US20210145234A1 - Navigational control system for a robotic device - Google Patents

Navigational control system for a robotic device Download PDF

Info

Publication number
US20210145234A1
US20210145234A1 US17/080,323 US202017080323A US2021145234A1 US 20210145234 A1 US20210145234 A1 US 20210145234A1 US 202017080323 A US202017080323 A US 202017080323A US 2021145234 A1 US2021145234 A1 US 2021145234A1
Authority
US
United States
Prior art keywords
behavioral
debris
mode
signal
robotic device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US17/080,323
Inventor
Gregg W. Landry
David A. Cohen
Daniel N. Ozick
Mark J. Chiappetta
Joseph L. Jones
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
iRobot Corp
Original Assignee
iRobot Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=43430738&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=US20210145234(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority claimed from US10/661,835 external-priority patent/US7024278B2/en
Priority claimed from US10/766,303 external-priority patent/US6956348B2/en
Priority claimed from US11/682,642 external-priority patent/US9128486B2/en
Priority claimed from US12/512,114 external-priority patent/US8386081B2/en
Application filed by iRobot Corp filed Critical iRobot Corp
Priority to US17/080,323 priority Critical patent/US20210145234A1/en
Publication of US20210145234A1 publication Critical patent/US20210145234A1/en
Assigned to IROBOT CORPORATION reassignment IROBOT CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: COHEN, DAVID A., CHIAPPETTA, MARK J., JONES, JOSEPH L., LANDRY, GREGG W., OZICK, DANIEL N.
Assigned to BANK OF AMERICA, N.A., AS ADMINISTRATIVE AGENT reassignment BANK OF AMERICA, N.A., AS ADMINISTRATIVE AGENT SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: IROBOT CORPORATION
Assigned to IROBOT CORPORATION reassignment IROBOT CORPORATION RELEASE BY SECURED PARTY (SEE DOCUMENT FOR DETAILS). Assignors: BANK OF AMERICA, N.A., AS ADMINISTRATIVE AGENT
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L11/00Machines for cleaning floors, carpets, furniture, walls, or wall coverings
    • A47L11/40Parts or details of machines not provided for in groups A47L11/02 - A47L11/38, or not restricted to one of these groups, e.g. handles, arrangements of switches, skirts, buffers, levers
    • A47L11/4011Regulation of the cleaning machine by electric means; Control systems and remote control systems therefor
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0268Control of position or course in two dimensions specially adapted to land vehicles using internal positioning means
    • G05D1/0272Control of position or course in two dimensions specially adapted to land vehicles using internal positioning means comprising means for registering the travel distance, e.g. revolutions of wheels
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D3/00Control of position or direction
    • G05D3/12Control of position or direction using feedback
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L2201/00Robotic cleaning machines, i.e. with automatic control of the travelling movement or the cleaning operation
    • A47L2201/04Automatic control of the travelling movement; Automatic obstacle detection
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L2201/00Robotic cleaning machines, i.e. with automatic control of the travelling movement or the cleaning operation
    • A47L2201/06Control of the cleaning action for autonomous devices; Automatic detection of the surface condition before, during or after cleaning
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0227Control of position or course in two dimensions specially adapted to land vehicles using mechanical sensing means, e.g. for sensing treated area
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0231Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means
    • G05D1/0242Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means using non-visible light signals, e.g. IR or UV signals
    • G05D2201/0215

