08-17 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device and manufacturing method thereof
US8492756B2 (en) 2009-01-23 2013-07-23 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US8436350B2 (en) * 2009-01-30 2013-05-07 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device using an oxide semiconductor with a plurality of metal clusters
US8367486B2 (en) 2009-02-05 2013-02-05 Semiconductor Energy Laboratory Co., Ltd. Transistor and method for manufacturing the transistor
US8174021B2 (en) 2009-02-06 2012-05-08 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of manufacturing the semiconductor device
US8749930B2 (en) * 2009-02-09 2014-06-10 Semiconductor Energy Laboratory Co., Ltd. Protection circuit, semiconductor device, photoelectric conversion device, and electronic device
CN101840936B (en) 2009-02-13 2014-10-08 株式会社半导体能源研究所 Semiconductor device including a transistor, and manufacturing method of the semiconductor device
US8247812B2 (en) * 2009-02-13 2012-08-21 Semiconductor Energy Laboratory Co., Ltd. Transistor, semiconductor device including the transistor, and manufacturing method of the transistor and the semiconductor device
US8278657B2 (en) 2009-02-13 2012-10-02 Semiconductor Energy Laboratory Co., Ltd. Transistor, semiconductor device including the transistor, and manufacturing method of the transistor and the semiconductor device
US8247276B2 (en) 2009-02-20 2012-08-21 Semiconductor Energy Laboratory Co., Ltd. Thin film transistor, method for manufacturing the same, and semiconductor device
US8841661B2 (en) * 2009-02-25 2014-09-23 Semiconductor Energy Laboratory Co., Ltd. Staggered oxide semiconductor TFT semiconductor device and manufacturing method thereof
US8704216B2 (en) 2009-02-27 2014-04-22 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US20100224878A1 (en) 2009-03-05 2010-09-09 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US20100224880A1 (en) * 2009-03-05 2010-09-09 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US8461582B2 (en) 2009-03-05 2013-06-11 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
KR101671210B1 (en) * 2009-03-06 2016-11-01 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device and method for manufacturing the same
KR101906751B1 (en) 2009-03-12 2018-10-10 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Method for manufacturing semiconductor device
TWI556323B (en) * 2009-03-13 2016-11-01 半導體能源研究所股份有限公司 Semiconductor device and method for manufacturing the semiconductor device
US8450144B2 (en) * 2009-03-26 2013-05-28 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
KR101681884B1 (en) 2009-03-27 2016-12-05 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device, display device, and electronic appliance
KR101752640B1 (en) 2009-03-27 2017-06-30 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device
TWI511288B (en) * 2009-03-27 2015-12-01 Semiconductor Energy Lab Semiconductor device
US8927981B2 (en) * 2009-03-30 2015-01-06 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US8338226B2 (en) * 2009-04-02 2012-12-25 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
TWI489628B (en) 2009-04-02 2015-06-21 Semiconductor Energy Lab Semiconductor device and method for manufacturing the same
JP5615018B2 (en) 2009-04-10 2014-10-29 株式会社半導体エネルギー研究所 Semiconductor device and manufacturing method of semiconductor device
TWI535023B (en) 2009-04-16 2016-05-21 半導體能源研究所股份有限公司 Semiconductor device and manufacturing method thereof
KR101690216B1 (en) * 2009-05-01 2016-12-27 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Method for manufacturing semiconductor device
JP5751762B2 (en) 2009-05-21 2015-07-22 株式会社半導体エネルギー研究所 Semiconductor device
EP2256795B1 (en) * 2009-05-29 2014-11-19 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method for oxide semiconductor device
JP5564331B2 (en) 2009-05-29 2014-07-30 株式会社半導体エネルギー研究所 Method for manufacturing semiconductor device
EP2256814B1 (en) 2009-05-29 2019-01-16 Semiconductor Energy Laboratory Co, Ltd. Oxide semiconductor device and method for manufacturing the same
JP5322787B2 (en) * 2009-06-11 2013-10-23 富士フイルム株式会社 THIN FILM TRANSISTOR AND MANUFACTURING METHOD THEREOF, ELECTRO-OPTICAL DEVICE, AND SENSOR
KR101810699B1 (en) * 2009-06-30 2018-01-25 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Method for manufacturing semiconductor device
WO2011001880A1 (en) 2009-06-30 2011-01-06 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
KR101420025B1 (en) 2009-06-30 2014-07-15 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Method for manufacturing semiconductor device
KR101968855B1 (en) 2009-06-30 2019-04-12 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Method for manufacturing semiconductor device
US20110000175A1 (en) * 2009-07-01 2011-01-06 Husqvarna Consumer Outdoor Products N.A. Inc. Variable speed controller
JP5663214B2 (en) * 2009-07-03 2015-02-04 株式会社半導体エネルギー研究所 Method for manufacturing semiconductor device
KR101476817B1 (en) * 2009-07-03 2014-12-26 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Display device including transistor and manufacturing method thereof
KR102365458B1 (en) 2009-07-03 2022-02-23 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Method for manufacturing semiconductor device
CN104835850B (en) 2009-07-10 2018-10-26 株式会社半导体能源研究所 Semiconductor devices
KR101857405B1 (en) 2009-07-10 2018-05-11 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device and method for manufacturing the same
WO2011004723A1 (en) * 2009-07-10 2011-01-13 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method the same
WO2011007677A1 (en) 2009-07-17 2011-01-20 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
WO2011007682A1 (en) 2009-07-17 2011-01-20 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing semiconductor device
KR101739154B1 (en) * 2009-07-17 2017-05-23 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device and manufacturing method thereof
WO2011010545A1 (en) * 2009-07-18 2011-01-27 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
KR101782176B1 (en) 2009-07-18 2017-09-26 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device and method for manufacturing the same
WO2011010543A1 (en) 2009-07-18 2011-01-27 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing semiconductor device
CN105070749B (en) * 2009-07-18 2019-08-09 株式会社半导体能源研究所 Semiconductor device and the method for manufacturing semiconductor device
WO2011010542A1 (en) * 2009-07-23 2011-01-27 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
KR101785992B1 (en) 2009-07-24 2017-10-18 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device
WO2011013596A1 (en) * 2009-07-31 2011-02-03 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
WO2011013523A1 (en) 2009-07-31 2011-02-03 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
WO2011013502A1 (en) * 2009-07-31 2011-02-03 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
KR102526493B1 (en) 2009-07-31 2023-04-28 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device and manufacturing method thereof
KR101716918B1 (en) 2009-07-31 2017-03-15 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device and method for manufacturing the same
TWI582951B (en) * 2009-08-07 2017-05-11 半導體能源研究所股份有限公司 Semiconductor device and phone, watch, and display device comprising the same
TWI634642B (en) 2009-08-07 2018-09-01 半導體能源研究所股份有限公司 Semiconductor device and manufacturing method thereof
TWI596741B (en) * 2009-08-07 2017-08-21 半導體能源研究所股份有限公司 Semiconductor device and method for manufacturing the same
TW202420563A (en) 2009-08-07 2024-05-16 日商半導體能源研究所股份有限公司 Semiconductor device
JP5663231B2 (en) * 2009-08-07 2015-02-04 株式会社半導体エネルギー研究所 Light emitting device
JP5642447B2 (en) 2009-08-07 2014-12-17 株式会社半導体エネルギー研究所 Semiconductor device
EP2284891B1 (en) * 2009-08-07 2019-07-24 Semiconductor Energy Laboratory Co, Ltd. Semiconductor device and manufacturing method thereof
US8115883B2 (en) 2009-08-27 2012-02-14 Semiconductor Energy Laboratory Co., Ltd. Display device and method for manufacturing the same
WO2011027649A1 (en) * 2009-09-02 2011-03-10 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device including a transistor, and manufacturing method of semiconductor device
KR101746198B1 (en) * 2009-09-04 2017-06-12 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Display device and electronic device
WO2011027702A1 (en) * 2009-09-04 2011-03-10 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device and method for manufacturing the same
WO2011027676A1 (en) 2009-09-04 2011-03-10 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
WO2011027656A1 (en) 2009-09-04 2011-03-10 Semiconductor Energy Laboratory Co., Ltd. Transistor and display device
WO2011027715A1 (en) 2009-09-04 2011-03-10 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of semiconductor device
WO2011027701A1 (en) 2009-09-04 2011-03-10 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device and method for manufacturing the same
CN103151387A (en) 2009-09-04 2013-06-12 株式会社半导体能源研究所 Semiconductor device and method for manufacturing the same
WO2011027664A1 (en) * 2009-09-04 2011-03-10 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device and method for manufacturing the same
KR102113148B1 (en) 2009-09-04 2020-05-20 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Light-emitting device and method for manufacturing the same
JP5700626B2 (en) * 2009-09-04 2015-04-15 株式会社半導体エネルギー研究所 EL display device
KR101927922B1 (en) 2009-09-16 2018-12-11 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Light-emitting device and manufacturing method thereof
US9715845B2 (en) 2009-09-16 2017-07-25 Semiconductor Energy Laboratory Co., Ltd. Semiconductor display device
WO2011033909A1 (en) * 2009-09-16 2011-03-24 Semiconductor Energy Laboratory Co., Ltd. Driver circuit, display device including the driver circuit, and electronic device including the display device
EP2544237B1 (en) * 2009-09-16 2017-05-03 Semiconductor Energy Laboratory Co., Ltd. Transistor and display device
CN105789322B (en) * 2009-09-16 2018-09-28 株式会社半导体能源研究所 Semiconductor devices and its manufacturing method
WO2011033914A1 (en) 2009-09-16 2011-03-24 Semiconductor Energy Laboratory Co., Ltd. Driving method of display device and display device
KR101730347B1 (en) 2009-09-16 2017-04-27 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device and manufacturing method thereof
WO2011034012A1 (en) * 2009-09-16 2011-03-24 Semiconductor Energy Laboratory Co., Ltd. Logic circuit, light emitting device, semiconductor device, and electronic device
KR20180031077A (en) * 2009-09-24 2018-03-27 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device and method for manufacturing the same
KR101788538B1 (en) * 2009-09-24 2017-10-20 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Display device
CN104934483B (en) 2009-09-24 2018-08-10 株式会社半导体能源研究所 Semiconductor element and its manufacturing method
WO2011036981A1 (en) 2009-09-24 2011-03-31 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
KR101914026B1 (en) * 2009-09-24 2018-11-01 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Oxide semiconductor film and semiconductor device
TWI512997B (en) * 2009-09-24 2015-12-11 Semiconductor Energy Lab Semiconductor device, power circuit, and manufacturing method of semiconductor device
CN102474256B (en) 2009-09-24 2016-03-02 株式会社半导体能源研究所 Drive circuit, comprise the display device of drive circuit and comprise the electronic apparatus of display device
CN102549758B (en) 2009-09-24 2015-11-25 株式会社半导体能源研究所 Semiconductor device and manufacture method thereof
WO2011037008A1 (en) 2009-09-24 2011-03-31 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing oxide semiconductor film and method for manufacturing semiconductor device
KR101883330B1 (en) * 2009-09-30 2018-08-30 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Redox capacitor and manufacturing method thereof
KR101767035B1 (en) * 2009-10-01 2017-08-10 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device and method for manufacturing the same
WO2011043182A1 (en) 2009-10-05 2011-04-14 Semiconductor Energy Laboratory Co., Ltd. Method for removing electricity and method for manufacturing semiconductor device
KR20120084751A (en) 2009-10-05 2012-07-30 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device and manufacturing method thereof
KR102246127B1 (en) 2009-10-08 2021-04-29 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device
SG178056A1 (en) 2009-10-08 2012-03-29 Semiconductor Energy Lab Oxide semiconductor layer and semiconductor device
KR101820973B1 (en) * 2009-10-09 2018-01-22 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device and method for manufacturing the semiconductor device
KR101754701B1 (en) 2009-10-09 2017-07-06 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device and method for manufacturing the same
WO2011043195A1 (en) 2009-10-09 2011-04-14 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
KR101721285B1 (en) 2009-10-09 2017-03-29 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Shift register and display device
KR101424950B1 (en) * 2009-10-09 2014-08-01 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Liquid crystal display device
WO2011043194A1 (en) 2009-10-09 2011-04-14 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
WO2011043206A1 (en) 2009-10-09 2011-04-14 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
KR101820972B1 (en) 2009-10-09 2018-01-22 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device and manufacturing method thereof
CN107180608B (en) 2009-10-09 2020-10-02 株式会社半导体能源研究所 Shift register, display device and driving method thereof
KR101944239B1 (en) 2009-10-09 2019-01-31 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Light-emitting display device and electronic device including the same
WO2011043164A1 (en) * 2009-10-09 2011-04-14 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the semiconductor device
KR101779349B1 (en) * 2009-10-14 2017-09-18 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device and manufacturing method thereof
CN110061144A (en) 2009-10-16 2019-07-26 株式会社半导体能源研究所 Logic circuit and semiconductor devices
KR102065330B1 (en) 2009-10-16 2020-01-13 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Manufacturing method of liquid crystal display device
KR101865546B1 (en) 2009-10-16 2018-06-11 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Liquid crystal display device and electronic device including the liquid crystal display device
CN106200185A (en) 2009-10-16 2016-12-07 株式会社半导体能源研究所 Display device
KR101915251B1 (en) 2009-10-16 2018-11-06 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device
KR101847656B1 (en) * 2009-10-21 2018-05-24 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device and method for manufacturing the same
KR101812683B1 (en) 2009-10-21 2017-12-27 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Method for manufacturing semiconductor device
CN104485336B (en) 2009-10-21 2018-01-02 株式会社半导体能源研究所 Semiconductor devices
KR101751908B1 (en) * 2009-10-21 2017-06-28 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Voltage regulator circuit
WO2011048923A1 (en) 2009-10-21 2011-04-28 Semiconductor Energy Laboratory Co., Ltd. E-book reader
CN102576734B (en) 2009-10-21 2015-04-22 株式会社半导体能源研究所 Display device and electronic device including display device
CN105702688B (en) 2009-10-21 2020-09-08 株式会社半导体能源研究所 Liquid crystal display device and electronic apparatus including the same
KR101789309B1 (en) 2009-10-21 2017-10-23 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Analog circuit and semiconductor device
SG10201406934WA (en) 2009-10-29 2014-11-27 Semiconductor Energy Lab Semiconductor device
CN105762152B (en) 2009-10-29 2021-03-09 株式会社半导体能源研究所 Semiconductor device with a plurality of transistors
CN102668096B (en) 2009-10-30 2015-04-29 株式会社半导体能源研究所 Semiconductor device and method for manufacturing the same
EP2494692B1 (en) * 2009-10-30 2016-11-23 Semiconductor Energy Laboratory Co. Ltd. Logic circuit and semiconductor device
KR101788521B1 (en) 2009-10-30 2017-10-19 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device
KR101751712B1 (en) * 2009-10-30 2017-06-28 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Voltage regulator circuit
WO2011052344A1 (en) * 2009-10-30 2011-05-05 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device, driving method of the same, and electronic appliance including the same
KR101837102B1 (en) 2009-10-30 2018-03-09 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device
KR101796909B1 (en) 2009-10-30 2017-12-12 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Non-linear element, display device, and electronic device
WO2011052411A1 (en) * 2009-10-30 2011-05-05 Semiconductor Energy Laboratory Co., Ltd. Transistor
WO2011052382A1 (en) * 2009-10-30 2011-05-05 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
KR101712340B1 (en) * 2009-10-30 2017-03-06 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Driver circuit, display device including the driver circuit, and electronic device including the display device
WO2011052437A1 (en) 2009-10-30 2011-05-05 Semiconductor Energy Laboratory Co., Ltd. Non-linear element, display device including non-linear element, and electronic device including display device
WO2011052409A1 (en) * 2009-10-30 2011-05-05 Semiconductor Energy Laboratory Co., Ltd. Transistor
WO2011052410A1 (en) * 2009-10-30 2011-05-05 Semiconductor Energy Laboratory Co., Ltd. Power diode, rectifier, and semiconductor device including the same
WO2011052367A1 (en) * 2009-10-30 2011-05-05 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
KR101761432B1 (en) 2009-11-06 2017-07-25 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device
KR101753927B1 (en) 2009-11-06 2017-07-04 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device
KR101727469B1 (en) 2009-11-06 2017-04-17 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Display device
KR102691611B1 (en) 2009-11-06 2024-08-06 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device and manufacturing method thereof
KR101747158B1 (en) 2009-11-06 2017-06-14 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Method for manufacturing semiconductor device
WO2011055769A1 (en) * 2009-11-06 2011-05-12 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor element and semiconductor device, and deposition apparatus
CN104465318B (en) * 2009-11-06 2018-04-24 株式会社半导体能源研究所 The method for manufacturing semiconductor devices
KR102317763B1 (en) 2009-11-06 2021-10-27 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device and manufacturing method thereof
KR20120116403A (en) * 2009-11-06 2012-10-22 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Touch panel and driving method of touch panel
KR101818265B1 (en) * 2009-11-06 2018-01-12 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device
JP5539846B2 (en) 2009-11-06 2014-07-02 株式会社半導体エネルギー研究所 Evaluation method, manufacturing method of semiconductor device
WO2011058913A1 (en) * 2009-11-13 2011-05-19 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
KR20120094013A (en) 2009-11-13 2012-08-23 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Sputtering target and manufacturing method thereof, and transistor
KR101751560B1 (en) * 2009-11-13 2017-06-27 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device
WO2011058867A1 (en) * 2009-11-13 2011-05-19 Semiconductor Energy Laboratory Co., Ltd. Sputtering target and method for manufacturing the same, and transistor
KR102705608B1 (en) 2009-11-13 2024-09-11 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Display device and electronic device including the same
CN102612714B (en) 2009-11-13 2016-06-29 株式会社半导体能源研究所 Semiconductor device and driving method thereof
KR101721850B1 (en) 2009-11-13 2017-03-31 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device
KR101975741B1 (en) * 2009-11-13 2019-05-09 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Method for packaging target material and method for mounting target
KR101799265B1 (en) 2009-11-13 2017-11-20 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device and manufacturing method thereof
KR101738996B1 (en) * 2009-11-13 2017-05-23 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Device including nonvolatile memory element
WO2011062029A1 (en) 2009-11-18 2011-05-26 Semiconductor Energy Laboratory Co., Ltd. Memory device
EP2502272B1 (en) 2009-11-20 2015-04-15 Semiconductor Energy Laboratory Co. Ltd. Nonvolatile latch circuit and logic circuit, and semiconductor device using the same
KR101800852B1 (en) 2009-11-20 2017-12-20 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device
CN103151266B (en) 2009-11-20 2016-08-03 株式会社半导体能源研究所 The method being used for producing the semiconductor devices
CN102668063B (en) * 2009-11-20 2015-02-18 株式会社半导体能源研究所 Semiconductor device
KR101829176B1 (en) 2009-11-20 2018-02-13 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device
CN102598266B (en) * 2009-11-20 2015-04-22 株式会社半导体能源研究所 Semiconductor device
KR20180133548A (en) 2009-11-20 2018-12-14 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device
KR20120107079A (en) * 2009-11-20 2012-09-28 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Thin film transistor
JP5762723B2 (en) 2009-11-20 2015-08-12 株式会社半導体エネルギー研究所 Modulation circuit and semiconductor device having the same
KR101800854B1 (en) * 2009-11-20 2017-11-23 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Transistor
WO2011065183A1 (en) * 2009-11-24 2011-06-03 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device including memory cell
WO2011065209A1 (en) * 2009-11-27 2011-06-03 Semiconductor Energy Laboratory Co., Ltd. Non-linear element, display device including non-linear element, and electronic device including display device
WO2011065208A1 (en) 2009-11-27 2011-06-03 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
WO2011065198A1 (en) * 2009-11-27 2011-06-03 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
KR101803254B1 (en) * 2009-11-27 2017-11-30 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device
EP2504855A4 (en) * 2009-11-28 2016-07-20 Semiconductor Energy Lab Stacked oxide material, semiconductor device, and method for manufacturing the semiconductor device
KR101803553B1 (en) 2009-11-28 2017-11-30 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device and method for manufacturing the same
WO2011065210A1 (en) * 2009-11-28 2011-06-03 Semiconductor Energy Laboratory Co., Ltd. Stacked oxide material, semiconductor device, and method for manufacturing the semiconductor device
KR102426613B1 (en) * 2009-11-28 2022-07-29 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device and manufacturing method thereof
CN102648490B (en) 2009-11-30 2016-08-17 株式会社半导体能源研究所 Liquid crystal display, for driving the method for this liquid crystal display and include the electronic equipment of this liquid crystal display
JP2011139052A (en) 2009-12-04 2011-07-14 Semiconductor Energy Lab Co Ltd Semiconductor memory device
KR101963300B1 (en) 2009-12-04 2019-03-28 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Display device
KR101840623B1 (en) * 2009-12-04 2018-03-21 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Display device and electronic device including the same
KR102117506B1 (en) 2009-12-04 2020-06-01 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device and manufacturing method thereof
KR20120103676A (en) * 2009-12-04 2012-09-19 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device
CN104795323B (en) 2009-12-04 2017-12-29 株式会社半导体能源研究所 Semiconductor device and its manufacture method
WO2011068022A1 (en) 2009-12-04 2011-06-09 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
KR20240129225A (en) 2009-12-04 2024-08-27 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device
WO2011068025A1 (en) 2009-12-04 2011-06-09 Semiconductor Energy Laboratory Co., Ltd. Dc converter circuit and power supply circuit
KR101501420B1 (en) * 2009-12-04 2015-03-10 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Display device
KR102333270B1 (en) 2009-12-04 2021-12-02 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device
WO2011068028A1 (en) 2009-12-04 2011-06-09 Semiconductor Energy Laboratory Co., Ltd. Semiconductor element, semiconductor device, and method for manufacturing the same
JP5584103B2 (en) 2009-12-04 2014-09-03 株式会社半導体エネルギー研究所 Semiconductor device
KR101835300B1 (en) 2009-12-08 2018-03-08 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device and manufacturing method thereof
WO2011070892A1 (en) 2009-12-08 2011-06-16 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
KR20170061194A (en) 2009-12-10 2017-06-02 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Display device and driving method thereof
WO2011070901A1 (en) 2009-12-11 2011-06-16 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
WO2011070928A1 (en) 2009-12-11 2011-06-16 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
WO2011070929A1 (en) 2009-12-11 2011-06-16 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and electronic device
JP5727204B2 (en) 2009-12-11 2015-06-03 株式会社半導体エネルギー研究所 Method for manufacturing semiconductor device
CN104658598B (en) 2009-12-11 2017-08-11 株式会社半导体能源研究所 Semiconductor devices, logic circuit and CPU
KR20170116239A (en) * 2009-12-11 2017-10-18 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Field effect transistor
JP5185357B2 (en) * 2009-12-17 2013-04-17 株式会社半導体エネルギー研究所 Semiconductor device
WO2011074408A1 (en) * 2009-12-18 2011-06-23 Semiconductor Energy Laboratory Co., Ltd. Non-volatile latch circuit and logic circuit, and semiconductor device using the same
KR101867003B1 (en) 2009-12-18 2018-06-12 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Liquid crystal display device and electronic device
US9057758B2 (en) * 2009-12-18 2015-06-16 Semiconductor Energy Laboratory Co., Ltd. Method for measuring current, method for inspecting semiconductor device, semiconductor device, and test element group
CN105655340B (en) * 2009-12-18 2020-01-21 株式会社半导体能源研究所 Semiconductor device with a plurality of semiconductor chips
KR20240118180A (en) * 2009-12-18 2024-08-02 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Liquid crystal display device
WO2011074394A1 (en) 2009-12-18 2011-06-23 Semiconductor Energy Laboratory Co., Ltd. Display device including optical sensor and driving method thereof
WO2011074407A1 (en) * 2009-12-18 2011-06-23 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
CN102640207A (en) * 2009-12-18 2012-08-15 株式会社半导体能源研究所 Liquid crystal display device and driving method thereof
KR101768433B1 (en) 2009-12-18 2017-08-16 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Method for manufacturing semiconductor device
KR20120115318A (en) 2009-12-23 2012-10-17 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device
WO2011077916A1 (en) 2009-12-24 2011-06-30 Semiconductor Energy Laboratory Co., Ltd. Display device
KR20120101716A (en) 2009-12-24 2012-09-14 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Display device and electronic device
KR101781336B1 (en) 2009-12-25 2017-09-25 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device
US8441009B2 (en) * 2009-12-25 2013-05-14 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
KR101541474B1 (en) * 2009-12-25 2015-08-03 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Method for driving liquid crystal display device
WO2011077978A1 (en) 2009-12-25 2011-06-30 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing display device
KR20170142998A (en) 2009-12-25 2017-12-28 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Method for manufacturing semiconductor device
KR20230130758A (en) 2009-12-25 2023-09-12 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device
KR101874779B1 (en) 2009-12-25 2018-07-06 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Memory device, semiconductor device, and electronic device
JP2011137665A (en) * 2009-12-26 2011-07-14 Canon Inc Scintillator panel, radiation imaging apparatus, method of manufacturing scintillator panel and radiation imaging apparatus, and radiation imaging system
CN105047669B (en) * 2009-12-28 2018-08-14 株式会社半导体能源研究所 Memory device and semiconductor device
WO2011081010A1 (en) 2009-12-28 2011-07-07 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device and electronic device
KR101842413B1 (en) * 2009-12-28 2018-03-26 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device
WO2011081041A1 (en) * 2009-12-28 2011-07-07 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the semiconductor device
CN102714184B (en) * 2009-12-28 2016-05-18 株式会社半导体能源研究所 Semiconductor devices
CN102903758B (en) 2009-12-28 2015-06-03 株式会社半导体能源研究所 Semiconductor device
KR101631652B1 (en) 2009-12-29 2016-06-20 삼성전자주식회사 Image sensor using light-sensitive transparent oxide semiconductor material
WO2011086847A1 (en) 2010-01-15 2011-07-21 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
WO2011086871A1 (en) * 2010-01-15 2011-07-21 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
KR101698537B1 (en) * 2010-01-15 2017-01-20 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device
US8780629B2 (en) 2010-01-15 2014-07-15 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and driving method thereof
KR101943807B1 (en) * 2010-01-15 2019-01-29 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device
KR102237655B1 (en) 2010-01-15 2021-04-09 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device and method for driving the same
CN102696064B (en) * 2010-01-15 2015-11-25 株式会社半导体能源研究所 Semiconductor device and electronic installation
US8415731B2 (en) * 2010-01-20 2013-04-09 Semiconductor Energy Laboratory Co., Ltd. Semiconductor storage device with integrated capacitor and having transistor overlapping sections
KR101816505B1 (en) * 2010-01-20 2018-01-09 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Display method of display device
KR102031848B1 (en) 2010-01-20 2019-10-14 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Electronic device and electronic system
KR101750126B1 (en) * 2010-01-20 2017-06-22 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Method for driving display device and liquid crystal display device
KR102542681B1 (en) 2010-01-20 2023-06-14 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Electronic device
WO2011089843A1 (en) 2010-01-20 2011-07-28 Semiconductor Energy Laboratory Co., Ltd. Method for driving display device
WO2011089847A1 (en) 2010-01-20 2011-07-28 Semiconductor Energy Laboratory Co., Ltd. Signal processing circuit and method for driving the same
KR102479269B1 (en) * 2010-01-20 2022-12-20 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Display device and mobile phone
MY187143A (en) 2010-01-20 2021-09-03 Semiconductor Energy Lab Semiconductor device
US9984617B2 (en) 2010-01-20 2018-05-29 Semiconductor Energy Laboratory Co., Ltd. Display device including light emitting element
CN102714023B (en) * 2010-01-20 2016-05-04 株式会社半导体能源研究所 The driving method of liquid crystal display
WO2011089852A1 (en) 2010-01-22 2011-07-28 Semiconductor Energy Laboratory Co., Ltd. Semiconductor memory device and driving method thereof
KR101637789B1 (en) * 2010-01-22 2016-07-07 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device
KR101829309B1 (en) 2010-01-22 2018-02-19 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device
TWI525377B (en) 2010-01-24 2016-03-11 半導體能源研究所股份有限公司 Display device
KR20190093706A (en) * 2010-01-24 2019-08-09 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Display device and manufacturing method thereof
CN106057162B (en) 2010-01-24 2019-01-22 株式会社半导体能源研究所 Display device
KR101299256B1 (en) * 2010-01-29 2013-08-22 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor memory device
KR20120120330A (en) 2010-01-29 2012-11-01 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device
WO2011093151A1 (en) 2010-01-29 2011-08-04 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and electronic device including the same
US8436403B2 (en) 2010-02-05 2013-05-07 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device including transistor provided with sidewall and electronic appliance
KR101399610B1 (en) 2010-02-05 2014-05-27 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device and method for manufacturing the same
KR20180028557A (en) 2010-02-05 2018-03-16 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device and method for manufacturing semiconductor device
WO2011096275A1 (en) * 2010-02-05 2011-08-11 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
CN106847816A (en) 2010-02-05 2017-06-13 株式会社半导体能源研究所 Semiconductor device
US9391209B2 (en) 2010-02-05 2016-07-12 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
WO2011096270A1 (en) 2010-02-05 2011-08-11 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
KR101862823B1 (en) * 2010-02-05 2018-05-30 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device and method of driving semiconductor device
WO2011096153A1 (en) 2010-02-05 2011-08-11 Semiconductor Energy Laboratory Co., Ltd. Display device
WO2011096286A1 (en) 2010-02-05 2011-08-11 Semiconductor Energy Laboratory Co., Ltd. Field effect transistor and semiconductor device
KR101921618B1 (en) 2010-02-05 2018-11-26 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device and method of driving semiconductor device
KR101810261B1 (en) * 2010-02-10 2017-12-18 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Field effect transistor
US8947337B2 (en) 2010-02-11 2015-02-03 Semiconductor Energy Laboratory Co., Ltd. Display device
KR101817054B1 (en) * 2010-02-12 2018-01-11 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device and display device including the same
US8617920B2 (en) 2010-02-12 2013-12-31 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
CN102754209B (en) * 2010-02-12 2015-11-25 株式会社半导体能源研究所 Semiconductor device and driving method thereof
KR101830196B1 (en) 2010-02-12 2018-02-20 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device and driving method thereof
KR101838130B1 (en) 2010-02-12 2018-03-13 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device and method for manufacturing the same
KR20130023203A (en) 2010-02-12 2013-03-07 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Display device and driving method
KR101775180B1 (en) 2010-02-12 2017-09-05 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device and method for driving the same
KR101814222B1 (en) * 2010-02-12 2018-01-02 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Liquid crystal display device and electronic device
CN102742002B (en) 2010-02-12 2015-01-28 株式会社半导体能源研究所 Semiconductor device and driving method of the same
KR102070537B1 (en) * 2010-02-18 2020-01-29 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Display device and electronic device
JP5740169B2 (en) * 2010-02-19 2015-06-24 株式会社半導体エネルギー研究所 Method for manufacturing transistor
KR101939713B1 (en) * 2010-02-19 2019-01-17 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device
CN102754162B (en) 2010-02-19 2015-12-09 株式会社半导体能源研究所 The driving method of semiconductor devices and semiconductor devices
KR20120121931A (en) * 2010-02-19 2012-11-06 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device and method for manufacturing the same
WO2011102190A1 (en) * 2010-02-19 2011-08-25 Semiconductor Energy Laboratory Co., Ltd. Demodulation circuit and rfid tag including the demodulation circuit
WO2011102206A1 (en) * 2010-02-19 2011-08-25 Semiconductor Energy Laboratory Co., Ltd. Semiconductor memory device, driving method thereof, and method for manufacturing semiconductor device
CN102812421B (en) 2010-02-19 2016-05-18 株式会社半导体能源研究所 Display device and driving method thereof
WO2011102248A1 (en) * 2010-02-19 2011-08-25 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device and electronic device
KR101832119B1 (en) 2010-02-19 2018-02-26 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device
WO2011102233A1 (en) * 2010-02-19 2011-08-25 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
KR101772246B1 (en) * 2010-02-23 2017-08-28 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Display device, semiconductor device, and driving method thereof
WO2011105310A1 (en) 2010-02-26 2011-09-01 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
WO2011105218A1 (en) * 2010-02-26 2011-09-01 Semiconductor Energy Laboratory Co., Ltd. Display device and e-book reader provided therewith
CN102770902B (en) * 2010-02-26 2016-11-23 株式会社半导体能源研究所 Display device and driving method thereof
US9000438B2 (en) * 2010-02-26 2015-04-07 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
KR20190000365A (en) * 2010-02-26 2019-01-02 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Method for manufacturing semiconductor device
KR101780841B1 (en) 2010-02-26 2017-09-21 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device
WO2011105183A1 (en) * 2010-02-26 2011-09-01 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor element and deposition apparatus
KR102480055B1 (en) 2010-02-26 2022-12-23 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Liquid crystal display device
KR101950364B1 (en) 2010-02-26 2019-02-20 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Liquid crystal display device
WO2011108367A1 (en) 2010-03-02 2011-09-09 Semiconductor Energy Laboratory Co., Ltd. Boosting circuit and rfid tag including boosting circuit
DE112011106185B3 (en) 2010-03-02 2023-05-04 Semiconductor Energy Laboratory Co., Ltd. Pulse signal output circuit and shift register
CN102783025B (en) 2010-03-02 2015-10-07 株式会社半导体能源研究所 Output of pulse signal circuit and shift register
KR101798645B1 (en) 2010-03-02 2017-11-16 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Pulse signal output circuit and shift register
KR101932909B1 (en) * 2010-03-04 2018-12-27 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor memory device and semiconductor device
WO2011108381A1 (en) * 2010-03-05 2011-09-09 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
WO2011108374A1 (en) * 2010-03-05 2011-09-09 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing semiconductor device
KR101878206B1 (en) * 2010-03-05 2018-07-16 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Manufacturing method of oxide semiconductor film and manufacturing method of transistor
KR20130008037A (en) * 2010-03-05 2013-01-21 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Method for manufacturing semiconductor device
KR101791253B1 (en) 2010-03-08 2017-11-20 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Electronic device and electronic system
TWI594173B (en) * 2010-03-08 2017-08-01 半導體能源研究所股份有限公司 Electronic device and electronic system
KR20190018049A (en) * 2010-03-08 2019-02-20 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device and method for manufacturing semiconductor device
KR101874784B1 (en) 2010-03-08 2018-07-06 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device
WO2011111522A1 (en) * 2010-03-08 2011-09-15 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
KR102192753B1 (en) 2010-03-08 2020-12-18 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device and method for manufacturing semiconductor device
WO2011111490A1 (en) * 2010-03-08 2011-09-15 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and driving method thereof
WO2011111521A1 (en) * 2010-03-12 2011-09-15 Semiconductor Energy Laboratory Co., Ltd. Driving method of display device
WO2011111506A1 (en) 2010-03-12 2011-09-15 Semiconductor Energy Laboratory Co., Ltd. Method for driving circuit and method for driving display device
WO2011111529A1 (en) 2010-03-12 2011-09-15 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US8900362B2 (en) * 2010-03-12 2014-12-02 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of gallium oxide single crystal
KR101761558B1 (en) * 2010-03-12 2017-07-26 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Method for driving input circuit and method for driving input-output device
CN102822978B (en) * 2010-03-12 2015-07-22 株式会社半导体能源研究所 Semiconductor device and method for manufacturing the same
WO2011114866A1 (en) 2010-03-17 2011-09-22 Semiconductor Energy Laboratory Co., Ltd. Memory device and semiconductor device
KR102001820B1 (en) * 2010-03-19 2019-07-19 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device and driving method of semiconductor device
WO2011114868A1 (en) 2010-03-19 2011-09-22 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
WO2011114905A1 (en) 2010-03-19 2011-09-22 Semiconductor Energy Laboratory Co., Ltd. Semiconductor memory device
WO2011114919A1 (en) * 2010-03-19 2011-09-22 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US20110227082A1 (en) * 2010-03-19 2011-09-22 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
WO2011118351A1 (en) * 2010-03-25 2011-09-29 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
JP5731244B2 (en) * 2010-03-26 2015-06-10 株式会社半導体エネルギー研究所 Method for manufacturing semiconductor device
CN102834921B (en) * 2010-03-26 2016-04-27 株式会社半导体能源研究所 The manufacture method of semiconductor device
WO2011118741A1 (en) 2010-03-26 2011-09-29 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
WO2011118364A1 (en) * 2010-03-26 2011-09-29 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
KR101921047B1 (en) 2010-03-26 2018-11-23 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Method for manufacturing semiconductor device
WO2011122514A1 (en) 2010-03-31 2011-10-06 Semiconductor Energy Laboratory Co., Ltd. Power supply device and driving method thereof
CN102884477B (en) 2010-03-31 2015-11-25 株式会社半导体能源研究所 Liquid crystal display and driving method thereof
WO2011122271A1 (en) 2010-03-31 2011-10-06 Semiconductor Energy Laboratory Co., Ltd. Field-sequential display device
WO2011122280A1 (en) 2010-03-31 2011-10-06 Semiconductor Energy Laboratory Co., Ltd. Semiconductor display device
WO2011122299A1 (en) 2010-03-31 2011-10-06 Semiconductor Energy Laboratory Co., Ltd. Driving method of liquid crystal display device
KR102357169B1 (en) 2010-04-02 2022-02-08 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device
US9196739B2 (en) 2010-04-02 2015-11-24 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device including oxide semiconductor film and metal oxide film
US9190522B2 (en) 2010-04-02 2015-11-17 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device having an oxide semiconductor
US9147768B2 (en) 2010-04-02 2015-09-29 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device having an oxide semiconductor and a metal oxide film
US8884282B2 (en) 2010-04-02 2014-11-11 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
KR102436902B1 (en) 2010-04-02 2022-08-25 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device
WO2011125432A1 (en) 2010-04-07 2011-10-13 Semiconductor Energy Laboratory Co., Ltd. Semiconductor memory device
KR101810592B1 (en) 2010-04-07 2017-12-20 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Transistor
US8653514B2 (en) 2010-04-09 2014-02-18 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
WO2011125688A1 (en) 2010-04-09 2011-10-13 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device and method for driving the same
KR101884798B1 (en) 2010-04-09 2018-08-02 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device
US8207025B2 (en) 2010-04-09 2012-06-26 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of semiconductor device
WO2011125456A1 (en) 2010-04-09 2011-10-13 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
KR20130036739A (en) 2010-04-09 2013-04-12 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Oxide semiconductor memory device
WO2011125806A1 (en) 2010-04-09 2011-10-13 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of semiconductor device
JP5744366B2 (en) 2010-04-12 2015-07-08 株式会社半導体エネルギー研究所 Liquid crystal display
US8854583B2 (en) 2010-04-12 2014-10-07 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and liquid crystal display device
KR20130061678A (en) 2010-04-16 2013-06-11 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Power source circuit
KR101904445B1 (en) 2010-04-16 2018-10-04 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device
JP2011237418A (en) 2010-04-16 2011-11-24 Semiconductor Energy Lab Co Ltd Current measurement method, semiconductor device inspection method, semiconductor device and characteristic evaluation circuit
KR101881729B1 (en) 2010-04-16 2018-07-27 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Deposition method and method for manufacturing semiconductor device
US8692243B2 (en) 2010-04-20 2014-04-08 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
WO2011132591A1 (en) 2010-04-23 2011-10-27 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
CN111326435B (en) 2010-04-23 2023-12-01 株式会社半导体能源研究所 Method for manufacturing semiconductor device
DE112011101410B4 (en) 2010-04-23 2018-03-01 Semiconductor Energy Laboratory Co., Ltd. Method for producing a semiconductor device
KR101887336B1 (en) 2010-04-23 2018-08-09 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Display device and driving method thereof
WO2011132625A1 (en) 2010-04-23 2011-10-27 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of semiconductor device
KR101748404B1 (en) 2010-04-23 2017-06-16 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device and manufacturing method thereof
CN104851810B (en) 2010-04-23 2018-08-28 株式会社半导体能源研究所 The manufacturing method of semiconductor device
US9537043B2 (en) 2010-04-23 2017-01-03 Semiconductor Energy Laboratory Co., Ltd. Photoelectric conversion device and manufacturing method thereof
WO2011135999A1 (en) 2010-04-27 2011-11-03 Semiconductor Energy Laboratory Co., Ltd. Semiconductor memory device
US8890555B2 (en) 2010-04-28 2014-11-18 Semiconductor Energy Laboratory Co., Ltd. Method for measuring transistor
US9697788B2 (en) 2010-04-28 2017-07-04 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device
KR20220005640A (en) 2010-04-28 2022-01-13 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Display device
WO2011136018A1 (en) 2010-04-28 2011-11-03 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device and electronic appliance
US9349325B2 (en) 2010-04-28 2016-05-24 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device and electronic device
WO2011135987A1 (en) 2010-04-28 2011-11-03 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US9064473B2 (en) 2010-05-12 2015-06-23 Semiconductor Energy Laboratory Co., Ltd. Electro-optical display device and display method thereof
US9478185B2 (en) 2010-05-12 2016-10-25 Semiconductor Energy Laboratory Co., Ltd. Electro-optical display device and display method thereof
JP5797449B2 (en) 2010-05-13 2015-10-21 株式会社半導体エネルギー研究所 Semiconductor device evaluation method
TWI511236B (en) 2010-05-14 2015-12-01 Semiconductor Energy Lab Semiconductor device
US8664658B2 (en) 2010-05-14 2014-03-04 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
WO2011142371A1 (en) 2010-05-14 2011-11-17 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
WO2011142467A1 (en) 2010-05-14 2011-11-17 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US8624239B2 (en) 2010-05-20 2014-01-07 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
WO2011145738A1 (en) 2010-05-20 2011-11-24 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for driving semiconductor device
US9496405B2 (en) 2010-05-20 2016-11-15 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device including step of adding cation to oxide semiconductor layer
JP5923248B2 (en) 2010-05-20 2016-05-24 株式会社半導体エネルギー研究所 Semiconductor device
US9490368B2 (en) 2010-05-20 2016-11-08 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method of the same
WO2011145632A1 (en) 2010-05-21 2011-11-24 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of manufacturing the same
JP5852793B2 (en) 2010-05-21 2016-02-03 株式会社半導体エネルギー研究所 Method for manufacturing liquid crystal display device
CN102906980B (en) 2010-05-21 2015-08-19 株式会社半导体能源研究所 Semiconductor device and display unit
WO2011145633A1 (en) 2010-05-21 2011-11-24 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
JP5714973B2 (en) 2010-05-21 2015-05-07 株式会社半導体エネルギー研究所 Semiconductor device
WO2011145467A1 (en) 2010-05-21 2011-11-24 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
WO2011145537A1 (en) 2010-05-21 2011-11-24 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device
WO2011145468A1 (en) 2010-05-21 2011-11-24 Semiconductor Energy Laboratory Co., Ltd. Memory device and semiconductor device
WO2011145707A1 (en) 2010-05-21 2011-11-24 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and display device
WO2011145484A1 (en) 2010-05-21 2011-11-24 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
KR101808198B1 (en) 2010-05-21 2017-12-12 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Method for manufacturing semiconductor device
WO2011145538A1 (en) 2010-05-21 2011-11-24 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
WO2011145634A1 (en) 2010-05-21 2011-11-24 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US8629438B2 (en) 2010-05-21 2014-01-14 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
JP5766012B2 (en) 2010-05-21 2015-08-19 株式会社半導体エネルギー研究所 Liquid crystal display
JP5749975B2 (en) 2010-05-28 2015-07-15 株式会社半導体エネルギー研究所 Photodetector and touch panel
US8895375B2 (en) 2010-06-01 2014-11-25 Semiconductor Energy Laboratory Co., Ltd. Field effect transistor and method for manufacturing the same
US8779433B2 (en) 2010-06-04 2014-07-15 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
KR101894897B1 (en) 2010-06-04 2018-09-04 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device
WO2011152254A1 (en) 2010-06-04 2011-12-08 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
WO2011152286A1 (en) 2010-06-04 2011-12-08 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
WO2011155295A1 (en) 2010-06-10 2011-12-15 Semiconductor Energy Laboratory Co., Ltd. Dc/dc converter, power supply circuit, and semiconductor device
WO2011155302A1 (en) 2010-06-11 2011-12-15 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
CN102939659B (en) 2010-06-11 2016-08-17 株式会社半导体能源研究所 Semiconductor device and the manufacture method of semiconductor device
US8610180B2 (en) 2010-06-11 2013-12-17 Semiconductor Energy Laboratory Co., Ltd. Gas sensor and method for manufacturing the gas sensor
US9209314B2 (en) 2010-06-16 2015-12-08 Semiconductor Energy Laboratory Co., Ltd. Field effect transistor
JP5823740B2 (en) 2010-06-16 2015-11-25 株式会社半導体エネルギー研究所 I / O device
JP5797471B2 (en) 2010-06-16 2015-10-21 株式会社半導体エネルギー研究所 I / O device
WO2011158704A1 (en) 2010-06-18 2011-12-22 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
WO2011158703A1 (en) 2010-06-18 2011-12-22 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US8552425B2 (en) 2010-06-18 2013-10-08 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US8637802B2 (en) 2010-06-18 2014-01-28 Semiconductor Energy Laboratory Co., Ltd. Photosensor, semiconductor device including photosensor, and light measurement method using photosensor
WO2011162147A1 (en) 2010-06-23 2011-12-29 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
KR20120000499A (en) 2010-06-25 2012-01-02 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Transistor and semiconductor device
KR101746197B1 (en) 2010-06-25 2017-06-12 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Manufacturing method and test method of semiconductor device
WO2011162104A1 (en) 2010-06-25 2011-12-29 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for driving the same
US9437454B2 (en) 2010-06-29 2016-09-06 Semiconductor Energy Laboratory Co., Ltd. Wiring board, semiconductor device, and manufacturing methods thereof
KR101822526B1 (en) 2010-06-30 2018-01-26 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device and manufacturing method thereof
US9473714B2 (en) 2010-07-01 2016-10-18 Semiconductor Energy Laboratory Co., Ltd. Solid-state imaging device and semiconductor display device
US8441010B2 (en) 2010-07-01 2013-05-14 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
KR101801960B1 (en) 2010-07-01 2017-11-27 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Driving method of liquid crystal display device
US8642380B2 (en) 2010-07-02 2014-02-04 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of semiconductor device
KR102233958B1 (en) 2010-07-02 2021-03-29 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device and manufacturing method thereof
WO2012002186A1 (en) 2010-07-02 2012-01-05 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
KR20130090405A (en) 2010-07-02 2013-08-13 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Liquid crystal display device
US8605059B2 (en) 2010-07-02 2013-12-10 Semiconductor Energy Laboratory Co., Ltd. Input/output device and driving method thereof
CN107452630B (en) 2010-07-02 2020-11-27 株式会社半导体能源研究所 Semiconductor device with a plurality of semiconductor chips
US9336739B2 (en) 2010-07-02 2016-05-10 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device
JP5792524B2 (en) 2010-07-02 2015-10-14 株式会社半導体エネルギー研究所 apparatus
TWI541782B (en) 2010-07-02 2016-07-11 半導體能源研究所股份有限公司 Liquid crystal display device
WO2012008390A1 (en) 2010-07-16 2012-01-19 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
WO2012008304A1 (en) 2010-07-16 2012-01-19 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US8785241B2 (en) 2010-07-16 2014-07-22 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
WO2012008286A1 (en) 2010-07-16 2012-01-19 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
JP5917035B2 (en) 2010-07-26 2016-05-11 株式会社半導体エネルギー研究所 Semiconductor device
KR102143469B1 (en) 2010-07-27 2020-08-11 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device and method of manufacturing the same
JP5735872B2 (en) 2010-07-27 2015-06-17 株式会社半導体エネルギー研究所 Semiconductor device
TWI565001B (en) 2010-07-28 2017-01-01 半導體能源研究所股份有限公司 Semiconductor device and method for driving the same
JP5846789B2 (en) 2010-07-29 2016-01-20 株式会社半導体エネルギー研究所 Semiconductor device
WO2012014786A1 (en) 2010-07-30 2012-02-02 Semiconductor Energy Laboratory Co., Ltd. Semicondcutor device and manufacturing method thereof
US8928466B2 (en) 2010-08-04 2015-01-06 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US8537600B2 (en) 2010-08-04 2013-09-17 Semiconductor Energy Laboratory Co., Ltd. Low off-state leakage current semiconductor memory device
KR101842181B1 (en) 2010-08-04 2018-03-26 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device
JP5739257B2 (en) 2010-08-05 2015-06-24 株式会社半導体エネルギー研究所 Method for manufacturing semiconductor device
KR101809105B1 (en) 2010-08-06 2017-12-14 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor integrated circuit
JP5671418B2 (en) 2010-08-06 2015-02-18 株式会社半導体エネルギー研究所 Driving method of semiconductor device
JP5832181B2 (en) 2010-08-06 2015-12-16 株式会社半導体エネルギー研究所 Liquid crystal display
US8422272B2 (en) 2010-08-06 2013-04-16 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and driving method thereof
TWI555128B (en) 2010-08-06 2016-10-21 半導體能源研究所股份有限公司 Semiconductor device and driving method thereof
TWI545587B (en) 2010-08-06 2016-08-11 半導體能源研究所股份有限公司 Semiconductor device and method for driving semiconductor device
WO2012017844A1 (en) 2010-08-06 2012-02-09 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US8467231B2 (en) 2010-08-06 2013-06-18 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and driving method thereof
US8467232B2 (en) 2010-08-06 2013-06-18 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
TWI524347B (en) 2010-08-06 2016-03-01 半導體能源研究所股份有限公司 Semiconductor device and method for driving semiconductor device
US8792284B2 (en) 2010-08-06 2014-07-29 Semiconductor Energy Laboratory Co., Ltd. Oxide semiconductor memory device
US8803164B2 (en) 2010-08-06 2014-08-12 Semiconductor Energy Laboratory Co., Ltd. Solid-state image sensing device and semiconductor display device
TWI688047B (en) 2010-08-06 2020-03-11 半導體能源研究所股份有限公司 Semiconductor device
JP5848912B2 (en) 2010-08-16 2016-01-27 株式会社半導体エネルギー研究所 Control circuit for liquid crystal display device, liquid crystal display device, and electronic apparatus including the liquid crystal display device
US9129703B2 (en) 2010-08-16 2015-09-08 Semiconductor Energy Laboratory Co., Ltd. Method for driving semiconductor memory device
US9343480B2 (en) 2010-08-16 2016-05-17 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
TWI587405B (en) 2010-08-16 2017-06-11 半導體能源研究所股份有限公司 Manufacturing method of semiconductor device
TWI508294B (en) 2010-08-19 2015-11-11 Semiconductor Energy Lab Semiconductor device
US8759820B2 (en) 2010-08-20 2014-06-24 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US8685787B2 (en) 2010-08-25 2014-04-01 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of semiconductor device
US8508276B2 (en) 2010-08-25 2013-08-13 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device including latch circuit
US8883555B2 (en) 2010-08-25 2014-11-11 Semiconductor Energy Laboratory Co., Ltd. Electronic device, manufacturing method of electronic device, and sputtering target
US9058047B2 (en) 2010-08-26 2015-06-16 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
JP5727892B2 (en) 2010-08-26 2015-06-03 株式会社半導体エネルギー研究所 Semiconductor device
JP2013009285A (en) 2010-08-26 2013-01-10 Semiconductor Energy Lab Co Ltd Signal processing circuit and method of driving the same
KR20120020073A (en) 2010-08-27 2012-03-07 가부시키가이샤 한도오따이 에네루기 켄큐쇼 A method for designing a semiconductor
US8450123B2 (en) 2010-08-27 2013-05-28 Semiconductor Energy Laboratory Co., Ltd. Oxygen diffusion evaluation method of oxide film stacked body
JP5806043B2 (en) 2010-08-27 2015-11-10 株式会社半導体エネルギー研究所 Method for manufacturing semiconductor device
JP5763474B2 (en) 2010-08-27 2015-08-12 株式会社半導体エネルギー研究所 Optical sensor
JP5674594B2 (en) 2010-08-27 2015-02-25 株式会社半導体エネルギー研究所 Semiconductor device and driving method of semiconductor device
KR101928897B1 (en) 2010-08-27 2018-12-13 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Memory device and semiconductor device
US8603841B2 (en) 2010-08-27 2013-12-10 Semiconductor Energy Laboratory Co., Ltd. Manufacturing methods of semiconductor device and light-emitting display device
US8593858B2 (en) 2010-08-31 2013-11-26 Semiconductor Energy Laboratory Co., Ltd. Driving method of semiconductor device
US8575610B2 (en) 2010-09-02 2013-11-05 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for driving the same
US8634228B2 (en) 2010-09-02 2014-01-21 Semiconductor Energy Laboratory Co., Ltd. Driving method of semiconductor device
KR20180105252A (en) 2010-09-03 2018-09-27 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Field effect transistor and method for manufacturing semiconductor device
WO2012029596A1 (en) 2010-09-03 2012-03-08 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
WO2012029638A1 (en) 2010-09-03 2012-03-08 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
WO2012029612A1 (en) 2010-09-03 2012-03-08 Semiconductor Energy Laboratory Co., Ltd. Sputtering target and method for manufacturing semiconductor device
US8487844B2 (en) 2010-09-08 2013-07-16 Semiconductor Energy Laboratory Co., Ltd. EL display device and electronic device including the same
JP2012256819A (en) 2010-09-08 2012-12-27 Semiconductor Energy Lab Co Ltd Semiconductor device
US8520426B2 (en) 2010-09-08 2013-08-27 Semiconductor Energy Laboratory Co., Ltd. Method for driving semiconductor device
US8797487B2 (en) 2010-09-10 2014-08-05 Semiconductor Energy Laboratory Co., Ltd. Transistor, liquid crystal display device, and manufacturing method thereof
KR101824125B1 (en) 2010-09-10 2018-02-01 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Display device
KR20120026970A (en) 2010-09-10 2012-03-20 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device and light-emitting device
US9142568B2 (en) 2010-09-10 2015-09-22 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing light-emitting display device
US8766253B2 (en) 2010-09-10 2014-07-01 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
JP5815337B2 (en) 2010-09-13 2015-11-17 株式会社半導体エネルギー研究所 Semiconductor device
US8592879B2 (en) 2010-09-13 2013-11-26 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US8546161B2 (en) 2010-09-13 2013-10-01 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of thin film transistor and liquid crystal display device
KR101932576B1 (en) 2010-09-13 2018-12-26 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device and method for manufacturing the same
US8835917B2 (en) 2010-09-13 2014-09-16 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, power diode, and rectifier
US8558960B2 (en) 2010-09-13 2013-10-15 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device and method for manufacturing the same
JP2012256821A (en) 2010-09-13 2012-12-27 Semiconductor Energy Lab Co Ltd Memory device
TWI608486B (en) 2010-09-13 2017-12-11 半導體能源研究所股份有限公司 Semiconductor device
KR101952235B1 (en) 2010-09-13 2019-02-26 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Display device
US9496743B2 (en) 2010-09-13 2016-11-15 Semiconductor Energy Laboratory Co., Ltd. Power receiving device and wireless power feed system
US9546416B2 (en) 2010-09-13 2017-01-17 Semiconductor Energy Laboratory Co., Ltd. Method of forming crystalline oxide semiconductor film
US8871565B2 (en) 2010-09-13 2014-10-28 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
KR101872926B1 (en) 2010-09-13 2018-06-29 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device
US8647919B2 (en) 2010-09-13 2014-02-11 Semiconductor Energy Laboratory Co., Ltd. Light-emitting display device and method for manufacturing the same
JP5827520B2 (en) 2010-09-13 2015-12-02 株式会社半導体エネルギー研究所 Semiconductor memory device
US8664097B2 (en) 2010-09-13 2014-03-04 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of semiconductor device
TWI539453B (en) 2010-09-14 2016-06-21 半導體能源研究所股份有限公司 Memory device and semiconductor device
US9230994B2 (en) 2010-09-15 2016-01-05 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device
KR20180124158A (en) 2010-09-15 2018-11-20 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Liquid crystal display device and manufacturing method thereof
JP2012256012A (en) 2010-09-15 2012-12-27 Semiconductor Energy Lab Co Ltd Display device
KR20140054465A (en) 2010-09-15 2014-05-08 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device and display device
KR101856722B1 (en) 2010-09-22 2018-05-10 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Power-insulated-gate field-effect transistor
US8767443B2 (en) 2010-09-22 2014-07-01 Semiconductor Energy Laboratory Co., Ltd. Semiconductor memory device and method for inspecting the same
US8792260B2 (en) 2010-09-27 2014-07-29 Semiconductor Energy Laboratory Co., Ltd. Rectifier circuit and semiconductor device using the same
TWI574259B (en) 2010-09-29 2017-03-11 半導體能源研究所股份有限公司 Semiconductor memory device and method for driving the same
TWI539456B (en) 2010-10-05 2016-06-21 半導體能源研究所股份有限公司 Semiconductor memory device and driving method thereof
US9437743B2 (en) 2010-10-07 2016-09-06 Semiconductor Energy Laboratory Co., Ltd. Thin film element, semiconductor device, and method for manufacturing the same
US8716646B2 (en) 2010-10-08 2014-05-06 Semiconductor Energy Laboratory Co., Ltd. Photoelectric conversion device and method for operating the same
US8679986B2 (en) 2010-10-14 2014-03-25 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing display device
TWI565079B (en) 2010-10-20 2017-01-01 半導體能源研究所股份有限公司 Semiconductor device and method for manufacturing semiconductor device
US8803143B2 (en) 2010-10-20 2014-08-12 Semiconductor Energy Laboratory Co., Ltd. Thin film transistor including buffer layers with high resistivity
TWI543158B (en) 2010-10-25 2016-07-21 半導體能源研究所股份有限公司 Semiconductor memory device and driving method thereof
WO2012057296A1 (en) 2010-10-29 2012-05-03 Semiconductor Energy Laboratory Co., Ltd. Storage device
KR101924231B1 (en) 2010-10-29 2018-11-30 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor memory device
JP5771505B2 (en) 2010-10-29 2015-09-02 株式会社半導体エネルギー研究所 Receiver circuit
CN105503618A (en) 2010-11-02 2016-04-20 宇部兴产株式会社 (Amide amino alkane) metal compound, method of manufacturing metal-containing thin film using said metal compound
US8916866B2 (en) 2010-11-03 2014-12-23 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US8569754B2 (en) 2010-11-05 2013-10-29 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US9087744B2 (en) 2010-11-05 2015-07-21 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for driving transistor
KR101952733B1 (en) 2010-11-05 2019-02-27 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device
TWI555205B (en) 2010-11-05 2016-10-21 半導體能源研究所股份有限公司 Semiconductor device and method for manufacturing the same
KR102130257B1 (en) 2010-11-05 2020-07-03 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device
US8957468B2 (en) 2010-11-05 2015-02-17 Semiconductor Energy Laboratory Co., Ltd. Variable capacitor and liquid crystal display device
JP6010291B2 (en) 2010-11-05 2016-10-19 株式会社半導体エネルギー研究所 Driving method of display device
US8902637B2 (en) 2010-11-08 2014-12-02 Semiconductor Energy Laboratory Co., Ltd. Semiconductor memory device comprising inverting amplifier circuit and driving method thereof
TWI535014B (en) 2010-11-11 2016-05-21 半導體能源研究所股份有限公司 Semiconductor device and method for manufacturing the same
JP5770068B2 (en) 2010-11-12 2015-08-26 株式会社半導体エネルギー研究所 Semiconductor device
US8854865B2 (en) 2010-11-24 2014-10-07 Semiconductor Energy Laboratory Co., Ltd. Semiconductor memory device
US8936965B2 (en) 2010-11-26 2015-01-20 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US8816425B2 (en) 2010-11-30 2014-08-26 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US8629496B2 (en) 2010-11-30 2014-01-14 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US8823092B2 (en) 2010-11-30 2014-09-02 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US8809852B2 (en) 2010-11-30 2014-08-19 Semiconductor Energy Laboratory Co., Ltd. Semiconductor film, semiconductor element, semiconductor device, and method for manufacturing the same