Definitions

  • U.S. patent application Ser. No. 12/512,114 is also a continuation-in-part of, and claims priority under 35 U.S.C. ⁇ 120 from, U.S. patent application Ser. No. 12/255,393, filed on Oct. 21, 2008, which is a continuation of U.S. patent application Ser. No. 11/860,272, filed on Sep. 24, 2007 (now U.S. Pat. No. 7,459,871), which is a continuation of U.S. patent application Ser. No. 11/533,294, filed on Sep. 19, 2006 (now U.S. Pat. No. 7,288,912), which is a continuation of U.S. patent application Ser. No. 11/109,832, filed on Apr. 19, 2005, which is a continuation of U.S. patent application Ser. No. 10/766,303, filed on Jan. 28, 2004.
  • This disclosure relates to relates to a navigational control system for a robotic device.
  • Robotic engineers have long worked on developing an effective method of autonomous cleaning. This has led to the development of two separate and distinct schemes for autonomous robotic devices: (1) deterministic cleaning; and (2) random cleaning.
  • the autonomous robotic device follows a defined path, e.g., a boustrophedon path that is calculated to facilitate complete cleaning coverage of a given area while eliminating redundant cleaning.
  • Deterministic cleaning requires that the robotic device maintain precise position knowledge at all times, as well as its position history (where it has been), which, in turn, requires a sophisticated positioning system.
  • a suitable positioning system a positioning system suitably accurate for deterministic cleaning might rely on scanning laser ranging systems, ultrasonic transducers, a carrier phase differential GPS, or other sophisticated methods—is typically prohibitively expensive and labor intensive, requiring an involved pre-setup to accommodate the unique conditions of each area to be cleaned, e.g., room geometry, furniture locations.
  • methods that rely on global positioning are typically incapacitated by failure of any part of the positioning system.
  • the RoboScrub device built by Denning Mobile Robotics and Windsor Industries.
  • the RoboScrub device employs sonar and infrared detectors, bump sensors, and a high-precision laser navigation system to define the deterministic cleaning path.
  • the navigation system employed with the RoboScrub device requires numerous large bar code targets to be set up in various strategic positions within the area to be cleaned, and effective operation of the navigation system requires that at least four of such targets be visible simultaneously. This target accessibility requirement effectively limits the use of the RoboScrub device to large uncluttered open areas.
  • Dead reckoning consists of continually measuring the precise rotation of each drive wheel (e.g., using optical shaft encoders) to continually calculate the current position of the robotic device, based upon a known starting point and orientation.
  • the drive wheels of dead reckoning robotic devices are almost always subject to some degree of slippage, which leads to errors in the calculation of current position. Accordingly, dead reckoning robotic devices are generally considered unreliable for cleaning operations of any great duration—resulting in intractable system neglect, i.e., areas of the surface to be cleaned are not cleaned.
  • Other representative examples of pseudo-deterministic robotic devices are described in U.S. Pat. No. 6,255,793 (Peless et al.) and U.S. Pat. No. 5,109,566 (Kobayashi et al.).
  • a robotic device operating in random motion, under the control of one or more random-motion algorithms stored in the robotic device, represents the other basic approach to cleaning operations using autonomous robotic devices.
  • the robotic device autonomously implement such random-motion algorithm(s) in response to internal events, e.g., signals generated by a sensor system, elapse of a time period (random or predetermined).
  • internal events e.g., signals generated by a sensor system
  • a robotic device operating under the control of a random-motion algorithm will provide acceptable cleaning coverage given enough cleaning time.
  • a robotic device utilizing a random-motion algorithm must operate for a longer period of time to achieve acceptable cleaning coverage.
  • the random-motion robotic device must run approximately five times longer than a deterministic robotic device having similarly sized cleaning mechanisms and moving at approximately the same speed.
  • an area to be cleaned that includes one or more randomly-situated obstacles causes a marked increase in the running time for a random-motion robotic device to effect 98% cleaning coverage. Therefore, while a random motion robotic device is a relatively inexpensive means of cleaning a defined working area as contrasted to a deterministic robotic device, the random-motion robotic device requires a significantly higher cleaning time.
  • the present disclosure provides a debris sensor, and apparatus utilizing such a debris sensor, wherein the sensor is instantaneously responsive to debris strikes, and can be used to control, select or vary the operational mode of an autonomous or non-autonomous cleaning apparatus containing such a sensor.
  • an autonomous cleaning apparatus includes a chassis, a drive system disposed on the chassis and operable to enable movement of the cleaning apparatus, and a controller in communication with the drive system.
  • the controller includes a processor operable to control the drive system to steer movement of the cleaning apparatus.
  • the autonomous cleaning apparatus includes a cleaning head system disposed on the chassis and a sensor system in communication with the controller.
  • the sensor system includes a debris sensor for generating a debris signal, a bump sensor for generating a bump signal, and an obstacle following sensor disposed on a side of the autonomous cleaning apparatus for generating an obstacle signal.
  • the processor executes a prioritized arbitration scheme to identify and implement one or more dominant behavioral modes based upon at least one signal received from the sensor system.
  • Implementations of the disclosure may include one or more of the following features.
  • the processor implements a spot cleaning mode in an area in which the cleaning apparatus was operating, substantially immediately in response to receiving a debris signal generated by the debris sensor.
  • the spot cleaning mode may comprise maneuvering the autonomous cleaning apparatus according to a self-bounded area algorithm.
  • the self-bounded area algorithm may include a spiraling algorithm at a reduced drive speed.
  • the processor implements a high power cleaning mode in response to the debris signal.
  • the high power mode includes elevating power delivery to the cleaning head system.
  • the debris sensor includes a piezoelectric sensor located proximate to a cleaning pathway and responsive to a debris impact thereon to generate a debris signal indicative of such impact.
  • the debris sensor may include a plate, an elastomer pad supporting the plate, and a piezoelectric material and an electrode both secured to the plate. The electrode is in communication with the controller.
  • the debris sensor includes a piezoelectric film.
  • the sensor system includes right and left debris sensors in communication with the controller and disposed proximate a cleaning pathway of the cleaning head system for generating respective debris signals.
  • the processor directs the drive system to turn right in response to the debris signal generated by the right debris sensor and to turn left in response to the debris signal generated by the left debris sensor.
  • the right and left debris sensors may be disposed opposite each other and equidistantly from a center axis defined by the cleaning pathway.
  • the bump sensor may include a displaceable bumper attached to the chassis and at least one break-beam sensor disposed on the displaceable bumper.
  • the break-beam sensor is activated upon displacement of the bumper toward the chassis.
  • the obstacle following sensor may include an emitter emitting an emission signal laterally and a detector configured to detect the emission reflected off an obstacle adjacent the cleaning apparatus.
  • the emitter and the detector are configured to establish a focal point.
  • the obstacle following sensor may be disposed on a dominant side of the autonomous cleaning apparatus.
  • the sensor system includes a cliff sensor for generating a cliff signal upon detection of a cliff.
  • the cliff sensor includes an emitter emitting an emission signal downwardly and a detector configured to detect the emission reflected off a surface being traversed by the cleaning apparatus. The emitter and the detector are configured to establish a focal point below the cleaning apparatus.
  • the sensor system includes a wheel drop sensor and/or a stall sensor.
  • an autonomous cleaning apparatus in another aspect of the disclosure, includes a chassis a drive system disposed on the chassis and operable to enable movement of the cleaning apparatus, and a controller in communication with the drive system.
  • the controller includes a processor operable to control the drive system to steer movement of the cleaning apparatus.
  • the autonomous cleaning apparatus includes a cleaning head system disposed on the chassis and a sensor system in communication with the controller.
  • the sensor system includes a debris sensor for generating a debris signal, a bump sensor for generating a bump signal, and an obstacle following sensor disposed on a side of the autonomous cleaning apparatus for generating an obstacle signal.
  • the processor executes a prioritized arbitration scheme to identify and implement one or more dominant behavioral modes based upon at least one signal received from the sensor system.
  • the processor controls one or more operational conditions of the autonomous cleaning apparatus based upon the debris signal.
  • the processor controls the drive system to execute a pattern of movements to steer the autonomous cleaning apparatus toward a debris area corresponding to the debris signal generated by the debris sensor.
  • an autonomous cleaning apparatus includes a drive system operable to enable movement of the cleaning apparatus, a controller in communication with the drive system, and a debris sensor for generating a debris signal indicating that the cleaning apparatus has encountered debris.
  • the controller includes a processor operable to control the drive system to provide at least one pattern of movement of the cleaning apparatus.
  • the debris sensor is located along a cleaning passageway of the cleaning apparatus and responsive to debris passing through the cleaning passageway to generate a signal indicative of such passing.
  • the processor is responsive to the debris signal to select a pattern of movement of the cleaning apparatus.
  • the pattern of movement includes steering the cleaning apparatus toward an area containing debris. In some implementations, the pattern of movement includes spot coverage of an area containing debris.
  • One aspect of the disclosure is an autonomous cleaning apparatus including a drive system operable to enable movement of the cleaning apparatus, a controller in communication with the drive system, the controller including a processor operable to control the drive system to provide at least one pattern of movement of the cleaning apparatus; and a debris sensor for generating a debris signal indicating that the cleaning apparatus has encountered debris; wherein the processor is responsive to the debris signal to select an operative mode from among predetermined operative modes of the cleaning apparatus.
  • the selection of operative mode could include selecting a pattern of movement of the cleaning apparatus.
  • the pattern of movement can include spot coverage of an area containing debris, or steering the cleaning apparatus toward an area containing debris.
  • the debris sensor could include spaced-apart first and second debris sensing elements respectively operable to generate first and second debris signals; and the processor can be responsive to the respective first and second debris signals to select a pattern of movement, such as steering toward a side (e.g., left or right side) with more debris.
  • the debris sensor can include a piezoelectric sensor element located proximate to a cleaning pathway of the cleaning apparatus and responsive to a debris strike to generate a signal indicative of such strike.
  • the debris sensor can also be incorporated into a non-autonomous cleaning apparatus.
  • This aspect of the invention can include a piezoelectric sensor located proximate to a cleaning pathway and responsive to a debris strike to generate a debris signal indicative of such strike; and a processor responsive to the debris signal to change an operative mode of the cleaning apparatus.
  • the change in operative mode could include illuminating a user-perceptible indicator light, changing a power setting (e.g., higher power setting when more debris is encountered), or slowing or reducing a movement speed of the apparatus.
  • a further aspect of the disclosure is a debris sensor, including a piezoelectric element located proximate to or within a cleaning pathway of the cleaning apparatus and responsive to a debris strike to generate a first signal indicative of such strike, and a processor operable to process the first signal to generate a second signal representative of a characteristic of debris being encountered by the cleaning apparatus. That characteristic could be, for example, a quantity or volumetric parameter of the debris, or a vector from a present location of the cleaning apparatus to an area containing debris.
  • Another aspect of the disclosure takes advantage of the motion of an autonomous cleaning device across a floor or other surface, processing the debris signal in conjunction with knowledge of the cleaning device's movement to calculate a debris gradient.
  • the debris gradient is representative of changes in debris strikes count as the autonomous cleaning apparatus moves along a surface.
  • an autonomous cleaning device controller can continuously adjust the path or pattern of movement of the device to clean a debris field most effectively.
  • Another aspect of the disclosure includes a navigational control system that enhances the cleaning efficiency of a robotic device by adding a deterministic component (in the form of a conduct prescribed by a navigation control algorithm) to the random motion of the robotic device generated by predetermined behavioral modes stored in the robotic device.
  • a deterministic component in the form of a conduct prescribed by a navigation control algorithm
  • Yet another aspect of the disclosure includes a navigational control unit operating under a navigation control algorithm that includes a predetermined triggering event that defines when the prescribed conduct will be implemented by the robotic device.
  • a navigational control system for deterministically altering movement activity of a robotic device operating in a defined working area, comprising a transmitting subsystem integrated in combination with the robotic device, the transmitting subsystem comprising means for emitting a number of directed beams, each directed beam having a predetermined emission pattern, and a receiving subsystem functioning as a base station that includes a navigation control algorithm that defines a predetermined triggering event for the navigational control system and a set of detection units positioned within the defined working area, the detection units being positioned in a known aspectual relationship with respect to one another, the set of detection units being configured and operative to detect one or more of the directed beams emitted by the transmitting system; and wherein the receiving subsystem is configured and operative to process the one or more detected directed beams under the control of the navigational control algorithm to determine whether the predetermined triggering event has occurred, and, if the predetermined triggering event has occurred transmit a control signal to the robotic device, wherein reception of the control signal
  • FIG. 1 is a top-view schematic of an exemplary robotic device having particular utility for use in the navigational control system.
  • FIG. 2 is an exemplary hardware block diagram for the robotic device of FIG. 1 .
  • FIG. 3 is a side view of the robotic device of FIG. 1 , showing a debris sensor situated in a cleaning or vacuum pathway, where it will be struck by debris upswept by the main cleaning brush element.
  • FIG. 4 is an exploded diagram of a piezoelectric debris sensor.
  • FIG. 5 is a schematic diagram of a debris sensor signal processing architecture.
  • FIGS. 6A-6C are schematic diagrams of signal processing circuitry for the debris sensor architecture of FIG. 5 .
  • FIG. 7 is a schematic diagram showing the debris sensor in a non-autonomous cleaning apparatus.
  • FIG. 8 is a flowchart of operating a debris sensor.
  • FIG. 9 is a schematic depiction of a navigational control system that comprises a transmitting subsystem and a receiving subsystem.
  • FIG. 10 illustrates a polar tessellation of a defined working area in which a robotic device is operating.
  • FIG. 11A illustrates the operation of a transmitting subsystem in synchronized operation with the receiving subsystem of a navigational control system.
  • FIG. 11B illustrates the operation of the receiving subsystem in synchronized operation with the transmitting subsystem of FIG. 5A .
  • FIG. 11C illustrates the operation of a transmitting subsystem in synchronized operation with the receiving subsystem of a navigational control system.
  • FIG. 11D illustrates the operation of the receiving subsystem in synchronized operation with the transmitting subsystem of FIG. 5C .
  • FIG. 12A illustrates a navigational control system wherein the transmitting subsystem is integrated in combination with the robotic device and the receiving system functions as a base station mounted against one wall of a defined working area.
  • FIG. 12B illustrates the set of transmitting units comprising the transmitting subsystem of the robotic device of FIG. 12A and representative directed beams having a predetermined emission patterns.
  • FIG. 12C is a schematic illustration of the receiving subsystem of FIG. 12A .
  • FIG. 13 illustrates a navigational control system wherein the receiving subsystem is integrated in combination with the robotic device and the transmitting subsystem has a distributed configuration.
  • the debris sensor of the present disclosure can be incorporated into a wide range of autonomous cleaning devices (and indeed, into non-autonomous cleaning devices as shown by way of example in FIG. 7 ), it will first be described in the context of an exemplary autonomous cleaning device shown in FIGS. 1-3 .
  • FIG. 1 is a top-view schematic of an exemplary preferred embodiment of a robotic device 100 having particular utility in combination with a navigational control system 10 according to the present invention.
  • FIG. 2 is a block diagram of the hardware of the robot device 100 of FIG. 1 .
  • the hardware and behavioral modes (coverage behaviors for cleaning operations; escape behaviors for transitory movement patterns; and safety behaviors for emergency conditions) of the robotic device 100 which is manufactured, distributed, and/or marketed by the iRobot Corporation of Burlington, Mass. under the ROOMBA trademark, are briefly described in the following paragraphs to facilitate a more complete understanding of the navigational control system 10 of the present invention. Further details regarding the hardware and behavioral modes of the robotic device 100 can be found in commonly-owned, co-pending U.S. nonprovisional patent application Ser. No. 10/167,851, filed 12 Jun. 2002, entitled METHOD AND SYSTEM FOR MULTI-MODE COVERAGE FOR AN AUTONOMOUS ROBOT, and U.S. nonprovisional patent application Ser. No. 10/320,729, filed 16 Dec. 2002, entitled AUTONOMOUS FLOOR-CLEANING DEVICE.
  • forward refers to the primary direction of motion (forward) of the robotic device (see arrow identified by reference character “FM” in FIG. 1 ).
  • the fore/aft axis FA X of the robotic device 100 coincides with the medial diameter of the robotic device 100 that divides the robotic device 100 into generally symmetrical right and left halves, which are defined as the dominant and non-dominant sides, respectively.
  • the robotic device 100 has a generally cylindrical housing infrastructure that includes a chassis 102 and an outer shell 104 secured to the chassis 102 that define a structural envelope of minimal height (to facilitate movement under furniture).
  • the hardware comprising the robotic device 100 can be generally categorized as the functional elements of a power system, a motive power system, a sensor system, a control module, a side brush assembly, or a self-adjusting cleaning head system, respectively, all of which are integrated in combination with the housing infrastructure.
  • the robotic device 100 further includes a forward bumper 106 having a generally arcuate configuration and a nose-wheel assembly 108 .
  • the forward bumper 106 (illustrated as a single component; alternatively, a two-segment component) is integrated in movable combination with the chassis 102 (by means of displaceable support members pairs) to extend outwardly therefrom. Whenever the robotic device 100 impacts an obstacle (e.g., wall, furniture) during movement thereof, the bumper 106 is displaced (compressed) towards the chassis 102 and returns to its extended (operating) position when contact with the obstacle is terminated.
  • an obstacle e.g., wall, furniture
  • the nose-wheel assembly 108 is mounted in biased combination with the chassis 102 so that the nose-wheel subassembly 108 is in a retracted position (due to the weight of the robotic device 100 ) during cleaning operations wherein it rotates freely over the surface being cleaned.
  • the nose-wheel subassembly 108 encounters a drop-off during operation (e.g., descending stairs, split-level floors)
  • the nose-wheel assembly 108 is biased to an extended position.
  • the hardware of the power system which provides the energy to power the electrically-operated hardware of the robotic device 100 , comprises a rechargeable battery pack 110 (and associated conduction lines, not shown) that is integrated in combination with the chassis 102 .
  • the motive power system provides the means that propels the robotic device 100 and operates the cleaning mechanisms, e.g., side brush assembly and the self-adjusting cleaning head system, during movement of the robotic device 100 .
  • the motive power system comprises left and right main drive wheel assemblies 112 L, 112 R, their associated independent electric motors 114 L, 114 R, and electric motors 116 , 118 for operation of the side brush assembly and the self-adjusting cleaning head subsystem, respectively.
  • the main drive wheel assemblies 112 L, 112 R are independently mounted in biased combination with the chassis 102 (for pivotal motion with respect thereto) at opposed ends of the transverse diameter (with respect to the fore-aft axis FA X ) of the robotic device 100 and are in a retracted position (due to the weight of the robotic device 100 ) during operation thereof wherein the axes of rotation are approximately coplanar with the bottom of the chassis 102 .
  • the main wheel assemblies 112 L, 112 R are pivotally-biased to an extended position wherein their axes of rotation are below the bottom plane of the chassis 102 (in this extended position the rechargeable battery pack 110 is automatically turned off by the control module executing one of the safety behavioral modes).
  • the electric motors 114 L, 114 R are mechanically coupled to the main drive wheel assemblies 112 L, 112 R, respectively, and independently operated by control signals generated by the control module as a response to the implementation of a behavioral mode. Independent operation of the electric motors 114 L, 114 R allows the main wheel assemblies 112 L, 112 R to be: (1) rotated at the same speed in the same direction to propel the robotic device 100 in a straight line, forward or aft; (2) differentially rotated (including the condition wherein one wheel assembly is not rotated) to effect a variety of right and/or left turning patterns (over a spectrum of sharp to shallow turns) for the robotic device 100 ; and (3) rotated at the same speed in opposite directions to cause the robotic device 100 to turn in place, i.e., “spin on a dime”, to provide an extensive repertoire of movement capability for the robotic device 100 .
  • the sensor system comprises a variety of different sensor units that are operative to generate signals that control the behavioral mode operations of the robotic device 100 .
  • the described robotic device 100 includes obstacle detection units 120 , cliff detection units 122 , wheel drop sensors 124 , an obstacle-following unit 126 , a virtual wall omnidirectional detector 128 , stall-sensor units 130 , and main wheel encoder units 132 , and left and right debris sensors 125 L, 125 R.
  • the obstacle (“bump”) detection units 120 are IR break beam sensors mounted in combination with the displaceable support member pairs of the forward bumper 106 . These detection units 120 are operative to generate one or more signals indicating relative displacement between one or more support member pairs whenever the robotic device 100 impacts an obstacle such that the forward bumper 106 is compressed. These signals are processed by the control module to determine an approximate point of contact with the obstacle relative to the fore-aft axis FA X of the robotic device 100 (and the behavioral mode(s) to be implemented).
  • the cliff detection units 122 are mounted in combination with the forward bumper 106 .
  • Each cliff detection unit 122 comprises an IR emitter—detector pair configured and operative to establish a focal point such that radiation emitted downwardly by the emitter is reflected from the surface being traversed and detected by the detector. If reflected radiation is not detected by the detector, i.e., a drop-off is encountered, the cliff detection unit 122 transmits a signal to the control module (which causes one or more behavioral modes to be implemented).
  • a wheel drop sensor 124 such as a contact switch is integrated in combination with each of the main drive wheel assemblies 112 L, 112 R and the nose wheel assembly 108 and is operative to generate a signal whenever any of the wheel assemblies is in an extended position, i.e., not in contact with the surface being traversed, (which causes the control module to implement one ore more behavioral modes).
  • the obstacle-following unit 126 for the described embodiment is an IR emitter-detector pair mounted on the ‘dominant’ side (right hand side of FIG. 1 ) of the robotic device 100 .
  • the emitter-detector pair is similar in configuration to the cliff detection units 112 , but is positioned so that the emitter emits radiation laterally from the dominant side of the robotic device 100 .
  • the unit 126 is operative to transmit a signal to the control module whenever an obstacle is detected as a result of radiation reflected from the obstacle and detected by the detector.
  • the control module in response to this signal, causes one or more behavioral modes to be implemented.
  • a virtual wall detection system for use in conjunction with the described embodiment of the robotic device 100 comprises an omnidirectional detector 128 mounted atop the outer shell 104 and a stand-alone transmitting unit (not shown) that transmits an axially-directed confinement beam.
  • the stand-alone transmitting unit is positioned so that the emitted confinement beam blocks an accessway to a defined working area, thereby restricting the robotic device 100 to operations within the defined working area (e.g., in a doorway to confine the robotic device 100 within a specific room to be cleaned).
  • the omnidirectional detector 128 Upon detection of the confinement beam, transmits a signal to the control module (which causes one or more behavioral modes to be implemented to move the robotic device 100 away from the confinement beam generated by the stand-alone transmitting unit).
  • a stall sensor unit 130 is integrated in combination with each electric motor 114 L, 114 R, 116 , 118 and operative to transmit a signal to the control module when a change in current is detected in the associated electric motor (which is indicative of a dysfunctional condition in the corresponding driven hardware).
  • the control module is operative in response to such a signal to implement one or more behavioral modes.
  • An IR encoder unit 132 (see FIG. 2 ) is integrated in combination with each main wheel assembly 112 L, 112 R and operative to detect the rotation of the corresponding wheel and transmit signals corresponding thereto the control module (wheel rotation can be used to provide an estimate of distance traveled for the robotic device 100 ).
  • the control module comprises the microprocessing unit 135 illustrated in FIG. 2 that includes I/O ports connected to the sensors and controllable hardware of the robotic device 100 , a microcontroller, and ROM and RAM memory.
  • the I/O ports function as the interface between the microcontroller and the sensor units and controllable hardware, transferring signals generated by the sensor units to the microcontroller and transferring control (instruction) signals generated by the microcontroller to the controllable hardware to implement a specific behavioral mode.
  • the microcontroller is operative to execute instruction sets for processing sensor signals, implementing specific behavioral modes based upon such processed signals, and generating control (instruction) signals for the controllable hardware based upon implemented behavioral modes for the robotic device 100 .
  • the cleaning coverage and control programs for the robotic device 100 are stored in the ROM of the microprocessing unit 135 , which includes the behavioral modes, sensor processing algorithms, control signal generation algorithms and a prioritization algorithm for determining which behavioral mode or modes are to be given control of the robotic device 100 .
  • the RAM of the microprocessing unit 135 is used to store the active state of the robotic device 100 , including the ID of the behavioral mode(s) under which the robotic device 100 is currently being operated and the hardware commands associated therewith.
  • the side brush assembly 140 is configured and operative to entrain particulates outside the periphery of the housing infrastructure and to direct such particulates towards the self-adjusting cleaning head system.
  • the side brush assembly 140 provides the robotic device 100 with the capability of cleaning surfaces adjacent to base-boards when the robotic device is operated in an Obstacle-Following behavioral mode.
  • the side brush assembly 140 is preferably mounted in combination with the chassis 102 in the forward quadrant on the dominant side of the robotic device 100 .
  • the self-adjusting cleaning head system 145 for the described robotic device 100 comprises a dual-stage brush assembly and a vacuum assembly, each of which is independently powered by an electric motor (reference numeral 118 in FIG. 1 actually identifies two independent electric motors—one for the brush assembly and one for the vacuum assembly).
  • the cleaning capability of the robotic device 100 is commonly characterized in terms of the width of the cleaning head system 145 (see reference character W in FIG. 1 ).
  • the dual-stage brush assembly and the inlet of the vacuum assembly are integrated in combination with a deck structure, which is pivotally mounted in combination with the chassis 102 and operatively integrated with the motor of the dual-stage brush assembly.
  • the brush assembly motor provides the motive force to pivot the deck structure with respect to the chassis 102 .
  • the pivoting deck structure provides the self adjusting capability for the cleaning head assembly 145 , which allows the robotic device 100 to readily transition between disparate surfaces during cleaning operations, e.g., carpeted surface to bare surface or vice versa, without hanging up.
  • the dual-stage brush assembly comprises asymmetric, counter-rotating brushes that are positioned (forward of the inlet of the vacuum assembly), configured and operative to direct particulate debris into a removable dust cartridge (not shown).
  • the positioning, configuration, and operation of the brush assembly concomitantly directs particulate debris towards the inlet of the vacuum assembly such that particulates that are not swept up by the dual-stage brush assembly can be subsequently ingested by the vacuum assembly as a result of movement of the robotic device 100 .
  • Operation of the vacuum assembly independently of the self-adjustable brush assembly allows the vacuum assembly to generate and maintain a higher vacuum force using a battery-power source than would be possible if the vacuum assembly were operated in dependence with the brush assembly.
  • the cleaning brush assembly includes asymmetric, counter-rotating flapper and main brush elements 92 and 94 , respectively, that are positioned forward of the vacuum assembly inlet 84 , and operative to direct particulate debris 127 into a removable dust cartridge 86 .
  • the autonomous cleaning apparatus can also include left and right debris sensor elements 125 PS, which can be piezoelectric sensor elements, as described in detail below.
  • the piezoelectric debris sensor elements 125 PS can be situated in a cleaning pathway of the cleaning device, mounted, for example, in the roof of the cleaning head, so that when struck by particles 127 swept up by the brush elements and/or pulled up by vacuum, the debris sensor elements 125 PS generate electrical pulses representative of debris impacts and thus, of the presence of debris in an area in which the autonomous cleaning device is operating.
  • the sensor elements 125 PS are located substantially at an axis AX along which main and flapper brushes 94 , 92 meet, so that particles strike the sensor elements 125 PS with maximum force.
  • the robotic cleaning device can be fitted with left and right side piezoelectric debris sensors, to generate separate left and right side debris signals that can be processed to signal the robotic device to turn in the direction of a “dirty” area
  • the robotic device 100 uses a variety of behavioral modes to effectively clean a defined working area where behavioral modes are layers of control systems that can be operated in parallel.
  • the microprocessor unit 135 is operative to execute a prioritized arbitration scheme to identify and implement one or more dominant behavioral modes for any given scenario based upon inputs from the sensor system.
  • the behavioral modes for the described robotic device 100 can be characterized as: (1) coverage behavioral modes; (2) escape behavioral modes; and (3) safety behavioral modes.
  • Coverage behavioral modes are primarily designed to allow the robotic device 100 to perform its cleaning operations in an efficient and effective manner and the escape and safety behavioral modes are priority behavioral modes implemented when a signal from the sensor system indicates that normal operation of the robotic device 100 is impaired, e.g., obstacle encountered, or is likely to be impaired, e.g., drop-off detected.
  • Representative and illustrative coverage behavioral (cleaning) modes for the robotic device 100 include: (1) a Spot Coverage pattern; (2) an Obstacle-Following (or Edge-Cleaning) Coverage pattern, and (3) a Room Coverage pattern.
  • the Spot Coverage pattern causes the robotic device 100 to clean a limited area within the defined working area, e.g., a high-traffic area.
  • the Spot Coverage pattern is implemented by means of a spiral algorithm (but other types of self-bounded area algorithms, e.g., polygonal, can be used).
  • the spiral algorithm which causes outward spiraling (preferred) or inward spiraling movement of the robotic device 100 , is implemented by control signals from the microprocessing unit 135 to the main wheel assemblies 112 L, 112 R to change the turn radius/radii thereof as a function of time (thereby increasing/decreasing the spiral movement pattern of the robotic device 100 ).
  • the robotic device 100 is operated in the Spot Coverage pattern for a predetermined or random period of time, for a predetermined or random distance (e.g., a maximum spiral distance) and/or until the occurrence of a specified event, e.g., activation of one or more of the obstacle detection units 120 (collectively a transition condition).
  • a transition condition occurs, the robotic device 100 can implement or transition to a different behavioral mode, e.g., a Straight Line behavioral mode (in a preferred embodiment of the robotic device 100 , the Straight Line behavioral mode is a low priority, default behavior that propels the robot in an approximately straight line at a preset velocity of approximately 0.306 m/s) or a Bounce behavioral mode in combination with a Straight Line behavioral mode.
  • a Straight Line behavioral mode in a preferred embodiment of the robotic device 100 , the Straight Line behavioral mode is a low priority, default behavior that propels the robot in an approximately straight line at a preset velocity of approximately 0.306 m/s
  • Bounce behavioral mode in combination with
  • the robotic device 100 can take other actions in lieu of transitioning to a different behavioral mode.
  • the robotic device 100 can momentarily implement a behavioral mode to avoid or escape the obstacle and resume operation under control of the spiral algorithm (i.e., continue spiraling in the same direction).
  • the robotic device 100 can momentarily implement a behavioral mode to avoid or escape the obstacle and resume operation under control of the spiral algorithm (but in the opposite direction—reflective spiraling).
  • the Obstacle-Following Coverage pattern causes the robotic device 100 to clean the perimeter of the defined working area, e.g., a room bounded by walls, and/or the perimeter of an obstacle (e.g., furniture) within the defined working area.
  • the robotic device 100 utilizes obstacle-following unit 126 to continuously maintain its position with respect to an obstacle, e.g., wall, furniture, so that the motion of the robotic device 100 causes it to travel adjacent to and concomitantly clean along the perimeter of the obstacle.
  • Different embodiments of the obstacle-following unit 126 can be used to implement the Obstacle-Following behavioral pattern.
  • the obstacle-following unit 126 is operated to detect the presence or absence of the obstacle. In an alternative embodiment, the obstacle-following unit 126 is operated to detect an obstacle and then maintain a predetermined distance between the obstacle and the robotic device 100 .
  • the microprocessing unit 135 is operative, in response to signals from the obstacle-following unit, to implement small CW or CCW turns to maintain its position with respect to the obstacle.
  • the robotic device 100 implements a small CW when the robotic device 100 transitions from obstacle detection to non-detection (reflection to non-reflection) or to implement a small CCW turn when the robotic device 100 transitions from non-detection to detection (non-reflection to reflection). Similar turning behaviors are implemented by the robotic device 100 to maintain the predetermined distance from the obstacle.
  • the robotic device 100 is operated in the Obstacle-Following behavioral mode for a predetermined or random period of time, for a predetermined or random distance (e.g., a maximum or minimum distance) and/or until the occurrence of a specified event, e.g., activation of one or more of the obstacle detection units 120 a predetermined number of times (collectively a transition condition).
  • the microprocessor 135 will cause the robotic device to implement an Align behavioral mode upon activation of the obstacle-detection units 120 in the Obstacle-Following behavioral mode wherein the implements a minimum angle CCW turn to align the robotic device 100 with the obstacle.
  • the Room Coverage pattern can be used by the robotic device 100 to clean any defined working area that is bounded by walls, stairs, obstacles or other barriers (e.g., a virtual wall unit).
  • a preferred embodiment for the Room Coverage pattern comprises the Random-Bounce behavioral mode in combination with the Straight Line behavioral mode. Initially, the robotic device 100 travels under control of the Straight-Line behavioral mode, i.e., straight-line algorithm (main drive wheel assemblies 112 L, 112 R operating at the same rotational speed in the same direction) until an obstacle is encountered.
  • the microprocessing unit 135 operative to compute an acceptable range of new directions based upon the obstacle detection unit(s) 126 activated.
  • the microprocessing unit 135 selects a new heading from within the acceptable range and implements a CW or CCW turn to achieve the new heading with minimal movement.
  • the new turn heading may be followed by forward movement to increase the cleaning efficiency of the robotic device 100 .
  • the new heading may be randomly selected across the acceptable range of headings, or based upon some statistical selection scheme, e.g., Gaussian distribution.
  • the microprocessing unit 135 can be programmed to change headings randomly or at predetermined times, without input from the sensor system.
  • the robotic device 100 is operated in the Room Coverage behavioral mode for a predetermined or random period of time, for a predetermined or random distance (e.g., a maximum or minimum distance) and/or until the occurrence of a specified event, e.g., activation of the obstacle-detection units 120 a predetermined number of times (collectively a transition condition).
  • a predetermined or random distance e.g., a maximum or minimum distance
  • a specified event e.g., activation of the obstacle-detection units 120 a predetermined number of times (collectively a transition condition).
  • a preferred embodiment of the robotic device 100 includes four escape behavioral modes: a Turn behavioral mode, an Edge behavioral mode, a Wheel Drop behavioral mode, and a Slow behavioral mode.
  • a Turn behavioral mode a Turn behavioral mode
  • an Edge behavioral mode a Wheel Drop behavioral mode
  • a Slow behavioral mode a behavioral mode that can be utilized by the robotic device 100 .
  • One or more of these behavioral modes may be implemented, for example, in response to a current rise in one of the electric motors 116 , 118 of the side brush assembly 140 or dual-stage brush assembly above a low or high stall threshold, forward bumper 106 in compressed position for determined time period, detection of a wheel-drop event.
  • the robotic device 100 turns in place in a random direction, starting at higher velocity (e.g., twice normal turning velocity) and decreasing to a lower velocity (one-half normal turning velocity), i.e., small panic turns and large panic turns, respectively.
  • Low panic turns are preferably in the range of 45° to 90°
  • large panic turns are preferably in the range of 90° to 270°.
  • the Turn behavioral mode prevents the robotic device 100 from becoming stuck on room impediments, e.g., high spot in carpet, ramped lamp base, from becoming stuck under room impediments, e.g., under a sofa, or from becoming trapped in a confined area.
  • the Edge behavioral mode follows the edge of an obstacle unit it has turned through a predetermined number of degrees, e.g., 60°, without activation of any of the obstacle detection units 120 , or until the robotic device has turned through a predetermined number of degrees, e.g., 170°, since initiation of the Edge behavioral mode.
  • the Edge behavioral mode allows the robotic device 100 to move through the smallest possible openings to escape from confined areas.
  • the microprocessor 135 In the Wheel Drop behavioral mode, the microprocessor 135 reverses the direction of the main wheel drive assemblies 112 L, 112 R momentarily, then stops them. If the activated wheel drop sensor 124 deactivates within a predetermined time, the microprocessor 135 then reimplements the behavioral mode that was being executed prior to the activation of the wheel drop sensor 124 .
  • the Slow behavioral mode is implemented to slowed down the robotic device 100 for a predetermined distance and then ramped back up to its normal operating speed.
  • a safety condition e.g., a series of brush or wheel stalls that cause the corresponding electric motors to be temporarily cycled off, wheel drop sensor 124 or a cliff detection sensor 122 activated for greater that a predetermined period of time, the robotic device 100 is generally cycled to an off state.
  • an audible alarm may be generated.
  • an autonomous cleaning device (and similarly, a non-autonomous cleaning device as shown by way of example in FIG. 7 ) can be improved by incorporation of a debris sensor.
  • the debris sensor subsystem comprises left and right piezoelectric sensing elements 125 L, 125 R situated proximate to or within a cleaning pathway of a cleaning device, and electronics for processing the debris signal from the sensor for forwarding to a microprocessor 135 or other controller.
  • the debris signal from the debris sensor can be used to select a behavioral mode (such as entering into a spot cleaning mode), change an operational condition (such as speed, power or other), steer in the direction of debris (particularly when spaced-apart left and right debris sensors are used to create a differential signal), or take other actions.
  • a behavioral mode such as entering into a spot cleaning mode
  • change an operational condition such as speed, power or other
  • steer in the direction of debris particularly when spaced-apart left and right debris sensors are used to create a differential signal
  • a debris sensor according to the present invention can also be incorporated into a non-autonomous cleaning device.
  • a non-autonomous cleaning device such as, for example, an otherwise relatively conventional vacuum cleaner 700 like that shown in FIG. 7
  • the debris signal 706 generated by a piezoelectric debris sensor 704 PS situated within a cleaning or vacuum pathway of the device can be employed by a controlling microprocessor 708 in the body of the vacuum cleaner 702 to generate a user-perceptible signal (such as by lighting a light 710 ), to increase power from the power system 703 , or take some combination of actions (such as lighting a “high power” light and simultaneously increasing power).
  • a method according to the invention can include detecting left and right debris signals representative of debris strikes, and thus, of the presence, quantity or volume, and direction of debris ( 802 ); selecting an operational mode or pattern of movement (such as Spot Coverage) based on the debris signal values ( 804 ); selecting a direction of movement based on differential left/right debris signals (e.g., steering toward the side with more debris) ( 806 ); generating a user-perceptible signal representative of the presence of debris or other characteristic (e.g., by illuminating a user-perceptible LED) ( 808 ); or otherwise varying or controlling an operational condition, such as power ( 810 ).
  • an operational mode or pattern of movement such as Spot Coverage
  • a further practice of the invention takes advantage of the motion of an autonomous cleaning device across a floor or other surface, processing the debris signal in conjunction with knowledge of the cleaning device's movement to calculate a debris gradient ( 812 in FIG. 8 ).
  • the debris gradient is representative of changes in debris strikes count as the autonomous cleaning apparatus moves along a surface.
  • an autonomous cleaning device controller can continuously adjust the path or pattern of movement of the device to clean a debris field most effectively ( 812 ).
  • Piezoelectric Sensor As noted above, a piezoelectric transducer element can be used in the debris sensor subsystem of the invention. Piezoelectric sensors provide instantaneous response to debris strikes and are relatively immune to accretion that would degrade the performance of an optical debris sensor typical of the prior art.
  • the piezoelectric sensor element 125 PS can include one or more 0.20 millimeter thick, 20 millimeter diameter brass disks 402 with the piezoelectric material and electrodes bonded to the topside (with a total thickness of 0.51 mm), mounted to an elastomer pad 404 , a plastic dirt sensor cap 406 , a debris sensor PC board with associated electronics 408 , grounded metal shield 410 , and retained by mounting screws (or bolts or the like) 412 and elastomer grommets 414 .
  • the elastomer grommets provide a degree of vibration dampening or isolation between the piezoelectric sensor element 125 PS and the cleaning device.
  • a rigid piezoelectric disk of the type typically used as inexpensive sounders, can be used.
  • flexible piezoelectric film can also be advantageously employed. Since the film can be produced in arbitrary shapes, its use affords the possibility of sensitivity to debris across the entire cleaning width of the cleaning device, rather than sensitivity in selected areas where, for example, the disks may be located. Conversely, however, film is at present substantially more expensive and is subject to degradation over time. In contrast, brass disks have proven to be extremely robust.
  • the exemplary mounting configuration shown in FIG. 4 is substantially optimized for use within a platform that is mechanically quite noisy, such as an autonomous vacuum cleaner like that shown in FIG. 3 .
  • vibration dampening or isolation of the sensor is extremely useful.
  • the dampening aspects of the mounting system of FIG. 4 may not be necessary.
  • an alternative mounting system may involve heat sing the piezoelectric element directly to its housing.
  • a key consideration for achieving enhanced performance is the reduction of the surface area required to clamp, bolt, or otherwise maintain the piezoelectric element in place. The smaller the footprint of this clamped “dead zone”, the more sensitive the piezoelectric element will be.
  • debris thrown up by the cleaning brush assembly e.g., brush 94 of FIG. 3
  • a cleaning pathway within the cleaning device e.g., vacuum compartment 104 of FIG. 3
  • the debris sensor 125 PS can be located substantially at an axis AX along which main brush 94 and flapper brush 92 meet, so that the particles 127 are thrown up and strike the sensor 125 PS with maximum force.
  • a piezoelectric sensor converts mechanical energy (e.g., the kinetic energy of a debris strike and vibration of the brass disk) into electrical energy—in this case, generating an electrical pulse each time it is struck by debris—and it is this electrical pulse that can be processed and transmitted to a system controller (e.g., controller 135 of FIGS. 1 and 2 or 708 of FIG. 8 ) to control or cause a change in operational mode, in accordance with the invention.
  • Piezoelectric elements are typically designed for use as audio transducers, for example, to generate beep tones. When an AC voltage is applied, they vibrate mechanically in step with the AC waveform, and generate an audible output.
  • the sensor element 125 PS is in direct or indirect contact with the cleaning device chassis or body through its mounting system (see FIGS. 3 and 4 ), it is subject to the mechanical vibrations normally produced by motors, brushes, fans and other moving parts when the cleaning device is functioning. This mechanical vibration can cause the sensor to output an undesirable noise signal that can be larger in amplitude than the signal created by small, low mass debris (such as crushed black pepper) striking the sensor.
  • the end result is that the sensor would output a composite signal composed of lower frequency noise components (up to approximately 16 kHz) and higher frequency, possibly lower amplitude, debris-strike components (greater than 30 kHz, up to hundreds of kHz).
  • it is useful to provide a way to filter out extraneous signals.
  • an electronic filter is used to greatly attenuate the lower frequency signal components to improve signal-to-noise performance. Examples of the architecture and circuitry of such filtering and signal processing elements will next be described in connection with FIGS. 5 and 6 .
  • FIG. 5 is an exemplary schematic diagram of the signal processing elements of a debris sensor subsystem.
  • a debris sensor is to enable an autonomous cleaning apparatus to sense when it is picking up debris or otherwise encountering a debris field. This information can be used as an input to effect a change in the cleaning behavior or cause the apparatus to enter a selected operational or behavioral mode, such as, for example, the spot cleaning mode described above when debris is encountered.
  • a selected operational or behavioral mode such as, for example, the spot cleaning mode described above when debris is encountered.
  • an non-autonomous cleaning apparatus like that shown in FIG.
  • the debris signal 706 from the debris sensor 704 PS can be used to cause a user-perceptible light 710 to be illuminated (e.g., to signal to the user that debris is being encountered), to raise power output from the power until 703 to the cleaning systems, or to cause some other operational change or combination of changes (e.g., lighting a user-perceptible “high power” light and simultaneously raising power).
  • two debris sensor circuit modules i.e., left and right channels like 125 L and 125 R of FIG. 1
  • an autonomous cleaning device can be used to sense the difference between the amounts of debris picked up on the right and left sides of the cleaning head assembly. For example, if the robot encounters a field of dirt off to its left side, the left side debris sensor may indicate debris hits, while the right side sensor indicates no (or a low rate of) debris hits.
  • This differential output could be used by the microprocessor controller of an autonomous cleaning device (such as controller 135 of FIGS.
  • the device in the direction of the debris (e.g., to steer left if the left-side debris sensor is generating higher signal values than the right-side debris sensor); to otherwise choose a vector in the direction of the debris; or to otherwise select a pattern of movement or behavior pattern such as spot coverage or other.
  • FIG. 5 illustrates one channel (for example, the left-side channel) of a debris sensor subsystem that can contain both left and right side channels.
  • the right side channel is substantially identical, and its structure and operation will therefore be understood from the following discussion.
  • the left channel consists of a sensor element (piezoelectric disk) 402 , an acoustic vibration filter/RFI filter module 502 , a signal amplifier 504 , a reference level generator 506 , an attenuator 508 , a comparator 510 for comparing the outputs of the attenuator and reference level generator, and a pulse stretcher 512 .
  • the output of the pulse stretcher is a logic level output signal to a system controller like the processor 135 shown in FIG. 2 ; i.e., a controller suitable for use in selecting an operational behavior.
  • the Acoustic Vibration Filter/RFI Filter block 502 can be designed to provide significant attenuation (in one embodiment, better than ⁇ 45 dB Volts), and to block most of the lower frequency, slow rate of change mechanical vibration signals, while permitting higher frequency, fast rate of change debris-strike signals to pass. However, even though these higher frequency signals get through the filter, they are attenuated, and thus require amplification by the Signal Amplifier block 504 .
  • the very small residual mechanical noise signals that do pass through the filter also get amplified, along with electrical noise generated by the amplifier itself, and any radio frequency interference (RFI) components generated by the motors and radiated through the air, or picked up by the sensor and its conducting wires.
  • the signal amplifier's high frequency response is designed to minimize the amplification of very high frequency RFI.
  • This constant background noise signal which has much lower frequency components than the desired debris strike signals, is fed into the Reference Level Generator block 506 .
  • the purpose of module 506 is to create a reference signal that follows the instantaneous peak value, or envelope, of the noise signal. It can be seen in FIG.
  • the Reference Level Generator block circuitry is designed so that it does not respond quickly enough to high frequency, fast rate of change debris-strike signals to be able to track the instantaneous peak value of these signals.
  • the resulting reference signal will be used to make a comparison as described below.
  • the signal from amplifier 504 is also fed into the Attenuator block.
  • This is the same signal that goes to the Reference Level Generator 506 , so it is a composite signal containing both the high frequency signal of interest (i.e., when debris strikes the sensor) and the lower frequency noise.
  • the Attenuator 508 reduces the amplitude of this signal so that it normally is below the amplitude of the signal from the Reference Level Generator 506 when no debris is striking the sensor element.
  • the Comparator 510 compares the instantaneous voltage amplitude value of the signal from the Attenuator 508 to the signal from the Reference Level Generator 506 . Normally, when the cleaning device operating is running and debris are not striking the sensor element, the instantaneous voltage coming out of the Reference Level Generator 506 will be higher than the voltage coming out of the Attenuator block 508 . This causes the Comparator block 510 to output a high logic level signal (logic one), which is then inverted by the Pulse Stretcher block 512 to create a low logic level (logic zero).
  • the Pulse Stretcher block 512 extends this very brief (typically under 10-microsecond) event to a constant 1 millisecond (+0.3 mS, ⁇ 0 mS) event, so as to provide the system controller (e.g., controller 135 of FIG. 2 ) sufficient time to sample the signal.
  • this filter serves to attenuate the very high frequency radiated electrical noise (RFI), which is generated by the motors and motor driver circuits.
  • RFID radiated electrical noise
  • the illustrated circuitry connected to the sensor element uses both amplitude and frequency information to discriminate a debris strike (representative of the cleaning device picking up debris) from the normal background mechanical noise also picked up by the sensor element, and the radiated radio frequency electrical noise produced by the motors and motor driver circuits.
  • the normal, though undesirable, constant background noise is used to establish a dynamic reference that prevents false debris-strike indications while maintaining a good signal-to-noise ratio.
  • the mechanical mounting system for the sensor element (see FIG. 4 ) is also designed to help minimize the mechanical acoustic noise vibration coupling that affects the sensor element.
  • FIG. 6 is a detailed schematic diagram of exemplary debris sensor circuitry. Those skilled in the art will understand that in other embodiments, the signal processing can be partially or entirely contained and executed within the software of the microcontroller 135 . With reference to FIG. 6 , the illustrated example of suitable signal processing circuitry contains the following elements, operating in accordance with the following description:
  • the ground referenced, composite signal from the piezoelectric sensor disk (see piezoelectric disk 402 of FIG. 4 ) is fed into the capacitor C 1 , which is the input to the 5-pole, high pass, passive R-C filter designed to attenuate the low frequency, acoustic mechanical vibrations conducted into the sensor through the mounting system.
  • This filter has a 21.5 kHz, ⁇ 3 dB corner frequency rolling off at ⁇ 100 dB/Decade.
  • the output of this filter is fed to a signal pole, low pass, passive R-C filter designed to attenuate any very high frequency RFI.
  • This filter has a 1.06 MHz, ⁇ 3 dB corner frequency rolling off at ⁇ 20 dB/Decade.
  • the output of this filter is diode clamped by D 1 and D 2 in order to protect U 1 from high voltage transients in the event the sensor element sustains a severe strike that generates a voltage pulse greater than the amplifier's supply rails.
  • the DC biasing required for signal-supply operation for the amplifier chain and subsequent comparator circuitry is created by R 5 and R 6 . These two resistor values are selected such that their thevenin impedance works with C 5 to maintain the filter's fifth pole frequency response correctly.
  • U 1 A, U 1 B and their associated components form a two stage, ac-coupled, non-inverting amplifier with a theoretical AC gain of 441.
  • C 9 and C 10 serve to minimize gain at low frequencies while C 7 and C 8 work to roll the gain off at RFI frequencies.
  • the net theoretical frequency response from the filter input to the amplifier output is a single pole high pass response with ⁇ 3 dB at 32.5 kHz, ⁇ 100 dB/Decade, and a 2-pole low pass response with break frequencies at 100 kHz, ⁇ 32 dB/Decade, and 5.4 MHz, ⁇ 100 dB/Decade, together forming a band-pass filter.
  • the output from the amplifier is split, with one output going into R 14 , and the other to the non-inverting input of U 1 C.
  • the signal going into R 14 is attenuated by the R 14 -R 15 voltage divider, and then fed into the inverting input of comparator U 2 A.
  • the other signal branch from the output of U 1 B is fed into the non-inverting input of amplifier U 1 C.
  • U 1 C along with U 1 D and the components therebetween (as shown in FIG. 2 ) form a half-wave, positive peak detector.
  • the attack and decay times are set by R 13 and R 12 , respectively.
  • the output from this circuit is fed to the non-inverting input of U 2 A through R 16 .
  • R 16 along with R 19 provide hysteresis to improve switching time and noise immunity.
  • U 2 A functions to compare the instantaneous value between the output of the peak detector to the output of the R 14 -R 15 attenuator.
  • the output of the peak detector will be greater in amplitude than the output of the attenuator network.
  • a high frequency pulse is created that has a higher amplitude coming out of the front-end high pass filter going into U 1 A than the lower frequency mechanical noise signal component.
  • This signal will be larger in amplitude, even after coming out of the R 14 -R 15 attenuator network, than the signal coming out of the peak detector, because the peak detector cannot track high-speed pulses due to the component values in the R 13 , C 11 , R 12 network.
  • the comparator then changes state from high to low for as long as the amplitude of the debris-strike pulse stays above the dynamic, noise generated, reference-level signal coming out of the peak detector. Since this comparator output pulse can be too short for the system controller to see, a pulse stretcher is used.
  • the pulse stretcher is a one-shot monostable design with a lockout mechanism to prevent re-triggering until the end of the timeout period.
  • the output from U 2 A is fed into the junction of C 13 and Q 1 .
  • C 13 couples the signal into the monostable formed by U 2 C and its associated components.
  • Q 1 functions as the lockout by holding the output of U 2 A low until the monostable times out.
  • the timeout period is set by the time constant formed by R 22 , C 12 and R 18 , and the reference level set by the R 20 -R 21 voltage divider. This time can adjusted for 1 mS, +0.3 mS, ⁇ 0.00 mS as dictated by the requirements of the software used by the controller/processor.
  • U 3 Power for the debris sensor circuit is provided by U 3 and associated components.
  • U 3 is a low power linear regulator that provides a 5-volt output. The unregulated voltage from the robot's onboard battery provides the power input
  • circuit adjustments can be set by R 14 and R 12 . These adjustments will allow the circuit response to be tuned in a short period of time
  • the production sensor PCB should have all components on the topside with solid ground plane on the bottom side.
  • the sensor PCB should be housed in a mounting assembly that has a grounded metal shield that covers the topside of the board to shield the components from radiated noise pick up from the robot's motors.
  • the piezoelectric sensor disk can be mounted under the sensor circuit PCB on a suitable mechanical mounting system, such as that shown in FIG. 4 , in order to keep the connecting leads as short as possible for noise immunity.
  • the debris sensor is not subject to degradation by accretion of debris, but is capable of instantaneously sensing and responding to debris strikes, and thus immediately responsive to debris on a floor or other surface to be cleaned, with reduced sensitivity to variations in airflow, instantaneous power, or other operational conditions of the cleaning device.
  • the debris sensor and/or control system enables an autonomous cleaning device to control its operation or select from among operational modes, patterns of movement or behaviors responsive to detected debris, for example, by steering the device toward “dirtier” areas based on signals generated by the debris sensor.
  • the debris sensor can also be employed in non-autonomous cleaning devices to control, select or vary operational modes of either an autonomous or non-autonomous cleaning apparatus.
  • the disclosed signal processing architecture and circuitry is particularly useful in conjunction with a piezoelectric debris sensor to provide high signal to noise ratios.
  • the debris sensor can also be employed for purposes, and in devices, other than those described herein.
  • FIG. 9 is a schematic representation of a navigational control system 10 according to the present invention for use in combination with a robotic device 100 to enhance the cleaning efficiency thereof by adding a deterministic component (in the form of a control signal that remotely controls the movement of the robotic device 100 ) to the motion algorithms, including random motion, autonomously implemented by the robotic device 100 .
  • the navigational control system 10 comprises a transmitting subsystem 12 and a receiving subsystem 20 operating under the direction of a navigation control algorithm.
  • the navigation control algorithm includes a definition of a predetermined triggering event.
  • the specific features and characteristics of the transmitting subsystem 12 and the receiving subsystem 20 depend upon whether the particular subsystem is integrated in combination with the robotic device 100 or functions as a “base station” for the navigational control system 10 .
  • the navigational control system 10 is operative, under the direction of the navigation control algorithm, to monitor the movement activity of the robotic device 100 within the defined working area.
  • the monitored movement activity is defined in terms of the “position history” of the robotic device 100 as described in further detail below.
  • the monitored movement activity is defined in terms of the “instantaneous position” of the robotic device 100 as defined in further detail below.
  • the predetermined triggering event is a specific occurrence or condition in the movement activity of the robotic device 100 .
  • the navigational control system 10 is operative to generate and communicate a control signal to the robotic device 100 .
  • the robotic device 100 is operative to implement or execute a conduct prescribed by the control signal, i.e., the prescribed conduct. This prescribed conduct represents a deterministic component of the movement activity of the robotic device 100 .
  • the system 10 is configured and operative to create a “tessellation” of any defined working area where the robotic device 100 is to be operated, e.g., a room to be cleaned.
  • Tessellate is used herein in the sense that the defined working area is segmented into a set of individual cells, which may or may not be of equal size.
  • FIG. 10 exemplarily illustrates the polar tessellation of a defined working area into a set of individual cells C (reference characters BST identify the “base station”) of unequal size.
  • the position of each cell C (in terms of its center) is identified in terms of polar coordinates (r, ⁇ ) referenced to the base station BST as the origin (0, 0).
  • a grid map of the cells C comprising the defined working area is stored in memory of the navigation control system 10 .
  • coordinate systems e.g., a planar Cartesian coordinate system, can be used by the navigational control system 10 to define the position of individual cells C within the predetermined working area.
  • the navigational control system 10 is operative to define the size the individual cells C so that the length and width dimensions of an individual cell C are no larger than one-half the width (W) of the cleaning head system 145 of the robotic device 100 (see FIG. 1 and corresponding discussion above).
  • the navigational control system 10 is operative to generate a position history of the robotic device 100 within the defined working area in terms of such individual cells C (to minimize the memory requirements for storage of position history).
  • the position history comprises a set of discrete, instantaneous positions (in terms of individual cells C) of the robotic device 100 over a time interval where the time interval is a variable that depends upon the “triggering condition” of the navigation control algorithm implemented by the navigational control system 10 .
  • Each discrete instantaneous position of the robotic device 100 is determined by operating the transmitting subsystem 12 to emit a set of directional beams and operating the receiving subsystem 20 to detect one or more of such directional beams and process a signal parameter of the detected beam(s) to determine an absolute bearing parameter and a distance parameter between the transmitting subsystem 12 and the receiving subsystem 20 at a point in time.
  • Each pair of bearing, distance parameters establishes a discrete instantaneous position for the robotic device 100 .
  • the navigational control system 10 is operative to correlate each discrete instantaneous position to one individual cell C of the grid map.
  • a set of bearing and position pairs, i.e., a set of instantaneous positions, over a time interval defines a set of cells C, which are identified in the receiving subsystem 20 as the position history of the robotic device 100 for the time interval.
  • the system 10 processes each discrete instantaneous position as it is established, under the control of the navigation control algorithm, to determine whether such discrete instantaneous position is the predetermined triggering event defined by the navigation control algorithm.
  • the system 10 is additionally configured and operative to determine a travel vector (indicating the direction of motion of the robotic device 100 within an individual cell C or at the discrete instantaneous position) at each point in time. These travel vectors may be stored in memory in conjunction with the corresponding cells C as a component of the position history of the robotic device 100 .
  • the navigational control system 10 is further operative, under direction of the navigational control algorithm, to generate and communicate a control signal to the robotic device 100 whenever the navigational control system 100 realizes the predetermined triggering event.
  • the robotic device 100 is configured and operative to initiate a prescribed conduct.
  • the prescribed conduct comprises the deterministic component added to the random motion movement activity of the robotic device 100 by means of the navigational control system 10 according to the present invention.
  • the prescribed conduct of the robotic device 100 comprises one or more basic maneuvers such as CW and CCW turns, forward or aft (straight line) movement, slow down, speed up, and stop.
  • the CW and/or CCW turns can be implemented using the turning techniques of the robotic device 100 described above, and the turn angles can be, for example, over a 360° spectrum at predetermined intervals, e.g., 5° or 10°.
  • the CW and/or CCW turns can be to a specified azimuthal heading (referenced to the base station as the origin) where the navigational control system 10 is configured and operative so that the travel vector is a determinable variable.
  • forward (straight line) movement is typically the default maneuver that the robotic device 100 automatically reverts to (implements) once one or more of the other basic maneuvers has been completed.
  • the prescribed conduct of the robotic device 100 comprises one or more of the behavioral modes described herein. In yet a further preferred embodiment of the invention, the prescribed conduct of the robotic device 100 comprises a combination of the basic maneuvers and the behavioral modes described herein.
  • the transmitting subsystem 12 is operative to transmit a number of directed beams having a predetermined emission pattern along a specific propagation axis.
  • the directed beams are planar, i.e., substantially parallel to the surface of the defined working area.
  • the transmitting subsystem 12 is integrated in combination with the robotic device 100 .
  • the transmitting subsystem 12 is configured and operative to functionally emulate an omnidirectional transmission source with respect to the defined working area, i.e., by emitting a plurality of directed beams that cover the defined working area.