US9103724B2 (en) 2010-11-30 2015-08-11 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device comprising photosensor comprising oxide semiconductor, method for driving the semiconductor device, method for driving the photosensor, and electronic device
TWI562379B (en) 2010-11-30 2016-12-11 Semiconductor Energy Lab Co Ltd Semiconductor device and method for manufacturing semiconductor device
US8461630B2 (en) 2010-12-01 2013-06-11 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
KR20240025046A (en) 2010-12-03 2024-02-26 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Oxide semiconductor film and semiconductor device
JP5908263B2 (en) 2010-12-03 2016-04-26 株式会社半導体エネルギー研究所 DC-DC converter
TWI632551B (en) 2010-12-03 2018-08-11 半導體能源研究所股份有限公司 Integrated circuit, method for driving the same, and semiconductor device
US8957462B2 (en) 2010-12-09 2015-02-17 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device comprising an N-type transistor with an N-type semiconductor containing nitrogen as a gate
TWI534905B (en) 2010-12-10 2016-05-21 半導體能源研究所股份有限公司 Display device and method for manufacturing the same
JP2012256020A (en) 2010-12-15 2012-12-27 Semiconductor Energy Lab Co Ltd Semiconductor device and driving method for the same
US9202822B2 (en) 2010-12-17 2015-12-01 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US8730416B2 (en) 2010-12-17 2014-05-20 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device
JP2012142562A (en) 2010-12-17 2012-07-26 Semiconductor Energy Lab Co Ltd Semiconductor memory device
US8894825B2 (en) 2010-12-17 2014-11-25 Semiconductor Energy Laboratory Co., Ltd. Sputtering target, method for manufacturing the same, manufacturing semiconductor device
US9024317B2 (en) 2010-12-24 2015-05-05 Semiconductor Energy Laboratory Co., Ltd. Semiconductor circuit, method for driving the same, storage device, register circuit, display device, and electronic device
JP5975635B2 (en) 2010-12-28 2016-08-23 株式会社半導体エネルギー研究所 Semiconductor device
US8941112B2 (en) 2010-12-28 2015-01-27 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
JP2012151453A (en) 2010-12-28 2012-08-09 Semiconductor Energy Lab Co Ltd Semiconductor device and driving method of the same
JP6030298B2 (en) 2010-12-28 2016-11-24 株式会社半導体エネルギー研究所 Buffer storage device and signal processing circuit
JP5973165B2 (en) 2010-12-28 2016-08-23 株式会社半導体エネルギー研究所 Semiconductor device
WO2012090799A1 (en) 2010-12-28 2012-07-05 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
JP5864054B2 (en) 2010-12-28 2016-02-17 株式会社半導体エネルギー研究所 Semiconductor device
US8883556B2 (en) 2010-12-28 2014-11-11 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US9443984B2 (en) 2010-12-28 2016-09-13 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
JP5852874B2 (en) 2010-12-28 2016-02-03 株式会社半導体エネルギー研究所 Semiconductor device
US9048142B2 (en) 2010-12-28 2015-06-02 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
KR101981808B1 (en) 2010-12-28 2019-08-28 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device and method for manufacturing the same
JP5993141B2 (en) 2010-12-28 2016-09-14 株式会社半導体エネルギー研究所 Storage device
TWI525614B (en) 2011-01-05 2016-03-11 半導體能源研究所股份有限公司 Storage element, storage device, and signal processing circuit
US8921948B2 (en) 2011-01-12 2014-12-30 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
TWI570809B (en) 2011-01-12 2017-02-11 半導體能源研究所股份有限公司 Semiconductor device and manufacturing method thereof
TWI535032B (en) 2011-01-12 2016-05-21 半導體能源研究所股份有限公司 Method for manufacturing semiconductor device
US8912080B2 (en) 2011-01-12 2014-12-16 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of the semiconductor device
US8536571B2 (en) 2011-01-12 2013-09-17 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of semiconductor device
US8575678B2 (en) 2011-01-13 2013-11-05 Semiconductor Energy Laboratory Co., Ltd. Semiconductor memory device with floating gate
US8421071B2 (en) 2011-01-13 2013-04-16 Semiconductor Energy Laboratory Co., Ltd. Memory device
JP5859839B2 (en) 2011-01-14 2016-02-16 株式会社半導体エネルギー研究所 Storage element driving method and storage element
KR102026718B1 (en) 2011-01-14 2019-09-30 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Memory device, semiconductor device, and detecting method
TWI492368B (en) 2011-01-14 2015-07-11 Semiconductor Energy Lab Semiconductor memory device
US8916867B2 (en) 2011-01-20 2014-12-23 Semiconductor Energy Laboratory Co., Ltd. Oxide semiconductor element and semiconductor device
WO2012102182A1 (en) 2011-01-26 2012-08-02 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
TWI657580B (en) 2011-01-26 2019-04-21 日商半導體能源研究所股份有限公司 Semiconductor device and manufacturing method thereof
JP5798933B2 (en) 2011-01-26 2015-10-21 株式会社半導体エネルギー研究所 Signal processing circuit
CN103348464B (en) 2011-01-26 2016-01-13 株式会社半导体能源研究所 Semiconductor device and manufacture method thereof
TWI564890B (en) 2011-01-26 2017-01-01 半導體能源研究所股份有限公司 Memory device and semiconductor device
TWI570920B (en) 2011-01-26 2017-02-11 半導體能源研究所股份有限公司 Semiconductor device and manufacturing method thereof
TWI602303B (en) 2011-01-26 2017-10-11 半導體能源研究所股份有限公司 Semiconductor device and manufacturing method thereof
WO2012102181A1 (en) 2011-01-27 2012-08-02 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
TWI525619B (en) 2011-01-27 2016-03-11 半導體能源研究所股份有限公司 Memory circuit
DE112012000601T5 (en) 2011-01-28 2014-01-30 Semiconductor Energy Laboratory Co., Ltd. Method for producing a semiconductor device and semiconductor device
US8634230B2 (en) 2011-01-28 2014-01-21 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for driving the same
US9494829B2 (en) 2011-01-28 2016-11-15 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and liquid crystal display device containing the same
KR101899375B1 (en) 2011-01-28 2018-09-17 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device
US8513773B2 (en) 2011-02-02 2013-08-20 Semiconductor Energy Laboratory Co., Ltd. Capacitor and semiconductor device including dielectric and N-type semiconductor
TWI520273B (en) 2011-02-02 2016-02-01 半導體能源研究所股份有限公司 Semiconductor memory device
US8780614B2 (en) 2011-02-02 2014-07-15 Semiconductor Energy Laboratory Co., Ltd. Semiconductor memory device
US9799773B2 (en) 2011-02-02 2017-10-24 Semiconductor Energy Laboratory Co., Ltd. Transistor and semiconductor device
US9431400B2 (en) 2011-02-08 2016-08-30 Semiconductor Energy Laboratory Co., Ltd. Semiconductor memory device and method for manufacturing the same
US8787083B2 (en) 2011-02-10 2014-07-22 Semiconductor Energy Laboratory Co., Ltd. Memory circuit
TWI569041B (en) 2011-02-14 2017-02-01 半導體能源研究所股份有限公司 Display device
KR101899880B1 (en) 2011-02-17 2018-09-18 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Programmable lsi
US8975680B2 (en) 2011-02-17 2015-03-10 Semiconductor Energy Laboratory Co., Ltd. Semiconductor memory device and method manufacturing semiconductor memory device
US8643007B2 (en) 2011-02-23 2014-02-04 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US8709920B2 (en) 2011-02-24 2014-04-29 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
JP5557773B2 (en) * 2011-02-24 2014-07-23 富士フイルム株式会社 Radiation image detecting apparatus, radiographic cassette and radiographic apparatus
US9443455B2 (en) 2011-02-25 2016-09-13 Semiconductor Energy Laboratory Co., Ltd. Display device having a plurality of pixels
US9691772B2 (en) 2011-03-03 2017-06-27 Semiconductor Energy Laboratory Co., Ltd. Semiconductor memory device including memory cell which includes transistor and capacitor
JP5898527B2 (en) 2011-03-04 2016-04-06 株式会社半導体エネルギー研究所 Semiconductor device
US8841664B2 (en) 2011-03-04 2014-09-23 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US8659015B2 (en) 2011-03-04 2014-02-25 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US8785933B2 (en) 2011-03-04 2014-07-22 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US9646829B2 (en) 2011-03-04 2017-05-09 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of semiconductor device
US9023684B2 (en) 2011-03-04 2015-05-05 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US8659957B2 (en) 2011-03-07 2014-02-25 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of driving semiconductor device
US9099437B2 (en) 2011-03-08 2015-08-04 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
JP5827145B2 (en) 2011-03-08 2015-12-02 株式会社半導体エネルギー研究所 Signal processing circuit
US8625085B2 (en) 2011-03-08 2014-01-07 Semiconductor Energy Laboratory Co., Ltd. Defect evaluation method for semiconductor
US8541781B2 (en) 2011-03-10 2013-09-24 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US8772849B2 (en) 2011-03-10 2014-07-08 Semiconductor Energy Laboratory Co., Ltd. Semiconductor memory device
WO2012121265A1 (en) 2011-03-10 2012-09-13 Semiconductor Energy Laboratory Co., Ltd. Memory device and method for manufacturing the same
JP2012209543A (en) 2011-03-11 2012-10-25 Semiconductor Energy Lab Co Ltd Semiconductor device
TWI521612B (en) 2011-03-11 2016-02-11 半導體能源研究所股份有限公司 Method of manufacturing semiconductor device
TWI541904B (en) 2011-03-11 2016-07-11 半導體能源研究所股份有限公司 Method of manufacturing semiconductor device
US8760903B2 (en) 2011-03-11 2014-06-24 Semiconductor Energy Laboratory Co., Ltd. Storage circuit
JP5657433B2 (en) 2011-03-11 2015-01-21 富士フイルム株式会社 Thin film transistor manufacturing method, thin film transistor, display device, sensor, and X-ray digital imaging device
JP5933300B2 (en) 2011-03-16 2016-06-08 株式会社半導体エネルギー研究所 Semiconductor device
KR101900525B1 (en) 2011-03-18 2018-09-19 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Oxide semiconductor film, semiconductor device, and manufacturing method of semiconductor device
JP5933897B2 (en) 2011-03-18 2016-06-15 株式会社半導体エネルギー研究所 Semiconductor device
US8859330B2 (en) 2011-03-23 2014-10-14 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
JP5839474B2 (en) 2011-03-24 2016-01-06 株式会社半導体エネルギー研究所 Signal processing circuit
US8686416B2 (en) 2011-03-25 2014-04-01 Semiconductor Energy Laboratory Co., Ltd. Oxide semiconductor film and semiconductor device
TWI538215B (en) 2011-03-25 2016-06-11 半導體能源研究所股份有限公司 Field-effect transistor, and memory and semiconductor circuit including the same
US8956944B2 (en) 2011-03-25 2015-02-17 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US9219159B2 (en) 2011-03-25 2015-12-22 Semiconductor Energy Laboratory Co., Ltd. Method for forming oxide semiconductor film and method for manufacturing semiconductor device
US8987728B2 (en) 2011-03-25 2015-03-24 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of manufacturing semiconductor device
US9012904B2 (en) 2011-03-25 2015-04-21 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
TWI545652B (en) 2011-03-25 2016-08-11 半導體能源研究所股份有限公司 Semiconductor device and manufacturing method thereof
JP6053098B2 (en) 2011-03-28 2016-12-27 株式会社半導体エネルギー研究所 Semiconductor device
JP5879165B2 (en) 2011-03-30 2016-03-08 株式会社半導体エネルギー研究所 Semiconductor device
US8927329B2 (en) 2011-03-30 2015-01-06 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing oxide semiconductor device with improved electronic properties
US8686486B2 (en) 2011-03-31 2014-04-01 Semiconductor Energy Laboratory Co., Ltd. Memory device
US9082860B2 (en) 2011-03-31 2015-07-14 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
TWI567735B (en) 2011-03-31 2017-01-21 半導體能源研究所股份有限公司 Memory circuit, memory unit, and signal processing circuit
US8541266B2 (en) 2011-04-01 2013-09-24 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
JP5982147B2 (en) 2011-04-01 2016-08-31 株式会社半導体エネルギー研究所 Light emitting device
US9960278B2 (en) 2011-04-06 2018-05-01 Yuhei Sato Manufacturing method of semiconductor device
US9093538B2 (en) 2011-04-08 2015-07-28 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US9012905B2 (en) 2011-04-08 2015-04-21 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device including transistor comprising oxide semiconductor and method for manufacturing the same
US8743590B2 (en) 2011-04-08 2014-06-03 Semiconductor Energy Laboratory Co., Ltd. Memory device and semiconductor device using the same
US9142320B2 (en) 2011-04-08 2015-09-22 Semiconductor Energy Laboratory Co., Ltd. Memory element and signal processing circuit
US8854867B2 (en) 2011-04-13 2014-10-07 Semiconductor Energy Laboratory Co., Ltd. Memory device and driving method of the memory device
JP5883699B2 (en) 2011-04-13 2016-03-15 株式会社半導体エネルギー研究所 Programmable LSI
US9478668B2 (en) 2011-04-13 2016-10-25 Semiconductor Energy Laboratory Co., Ltd. Oxide semiconductor film and semiconductor device
US8779488B2 (en) 2011-04-15 2014-07-15 Semiconductor Energy Laboratory Co., Ltd. Semiconductor memory device
US9070776B2 (en) 2011-04-15 2015-06-30 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and driving method thereof
TWI458110B (en) * 2011-04-15 2014-10-21 E Ink Holdings Inc Photodiode, light sensor device and preparation method thereof
JP6045176B2 (en) 2011-04-15 2016-12-14 株式会社半導体エネルギー研究所 Semiconductor device
US8878174B2 (en) 2011-04-15 2014-11-04 Semiconductor Energy Laboratory Co., Ltd. Semiconductor element, memory circuit, integrated circuit, and driving method of the integrated circuit
JP6001900B2 (en) 2011-04-21 2016-10-05 株式会社半導体エネルギー研究所 Signal processing circuit
US8932913B2 (en) 2011-04-22 2015-01-13 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of semiconductor device
US10079053B2 (en) 2011-04-22 2018-09-18 Semiconductor Energy Laboratory Co., Ltd. Memory element and memory device
US9331206B2 (en) 2011-04-22 2016-05-03 Semiconductor Energy Laboratory Co., Ltd. Oxide material and semiconductor device
US8916868B2 (en) 2011-04-22 2014-12-23 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing semiconductor device
TWI548057B (en) 2011-04-22 2016-09-01 半導體能源研究所股份有限公司 Semiconductor device
US8878288B2 (en) 2011-04-22 2014-11-04 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US8809854B2 (en) 2011-04-22 2014-08-19 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
JP5946683B2 (en) 2011-04-22 2016-07-06 株式会社半導体エネルギー研究所 Semiconductor device
US9006803B2 (en) 2011-04-22 2015-04-14 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing thereof
CN102760697B (en) 2011-04-27 2016-08-03 株式会社半导体能源研究所 The manufacture method of semiconductor device
US8681533B2 (en) 2011-04-28 2014-03-25 Semiconductor Energy Laboratory Co., Ltd. Memory circuit, signal processing circuit, and electronic device
US9935622B2 (en) 2011-04-28 2018-04-03 Semiconductor Energy Laboratory Co., Ltd. Comparator and semiconductor device including comparator
KR101919056B1 (en) 2011-04-28 2018-11-15 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor circuit
US8729545B2 (en) 2011-04-28 2014-05-20 Semiconductor Energy Laboratory Co., Ltd. Semiconductor memory device
US8848464B2 (en) 2011-04-29 2014-09-30 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of driving semiconductor device
KR101963457B1 (en) 2011-04-29 2019-03-28 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device and driving method thereof
US9614094B2 (en) 2011-04-29 2017-04-04 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device including oxide semiconductor layer and method for driving the same
US8446171B2 (en) 2011-04-29 2013-05-21 Semiconductor Energy Laboratory Co., Ltd. Signal processing unit
US8785923B2 (en) 2011-04-29 2014-07-22 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
TWI525615B (en) 2011-04-29 2016-03-11 半導體能源研究所股份有限公司 Semiconductor storage device
US8476927B2 (en) 2011-04-29 2013-07-02 Semiconductor Energy Laboratory Co., Ltd. Programmable logic device
US9111795B2 (en) 2011-04-29 2015-08-18 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device with capacitor connected to memory element through oxide semiconductor film
KR102021908B1 (en) 2011-05-03 2019-09-18 삼성전자주식회사 Optical touch screen apparatus and method of driving the optical touch screen apparatus
WO2012153697A1 (en) 2011-05-06 2012-11-15 Semiconductor Energy Laboratory Co., Ltd. Semiconductor memory device
WO2012153473A1 (en) 2011-05-06 2012-11-15 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US8709922B2 (en) 2011-05-06 2014-04-29 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US8809928B2 (en) 2011-05-06 2014-08-19 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, memory device, and method for manufacturing the semiconductor device
TWI568181B (en) 2011-05-06 2017-01-21 半導體能源研究所股份有限公司 Logic circuit and semiconductor device
US9117701B2 (en) 2011-05-06 2015-08-25 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US9443844B2 (en) 2011-05-10 2016-09-13 Semiconductor Energy Laboratory Co., Ltd. Gain cell semiconductor memory device and driving method thereof
TWI541978B (en) 2011-05-11 2016-07-11 半導體能源研究所股份有限公司 Semiconductor device and method for driving semiconductor device
US8946066B2 (en) 2011-05-11 2015-02-03 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing semiconductor device
TWI557711B (en) 2011-05-12 2016-11-11 半導體能源研究所股份有限公司 Method for driving display device
US8847233B2 (en) 2011-05-12 2014-09-30 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device having a trenched insulating layer coated with an oxide semiconductor film
WO2012157472A1 (en) 2011-05-13 2012-11-22 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
JP5959296B2 (en) 2011-05-13 2016-08-02 株式会社半導体エネルギー研究所 Semiconductor device and manufacturing method thereof
US9397222B2 (en) 2011-05-13 2016-07-19 Semiconductor Energy Laboratory Co., Ltd. Display device and electronic device
US8897049B2 (en) 2011-05-13 2014-11-25 Semiconductor Energy Laboratories Co., Ltd. Semiconductor device and memory device including semiconductor device
KR101921772B1 (en) 2011-05-13 2018-11-23 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device
KR101952570B1 (en) 2011-05-13 2019-02-27 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device and method of manufacturing the same
US9048788B2 (en) 2011-05-13 2015-06-02 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device comprising a photoelectric conversion portion
TWI536502B (en) 2011-05-13 2016-06-01 半導體能源研究所股份有限公司 Memory circuit and electronic device
KR101940570B1 (en) 2011-05-13 2019-01-21 가부시키가이샤 한도오따이 에네루기 켄큐쇼 El display device and electronic device
US8564331B2 (en) 2011-05-13 2013-10-22 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US9093539B2 (en) 2011-05-13 2015-07-28 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
JP5886128B2 (en) 2011-05-13 2016-03-16 株式会社半導体エネルギー研究所 Semiconductor device
WO2012157532A1 (en) 2011-05-16 2012-11-22 Semiconductor Energy Laboratory Co., Ltd. Programmable logic device
TWI570891B (en) 2011-05-17 2017-02-11 半導體能源研究所股份有限公司 Semiconductor device
TWI571058B (en) 2011-05-18 2017-02-11 半導體能源研究所股份有限公司 Semiconductor device and method of driving semiconductor device
TWI552150B (en) 2011-05-18 2016-10-01 半導體能源研究所股份有限公司 Semiconductor storage device
US8779799B2 (en) 2011-05-19 2014-07-15 Semiconductor Energy Laboratory Co., Ltd. Logic circuit
KR102081792B1 (en) 2011-05-19 2020-02-26 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Arithmetic circuit and method of driving the same
US8581625B2 (en) 2011-05-19 2013-11-12 Semiconductor Energy Laboratory Co., Ltd. Programmable logic device
US9117920B2 (en) 2011-05-19 2015-08-25 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device using oxide semiconductor
US8837203B2 (en) 2011-05-19 2014-09-16 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
JP6014362B2 (en) 2011-05-19 2016-10-25 株式会社半導体エネルギー研究所 Method for manufacturing semiconductor device
KR101991735B1 (en) 2011-05-19 2019-06-21 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor integrated circuit
KR102093909B1 (en) 2011-05-19 2020-03-26 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Circuit and method of driving the same
JP5820336B2 (en) 2011-05-20 2015-11-24 株式会社半導体エネルギー研究所 Semiconductor device
US9336845B2 (en) 2011-05-20 2016-05-10 Semiconductor Energy Laboratory Co., Ltd. Register circuit including a volatile memory and a nonvolatile memory
JP6030334B2 (en) 2011-05-20 2016-11-24 株式会社半導体エネルギー研究所 Storage device
JP6013682B2 (en) 2011-05-20 2016-10-25 株式会社半導体エネルギー研究所 Driving method of semiconductor device
JP5951351B2 (en) 2011-05-20 2016-07-13 株式会社半導体エネルギー研究所 Adder and full adder
TWI559683B (en) 2011-05-20 2016-11-21 半導體能源研究所股份有限公司 Semiconductor integrated circuit
JP6013680B2 (en) 2011-05-20 2016-10-25 株式会社半導体エネルギー研究所 Semiconductor device
US8508256B2 (en) 2011-05-20 2013-08-13 Semiconductor Energy Laboratory Co., Ltd. Semiconductor integrated circuit
TWI614995B (en) 2011-05-20 2018-02-11 半導體能源研究所股份有限公司 Phase locked loop and semiconductor device using the same
TWI557739B (en) 2011-05-20 2016-11-11 半導體能源研究所股份有限公司 Semiconductor integrated circuit
JP5892852B2 (en) 2011-05-20 2016-03-23 株式会社半導体エネルギー研究所 Programmable logic device
JP5947099B2 (en) 2011-05-20 2016-07-06 株式会社半導体エネルギー研究所 Semiconductor device
CN102789808B (en) 2011-05-20 2018-03-06 株式会社半导体能源研究所 Storage arrangement and the method for driving storage arrangement
TWI616873B (en) 2011-05-20 2018-03-01 半導體能源研究所股份有限公司 Memory device and signal processing circuit
WO2012161059A1 (en) 2011-05-20 2012-11-29 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for driving the same
JP5886496B2 (en) 2011-05-20 2016-03-16 株式会社半導体エネルギー研究所 Semiconductor device
JP5820335B2 (en) 2011-05-20 2015-11-24 株式会社半導体エネルギー研究所 Semiconductor device
WO2012160963A1 (en) 2011-05-20 2012-11-29 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
JP5936908B2 (en) 2011-05-20 2016-06-22 株式会社半導体エネルギー研究所 Parity bit output circuit and parity check circuit
JP6082189B2 (en) 2011-05-20 2017-02-15 株式会社半導体エネルギー研究所 Storage device and signal processing circuit
JP6091083B2 (en) 2011-05-20 2017-03-08 株式会社半導体エネルギー研究所 Storage device
US20120298998A1 (en) 2011-05-25 2012-11-29 Semiconductor Energy Laboratory Co., Ltd. Method for forming oxide semiconductor film, semiconductor device, and method for manufacturing semiconductor device
US9171840B2 (en) 2011-05-26 2015-10-27 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
WO2012161003A1 (en) 2011-05-26 2012-11-29 Semiconductor Energy Laboratory Co., Ltd. Divider circuit and semiconductor device using the same
TWI534956B (en) 2011-05-27 2016-05-21 半導體能源研究所股份有限公司 Trimming circuit and method for driving trimming circuit
JP5912844B2 (en) 2011-05-31 2016-04-27 株式会社半導体エネルギー研究所 Programmable logic device
US8669781B2 (en) 2011-05-31 2014-03-11 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US9467047B2 (en) 2011-05-31 2016-10-11 Semiconductor Energy Laboratory Co., Ltd. DC-DC converter, power source circuit, and semiconductor device
JP5890251B2 (en) 2011-06-08 2016-03-22 株式会社半導体エネルギー研究所 Communication method
KR102492593B1 (en) 2011-06-08 2023-01-26 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Sputtering target, method for manufacturing sputtering target, and method for forming thin film
JP2013016243A (en) 2011-06-09 2013-01-24 Semiconductor Energy Lab Co Ltd Memory device
US8958263B2 (en) 2011-06-10 2015-02-17 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
JP6005401B2 (en) 2011-06-10 2016-10-12 株式会社半導体エネルギー研究所 Method for manufacturing semiconductor device
JP6104522B2 (en) 2011-06-10 2017-03-29 株式会社半導体エネルギー研究所 Semiconductor device
US9112036B2 (en) 2011-06-10 2015-08-18 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of semiconductor device
US8891285B2 (en) 2011-06-10 2014-11-18 Semiconductor Energy Laboratory Co., Ltd. Semiconductor memory device
US9299852B2 (en) 2011-06-16 2016-03-29 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
TWI557910B (en) 2011-06-16 2016-11-11 半導體能源研究所股份有限公司 Semiconductor device and a method for manufacturing the same
US8804405B2 (en) 2011-06-16 2014-08-12 Semiconductor Energy Laboratory Co., Ltd. Memory device and semiconductor device
US9166055B2 (en) 2011-06-17 2015-10-20 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US8901554B2 (en) 2011-06-17 2014-12-02 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device including channel formation region including oxide semiconductor
SG11201504734VA (en) 2011-06-17 2015-07-30 Semiconductor Energy Lab Semiconductor device and method for manufacturing the same
US9099885B2 (en) 2011-06-17 2015-08-04 Semiconductor Energy Laboratory Co., Ltd. Wireless power feeding system
KR20130007426A (en) 2011-06-17 2013-01-18 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device and manufacturing method thereof
US8673426B2 (en) 2011-06-29 2014-03-18 Semiconductor Energy Laboratory Co., Ltd. Driver circuit, method of manufacturing the driver circuit, and display device including the driver circuit
US8878589B2 (en) 2011-06-30 2014-11-04 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and driving method thereof
US9130044B2 (en) 2011-07-01 2015-09-08 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US8748886B2 (en) 2011-07-08 2014-06-10 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing semiconductor device
US8952377B2 (en) 2011-07-08 2015-02-10 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
KR102014876B1 (en) 2011-07-08 2019-08-27 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device and method for manufacturing the same
US9318506B2 (en) 2011-07-08 2016-04-19 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US9490241B2 (en) 2011-07-08 2016-11-08 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device comprising a first inverter and a second inverter
US9496138B2 (en) 2011-07-08 2016-11-15 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing oxide semiconductor film, method for manufacturing semiconductor device, and semiconductor device
US9214474B2 (en) 2011-07-08 2015-12-15 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing semiconductor device
US9385238B2 (en) 2011-07-08 2016-07-05 Semiconductor Energy Laboratory Co., Ltd. Transistor using oxide semiconductor
JP2013042117A (en) 2011-07-15 2013-02-28 Semiconductor Energy Lab Co Ltd Semiconductor device
US9200952B2 (en) 2011-07-15 2015-12-01 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device comprising a photodetector and an analog arithmetic circuit
US8847220B2 (en) 2011-07-15 2014-09-30 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US8946812B2 (en) 2011-07-21 2015-02-03 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US8643008B2 (en) 2011-07-22 2014-02-04 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US8716073B2 (en) 2011-07-22 2014-05-06 Semiconductor Energy Laboratory Co., Ltd. Method for processing oxide semiconductor film and method for manufacturing semiconductor device
CN102891150A (en) * 2011-07-22 2013-01-23 中国科学院微电子研究所 Pixel structure of ultraviolet detector, ultraviolet detector system and manufacturing method thereof
JP6013685B2 (en) 2011-07-22 2016-10-25 株式会社半導体エネルギー研究所 Semiconductor device
DE112012003074T5 (en) 2011-07-22 2014-04-10 Semiconductor Energy Laboratory Co., Ltd. Light emitting device
US9012993B2 (en) 2011-07-22 2015-04-21 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US8994019B2 (en) 2011-08-05 2015-03-31 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US8718224B2 (en) 2011-08-05 2014-05-06 Semiconductor Energy Laboratory Co., Ltd. Pulse signal output circuit and shift register
JP6006572B2 (en) 2011-08-18 2016-10-12 株式会社半導体エネルギー研究所 Semiconductor device
TWI575494B (en) 2011-08-19 2017-03-21 半導體能源研究所股份有限公司 Method for driving semiconductor device
JP6128775B2 (en) 2011-08-19 2017-05-17 株式会社半導体エネルギー研究所 Semiconductor device
JP6116149B2 (en) 2011-08-24 2017-04-19 株式会社半導体エネルギー研究所 Semiconductor device
TWI659523B (en) 2011-08-29 2019-05-11 日商半導體能源研究所股份有限公司 Semiconductor device
US9252279B2 (en) 2011-08-31 2016-02-02 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US9660092B2 (en) 2011-08-31 2017-05-23 Semiconductor Energy Laboratory Co., Ltd. Oxide semiconductor thin film transistor including oxygen release layer
JP6016532B2 (en) 2011-09-07 2016-10-26 株式会社半導体エネルギー研究所 Semiconductor device
JP6050054B2 (en) 2011-09-09 2016-12-21 株式会社半導体エネルギー研究所 Semiconductor device
US8802493B2 (en) 2011-09-13 2014-08-12 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of oxide semiconductor device
JP5825744B2 (en) 2011-09-15 2015-12-02 株式会社半導体エネルギー研究所 Power insulated gate field effect transistor
US8952379B2 (en) 2011-09-16 2015-02-10 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
JP5832399B2 (en) 2011-09-16 2015-12-16 株式会社半導体エネルギー研究所 Light emitting device
US9082663B2 (en) 2011-09-16 2015-07-14 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
WO2013039126A1 (en) 2011-09-16 2013-03-21 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
CN103022012B (en) 2011-09-21 2017-03-01 株式会社半导体能源研究所 Semiconductor storage
WO2013042562A1 (en) 2011-09-22 2013-03-28 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
WO2013042643A1 (en) 2011-09-22 2013-03-28 Semiconductor Energy Laboratory Co., Ltd. Photodetector and method for driving photodetector
US8841675B2 (en) 2011-09-23 2014-09-23 Semiconductor Energy Laboratory Co., Ltd. Minute transistor
US9431545B2 (en) 2011-09-23 2016-08-30 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
KR102108572B1 (en) 2011-09-26 2020-05-07 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device and method for manufacturing the same
CN103022142A (en) * 2011-09-27 2013-04-03 鸿富锦精密工业(深圳)有限公司 Thin film transistor
JP2013084333A (en) 2011-09-28 2013-05-09 Semiconductor Energy Lab Co Ltd Shift register circuit
DE112012004061B4 (en) 2011-09-29 2024-06-20 Semiconductor Energy Laboratory Co., Ltd. semiconductor device
KR101506303B1 (en) 2011-09-29 2015-03-26 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device and method for manufacturing the same
DE112012004076T5 (en) 2011-09-29 2014-07-03 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
TWI613822B (en) 2011-09-29 2018-02-01 半導體能源研究所股份有限公司 Semiconductor device and method for manufacturing the same
JP5806905B2 (en) 2011-09-30 2015-11-10 株式会社半導体エネルギー研究所 Semiconductor device
US8982607B2 (en) 2011-09-30 2015-03-17 Semiconductor Energy Laboratory Co., Ltd. Memory element and signal processing circuit
US20130087784A1 (en) 2011-10-05 2013-04-11 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
JP6022880B2 (en) 2011-10-07 2016-11-09 株式会社半導体エネルギー研究所 Semiconductor device and manufacturing method of semiconductor device
JP2013093561A (en) 2011-10-07 2013-05-16 Semiconductor Energy Lab Co Ltd Oxide semiconductor film and semiconductor device
US10014068B2 (en) 2011-10-07 2018-07-03 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
JP6026839B2 (en) 2011-10-13 2016-11-16 株式会社半導体エネルギー研究所 Semiconductor device
JP5912394B2 (en) 2011-10-13 2016-04-27 株式会社半導体エネルギー研究所 Semiconductor device
US9018629B2 (en) 2011-10-13 2015-04-28 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing semiconductor device
US8637864B2 (en) 2011-10-13 2014-01-28 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of manufacturing the same
US9287405B2 (en) 2011-10-13 2016-03-15 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device comprising oxide semiconductor
US9117916B2 (en) 2011-10-13 2015-08-25 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device comprising oxide semiconductor film
KR20130040706A (en) 2011-10-14 2013-04-24 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device and method of manufacturing semiconductor device
WO2013054933A1 (en) 2011-10-14 2013-04-18 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
KR20130043063A (en) 2011-10-19 2013-04-29 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device and manufacturing method thereof
TWI567985B (en) 2011-10-21 2017-01-21 半導體能源研究所股份有限公司 Semiconductor device and manufacturing method thereof
JP6226518B2 (en) 2011-10-24 2017-11-08 株式会社半導体エネルギー研究所 Semiconductor device
JP6045285B2 (en) 2011-10-24 2016-12-14 株式会社半導体エネルギー研究所 Method for manufacturing semiconductor device
KR101976212B1 (en) 2011-10-24 2019-05-07 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device and method for manufacturing the same
JP6082562B2 (en) 2011-10-27 2017-02-15 株式会社半導体エネルギー研究所 Semiconductor device
KR20130046357A (en) 2011-10-27 2013-05-07 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device
KR20140086954A (en) 2011-10-28 2014-07-08 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device and manufacturing method thereof
US8604472B2 (en) 2011-11-09 2013-12-10 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
JP5933895B2 (en) 2011-11-10 2016-06-15 株式会社半導体エネルギー研究所 Semiconductor device and manufacturing method of semiconductor device
US8796682B2 (en) 2011-11-11 2014-08-05 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing a semiconductor device
JP6076038B2 (en) 2011-11-11 2017-02-08 株式会社半導体エネルギー研究所 Method for manufacturing display device
US8878177B2 (en) 2011-11-11 2014-11-04 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing semiconductor device
US9082861B2 (en) 2011-11-11 2015-07-14 Semiconductor Energy Laboratory Co., Ltd. Transistor with oxide semiconductor channel having protective layer
JP6122275B2 (en) 2011-11-11 2017-04-26 株式会社半導体エネルギー研究所 Display device
CN103918025B (en) 2011-11-11 2016-12-21 株式会社半导体能源研究所 Signal-line driving circuit and liquid crystal indicator
TWI445168B (en) * 2011-11-16 2014-07-11 E Ink Holdings Inc Light sensing device
US8969130B2 (en) 2011-11-18 2015-03-03 Semiconductor Energy Laboratory Co., Ltd. Insulating film, formation method thereof, semiconductor device, and manufacturing method thereof
US10026847B2 (en) 2011-11-18 2018-07-17 Semiconductor Energy Laboratory Co., Ltd. Semiconductor element, method for manufacturing semiconductor element, and semiconductor device including semiconductor element
US8829528B2 (en) 2011-11-25 2014-09-09 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device including groove portion extending beyond pixel electrode
US8951899B2 (en) 2011-11-25 2015-02-10 Semiconductor Energy Laboratory Method for manufacturing semiconductor device
US8772094B2 (en) 2011-11-25 2014-07-08 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US8962386B2 (en) 2011-11-25 2015-02-24 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
JP6099368B2 (en) 2011-11-25 2017-03-22 株式会社半導体エネルギー研究所 Storage device
US9057126B2 (en) 2011-11-29 2015-06-16 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing sputtering target and method for manufacturing semiconductor device
TWI588910B (en) 2011-11-30 2017-06-21 半導體能源研究所股份有限公司 Method for manufacturing semiconductor device
JP6147992B2 (en) 2011-11-30 2017-06-14 株式会社半導体エネルギー研究所 Semiconductor device
TWI591611B (en) 2011-11-30 2017-07-11 半導體能源研究所股份有限公司 Semiconductor display device
US9076871B2 (en) 2011-11-30 2015-07-07 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
KR102072244B1 (en) 2011-11-30 2020-01-31 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device and method for manufacturing the same
US20130137232A1 (en) 2011-11-30 2013-05-30 Semiconductor Energy Laboratory Co., Ltd. Method for forming oxide semiconductor film and method for manufacturing semiconductor device
TWI621183B (en) 2011-12-01 2018-04-11 半導體能源研究所股份有限公司 Semiconductor device and method for manufacturing the same
US8981367B2 (en) 2011-12-01 2015-03-17 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
EP2786404A4 (en) 2011-12-02 2015-07-15 Semiconductor Energy Lab Semiconductor device and method for manufacturing the same
JP2013137853A (en) 2011-12-02 2013-07-11 Semiconductor Energy Lab Co Ltd Storage device and driving method thereof
JP6050662B2 (en) 2011-12-02 2016-12-21 株式会社半導体エネルギー研究所 Semiconductor device and manufacturing method of semiconductor device
US9257422B2 (en) 2011-12-06 2016-02-09 Semiconductor Energy Laboratory Co., Ltd. Signal processing circuit and method for driving signal processing circuit
JP6081171B2 (en) 2011-12-09 2017-02-15 株式会社半導体エネルギー研究所 Storage device
US10002968B2 (en) 2011-12-14 2018-06-19 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and display device including the same
WO2013089115A1 (en) 2011-12-15 2013-06-20 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
JP6105266B2 (en) 2011-12-15 2017-03-29 株式会社半導体エネルギー研究所 Storage device
JP2013149953A (en) 2011-12-20 2013-08-01 Semiconductor Energy Lab Co Ltd Semiconductor device and method for manufacturing semiconductor device
US8785258B2 (en) 2011-12-20 2014-07-22 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US8748240B2 (en) 2011-12-22 2014-06-10 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US8907392B2 (en) 2011-12-22 2014-12-09 Semiconductor Energy Laboratory Co., Ltd. Semiconductor memory device including stacked sub memory cells
JP2013130802A (en) 2011-12-22 2013-07-04 Semiconductor Energy Lab Co Ltd Semiconductor device, image display device, storage device, and electronic apparatus
JP6012450B2 (en) 2011-12-23 2016-10-25 株式会社半導体エネルギー研究所 Driving method of semiconductor device
JP6053490B2 (en) 2011-12-23 2016-12-27 株式会社半導体エネルギー研究所 Method for manufacturing semiconductor device
TWI580189B (en) 2011-12-23 2017-04-21 半導體能源研究所股份有限公司 Level-shift circuit and semiconductor integrated circuit
WO2013094547A1 (en) 2011-12-23 2013-06-27 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
JP6033071B2 (en) 2011-12-23 2016-11-30 株式会社半導体エネルギー研究所 Semiconductor device
TWI569446B (en) 2011-12-23 2017-02-01 半導體能源研究所股份有限公司 Semiconductor element, method for manufacturing the semiconductor element, and semiconductor device including the semiconductor element
US8704221B2 (en) 2011-12-23 2014-04-22 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US8796683B2 (en) 2011-12-23 2014-08-05 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
WO2013099537A1 (en) 2011-12-26 2013-07-04 Semiconductor Energy Laboratory Co., Ltd. Motion recognition device
TWI584383B (en) 2011-12-27 2017-05-21 半導體能源研究所股份有限公司 Semiconductor device and method for manufacturing the same
KR102100425B1 (en) 2011-12-27 2020-04-13 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device and method for manufacturing the same
KR102103913B1 (en) 2012-01-10 2020-04-23 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device and method for manufacturing semiconductor device
US8969867B2 (en) 2012-01-18 2015-03-03 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US8836555B2 (en) 2012-01-18 2014-09-16 Semiconductor Energy Laboratory Co., Ltd. Circuit, sensor circuit, and semiconductor device using the sensor circuit
US9040981B2 (en) 2012-01-20 2015-05-26 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US9099560B2 (en) 2012-01-20 2015-08-04 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
KR102147870B1 (en) 2012-01-23 2020-08-25 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device
US9653614B2 (en) 2012-01-23 2017-05-16 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
WO2013111756A1 (en) 2012-01-25 2013-08-01 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing semiconductor device
US8956912B2 (en) 2012-01-26 2015-02-17 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
TWI642193B (en) 2012-01-26 2018-11-21 半導體能源研究所股份有限公司 Semiconductor device and method for manufacturing the same
US9419146B2 (en) 2012-01-26 2016-08-16 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
JP6091905B2 (en) 2012-01-26 2017-03-08 株式会社半導体エネルギー研究所 Semiconductor device
US9006733B2 (en) 2012-01-26 2015-04-14 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing thereof
TWI561951B (en) 2012-01-30 2016-12-11 Semiconductor Energy Lab Co Ltd Power supply circuit
TWI604609B (en) 2012-02-02 2017-11-01 半導體能源研究所股份有限公司 Semiconductor device
US9362417B2 (en) 2012-02-03 2016-06-07 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US9196741B2 (en) 2012-02-03 2015-11-24 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
KR102101167B1 (en) 2012-02-03 2020-04-16 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device
US8916424B2 (en) 2012-02-07 2014-12-23 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US9859114B2 (en) 2012-02-08 2018-01-02 Semiconductor Energy Laboratory Co., Ltd. Oxide semiconductor device with an oxygen-controlling insulating layer
US20130207111A1 (en) 2012-02-09 2013-08-15 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, display device including semiconductor device, electronic device including semiconductor device, and method for manufacturing semiconductor device
JP6125850B2 (en) 2012-02-09 2017-05-10 株式会社半導体エネルギー研究所 Semiconductor device and manufacturing method of semiconductor device
JP5981157B2 (en) 2012-02-09 2016-08-31 株式会社半導体エネルギー研究所 Semiconductor device
US9112037B2 (en) 2012-02-09 2015-08-18 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US8817516B2 (en) 2012-02-17 2014-08-26 Semiconductor Energy Laboratory Co., Ltd. Memory circuit and semiconductor device
JP2014063557A (en) 2012-02-24 2014-04-10 Semiconductor Energy Lab Co Ltd Storage element and semiconductor element
US20130221345A1 (en) 2012-02-28 2013-08-29 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US9553200B2 (en) 2012-02-29 2017-01-24 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US9312257B2 (en) 2012-02-29 2016-04-12 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US8988152B2 (en) 2012-02-29 2015-03-24 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
JP6151530B2 (en) 2012-02-29 2017-06-21 株式会社半導体エネルギー研究所 Image sensor, camera, and surveillance system
JP2013183001A (en) 2012-03-01 2013-09-12 Semiconductor Energy Lab Co Ltd Semiconductor device
JP6046514B2 (en) 2012-03-01 2016-12-14 株式会社半導体エネルギー研究所 Semiconductor device
US8975917B2 (en) 2012-03-01 2015-03-10 Semiconductor Energy Laboratory Co., Ltd. Programmable logic device
US9176571B2 (en) 2012-03-02 2015-11-03 Semiconductor Energy Laboratories Co., Ltd. Microprocessor and method for driving microprocessor
US9735280B2 (en) 2012-03-02 2017-08-15 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, method for manufacturing semiconductor device, and method for forming oxide film
US9287370B2 (en) 2012-03-02 2016-03-15 Semiconductor Energy Laboratory Co., Ltd. Memory device comprising a transistor including an oxide semiconductor and semiconductor device including the same
JP6041707B2 (en) 2012-03-05 2016-12-14 株式会社半導体エネルギー研究所 Latch circuit and semiconductor device
JP6100559B2 (en) 2012-03-05 2017-03-22 株式会社半導体エネルギー研究所 Semiconductor memory device
US8995218B2 (en) 2012-03-07 2015-03-31 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US8981370B2 (en) 2012-03-08 2015-03-17 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
CN104160295B (en) 2012-03-09 2017-09-15 株式会社半导体能源研究所 The driving method of semiconductor device
KR20140136975A (en) 2012-03-13 2014-12-01 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Light-emitting device and method for driving the same
JP6168795B2 (en) 2012-03-14 2017-07-26 株式会社半導体エネルギー研究所 Method for manufacturing semiconductor device
US9058892B2 (en) 2012-03-14 2015-06-16 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and shift register
KR102108248B1 (en) 2012-03-14 2020-05-07 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Oxide semiconductor film, transistor, and semiconductor device
US9117409B2 (en) 2012-03-14 2015-08-25 Semiconductor Energy Laboratory Co., Ltd. Light-emitting display device with transistor and capacitor discharging gate of driving electrode and oxide semiconductor layer
US9541386B2 (en) 2012-03-21 2017-01-10 Semiconductor Energy Laboratory Co., Ltd. Distance measurement device and distance measurement system
US9324449B2 (en) 2012-03-28 2016-04-26 Semiconductor Energy Laboratory Co., Ltd. Driver circuit, signal processing unit having the driver circuit, method for manufacturing the signal processing unit, and display device
US9349849B2 (en) 2012-03-28 2016-05-24 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and electronic device including the semiconductor device
JP6169376B2 (en) 2012-03-28 2017-07-26 株式会社半導体エネルギー研究所 Battery management unit, protection circuit, power storage device
JP2013229013A (en) 2012-03-29 2013-11-07 Semiconductor Energy Lab Co Ltd Array controller and storage system
WO2013146154A1 (en) 2012-03-29 2013-10-03 Semiconductor Energy Laboratory Co., Ltd. Power supply control device
US9786793B2 (en) 2012-03-29 2017-10-10 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device comprising oxide semiconductor layer including regions with different concentrations of resistance-reducing elements
JP6139187B2 (en) 2012-03-29 2017-05-31 株式会社半導体エネルギー研究所 Semiconductor device
US8941113B2 (en) 2012-03-30 2015-01-27 Semiconductor Energy Laboratory Co., Ltd. Semiconductor element, semiconductor device, and manufacturing method of semiconductor element
US8999773B2 (en) 2012-04-05 2015-04-07 Semiconductor Energy Laboratory Co., Ltd. Processing method of stacked-layer film and manufacturing method of semiconductor device
US9793444B2 (en) 2012-04-06 2017-10-17 Semiconductor Energy Laboratory Co., Ltd. Display device and electronic device
US8901556B2 (en) 2012-04-06 2014-12-02 Semiconductor Energy Laboratory Co., Ltd. Insulating film, method for manufacturing semiconductor device, and semiconductor device
US8947155B2 (en) 2012-04-06 2015-02-03 Semiconductor Energy Laboratory Co., Ltd. Solid-state relay
US9711110B2 (en) 2012-04-06 2017-07-18 Semiconductor Energy Laboratory Co., Ltd. Display device comprising grayscale conversion portion and display portion
JP5975907B2 (en) 2012-04-11 2016-08-23 株式会社半導体エネルギー研究所 Semiconductor device
JP2013236068A (en) 2012-04-12 2013-11-21 Semiconductor Energy Lab Co Ltd Semiconductor device and manufacturing method therefor
US9208849B2 (en) 2012-04-12 2015-12-08 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for driving semiconductor device, and electronic device
JP6059566B2 (en) 2012-04-13 2017-01-11 株式会社半導体エネルギー研究所 Method for manufacturing semiconductor device
JP6128906B2 (en) 2012-04-13 2017-05-17 株式会社半導体エネルギー研究所 Semiconductor device
KR102254731B1 (en) 2012-04-13 2021-05-20 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device
US9030232B2 (en) 2012-04-13 2015-05-12 Semiconductor Energy Laboratory Co., Ltd. Isolator circuit and semiconductor device
JP6143423B2 (en) 2012-04-16 2017-06-07 株式会社半導体エネルギー研究所 Manufacturing method of semiconductor device
JP6076612B2 (en) 2012-04-17 2017-02-08 株式会社半導体エネルギー研究所 Semiconductor device
JP6001308B2 (en) 2012-04-17 2016-10-05 株式会社半導体エネルギー研究所 Semiconductor device
US9219164B2 (en) 2012-04-20 2015-12-22 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device with oxide semiconductor channel
US9029863B2 (en) 2012-04-20 2015-05-12 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US9006024B2 (en) 2012-04-25 2015-04-14 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US9236408B2 (en) 2012-04-25 2016-01-12 Semiconductor Energy Laboratory Co., Ltd. Oxide semiconductor device including photodiode
US9230683B2 (en) 2012-04-25 2016-01-05 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and driving method thereof
US9285848B2 (en) 2012-04-27 2016-03-15 Semiconductor Energy Laboratory Co., Ltd. Power reception control device, power reception device, power transmission and reception system, and electronic device
US8860022B2 (en) 2012-04-27 2014-10-14 Semiconductor Energy Laboratory Co., Ltd. Oxide semiconductor film and semiconductor device
JP6199583B2 (en) 2012-04-27 2017-09-20 株式会社半導体エネルギー研究所 Semiconductor device
US9331689B2 (en) 2012-04-27 2016-05-03 Semiconductor Energy Laboratory Co., Ltd. Power supply circuit and semiconductor device including the same
US9048323B2 (en) 2012-04-30 2015-06-02 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
JP6228381B2 (en) 2012-04-30 2017-11-08 株式会社半導体エネルギー研究所 Semiconductor device
JP6100071B2 (en) 2012-04-30 2017-03-22 株式会社半導体エネルギー研究所 Method for manufacturing semiconductor device
US9703704B2 (en) 2012-05-01 2017-07-11 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US9007090B2 (en) 2012-05-01 2015-04-14 Semiconductor Energy Laboratory Co., Ltd. Method of driving semiconductor device
JP6035195B2 (en) 2012-05-01 2016-11-30 株式会社半導体エネルギー研究所 Method for manufacturing semiconductor device
US9104395B2 (en) 2012-05-02 2015-08-11 Semiconductor Energy Laboratory Co., Ltd. Processor and driving method thereof
JP6227890B2 (en) 2012-05-02 2017-11-08 株式会社半導体エネルギー研究所 Signal processing circuit and control circuit
KR102025722B1 (en) 2012-05-02 2019-09-26 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Temperature sensor circuit and semiconductor device including temperature sensor circuit
US9261943B2 (en) 2012-05-02 2016-02-16 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and driving method thereof
CN104247268B (en) 2012-05-02 2016-10-12 株式会社半导体能源研究所 Pld
US8866510B2 (en) 2012-05-02 2014-10-21 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
JP6243136B2 (en) 2012-05-02 2017-12-06 株式会社半導体エネルギー研究所 Switching converter
KR20130125717A (en) 2012-05-09 2013-11-19 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device and method for driving the same
CN104285302B (en) 2012-05-10 2017-08-22 株式会社半导体能源研究所 Semiconductor device
KR20230104756A (en) 2012-05-10 2023-07-10 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device
KR102069158B1 (en) 2012-05-10 2020-01-22 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Method for forming wiring, semiconductor device, and method for manufacturing semiconductor device
KR102087443B1 (en) 2012-05-11 2020-03-10 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device and driving method of semiconductor device
DE102013207324A1 (en) 2012-05-11 2013-11-14 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and electronic device
US8994891B2 (en) 2012-05-16 2015-03-31 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and touch panel
US8929128B2 (en) 2012-05-17 2015-01-06 Semiconductor Energy Laboratory Co., Ltd. Storage device and writing method of the same
US9817032B2 (en) 2012-05-23 2017-11-14 Semiconductor Energy Laboratory Co., Ltd. Measurement device
JP6250955B2 (en) 2012-05-25 2017-12-20 株式会社半導体エネルギー研究所 Driving method of semiconductor device
JP2014003594A (en) 2012-05-25 2014-01-09 Semiconductor Energy Lab Co Ltd Semiconductor device and method of driving the same
CN104321967B (en) 2012-05-25 2018-01-09 株式会社半导体能源研究所 Programmable logic device and semiconductor device
JP6050721B2 (en) 2012-05-25 2016-12-21 株式会社半導体エネルギー研究所 Semiconductor device
KR102164990B1 (en) 2012-05-25 2020-10-13 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Method for driving memory element
US9147706B2 (en) 2012-05-29 2015-09-29 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device having sensor circuit having amplifier circuit
JP6377317B2 (en) 2012-05-30 2018-08-22 株式会社半導体エネルギー研究所 Programmable logic device
US8995607B2 (en) 2012-05-31 2015-03-31 Semiconductor Energy Laboratory Co., Ltd. Pulse signal output circuit and shift register
KR102316107B1 (en) 2012-05-31 2021-10-21 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device
US9048265B2 (en) 2012-05-31 2015-06-02 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device comprising oxide semiconductor layer
JP6158588B2 (en) 2012-05-31 2017-07-05 株式会社半導体エネルギー研究所 Light emitting device
KR102119914B1 (en) 2012-05-31 2020-06-05 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device and manufacturing method thereof
JP6208469B2 (en) 2012-05-31 2017-10-04 株式会社半導体エネルギー研究所 Semiconductor device
US8872174B2 (en) 2012-06-01 2014-10-28 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device
JP6108960B2 (en) 2012-06-01 2017-04-05 株式会社半導体エネルギー研究所 Semiconductor devices and processing equipment
US9916793B2 (en) 2012-06-01 2018-03-13 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of driving the same
US9135182B2 (en) 2012-06-01 2015-09-15 Semiconductor Energy Laboratory Co., Ltd. Central processing unit and driving method thereof
WO2013180016A1 (en) 2012-06-01 2013-12-05 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and alarm device
US9153699B2 (en) 2012-06-15 2015-10-06 Semiconductor Energy Laboratory Co., Ltd. Thin film transistor with multiple oxide semiconductor layers
US8901557B2 (en) 2012-06-15 2014-12-02 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US9059219B2 (en) 2012-06-27 2015-06-16 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing semiconductor device
US9742378B2 (en) 2012-06-29 2017-08-22 Semiconductor Energy Laboratory Co., Ltd. Pulse output circuit and semiconductor device
US8873308B2 (en) 2012-06-29 2014-10-28 Semiconductor Energy Laboratory Co., Ltd. Signal processing circuit
KR102161077B1 (en) 2012-06-29 2020-09-29 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device
KR20200019269A (en) 2012-06-29 2020-02-21 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device
TWI596778B (en) 2012-06-29 2017-08-21 半導體能源研究所股份有限公司 Semiconductor device and method for manufacturing semiconductor device
KR102082794B1 (en) 2012-06-29 2020-02-28 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Method of driving display device, and display device
US9083327B2 (en) 2012-07-06 2015-07-14 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of driving semiconductor device
US9054678B2 (en) 2012-07-06 2015-06-09 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and driving method thereof
US9190525B2 (en) * 2012-07-06 2015-11-17 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device including oxide semiconductor layer
KR102099262B1 (en) 2012-07-11 2020-04-09 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Liquid crystal display device and method for driving the same
JP2014032399A (en) 2012-07-13 2014-02-20 Semiconductor Energy Lab Co Ltd Liquid crystal display device
JP6006558B2 (en) 2012-07-17 2016-10-12 株式会社半導体エネルギー研究所 Semiconductor device and manufacturing method thereof
JP6185311B2 (en) 2012-07-20 2017-08-23 株式会社半導体エネルギー研究所 Power supply control circuit and signal processing circuit
CN104488016B (en) 2012-07-20 2018-08-10 株式会社半导体能源研究所 Display device and electronic equipment with the display device
KR102141977B1 (en) 2012-07-20 2020-08-06 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device and method for manufacturing semiconductor device
DE112013007498B3 (en) 2012-07-20 2022-05-05 Semiconductor Energy Laboratory Co., Ltd. display device
JP2014042004A (en) 2012-07-26 2014-03-06 Semiconductor Energy Lab Co Ltd Semiconductor device and manufacturing method of the same
KR20140013931A (en) 2012-07-26 2014-02-05 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Liquid crystal display device
JP6224931B2 (en) 2012-07-27 2017-11-01 株式会社半導体エネルギー研究所 Semiconductor device
JP2014045175A (en) 2012-08-02 2014-03-13 Semiconductor Energy Lab Co Ltd Semiconductor device
JP6134598B2 (en) 2012-08-02 2017-05-24 株式会社半導体エネルギー研究所 Semiconductor device
KR20150040873A (en) 2012-08-03 2015-04-15 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device
EP2880690B1 (en) 2012-08-03 2019-02-27 Semiconductor Energy Laboratory Co. Ltd. Semiconductor device with oxide semiconductor stacked film
US9885108B2 (en) 2012-08-07 2018-02-06 Semiconductor Energy Laboratory Co., Ltd. Method for forming sputtering target
US10557192B2 (en) 2012-08-07 2020-02-11 Semiconductor Energy Laboratory Co., Ltd. Method for using sputtering target and method for forming oxide film
WO2014024808A1 (en) 2012-08-10 2014-02-13 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
JP2014057298A (en) 2012-08-10 2014-03-27 Semiconductor Energy Lab Co Ltd Semiconductor device driving method
CN108305895B (en) 2012-08-10 2021-08-03 株式会社半导体能源研究所 Semiconductor device and method for manufacturing the same
US9929276B2 (en) 2012-08-10 2018-03-27 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
JP6220597B2 (en) 2012-08-10 2017-10-25 株式会社半導体エネルギー研究所 Semiconductor device
US9245958B2 (en) 2012-08-10 2016-01-26 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US8937307B2 (en) 2012-08-10 2015-01-20 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
KR102171650B1 (en) 2012-08-10 2020-10-29 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device and manufacturing method thereof
JP2014199899A (en) 2012-08-10 2014-10-23 株式会社半導体エネルギー研究所 Semiconductor device
JP2014057296A (en) 2012-08-10 2014-03-27 Semiconductor Energy Lab Co Ltd Semiconductor device driving method
TWI581404B (en) * 2012-08-10 2017-05-01 半導體能源研究所股份有限公司 Semiconductor device and method for driving semiconductor device
US8872120B2 (en) 2012-08-23 2014-10-28 Semiconductor Energy Laboratory Co., Ltd. Imaging device and method for driving the same
KR102069683B1 (en) 2012-08-24 2020-01-23 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Radiation detection panel, radiation imaging device, and diagnostic imaging device
KR102161078B1 (en) 2012-08-28 2020-09-29 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Display device and manufacturing method thereof
DE102013216824B4 (en) 2012-08-28 2024-10-17 Semiconductor Energy Laboratory Co., Ltd. semiconductor device
US9625764B2 (en) 2012-08-28 2017-04-18 Semiconductor Energy Laboratory Co., Ltd. Display device and electronic device
KR20140029202A (en) 2012-08-28 2014-03-10 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Display device
TWI575663B (en) 2012-08-31 2017-03-21 半導體能源研究所股份有限公司 Semiconductor device
SG11201504939RA (en) 2012-09-03 2015-07-30 Semiconductor Energy Lab Microcontroller
US8947158B2 (en) 2012-09-03 2015-02-03 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and electronic device
DE102013217278B4 (en) 2012-09-12 2017-03-30 Semiconductor Energy Laboratory Co., Ltd. A photodetector circuit, an imaging device, and a method of driving a photodetector circuit
US9018624B2 (en) 2012-09-13 2015-04-28 Semiconductor Energy Laboratory Co., Ltd. Display device and electronic appliance
US8981372B2 (en) 2012-09-13 2015-03-17 Semiconductor Energy Laboratory Co., Ltd. Display device and electronic appliance
KR102331652B1 (en) 2012-09-13 2021-12-01 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Display device
TWI799011B (en) 2012-09-14 2023-04-11 日商半導體能源研究所股份有限公司 Semiconductor device and method for fabricating the same
US8927985B2 (en) 2012-09-20 2015-01-06 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
WO2014046222A1 (en) 2012-09-24 2014-03-27 Semiconductor Energy Laboratory Co., Ltd. Display device
TWI627750B (en) 2012-09-24 2018-06-21 半導體能源研究所股份有限公司 Semiconductor device
KR102226090B1 (en) 2012-10-12 2021-03-09 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Method for manufacturing semiconductor device and manufacturing apparatus of semiconductor device
JP6290576B2 (en) 2012-10-12 2018-03-07 株式会社半導体エネルギー研究所 Liquid crystal display device and driving method thereof
JP6351947B2 (en) 2012-10-12 2018-07-04 株式会社半導体エネルギー研究所 Method for manufacturing liquid crystal display device
TWI681233B (en) 2012-10-12 2020-01-01 日商半導體能源研究所股份有限公司 Liquid crystal display device, touch panel and method for manufacturing liquid crystal display device
JP2014082388A (en) 2012-10-17 2014-05-08 Semiconductor Energy Lab Co Ltd Semiconductor device
JP6059501B2 (en) 2012-10-17 2017-01-11 株式会社半導体エネルギー研究所 Method for manufacturing semiconductor device
TWI591966B (en) 2012-10-17 2017-07-11 半導體能源研究所股份有限公司 Programmable logic device and method for driving programmable logic device
JP6283191B2 (en) 2012-10-17 2018-02-21 株式会社半導体エネルギー研究所 Semiconductor device
DE112013005029T5 (en) 2012-10-17 2015-07-30 Semiconductor Energy Laboratory Co., Ltd. Microcontroller and manufacturing process for it
KR102227591B1 (en) 2012-10-17 2021-03-15 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device
KR102094568B1 (en) 2012-10-17 2020-03-27 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device and method for manufacturing the same
WO2014061567A1 (en) 2012-10-17 2014-04-24 Semiconductor Energy Laboratory Co., Ltd. Programmable logic device
US9166021B2 (en) 2012-10-17 2015-10-20 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
JP6021586B2 (en) 2012-10-17 2016-11-09 株式会社半導体エネルギー研究所 Semiconductor device
JP5951442B2 (en) 2012-10-17 2016-07-13 株式会社半導体エネルギー研究所 Semiconductor device
KR102220279B1 (en) 2012-10-19 2021-02-24 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Method for forming multilayer film including oxide semiconductor film and method for manufacturing semiconductor device
JP6204145B2 (en) 2012-10-23 2017-09-27 株式会社半導体エネルギー研究所 Semiconductor device
TWI691084B (en) 2012-10-24 2020-04-11 日商半導體能源研究所股份有限公司 Semiconductor device and method for manufacturing the same
US9865743B2 (en) 2012-10-24 2018-01-09 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device including oxide layer surrounding oxide semiconductor layer
WO2014065343A1 (en) 2012-10-24 2014-05-01 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
KR102279459B1 (en) 2012-10-24 2021-07-19 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device and method for manufacturing the same
US9287411B2 (en) 2012-10-24 2016-03-15 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
WO2014065389A1 (en) 2012-10-25 2014-05-01 Semiconductor Energy Laboratory Co., Ltd. Central control system
JP6219562B2 (en) 2012-10-30 2017-10-25 株式会社半導体エネルギー研究所 Display device and electronic device
CN104769842B (en) 2012-11-06 2017-10-31 株式会社半导体能源研究所 Semiconductor device and its driving method
KR102072099B1 (en) 2012-11-08 2020-01-31 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Metal oxide film and method for forming metal oxide film
TWI605593B (en) 2012-11-15 2017-11-11 半導體能源研究所股份有限公司 Semiconductor device
TWI608616B (en) 2012-11-15 2017-12-11 半導體能源研究所股份有限公司 Semiconductor device
JP6220641B2 (en) 2012-11-15 2017-10-25 株式会社半導体エネルギー研究所 Semiconductor device
TWI613813B (en) 2012-11-16 2018-02-01 半導體能源研究所股份有限公司 Semiconductor device
JP6285150B2 (en) 2012-11-16 2018-02-28 株式会社半導体エネルギー研究所 Semiconductor device
JP6317059B2 (en) 2012-11-16 2018-04-25 株式会社半導体エネルギー研究所 Semiconductor device and display device
TWI620323B (en) 2012-11-16 2018-04-01 半導體能源研究所股份有限公司 Semiconductor device
WO2014084153A1 (en) 2012-11-28 2014-06-05 Semiconductor Energy Laboratory Co., Ltd. Display device
TWI820614B (en) 2012-11-28 2023-11-01 日商半導體能源研究所股份有限公司 Display device
US9263531B2 (en) 2012-11-28 2016-02-16 Semiconductor Energy Laboratory Co., Ltd. Oxide semiconductor film, film formation method thereof, and semiconductor device
TWI627483B (en) 2012-11-28 2018-06-21 半導體能源研究所股份有限公司 Display device and television receiver
US9412764B2 (en) 2012-11-28 2016-08-09 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, display device, and electronic device
CN104823283B (en) 2012-11-30 2018-04-27 株式会社半导体能源研究所 Semiconductor device
US9594281B2 (en) 2012-11-30 2017-03-14 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device
JP2014130336A (en) 2012-11-30 2014-07-10 Semiconductor Energy Lab Co Ltd Display device
TWI624949B (en) 2012-11-30 2018-05-21 半導體能源研究所股份有限公司 Semiconductor device
US9153649B2 (en) 2012-11-30 2015-10-06 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for evaluating semiconductor device
US9246011B2 (en) 2012-11-30 2016-01-26 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
KR102207028B1 (en) 2012-12-03 2021-01-22 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device
US9406810B2 (en) 2012-12-03 2016-08-02 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
JP6320009B2 (en) 2012-12-03 2018-05-09 株式会社半導体エネルギー研究所 Semiconductor device and manufacturing method thereof
JP6254834B2 (en) 2012-12-06 2017-12-27 株式会社半導体エネルギー研究所 Semiconductor device
US9577446B2 (en) 2012-12-13 2017-02-21 Semiconductor Energy Laboratory Co., Ltd. Power storage system and power storage device storing data for the identifying power storage device
TWI611419B (en) 2012-12-24 2018-01-11 半導體能源研究所股份有限公司 Programmable logic device and semiconductor device
KR102241249B1 (en) 2012-12-25 2021-04-15 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Resistor, display device, and electronic device
WO2014103901A1 (en) 2012-12-25 2014-07-03 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
WO2014103900A1 (en) 2012-12-25 2014-07-03 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US9905585B2 (en) 2012-12-25 2018-02-27 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device comprising capacitor
JP2014142986A (en) 2012-12-26 2014-08-07 Semiconductor Energy Lab Co Ltd Semiconductor device
US9935152B2 (en) 2012-12-27 2018-04-03 General Electric Company X-ray detector having improved noise performance
TWI607510B (en) 2012-12-28 2017-12-01 半導體能源研究所股份有限公司 Semiconductor device and manufacturing method of the same
US9316695B2 (en) 2012-12-28 2016-04-19 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
JP6329762B2 (en) 2012-12-28 2018-05-23 株式会社半導体エネルギー研究所 Semiconductor device
KR102712705B1 (en) 2012-12-28 2024-10-04 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device
CN104904018B (en) 2012-12-28 2019-04-09 株式会社半导体能源研究所 The manufacturing method of semiconductor device and semiconductor device
JP2014143410A (en) 2012-12-28 2014-08-07 Semiconductor Energy Lab Co Ltd Semiconductor device and manufacturing method of the same
US9391096B2 (en) 2013-01-18 2016-07-12 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
TWI614813B (en) 2013-01-21 2018-02-11 半導體能源研究所股份有限公司 Method for manufacturing semiconductor device
JP5807076B2 (en) 2013-01-24 2015-11-10 株式会社半導体エネルギー研究所 Semiconductor device
TWI619010B (en) 2013-01-24 2018-03-21 半導體能源研究所股份有限公司 Semiconductor device
US9466725B2 (en) 2013-01-24 2016-10-11 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
JP6223198B2 (en) 2013-01-24 2017-11-01 株式会社半導体エネルギー研究所 Semiconductor device
US9190172B2 (en) 2013-01-24 2015-11-17 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US8981374B2 (en) 2013-01-30 2015-03-17 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US9105658B2 (en) 2013-01-30 2015-08-11 Semiconductor Energy Laboratory Co., Ltd. Method for processing oxide semiconductor layer
US9076825B2 (en) 2013-01-30 2015-07-07 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the semiconductor device