  • the robotic device 100 further includes a receiver unit 16 (see FIG. 9 ) configured and operative to receive control signals from the receiving subsystem 20 (see discussion below regarding the transmitting unit 32 of the receiving subsystem 20 ). While the receiver unit 16 is depicted as a dedicated receiving unit for the control signals, it is preferable that the omnidirectional detector 128 (of the virtual wall detection system) described above be adapted to detect and process such control signals.
  • the transmitting subsystem 12 comprises a conventional mechanical sweeping transmitter, e.g., a laser, that is integrated in combination with a high point of the housing infrastructure of the robotic device 100 so that none of the structural features of the robotic device 100 interfere with the operation thereof.
  • the mechanical sweeping transmitter is configured and operative to emit the plurality of directed beams while concomitantly redirecting (mechanically sweeping) the transmitting element so that each directed beam has a different propagation axis.
  • Other features and characteristics of the mechanical sweeping transmitter are described below in terms of individual transmitting units 14 N for ease of description.
  • the transmitting subsystem 12 comprises a set of transmitting units 14 N , where N is an integer defining the number of individual transmitting units comprising the set for the navigational control system 10 , that are integrated in combination with the robotic device 100 about the periphery of its housing infrastructure.
  • Each transmitting unit 14 N is configured and operative to emit a directed beam having a predetermined emission pattern along a specific propagation axis.
  • the transmitting subsystem 12 is configured and operative so that the emitted directed beams are planar.
  • the transmitting units 14 N are fungible/interchangeable, each operating to emit a directed beam at a common operating frequency.
  • the common operating frequency for the transmitting units 14 N lies in the infrared range, i.e., about 750 nm to about 1.4 ⁇ 10 4 nm, preferably about 880 nm to about 980 nm, although one skilled in the art will appreciate that other wavelengths, e.g., in the radio frequency range, microwave frequency range, can be used in the practice of the navigational control system 10 of the present invention.
  • the common operating frequency directed beams emitted by the transmitting units 14 N are periodically modulated, e.g., at 10 KHz for 50 msec, off for 300 msec. Modulation of the directed beams facilitates detection thereof by the receiving subsystem 20 , i.e., the receiving subsystem 20 is able to readily discriminate between modulated directed beams emitted by the transmitting subsystem 12 and any other electromagnetic radiation sources that may be active in the defined working area, e.g., television remote control units, wireless computer keyboards, microwaves, ambient radiation such as sunlight.
  • any other electromagnetic radiation sources that may be active in the defined working area, e.g., television remote control units, wireless computer keyboards, microwaves, ambient radiation such as sunlight.
  • the transmitting units 14 N be sequentially operated so that any transmitting unit 14 N is cycled on for a predetermined period of time and then cycled off, the next (adjacent) transmitting unit 14 N is then cycled on for the predetermined period of time and cycled off, and so forth.
  • a navigational control system 10 employing the basic embodiment of the transmitting subsystem 12 i.e., all transmitting units 14 N are interchangeable-emitting directed beams at a common operating frequency, cannot be used to determine travel vectors for the robotic device 100 because the receiving subsystem 20 cannot differentiate between directed beams emitted by the transmitting units 14 N and therefore cannot identify any particular transmitting unit 14 N .
  • the inventors have developed two innovative ways of transmitting and processing directed beams emitted by a transmitting subsystem 12 comprised of interchangeable transmitting units 14 N so that the receiving subsystem 20 can individually identify a specific interchangeable transmitting unit 14 N , and, based upon such identification, establish a travel vector for the robotic device 100 .
  • interchangeable transmitting units 14 N are operated in a predetermined manner that allows the receiving subsystem 20 to process detected directed beams to identify the directed beam having the highest signal strength, which, in turn, allows the receiving subsystem 20 to identify the interchangeable transmitting unit 14 N that emitted such directed beam. This, in turn, allows the receiving subsystem 20 to determine the orientation and, hence the travel vector, of the robotic device 100 .
  • the transmitting subsystem 12 is first cycled on so that all transmitting units 14 N emit directed beams for a predetermined synchronization period, as identified by reference character t SY , and then cycled off.
  • the receiver subsystem 20 is operative to detect and process one or more of the directed beams emitted by the transmitting units 14 N and identify the predetermined synchronization period t SY of the transmitting subsystem 12 . This identification allows the receiving subsystem 20 to synchronize operations between the transmitting subsystem 12 and the receiving subsystem 20 by initializing a timing sequence at the end of the predetermined synchronization period t SY (reference character to identifies the initialization of the timing sequence in FIG. 11A ).
  • the transmitting subsystem 12 is further operative so that individual transmitting unit 14 N are sequentially cycled on and off at predetermined times with respect to the timing sequence initialization to established by the receiving subsystem 20 .
  • FIG. 11A which illustrates a transmitting subsystem 12 comprising four transmitting units 14 N (arbitrarily identified as the first transmitting unit 14 1 , the second transmitting unit 14 2 , the third transmitting unit 14 3 , and the fourth transmitting unit 14 4 )
  • the transmitting subsystem 12 is configured and operative so that each of the transmitting units 14 1 , 14 2 , 14 3 , 14 4 is sequentially cycled on to emit a directed beam that transitions from a zero (0) signal strength to a peak signal strength to a zero (0) signal strength and then cycled off (a saw-tooth transition pattern is exemplarily illustrated in FIG. 11A —one skilled in the art will appreciate that other types of signal strength transition patterns can be used in the practice of the invention described herein, e.g., a ramp
  • the first transmitting unit 14 1 is cycled on and transitions to a peak signal strength at time t 1 .
  • the second transmitting unit 14 2 is cycled on as the directed beam from the first transmitting unit 14 1 achieves its peak signal strength at time t 1 .
  • the second transmitting unit 14 2 transitions to a peak signal strength at time t 2 , at which point the first transmitting unit 14 1 has transitioned to a zero (0) signal strength and is cycled off.
  • the third transmitting unit 14 3 is cycled on as the directed beam from the second transmitting unit 14 2 achieves its peak signal strength at time t 2 .
  • the foregoing operating pattern is repeated for the second, third, and fourth transmitting units 14 2 , 14 3 , 14 4 , as applicable, so that at time t 3 the second transmitting unit 14 2 is cycled off, the directed beam emitted by the third transmitting unit 14 3 has achieved its peak signal strength, and the fourth transmitting unit 14 4 is cycled on; and at time t 4 the third transmitting unit 14 3 is cycled off and the directed beam emitted by the fourth transmitting unit 14 4 has achieved its peak strength.
  • the transmitting subsystem 12 is operative to repeat the above-described synchronization—sequential transmission procedure during operation of the navigational control system 12 according to the present invention.
  • interchangeable transmitting units 14 N are operated in a different predetermined manner that allows the receiving subsystem 20 to process detected directed beams to identify the directed beam having the highest signal strength, which, in turn, allows the receiving subsystem 20 to identify the interchangeable transmitting unit 14 N that emitted such directed beam. This, in turn, allows the receiving subsystem 20 to determine the orientation and, hence the travel vector, of the robotic device 100 .
  • the transmitting subsystem 12 is first cycled on so that all transmitting units 14 N emit directed beams for a predetermined synchronization period, as identified by reference character t 12 , and then cycled off.
  • the receiver subsystem 20 is operative to detect and process one or more of the directed beams emitted by the transmitting units 14 N and identify the predetermined synchronization period t 12 of the transmitting subsystem 12 . This identification allows the receiving subsystem 20 to synchronize operations between the transmitting subsystem 12 and the receiving subsystem 20 by initializing a timing sequence at the end of the predetermined synchronization period t SY (reference character to identifies the initialization of the timing sequence in FIG. 11A ).
  • the transmitting subsystem 12 is further operative so that individual transmitting unit 14 N are sequentially cycled on and off at predetermined times with respect to the timing sequence initialization to established by the receiving subsystem 20 .
  • FIG. 11C which illustrates a transmitting subsystem 12 comprising four transmitting units 14 N (arbitrarily identified as the first transmitting unit 14 1 , the second transmitting unit 14 2 , the third transmitting unit 14 3 , and the fourth transmitting unit 14 4 )
  • the transmitting subsystem 12 is configured and operative so that each of the transmitting units 14 1 , 14 2 , 14 3 , 14 4 is sequentially cycled on to emit a pulsed directed beam have a predetermined pulse width P 1 , P 2 , P 3 , P 4 , respectively, at a predetermined signal strength, and then cycled off.
  • the first transmitting unit 14 1 is cycled on at t 11 (where the first “1” identifies the transmitting unit number and the second “1” indicates that the transmitting unit is cycled on) and cycled off at t 12 (where the “2” indicates that the transmitting unit is cycled off).
  • the second transmitting unit 14 2 is cycled on at t 21 and cycled off at t 22
  • the third transmitting unit 14 3 is cycled on at t 31 and cycled off at t 32
  • fourth transmitting units 14 4 is cycled on at t 41 and cycled off at t 42 .
  • the transmitting subsystem 12 is operative to repeat the above-described synchronization-sequential transmission procedure during operation of the navigational control system 12 according to the present invention.
  • the transmitting units 14 N are discrete and identifiable, each transmitting unit 14 N operating at a unique operating frequency to emit a directed beam (which is preferably planar with respect to the surface of the defined working area) having a predetermined emission pattern along a specific propagation axis. These operating frequencies are also preferably modulated to facilitate detection thereof by the receiving subsystem 20 in an environment where other electromagnetic radiation sources are operating. Since each directed beam is readily and uniquely identifiable, the receiving subsystem 20 can process detected directed beams in a conventional manner to derive not only the absolute bearing and to the robotic device 100 , but also the travel vector for the robotic device 10 at any particular time.
  • the receiving subsystem 20 of the navigational control system 10 comprises a processing unit 22 that includes a microprocessor 24 , a signal processing unit 26 , a memory module 28 , and a set of detection units 30 M . Additionally, the receiving subsystem 20 can also include a transmitting unit 32 for those preferred embodiments of the navigational control system 10 wherein the receiving subsystem 20 is operated or functions as the base station for the navigational control system 10 .
  • the memory module 28 comprises RAM 28 A and ROM 28 B.
  • Data relating to the current operation of the robotic device 100 within the defined working area is stored in the RAM 28 A.
  • Such current operational data can include the grid map of cells C defining the defined working area and the position history of the robotic device 100 within the defined working area for the ‘position history’ embodiment of the navigational control system 10 .
  • Stored in the ROM 28 B are one or more navigation control algorithms for the navigational control system 10 , a set of one or more control signals associated with each navigation control algorithm, and a signal processing algorithm for converting signals generated by the signal processing unit 26 to one or more sets of instantaneous position parameters, i.e., a bearing, distance pair (and travel vector, if applicable).
  • a set of instantaneous position parameters that define the position history of the robotic device 100 , which are correlated with the grid map to identify the cells C comprising the position history.
  • vigation control algorithm encompasses a set of instructions that: (a) define how the position history or instantaneous position is used by the navigational control system 10 (e.g., counting and comparing cells visited, a true-false determination for cells visited, true-false determination whether the predetermined triggering event has occurred); (b) defines the triggering event or events associated with the use of the position history or the instantaneous position; and (c) identifies the control signal(s) to be implemented when the triggering event is realized.
  • the microprocessor 24 is operative to count and store the number of visits to each cell and to compute the total number of visits to cells contiguous to (neighboring) each such visited cell (cell counting). The microprocessor 24 is further operative to compare the total number of neighboring-cell visits as each cell is visited to a threshold value (see, e.g., FIG. 10 wherein “C V ” identifies a visited cell and “C C ” identifies the eight (8) cells contiguous to the visited cell C V ). If the total number of neighboring-visits (e.g., fifteen (15) in the example of FIG.
  • the microprocessor 24 is operative to cause a control signal to be communicated to the robotic device 100 .
  • the control signal causes the robotic device 100 to implement one or more behavioral modes specified by the control signal, e.g., a Spot Coverage pattern as described above.
  • one or more cells in the stored grid map are pre-identified (i.e., prior to operating the robotic device 100 ) as “hot spots” in the defined working area.
  • the microprocessor 24 is operative to determine whether the visited cell has been identified as a “hot spot” (true-false determination). If the microprocessor 24 determines that the visited cell C is a “hot spot” (triggering event), the microprocessor 24 is operative to cause a control signal to be communicated to the robotic device 100 via the control signal transmitting unit 32 . Reception of the control signal causes the robotic device 100 to implement the prescribed conduct specified by the control signal, e.g., one or more of the basic maneuvers described above and/or a Spot Coverage pattern or Obstacle-Following behavioral mode as described above.
  • navigation control algorithms for the ‘position history’ embodiment of the navigational control system 10 are implemented without knowledge of the travel vector of the robotic device 100 , i.e., based solely upon the identification of visited cells by means of the bearing, distance parameters derived by the receiving subsystem 20 .
  • Another representative example of a navigation control algorithm for the ‘position history’ embodiment of the navigation control system 10 of the present invention utilizes the travel vector as an element of the position history in issuing a control signal.
  • the microprocessor 24 is operative to count and store the number of times a cell has been visited (cell counting) and further operative to compare this number to the number of times each contiguous (or neighboring) cell has been visited.
  • the triggering event is a numerical differential between the number of visits to the currently-visited cell number and the number of visits to each of the neighboring-cells that identifies the neighboring cell or cells that have been least-visited as compared to the currently-visited cell.
  • the triggering event would cause the receiving system 20 to issue a control signal to the robotic device 100 that causes the robotic device 100 to move from the currently-visited cell to the neighboring cell that has been visited least, e.g., by implementing one or more basic maneuvers as described herein. If two or more neighboring cells have been visited least, the control signal would cause the robotic device to move from the currently-visited cell to the least visited neighboring cell that is most compatible with the current travel vector of the robotic device 100 , e.g., minimum travel distance.
  • the neighboring cells C C that have been visited a single time are the least-visited neighboring cells C C . If the current travel vector for the robotic device 100 is indicated by the reference characters TV, the control signal would cause the robotic device 100 to continue moving in a straight line, i.e., the move forward basic maneuver (or the Straight-Line behavioral mode) would be executed by the robotic device 100 (if the robotic device 100 was currently operating in some other behavioral mode).
  • One representative navigation control algorithm for the ‘instantaneous position’ of the navigational control system 10 uses elapsed time (either random or predetermined) as the predetermined triggering event to cause the robotic device 10 to move to a predetermined position B in the defined working environment.
  • the microprocessor 24 is operative, upon expiration of the elapsed time (the predetermined triggering event), to determine the instantaneous position (hereinafter identified as “position A”) of the robotic device 100 as described herein. Since position A is an unknown variable until the predetermined triggering event is realized, the prescribed conduct, i.e., the basic maneuvers, necessary to move the robotic device 100 from position A to position B are also unknown.
  • the basic maneuvers necessary to move the robotic device 100 from position A to position B are determinable since both position A and position B are known variables (in terms of their known bearing, distance parameter pairs with respect to the receiving subsystem 20 ).
  • a determination of the basic maneuvers that will be implemented by the robotic device 100 can be accomplished by any conventional computational technique.
  • Another exemplary navigation control algorithm for the ‘instantaneous position’ embodiment of the navigational control system 10 is a variation of the “hot spot” navigation control algorithm for the ‘position history’ embodiment of the navigational control system 10 .
  • both position A and position B are known variables and accordingly, the basic maneuver(s) to move the robotic device 100 from position A to position B are known.
  • the predetermined triggering event is a TRUE determination that the instantaneous position of the robotic device 100 is equal to position A (position A may be stored in memory 28 as a “zone”—defining some arbitrary area centered about position A—rather than a single point position to increase the probability that the instantaneous position of the robotic device 100 at some time will equal position A).
  • the receiving subsystem 20 comprises a set of detection units 30 M where M is an integer defining the number of individual detection units comprising the set for the navigational control system 10 .
  • M is an integer defining the number of individual detection units comprising the set for the navigational control system 10 .
  • the number and positioning of the set of detection units 30 M should be such that as much of the defined working area as possible is within the field-of-view of the receiving subsystem 20 and that the fields-of-view of at least two (but preferably more) detection units 30 M cover the same area within the defined working area.
  • the receiving subsystem 20 functions as a “base station” for the system 10 .
  • the receiving subsystem 20 is a portable, standalone unit that is stationarily positioned within the defined working area, preferably abutting a wall bounding the defined working area (the ‘wall unit’ configuration).
  • the receiving subsystem 20 can be positioned within the defined working area distally of the walls bounding the defined working area (the ‘free-standing’ configuration).
  • the receiving subsystem 20 as the base station establishes and, for the ‘position history’ embodiment of the navigational control system 10 , stores the grid map of cells representing the defined working area and represents the origin (0, 0) of the grid map of cells described above.
  • the individual detection units 30 M have a known spaced-apart relationship and configured and operative to have a 180° field-of-view.
  • Preferred embodiments of the wall unit configuration for the navigational control system 10 include three detection units 30 M to provide absolute bearing data to the robotic device 100 .
  • a minimum of two detection units 30 M are required to provide the necessary signal information for the receiving subsystem 20 .
  • More than three detection units 30 M can be employed to increase the resolution of the receiving subsystem 20 , but at an added cost for each additional detection unit 30 M and associated signal processing circuitry (see FIG. 12C which illustrates the representative signal processing circuitry associated with a detection unit 30 M ).
  • the individual detection units 30 M likewise spaced apart by known angular distances and configured and operative have a field-of-view greater than 180°.
  • a representative embodiment of the receiving subsystem 20 operated as a free-standing base station would comprise four detection units 30 M .
  • the detection units 30 M are configured and operative to detect a parameter of one or more of the directed beams emitted by the transmitting units 14 N , e.g., voltages V representing the relative signal strengths of the detected directed beam(s).
  • each detection unit 30 M is configured and operative to average the detected signal strength parameter (e.g., voltage) when the detection unit 30 M detects two directed beams simultaneously.
  • the receiving subsystem 20 executes a signal processing algorithm that processes the detected parameters provided by the detection units 30 M , i.e., relative signal strengths of the detected beams, utilizing a conventional technique to determine the absolute bearing between the robotic device 100 and the receiving subsystem 20 .
  • the receiving subsystem 20 is preferably calibrated prior to use. This involves positioning the robotic device 100 at a predetermined distance from the receiving subsystem 20 and operating one (or more) of the transmitting units 14 N to emit a directed beam at the receiving subsystem 20 .
  • the parameter of the directed beam detected by the detection units 30 M e.g., a voltage representing the signal strength of the directed beam as detected, is correlated to the predetermined distance and used to generate a look-up table of signal strength versus distance for the defined working area. This look-up table is stored in the memory module 28 of the receiving subsystem 20 .
  • the receiving subsystem 20 uses the detected signal strengths as pointers to the stored look-up table to determine the corresponding distances (between the receiving subsystem 20 and the robotic device 100 ).
  • the receiving subsystem 20 could be configured and operative to implement a signal processing algorithm that utilizes the known attenuation characteristics, i.e., signal strength versus distance, of the operating frequency of the directed beams emitted by the transmitting units 14 N .
  • This embodiment presupposes that the transmitting units 14 N are rated and emitting directed beams of known signal strength.
  • the detection units 30 M of the receiving subsystem 20 are configured to scan the set of unique operating frequencies utilized by the transmitting units 14 N .
  • the receiving subsystem 20 is configured and operative to cause the detection units 30 M to sequentially scan through these frequencies during operation of the navigational control system 10 .
  • FIG. 11B illustrates the operating characteristics of the complementary receiving subsystem 20 .
  • the receiving subsystem 20 is configured and operative to detect the directed beams emitted during the predetermined synchronization period t SY .
  • the receiving subsystem 20 is operative to initiate the timing sequence to.
  • the receiving subsystem 20 is operative to detect the directed beams as described herein.
  • the receiving subsystem 20 is further operative to determine the time at which the peak signal strength is detected, see reference character t peak in FIG. 11B .
  • the receiving subsystem 20 is further operative to correlate the peak signal strength detection time t peak with the known times at which the signal strength of the directed beam emitted by each transmitting unit 14 N reached its peak to identify the specific transmitting unit 14 N that transmitted the directed beam detected as having the peak signal strength (for the descriptive example presented in FIGS. 11A, 11B , the third transmitting unit 14 3 ).
  • FIG. 11D illustrates the operating characteristics of the complementary receiving subsystem 20 .
  • the receiving subsystem 20 is configured and operative to detect the directed beams emitted during the predetermined synchronization period t SY .
  • the receiving subsystem 20 is operative to initiate the timing sequence to.
  • the receiving subsystem 20 is operative to detect the directed beams as described herein (as exemplarily illustrated by the detected signal pulses DP 1 , DP 2 , DP 3 , DP 4 in FIG. 5D ).
  • the receiving subsystem 20 is further operative to determine the two highest peak signal strengths of the detected directed beams, see reference characters DP 3 and DP 2 in FIG. 11D , which depict the highest and next highest detected signal pulses, and the times at which the two highest strength signals were detected (t 21 and t 31 in FIG. 11D ).
  • the signal strength detection times allows the particular transmitting units 14 N on the robotic device 100 to be identified, i.e., transmitting units 14 3 and 14 2 in the example of FIG. 11D .
  • the receiving subsystem 20 is then further operative to compute the amplitude ratio of these signal pulses, e.g., DP 3 /DP 2 , and to use such computed amplitude ratio as a pointer to a look-up table that identifies the angular orientation of the identified transmitting units 14 3 , 14 2 , which in turn establishes the travel vector for the robotic device 100 .
  • the specific location of each individual transmitting unit 14 N on the robotic device 100 is a known quantity. Based upon the identification of the transmitting unit 14 N that emitted the directed beam detected by the receiving subsystem 20 , the receiving subsystem 20 can execute rather straightforward geometric calculations, based upon the location of the identified transmitting unit 14 N , to determine the travel vector of the robotic device 100 .
  • embodiments of the receiving subsystem 20 that operate as a base station further include a transmitting unit 32 (see FIG. 9 ).
  • the microprocessor 24 is operative to select the appropriate control signal to implement such prescribed conduct from the memory module 28 .
  • the microprocessor 24 is then operative to activate the transmitting unit 32 to communicate (by transmitting) the control signal to the receiver unit 16 of the robotic device 100 where the prescribed conduct defined by the control signal is implemented by means of the microprocessing unit 135 .
  • the robotic device 100 is described (and depicted in FIG. 9 ) as being configured to include a dedicated receiver unit 16 for receiving control signals transmitted by the transmitting unit 32 of the receiving unit 20 , it is preferable that the omnidirectional detector 128 (of the virtual wall detection system) be adapted to detect and process such control signals.
  • the transmitting unit 32 is not required. Rather, the receiving unit 20 of the navigation control system 100 is electrically coupled to the microprocessing unit 135 (via an I/O port) of the robotic device 100 so that the receiving unit 20 can communicate control signals directly to the microprocessing unit 135 .
  • the receiving subsystem 20 functions as the base station, i.e., the wall unit configuration, and the transmitting subsystem 12 is integrated in combination with the robotic device 100 .
  • the base station i.e., the wall unit configuration
  • the transmitting subsystem 12 is integrated in combination with the robotic device 100 .
  • FIGS. 12A-12C One preferred embodiment that is illustrative of the features and functionality of the navigational control system 10 according to the present invention is exemplarily illustrated in FIGS. 12A-12C .
  • FIG. 12A depicts a robotic device 100 operating in a defined working area WA bounded by walls W.
  • a virtual wall unit VWU is positioned in the only entryway to the working area WA and operative to emit a confinement beam CB that confines the robotic device 100 to operations within the working area WA.
  • the transmitting subsystem 12 of the illustrated embodiment of the navigational control system 10 is integrated in combination with the robotic device 100 and comprises a set of transmitting units 14 N (eight (8) for the described embodiment such that N equals the integers 1-8) that are operative to generate a corresponding set of directed beams DB N (where N equals the integers 1-8) as illustrated in FIG. 11B (only two directed beams DB 3 , DB 4 are illustrated in FIG. 11B ).
  • Reference characters BA 1 -BA 8 identify the propagation axes of the directed beams DB N emitted by the transmitting units 14 1 - 14 8 , respectively.
  • Each transmitting unit 14 N is configured and operative to emit a directed beam DB N having a predetermined emission pattern ON centered about the corresponding beam axis BAN.
  • the emission pattern ⁇ N of each directed beam DB N is approximately 100°.
  • the predetermined emission pattern ON of the directed beams DB N is correlated with the number of transmitting units 14 N so that the transmitting subsystem 12 of the navigational control system 10 emulates an omnidirectional transmitting source.
  • An omnidirectional transmitting source is necessary to ensure that one or more of the directed beams DB N are detected by the receiving subsystem 20 since the position and orientation of the robotic device 100 in the defined working area (e.g., in terms of its forward motion FM), with respect to the receiving station 20 , is an unknown variable at any particular moment in time.
  • the emission patterns ON of the directed beams DB N overlap.
  • the directed beams DB 3 , DB 4 emitted by transmitting units 14 3 , 14 4 , respectively, will be detected by the detection units 30 1 , 30 2 , 30 3 of the receiving subsystem 20 .
  • the detection units 30 1 , 30 2 , 30 3 are operative to detect a parameter representative of the relative signal strengths of the detected beams DB 3 , DB 4 , e.g., V 1 , V 2 , V 3 , respectively (as disclosed above each detection unit 30 N is operative to average the signal strengths when two directed beams are detected simultaneously).
  • the receiving subsystem 20 is operative to implement the signal processing algorithm to compute the absolute bearing and distance between the receiving subsystem 20 and the robotic device 100 .
  • the receiving subsystem 20 then implements the navigation control algorithm to correlate the computed bearing and distance with one of the cells comprising the grid map of the defined working area WA stored in the memory module 28 , and adds such cell to the position history of the robotic device 100 to update the position history.
  • the receiving subsystem 20 is then operative under the navigation control algorithm to determine if there is a predetermined triggering event associated with this updated position history. If so, the receiving subsystem 20 is operative to select the appropriate control signal, as determined by the navigation control algorithm, and transmit such control signal to the receiver unit 16 of the robotic device 100 using the transmitting system 32 (see FIG. 9 ).
  • the microprocessing unit 135 of the robotic device 100 is operative in response to the reception of the control signal by means of the omnidirectional detector 128 , to implement prescribed conduct, e.g., one or more of the basic maneuvers and/or behavioral modes exemplarily described herein, specified by the control signal.
  • FIG. 13 An exemplary embodiment of a navigational control system 10 ′ according to the present invention wherein the transmitting subsystem 12 functions as a base station and the receiving subsystem 20 is integrated in combination with the robotic device 100 is illustrated in FIG. 13 .
  • the transmitting subsystem 12 comprises a distributed set of transmitting units 14 N positioned to abut the walls W of the defined working area. As illustrated in FIG. 13 , the transmitting subsystem 12 comprises a first transmitting unit 14 1 , a second transmitting unit 14 2 , and a third transmitting unit 14 3 positioned in abutting engagement with adjacent walls W, respectively.
  • Each transmitting unit 14 N comprising this distributed set is configured and operative to emit a directed beam having a predetermined emission pattern ON along a predetermined beam axis DB N (DB 1 , DB 2 , and DB 3 in FIG. 13 define the predetermined beam axes for the distributed transmitting units 14 1 , 14 2 , 14 3 , respectively) at a unique operating frequency, preferably in the infrared frequency range and preferably modulated as disclosed herein.
  • each transmitting unit 14 1 , 14 2 , 14 3 is configured and operative to generate a predetermined beam emission pattern ⁇ N that effectively covers the defined working area WA, i.e., ON is approximately 180° for the distributed transmission subsystem 12 depicted in FIG. 13 .
  • the receiving subsystem 20 for the navigational control system 10 ′ preferably comprises a single omnidirectional detection unit 30 which may be of the type described in commonly-owned, U.S. patent application Ser. No. 10/056,804, filed 24 Jan. 2002, entitled METHOD AND SYSTEM FOR ROBOT LOCALIZATION AND CONFINEMENT (the virtual wall system summarily described herein).
  • the omnidirectional detection unit 30 is configured and operative to scan through the unique operating frequencies utilized by the distributed transmitting units 14 1 , 14 2 , 14 3 .
  • the omnidirectional detection unit 30 is operative to detect the directed beams DB 1 , DB 2 , DB 3 emitted by the distributed transmitting units 14 1 , 14 2 , 14 3 .
  • the receiving subsystem is configured and operative to process the signals of the detected directed beam to determine the absolute position of the robotic device 100 within the defined working area WA. This absolute position is defined in terms of a cell of the grid map of the defined working area WA. A sequence of absolute positions, determined as described above, identifies a sequence of cells that defines the position history of the robotic device 100 .
  • the receiver subsystem 20 is operative as described above to utilize a navigation control algorithm to determine whether a triggering event has occurred in the position history, and if a trigger event has occurred, the receiver subsystem 20 is operative to communicate the control signal associated with the triggering event/navigation control algorithm to the robotic device 100 .
  • the robotic device 100 is operative, in response to the communicated control signal, to implement the prescribed conduct specified by the control signal.
  • the navigational control system 10 has been described above as determining and using the instantaneous position (or a sequence of instantaneous positions) of a robotic device as a control parameter for directly altering the movement activity of the robotic device.
  • the navigational control system according to the present invention can be used for other purposes.
  • the navigational control system of the present invention can be used for correcting errors in movement activity of robotic devices relying upon dead reckoning. It is therefore to be understood that, within the scope of the appended claims, the present invention may be practiced other than as specifically described herein.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Electric Vacuum Cleaner (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

An autonomous cleaning apparatus includes a chassis, a drive system disposed on the chassis and operable to enable movement of the cleaning apparatus, and a controller in communication with the drive system. The controller includes a processor operable to control the drive system to steer movement of the cleaning apparatus. The autonomous cleaning apparatus includes a cleaning head system disposed on the chassis and a sensor system in communication with the controller. The sensor system includes a debris sensor for generating a debris signal, a bump sensor for generating a bump signal, and an obstacle following sensor disposed on a side of the autonomous cleaning apparatus for generating an obstacle signal. The processor executes a prioritized arbitration scheme to identify and implement one or more dominant behavioral modes based upon at least one signal received from the sensor system.

Description

    CROSS REFERENCE TO RELATED APPLICATIONS
  • This U.S. patent application is a continuation of, and claims priority under 35 U.S.C. § 120 from, U.S. patent application Ser. No. 15/916,867, filed on Mar. 9, 2018, which U.S. patent application is a continuation of, and claims priority under 35 U.S.C. § 120 from, U.S. patent application Ser. No. 14/291,682, filed on May 30, 2014, which is a continuation of, and claims priority under 35 U.S.C. § 120 from, U.S. patent application Ser. No. 13/781,314, filed on Feb. 28, 2013 (now U.S. Pat. No. 8,781,626), which is a continuation of, and claims priority under 35 U.S.C. § 120 from, U.S. patent application Ser. No. 12/610,792, filed Nov. 2, 2009 (now U.S. Pat. No. 8,428,778), which is a continuation of, and claims priority under 35 U.S.C. § 120 from, U.S. patent application Ser. No. 12/512,114, filed on Jul. 30, 2009 (now U.S. Pat. No. 8,386,081), which is a continuation-in-part of, and claims priority under 35 U.S.C. § 120 from, U.S. patent application Ser. No. 11/682,642, filed on Mar. 6, 2007, which is a continuation of U.S. patent application Ser. No. 11/341,111, filed on Jan. 27, 2006 (now U.S. Pat. No. 7,188,000), which is a continuation of U.S. patent application Ser. No. 10/661,835, filed Sep. 12, 2003 (now U.S. Pat. No. 7,024,278), which claims priority under 35 U.S.C. § 119(e) to U.S. Provisional Application 60/410,480, filed on Sep. 13, 2002.
  • U.S. patent application Ser. No. 12/512,114 is also a continuation-in-part of, and claims priority under 35 U.S.C. § 120 from, U.S. patent application Ser. No. 12/255,393, filed on Oct. 21, 2008, which is a continuation of U.S. patent application Ser. No. 11/860,272, filed on Sep. 24, 2007 (now U.S. Pat. No. 7,459,871), which is a continuation of U.S. patent application Ser. No. 11/533,294, filed on Sep. 19, 2006 (now U.S. Pat. No. 7,288,912), which is a continuation of U.S. patent application Ser. No. 11/109,832, filed on Apr. 19, 2005, which is a continuation of U.S. patent application Ser. No. 10/766,303, filed on Jan. 28, 2004.
  • The disclosures of these prior applications are considered part of the disclosure of this application and are hereby incorporated herein by reference in their entireties.
  • This U.S. patent application is related to commonly-owned U.S. patent application Ser. No. 10/056,804, filed on Jan. 24, 2002 entitled “Method and System for Robot Localization and Confinement”, U.S. patent application Ser. No. 10/320,729, filed on Dec. 16, 2002, entitled “Autonomous Floor-Cleaning Device”, U.S. patent application Ser. No. 10/167,851, filed on Jun. 12, 2002, entitled “Method and System for Multi-Mode Coverage for an Autonomous Robot”, and U.S. continuation-in-part patent application Ser. No. 10/453,202, filed on Jun. 3, 2003, entitled “Robot Obstacle Detection System”, each of which is hereby incorporated herein by reference in its entirety.
  • TECHNICAL FIELD
  • This disclosure relates to relates to a navigational control system for a robotic device.
  • BACKGROUND
  • Robotic engineers have long worked on developing an effective method of autonomous cleaning. This has led to the development of two separate and distinct schemes for autonomous robotic devices: (1) deterministic cleaning; and (2) random cleaning.
  • In deterministic cleaning, where the cleaning rate equals the coverage rate and is, therefore, a more efficient cleaning method than random-motion cleaning, the autonomous robotic device follows a defined path, e.g., a boustrophedon path that is calculated to facilitate complete cleaning coverage of a given area while eliminating redundant cleaning. Deterministic cleaning requires that the robotic device maintain precise position knowledge at all times, as well as its position history (where it has been), which, in turn, requires a sophisticated positioning system. A suitable positioning system—a positioning system suitably accurate for deterministic cleaning might rely on scanning laser ranging systems, ultrasonic transducers, a carrier phase differential GPS, or other sophisticated methods—is typically prohibitively expensive and labor intensive, requiring an involved pre-setup to accommodate the unique conditions of each area to be cleaned, e.g., room geometry, furniture locations. In addition, methods that rely on global positioning are typically incapacitated by failure of any part of the positioning system.
  • One illustrative example of a highly sophisticated (and relatively expensive) robotic device for deterministic cleaning is the RoboScrub device built by Denning Mobile Robotics and Windsor Industries. The RoboScrub device employs sonar and infrared detectors, bump sensors, and a high-precision laser navigation system to define the deterministic cleaning path. The navigation system employed with the RoboScrub device requires numerous large bar code targets to be set up in various strategic positions within the area to be cleaned, and effective operation of the navigation system requires that at least four of such targets be visible simultaneously. This target accessibility requirement effectively limits the use of the RoboScrub device to large uncluttered open areas.
  • Other representative deterministic robotic devices are described in U.S. Pat. No. 5,650,702 (Azumi), U.S. Pat. No. 5,548,511 (Bancroft), U.S. Pat. No. 5,537,017 (Feiten et al.), U.S. Pat. No. 5,353,224 (Lee et al.), U.S. Pat. No. 4,700,427 (Knepper), and U.S. Pat. No. 4,119,900 (Kreimnitz). These representative deterministic robotic devices are likewise relatively expensive, require labor intensive pre-setup, and/or are effectively limited to large, uncluttered areas of simple geometric configuration (square, rectangular rooms with minimal (or no) furniture).
  • Due to the limitations and difficulties inherent in purely deterministic cleaning systems, some robotic devices rely on pseudo-deterministic cleaning schemes such as dead reckoning. Dead reckoning consists of continually measuring the precise rotation of each drive wheel (e.g., using optical shaft encoders) to continually calculate the current position of the robotic device, based upon a known starting point and orientation. In addition to the disadvantages of having to start cleaning operations from a fixed position with the robotic device in a specified orientation, the drive wheels of dead reckoning robotic devices are almost always subject to some degree of slippage, which leads to errors in the calculation of current position. Accordingly, dead reckoning robotic devices are generally considered unreliable for cleaning operations of any great duration—resulting in intractable system neglect, i.e., areas of the surface to be cleaned are not cleaned. Other representative examples of pseudo-deterministic robotic devices are described in U.S. Pat. No. 6,255,793 (Peless et al.) and U.S. Pat. No. 5,109,566 (Kobayashi et al.).
  • A robotic device operating in random motion, under the control of one or more random-motion algorithms stored in the robotic device, represents the other basic approach to cleaning operations using autonomous robotic devices. The robotic device autonomously implement such random-motion algorithm(s) in response to internal events, e.g., signals generated by a sensor system, elapse of a time period (random or predetermined). In a typical room without obstacles, a robotic device operating under the control of a random-motion algorithm will provide acceptable cleaning coverage given enough cleaning time. Compared to a robotic device operating in a deterministic cleaning mode, a robotic device utilizing a random-motion algorithm must operate for a longer period of time to achieve acceptable cleaning coverage. To have a high confidence that a random-motion robotic device has cleaned 98% of an obstacle-free room, the random-motion robotic device must run approximately five times longer than a deterministic robotic device having similarly sized cleaning mechanisms and moving at approximately the same speed.
  • However, an area to be cleaned that includes one or more randomly-situated obstacles causes a marked increase in the running time for a random-motion robotic device to effect 98% cleaning coverage. Therefore, while a random motion robotic device is a relatively inexpensive means of cleaning a defined working area as contrasted to a deterministic robotic device, the random-motion robotic device requires a significantly higher cleaning time.
  • A need exists to provide a deterministic component to a random-motion robotic device to enhance the cleaning efficiency thereof to reduce the running time for the random-motion robotic cleaning to achieve a 98% cleaning coverage.
  • SUMMARY
  • The present disclosure provides a debris sensor, and apparatus utilizing such a debris sensor, wherein the sensor is instantaneously responsive to debris strikes, and can be used to control, select or vary the operational mode of an autonomous or non-autonomous cleaning apparatus containing such a sensor.
  • In one aspect of the disclosure, an autonomous cleaning apparatus includes a chassis, a drive system disposed on the chassis and operable to enable movement of the cleaning apparatus, and a controller in communication with the drive system. The controller includes a processor operable to control the drive system to steer movement of the cleaning apparatus. The autonomous cleaning apparatus includes a cleaning head system disposed on the chassis and a sensor system in communication with the controller. The sensor system includes a debris sensor for generating a debris signal, a bump sensor for generating a bump signal, and an obstacle following sensor disposed on a side of the autonomous cleaning apparatus for generating an obstacle signal. The processor executes a prioritized arbitration scheme to identify and implement one or more dominant behavioral modes based upon at least one signal received from the sensor system.
  • Implementations of the disclosure may include one or more of the following features. In some implementations, the processor implements a spot cleaning mode in an area in which the cleaning apparatus was operating, substantially immediately in response to receiving a debris signal generated by the debris sensor. The spot cleaning mode may comprise maneuvering the autonomous cleaning apparatus according to a self-bounded area algorithm. The self-bounded area algorithm may include a spiraling algorithm at a reduced drive speed. In some implementations, the processor implements a high power cleaning mode in response to the debris signal. The high power mode includes elevating power delivery to the cleaning head system.
  • In some implementations, the debris sensor includes a piezoelectric sensor located proximate to a cleaning pathway and responsive to a debris impact thereon to generate a debris signal indicative of such impact. The debris sensor may include a plate, an elastomer pad supporting the plate, and a piezoelectric material and an electrode both secured to the plate. The electrode is in communication with the controller. In some examples, the debris sensor includes a piezoelectric film.
  • In some implementations, the sensor system includes right and left debris sensors in communication with the controller and disposed proximate a cleaning pathway of the cleaning head system for generating respective debris signals. The processor directs the drive system to turn right in response to the debris signal generated by the right debris sensor and to turn left in response to the debris signal generated by the left debris sensor. The right and left debris sensors may be disposed opposite each other and equidistantly from a center axis defined by the cleaning pathway.
  • The bump sensor may include a displaceable bumper attached to the chassis and at least one break-beam sensor disposed on the displaceable bumper. The break-beam sensor is activated upon displacement of the bumper toward the chassis.
  • The obstacle following sensor may include an emitter emitting an emission signal laterally and a detector configured to detect the emission reflected off an obstacle adjacent the cleaning apparatus. The emitter and the detector are configured to establish a focal point. The obstacle following sensor may be disposed on a dominant side of the autonomous cleaning apparatus.
  • In some implementations, the sensor system includes a cliff sensor for generating a cliff signal upon detection of a cliff. The cliff sensor includes an emitter emitting an emission signal downwardly and a detector configured to detect the emission reflected off a surface being traversed by the cleaning apparatus. The emitter and the detector are configured to establish a focal point below the cleaning apparatus. In some examples, the sensor system includes a wheel drop sensor and/or a stall sensor.
  • In another aspect of the disclosure, an autonomous cleaning apparatus includes a chassis a drive system disposed on the chassis and operable to enable movement of the cleaning apparatus, and a controller in communication with the drive system. The controller includes a processor operable to control the drive system to steer movement of the cleaning apparatus. The autonomous cleaning apparatus includes a cleaning head system disposed on the chassis and a sensor system in communication with the controller. The sensor system includes a debris sensor for generating a debris signal, a bump sensor for generating a bump signal, and an obstacle following sensor disposed on a side of the autonomous cleaning apparatus for generating an obstacle signal. The processor executes a prioritized arbitration scheme to identify and implement one or more dominant behavioral modes based upon at least one signal received from the sensor system. The processor controls one or more operational conditions of the autonomous cleaning apparatus based upon the debris signal. The processor controls the drive system to execute a pattern of movements to steer the autonomous cleaning apparatus toward a debris area corresponding to the debris signal generated by the debris sensor.
  • In yet another aspect of the disclosure, an autonomous cleaning apparatus includes a drive system operable to enable movement of the cleaning apparatus, a controller in communication with the drive system, and a debris sensor for generating a debris signal indicating that the cleaning apparatus has encountered debris. The controller includes a processor operable to control the drive system to provide at least one pattern of movement of the cleaning apparatus. The debris sensor is located along a cleaning passageway of the cleaning apparatus and responsive to debris passing through the cleaning passageway to generate a signal indicative of such passing. The processor is responsive to the debris signal to select a pattern of movement of the cleaning apparatus. The pattern of movement includes steering the cleaning apparatus toward an area containing debris. In some implementations, the pattern of movement includes spot coverage of an area containing debris.
  • One aspect of the disclosure is an autonomous cleaning apparatus including a drive system operable to enable movement of the cleaning apparatus, a controller in communication with the drive system, the controller including a processor operable to control the drive system to provide at least one pattern of movement of the cleaning apparatus; and a debris sensor for generating a debris signal indicating that the cleaning apparatus has encountered debris; wherein the processor is responsive to the debris signal to select an operative mode from among predetermined operative modes of the cleaning apparatus.
  • The selection of operative mode could include selecting a pattern of movement of the cleaning apparatus. The pattern of movement can include spot coverage of an area containing debris, or steering the cleaning apparatus toward an area containing debris. The debris sensor could include spaced-apart first and second debris sensing elements respectively operable to generate first and second debris signals; and the processor can be responsive to the respective first and second debris signals to select a pattern of movement, such as steering toward a side (e.g., left or right side) with more debris.
  • The debris sensor can include a piezoelectric sensor element located proximate to a cleaning pathway of the cleaning apparatus and responsive to a debris strike to generate a signal indicative of such strike.
  • The debris sensor can also be incorporated into a non-autonomous cleaning apparatus. This aspect of the invention can include a piezoelectric sensor located proximate to a cleaning pathway and responsive to a debris strike to generate a debris signal indicative of such strike; and a processor responsive to the debris signal to change an operative mode of the cleaning apparatus. The change in operative mode could include illuminating a user-perceptible indicator light, changing a power setting (e.g., higher power setting when more debris is encountered), or slowing or reducing a movement speed of the apparatus.
  • A further aspect of the disclosure is a debris sensor, including a piezoelectric element located proximate to or within a cleaning pathway of the cleaning apparatus and responsive to a debris strike to generate a first signal indicative of such strike, and a processor operable to process the first signal to generate a second signal representative of a characteristic of debris being encountered by the cleaning apparatus. That characteristic could be, for example, a quantity or volumetric parameter of the debris, or a vector from a present location of the cleaning apparatus to an area containing debris.
  • Another aspect of the disclosure takes advantage of the motion of an autonomous cleaning device across a floor or other surface, processing the debris signal in conjunction with knowledge of the cleaning device's movement to calculate a debris gradient. The debris gradient is representative of changes in debris strikes count as the autonomous cleaning apparatus moves along a surface. By examining the sign of the gradient (positive or negative, associated with increasing or decreasing debris), an autonomous cleaning device controller can continuously adjust the path or pattern of movement of the device to clean a debris field most effectively.
  • Another aspect of the disclosure includes a navigational control system that enhances the cleaning efficiency of a robotic device by adding a deterministic component (in the form of a conduct prescribed by a navigation control algorithm) to the random motion of the robotic device generated by predetermined behavioral modes stored in the robotic device.
  • Yet another aspect of the disclosure includes a navigational control unit operating under a navigation control algorithm that includes a predetermined triggering event that defines when the prescribed conduct will be implemented by the robotic device.
  • These and other aspects of the disclosure are achieved by means of a navigational control system for deterministically altering movement activity of a robotic device operating in a defined working area, comprising a transmitting subsystem integrated in combination with the robotic device, the transmitting subsystem comprising means for emitting a number of directed beams, each directed beam having a predetermined emission pattern, and a receiving subsystem functioning as a base station that includes a navigation control algorithm that defines a predetermined triggering event for the navigational control system and a set of detection units positioned within the defined working area, the detection units being positioned in a known aspectual relationship with respect to one another, the set of detection units being configured and operative to detect one or more of the directed beams emitted by the transmitting system; and wherein the receiving subsystem is configured and operative to process the one or more detected directed beams under the control of the navigational control algorithm to determine whether the predetermined triggering event has occurred, and, if the predetermined triggering event has occurred transmit a control signal to the robotic device, wherein reception of the control signal by the robotic device causes the robotic device to implement a prescribed conduct that deterministically alters the movement activity of the robotic device.
  • The details of one or more implementations of the disclosure are set forth in the accompanying drawings and the description below. Other aspects, features, and advantages will be apparent from the description and drawings, and from the claims.
  • DESCRIPTION OF DRAWINGS
  • FIG. 1 is a top-view schematic of an exemplary robotic device having particular utility for use in the navigational control system.
  • FIG. 2 is an exemplary hardware block diagram for the robotic device of FIG. 1.
  • FIG. 3 is a side view of the robotic device of FIG. 1, showing a debris sensor situated in a cleaning or vacuum pathway, where it will be struck by debris upswept by the main cleaning brush element.
  • FIG. 4 is an exploded diagram of a piezoelectric debris sensor.
  • FIG. 5 is a schematic diagram of a debris sensor signal processing architecture.
  • FIGS. 6A-6C are schematic diagrams of signal processing circuitry for the debris sensor architecture of FIG. 5.
  • FIG. 7 is a schematic diagram showing the debris sensor in a non-autonomous cleaning apparatus.
  • FIG. 8 is a flowchart of operating a debris sensor.
  • FIG. 9 is a schematic depiction of a navigational control system that comprises a transmitting subsystem and a receiving subsystem.
  • FIG. 10 illustrates a polar tessellation of a defined working area in which a robotic device is operating.
  • FIG. 11A illustrates the operation of a transmitting subsystem in synchronized operation with the receiving subsystem of a navigational control system.
  • FIG. 11B illustrates the operation of the receiving subsystem in synchronized operation with the transmitting subsystem of FIG. 5A.
  • FIG. 11C illustrates the operation of a transmitting subsystem in synchronized operation with the receiving subsystem of a navigational control system.
  • FIG. 11D illustrates the operation of the receiving subsystem in synchronized operation with the transmitting subsystem of FIG. 5C.
  • FIG. 12A illustrates a navigational control system wherein the transmitting subsystem is integrated in combination with the robotic device and the receiving system functions as a base station mounted against one wall of a defined working area.
  • FIG. 12B illustrates the set of transmitting units comprising the transmitting subsystem of the robotic device of FIG. 12A and representative directed beams having a predetermined emission patterns.
  • FIG. 12C is a schematic illustration of the receiving subsystem of FIG. 12A.
  • FIG. 13 illustrates a navigational control system wherein the receiving subsystem is integrated in combination with the robotic device and the transmitting subsystem has a distributed configuration.
  • Like reference symbols in the various drawings indicate like elements.
  • DETAILED DESCRIPTION
  • While the debris sensor of the present disclosure can be incorporated into a wide range of autonomous cleaning devices (and indeed, into non-autonomous cleaning devices as shown by way of example in FIG. 7), it will first be described in the context of an exemplary autonomous cleaning device shown in FIGS. 1-3.
  • FIG. 1 is a top-view schematic of an exemplary preferred embodiment of a robotic device 100 having particular utility in combination with a navigational control system 10 according to the present invention. FIG. 2 is a block diagram of the hardware of the robot device 100 of FIG. 1.
  • The hardware and behavioral modes (coverage behaviors for cleaning operations; escape behaviors for transitory movement patterns; and safety behaviors for emergency conditions) of the robotic device 100, which is manufactured, distributed, and/or marketed by the iRobot Corporation of Burlington, Mass. under the ROOMBA trademark, are briefly described in the following paragraphs to facilitate a more complete understanding of the navigational control system 10 of the present invention. Further details regarding the hardware and behavioral modes of the robotic device 100 can be found in commonly-owned, co-pending U.S. nonprovisional patent application Ser. No. 10/167,851, filed 12 Jun. 2002, entitled METHOD AND SYSTEM FOR MULTI-MODE COVERAGE FOR AN AUTONOMOUS ROBOT, and U.S. nonprovisional patent application Ser. No. 10/320,729, filed 16 Dec. 2002, entitled AUTONOMOUS FLOOR-CLEANING DEVICE.
  • In the following description of the robotic device 100, use of the terminology “forward”/“fore” refers to the primary direction of motion (forward) of the robotic device (see arrow identified by reference character “FM” in FIG. 1). The fore/aft axis FAX of the robotic device 100 coincides with the medial diameter of the robotic device 100 that divides the robotic device 100 into generally symmetrical right and left halves, which are defined as the dominant and non-dominant sides, respectively.
  • Robotic Device
  • The robotic device 100 has a generally cylindrical housing infrastructure that includes a chassis 102 and an outer shell 104 secured to the chassis 102 that define a structural envelope of minimal height (to facilitate movement under furniture). The hardware comprising the robotic device 100 can be generally categorized as the functional elements of a power system, a motive power system, a sensor system, a control module, a side brush assembly, or a self-adjusting cleaning head system, respectively, all of which are integrated in combination with the housing infrastructure. In addition to such categorized hardware, the robotic device 100 further includes a forward bumper 106 having a generally arcuate configuration and a nose-wheel assembly 108.
  • The forward bumper 106 (illustrated as a single component; alternatively, a two-segment component) is integrated in movable combination with the chassis 102 (by means of displaceable support members pairs) to extend outwardly therefrom. Whenever the robotic device 100 impacts an obstacle (e.g., wall, furniture) during movement thereof, the bumper 106 is displaced (compressed) towards the chassis 102 and returns to its extended (operating) position when contact with the obstacle is terminated.
  • The nose-wheel assembly 108 is mounted in biased combination with the chassis 102 so that the nose-wheel subassembly 108 is in a retracted position (due to the weight of the robotic device 100) during cleaning operations wherein it rotates freely over the surface being cleaned. When the nose-wheel subassembly 108 encounters a drop-off during operation (e.g., descending stairs, split-level floors), the nose-wheel assembly 108 is biased to an extended position.
  • The hardware of the power system, which provides the energy to power the electrically-operated hardware of the robotic device 100, comprises a rechargeable battery pack 110 (and associated conduction lines, not shown) that is integrated in combination with the chassis 102.
  • The motive power system provides the means that propels the robotic device 100 and operates the cleaning mechanisms, e.g., side brush assembly and the self-adjusting cleaning head system, during movement of the robotic device 100. The motive power system comprises left and right main drive wheel assemblies 112L, 112R, their associated independent electric motors 114L, 114R, and electric motors 116, 118 for operation of the side brush assembly and the self-adjusting cleaning head subsystem, respectively.
  • The main drive wheel assemblies 112L, 112R are independently mounted in biased combination with the chassis 102 (for pivotal motion with respect thereto) at opposed ends of the transverse diameter (with respect to the fore-aft axis FAX) of the robotic device 100 and are in a retracted position (due to the weight of the robotic device 100) during operation thereof wherein the axes of rotation are approximately coplanar with the bottom of the chassis 102. If the robotic device 100 is removed from the surface being cleaned, the main wheel assemblies 112L, 112R are pivotally-biased to an extended position wherein their axes of rotation are below the bottom plane of the chassis 102 (in this extended position the rechargeable battery pack 110 is automatically turned off by the control module executing one of the safety behavioral modes).
  • The electric motors 114L, 114R are mechanically coupled to the main drive wheel assemblies 112L, 112R, respectively, and independently operated by control signals generated by the control module as a response to the implementation of a behavioral mode. Independent operation of the electric motors 114L, 114R allows the main wheel assemblies 112L, 112R to be: (1) rotated at the same speed in the same direction to propel the robotic device 100 in a straight line, forward or aft; (2) differentially rotated (including the condition wherein one wheel assembly is not rotated) to effect a variety of right and/or left turning patterns (over a spectrum of sharp to shallow turns) for the robotic device 100; and (3) rotated at the same speed in opposite directions to cause the robotic device 100 to turn in place, i.e., “spin on a dime”, to provide an extensive repertoire of movement capability for the robotic device 100.
  • The sensor system comprises a variety of different sensor units that are operative to generate signals that control the behavioral mode operations of the robotic device 100. The described robotic device 100 includes obstacle detection units 120, cliff detection units 122, wheel drop sensors 124, an obstacle-following unit 126, a virtual wall omnidirectional detector 128, stall-sensor units 130, and main wheel encoder units 132, and left and right debris sensors 125L, 125R.
  • For the described embodiment, the obstacle (“bump”) detection units 120 are IR break beam sensors mounted in combination with the displaceable support member pairs of the forward bumper 106. These detection units 120 are operative to generate one or more signals indicating relative displacement between one or more support member pairs whenever the robotic device 100 impacts an obstacle such that the forward bumper 106 is compressed. These signals are processed by the control module to determine an approximate point of contact with the obstacle relative to the fore-aft axis FAX of the robotic device 100 (and the behavioral mode(s) to be implemented).
  • The cliff detection units 122 are mounted in combination with the forward bumper 106. Each cliff detection unit 122 comprises an IR emitter—detector pair configured and operative to establish a focal point such that radiation emitted downwardly by the emitter is reflected from the surface being traversed and detected by the detector. If reflected radiation is not detected by the detector, i.e., a drop-off is encountered, the cliff detection unit 122 transmits a signal to the control module (which causes one or more behavioral modes to be implemented).
  • A wheel drop sensor 124 such as a contact switch is integrated in combination with each of the main drive wheel assemblies 112L, 112R and the nose wheel assembly 108 and is operative to generate a signal whenever any of the wheel assemblies is in an extended position, i.e., not in contact with the surface being traversed, (which causes the control module to implement one ore more behavioral modes).
  • The obstacle-following unit 126 for the described embodiment is an IR emitter-detector pair mounted on the ‘dominant’ side (right hand side of FIG. 1) of the robotic device 100. The emitter-detector pair is similar in configuration to the cliff detection units 112, but is positioned so that the emitter emits radiation laterally from the dominant side of the robotic device 100. The unit 126 is operative to transmit a signal to the control module whenever an obstacle is detected as a result of radiation reflected from the obstacle and detected by the detector. The control module, in response to this signal, causes one or more behavioral modes to be implemented.
  • A virtual wall detection system for use in conjunction with the described embodiment of the robotic device 100 comprises an omnidirectional detector 128 mounted atop the outer shell 104 and a stand-alone transmitting unit (not shown) that transmits an axially-directed confinement beam. The stand-alone transmitting unit is positioned so that the emitted confinement beam blocks an accessway to a defined working area, thereby restricting the robotic device 100 to operations within the defined working area (e.g., in a doorway to confine the robotic device 100 within a specific room to be cleaned). Upon detection of the confinement beam, the omnidirectional detector 128 transmits a signal to the control module (which causes one or more behavioral modes to be implemented to move the robotic device 100 away from the confinement beam generated by the stand-alone transmitting unit).
  • A stall sensor unit 130 is integrated in combination with each electric motor 114L, 114R, 116, 118 and operative to transmit a signal to the control module when a change in current is detected in the associated electric motor (which is indicative of a dysfunctional condition in the corresponding driven hardware). The control module is operative in response to such a signal to implement one or more behavioral modes.
  • An IR encoder unit 132 (see FIG. 2) is integrated in combination with each main wheel assembly 112L, 112R and operative to detect the rotation of the corresponding wheel and transmit signals corresponding thereto the control module (wheel rotation can be used to provide an estimate of distance traveled for the robotic device 100).
  • The control module comprises the microprocessing unit 135 illustrated in FIG. 2 that includes I/O ports connected to the sensors and controllable hardware of the robotic device 100, a microcontroller, and ROM and RAM memory. The I/O ports function as the interface between the microcontroller and the sensor units and controllable hardware, transferring signals generated by the sensor units to the microcontroller and transferring control (instruction) signals generated by the microcontroller to the controllable hardware to implement a specific behavioral mode.
  • The microcontroller is operative to execute instruction sets for processing sensor signals, implementing specific behavioral modes based upon such processed signals, and generating control (instruction) signals for the controllable hardware based upon implemented behavioral modes for the robotic device 100. The cleaning coverage and control programs for the robotic device 100 are stored in the ROM of the microprocessing unit 135, which includes the behavioral modes, sensor processing algorithms, control signal generation algorithms and a prioritization algorithm for determining which behavioral mode or modes are to be given control of the robotic device 100. The RAM of the microprocessing unit 135 is used to store the active state of the robotic device 100, including the ID of the behavioral mode(s) under which the robotic device 100 is currently being operated and the hardware commands associated therewith.
  • Referring again to FIG. 1, the side brush assembly 140 is configured and operative to entrain particulates outside the periphery of the housing infrastructure and to direct such particulates towards the self-adjusting cleaning head system. The side brush assembly 140 provides the robotic device 100 with the capability of cleaning surfaces adjacent to base-boards when the robotic device is operated in an Obstacle-Following behavioral mode. As shown in FIG. 1, the side brush assembly 140 is preferably mounted in combination with the chassis 102 in the forward quadrant on the dominant side of the robotic device 100.
  • The self-adjusting cleaning head system 145 for the described robotic device 100 comprises a dual-stage brush assembly and a vacuum assembly, each of which is independently powered by an electric motor (reference numeral 118 in FIG. 1 actually identifies two independent electric motors—one for the brush assembly and one for the vacuum assembly). The cleaning capability of the robotic device 100 is commonly characterized in terms of the width of the cleaning head system 145 (see reference character W in FIG. 1).
  • The dual-stage brush assembly and the inlet of the vacuum assembly are integrated in combination with a deck structure, which is pivotally mounted in combination with the chassis 102 and operatively integrated with the motor of the dual-stage brush assembly. In response to a predetermined reduction in rotational speed of the brush assembly motor, the brush assembly motor provides the motive force to pivot the deck structure with respect to the chassis 102. The pivoting deck structure provides the self adjusting capability for the cleaning head assembly 145, which allows the robotic device 100 to readily transition between disparate surfaces during cleaning operations, e.g., carpeted surface to bare surface or vice versa, without hanging up.
  • The dual-stage brush assembly comprises asymmetric, counter-rotating brushes that are positioned (forward of the inlet of the vacuum assembly), configured and operative to direct particulate debris into a removable dust cartridge (not shown). The positioning, configuration, and operation of the brush assembly concomitantly directs particulate debris towards the inlet of the vacuum assembly such that particulates that are not swept up by the dual-stage brush assembly can be subsequently ingested by the vacuum assembly as a result of movement of the robotic device 100.
  • Operation of the vacuum assembly independently of the self-adjustable brush assembly allows the vacuum assembly to generate and maintain a higher vacuum force using a battery-power source than would be possible if the vacuum assembly were operated in dependence with the brush assembly.
  • Referring now to FIG. 3, in some implementations of a robotic cleaning device, the cleaning brush assembly includes asymmetric, counter-rotating flapper and main brush elements 92 and 94, respectively, that are positioned forward of the vacuum assembly inlet 84, and operative to direct particulate debris 127 into a removable dust cartridge 86. As shown in FIG. 3, the autonomous cleaning apparatus can also include left and right debris sensor elements 125PS, which can be piezoelectric sensor elements, as described in detail below. The piezoelectric debris sensor elements 125PS can be situated in a cleaning pathway of the cleaning device, mounted, for example, in the roof of the cleaning head, so that when struck by particles 127 swept up by the brush elements and/or pulled up by vacuum, the debris sensor elements 125PS generate electrical pulses representative of debris impacts and thus, of the presence of debris in an area in which the autonomous cleaning device is operating.
  • More particularly, in the arrangement shown in FIG. 3, the sensor elements 125PS are located substantially at an axis AX along which main and flapper brushes 94, 92 meet, so that particles strike the sensor elements 125 PS with maximum force.
  • As shown in FIG. 1, and described in greater detail below, the robotic cleaning device can be fitted with left and right side piezoelectric debris sensors, to generate separate left and right side debris signals that can be processed to signal the robotic device to turn in the direction of a “dirty” area
  • The operation of the piezoelectric debris sensors, as well as signal processing and selection of behavioral modes based on the debris signals they generate, will be discussed below following a brief discussion of general aspects of behavioral modes for the cleaning device.
  • Behavioral Modes
  • The robotic device 100 uses a variety of behavioral modes to effectively clean a defined working area where behavioral modes are layers of control systems that can be operated in parallel. The microprocessor unit 135 is operative to execute a prioritized arbitration scheme to identify and implement one or more dominant behavioral modes for any given scenario based upon inputs from the sensor system.