KR102112367B1 (en) 2013-02-12 2020-05-18 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device
TWI618252B (en) 2013-02-12 2018-03-11 半導體能源研究所股份有限公司 Semiconductor device
KR102125593B1 (en) 2013-02-13 2020-06-22 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Programmable logic device and semiconductor device
US9190527B2 (en) 2013-02-13 2015-11-17 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method of semiconductor device
US9231111B2 (en) 2013-02-13 2016-01-05 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US8952723B2 (en) 2013-02-13 2015-02-10 Semiconductor Energy Laboratory Co., Ltd. Programmable logic device and semiconductor device
US9318484B2 (en) 2013-02-20 2016-04-19 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
TWI611566B (en) 2013-02-25 2018-01-11 半導體能源研究所股份有限公司 Display device and electronic device
US9293544B2 (en) 2013-02-26 2016-03-22 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device having buried channel structure
TWI651839B (en) 2013-02-27 2019-02-21 半導體能源研究所股份有限公司 Semiconductor device, drive circuit and display device
US9373711B2 (en) 2013-02-27 2016-06-21 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
TWI612321B (en) 2013-02-27 2018-01-21 半導體能源研究所股份有限公司 Imaging device
JP2014195243A (en) 2013-02-28 2014-10-09 Semiconductor Energy Lab Co Ltd Semiconductor device
KR102238682B1 (en) 2013-02-28 2021-04-08 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device and method for manufacturing the same
JP6141777B2 (en) 2013-02-28 2017-06-07 株式会社半導体エネルギー研究所 Method for manufacturing semiconductor device
JP2014195241A (en) 2013-02-28 2014-10-09 Semiconductor Energy Lab Co Ltd Semiconductor device
US9647152B2 (en) 2013-03-01 2017-05-09 Semiconductor Energy Laboratory Co., Ltd. Sensor circuit and semiconductor device including sensor circuit
US9276125B2 (en) 2013-03-01 2016-03-01 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
KR102153110B1 (en) 2013-03-06 2020-09-07 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor film and semiconductor device
US9269315B2 (en) 2013-03-08 2016-02-23 Semiconductor Energy Laboratory Co., Ltd. Driving method of semiconductor device
US8947121B2 (en) 2013-03-12 2015-02-03 Semiconductor Energy Laboratory Co., Ltd. Programmable logic device
TWI644433B (en) 2013-03-13 2018-12-11 半導體能源研究所股份有限公司 Semiconductor device
JP6283237B2 (en) 2013-03-14 2018-02-21 株式会社半導体エネルギー研究所 Semiconductor device
KR102290247B1 (en) 2013-03-14 2021-08-13 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device and manufacturing method thereof
US9294075B2 (en) 2013-03-14 2016-03-22 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
JP2014199709A (en) 2013-03-14 2014-10-23 株式会社半導体エネルギー研究所 Memory device and semiconductor device
JP2014199708A (en) 2013-03-14 2014-10-23 株式会社半導体エネルギー研究所 Method for driving semiconductor device
JP6298662B2 (en) 2013-03-14 2018-03-20 株式会社半導体エネルギー研究所 Semiconductor device
WO2014142043A1 (en) 2013-03-14 2014-09-18 Semiconductor Energy Laboratory Co., Ltd. Method for driving semiconductor device and semiconductor device
US9245650B2 (en) 2013-03-15 2016-01-26 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US9786350B2 (en) 2013-03-18 2017-10-10 Semiconductor Energy Laboratory Co., Ltd. Memory device
US9577107B2 (en) 2013-03-19 2017-02-21 Semiconductor Energy Laboratory Co., Ltd. Oxide semiconductor film and method for forming oxide semiconductor film
US9153650B2 (en) 2013-03-19 2015-10-06 Semiconductor Energy Laboratory Co., Ltd. Oxide semiconductor
US9007092B2 (en) 2013-03-22 2015-04-14 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
JP6355374B2 (en) 2013-03-22 2018-07-11 株式会社半導体エネルギー研究所 Method for manufacturing semiconductor device
JP6093726B2 (en) 2013-03-22 2017-03-08 株式会社半導体エネルギー研究所 Semiconductor device
WO2014157019A1 (en) 2013-03-25 2014-10-02 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
JP6272713B2 (en) 2013-03-25 2018-01-31 株式会社半導体エネルギー研究所 Programmable logic device and semiconductor device
US10347769B2 (en) 2013-03-25 2019-07-09 Semiconductor Energy Laboratory Co., Ltd. Thin film transistor with multi-layer source/drain electrodes
JP6316630B2 (en) 2013-03-26 2018-04-25 株式会社半導体エネルギー研究所 Semiconductor device
JP6376788B2 (en) 2013-03-26 2018-08-22 株式会社半導体エネルギー研究所 Semiconductor device and manufacturing method thereof
US9608122B2 (en) 2013-03-27 2017-03-28 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
JP2014209209A (en) 2013-03-28 2014-11-06 株式会社半導体エネルギー研究所 Display device
US9368636B2 (en) 2013-04-01 2016-06-14 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing a semiconductor device comprising a plurality of oxide semiconductor layers
JP6300589B2 (en) 2013-04-04 2018-03-28 株式会社半導体エネルギー研究所 Method for manufacturing semiconductor device
US9112460B2 (en) 2013-04-05 2015-08-18 Semiconductor Energy Laboratory Co., Ltd. Signal processing device
JP6224338B2 (en) 2013-04-11 2017-11-01 株式会社半導体エネルギー研究所 Semiconductor device, display device, and method for manufacturing semiconductor device
JP6198434B2 (en) 2013-04-11 2017-09-20 株式会社半導体エネルギー研究所 Display device and electronic device
JP6280794B2 (en) 2013-04-12 2018-02-14 株式会社半導体エネルギー研究所 Semiconductor device and driving method thereof
TWI620324B (en) 2013-04-12 2018-04-01 半導體能源研究所股份有限公司 Semiconductor device
US10304859B2 (en) 2013-04-12 2019-05-28 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device having an oxide film on an oxide semiconductor film
JP6333028B2 (en) 2013-04-19 2018-05-30 株式会社半導体エネルギー研究所 Memory device and semiconductor device
JP6456598B2 (en) 2013-04-19 2019-01-23 株式会社半導体エネルギー研究所 Display device
US9915848B2 (en) 2013-04-19 2018-03-13 Semiconductor Energy Laboratory Co., Ltd. Display device and electronic device
US9893192B2 (en) 2013-04-24 2018-02-13 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
WO2014175296A1 (en) 2013-04-24 2014-10-30 Semiconductor Energy Laboratory Co., Ltd. Display device
JP6396671B2 (en) 2013-04-26 2018-09-26 株式会社半導体エネルギー研究所 Semiconductor device
JP6401483B2 (en) 2013-04-26 2018-10-10 株式会社半導体エネルギー研究所 Method for manufacturing semiconductor device
TWI644434B (en) 2013-04-29 2018-12-11 日商半導體能源研究所股份有限公司 Semiconductor device and manufacturing method thereof
TWI631711B (en) 2013-05-01 2018-08-01 半導體能源研究所股份有限公司 Semiconductor device
KR102222344B1 (en) 2013-05-02 2021-03-02 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device
US9882058B2 (en) 2013-05-03 2018-01-30 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US9231002B2 (en) 2013-05-03 2016-01-05 Semiconductor Energy Laboratory Co., Ltd. Display device and electronic device
WO2014181785A1 (en) 2013-05-09 2014-11-13 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US9704894B2 (en) 2013-05-10 2017-07-11 Semiconductor Energy Laboratory Co., Ltd. Display device including pixel electrode including oxide
US9246476B2 (en) 2013-05-10 2016-01-26 Semiconductor Energy Laboratory Co., Ltd. Driver circuit
TWI621337B (en) 2013-05-14 2018-04-11 半導體能源研究所股份有限公司 Signal processing device
TWI669824B (en) 2013-05-16 2019-08-21 日商半導體能源研究所股份有限公司 Semiconductor device
TWI618058B (en) 2013-05-16 2018-03-11 半導體能源研究所股份有限公司 Semiconductor device
US9312392B2 (en) 2013-05-16 2016-04-12 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
TWI809225B (en) 2013-05-16 2023-07-21 日商半導體能源研究所股份有限公司 Semiconductor device
JP6298353B2 (en) 2013-05-17 2018-03-20 株式会社半導体エネルギー研究所 Semiconductor device
US9172369B2 (en) 2013-05-17 2015-10-27 Semiconductor Energy Laboratory Co., Ltd. Programmable logic device and semiconductor device
US10032872B2 (en) 2013-05-17 2018-07-24 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, method for manufacturing the same, and apparatus for manufacturing semiconductor device
US9209795B2 (en) 2013-05-17 2015-12-08 Semiconductor Energy Laboratory Co., Ltd. Signal processing device and measuring method
US9754971B2 (en) 2013-05-18 2017-09-05 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
DE102014208859B4 (en) 2013-05-20 2021-03-11 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
KR102537022B1 (en) 2013-05-20 2023-05-30 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device
TWI664731B (en) 2013-05-20 2019-07-01 半導體能源研究所股份有限公司 Semiconductor device
US9647125B2 (en) 2013-05-20 2017-05-09 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
KR20200038333A (en) 2013-05-20 2020-04-10 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device
US9343579B2 (en) 2013-05-20 2016-05-17 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US9293599B2 (en) 2013-05-20 2016-03-22 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
KR20160009626A (en) 2013-05-21 2016-01-26 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Oxide semiconductor film and formation method thereof
US10416504B2 (en) 2013-05-21 2019-09-17 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device
JP6400336B2 (en) 2013-06-05 2018-10-03 株式会社半導体エネルギー研究所 Semiconductor device
JP2015195327A (en) 2013-06-05 2015-11-05 株式会社半導体エネルギー研究所 semiconductor device
TWI687748B (en) 2013-06-05 2020-03-11 日商半導體能源研究所股份有限公司 Display device and electronic device
TWI624936B (en) 2013-06-05 2018-05-21 半導體能源研究所股份有限公司 Display device
JP6475424B2 (en) 2013-06-05 2019-02-27 株式会社半導体エネルギー研究所 Semiconductor device
JP6374221B2 (en) 2013-06-05 2018-08-15 株式会社半導体エネルギー研究所 Semiconductor device
US9773915B2 (en) 2013-06-11 2017-09-26 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
KR102282108B1 (en) 2013-06-13 2021-07-26 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device
JP6368155B2 (en) 2013-06-18 2018-08-01 株式会社半導体エネルギー研究所 Programmable logic device
TWI652822B (en) 2013-06-19 2019-03-01 日商半導體能源研究所股份有限公司 Oxide semiconductor film and formation method thereof
US9035301B2 (en) 2013-06-19 2015-05-19 Semiconductor Energy Laboratory Co., Ltd. Imaging device
KR102257058B1 (en) 2013-06-21 2021-05-26 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device
US9515094B2 (en) 2013-06-26 2016-12-06 Semiconductor Energy Laboratory Co., Ltd. Storage device and semiconductor device
WO2014208476A1 (en) 2013-06-27 2014-12-31 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
TW201513128A (en) 2013-07-05 2015-04-01 Semiconductor Energy Lab Semiconductor device
US9666697B2 (en) 2013-07-08 2017-05-30 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing semiconductor device including an electron trap layer
US20150008428A1 (en) 2013-07-08 2015-01-08 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing semiconductor device
JP6435124B2 (en) 2013-07-08 2018-12-05 株式会社半導体エネルギー研究所 Method for manufacturing semiconductor device
US9424950B2 (en) 2013-07-10 2016-08-23 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US9293480B2 (en) 2013-07-10 2016-03-22 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and display device including the semiconductor device
US9006736B2 (en) 2013-07-12 2015-04-14 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US9818763B2 (en) 2013-07-12 2017-11-14 Semiconductor Energy Laboratory Co., Ltd. Display device and method for manufacturing display device
JP6322503B2 (en) 2013-07-16 2018-05-09 株式会社半導体エネルギー研究所 Semiconductor device
JP6516978B2 (en) 2013-07-17 2019-05-22 株式会社半導体エネルギー研究所 Semiconductor device
TWI621130B (en) 2013-07-18 2018-04-11 半導體能源研究所股份有限公司 Semiconductor device and method for manufacturing semiconductor device
US9395070B2 (en) 2013-07-19 2016-07-19 Semiconductor Energy Laboratory Co., Ltd. Support of flexible component and light-emitting device
TWI608523B (en) 2013-07-19 2017-12-11 半導體能源研究所股份有限公司 Oxide semiconductor film, method of manufacturing oxide semiconductor film, and semiconductor device
US9379138B2 (en) 2013-07-19 2016-06-28 Semiconductor Energy Laboratory Co., Ltd. Imaging device with drive voltage dependent on external light intensity
TWI636309B (en) 2013-07-25 2018-09-21 日商半導體能源研究所股份有限公司 Liquid crystal display device and electronic device
TWI632688B (en) 2013-07-25 2018-08-11 半導體能源研究所股份有限公司 Semiconductor device and method for manufacturing semiconductor device
US10529740B2 (en) 2013-07-25 2020-01-07 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device including semiconductor layer and conductive layer
TWI641208B (en) 2013-07-26 2018-11-11 日商半導體能源研究所股份有限公司 Dcdc converter
JP6410496B2 (en) 2013-07-31 2018-10-24 株式会社半導体エネルギー研究所 Multi-gate transistor
US9343288B2 (en) 2013-07-31 2016-05-17 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
JP6460592B2 (en) 2013-07-31 2019-01-30 株式会社半導体エネルギー研究所 DC-DC converter and semiconductor device
US9496330B2 (en) 2013-08-02 2016-11-15 Semiconductor Energy Laboratory Co., Ltd. Oxide semiconductor film and semiconductor device
TWI635750B (en) 2013-08-02 2018-09-11 半導體能源研究所股份有限公司 Imaging device and operation method thereof
JP2015053477A (en) 2013-08-05 2015-03-19 株式会社半導体エネルギー研究所 Semiconductor device and method for manufacturing the same
JP6345023B2 (en) 2013-08-07 2018-06-20 株式会社半導体エネルギー研究所 Semiconductor device and manufacturing method thereof
US9601591B2 (en) 2013-08-09 2017-03-21 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US9299855B2 (en) 2013-08-09 2016-03-29 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device having dual gate insulating layers
JP6329843B2 (en) 2013-08-19 2018-05-23 株式会社半導体エネルギー研究所 Semiconductor device
US9374048B2 (en) 2013-08-20 2016-06-21 Semiconductor Energy Laboratory Co., Ltd. Signal processing device, and driving method and program thereof
TWI663820B (en) 2013-08-21 2019-06-21 日商半導體能源研究所股份有限公司 Charge pump circuit and semiconductor device including the same
KR102232133B1 (en) 2013-08-22 2021-03-24 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device
KR102244553B1 (en) 2013-08-23 2021-04-23 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Capacitor and semiconductor device
US9443987B2 (en) 2013-08-23 2016-09-13 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
TWI749810B (en) 2013-08-28 2021-12-11 日商半導體能源研究所股份有限公司 Display device
US9552767B2 (en) 2013-08-30 2017-01-24 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device
US9360564B2 (en) 2013-08-30 2016-06-07 Semiconductor Energy Laboratory Co., Ltd. Imaging device
WO2015030150A1 (en) 2013-08-30 2015-03-05 Semiconductor Energy Laboratory Co., Ltd. Storage circuit and semiconductor device
JP6426402B2 (en) 2013-08-30 2018-11-21 株式会社半導体エネルギー研究所 Display device
US9590109B2 (en) 2013-08-30 2017-03-07 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US9449853B2 (en) 2013-09-04 2016-09-20 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device comprising electron trap layer
JP6406926B2 (en) 2013-09-04 2018-10-17 株式会社半導体エネルギー研究所 Semiconductor device
US9607991B2 (en) 2013-09-05 2017-03-28 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
JP6345544B2 (en) 2013-09-05 2018-06-20 株式会社半導体エネルギー研究所 Method for manufacturing semiconductor device
US10008513B2 (en) 2013-09-05 2018-06-26 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
KR102294507B1 (en) 2013-09-06 2021-08-30 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device
JP6401977B2 (en) 2013-09-06 2018-10-10 株式会社半導体エネルギー研究所 Semiconductor device
US9590110B2 (en) 2013-09-10 2017-03-07 Semiconductor Energy Laboratory Co., Ltd. Ultraviolet light sensor circuit
TWI640014B (en) 2013-09-11 2018-11-01 半導體能源研究所股份有限公司 Memory device, semiconductor device, and electronic device
US9269822B2 (en) 2013-09-12 2016-02-23 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing semiconductor device
US9893194B2 (en) 2013-09-12 2018-02-13 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
TWI646690B (en) 2013-09-13 2019-01-01 半導體能源研究所股份有限公司 Semiconductor device and manufacturing method thereof
US9716003B2 (en) 2013-09-13 2017-07-25 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing semiconductor device
US9461126B2 (en) 2013-09-13 2016-10-04 Semiconductor Energy Laboratory Co., Ltd. Transistor, clocked inverter circuit, sequential circuit, and semiconductor device including sequential circuit
KR102378241B1 (en) 2013-09-13 2022-03-23 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Display device
US9805952B2 (en) 2013-09-13 2017-10-31 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US9887297B2 (en) 2013-09-17 2018-02-06 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device comprising oxide semiconductor layer in which thickness of the oxide semiconductor layer is greater than or equal to width of the oxide semiconductor layer
US9859439B2 (en) 2013-09-18 2018-01-02 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US9269915B2 (en) 2013-09-18 2016-02-23 Semiconductor Energy Laboratory Co., Ltd. Display device
TWI677989B (en) 2013-09-19 2019-11-21 日商半導體能源研究所股份有限公司 Semiconductor device and manufacturing method thereof
JP2015084418A (en) 2013-09-23 2015-04-30 株式会社半導体エネルギー研究所 Semiconductor device
JP6570817B2 (en) 2013-09-23 2019-09-04 株式会社半導体エネルギー研究所 Semiconductor device
US9425217B2 (en) 2013-09-23 2016-08-23 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
TWI633668B (en) 2013-09-23 2018-08-21 半導體能源研究所股份有限公司 Semiconductor device
JP6383616B2 (en) 2013-09-25 2018-08-29 株式会社半導体エネルギー研究所 Semiconductor device
US9799774B2 (en) 2013-09-26 2017-10-24 Semiconductor Energy Laboratory Co., Ltd. Switch circuit, semiconductor device, and system
JP6392603B2 (en) 2013-09-27 2018-09-19 株式会社半導体エネルギー研究所 Semiconductor device
JP6581765B2 (en) 2013-10-02 2019-09-25 株式会社半導体エネルギー研究所 Bootstrap circuit and semiconductor device having bootstrap circuit
JP6386323B2 (en) 2013-10-04 2018-09-05 株式会社半導体エネルギー研究所 Semiconductor device
TWI741298B (en) 2013-10-10 2021-10-01 日商半導體能源研究所股份有限公司 Semiconductor device
JP6438727B2 (en) 2013-10-11 2018-12-19 株式会社半導体エネルギー研究所 Semiconductor device and manufacturing method of semiconductor device
KR102275031B1 (en) 2013-10-16 2021-07-07 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Method for driving arithmetic processing unit
TWI642170B (en) 2013-10-18 2018-11-21 半導體能源研究所股份有限公司 Display device and electronic device
TWI621127B (en) 2013-10-18 2018-04-11 半導體能源研究所股份有限公司 Arithmetic processing unit and driving method thereof
WO2015060133A1 (en) 2013-10-22 2015-04-30 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
DE102014220672A1 (en) 2013-10-22 2015-05-07 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
CN105659369B (en) 2013-10-22 2019-10-22 株式会社半导体能源研究所 The manufacturing method of semiconductor device and semiconductor device
JP2015109424A (en) 2013-10-22 2015-06-11 株式会社半導体エネルギー研究所 Semiconductor device, method for manufacturing semiconductor device and etchant used for semiconductor device
DE112014004839T5 (en) 2013-10-22 2016-07-07 Semiconductor Energy Laboratory Co., Ltd. display device
JP2015179247A (en) 2013-10-22 2015-10-08 株式会社半導体エネルギー研究所 display device
US9455349B2 (en) 2013-10-22 2016-09-27 Semiconductor Energy Laboratory Co., Ltd. Oxide semiconductor thin film transistor with reduced impurity diffusion
JP6625796B2 (en) 2013-10-25 2019-12-25 株式会社半導体エネルギー研究所 Display device
JP6457239B2 (en) 2013-10-31 2019-01-23 株式会社半導体エネルギー研究所 Semiconductor device
US9590111B2 (en) 2013-11-06 2017-03-07 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and display device including the semiconductor device
JP6440457B2 (en) 2013-11-07 2018-12-19 株式会社半導体エネルギー研究所 Semiconductor device
JP6478562B2 (en) 2013-11-07 2019-03-06 株式会社半導体エネルギー研究所 Semiconductor device
US9385054B2 (en) 2013-11-08 2016-07-05 Semiconductor Energy Laboratory Co., Ltd. Data processing device and manufacturing method thereof
JP2015118724A (en) 2013-11-13 2015-06-25 株式会社半導体エネルギー研究所 Semiconductor device and method for driving the semiconductor device
JP6393590B2 (en) 2013-11-22 2018-09-19 株式会社半導体エネルギー研究所 Semiconductor device
JP6426437B2 (en) 2013-11-22 2018-11-21 株式会社半導体エネルギー研究所 Semiconductor device
JP6486660B2 (en) 2013-11-27 2019-03-20 株式会社半導体エネルギー研究所 Display device
US9882014B2 (en) 2013-11-29 2018-01-30 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
JP2016001712A (en) 2013-11-29 2016-01-07 株式会社半導体エネルギー研究所 Method of manufacturing semiconductor device
US20150155313A1 (en) 2013-11-29 2015-06-04 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
KR102705567B1 (en) 2013-12-02 2024-09-12 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Display device
US9601634B2 (en) 2013-12-02 2017-03-21 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
KR102516162B1 (en) 2013-12-02 2023-03-29 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Display device and method for manufacturing the same
US9991392B2 (en) 2013-12-03 2018-06-05 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
JP6180908B2 (en) * 2013-12-06 2017-08-16 富士フイルム株式会社 Metal oxide semiconductor film, thin film transistor, display device, image sensor and X-ray sensor
JP2016027597A (en) 2013-12-06 2016-02-18 株式会社半導体エネルギー研究所 Semiconductor device
US9349751B2 (en) 2013-12-12 2016-05-24 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US9917133B2 (en) 2013-12-12 2018-03-13 General Electric Company Optoelectronic device with flexible substrate
JP6537264B2 (en) 2013-12-12 2019-07-03 株式会社半導体エネルギー研究所 Semiconductor device
TWI642186B (en) 2013-12-18 2018-11-21 日商半導體能源研究所股份有限公司 Semiconductor device
TWI721409B (en) 2013-12-19 2021-03-11 日商半導體能源研究所股份有限公司 Semiconductor device
KR20150073239A (en) 2013-12-20 2015-07-01 한국원자력연구원 A monolithic radiation sensor to detect multiple radiation and method of producing the same
US9379192B2 (en) 2013-12-20 2016-06-28 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
JP6444714B2 (en) 2013-12-20 2018-12-26 株式会社半導体エネルギー研究所 Method for manufacturing semiconductor device
WO2015097586A1 (en) 2013-12-25 2015-07-02 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
TWI637484B (en) 2013-12-26 2018-10-01 日商半導體能源研究所股份有限公司 Semiconductor device
WO2015097596A1 (en) 2013-12-26 2015-07-02 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US9960280B2 (en) 2013-12-26 2018-05-01 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
KR20160102295A (en) 2013-12-26 2016-08-29 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device
JP6402017B2 (en) 2013-12-26 2018-10-10 株式会社半導体エネルギー研究所 Semiconductor device
KR102320576B1 (en) 2013-12-27 2021-11-02 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device
US9577110B2 (en) 2013-12-27 2017-02-21 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device including an oxide semiconductor and the display device including the semiconductor device
KR20220046701A (en) 2013-12-27 2022-04-14 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Light-emitting device
US9318618B2 (en) 2013-12-27 2016-04-19 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US9349418B2 (en) 2013-12-27 2016-05-24 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for driving the same
JP6506961B2 (en) 2013-12-27 2019-04-24 株式会社半導体エネルギー研究所 Liquid crystal display
JP6506545B2 (en) 2013-12-27 2019-04-24 株式会社半導体エネルギー研究所 Semiconductor device
JP6488124B2 (en) 2013-12-27 2019-03-20 株式会社半導体エネルギー研究所 Semiconductor device
US9397149B2 (en) 2013-12-27 2016-07-19 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
JP6444723B2 (en) 2014-01-09 2018-12-26 株式会社半導体エネルギー研究所 apparatus
US9300292B2 (en) 2014-01-10 2016-03-29 Semiconductor Energy Laboratory Co., Ltd. Circuit including transistor
US9401432B2 (en) 2014-01-16 2016-07-26 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and electronic device
US9379713B2 (en) 2014-01-17 2016-06-28 Semiconductor Energy Laboratory Co., Ltd. Data processing device and driving method thereof
KR102306200B1 (en) 2014-01-24 2021-09-30 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device
WO2015114476A1 (en) 2014-01-28 2015-08-06 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US9929044B2 (en) 2014-01-30 2018-03-27 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing semiconductor device
US9653487B2 (en) 2014-02-05 2017-05-16 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, manufacturing method thereof, module, and electronic device
US9443876B2 (en) 2014-02-05 2016-09-13 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, display device including the semiconductor device, display module including the display device, and electronic device including the semiconductor device, the display device, and the display module
US9929279B2 (en) 2014-02-05 2018-03-27 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
TWI665778B (en) 2014-02-05 2019-07-11 日商半導體能源研究所股份有限公司 Semiconductor device, module, and electronic device
US9721968B2 (en) 2014-02-06 2017-08-01 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, electronic component, and electronic appliance
JP2015165226A (en) 2014-02-07 2015-09-17 株式会社半導体エネルギー研究所 Device
WO2015118436A1 (en) 2014-02-07 2015-08-13 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, device, and electronic device
US9869716B2 (en) 2014-02-07 2018-01-16 Semiconductor Energy Laboratory Co., Ltd. Device comprising programmable logic element
US10055232B2 (en) 2014-02-07 2018-08-21 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device comprising memory circuit
TWI685116B (en) 2014-02-07 2020-02-11 日商半導體能源研究所股份有限公司 Semiconductor device
JP6534530B2 (en) 2014-02-07 2019-06-26 株式会社半導体エネルギー研究所 Semiconductor device
KR20240093961A (en) 2014-02-11 2024-06-24 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Display device and electronic device
KR102317297B1 (en) 2014-02-19 2021-10-26 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Oxide, semiconductor device, module, and electronic device
TWI675004B (en) 2014-02-21 2019-10-21 日商半導體能源研究所股份有限公司 Semiconductor film, transistor, semiconductor device, display device, and electronic appliance
JP6506566B2 (en) 2014-02-21 2019-04-24 株式会社半導体エネルギー研究所 Current measurement method
JP2015172991A (en) 2014-02-21 2015-10-01 株式会社半導体エネルギー研究所 Semiconductor device, electronic component, and electronic device
KR102329066B1 (en) 2014-02-28 2021-11-18 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device, method for driving the same, and electronic appliance
US10074576B2 (en) 2014-02-28 2018-09-11 Semiconductor Energy Laboratory Co., Ltd. Semiconductor memory device
CN106104772B (en) 2014-02-28 2020-11-10 株式会社半导体能源研究所 Semiconductor device and display device having the same
US9564535B2 (en) 2014-02-28 2017-02-07 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, display device including the semiconductor device, display module including the display device, and electronic appliance including the semiconductor device, the display device, and the display module
US9294096B2 (en) 2014-02-28 2016-03-22 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
KR20150104518A (en) 2014-03-05 2015-09-15 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Level shifter circuit
JP6474280B2 (en) 2014-03-05 2019-02-27 株式会社半導体エネルギー研究所 Semiconductor device
US10096489B2 (en) 2014-03-06 2018-10-09 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US9397637B2 (en) 2014-03-06 2016-07-19 Semiconductor Energy Laboratory Co., Ltd. Voltage controlled oscillator, semiconductor device, and electronic device
JP6625328B2 (en) 2014-03-06 2019-12-25 株式会社半導体エネルギー研究所 Method for driving semiconductor device
US9537478B2 (en) 2014-03-06 2017-01-03 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US9653611B2 (en) 2014-03-07 2017-05-16 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US9711536B2 (en) 2014-03-07 2017-07-18 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, electronic component, and electronic device
JP6585354B2 (en) 2014-03-07 2019-10-02 株式会社半導体エネルギー研究所 Semiconductor device
WO2015132697A1 (en) 2014-03-07 2015-09-11 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US9419622B2 (en) 2014-03-07 2016-08-16 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
WO2015132694A1 (en) 2014-03-07 2015-09-11 Semiconductor Energy Laboratory Co., Ltd. Touch sensor, touch panel, and manufacturing method of touch panel
KR102267237B1 (en) 2014-03-07 2021-06-18 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device and electronic device
US9443872B2 (en) 2014-03-07 2016-09-13 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
JP6442321B2 (en) 2014-03-07 2018-12-19 株式会社半導体エネルギー研究所 Semiconductor device, driving method thereof, and electronic apparatus
KR20160132405A (en) 2014-03-12 2016-11-18 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device
KR20230062676A (en) 2014-03-13 2023-05-09 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Imaging device
JP6560508B2 (en) 2014-03-13 2019-08-14 株式会社半導体エネルギー研究所 Semiconductor device
JP6525421B2 (en) 2014-03-13 2019-06-05 株式会社半導体エネルギー研究所 Semiconductor device
US9324747B2 (en) 2014-03-13 2016-04-26 Semiconductor Energy Laboratory Co., Ltd. Imaging device
JP6541376B2 (en) 2014-03-13 2019-07-10 株式会社半導体エネルギー研究所 Method of operating programmable logic device
EP3117204B1 (en) 2014-03-13 2021-06-16 General Electric Company Curved digital x-ray detector for weld inspection
JP6677449B2 (en) 2014-03-13 2020-04-08 株式会社半導体エネルギー研究所 Driving method of semiconductor device
US9640669B2 (en) 2014-03-13 2017-05-02 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, display device including the semiconductor device, display module including the display device, and electronic appliance including the semiconductor device, the display device, and the display module
US10361290B2 (en) 2014-03-14 2019-07-23 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device comprising adding oxygen to buffer film and insulating film
WO2015136412A1 (en) 2014-03-14 2015-09-17 Semiconductor Energy Laboratory Co., Ltd. Circuit system
JP2015188071A (en) 2014-03-14 2015-10-29 株式会社半導体エネルギー研究所 semiconductor device
US9299848B2 (en) 2014-03-14 2016-03-29 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, RF tag, and electronic device
US9887212B2 (en) 2014-03-14 2018-02-06 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and electronic device
KR20160132982A (en) 2014-03-18 2016-11-21 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device and manufacturing method thereof
JP6509596B2 (en) 2014-03-18 2019-05-08 株式会社半導体エネルギー研究所 Semiconductor device
US9842842B2 (en) 2014-03-19 2017-12-12 Semiconductor Energy Laboratory Co., Ltd. Semiconductor memory device and semiconductor device and electronic device having the same
US9887291B2 (en) 2014-03-19 2018-02-06 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, display device including the semiconductor device, display module including the display device, and electronic device including the semiconductor device, the display device, or the display module
TWI657488B (en) 2014-03-20 2019-04-21 日商半導體能源研究所股份有限公司 Semiconductor device, display device including semiconductor device, display module including display device, and electronic device including semiconductor device, display device, and display module
KR102398965B1 (en) 2014-03-20 2022-05-17 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device, electronic component, and electronic device
WO2015145292A1 (en) 2014-03-28 2015-10-01 Semiconductor Energy Laboratory Co., Ltd. Transistor and semiconductor device
JP6487738B2 (en) 2014-03-31 2019-03-20 株式会社半導体エネルギー研究所 Semiconductor devices, electronic components
TWI695375B (en) 2014-04-10 2020-06-01 日商半導體能源研究所股份有限公司 Memory device and semiconductor device
JP6635670B2 (en) 2014-04-11 2020-01-29 株式会社半導体エネルギー研究所 Semiconductor device
US9674470B2 (en) 2014-04-11 2017-06-06 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, method for driving semiconductor device, and method for driving electronic device
JP6541398B2 (en) 2014-04-11 2019-07-10 株式会社半導体エネルギー研究所 Semiconductor device
TWI646782B (en) 2014-04-11 2019-01-01 日商半導體能源研究所股份有限公司 Holding circuit, driving method of holding circuit, and semiconductor device including holding circuit
DE112015001878B4 (en) 2014-04-18 2021-09-09 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and electronic equipment
CN106256017B (en) 2014-04-18 2020-02-07 株式会社半导体能源研究所 Semiconductor device and display device including the same
KR102511325B1 (en) 2014-04-18 2023-03-20 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Display device and operation method thereof
JP6613044B2 (en) 2014-04-22 2019-11-27 株式会社半導体エネルギー研究所 Display device, display module, and electronic device
KR102380829B1 (en) 2014-04-23 2022-03-31 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Imaging device
KR102330412B1 (en) 2014-04-25 2021-11-25 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device, electronic component, and electronic device
JP6468686B2 (en) 2014-04-25 2019-02-13 株式会社半導体エネルギー研究所 I / O device
US9780226B2 (en) 2014-04-25 2017-10-03 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
TWI643457B (en) 2014-04-25 2018-12-01 日商半導體能源研究所股份有限公司 Semiconductor device
US10043913B2 (en) 2014-04-30 2018-08-07 Semiconductor Energy Laboratory Co., Ltd. Semiconductor film, semiconductor device, display device, module, and electronic device
US10656799B2 (en) 2014-05-02 2020-05-19 Semiconductor Energy Laboratory Co., Ltd. Display device and operation method thereof
TWI679624B (en) 2014-05-02 2019-12-11 日商半導體能源研究所股份有限公司 Semiconductor device
JP6537341B2 (en) 2014-05-07 2019-07-03 株式会社半導体エネルギー研究所 Semiconductor device
JP6653997B2 (en) 2014-05-09 2020-02-26 株式会社半導体エネルギー研究所 Display correction circuit and display device
KR102333604B1 (en) 2014-05-15 2021-11-30 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device and display device including the same
JP6612056B2 (en) 2014-05-16 2019-11-27 株式会社半導体エネルギー研究所 Imaging device and monitoring device
JP2015233130A (en) 2014-05-16 2015-12-24 株式会社半導体エネルギー研究所 Semiconductor substrate and semiconductor device manufacturing method
JP6580863B2 (en) 2014-05-22 2019-09-25 株式会社半導体エネルギー研究所 Semiconductor devices, health management systems
JP6616102B2 (en) 2014-05-23 2019-12-04 株式会社半導体エネルギー研究所 Storage device and electronic device
TWI672804B (en) 2014-05-23 2019-09-21 日商半導體能源研究所股份有限公司 Manufacturing method of semiconductor device
US10020403B2 (en) 2014-05-27 2018-07-10 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US9874775B2 (en) 2014-05-28 2018-01-23 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device and electronic device
JP6525722B2 (en) 2014-05-29 2019-06-05 株式会社半導体エネルギー研究所 Memory device, electronic component, and electronic device
JP6653129B2 (en) 2014-05-29 2020-02-26 株式会社半導体エネルギー研究所 Storage device
JP6615490B2 (en) 2014-05-29 2019-12-04 株式会社半導体エネルギー研究所 Semiconductor device and electronic equipment
KR20150138026A (en) 2014-05-29 2015-12-09 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device
KR102418666B1 (en) 2014-05-29 2022-07-11 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Imaging element, electronic appliance, method for driving imaging device, and method for driving electronic appliance
US9831238B2 (en) 2014-05-30 2017-11-28 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device including insulating film having opening portion and conductive film in the opening portion
KR20230140605A (en) 2014-05-30 2023-10-06 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device, manufacturing method thereof, and electronic device
JP6538426B2 (en) 2014-05-30 2019-07-03 株式会社半導体エネルギー研究所 Semiconductor device and electronic device
JP6537892B2 (en) 2014-05-30 2019-07-03 株式会社半導体エネルギー研究所 Semiconductor device and electronic device
TWI663726B (en) 2014-05-30 2019-06-21 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, module, and electronic device
TWI646658B (en) 2014-05-30 2019-01-01 日商半導體能源研究所股份有限公司 Semiconductor device
KR20170013240A (en) 2014-05-30 2017-02-06 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device and method for manufacturing the same
KR102437450B1 (en) 2014-06-13 2022-08-30 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device and electronic device including the semiconductor device
JP2016015475A (en) 2014-06-13 2016-01-28 株式会社半導体エネルギー研究所 Semiconductor device and electronic apparatus
KR102344782B1 (en) 2014-06-13 2021-12-28 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Input device and input/output device
TWI663733B (en) 2014-06-18 2019-06-21 日商半導體能源研究所股份有限公司 Transistor and semiconductor device
KR20150146409A (en) 2014-06-20 2015-12-31 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device, display device, input/output device, and electronic device
TWI666776B (en) 2014-06-20 2019-07-21 日商半導體能源研究所股份有限公司 Semiconductor device and display device having the same
US9722090B2 (en) 2014-06-23 2017-08-01 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device including first gate oxide semiconductor film, and second gate
JP6545541B2 (en) 2014-06-25 2019-07-17 株式会社半導体エネルギー研究所 Imaging device, monitoring device, and electronic device
US10002971B2 (en) 2014-07-03 2018-06-19 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and display device including the semiconductor device
US9647129B2 (en) 2014-07-04 2017-05-09 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US9461179B2 (en) 2014-07-11 2016-10-04 Semiconductor Energy Laboratory Co., Ltd. Thin film transistor device (TFT) comprising stacked oxide semiconductor layers and having a surrounded channel structure
CN106537604B (en) 2014-07-15 2020-09-11 株式会社半导体能源研究所 Semiconductor device, method of manufacturing the same, and display device including the same
JP6581825B2 (en) 2014-07-18 2019-09-25 株式会社半導体エネルギー研究所 Display system
KR102422059B1 (en) 2014-07-18 2022-07-15 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device, imaging device, and electronic device
US9312280B2 (en) 2014-07-25 2016-04-12 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
KR102352633B1 (en) 2014-07-25 2022-01-17 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Oscillator circuit and semiconductor device including the same
US10712454B2 (en) * 2014-07-25 2020-07-14 General Electric Company X-ray detectors supported on a substrate having a metal barrier
JP6527416B2 (en) 2014-07-29 2019-06-05 株式会社半導体エネルギー研究所 Method for manufacturing semiconductor device
CN106537486B (en) 2014-07-31 2020-09-15 株式会社半导体能源研究所 Display device and electronic device
JP6555956B2 (en) 2014-07-31 2019-08-07 株式会社半導体エネルギー研究所 Imaging device, monitoring device, and electronic device
US9705004B2 (en) 2014-08-01 2017-07-11 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
DE102014111140B4 (en) * 2014-08-05 2019-08-14 Infineon Technologies Austria Ag Semiconductor device with field effect structures with different gate materials and method for the production thereof
JP6739150B2 (en) 2014-08-08 2020-08-12 株式会社半導体エネルギー研究所 Semiconductor device, oscillator circuit, phase locked loop circuit, and electronic device
JP6553444B2 (en) 2014-08-08 2019-07-31 株式会社半導体エネルギー研究所 Semiconductor device
JP6652342B2 (en) 2014-08-08 2020-02-19 株式会社半導体エネルギー研究所 Semiconductor device
US10147747B2 (en) 2014-08-21 2018-12-04 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, manufacturing method thereof, and electronic device
US10032888B2 (en) 2014-08-22 2018-07-24 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, method for manufacturing semiconductor device, and electronic appliance having semiconductor device
US10559667B2 (en) 2014-08-25 2020-02-11 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for measuring current of semiconductor device
WO2016030801A1 (en) 2014-08-29 2016-03-03 Semiconductor Energy Laboratory Co., Ltd. Imaging device and electronic device
KR102545592B1 (en) * 2014-09-02 2023-06-21 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Imaging device and electronic device
KR102329498B1 (en) 2014-09-04 2021-11-19 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device
US9766517B2 (en) 2014-09-05 2017-09-19 Semiconductor Energy Laboratory Co., Ltd. Display device and display module
JP2016066065A (en) 2014-09-05 2016-04-28 株式会社半導体エネルギー研究所 Display device and electronic device
US9722091B2 (en) 2014-09-12 2017-08-01 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
JP6676316B2 (en) 2014-09-12 2020-04-08 株式会社半導体エネルギー研究所 Method for manufacturing semiconductor device
JP2016066788A (en) 2014-09-19 2016-04-28 株式会社半導体エネルギー研究所 Method of evaluating semiconductor film, and method of manufacturing semiconductor device
KR20160034200A (en) 2014-09-19 2016-03-29 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Method for manufacturing semiconductor device
KR102513878B1 (en) 2014-09-19 2023-03-24 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Method for manufacturing semiconductor device
US9401364B2 (en) 2014-09-19 2016-07-26 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, electronic component, and electronic device
US10071904B2 (en) 2014-09-25 2018-09-11 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, display module, and electronic device
JP2016111677A (en) 2014-09-26 2016-06-20 株式会社半導体エネルギー研究所 Semiconductor device, wireless sensor and electronic device
US10141342B2 (en) 2014-09-26 2018-11-27 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and display device
WO2016046685A1 (en) 2014-09-26 2016-03-31 Semiconductor Energy Laboratory Co., Ltd. Imaging device
US10170055B2 (en) 2014-09-26 2019-01-01 Semiconductor Energy Laboratory Co., Ltd. Display device and driving method thereof
US9450581B2 (en) 2014-09-30 2016-09-20 Semiconductor Energy Laboratory Co., Ltd. Logic circuit, semiconductor device, electronic component, and electronic device
WO2016055894A1 (en) 2014-10-06 2016-04-14 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and electronic device
US9698170B2 (en) 2014-10-07 2017-07-04 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, display module, and electronic device
CN106796918A (en) 2014-10-10 2017-05-31 株式会社半导体能源研究所 Semiconductor device, circuit board and electronic equipment
CN106797213B (en) 2014-10-10 2021-02-02 株式会社半导体能源研究所 Logic circuit, processing unit, electronic component, and electronic apparatus
US9991393B2 (en) 2014-10-16 2018-06-05 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, module, and electronic device
JP6645793B2 (en) 2014-10-17 2020-02-14 株式会社半導体エネルギー研究所 Semiconductor device
WO2016063159A1 (en) 2014-10-20 2016-04-28 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof, module, and electronic device
US10068927B2 (en) 2014-10-23 2018-09-04 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, display module, and electronic device
JP6615565B2 (en) 2014-10-24 2019-12-04 株式会社半導体エネルギー研究所 Semiconductor device
TWI652362B (en) 2014-10-28 2019-03-01 日商半導體能源研究所股份有限公司 Oxide and manufacturing method thereof
KR102439023B1 (en) 2014-10-28 2022-08-31 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Display device, manufacturing method of display device, and electronic device
US9704704B2 (en) 2014-10-28 2017-07-11 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and display device including the same
US9793905B2 (en) 2014-10-31 2017-10-17 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US10680017B2 (en) 2014-11-07 2020-06-09 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element including EL layer, electrode which has high reflectance and a high work function, display device, electronic device, and lighting device
US9548327B2 (en) 2014-11-10 2017-01-17 Semiconductor Energy Laboratory Co., Ltd. Imaging device having a selenium containing photoelectric conversion layer
US9584707B2 (en) 2014-11-10 2017-02-28 Semiconductor Energy Laboratory Co., Ltd. Imaging device and electronic device
TWI711165B (en) 2014-11-21 2020-11-21 日商半導體能源研究所股份有限公司 Semiconductor device and electronic device
US9438234B2 (en) 2014-11-21 2016-09-06 Semiconductor Energy Laboratory Co., Ltd. Logic circuit and semiconductor device including logic circuit
TWI841974B (en) 2014-11-21 2024-05-11 日商半導體能源研究所股份有限公司 Semiconductor device
JP6563313B2 (en) 2014-11-21 2019-08-21 株式会社半導体エネルギー研究所 Semiconductor device and electronic device
TWI669819B (en) 2014-11-28 2019-08-21 日商半導體能源研究所股份有限公司 Semiconductor device, module, and electronic device
JP6647841B2 (en) 2014-12-01 2020-02-14 株式会社半導体エネルギー研究所 Preparation method of oxide
US20160155849A1 (en) 2014-12-02 2016-06-02 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, method for manufacturing semiconductor device, module, and electronic device
JP6647846B2 (en) 2014-12-08 2020-02-14 株式会社半導体エネルギー研究所 Semiconductor device
JP6667267B2 (en) 2014-12-08 2020-03-18 株式会社半導体エネルギー研究所 Semiconductor device
JP6833315B2 (en) 2014-12-10 2021-02-24 株式会社半導体エネルギー研究所 Semiconductor devices and electronic devices
CN113793872A (en) 2014-12-10 2021-12-14 株式会社半导体能源研究所 Semiconductor device and method for manufacturing the same
JP6689062B2 (en) 2014-12-10 2020-04-28 株式会社半導体エネルギー研究所 Semiconductor device
US9773832B2 (en) 2014-12-10 2017-09-26 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and electronic device
WO2016092416A1 (en) 2014-12-11 2016-06-16 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, memory device, and electronic device
JP2016116220A (en) 2014-12-16 2016-06-23 株式会社半導体エネルギー研究所 Semiconductor device and electronic device
JP6676354B2 (en) 2014-12-16 2020-04-08 株式会社半導体エネルギー研究所 Semiconductor device
KR102581808B1 (en) 2014-12-18 2023-09-21 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device, sensor device, and electronic device
US10396210B2 (en) 2014-12-26 2019-08-27 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device with stacked metal oxide and oxide semiconductor layers and display device including the semiconductor device
TWI686874B (en) 2014-12-26 2020-03-01 日商半導體能源研究所股份有限公司 Semiconductor device, display device, display module, electronic evice, oxide, and manufacturing method of oxide
KR20170101233A (en) 2014-12-26 2017-09-05 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Method for producing sputtering target
KR20170098839A (en) 2014-12-29 2017-08-30 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device and display device having semiconductor device
US10522693B2 (en) 2015-01-16 2019-12-31 Semiconductor Energy Laboratory Co., Ltd. Memory device and electronic device
US9443564B2 (en) 2015-01-26 2016-09-13 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, electronic component, and electronic device
US9954112B2 (en) 2015-01-26 2018-04-24 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US9812587B2 (en) 2015-01-26 2017-11-07 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
TWI710124B (en) 2015-01-30 2020-11-11 日商半導體能源研究所股份有限公司 Imaging device and electronic device
US9647132B2 (en) 2015-01-30 2017-05-09 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and memory device
KR20170109231A (en) 2015-02-02 2017-09-28 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Oxides and methods for making them
KR20240090743A (en) 2015-02-04 2024-06-21 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device, method for manufacturing the semiconductor device, or display device including the semiconductor device
TWI683365B (en) 2015-02-06 2020-01-21 日商半導體能源研究所股份有限公司 Device, manufacturing method thereof, and electronic device
US9660100B2 (en) 2015-02-06 2017-05-23 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
JP6717604B2 (en) 2015-02-09 2020-07-01 株式会社半導体エネルギー研究所 Semiconductor device, central processing unit and electronic equipment
JP6674269B2 (en) 2015-02-09 2020-04-01 株式会社半導体エネルギー研究所 Semiconductor device and method for manufacturing semiconductor device
WO2016128859A1 (en) 2015-02-11 2016-08-18 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
CN114512547A (en) 2015-02-12 2022-05-17 株式会社半导体能源研究所 Oxide semiconductor film and semiconductor device
US9818880B2 (en) 2015-02-12 2017-11-14 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and display device including the semiconductor device
JP2016154225A (en) 2015-02-12 2016-08-25 株式会社半導体エネルギー研究所 Semiconductor device and manufacturing method of the same
JP6758844B2 (en) 2015-02-13 2020-09-23 株式会社半導体エネルギー研究所 Display device
US9991394B2 (en) 2015-02-20 2018-06-05 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and fabrication method thereof
US9489988B2 (en) 2015-02-20 2016-11-08 Semiconductor Energy Laboratory Co., Ltd. Memory device
US10403646B2 (en) 2015-02-20 2019-09-03 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US9722092B2 (en) 2015-02-25 2017-08-01 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device having a stacked metal oxide
JP6739185B2 (en) 2015-02-26 2020-08-12 株式会社半導体エネルギー研究所 Storage system and storage control circuit
US9653613B2 (en) 2015-02-27 2017-05-16 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
JP6744108B2 (en) 2015-03-02 2020-08-19 株式会社半導体エネルギー研究所 Transistor, method for manufacturing transistor, semiconductor device, and electronic device
KR102653836B1 (en) 2015-03-03 2024-04-03 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device, method for manufacturing the same, or display device including the same
WO2016139560A1 (en) 2015-03-03 2016-09-09 Semiconductor Energy Laboratory Co., Ltd. Oxide semiconductor film, semiconductor device including the oxide semiconductor film, and display device including the semiconductor device
TWI718125B (en) 2015-03-03 2021-02-11 日商半導體能源研究所股份有限公司 Semiconductor device and manufacturing method thereof
JP6681117B2 (en) 2015-03-13 2020-04-15 株式会社半導体エネルギー研究所 Semiconductor device
US9964799B2 (en) 2015-03-17 2018-05-08 Semiconductor Energy Laboratory Co., Ltd. Display device, display module, and electronic device
US10008609B2 (en) 2015-03-17 2018-06-26 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, method for manufacturing the same, or display device including the same
JP2016225602A (en) 2015-03-17 2016-12-28 株式会社半導体エネルギー研究所 Semiconductor device and method of manufacturing the same
WO2016147074A1 (en) 2015-03-17 2016-09-22 Semiconductor Energy Laboratory Co., Ltd. Touch panel
US10134332B2 (en) 2015-03-18 2018-11-20 Semiconductor Energy Laboratory Co., Ltd. Display device, electronic device, and driving method of display device
JP6662665B2 (en) 2015-03-19 2020-03-11 株式会社半導体エネルギー研究所 Liquid crystal display device and electronic equipment using the liquid crystal display device
US10147823B2 (en) 2015-03-19 2018-12-04 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
KR102582523B1 (en) 2015-03-19 2023-09-26 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device and electronic device
US9842938B2 (en) 2015-03-24 2017-12-12 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and display device including semiconductor device
US9634048B2 (en) 2015-03-24 2017-04-25 Semiconductor Energy Laboratory Co., Ltd. Imaging device and electronic device
KR20160114511A (en) 2015-03-24 2016-10-05 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Method for manufacturing semiconductor device
US10096715B2 (en) 2015-03-26 2018-10-09 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, method for manufacturing the same, and electronic device
US10429704B2 (en) 2015-03-26 2019-10-01 Semiconductor Energy Laboratory Co., Ltd. Display device, display module including the display device, and electronic device including the display device or the display module
TWI695513B (en) 2015-03-27 2020-06-01 日商半導體能源研究所股份有限公司 Semiconductor device and electronic device
US9806200B2 (en) 2015-03-27 2017-10-31 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
JP6736321B2 (en) 2015-03-27 2020-08-05 株式会社半導体エネルギー研究所 Method of manufacturing semiconductor device
TW202316486A (en) 2015-03-30 2023-04-16 日商半導體能源研究所股份有限公司 Method for manufacturing semiconductor device
US9716852B2 (en) 2015-04-03 2017-07-25 Semiconductor Energy Laboratory Co., Ltd. Broadcast system
US10389961B2 (en) 2015-04-09 2019-08-20 Semiconductor Energy Laboratory Co., Ltd. Imaging device and electronic device
US10372274B2 (en) 2015-04-13 2019-08-06 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and touch panel
KR20240069807A (en) 2015-04-13 2024-05-20 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device
US10056497B2 (en) 2015-04-15 2018-08-21 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US10460984B2 (en) 2015-04-15 2019-10-29 Semiconductor Energy Laboratory Co., Ltd. Method for fabricating electrode and semiconductor device
JP2016206659A (en) 2015-04-16 2016-12-08 株式会社半導体エネルギー研究所 Display device, electronic device, and method for driving display device
US20180097027A1 (en) * 2015-04-17 2018-04-05 Sharp Kabushiki Kaisha Imaging panel and x-ray imaging device including same
US10192995B2 (en) 2015-04-28 2019-01-29 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US10002970B2 (en) 2015-04-30 2018-06-19 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, manufacturing method of the same, or display device including the same
US10671204B2 (en) 2015-05-04 2020-06-02 Semiconductor Energy Laboratory Co., Ltd. Touch panel and data processor
KR102549926B1 (en) 2015-05-04 2023-06-29 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device, method for manufacturing the same, and electronic device
JP6681780B2 (en) 2015-05-07 2020-04-15 株式会社半導体エネルギー研究所 Display systems and electronic devices
DE102016207737A1 (en) 2015-05-11 2016-11-17 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, method for manufacturing the semiconductor device, tire and moving object
TWI693719B (en) 2015-05-11 2020-05-11 日商半導體能源研究所股份有限公司 Manufacturing method of semiconductor device
US11728356B2 (en) 2015-05-14 2023-08-15 Semiconductor Energy Laboratory Co., Ltd. Photoelectric conversion element and imaging device
JP6935171B2 (en) 2015-05-14 2021-09-15 株式会社半導体エネルギー研究所 Semiconductor device
US9627034B2 (en) 2015-05-15 2017-04-18 Semiconductor Energy Laboratory Co., Ltd. Electronic device
WO2016189414A1 (en) 2015-05-22 2016-12-01 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and display device including the semiconductor device
US9837547B2 (en) 2015-05-22 2017-12-05 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device comprising oxide conductor and display device including the semiconductor device
JP6773453B2 (en) 2015-05-26 2020-10-21 株式会社半導体エネルギー研究所 Storage devices and electronic devices
JP2016225614A (en) 2015-05-26 2016-12-28 株式会社半導体エネルギー研究所 Semiconductor device
US10139663B2 (en) 2015-05-29 2018-11-27 Semiconductor Energy Laboratory Co., Ltd. Input/output device and electronic device
KR102553553B1 (en) 2015-06-12 2023-07-10 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Imaging device, method for operating the same, and electronic device
KR102556718B1 (en) 2015-06-19 2023-07-17 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device, manufacturing method therefor, and electronic device
US9860465B2 (en) 2015-06-23 2018-01-02 Semiconductor Energy Laboratory Co., Ltd. Imaging device and electronic device
US9935633B2 (en) 2015-06-30 2018-04-03 Semiconductor Energy Laboratory Co., Ltd. Logic circuit, semiconductor device, electronic component, and electronic device
US10290573B2 (en) 2015-07-02 2019-05-14 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and electronic device
US9917209B2 (en) 2015-07-03 2018-03-13 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of semiconductor device including step of forming trench over semiconductor
US10181531B2 (en) 2015-07-08 2019-01-15 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device including transistor having low parasitic capacitance
JP2017022377A (en) 2015-07-14 2017-01-26 株式会社半導体エネルギー研究所 Semiconductor device
US10501003B2 (en) 2015-07-17 2019-12-10 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, lighting device, and vehicle
US10985278B2 (en) 2015-07-21 2021-04-20 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US11189736B2 (en) 2015-07-24 2021-11-30 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US11024725B2 (en) 2015-07-24 2021-06-01 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device including metal oxide film
US10978489B2 (en) 2015-07-24 2021-04-13 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, display panel, method for manufacturing semiconductor device, method for manufacturing display panel, and information processing device
US10424671B2 (en) 2015-07-29 2019-09-24 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, circuit board, and electronic device
JP6802656B2 (en) 2015-07-30 2020-12-16 株式会社半導体エネルギー研究所 Method for manufacturing memory cells and method for manufacturing semiconductor devices
US10585506B2 (en) 2015-07-30 2020-03-10 Semiconductor Energy Laboratory Co., Ltd. Display device with high visibility regardless of illuminance of external light
CN106409919A (en) 2015-07-30 2017-02-15 株式会社半导体能源研究所 Semiconductor device and display device including the semiconductor device
US9825177B2 (en) 2015-07-30 2017-11-21 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of a semiconductor device using multiple etching mask
US9911861B2 (en) 2015-08-03 2018-03-06 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, manufacturing method of the same, and electronic device
US9876946B2 (en) 2015-08-03 2018-01-23 Semiconductor Energy Laboratory Co., Ltd. Imaging device and electronic device
JP6791661B2 (en) 2015-08-07 2020-11-25 株式会社半導体エネルギー研究所 Display panel
US10439069B2 (en) 2015-08-10 2019-10-08 Nlt Technologies, Ltd. Optical sensor element and photoelectric conversion device
WO2017029576A1 (en) 2015-08-19 2017-02-23 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of semiconductor device
JP2017041877A (en) 2015-08-21 2017-02-23 株式会社半導体エネルギー研究所 Semiconductor device, electronic component, and electronic apparatus
US9666606B2 (en) 2015-08-21 2017-05-30 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and electronic device
US9773919B2 (en) 2015-08-26 2017-09-26 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
WO2017037564A1 (en) 2015-08-28 2017-03-09 Semiconductor Energy Laboratory Co., Ltd. Oxide semiconductor, transistor, and semiconductor device
US9911756B2 (en) 2015-08-31 2018-03-06 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device including transistor and electronic device surrounded by layer having assigned band gap to prevent electrostatic discharge damage
JP2017050537A (en) 2015-08-31 2017-03-09 株式会社半導体エネルギー研究所 Semiconductor device
JP6807683B2 (en) 2015-09-11 2021-01-06 株式会社半導体エネルギー研究所 Input / output panel
SG10201607278TA (en) 2015-09-18 2017-04-27 Semiconductor Energy Lab Co Ltd Semiconductor device and electronic device
JP2017063420A (en) 2015-09-25 2017-03-30 株式会社半導体エネルギー研究所 Semiconductor device
WO2017055967A1 (en) 2015-09-30 2017-04-06 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and electronic device
WO2017064587A1 (en) 2015-10-12 2017-04-20 Semiconductor Energy Laboratory Co., Ltd. Display panel, input/output device, data processor, and method for manufacturing display panel
WO2017064590A1 (en) 2015-10-12 2017-04-20 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US9852926B2 (en) 2015-10-20 2017-12-26 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method for semiconductor device
KR102477518B1 (en) 2015-10-23 2022-12-15 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device and electronic device
US20170118479A1 (en) 2015-10-23 2017-04-27 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and electronic device
US10007161B2 (en) 2015-10-26 2018-06-26 Semiconductor Energy Laboratory Co., Ltd. Display device
SG10201608814YA (en) 2015-10-29 2017-05-30 Semiconductor Energy Lab Co Ltd Semiconductor device and method for manufacturing the semiconductor device
US9773787B2 (en) 2015-11-03 2017-09-26 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, memory device, electronic device, or method for driving the semiconductor device
US9741400B2 (en) 2015-11-05 2017-08-22 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, memory device, electronic device, and method for operating the semiconductor device
JP6796461B2 (en) 2015-11-18 2020-12-09 株式会社半導体エネルギー研究所 Semiconductor devices, computers and electronic devices
JP2018032839A (en) 2015-12-11 2018-03-01 株式会社半導体エネルギー研究所 Transistor, circuit, semiconductor device, display device, and electronic apparatus
US10868045B2 (en) 2015-12-11 2020-12-15 Semiconductor Energy Laboratory Co., Ltd. Transistor, semiconductor device, and electronic device
US10050152B2 (en) 2015-12-16 2018-08-14 Semiconductor Energy Laboratory Co., Ltd. Transistor, semiconductor device, and electronic device
CN108475491B (en) 2015-12-18 2021-04-20 株式会社半导体能源研究所 Semiconductor device and display device including the same
US10177142B2 (en) 2015-12-25 2019-01-08 Semiconductor Energy Laboratory Co., Ltd. Circuit, logic circuit, processor, electronic component, and electronic device
CN113327948A (en) 2015-12-28 2021-08-31 株式会社半导体能源研究所 Semiconductor device and display device including the same
KR20180099725A (en) 2015-12-29 2018-09-05 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Metal oxide films and semiconductor devices
JP2017135698A (en) 2015-12-29 2017-08-03 株式会社半導体エネルギー研究所 Semiconductor device, computer, and electronic device
JP6851814B2 (en) 2015-12-29 2021-03-31 株式会社半導体エネルギー研究所 Transistor
US10580798B2 (en) 2016-01-15 2020-03-03 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
JPWO2017125796A1 (en) 2016-01-18 2018-11-15 株式会社半導体エネルギー研究所 Metal oxide film, semiconductor device, and display device
US9905657B2 (en) 2016-01-20 2018-02-27 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing semiconductor device
US9887010B2 (en) 2016-01-21 2018-02-06 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, memory device, and driving method thereof
US10411013B2 (en) 2016-01-22 2019-09-10 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and memory device
US10700212B2 (en) 2016-01-28 2020-06-30 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, semiconductor wafer, module, electronic device, and manufacturing method thereof
US10115741B2 (en) 2016-02-05 2018-10-30 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and electronic device
US10250247B2 (en) 2016-02-10 2019-04-02 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, electronic component, and electronic device
JP6970511B2 (en) 2016-02-12 2021-11-24 株式会社半導体エネルギー研究所 Transistor
KR102655935B1 (en) 2016-02-12 2024-04-11 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device and display device including the semiconductor device
US9954003B2 (en) 2016-02-17 2018-04-24 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and electronic device
JP2017152656A (en) 2016-02-26 2017-08-31 Tianma Japan株式会社 Image sensor and manufacturing method thereof
US10263114B2 (en) 2016-03-04 2019-04-16 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, method for manufacturing the same, or display device including the same
CN115954389A (en) 2016-03-04 2023-04-11 株式会社半导体能源研究所 Semiconductor device and display device including the same
WO2017149413A1 (en) 2016-03-04 2017-09-08 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
JP6904730B2 (en) 2016-03-08 2021-07-21 株式会社半導体エネルギー研究所 Imaging device
US9882064B2 (en) 2016-03-10 2018-01-30 Semiconductor Energy Laboratory Co., Ltd. Transistor and electronic device
ES2895277T3 (en) * 2016-03-18 2022-02-18 Univ Texas Radiation detector for simultaneously detecting a plurality of radiations
US10096720B2 (en) 2016-03-25 2018-10-09 Semiconductor Energy Laboratory Co., Ltd. Transistor, semiconductor device, and electronic device
JP6668455B2 (en) 2016-04-01 2020-03-18 株式会社半導体エネルギー研究所 Method for manufacturing oxide semiconductor film
WO2017178923A1 (en) 2016-04-15 2017-10-19 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, electronic component, and electronic device
US10236875B2 (en) 2016-04-15 2019-03-19 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for operating the semiconductor device
KR102358829B1 (en) 2016-05-19 2022-02-07 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Composite Oxide Semiconductors and Transistors
CN114664949A (en) 2016-06-03 2022-06-24 株式会社半导体能源研究所 Field effect transistor
KR102330605B1 (en) 2016-06-22 2021-11-24 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device
US10411003B2 (en) 2016-10-14 2019-09-10 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
CN108109592B (en) 2016-11-25 2022-01-25 株式会社半导体能源研究所 Display device and working method thereof
US11545581B2 (en) * 2019-08-02 2023-01-03 South China University Of Technology Metal oxide (MO) semiconductor and thin-film transistor and application thereof
CN107017268B (en) * 2017-04-19 2019-12-20 京东方科技集团股份有限公司 PIN unit device and preparation method thereof, and fingerprint identification sensor and preparation method thereof
CN114252902A (en) * 2017-04-24 2022-03-29 睿生光电股份有限公司 Sensing device
CN108732609B (en) * 2017-04-24 2022-01-25 睿生光电股份有限公司 Sensing device
CN110998863A (en) 2017-07-31 2020-04-10 株式会社半导体能源研究所 Semiconductor device and method for manufacturing semiconductor device
US10499876B2 (en) * 2017-07-31 2019-12-10 Taiwan Semiconductor Manufacturing Company, Ltd. Test key design to enable X-ray scatterometry measurement
JP6782211B2 (en) * 2017-09-08 2020-11-11 株式会社東芝 Transparent electrodes, devices using them, and methods for manufacturing devices
KR102605008B1 (en) 2018-01-24 2023-11-24 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor devices, electronic components, and electronic devices
WO2019175704A1 (en) 2018-03-16 2019-09-19 株式会社半導体エネルギー研究所 Electrical module, display panel, display device, input/output device, information processing device, and production method for electrical module
CN108766989B (en) * 2018-06-01 2021-09-03 京东方科技集团股份有限公司 Optical sensing device, manufacturing method thereof, display device and display equipment
CN108987465A (en) * 2018-06-26 2018-12-11 浙江大学 A kind of amorphous oxide semiconductor film and thin film transistor (TFT) containing II race element
JPWO2020012276A1 (en) 2018-07-09 2021-08-12 株式会社半導体エネルギー研究所 Semiconductor device
WO2020012284A1 (en) 2018-07-10 2020-01-16 株式会社半導体エネルギー研究所 Secondary battery protection circuit and secondary battery abnormality detection system
JP7345497B2 (en) 2018-11-22 2023-09-15 株式会社半導体エネルギー研究所 battery pack
CN113196546A (en) 2018-12-20 2021-07-30 株式会社半导体能源研究所 Semiconductor device and battery pack
WO2020217130A1 (en) 2019-04-26 2020-10-29 株式会社半導体エネルギー研究所 Semiconductor device and electronic instrument
CN113711295A (en) 2019-05-10 2021-11-26 株式会社半导体能源研究所 Display device and electronic apparatus
WO2020240331A1 (en) 2019-05-31 2020-12-03 株式会社半導体エネルギー研究所 Semiconductor device and wireless communication device including said semiconductor device