  • The behavioral modes for the described robotic device 100 can be characterized as: (1) coverage behavioral modes; (2) escape behavioral modes; and (3) safety behavioral modes. Coverage behavioral modes are primarily designed to allow the robotic device 100 to perform its cleaning operations in an efficient and effective manner and the escape and safety behavioral modes are priority behavioral modes implemented when a signal from the sensor system indicates that normal operation of the robotic device 100 is impaired, e.g., obstacle encountered, or is likely to be impaired, e.g., drop-off detected.
  • Representative and illustrative coverage behavioral (cleaning) modes for the robotic device 100 include: (1) a Spot Coverage pattern; (2) an Obstacle-Following (or Edge-Cleaning) Coverage pattern, and (3) a Room Coverage pattern. The Spot Coverage pattern causes the robotic device 100 to clean a limited area within the defined working area, e.g., a high-traffic area. In a preferred embodiment the Spot Coverage pattern is implemented by means of a spiral algorithm (but other types of self-bounded area algorithms, e.g., polygonal, can be used). The spiral algorithm, which causes outward spiraling (preferred) or inward spiraling movement of the robotic device 100, is implemented by control signals from the microprocessing unit 135 to the main wheel assemblies 112L, 112R to change the turn radius/radii thereof as a function of time (thereby increasing/decreasing the spiral movement pattern of the robotic device 100).
  • The robotic device 100 is operated in the Spot Coverage pattern for a predetermined or random period of time, for a predetermined or random distance (e.g., a maximum spiral distance) and/or until the occurrence of a specified event, e.g., activation of one or more of the obstacle detection units 120 (collectively a transition condition). Once a transition condition occurs, the robotic device 100 can implement or transition to a different behavioral mode, e.g., a Straight Line behavioral mode (in a preferred embodiment of the robotic device 100, the Straight Line behavioral mode is a low priority, default behavior that propels the robot in an approximately straight line at a preset velocity of approximately 0.306 m/s) or a Bounce behavioral mode in combination with a Straight Line behavioral mode.
  • If the transition condition is the result of the robotic device 100 encountering an obstacle, the robotic device 100 can take other actions in lieu of transitioning to a different behavioral mode. The robotic device 100 can momentarily implement a behavioral mode to avoid or escape the obstacle and resume operation under control of the spiral algorithm (i.e., continue spiraling in the same direction). Alternatively, the robotic device 100 can momentarily implement a behavioral mode to avoid or escape the obstacle and resume operation under control of the spiral algorithm (but in the opposite direction—reflective spiraling).
  • The Obstacle-Following Coverage pattern causes the robotic device 100 to clean the perimeter of the defined working area, e.g., a room bounded by walls, and/or the perimeter of an obstacle (e.g., furniture) within the defined working area. Preferably the robotic device 100 utilizes obstacle-following unit 126 to continuously maintain its position with respect to an obstacle, e.g., wall, furniture, so that the motion of the robotic device 100 causes it to travel adjacent to and concomitantly clean along the perimeter of the obstacle. Different embodiments of the obstacle-following unit 126 can be used to implement the Obstacle-Following behavioral pattern.
  • In a first embodiment, the obstacle-following unit 126 is operated to detect the presence or absence of the obstacle. In an alternative embodiment, the obstacle-following unit 126 is operated to detect an obstacle and then maintain a predetermined distance between the obstacle and the robotic device 100. In the first embodiment, the microprocessing unit 135 is operative, in response to signals from the obstacle-following unit, to implement small CW or CCW turns to maintain its position with respect to the obstacle. The robotic device 100 implements a small CW when the robotic device 100 transitions from obstacle detection to non-detection (reflection to non-reflection) or to implement a small CCW turn when the robotic device 100 transitions from non-detection to detection (non-reflection to reflection). Similar turning behaviors are implemented by the robotic device 100 to maintain the predetermined distance from the obstacle.
  • The robotic device 100 is operated in the Obstacle-Following behavioral mode for a predetermined or random period of time, for a predetermined or random distance (e.g., a maximum or minimum distance) and/or until the occurrence of a specified event, e.g., activation of one or more of the obstacle detection units 120 a predetermined number of times (collectively a transition condition). In certain embodiments, the microprocessor 135 will cause the robotic device to implement an Align behavioral mode upon activation of the obstacle-detection units 120 in the Obstacle-Following behavioral mode wherein the implements a minimum angle CCW turn to align the robotic device 100 with the obstacle.
  • The Room Coverage pattern can be used by the robotic device 100 to clean any defined working area that is bounded by walls, stairs, obstacles or other barriers (e.g., a virtual wall unit). A preferred embodiment for the Room Coverage pattern comprises the Random-Bounce behavioral mode in combination with the Straight Line behavioral mode. Initially, the robotic device 100 travels under control of the Straight-Line behavioral mode, i.e., straight-line algorithm (main drive wheel assemblies 112L, 112R operating at the same rotational speed in the same direction) until an obstacle is encountered. Upon activation of one or more of the obstacle detection units 120, the microprocessing unit 135 is operative to compute an acceptable range of new directions based upon the obstacle detection unit(s) 126 activated. The microprocessing unit 135 selects a new heading from within the acceptable range and implements a CW or CCW turn to achieve the new heading with minimal movement. In some embodiments, the new turn heading may be followed by forward movement to increase the cleaning efficiency of the robotic device 100. The new heading may be randomly selected across the acceptable range of headings, or based upon some statistical selection scheme, e.g., Gaussian distribution. In other embodiments of the Room Coverage behavioral mode, the microprocessing unit 135 can be programmed to change headings randomly or at predetermined times, without input from the sensor system.
  • The robotic device 100 is operated in the Room Coverage behavioral mode for a predetermined or random period of time, for a predetermined or random distance (e.g., a maximum or minimum distance) and/or until the occurrence of a specified event, e.g., activation of the obstacle-detection units 120 a predetermined number of times (collectively a transition condition).
  • A preferred embodiment of the robotic device 100 includes four escape behavioral modes: a Turn behavioral mode, an Edge behavioral mode, a Wheel Drop behavioral mode, and a Slow behavioral mode. One skilled in the art will appreciate that other behavioral modes can be utilized by the robotic device 100. One or more of these behavioral modes may be implemented, for example, in response to a current rise in one of the electric motors 116, 118 of the side brush assembly 140 or dual-stage brush assembly above a low or high stall threshold, forward bumper 106 in compressed position for determined time period, detection of a wheel-drop event.
  • In the Turn behavioral mode, the robotic device 100 turns in place in a random direction, starting at higher velocity (e.g., twice normal turning velocity) and decreasing to a lower velocity (one-half normal turning velocity), i.e., small panic turns and large panic turns, respectively. Low panic turns are preferably in the range of 45° to 90°, large panic turns are preferably in the range of 90° to 270°. The Turn behavioral mode prevents the robotic device 100 from becoming stuck on room impediments, e.g., high spot in carpet, ramped lamp base, from becoming stuck under room impediments, e.g., under a sofa, or from becoming trapped in a confined area.
  • In the Edge behavioral mode follows the edge of an obstacle unit it has turned through a predetermined number of degrees, e.g., 60°, without activation of any of the obstacle detection units 120, or until the robotic device has turned through a predetermined number of degrees, e.g., 170°, since initiation of the Edge behavioral mode. The Edge behavioral mode allows the robotic device 100 to move through the smallest possible openings to escape from confined areas.
  • In the Wheel Drop behavioral mode, the microprocessor 135 reverses the direction of the main wheel drive assemblies 112L, 112R momentarily, then stops them. If the activated wheel drop sensor 124 deactivates within a predetermined time, the microprocessor 135 then reimplements the behavioral mode that was being executed prior to the activation of the wheel drop sensor 124.
  • In response to certain events, e.g., activation of a wheel drop sensor 124 or a cliff detector 122, the Slow behavioral mode is implemented to slowed down the robotic device 100 for a predetermined distance and then ramped back up to its normal operating speed.
  • When a safety condition is detected by the sensor subsystem, e.g., a series of brush or wheel stalls that cause the corresponding electric motors to be temporarily cycled off, wheel drop sensor 124 or a cliff detection sensor 122 activated for greater that a predetermined period of time, the robotic device 100 is generally cycled to an off state. In addition, an audible alarm may be generated.
  • The foregoing description of behavioral modes for the robotic device 100 are intended to be representative of the types of operating modes that can be implemented by the robotic device 100. One skilled in the art will appreciate that the behavioral modes described above can be implemented in other combinations and/or circumstances.
  • Debris Sensor
  • As shown in FIGS. 1-3, in accordance with the present invention, an autonomous cleaning device (and similarly, a non-autonomous cleaning device as shown by way of example in FIG. 7) can be improved by incorporation of a debris sensor. In the embodiment illustrated in FIGS. 1 and 3, the debris sensor subsystem comprises left and right piezoelectric sensing elements 125L, 125R situated proximate to or within a cleaning pathway of a cleaning device, and electronics for processing the debris signal from the sensor for forwarding to a microprocessor 135 or other controller.
  • When employed in an autonomous, robot cleaning device, the debris signal from the debris sensor can be used to select a behavioral mode (such as entering into a spot cleaning mode), change an operational condition (such as speed, power or other), steer in the direction of debris (particularly when spaced-apart left and right debris sensors are used to create a differential signal), or take other actions.
  • A debris sensor according to the present invention can also be incorporated into a non-autonomous cleaning device. When employed in a non-autonomous cleaning device such as, for example, an otherwise relatively conventional vacuum cleaner 700 like that shown in FIG. 7, the debris signal 706 generated by a piezoelectric debris sensor 704 PS situated within a cleaning or vacuum pathway of the device can be employed by a controlling microprocessor 708 in the body of the vacuum cleaner 702 to generate a user-perceptible signal (such as by lighting a light 710), to increase power from the power system 703, or take some combination of actions (such as lighting a “high power” light and simultaneously increasing power).
  • The algorithmic aspects of the operation of the debris sensor subsystem are summarized in FIG. 8. As shown therein, a method according to the invention can include detecting left and right debris signals representative of debris strikes, and thus, of the presence, quantity or volume, and direction of debris (802); selecting an operational mode or pattern of movement (such as Spot Coverage) based on the debris signal values (804); selecting a direction of movement based on differential left/right debris signals (e.g., steering toward the side with more debris) (806); generating a user-perceptible signal representative of the presence of debris or other characteristic (e.g., by illuminating a user-perceptible LED) (808); or otherwise varying or controlling an operational condition, such as power (810).
  • A further practice of the invention takes advantage of the motion of an autonomous cleaning device across a floor or other surface, processing the debris signal in conjunction with knowledge of the cleaning device's movement to calculate a debris gradient (812 in FIG. 8). The debris gradient is representative of changes in debris strikes count as the autonomous cleaning apparatus moves along a surface. By examining the sign of the gradient (positive or negative, associated with increasing or decreasing debris), an autonomous cleaning device controller can continuously adjust the path or pattern of movement of the device to clean a debris field most effectively (812).
  • Piezoelectric Sensor: As noted above, a piezoelectric transducer element can be used in the debris sensor subsystem of the invention. Piezoelectric sensors provide instantaneous response to debris strikes and are relatively immune to accretion that would degrade the performance of an optical debris sensor typical of the prior art.
  • An example of a piezoelectric transducer 125PS is shown in FIG. 4. Referring now to FIG. 4, the piezoelectric sensor element 125PS can include one or more 0.20 millimeter thick, 20 millimeter diameter brass disks 402 with the piezoelectric material and electrodes bonded to the topside (with a total thickness of 0.51 mm), mounted to an elastomer pad 404, a plastic dirt sensor cap 406, a debris sensor PC board with associated electronics 408, grounded metal shield 410, and retained by mounting screws (or bolts or the like) 412 and elastomer grommets 414. The elastomer grommets provide a degree of vibration dampening or isolation between the piezoelectric sensor element 125PS and the cleaning device.
  • In the example shown in FIG. 4, a rigid piezoelectric disk, of the type typically used as inexpensive sounders, can be used. However, flexible piezoelectric film can also be advantageously employed. Since the film can be produced in arbitrary shapes, its use affords the possibility of sensitivity to debris across the entire cleaning width of the cleaning device, rather than sensitivity in selected areas where, for example, the disks may be located. Conversely, however, film is at present substantially more expensive and is subject to degradation over time. In contrast, brass disks have proven to be extremely robust.
  • The exemplary mounting configuration shown in FIG. 4 is substantially optimized for use within a platform that is mechanically quite noisy, such as an autonomous vacuum cleaner like that shown in FIG. 3. In such a device, vibration dampening or isolation of the sensor is extremely useful. However, in an application involving a non-autonomous cleaning device such as a canister-type vacuum cleaner like that shown in FIG. 7, the dampening aspects of the mounting system of FIG. 4 may not be necessary. In a non-autonomous cleaning apparatus, an alternative mounting system may involve heat sing the piezoelectric element directly to its housing. In either case, a key consideration for achieving enhanced performance is the reduction of the surface area required to clamp, bolt, or otherwise maintain the piezoelectric element in place. The smaller the footprint of this clamped “dead zone”, the more sensitive the piezoelectric element will be.
  • In operation, debris thrown up by the cleaning brush assembly (e.g., brush 94 of FIG. 3), or otherwise flowing through a cleaning pathway within the cleaning device (e.g., vacuum compartment 104 of FIG. 3) can strike the bottom, all-brass side of the sensor 125 PS (see FIG. 3). In an autonomous cleaning device, as shown in FIG. 3, the debris sensor 125 PS can be located substantially at an axis AX along which main brush 94 and flapper brush 92 meet, so that the particles 127 are thrown up and strike the sensor 125 PS with maximum force.
  • As is well known, a piezoelectric sensor converts mechanical energy (e.g., the kinetic energy of a debris strike and vibration of the brass disk) into electrical energy—in this case, generating an electrical pulse each time it is struck by debris—and it is this electrical pulse that can be processed and transmitted to a system controller (e.g., controller 135 of FIGS. 1 and 2 or 708 of FIG. 8) to control or cause a change in operational mode, in accordance with the invention. Piezoelectric elements are typically designed for use as audio transducers, for example, to generate beep tones. When an AC voltage is applied, they vibrate mechanically in step with the AC waveform, and generate an audible output. Conversely, if they are mechanically vibrated, they produce an AC voltage output. This is the manner in which they are employed in the present invention. In particular, when an object first strikes the brass face of the sensor, it causes the disk to flex inward, which produces a voltage pulse.
  • Filtering: However; since the sensor element 125PS is in direct or indirect contact with the cleaning device chassis or body through its mounting system (see FIGS. 3 and 4), it is subject to the mechanical vibrations normally produced by motors, brushes, fans and other moving parts when the cleaning device is functioning. This mechanical vibration can cause the sensor to output an undesirable noise signal that can be larger in amplitude than the signal created by small, low mass debris (such as crushed black pepper) striking the sensor. The end result is that the sensor would output a composite signal composed of lower frequency noise components (up to approximately 16 kHz) and higher frequency, possibly lower amplitude, debris-strike components (greater than 30 kHz, up to hundreds of kHz). Thus, it is useful to provide a way to filter out extraneous signals.
  • Accordingly, as described below, an electronic filter is used to greatly attenuate the lower frequency signal components to improve signal-to-noise performance. Examples of the architecture and circuitry of such filtering and signal processing elements will next be described in connection with FIGS. 5 and 6.
  • Signal Processing
  • FIG. 5 is an exemplary schematic diagram of the signal processing elements of a debris sensor subsystem. As noted above, one purpose of a debris sensor is to enable an autonomous cleaning apparatus to sense when it is picking up debris or otherwise encountering a debris field. This information can be used as an input to effect a change in the cleaning behavior or cause the apparatus to enter a selected operational or behavioral mode, such as, for example, the spot cleaning mode described above when debris is encountered. In an non-autonomous cleaning apparatus like that shown in FIG. 7, the debris signal 706 from the debris sensor 704 PS can be used to cause a user-perceptible light 710 to be illuminated (e.g., to signal to the user that debris is being encountered), to raise power output from the power until 703 to the cleaning systems, or to cause some other operational change or combination of changes (e.g., lighting a user-perceptible “high power” light and simultaneously raising power).
  • Moreover, as noted above, two debris sensor circuit modules (i.e., left and right channels like 125L and 125R of FIG. 1) can be used to enable an autonomous cleaning device to sense the difference between the amounts of debris picked up on the right and left sides of the cleaning head assembly. For example, if the robot encounters a field of dirt off to its left side, the left side debris sensor may indicate debris hits, while the right side sensor indicates no (or a low rate of) debris hits. This differential output could be used by the microprocessor controller of an autonomous cleaning device (such as controller 135 of FIGS. 1 and 2) to steer the device in the direction of the debris (e.g., to steer left if the left-side debris sensor is generating higher signal values than the right-side debris sensor); to otherwise choose a vector in the direction of the debris; or to otherwise select a pattern of movement or behavior pattern such as spot coverage or other.
  • Thus, FIG. 5 illustrates one channel (for example, the left-side channel) of a debris sensor subsystem that can contain both left and right side channels. The right side channel is substantially identical, and its structure and operation will therefore be understood from the following discussion.
  • As shown in FIG. 5, the left channel consists of a sensor element (piezoelectric disk) 402, an acoustic vibration filter/RFI filter module 502, a signal amplifier 504, a reference level generator 506, an attenuator 508, a comparator 510 for comparing the outputs of the attenuator and reference level generator, and a pulse stretcher 512. The output of the pulse stretcher is a logic level output signal to a system controller like the processor 135 shown in FIG. 2; i.e., a controller suitable for use in selecting an operational behavior.
  • The Acoustic Vibration Filter/RFI Filter block 502 can be designed to provide significant attenuation (in one embodiment, better than −45 dB Volts), and to block most of the lower frequency, slow rate of change mechanical vibration signals, while permitting higher frequency, fast rate of change debris-strike signals to pass. However, even though these higher frequency signals get through the filter, they are attenuated, and thus require amplification by the Signal Amplifier block 504.
  • In addition to amplifying the desired higher frequency debris strike signals, the very small residual mechanical noise signals that do pass through the filter also get amplified, along with electrical noise generated by the amplifier itself, and any radio frequency interference (RFI) components generated by the motors and radiated through the air, or picked up by the sensor and its conducting wires. The signal amplifier's high frequency response is designed to minimize the amplification of very high frequency RFI. This constant background noise signal, which has much lower frequency components than the desired debris strike signals, is fed into the Reference Level Generator block 506. The purpose of module 506 is to create a reference signal that follows the instantaneous peak value, or envelope, of the noise signal. It can be seen in FIG. 5 that the signal of interest, i.e., the signal that results when debris strikes the sensor, is also fed into this block. Thus, the Reference Level Generator block circuitry is designed so that it does not respond quickly enough to high frequency, fast rate of change debris-strike signals to be able to track the instantaneous peak value of these signals. The resulting reference signal will be used to make a comparison as described below.
  • Referring again to FIG. 5, it will be seen that the signal from amplifier 504 is also fed into the Attenuator block. This is the same signal that goes to the Reference Level Generator 506, so it is a composite signal containing both the high frequency signal of interest (i.e., when debris strikes the sensor) and the lower frequency noise. The Attenuator 508 reduces the amplitude of this signal so that it normally is below the amplitude of the signal from the Reference Level Generator 506 when no debris is striking the sensor element.
  • The Comparator 510 compares the instantaneous voltage amplitude value of the signal from the Attenuator 508 to the signal from the Reference Level Generator 506. Normally, when the cleaning device operating is running and debris are not striking the sensor element, the instantaneous voltage coming out of the Reference Level Generator 506 will be higher than the voltage coming out of the Attenuator block 508. This causes the Comparator block 510 to output a high logic level signal (logic one), which is then inverted by the Pulse Stretcher block 512 to create a low logic level (logic zero).
  • However, when debris strikes the sensor, the voltage from the Attenuator 508 exceeds the voltage from the Reference Level Generator 506 (since this circuit cannot track the high frequency, fast rate of change signal component from the Amplifier 504) and the signal produced by a debris strike is higher in voltage amplitude than the constant background mechanical noise signal which is more severely attenuated by the Acoustic Vibration Filter 502. This causes the comparator to momentarily change state to a logic level zero. The Pulse Stretcher block 512 extends this very brief (typically under 10-microsecond) event to a constant 1 millisecond (+0.3 mS, −0 mS) event, so as to provide the system controller (e.g., controller 135 of FIG. 2) sufficient time to sample the signal.
  • When the system controller “sees” this 1-millisecond logic zero pulse, it interprets the event as a debris strike.
  • Referring now to the RFI Filter portion of the Acoustic Vibration Filter/RFI Filter block 502, this filter serves to attenuate the very high frequency radiated electrical noise (RFI), which is generated by the motors and motor driver circuits.
  • In summary, the illustrated circuitry connected to the sensor element uses both amplitude and frequency information to discriminate a debris strike (representative of the cleaning device picking up debris) from the normal background mechanical noise also picked up by the sensor element, and the radiated radio frequency electrical noise produced by the motors and motor driver circuits. The normal, though undesirable, constant background noise is used to establish a dynamic reference that prevents false debris-strike indications while maintaining a good signal-to-noise ratio.
  • In practice, the mechanical mounting system for the sensor element (see FIG. 4) is also designed to help minimize the mechanical acoustic noise vibration coupling that affects the sensor element.
  • Signal Processing Circuitry: FIG. 6 is a detailed schematic diagram of exemplary debris sensor circuitry. Those skilled in the art will understand that in other embodiments, the signal processing can be partially or entirely contained and executed within the software of the microcontroller 135. With reference to FIG. 6, the illustrated example of suitable signal processing circuitry contains the following elements, operating in accordance with the following description:
  • The ground referenced, composite signal from the piezoelectric sensor disk (see piezoelectric disk 402 of FIG. 4) is fed into the capacitor C1, which is the input to the 5-pole, high pass, passive R-C filter designed to attenuate the low frequency, acoustic mechanical vibrations conducted into the sensor through the mounting system. This filter has a 21.5 kHz, −3 dB corner frequency rolling off at −100 dB/Decade. The output of this filter is fed to a signal pole, low pass, passive R-C filter designed to attenuate any very high frequency RFI. This filter has a 1.06 MHz, −3 dB corner frequency rolling off at −20 dB/Decade. The output of this filter is diode clamped by D1 and D2 in order to protect U1 from high voltage transients in the event the sensor element sustains a severe strike that generates a voltage pulse greater than the amplifier's supply rails. The DC biasing required for signal-supply operation for the amplifier chain and subsequent comparator circuitry is created by R5 and R6. These two resistor values are selected such that their thevenin impedance works with C5 to maintain the filter's fifth pole frequency response correctly.
  • U1A, U1B and their associated components form a two stage, ac-coupled, non-inverting amplifier with a theoretical AC gain of 441. C9 and C10 serve to minimize gain at low frequencies while C7 and C8 work to roll the gain off at RFI frequencies. The net theoretical frequency response from the filter input to the amplifier output is a single pole high pass response with −3 dB at 32.5 kHz, −100 dB/Decade, and a 2-pole low pass response with break frequencies at 100 kHz, −32 dB/Decade, and 5.4 MHz, −100 dB/Decade, together forming a band-pass filter.
  • The output from the amplifier is split, with one output going into R14, and the other to the non-inverting input of U1C. The signal going into R14 is attenuated by the R14-R15 voltage divider, and then fed into the inverting input of comparator U2A. The other signal branch from the output of U1B is fed into the non-inverting input of amplifier U1C. U1C along with U1D and the components therebetween (as shown in FIG. 2) form a half-wave, positive peak detector. The attack and decay times are set by R13 and R12, respectively. The output from this circuit is fed to the non-inverting input of U2 A through R16. R16 along with R19 provide hysteresis to improve switching time and noise immunity. U2A functions to compare the instantaneous value between the output of the peak detector to the output of the R14-R15 attenuator.
  • Normally, when debris is not striking the sensor, the output of the peak detector will be greater in amplitude than the output of the attenuator network. When debris strikes the sensor, a high frequency pulse is created that has a higher amplitude coming out of the front-end high pass filter going into U1A than the lower frequency mechanical noise signal component. This signal will be larger in amplitude, even after coming out of the R14-R15 attenuator network, than the signal coming out of the peak detector, because the peak detector cannot track high-speed pulses due to the component values in the R13, C11, R12 network. The comparator then changes state from high to low for as long as the amplitude of the debris-strike pulse stays above the dynamic, noise generated, reference-level signal coming out of the peak detector. Since this comparator output pulse can be too short for the system controller to see, a pulse stretcher is used.
  • The pulse stretcher is a one-shot monostable design with a lockout mechanism to prevent re-triggering until the end of the timeout period. The output from U2A is fed into the junction of C13 and Q1. C13 couples the signal into the monostable formed by U2C and its associated components. Q1 functions as the lockout by holding the output of U2A low until the monostable times out. The timeout period is set by the time constant formed by R22, C12 and R18, and the reference level set by the R20-R21 voltage divider. This time can adjusted for 1 mS, +0.3 mS, −0.00 mS as dictated by the requirements of the software used by the controller/processor.
  • Power for the debris sensor circuit is provided by U3 and associated components. U3 is a low power linear regulator that provides a 5-volt output. The unregulated voltage from the robot's onboard battery provides the power input
  • When required, circuit adjustments can be set by R14 and R12. These adjustments will allow the circuit response to be tuned in a short period of time
  • In a production device of this kind, it is expected that power into, and signal out of the debris sensor circuit printed circuit board (PCB) will be transferred to the main board via shielded cable. Alternatively, noise filters may be substituted for the use of shielded cable, reducing the cost of wiring. The cable shield drain wire can be grounded at the sensor circuit PCB side only. The shield is not to carry any ground current. A separate conductor inside the cable will carry power ground. To reduce noise, the production sensor PCB should have all components on the topside with solid ground plane on the bottom side. The sensor PCB should be housed in a mounting assembly that has a grounded metal shield that covers the topside of the board to shield the components from radiated noise pick up from the robot's motors. The piezoelectric sensor disk can be mounted under the sensor circuit PCB on a suitable mechanical mounting system, such as that shown in FIG. 4, in order to keep the connecting leads as short as possible for noise immunity.
  • The debris sensor is not subject to degradation by accretion of debris, but is capable of instantaneously sensing and responding to debris strikes, and thus immediately responsive to debris on a floor or other surface to be cleaned, with reduced sensitivity to variations in airflow, instantaneous power, or other operational conditions of the cleaning device.
  • When employed as described herein, the debris sensor and/or control system enables an autonomous cleaning device to control its operation or select from among operational modes, patterns of movement or behaviors responsive to detected debris, for example, by steering the device toward “dirtier” areas based on signals generated by the debris sensor.
  • The debris sensor can also be employed in non-autonomous cleaning devices to control, select or vary operational modes of either an autonomous or non-autonomous cleaning apparatus.
  • In addition, the disclosed signal processing architecture and circuitry is particularly useful in conjunction with a piezoelectric debris sensor to provide high signal to noise ratios.
  • A wide range of modifications and variations of the present invention are possible and within the scope of the disclosure. The debris sensor can also be employed for purposes, and in devices, other than those described herein.
  • Navigational Control System
  • FIG. 9 is a schematic representation of a navigational control system 10 according to the present invention for use in combination with a robotic device 100 to enhance the cleaning efficiency thereof by adding a deterministic component (in the form of a control signal that remotely controls the movement of the robotic device 100) to the motion algorithms, including random motion, autonomously implemented by the robotic device 100. The navigational control system 10 comprises a transmitting subsystem 12 and a receiving subsystem 20 operating under the direction of a navigation control algorithm. The navigation control algorithm includes a definition of a predetermined triggering event. The specific features and characteristics of the transmitting subsystem 12 and the receiving subsystem 20 depend upon whether the particular subsystem is integrated in combination with the robotic device 100 or functions as a “base station” for the navigational control system 10.
  • Broadly described, the navigational control system 10 according to the present invention is operative, under the direction of the navigation control algorithm, to monitor the movement activity of the robotic device 100 within the defined working area. In one preferred embodiment, the monitored movement activity is defined in terms of the “position history” of the robotic device 100 as described in further detail below. In another preferred embodiment, the monitored movement activity is defined in terms of the “instantaneous position” of the robotic device 100 as defined in further detail below.
  • The predetermined triggering event is a specific occurrence or condition in the movement activity of the robotic device 100. Upon the realization of the predetermined triggering event, the navigational control system 10 is operative to generate and communicate a control signal to the robotic device 100. In response to the control signal, the robotic device 100 is operative to implement or execute a conduct prescribed by the control signal, i.e., the prescribed conduct. This prescribed conduct represents a deterministic component of the movement activity of the robotic device 100.
  • In the preferred embodiment of the navigational control system 10 based upon position history, the system 10 is configured and operative to create a “tessellation” of any defined working area where the robotic device 100 is to be operated, e.g., a room to be cleaned. Tessellate is used herein in the sense that the defined working area is segmented into a set of individual cells, which may or may not be of equal size. For example, FIG. 10 exemplarily illustrates the polar tessellation of a defined working area into a set of individual cells C (reference characters BST identify the “base station”) of unequal size. The position of each cell C (in terms of its center) is identified in terms of polar coordinates (r, θ) referenced to the base station BST as the origin (0, 0). A grid map of the cells C comprising the defined working area is stored in memory of the navigation control system 10. One skilled in the art will appreciate that other coordinate systems, e.g., a planar Cartesian coordinate system, can be used by the navigational control system 10 to define the position of individual cells C within the predetermined working area.
  • Preferably, the navigational control system 10 is operative to define the size the individual cells C so that the length and width dimensions of an individual cell C are no larger than one-half the width (W) of the cleaning head system 145 of the robotic device 100 (see FIG. 1 and corresponding discussion above).
  • The navigational control system 10 is operative to generate a position history of the robotic device 100 within the defined working area in terms of such individual cells C (to minimize the memory requirements for storage of position history). The position history comprises a set of discrete, instantaneous positions (in terms of individual cells C) of the robotic device 100 over a time interval where the time interval is a variable that depends upon the “triggering condition” of the navigation control algorithm implemented by the navigational control system 10.
  • Each discrete instantaneous position of the robotic device 100 is determined by operating the transmitting subsystem 12 to emit a set of directional beams and operating the receiving subsystem 20 to detect one or more of such directional beams and process a signal parameter of the detected beam(s) to determine an absolute bearing parameter and a distance parameter between the transmitting subsystem 12 and the receiving subsystem 20 at a point in time. Each pair of bearing, distance parameters establishes a discrete instantaneous position for the robotic device 100. For the preferred ‘position history’ embodiment, the navigational control system 10 is operative to correlate each discrete instantaneous position to one individual cell C of the grid map. A set of bearing and position pairs, i.e., a set of instantaneous positions, over a time interval defines a set of cells C, which are identified in the receiving subsystem 20 as the position history of the robotic device 100 for the time interval.
  • In the preferred embodiment of the navigational control system 10 based upon the instantaneous position, the system 10 processes each discrete instantaneous position as it is established, under the control of the navigation control algorithm, to determine whether such discrete instantaneous position is the predetermined triggering event defined by the navigation control algorithm.
  • In an advanced embodiment of the navigational control system 10, the system 10 is additionally configured and operative to determine a travel vector (indicating the direction of motion of the robotic device 100 within an individual cell C or at the discrete instantaneous position) at each point in time. These travel vectors may be stored in memory in conjunction with the corresponding cells C as a component of the position history of the robotic device 100.
  • The navigational control system 10 according to the present invention is further operative, under direction of the navigational control algorithm, to generate and communicate a control signal to the robotic device 100 whenever the navigational control system 100 realizes the predetermined triggering event. In response to any such control signal, the robotic device 100 is configured and operative to initiate a prescribed conduct. The prescribed conduct comprises the deterministic component added to the random motion movement activity of the robotic device 100 by means of the navigational control system 10 according to the present invention.
  • In one preferred embodiment of the invention, the prescribed conduct of the robotic device 100 comprises one or more basic maneuvers such as CW and CCW turns, forward or aft (straight line) movement, slow down, speed up, and stop. The CW and/or CCW turns can be implemented using the turning techniques of the robotic device 100 described above, and the turn angles can be, for example, over a 360° spectrum at predetermined intervals, e.g., 5° or 10°. Alternatively, or in addition to, the CW and/or CCW turns can be to a specified azimuthal heading (referenced to the base station as the origin) where the navigational control system 10 is configured and operative so that the travel vector is a determinable variable. Of these basic maneuvers, forward (straight line) movement is typically the default maneuver that the robotic device 100 automatically reverts to (implements) once one or more of the other basic maneuvers has been completed.
  • In another preferred embodiment of the invention, the prescribed conduct of the robotic device 100 comprises one or more of the behavioral modes described herein. In yet a further preferred embodiment of the invention, the prescribed conduct of the robotic device 100 comprises a combination of the basic maneuvers and the behavioral modes described herein.
  • The transmitting subsystem 12 is operative to transmit a number of directed beams having a predetermined emission pattern along a specific propagation axis. Preferably, the directed beams are planar, i.e., substantially parallel to the surface of the defined working area.
  • In preferred embodiments of the navigational control system 10 according to the present invention, the transmitting subsystem 12 is integrated in combination with the robotic device 100. The transmitting subsystem 12 is configured and operative to functionally emulate an omnidirectional transmission source with respect to the defined working area, i.e., by emitting a plurality of directed beams that cover the defined working area. For these preferred embodiments, the robotic device 100 further includes a receiver unit 16 (see FIG. 9) configured and operative to receive control signals from the receiving subsystem 20 (see discussion below regarding the transmitting unit 32 of the receiving subsystem 20). While the receiver unit 16 is depicted as a dedicated receiving unit for the control signals, it is preferable that the omnidirectional detector 128 (of the virtual wall detection system) described above be adapted to detect and process such control signals.
  • In one preferred embodiment, the transmitting subsystem 12 comprises a conventional mechanical sweeping transmitter, e.g., a laser, that is integrated in combination with a high point of the housing infrastructure of the robotic device 100 so that none of the structural features of the robotic device 100 interfere with the operation thereof. The mechanical sweeping transmitter is configured and operative to emit the plurality of directed beams while concomitantly redirecting (mechanically sweeping) the transmitting element so that each directed beam has a different propagation axis. Other features and characteristics of the mechanical sweeping transmitter are described below in terms of individual transmitting units 14 N for ease of description.
  • Another preferred embodiment of the transmitting subsystem 12 comprises a set of transmitting units 14 N, where N is an integer defining the number of individual transmitting units comprising the set for the navigational control system 10, that are integrated in combination with the robotic device 100 about the periphery of its housing infrastructure. Each transmitting unit 14 N is configured and operative to emit a directed beam having a predetermined emission pattern along a specific propagation axis. Preferably, the transmitting subsystem 12 is configured and operative so that the emitted directed beams are planar.
  • In a basic embodiment of the transmitting subsystem 12, the transmitting units 14 N are fungible/interchangeable, each operating to emit a directed beam at a common operating frequency. Preferably, the common operating frequency for the transmitting units 14 N lies in the infrared range, i.e., about 750 nm to about 1.4×104 nm, preferably about 880 nm to about 980 nm, although one skilled in the art will appreciate that other wavelengths, e.g., in the radio frequency range, microwave frequency range, can be used in the practice of the navigational control system 10 of the present invention.
  • Preferably, the common operating frequency directed beams emitted by the transmitting units 14 N are periodically modulated, e.g., at 10 KHz for 50 msec, off for 300 msec. Modulation of the directed beams facilitates detection thereof by the receiving subsystem 20, i.e., the receiving subsystem 20 is able to readily discriminate between modulated directed beams emitted by the transmitting subsystem 12 and any other electromagnetic radiation sources that may be active in the defined working area, e.g., television remote control units, wireless computer keyboards, microwaves, ambient radiation such as sunlight. For the basic embodiment, it is also preferable that the transmitting units 14 N be sequentially operated so that any transmitting unit 14 N is cycled on for a predetermined period of time and then cycled off, the next (adjacent) transmitting unit 14 N is then cycled on for the predetermined period of time and cycled off, and so forth. Operating the transmitting subsystem 12 in the foregoing manner, i.e., modulation of the directed beam, cycling transmitting units 14 N on/off sequentially, minimizes the power requirements of the transmitting subsystem 12 and reduces spurious noise/collateral energy that could adversely impact the functioning of the navigational control system 10.
  • Ordinarily, a navigational control system 10 employing the basic embodiment of the transmitting subsystem 12, i.e., all transmitting units 14 N are interchangeable-emitting directed beams at a common operating frequency, cannot be used to determine travel vectors for the robotic device 100 because the receiving subsystem 20 cannot differentiate between directed beams emitted by the transmitting units 14 N and therefore cannot identify any particular transmitting unit 14 N. However, the inventors have developed two innovative ways of transmitting and processing directed beams emitted by a transmitting subsystem 12 comprised of interchangeable transmitting units 14 N so that the receiving subsystem 20 can individually identify a specific interchangeable transmitting unit 14 N, and, based upon such identification, establish a travel vector for the robotic device 100.
  • Accordingly, in one enhanced version of the basic embodiment of the transmitting subsystem 12, interchangeable transmitting units 14 N are operated in a predetermined manner that allows the receiving subsystem 20 to process detected directed beams to identify the directed beam having the highest signal strength, which, in turn, allows the receiving subsystem 20 to identify the interchangeable transmitting unit 14 N that emitted such directed beam. This, in turn, allows the receiving subsystem 20 to determine the orientation and, hence the travel vector, of the robotic device 100.
  • Referring to FIG. 11A, the transmitting subsystem 12 is first cycled on so that all transmitting units 14 N emit directed beams for a predetermined synchronization period, as identified by reference character tSY, and then cycled off. The receiver subsystem 20 is operative to detect and process one or more of the directed beams emitted by the transmitting units 14 N and identify the predetermined synchronization period tSY of the transmitting subsystem 12. This identification allows the receiving subsystem 20 to synchronize operations between the transmitting subsystem 12 and the receiving subsystem 20 by initializing a timing sequence at the end of the predetermined synchronization period tSY (reference character to identifies the initialization of the timing sequence in FIG. 11A).
  • The transmitting subsystem 12 is further operative so that individual transmitting unit 14 N are sequentially cycled on and off at predetermined times with respect to the timing sequence initialization to established by the receiving subsystem 20. For example, with respect to FIG. 11A, which illustrates a transmitting subsystem 12 comprising four transmitting units 14 N (arbitrarily identified as the first transmitting unit 14 1, the second transmitting unit 14 2, the third transmitting unit 14 3, and the fourth transmitting unit 14 4), the transmitting subsystem 12 is configured and operative so that each of the transmitting units 14 1, 14 2, 14 3, 14 4 is sequentially cycled on to emit a directed beam that transitions from a zero (0) signal strength to a peak signal strength to a zero (0) signal strength and then cycled off (a saw-tooth transition pattern is exemplarily illustrated in FIG. 11A—one skilled in the art will appreciate that other types of signal strength transition patterns can be used in the practice of the invention described herein, e.g., a ramped signal strength).
  • That is, the first transmitting unit 14 1 is cycled on and transitions to a peak signal strength at time t1. The second transmitting unit 14 2 is cycled on as the directed beam from the first transmitting unit 14 1 achieves its peak signal strength at time t1. The second transmitting unit 14 2 transitions to a peak signal strength at time t2, at which point the first transmitting unit 14 1 has transitioned to a zero (0) signal strength and is cycled off. The third transmitting unit 14 3 is cycled on as the directed beam from the second transmitting unit 14 2 achieves its peak signal strength at time t2. The foregoing operating pattern is repeated for the second, third, and fourth transmitting units 14 2, 14 3, 14 4, as applicable, so that at time t3 the second transmitting unit 14 2 is cycled off, the directed beam emitted by the third transmitting unit 14 3 has achieved its peak signal strength, and the fourth transmitting unit 14 4 is cycled on; and at time t4 the third transmitting unit 14 3 is cycled off and the directed beam emitted by the fourth transmitting unit 14 4 has achieved its peak strength. The transmitting subsystem 12 is operative to repeat the above-described synchronization—sequential transmission procedure during operation of the navigational control system 12 according to the present invention.
  • In another enhanced version of the basic embodiment of the transmitting subsystem 12, interchangeable transmitting units 14 N are operated in a different predetermined manner that allows the receiving subsystem 20 to process detected directed beams to identify the directed beam having the highest signal strength, which, in turn, allows the receiving subsystem 20 to identify the interchangeable transmitting unit 14 N that emitted such directed beam. This, in turn, allows the receiving subsystem 20 to determine the orientation and, hence the travel vector, of the robotic device 100.
  • Referring to FIG. 11C, the transmitting subsystem 12 is first cycled on so that all transmitting units 14 N emit directed beams for a predetermined synchronization period, as identified by reference character t12, and then cycled off. The receiver subsystem 20 is operative to detect and process one or more of the directed beams emitted by the transmitting units 14 N and identify the predetermined synchronization period t 12 of the transmitting subsystem 12. This identification allows the receiving subsystem 20 to synchronize operations between the transmitting subsystem 12 and the receiving subsystem 20 by initializing a timing sequence at the end of the predetermined synchronization period tSY (reference character to identifies the initialization of the timing sequence in FIG. 11A).
  • The transmitting subsystem 12 is further operative so that individual transmitting unit 14 N are sequentially cycled on and off at predetermined times with respect to the timing sequence initialization to established by the receiving subsystem 20. For example, with respect to FIG. 11C, which illustrates a transmitting subsystem 12 comprising four transmitting units 14 N (arbitrarily identified as the first transmitting unit 14 1, the second transmitting unit 14 2, the third transmitting unit 14 3, and the fourth transmitting unit 14 4), the transmitting subsystem 12 is configured and operative so that each of the transmitting units 14 1, 14 2, 14 3, 14 4 is sequentially cycled on to emit a pulsed directed beam have a predetermined pulse width P1, P2, P3, P4, respectively, at a predetermined signal strength, and then cycled off.
  • That is, the first transmitting unit 14 1 is cycled on at t11 (where the first “1” identifies the transmitting unit number and the second “1” indicates that the transmitting unit is cycled on) and cycled off at t12 (where the “2” indicates that the transmitting unit is cycled off). In a similar manner, the second transmitting unit 14 2 is cycled on at t21 and cycled off at t22, the third transmitting unit 14 3 is cycled on at t31 and cycled off at t32, and fourth transmitting units 14 4 is cycled on at t41 and cycled off at t42. The transmitting subsystem 12 is operative to repeat the above-described synchronization-sequential transmission procedure during operation of the navigational control system 12 according to the present invention.
  • In a more sophisticated embodiment of the transmitting subsystem 12, the transmitting units 14 N are discrete and identifiable, each transmitting unit 14 N operating at a unique operating frequency to emit a directed beam (which is preferably planar with respect to the surface of the defined working area) having a predetermined emission pattern along a specific propagation axis. These operating frequencies are also preferably modulated to facilitate detection thereof by the receiving subsystem 20 in an environment where other electromagnetic radiation sources are operating. Since each directed beam is readily and uniquely identifiable, the receiving subsystem 20 can process detected directed beams in a conventional manner to derive not only the absolute bearing and to the robotic device 100, but also the travel vector for the robotic device 10 at any particular time.
  • The receiving subsystem 20 of the navigational control system 10 according to the present invention comprises a processing unit 22 that includes a microprocessor 24, a signal processing unit 26, a memory module 28, and a set of detection units 30 M. Additionally, the receiving subsystem 20 can also include a transmitting unit 32 for those preferred embodiments of the navigational control system 10 wherein the receiving subsystem 20 is operated or functions as the base station for the navigational control system 10.
  • The memory module 28 comprises RAM 28A and ROM 28B. Data relating to the current operation of the robotic device 100 within the defined working area is stored in the RAM 28A. Such current operational data can include the grid map of cells C defining the defined working area and the position history of the robotic device 100 within the defined working area for the ‘position history’ embodiment of the navigational control system 10. Stored in the ROM 28B are one or more navigation control algorithms for the navigational control system 10, a set of one or more control signals associated with each navigation control algorithm, and a signal processing algorithm for converting signals generated by the signal processing unit 26 to one or more sets of instantaneous position parameters, i.e., a bearing, distance pair (and travel vector, if applicable). For the ‘position history’ embodiment of the system 10, a set of instantaneous position parameters that define the position history of the robotic device 100, which are correlated with the grid map to identify the cells C comprising the position history.
  • The terminology “navigation control algorithm” as used herein encompasses a set of instructions that: (a) define how the position history or instantaneous position is used by the navigational control system 10 (e.g., counting and comparing cells visited, a true-false determination for cells visited, true-false determination whether the predetermined triggering event has occurred); (b) defines the triggering event or events associated with the use of the position history or the instantaneous position; and (c) identifies the control signal(s) to be implemented when the triggering event is realized. For example, in one representative navigation control algorithm for the ‘position history’ embodiment of the navigational control system 10 according to the present invention, the microprocessor 24 is operative to count and store the number of visits to each cell and to compute the total number of visits to cells contiguous to (neighboring) each such visited cell (cell counting). The microprocessor 24 is further operative to compare the total number of neighboring-cell visits as each cell is visited to a threshold value (see, e.g., FIG. 10 wherein “CV” identifies a visited cell and “CC” identifies the eight (8) cells contiguous to the visited cell CV). If the total number of neighboring-visits (e.g., fifteen (15) in the example of FIG. 10) for any visited cell is below the threshold number (the triggering event), the microprocessor 24 is operative to cause a control signal to be communicated to the robotic device 100. The control signal causes the robotic device 100 to implement one or more behavioral modes specified by the control signal, e.g., a Spot Coverage pattern as described above.
  • In another representative navigation control algorithm for the ‘position history’ embodiment of the navigational control system 10 of the present invention, one or more cells in the stored grid map are pre-identified (i.e., prior to operating the robotic device 100) as “hot spots” in the defined working area. As the robotic device 100 visits any particular cell C, the microprocessor 24 is operative to determine whether the visited cell has been identified as a “hot spot” (true-false determination). If the microprocessor 24 determines that the visited cell C is a “hot spot” (triggering event), the microprocessor 24 is operative to cause a control signal to be communicated to the robotic device 100 via the control signal transmitting unit 32. Reception of the control signal causes the robotic device 100 to implement the prescribed conduct specified by the control signal, e.g., one or more of the basic maneuvers described above and/or a Spot Coverage pattern or Obstacle-Following behavioral mode as described above.
  • The foregoing representative examples of navigation control algorithms for the ‘position history’ embodiment of the navigational control system 10 according to the present invention are implemented without knowledge of the travel vector of the robotic device 100, i.e., based solely upon the identification of visited cells by means of the bearing, distance parameters derived by the receiving subsystem 20. Another representative example of a navigation control algorithm for the ‘position history’ embodiment of the navigation control system 10 of the present invention utilizes the travel vector as an element of the position history in issuing a control signal.
  • The microprocessor 24 is operative to count and store the number of times a cell has been visited (cell counting) and further operative to compare this number to the number of times each contiguous (or neighboring) cell has been visited. For this navigation control algorithm, the triggering event is a numerical differential between the number of visits to the currently-visited cell number and the number of visits to each of the neighboring-cells that identifies the neighboring cell or cells that have been least-visited as compared to the currently-visited cell. The triggering event would cause the receiving system 20 to issue a control signal to the robotic device 100 that causes the robotic device 100 to move from the currently-visited cell to the neighboring cell that has been visited least, e.g., by implementing one or more basic maneuvers as described herein. If two or more neighboring cells have been visited least, the control signal would cause the robotic device to move from the currently-visited cell to the least visited neighboring cell that is most compatible with the current travel vector of the robotic device 100, e.g., minimum travel distance.
  • Using FIG. 10 as an example wherein “CV” identifies the currently-visited cell and “CC” identifies the eight (8) cells contiguous to or neighboring the currently-visited cell CV, the neighboring cells CC that have been visited a single time are the least-visited neighboring cells CC. If the current travel vector for the robotic device 100 is indicated by the reference characters TV, the control signal would cause the robotic device 100 to continue moving in a straight line, i.e., the move forward basic maneuver (or the Straight-Line behavioral mode) would be executed by the robotic device 100 (if the robotic device 100 was currently operating in some other behavioral mode).
  • One representative navigation control algorithm for the ‘instantaneous position’ of the navigational control system 10 uses elapsed time (either random or predetermined) as the predetermined triggering event to cause the robotic device 10 to move to a predetermined position B in the defined working environment. The microprocessor 24 is operative, upon expiration of the elapsed time (the predetermined triggering event), to determine the instantaneous position (hereinafter identified as “position A”) of the robotic device 100 as described herein. Since position A is an unknown variable until the predetermined triggering event is realized, the prescribed conduct, i.e., the basic maneuvers, necessary to move the robotic device 100 from position A to position B are also unknown. Once position A has been determined by the navigational control system 10, the basic maneuvers necessary to move the robotic device 100 from position A to position B are determinable since both position A and position B are known variables (in terms of their known bearing, distance parameter pairs with respect to the receiving subsystem 20). A determination of the basic maneuvers that will be implemented by the robotic device 100 can be accomplished by any conventional computational technique.
  • Another exemplary navigation control algorithm for the ‘instantaneous position’ embodiment of the navigational control system 10 is a variation of the “hot spot” navigation control algorithm for the ‘position history’ embodiment of the navigational control system 10. In this illustrative embodiment, both position A and position B are known variables and accordingly, the basic maneuver(s) to move the robotic device 100 from position A to position B are known. In this example, the predetermined triggering event is a TRUE determination that the instantaneous position of the robotic device 100 is equal to position A (position A may be stored in memory 28 as a “zone”—defining some arbitrary area centered about position A—rather than a single point position to increase the probability that the instantaneous position of the robotic device 100 at some time will equal position A).
  • The receiving subsystem 20 comprises a set of detection units 30 M where M is an integer defining the number of individual detection units comprising the set for the navigational control system 10. The number and positioning of the set of detection units 30 M should be such that as much of the defined working area as possible is within the field-of-view of the receiving subsystem 20 and that the fields-of-view of at least two (but preferably more) detection units 30 M cover the same area within the defined working area.
  • In preferred embodiments of the navigational control system 10 according to the present invention, the receiving subsystem 20 functions as a “base station” for the system 10. In this functional role, the receiving subsystem 20 is a portable, standalone unit that is stationarily positioned within the defined working area, preferably abutting a wall bounding the defined working area (the ‘wall unit’ configuration). Alternatively, the receiving subsystem 20 can be positioned within the defined working area distally of the walls bounding the defined working area (the ‘free-standing’ configuration). The receiving subsystem 20 as the base station establishes and, for the ‘position history’ embodiment of the navigational control system 10, stores the grid map of cells representing the defined working area and represents the origin (0, 0) of the grid map of cells described above.
  • For those embodiments where the receiving subsystem 20 is operated as a wall unit configuration, the individual detection units 30 M have a known spaced-apart relationship and configured and operative to have a 180° field-of-view. For example, FIG. 2 illustrates an embodiment of the receiving subsystem 20 comprising two detection units 30 M (M=2) spaced apart by a known angular distance “φ”. FIG. 12C illustrates another embodiment of the receiving subsystem 20 comprising three detection units 30 M (M=3), i.e., 30 12, 30 23, 30 13, having known angular separations identified by “φ12”, “φ23”, and “φ13”, respectively. Preferred embodiments of the wall unit configuration for the navigational control system 10 include three detection units 30 M to provide absolute bearing data to the robotic device 100. A minimum of two detection units 30 M are required to provide the necessary signal information for the receiving subsystem 20. More than three detection units 30 M can be employed to increase the resolution of the receiving subsystem 20, but at an added cost for each additional detection unit 30 M and associated signal processing circuitry (see FIG. 12C which illustrates the representative signal processing circuitry associated with a detection unit 30 M).
  • For those embodiments where the receiving subsystem 20 is operated as a free-standing configuration, the individual detection units 30 M likewise spaced apart by known angular distances and configured and operative have a field-of-view greater than 180°. A representative embodiment of the receiving subsystem 20 operated as a free-standing base station would comprise four detection units 30 M.
  • The detection units 30 M are configured and operative to detect a parameter of one or more of the directed beams emitted by the transmitting units 14 N, e.g., voltages V representing the relative signal strengths of the detected directed beam(s). In a preferred embodiment, each detection unit 30 M is configured and operative to average the detected signal strength parameter (e.g., voltage) when the detection unit 30 M detects two directed beams simultaneously. The receiving subsystem 20 executes a signal processing algorithm that processes the detected parameters provided by the detection units 30 M, i.e., relative signal strengths of the detected beams, utilizing a conventional technique to determine the absolute bearing between the robotic device 100 and the receiving subsystem 20.
  • To provide the distance determination capability for the receiving subsystem 20, the receiving subsystem 20 is preferably calibrated prior to use. This involves positioning the robotic device 100 at a predetermined distance from the receiving subsystem 20 and operating one (or more) of the transmitting units 14 N to emit a directed beam at the receiving subsystem 20. The parameter of the directed beam detected by the detection units 30 M, e.g., a voltage representing the signal strength of the directed beam as detected, is correlated to the predetermined distance and used to generate a look-up table of signal strength versus distance for the defined working area. This look-up table is stored in the memory module 28 of the receiving subsystem 20. As the signal strengths of directed beams are detected during operation of the navigational control system 10, the receiving subsystem 20 uses the detected signal strengths as pointers to the stored look-up table to determine the corresponding distances (between the receiving subsystem 20 and the robotic device 100).
  • Alternatively, the receiving subsystem 20 could be configured and operative to implement a signal processing algorithm that utilizes the known attenuation characteristics, i.e., signal strength versus distance, of the operating frequency of the directed beams emitted by the transmitting units 14 N. This embodiment presupposes that the transmitting units 14 N are rated and emitting directed beams of known signal strength.
  • For the sophisticated embodiment of the navigational control system 10 according to the present invention described above wherein the individual transmitting units 14 N of the transmitting subsystem 12 are operated at a unique operating frequency, the detection units 30 M of the receiving subsystem 20 are configured to scan the set of unique operating frequencies utilized by the transmitting units 14 N. The receiving subsystem 20 is configured and operative to cause the detection units 30 M to sequentially scan through these frequencies during operation of the navigational control system 10.
  • For the innovative embodiment of the transmitting subsystem 12 described above in connection with FIG. 11A, FIG. 11B illustrates the operating characteristics of the complementary receiving subsystem 20. The receiving subsystem 20 is configured and operative to detect the directed beams emitted during the predetermined synchronization period tSY. At the end of the predetermined synchronization period tSY, the receiving subsystem 20 is operative to initiate the timing sequence to. The receiving subsystem 20 is operative to detect the directed beams as described herein. However, the receiving subsystem 20 is further operative to determine the time at which the peak signal strength is detected, see reference character t peak in FIG. 11B. The receiving subsystem 20 is further operative to correlate the peak signal strength detection time t peak with the known times at which the signal strength of the directed beam emitted by each transmitting unit 14 N reached its peak to identify the specific transmitting unit 14 N that transmitted the directed beam detected as having the peak signal strength (for the descriptive example presented in FIGS. 11A, 11B, the third transmitting unit 14 3).
  • For the innovative embodiment of the transmitting subsystem 12 described above in connection with FIG. 11C, FIG. 11D illustrates the operating characteristics of the complementary receiving subsystem 20. The receiving subsystem 20 is configured and operative to detect the directed beams emitted during the predetermined synchronization period tSY. At the end of the predetermined synchronization period tSY, the receiving subsystem 20 is operative to initiate the timing sequence to. The receiving subsystem 20 is operative to detect the directed beams as described herein (as exemplarily illustrated by the detected signal pulses DP1, DP2, DP3, DP4 in FIG. 5D). However, the receiving subsystem 20 is further operative to determine the two highest peak signal strengths of the detected directed beams, see reference characters DP3 and DP2 in FIG. 11D, which depict the highest and next highest detected signal pulses, and the times at which the two highest strength signals were detected (t21 and t31 in FIG. 11D).
  • The signal strength detection times allows the particular transmitting units 14 N on the robotic device 100 to be identified, i.e., transmitting units 14 3 and 14 2 in the example of FIG. 11D. The receiving subsystem 20 is then further operative to compute the amplitude ratio of these signal pulses, e.g., DP3/DP2, and to use such computed amplitude ratio as a pointer to a look-up table that identifies the angular orientation of the identified transmitting units 14 3, 14 2, which in turn establishes the travel vector for the robotic device 100.
  • Even though the transmitting units 14 N mounted in combination with the robotic device 100 are interchangeable, the specific location of each individual transmitting unit 14 N on the robotic device 100 is a known quantity. Based upon the identification of the transmitting unit 14 N that emitted the directed beam detected by the receiving subsystem 20, the receiving subsystem 20 can execute rather straightforward geometric calculations, based upon the location of the identified transmitting unit 14 N, to determine the travel vector of the robotic device 100.
  • When the receiving subsystem 20 functions as the base station, a means is required to communicate the control signal to the robotic device. Accordingly, embodiments of the receiving subsystem 20 that operate as a base station further include a transmitting unit 32 (see FIG. 9). Once the navigation control algorithm implemented by the microprocessor 24 has determined the prescribed conduct to be implemented by the robotic device 10, the microprocessor 24 is operative to select the appropriate control signal to implement such prescribed conduct from the memory module 28. The microprocessor 24 is then operative to activate the transmitting unit 32 to communicate (by transmitting) the control signal to the receiver unit 16 of the robotic device 100 where the prescribed conduct defined by the control signal is implemented by means of the microprocessing unit 135.
  • While the robotic device 100 is described (and depicted in FIG. 9) as being configured to include a dedicated receiver unit 16 for receiving control signals transmitted by the transmitting unit 32 of the receiving unit 20, it is preferable that the omnidirectional detector 128 (of the virtual wall detection system) be adapted to detect and process such control signals. For those embodiments of the navigational control system 10 according to the present invention wherein the receiving unit 20 is integrated in combination with the robotic device 10, the transmitting unit 32 is not required. Rather, the receiving unit 20 of the navigation control system 100 is electrically coupled to the microprocessing unit 135 (via an I/O port) of the robotic device 100 so that the receiving unit 20 can communicate control signals directly to the microprocessing unit 135.
  • As disclosed above, in preferred embodiments of the navigational control system 10 according to the present invention, the receiving subsystem 20 functions as the base station, i.e., the wall unit configuration, and the transmitting subsystem 12 is integrated in combination with the robotic device 100. One preferred embodiment that is illustrative of the features and functionality of the navigational control system 10 according to the present invention is exemplarily illustrated in FIGS. 12A-12C.
  • FIG. 12A depicts a robotic device 100 operating in a defined working area WA bounded by walls W. A virtual wall unit VWU is positioned in the only entryway to the working area WA and operative to emit a confinement beam CB that confines the robotic device 100 to operations within the working area WA.
  • The transmitting subsystem 12 of the illustrated embodiment of the navigational control system 10 is integrated in combination with the robotic device 100 and comprises a set of transmitting units 14 N (eight (8) for the described embodiment such that N equals the integers 1-8) that are operative to generate a corresponding set of directed beams DBN (where N equals the integers 1-8) as illustrated in FIG. 11B (only two directed beams DB3, DB4 are illustrated in FIG. 11B). Reference characters BA1-BA8 identify the propagation axes of the directed beams DBN emitted by the transmitting units 14 1-14 8, respectively. Each transmitting unit 14 N is configured and operative to emit a directed beam DBN having a predetermined emission pattern ON centered about the corresponding beam axis BAN. For the illustrated embodiment, the emission pattern θN of each directed beam DBN is approximately 100°.
  • Preferably, the predetermined emission pattern ON of the directed beams DBN is correlated with the number of transmitting units 14 N so that the transmitting subsystem 12 of the navigational control system 10 emulates an omnidirectional transmitting source. An omnidirectional transmitting source is necessary to ensure that one or more of the directed beams DBN are detected by the receiving subsystem 20 since the position and orientation of the robotic device 100 in the defined working area (e.g., in terms of its forward motion FM), with respect to the receiving station 20, is an unknown variable at any particular moment in time. Preferably the emission patterns ON of the directed beams DBN overlap.
  • As an examination of FIGS. 12A, 12 (and in particular FIG. 12B) shows, the directed beams DB3, DB4 emitted by transmitting units 14 3, 14 4, respectively, will be detected by the detection units 30 1, 30 2, 30 3 of the receiving subsystem 20. The detection units 30 1, 30 2, 30 3 are operative to detect a parameter representative of the relative signal strengths of the detected beams DB3, DB4, e.g., V1, V2, V3, respectively (as disclosed above each detection unit 30 N is operative to average the signal strengths when two directed beams are detected simultaneously).
  • The receiving subsystem 20 is operative to implement the signal processing algorithm to compute the absolute bearing and distance between the receiving subsystem 20 and the robotic device 100. The receiving subsystem 20 then implements the navigation control algorithm to correlate the computed bearing and distance with one of the cells comprising the grid map of the defined working area WA stored in the memory module 28, and adds such cell to the position history of the robotic device 100 to update the position history. The receiving subsystem 20 is then operative under the navigation control algorithm to determine if there is a predetermined triggering event associated with this updated position history. If so, the receiving subsystem 20 is operative to select the appropriate control signal, as determined by the navigation control algorithm, and transmit such control signal to the receiver unit 16 of the robotic device 100 using the transmitting system 32 (see FIG. 9). The microprocessing unit 135 of the robotic device 100, is operative in response to the reception of the control signal by means of the omnidirectional detector 128, to implement prescribed conduct, e.g., one or more of the basic maneuvers and/or behavioral modes exemplarily described herein, specified by the control signal.
  • An exemplary embodiment of a navigational control system 10′ according to the present invention wherein the transmitting subsystem 12 functions as a base station and the receiving subsystem 20 is integrated in combination with the robotic device 100 is illustrated in FIG. 13. The transmitting subsystem 12 comprises a distributed set of transmitting units 14 N positioned to abut the walls W of the defined working area. As illustrated in FIG. 13, the transmitting subsystem 12 comprises a first transmitting unit 14 1, a second transmitting unit 14 2, and a third transmitting unit 14 3 positioned in abutting engagement with adjacent walls W, respectively.
  • Each transmitting unit 14 N comprising this distributed set is configured and operative to emit a directed beam having a predetermined emission pattern ON along a predetermined beam axis DBN (DB1, DB2, and DB3 in FIG. 13 define the predetermined beam axes for the distributed transmitting units 14 1, 14 2, 14 3, respectively) at a unique operating frequency, preferably in the infrared frequency range and preferably modulated as disclosed herein. Preferably, each transmitting unit 14 1, 14 2, 14 3 is configured and operative to generate a predetermined beam emission pattern θ N that effectively covers the defined working area WA, i.e., ON is approximately 180° for the distributed transmission subsystem 12 depicted in FIG. 13.
  • The receiving subsystem 20 for the navigational control system 10′ preferably comprises a single omnidirectional detection unit 30 which may be of the type described in commonly-owned, U.S. patent application Ser. No. 10/056,804, filed 24 Jan. 2002, entitled METHOD AND SYSTEM FOR ROBOT LOCALIZATION AND CONFINEMENT (the virtual wall system summarily described herein). The omnidirectional detection unit 30 is configured and operative to scan through the unique operating frequencies utilized by the distributed transmitting units 14 1, 14 2, 14 3.
  • The omnidirectional detection unit 30 is operative to detect the directed beams DB1, DB2, DB3 emitted by the distributed transmitting units 14 1, 14 2, 14 3. The receiving subsystem is configured and operative to process the signals of the detected directed beam to determine the absolute position of the robotic device 100 within the defined working area WA. This absolute position is defined in terms of a cell of the grid map of the defined working area WA. A sequence of absolute positions, determined as described above, identifies a sequence of cells that defines the position history of the robotic device 100.
  • The receiver subsystem 20 is operative as described above to utilize a navigation control algorithm to determine whether a triggering event has occurred in the position history, and if a trigger event has occurred, the receiver subsystem 20 is operative to communicate the control signal associated with the triggering event/navigation control algorithm to the robotic device 100. The robotic device 100 is operative, in response to the communicated control signal, to implement the prescribed conduct specified by the control signal.
  • A variety of modifications and variations of the present invention are possible in light of the above teachings. The navigational control system 10 according to the present invention has been described above as determining and using the instantaneous position (or a sequence of instantaneous positions) of a robotic device as a control parameter for directly altering the movement activity of the robotic device. One skilled in the art will appreciate that the navigational control system according to the present invention can be used for other purposes. For example, the navigational control system of the present invention can be used for correcting errors in movement activity of robotic devices relying upon dead reckoning. It is therefore to be understood that, within the scope of the appended claims, the present invention may be practiced other than as specifically described herein.