Citations (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5117114A (en) 1989-12-11 1992-05-26 The Regents Of The University Of California High resolution amorphous silicon radiation detectors
JPH0832094A (en) 1994-07-14 1996-02-02 Canon Inc Thin film semiconductor solar cell and manufacture thereof
US5563426A (en) 1992-12-04 1996-10-08 Semiconductor Energy Laboratory Co., Ltd. Thin film transistor
US5578814A (en) 1993-09-29 1996-11-26 Intronix, Inc. Sensor device for storing electromagnetic radiation and for transforming such into electric signals
US6075256A (en) 1993-12-16 2000-06-13 Canon Kabushiki Kaisha Photoelectric converter, its driving method, and system including the photoelectric converter
US20020011572A1 (en) 2000-07-04 2002-01-31 Kenji Kajiwara Radiation image pickup device and system
US20030013008A1 (en) 2000-09-27 2003-01-16 Fuji Photo Film Co., Ltd. Light-receiving device and image sensor
JP2003298062A (en) 2002-03-29 2003-10-17 Sharp Corp Thin film transistor and its manufacturing method
US6649915B2 (en) 1998-07-16 2003-11-18 Sandia National Laboratories Ionizing radiation detector
US20030218222A1 (en) 2002-05-21 2003-11-27 The State Of Oregon Acting And Through The Oregon State Board Of Higher Education On Behalf Of Transistor structures and methods for making the same
WO2003098699A1 (en) 2002-05-22 2003-11-27 Sharp Kabushiki Kaisha Semiconductor device and display comprising same
WO2005088726A1 (en) 2004-03-12 2005-09-22 Japan Science And Technology Agency Amorphous oxide and thin film transistor
WO2005093846A1 (en) 2004-03-12 2005-10-06 Hewlett-Packard Development Company, L.P. Semiconductor device having channel fabricated from multicomponent oxide
WO2005093850A1 (en) 2004-03-12 2005-10-06 Hewlett-Packard Development Company, L.P. Semiconductor device having channel comprising multicomponent metal oxide
WO2005093851A1 (en) 2004-03-12 2005-10-06 Hewlett-Packard Development Company, L.P. Semiconductor device having channel including gallium oxide
WO2005093849A1 (en) 2004-03-12 2005-10-06 Hewlett-Packard Development Company, L.P. Semiconductor device having channel including multicomponent oxide
WO2005093848A1 (en) 2004-03-12 2005-10-06 Hewlett-Packard Development Company, L.P. Semiconductor device having channel including multicomponent oxide
WO2005093847A1 (en) 2004-03-12 2005-10-06 Hewlett-Packard Development Company, L.P. Semiconductor device having channel comprising a mixture of binary oxides
WO2005093852A1 (en) 2004-03-12 2005-10-06 Hewlett-Packard Development Company, L.P. Semiconductor device having channel including zinc-indium oxide
WO2006051995A1 (en) 2004-11-10 2006-05-18 Canon Kabushiki Kaisha Field effect transistor employing an amorphous oxide
WO2006051994A2 (en) 2004-11-10 2006-05-18 Canon Kabushiki Kaisha Light-emitting device
WO2006051993A2 (en) 2004-11-10 2006-05-18 Canon Kabushiki Kaisha Amorphous oxide and field effect transistor
US20060110867A1 (en) 2004-11-10 2006-05-25 Canon Kabushiki Kaisha Field effect transistor manufacturing method
US20060113565A1 (en) 2004-11-10 2006-06-01 Canon Kabushiki Kaisha Electric elements and circuits utilizing amorphous oxides
US20060113536A1 (en) 2004-11-10 2006-06-01 Canon Kabushiki Kaisha Display
US7189992B2 (en) 2002-05-21 2007-03-13 State Of Oregon Acting By And Through The Oregon State Board Of Higher Education On Behalf Of Oregon State University Transistor structures having a transparent channel

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3734086A (en) * 1971-03-24 1973-05-22 J Phelps Equipment for measuring and displaying the time lapse between a given heartbeat and the corresponding arterial pulse
JPS62122271A (en) * 1985-11-22 1987-06-03 Fuji Photo Film Co Ltd Solid-state image pickup element
JPH05251705A (en) 1992-03-04 1993-09-28 Fuji Xerox Co Ltd Thin-film transistor
JP4170454B2 (en) 1998-07-24 2008-10-22 Hoya株式会社 Article having transparent conductive oxide thin film and method for producing the same
US20030013319A1 (en) * 2001-07-10 2003-01-16 Motorola, Inc. Semiconductor structure with selective doping and process for fabrication
DE10136756C2 (en) * 2001-07-27 2003-07-31 Siemens Ag X-ray diagnostic device with a flexible solid-state X-ray detector
JP4164562B2 (en) 2002-09-11 2008-10-15 独立行政法人科学技術振興機構 Transparent thin film field effect transistor using homologous thin film as active layer
US7061014B2 (en) * 2001-11-05 2006-06-13 Japan Science And Technology Agency Natural-superlattice homologous single crystal thin film, method for preparation thereof, and device using said single crystal thin film
US7078702B2 (en) * 2002-07-25 2006-07-18 General Electric Company Imager
JP4164563B2 (en) * 2002-09-24 2008-10-15 独立行政法人科学技術振興機構 Oxide semiconductor PN junction device and manufacturing method thereof
US7521685B2 (en) * 2006-01-18 2009-04-21 General Electric Company Structured scintillator and systems employing structured scintillators

Patent Citations (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5117114A (en) 1989-12-11 1992-05-26 The Regents Of The University Of California High resolution amorphous silicon radiation detectors
US5563426A (en) 1992-12-04 1996-10-08 Semiconductor Energy Laboratory Co., Ltd. Thin film transistor
US5578814A (en) 1993-09-29 1996-11-26 Intronix, Inc. Sensor device for storing electromagnetic radiation and for transforming such into electric signals
US6075256A (en) 1993-12-16 2000-06-13 Canon Kabushiki Kaisha Photoelectric converter, its driving method, and system including the photoelectric converter
JPH0832094A (en) 1994-07-14 1996-02-02 Canon Inc Thin film semiconductor solar cell and manufacture thereof
US6649915B2 (en) 1998-07-16 2003-11-18 Sandia National Laboratories Ionizing radiation detector
US20020011572A1 (en) 2000-07-04 2002-01-31 Kenji Kajiwara Radiation image pickup device and system
US20030013008A1 (en) 2000-09-27 2003-01-16 Fuji Photo Film Co., Ltd. Light-receiving device and image sensor
JP2003298062A (en) 2002-03-29 2003-10-17 Sharp Corp Thin film transistor and its manufacturing method
US20030218222A1 (en) 2002-05-21 2003-11-27 The State Of Oregon Acting And Through The Oregon State Board Of Higher Education On Behalf Of Transistor structures and methods for making the same
WO2004038757A2 (en) 2002-05-21 2004-05-06 The State Of Oregon Acting By And Through The State Board Of Higher Education On Behalf Of Oregon State University Transistor structures and methods for making the same
US7189992B2 (en) 2002-05-21 2007-03-13 State Of Oregon Acting By And Through The Oregon State Board Of Higher Education On Behalf Of Oregon State University Transistor structures having a transparent channel
WO2003098699A1 (en) 2002-05-22 2003-11-27 Sharp Kabushiki Kaisha Semiconductor device and display comprising same
US20050173734A1 (en) 2002-05-22 2005-08-11 Hiroto Yoshioka Semiconductor device and display comprising same
WO2005093846A1 (en) 2004-03-12 2005-10-06 Hewlett-Packard Development Company, L.P. Semiconductor device having channel fabricated from multicomponent oxide
WO2005088726A1 (en) 2004-03-12 2005-09-22 Japan Science And Technology Agency Amorphous oxide and thin film transistor
WO2005093851A1 (en) 2004-03-12 2005-10-06 Hewlett-Packard Development Company, L.P. Semiconductor device having channel including gallium oxide
WO2005093849A1 (en) 2004-03-12 2005-10-06 Hewlett-Packard Development Company, L.P. Semiconductor device having channel including multicomponent oxide
WO2005093848A1 (en) 2004-03-12 2005-10-06 Hewlett-Packard Development Company, L.P. Semiconductor device having channel including multicomponent oxide
WO2005093847A1 (en) 2004-03-12 2005-10-06 Hewlett-Packard Development Company, L.P. Semiconductor device having channel comprising a mixture of binary oxides
WO2005093852A1 (en) 2004-03-12 2005-10-06 Hewlett-Packard Development Company, L.P. Semiconductor device having channel including zinc-indium oxide
WO2005093850A1 (en) 2004-03-12 2005-10-06 Hewlett-Packard Development Company, L.P. Semiconductor device having channel comprising multicomponent metal oxide
WO2006051995A1 (en) 2004-11-10 2006-05-18 Canon Kabushiki Kaisha Field effect transistor employing an amorphous oxide
WO2006051993A2 (en) 2004-11-10 2006-05-18 Canon Kabushiki Kaisha Amorphous oxide and field effect transistor
US20060110867A1 (en) 2004-11-10 2006-05-25 Canon Kabushiki Kaisha Field effect transistor manufacturing method
US20060113539A1 (en) 2004-11-10 2006-06-01 Canon Kabushiki Kaisha Field effect transistor
US20060113565A1 (en) 2004-11-10 2006-06-01 Canon Kabushiki Kaisha Electric elements and circuits utilizing amorphous oxides
US20060113536A1 (en) 2004-11-10 2006-06-01 Canon Kabushiki Kaisha Display
WO2006051994A2 (en) 2004-11-10 2006-05-18 Canon Kabushiki Kaisha Light-emitting device

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
Nomura, et al. "Carrier Transport in Transparent . . . InGaZn04"; Ext. Abst. 51st Spring Meeting, Jpm. Soc. Appl. Phys and Rel. Soc., No. 2, 31a-ZA-6, p. 669 (2004).
Nomura, et al; "Room-Temperature fabrication of . . . amorphous oxide semiconductors". Nature, vol. 432, 488-492 (2004).
Nomura, et al; "Thin-Film Transition . . . Oxide Semiconductor"; Science, vol. 300, 1269-1272 (2003).
Takagi, et al.; "Carrier transport and . . . amorphous oxide semiconductor, a-InGaZnO4 "; Thin Solid Films, vol. 486,38-41 (2005).

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130237012A1 (en) * 2006-08-09 2013-09-12 Nlt Technologies Ltd Method of fabricating a thin-film device
US7884360B2 (en) * 2006-08-09 2011-02-08 Nec Lcd Technologies, Ltd. Thin-film device and method of fabricating the same
US20110097844A1 (en) * 2006-08-09 2011-04-28 Nec Lcd Technologies, Ltd. Method of fabricating a thin-film device
US20080038882A1 (en) * 2006-08-09 2008-02-14 Kazushige Takechi Thin-film device and method of fabricating the same
US9209026B2 (en) 2006-08-09 2015-12-08 Nlt Technologies, Ltd. Method of fabricating a thin-film device
US8420442B2 (en) * 2006-08-09 2013-04-16 Nlt Technologies, Ltd. Method of fabricating a thin-film device
US8889480B2 (en) * 2006-08-09 2014-11-18 Nlt Technologies, Ltd. Method of fabricating a thin-film device
US20110006297A1 (en) * 2007-12-12 2011-01-13 Idemitsu Kosan Co., Ltd. Patterned crystalline semiconductor thin film, method for producing thin film transistor and field effect transistor
US9773814B2 (en) 2009-11-06 2017-09-26 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US8916869B2 (en) 2009-11-06 2014-12-23 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device including an oxide semiconductor layer
US9117713B2 (en) 2009-11-06 2015-08-25 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device comprising a gate of an amplifier transistor under an insulating layer and a transfer transistor channel over the insulating layer the amplifier transistor and transfer transistor overlapping
US9331112B2 (en) 2009-11-06 2016-05-03 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device including an oxide semiconductor layer
US20110108706A1 (en) * 2009-11-06 2011-05-12 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and operating method thereof
US9905596B2 (en) 2009-11-06 2018-02-27 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device comprising a channel region of a transistor with a crystalline oxide semiconductor and a specific off-state current for the transistor
US8487266B2 (en) 2010-01-14 2013-07-16 Canon Kabushiki Kaisha X-ray detector and method for manufacturing the same
US20110168905A1 (en) * 2010-01-14 2011-07-14 Canon Kabushiki Kaisha X-ray detector and method for manufacturing the same
US9871526B2 (en) 2010-01-15 2018-01-16 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and electronic device including analog/digital converter
US9564534B2 (en) 2010-02-19 2017-02-07 Semiconductor Energy Laboratory Co., Ltd. Transistor and display device using the same
US10283530B2 (en) 2011-05-05 2019-05-07 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US11942483B2 (en) 2011-05-05 2024-03-26 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US10304878B2 (en) 2011-07-15 2019-05-28 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for driving the same

Also Published As

Publication number Publication date
US7453065B2 (en) 2008-11-18
US20060108529A1 (en) 2006-05-25
US20080251729A1 (en) 2008-10-16
US7535010B2 (en) 2009-05-19
JP2012142600A (en) 2012-07-26
US20080290286A1 (en) 2008-11-27
US20090146072A1 (en) 2009-06-11
US8084743B2 (en) 2011-12-27

Similar Documents

Publication Publication Date Title
US7663116B2 (en) Sensor and image pickup device
JP2006165530A (en) Sensor and non-planar imager
Sun et al. Single-crystal perovskite detectors: development and perspectives
Zhang et al. Enhanced performance of solar-blind ultraviolet photodetector based on Mg-doped amorphous gallium oxide film
KR20090013090A (en) Process for producing thin-film device, and devices produced by the process
US10756283B2 (en) Fabrication method for fused multi-layer amorphous selenium sensor
WO2005109527A1 (en) Radiation detector
US20040178426A1 (en) Laminated semiconductor radiation detector
EP1780802B1 (en) X-ray radiation image detector based on amorphous selen
Peng et al. Thick-junction perovskite X-ray detectors: processing and optoelectronic considerations
Huang et al. X-ray detectors based on amorphous InGaZnO thin films
Cao et al. Sensitive direct x-ray detectors based on the In–Ga–Zn–O/perovskite heterojunction phototransistor
Hellier et al. Performance evaluation of an amorphous selenium photodetector at high fields for application integration
CN112054088A (en) X-ray detector based on field effect transistor structure and preparation method thereof
KR101839690B1 (en) X-ray detector having photoconductor comprising perovskite compound
KR101183111B1 (en) Unipolar Transparent Vertical Diodes
CN114361275B (en) Room temperature ultra-fast infrared detector based on lead salt semiconductor film with grain boundary and detection method thereof
CN114447226A (en) Organic transistor ray detector based on heterojunction layered structure and preparation method thereof
Finger et al. Paramagnetic defects in undoped microcrystalline silicon
CN112490334B (en) Manufacturing method of X-ray flat panel detector and X-ray flat panel detector
AU2019241284B2 (en) Ultra-wide band gap MexSn1-xO2 alloy semiconductor epitaxial thin film material and preparation method therefor, application thereof and device thereof
Wang Transparent oxide semiconductors: fabrication, properties, and applications
KR101829993B1 (en) X-ray detector having photoconductor comprising perovskite compound
Peng et al. Ga2O3 Photon‐Controlled Diode for Sensitive DUV/X‐Ray Detection and High‐Resolution Array Imaging Application
CN114975670A (en) Electric regulation and control co-optical axis solar blind ultraviolet-visible light dual-band detector and preparation method thereof

Legal Events

Date Code Title Description
FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

STCF Information on status: patent grant

Free format text: PATENTED CASE

FPAY Fee payment

Year of fee payment: 4

AS Assignment

Owner name: TOKYO INSTITUTE OF TECHNOLOGY, JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:CANON KABUSHIKI KAISHA;TOKYO INSTITUTE OF TECHNOLOGY;REEL/FRAME:030776/0506

Effective date: 20130627

Owner name: JAPAN SCIENCE AND TECHNOLOGY AGENCY, JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:CANON KABUSHIKI KAISHA;TOKYO INSTITUTE OF TECHNOLOGY;REEL/FRAME:030776/0506

Effective date: 20130627

Owner name: CANON KABUSHIKI KAISHA, JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:CANON KABUSHIKI KAISHA;TOKYO INSTITUTE OF TECHNOLOGY;REEL/FRAME:030776/0506

Effective date: 20130627

FPAY Fee payment

Year of fee payment: 8

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 12TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1553); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 12