Claims (21)

1-12. (canceled)
13. An autonomous cleaning robot comprising:
a cleaning head operable to clean an area;
a drive system operable to move the robot about the area;
a sensor system comprising:
a debris sensor for generating a debris signal,
an obstacle detection sensor for generating an obstacle detection signal, and
an obstacle following sensor disposed on a side of the autonomous cleaning robot for generating an obstacle following signal; and
a controller in communication with the sensor system, the controller configured to execute a prioritized arbitration scheme to initiate a plurality of behavioral modes based on at least one of the debris signal, the obstacle detection signal, or the obstacle following signal, wherein the plurality of behavioral modes comprises a spot cleaning mode initiated by the controller in response to the debris signal.
14. The autonomous cleaning robot of claim 13, wherein the controller is configured to, in the spot cleaning mode, reduce a speed of the drive system or increase a cleaning power of the cleaning head.
15. The autonomous cleaning robot of claim 14, wherein the controller is configured to, in the spot cleaning mode, operate the drive system to move the robot in a spiral pattern.
16. The autonomous cleaning robot of claim 14, wherein the controller is configured to, in the spot cleaning mode, operate the drive system to move the robot in a spiral pattern in a first direction and then move the robot in a spiral pattern in a second direction in response to the obstacle detection signal.
17. The autonomous cleaning robot of claim 13, wherein the plurality of behavioral modes comprises a coverage behavioral mode, an escape behavioral mode, and a safety behavioral mode, wherein the coverage behavioral mode comprises the spot cleaning mode.
18. The autonomous cleaning robot of claim 17, wherein the coverage behavioral mode further comprises an obstacle following behavioral mode and a room coverage behavioral mode.
19. The autonomous cleaning robot of claim 17, wherein the escape behavioral mode further comprises a turn behavioral mode, an edge behavioral mode, a wheel drop behavioral mode, and a slow behavioral mode.
20. The autonomous cleaning robot of claim 19, wherein the controller is configured to initiate at least one of the turn behavioral mode, the edge behavioral mode, the wheel drop behavioral mode, or the slow behavioral mode in response to the obstacle detection signal.
21. The autonomous cleaning robot of claim 13, wherein the controller is configured to operate the autonomous cleaning robot in a first behavioral mode of the plurality of behavioral modes until a transition condition is satisfied and to initiate a second behavioral mode of the plurality of behavioral modes in response to the transition condition being satisfied.
22. The autonomous cleaning robot of claim 21, wherein the transition condition corresponds to a signal generated by the sensor system.
23. The autonomous cleaning robot of claim 21, wherein the transition condition corresponds to an amount of time elapsed in the first behavioral mode.
24. The autonomous cleaning robot of claim 21, wherein the transition condition corresponds to a number of times a sensor of the sensor system is activated.
25. The autonomous cleaning robot of claim 21, wherein the transition condition corresponds to a distance travelled by the autonomous cleaning robot in the first behavioral mode.
26. The autonomous cleaning robot of claim 21, wherein a priority of the second behavioral mode is lower than a priority of the first behavioral mode.
27. The autonomous cleaning robot of claim 13, wherein the debris signal is indicative of a debris area, and the controller is configured to initiate the spot cleaning mode to steer the autonomous cleaning robot toward the debris area.
28. An autonomous cleaning robot comprising:
a drive system operable to enable movement of the robot;
a cleaning head system;
a sensor system comprising:
a debris sensor for generating a debris signal,
an obstacle detection sensor for generating an obstacle detection signal, and
an obstacle following sensor disposed on a side of the autonomous cleaning robot for generating an obstacle following signal; and
a controller in communication with the sensor system, the controller configured to
execute a prioritized arbitration scheme to select a spot cleaning mode from a plurality of behavioral modes in response to the debris signal, and
initiate the spot cleaning mode in response to the selection of the spot cleaning mode.
29. The autonomous cleaning robot of claim 28, wherein configurations of the controller to execute the prioritized arbitration scheme comprise configurations to select an obstacle following behavioral mode in response to the obstacle following signal,
wherein the controller is configured to initiate the obstacle following behavioral mode in response to the selection of the obstacle following behavioral mode.
30. The autonomous cleaning robot of claim 29, wherein configurations of the controller to execute the prioritized arbitration scheme comprise configurations to select an escape behavioral mode in response to the obstacle detection signal,
wherein the controller is configured to initiate the escape behavioral mode in response to the selection of the escape behavioral mode.
31. The autonomous cleaning robot of claim 30, wherein the escape behavioral mode further comprises a turn behavioral mode, an edge behavioral mode, a wheel drop behavioral mode, and a slow behavioral mode.
32. The autonomous cleaning robot of claim 28, wherein the controller is configured to operate the autonomous cleaning robot in a first behavioral mode of the plurality of behavioral modes until a transition condition is satisfied and to initiate a second behavioral mode of the plurality of behavioral modes in response to the transition condition being satisfied.
US17/080,323 2002-09-13 2020-10-26 Navigational control system for a robotic device Abandoned US20210145234A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/080,323 US20210145234A1 (en) 2002-09-13 2020-10-26 Navigational control system for a robotic device

Applications Claiming Priority (15)

Application Number Priority Date Filing Date Title
US41048002P 2002-09-13 2002-09-13
US10/661,835 US7024278B2 (en) 2002-09-13 2003-09-12 Navigational control system for a robotic device
US10/766,303 US6956348B2 (en) 2004-01-28 2004-01-28 Debris sensor for cleaning apparatus
US11/109,832 US20050218852A1 (en) 2004-01-28 2005-04-19 Debris sensor for cleaning apparatus
US11/341,111 US7188000B2 (en) 2002-09-13 2006-01-27 Navigational control system for a robotic device
US11/533,294 US7288912B2 (en) 2004-01-28 2006-09-19 Debris sensor for cleaning apparatus
US11/682,642 US9128486B2 (en) 2002-01-24 2007-03-06 Navigational control system for a robotic device
US11/860,272 US7459871B2 (en) 2004-01-28 2007-09-24 Debris sensor for cleaning apparatus
US12/255,393 US8378613B2 (en) 2004-01-28 2008-10-21 Debris sensor for cleaning apparatus
US12/512,114 US8386081B2 (en) 2002-09-13 2009-07-30 Navigational control system for a robotic device
US12/610,792 US8428778B2 (en) 2002-09-13 2009-11-02 Navigational control system for a robotic device
US13/781,314 US8781626B2 (en) 2002-09-13 2013-02-28 Navigational control system for a robotic device
US14/291,682 US9949608B2 (en) 2002-09-13 2014-05-30 Navigational control system for a robotic device
US15/916,867 US10813517B2 (en) 2002-09-13 2018-03-09 Navigational control system for a robotic device
US17/080,323 US20210145234A1 (en) 2002-09-13 2020-10-26 Navigational control system for a robotic device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US15/916,867 Continuation US10813517B2 (en) 2002-09-13 2018-03-09 Navigational control system for a robotic device

Publications (1)

Publication Number Publication Date
US20210145234A1 true US20210145234A1 (en) 2021-05-20

Family

ID=43430738

Family Applications (5)

Application Number Title Priority Date Filing Date
US12/610,792 Expired - Lifetime US8428778B2 (en) 2002-09-13 2009-11-02 Navigational control system for a robotic device
US13/781,314 Expired - Lifetime US8781626B2 (en) 2002-09-13 2013-02-28 Navigational control system for a robotic device
US14/291,682 Active 2025-03-23 US9949608B2 (en) 2002-09-13 2014-05-30 Navigational control system for a robotic device
US15/916,867 Expired - Lifetime US10813517B2 (en) 2002-09-13 2018-03-09 Navigational control system for a robotic device
US17/080,323 Abandoned US20210145234A1 (en) 2002-09-13 2020-10-26 Navigational control system for a robotic device

Family Applications Before (4)

Application Number Title Priority Date Filing Date
US12/610,792 Expired - Lifetime US8428778B2 (en) 2002-09-13 2009-11-02 Navigational control system for a robotic device
US13/781,314 Expired - Lifetime US8781626B2 (en) 2002-09-13 2013-02-28 Navigational control system for a robotic device
US14/291,682 Active 2025-03-23 US9949608B2 (en) 2002-09-13 2014-05-30 Navigational control system for a robotic device
US15/916,867 Expired - Lifetime US10813517B2 (en) 2002-09-13 2018-03-09 Navigational control system for a robotic device

Country Status (2)

Country Link
US (5) US8428778B2 (en)
WO (1) WO2011014785A2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220022715A1 (en) * 2018-12-07 2022-01-27 Yujin Robot Co., Ltd. Autonomously traveling mobile robot and traveling control method therefor

Families Citing this family (117)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8788092B2 (en) 2000-01-24 2014-07-22 Irobot Corporation Obstacle following sensor scheme for a mobile robot
US8412377B2 (en) 2000-01-24 2013-04-02 Irobot Corporation Obstacle following sensor scheme for a mobile robot
US6956348B2 (en) 2004-01-28 2005-10-18 Irobot Corporation Debris sensor for cleaning apparatus
US6690134B1 (en) * 2001-01-24 2004-02-10 Irobot Corporation Method and system for robot localization and confinement
US7571511B2 (en) 2002-01-03 2009-08-11 Irobot Corporation Autonomous floor-cleaning robot
US8396592B2 (en) 2001-06-12 2013-03-12 Irobot Corporation Method and system for multi-mode coverage for an autonomous robot
US7429843B2 (en) * 2001-06-12 2008-09-30 Irobot Corporation Method and system for multi-mode coverage for an autonomous robot
US9128486B2 (en) 2002-01-24 2015-09-08 Irobot Corporation Navigational control system for a robotic device
US8386081B2 (en) 2002-09-13 2013-02-26 Irobot Corporation Navigational control system for a robotic device
US8428778B2 (en) 2002-09-13 2013-04-23 Irobot Corporation Navigational control system for a robotic device
US7332890B2 (en) 2004-01-21 2008-02-19 Irobot Corporation Autonomous robot auto-docking and energy management systems and methods
US7720554B2 (en) 2004-03-29 2010-05-18 Evolution Robotics, Inc. Methods and apparatus for position estimation using reflected light sources
EP1776624A1 (en) 2004-06-24 2007-04-25 iRobot Corporation Programming and diagnostic tool for a mobile robot
US8972052B2 (en) 2004-07-07 2015-03-03 Irobot Corporation Celestial navigation system for an autonomous vehicle
US7706917B1 (en) 2004-07-07 2010-04-27 Irobot Corporation Celestial navigation system for an autonomous robot
US7620476B2 (en) 2005-02-18 2009-11-17 Irobot Corporation Autonomous surface cleaning robot for dry cleaning
US8392021B2 (en) 2005-02-18 2013-03-05 Irobot Corporation Autonomous surface cleaning robot for wet cleaning
ATE468062T1 (en) 2005-02-18 2010-06-15 Irobot Corp AUTONOMOUS SURFACE CLEANING ROBOT FOR WET AND DRY CLEANING
US9534899B2 (en) 2005-03-25 2017-01-03 Irobot Corporation Re-localization of a robot for slam
US8930023B2 (en) 2009-11-06 2015-01-06 Irobot Corporation Localization by learning of wave-signal distributions
US9002511B1 (en) 2005-10-21 2015-04-07 Irobot Corporation Methods and systems for obstacle detection using structured light
EP2270619B1 (en) 2005-12-02 2013-05-08 iRobot Corporation Modular robot
EP2544065B1 (en) 2005-12-02 2017-02-08 iRobot Corporation Robot system
US9144360B2 (en) 2005-12-02 2015-09-29 Irobot Corporation Autonomous coverage robot navigation system
EP2816434A3 (en) 2005-12-02 2015-01-28 iRobot Corporation Autonomous coverage robot
EP2120122B1 (en) 2005-12-02 2013-10-30 iRobot Corporation Coverage robot mobility
US20070150094A1 (en) * 2005-12-23 2007-06-28 Qingfeng Huang System and method for planning and indirectly guiding robotic actions based on external factor tracking and analysis
EP3031377B1 (en) 2006-05-19 2018-08-01 iRobot Corporation Removing debris from cleaning robots
US8417383B2 (en) 2006-05-31 2013-04-09 Irobot Corporation Detecting robot stasis
KR101168481B1 (en) 2007-05-09 2012-07-26 아이로보트 코퍼레이션 Autonomous coverage robot
RU2012122469A (en) 2009-11-06 2013-12-20 Эволюшн Роботикс, Инк. METHODS AND SYSTEMS FOR COMPLETE SURFACE CREATION WITH AN AUTONOMOUS ROBOT
US8800107B2 (en) 2010-02-16 2014-08-12 Irobot Corporation Vacuum brush
IT1399635B1 (en) * 2010-04-26 2013-04-26 Valentini WIRELESS COMMUNICATION APPARATUS FOR INDUSTRIAL VACUUM CLEANER.
KR101021267B1 (en) * 2010-09-20 2011-03-11 주식회사 모뉴엘 Cleaning robot system and its method for controlling
US8805579B2 (en) 2011-02-19 2014-08-12 Richard Arthur Skrinde Submersible robotically operable vehicle system for infrastructure maintenance and inspection
KR101931365B1 (en) * 2011-08-22 2018-12-24 삼성전자주식회사 Robot cleaner and method for controlling the same
KR101931362B1 (en) 2011-08-22 2018-12-24 삼성전자주식회사 Robot cleaner and method for controlling the same
US9037296B2 (en) * 2011-09-07 2015-05-19 Lg Electronics Inc. Robot cleaner, and system and method for remotely controlling the same
US8798840B2 (en) 2011-09-30 2014-08-05 Irobot Corporation Adaptive mapping with spatial summaries of sensor data
JP6104519B2 (en) * 2012-05-07 2017-03-29 シャープ株式会社 Self-propelled electronic device
CA2877919A1 (en) 2012-06-27 2014-01-03 Pentair Water Pool And Spa, Inc. Pool cleaner with laser range finder system and method
WO2014033055A1 (en) 2012-08-27 2014-03-06 Aktiebolaget Electrolux Robot positioning system
TWM451103U (en) * 2012-10-30 2013-04-21 Agait Technology Corp Walking device
EP2764812B1 (en) * 2013-02-12 2015-07-08 Hako GmbH Cleaning robot
KR102118769B1 (en) 2013-04-15 2020-06-03 에이비 엘렉트로룩스 Robotic vacuum cleaner
JP6198234B2 (en) 2013-04-15 2017-09-20 アクティエボラゲット エレクトロラックス Robot vacuum cleaner with protruding side brush
US9755617B2 (en) * 2013-07-26 2017-09-05 Micron Technology, Inc. Methods and apparatuses for driving a node to a pumped voltage
JP6455737B2 (en) 2013-12-19 2019-01-23 アクチエボラゲット エレクトロルックス Method, robot cleaner, computer program and computer program product
JP6494118B2 (en) 2013-12-19 2019-04-03 アクチエボラゲット エレクトロルックス Control method of robot cleaner associated with detection of obstacle climbing, and robot cleaner, program, and computer product having the method
KR102116596B1 (en) 2013-12-19 2020-05-28 에이비 엘렉트로룩스 Robotic vacuum cleaner with side brush moving in spiral pattern
US10617271B2 (en) 2013-12-19 2020-04-14 Aktiebolaget Electrolux Robotic cleaning device and method for landmark recognition
CN105793790B (en) 2013-12-19 2022-03-04 伊莱克斯公司 Prioritizing cleaning zones
EP3082541B1 (en) 2013-12-19 2018-04-04 Aktiebolaget Electrolux Adaptive speed control of rotating side brush
CN105849660B (en) 2013-12-19 2020-05-08 伊莱克斯公司 Robot cleaning device
WO2015090439A1 (en) 2013-12-20 2015-06-25 Aktiebolaget Electrolux Dust container
US10034143B2 (en) 2014-01-10 2018-07-24 Diversey, Inc. System and method of geo-locating mobile apparatus
JP2017507687A (en) 2014-01-10 2017-03-23 ディバーシー・インコーポレーテッド Cleaning device data management system and method
CN206995197U (en) * 2014-03-19 2018-02-13 尚科宁家运营有限公司 Floor treating apparatus
JP6513709B2 (en) 2014-07-10 2019-05-15 アクチエボラゲット エレクトロルックス Method of detecting measurement error in robot type cleaning device, robot type cleaning device, computer program and computer program product
KR102271785B1 (en) 2014-09-08 2021-06-30 에이비 엘렉트로룩스 Robotic vacuum cleaner
US10729297B2 (en) 2014-09-08 2020-08-04 Aktiebolaget Electrolux Robotic vacuum cleaner
US9804594B2 (en) * 2014-11-07 2017-10-31 Clearpath Robotics, Inc. Self-calibrating sensors and actuators for unmanned vehicles
WO2016091291A1 (en) 2014-12-10 2016-06-16 Aktiebolaget Electrolux Using laser sensor for floor type detection
US10874271B2 (en) 2014-12-12 2020-12-29 Aktiebolaget Electrolux Side brush and robotic cleaner
JP6532530B2 (en) 2014-12-16 2019-06-19 アクチエボラゲット エレクトロルックス How to clean a robot vacuum cleaner
US9701020B1 (en) * 2014-12-16 2017-07-11 Bobsweep Inc. Method and system for robotic surface coverage
US10488865B2 (en) * 2014-12-16 2019-11-26 Al Incorporated Methods and systems for robotic surface coverage
KR102339531B1 (en) 2014-12-16 2021-12-16 에이비 엘렉트로룩스 Experience-based roadmap for a robotic cleaning device
US10100902B2 (en) * 2015-02-18 2018-10-16 Nidec Motor Corporation Motor with encoder flywheel
US9918605B2 (en) 2015-04-09 2018-03-20 Irobot Corporation Wall following robot
EP3282912B1 (en) 2015-04-17 2020-06-10 Aktiebolaget Electrolux Robotic cleaning device and a method of controlling the robotic cleaning device
KR101734654B1 (en) * 2015-06-25 2017-05-11 현대자동차주식회사 System and Method for writing Occupancy Grid Map of sensor centered coordinate system using laser scanner
US9919425B2 (en) 2015-07-01 2018-03-20 Irobot Corporation Robot navigational sensor system
WO2017036532A1 (en) 2015-09-03 2017-03-09 Aktiebolaget Electrolux System of robotic cleaning devices
US10452071B1 (en) 2016-02-29 2019-10-22 AI Incorporated Obstacle recognition method for autonomous robots
US11927965B2 (en) 2016-02-29 2024-03-12 AI Incorporated Obstacle recognition method for autonomous robots
US11449061B2 (en) 2016-02-29 2022-09-20 AI Incorporated Obstacle recognition method for autonomous robots
US10788836B2 (en) 2016-02-29 2020-09-29 AI Incorporated Obstacle recognition method for autonomous robots
WO2017157421A1 (en) 2016-03-15 2017-09-21 Aktiebolaget Electrolux Robotic cleaning device and a method at the robotic cleaning device of performing cliff detection
CN106166048A (en) * 2016-04-15 2016-11-30 西安科技大学 A kind of Intelligent cleaning robot based on ARM7 microprocessor technology
US11122953B2 (en) 2016-05-11 2021-09-21 Aktiebolaget Electrolux Robotic cleaning device
TWI653964B (en) * 2016-05-17 2019-03-21 Lg電子股份有限公司 Mobile robot and its control method
TWI639021B (en) 2016-05-17 2018-10-21 南韓商Lg電子股份有限公司 Mobile robot and method of controlling the same
CN207979622U (en) 2016-05-17 2018-10-19 Lg电子株式会社 Robot cleaner
DE102016211842B4 (en) * 2016-06-30 2024-04-25 Robert Bosch Gmbh Soil tillage equipment
US10732127B2 (en) * 2016-10-26 2020-08-04 Pixart Imaging Inc. Dirtiness level determining system and surface cleaning machine
US10704250B2 (en) 2016-10-28 2020-07-07 Milwaukee Electric Tool Corporation Sewer cleaning machine
CN106774319B (en) * 2016-12-14 2020-07-31 智易行科技(武汉)有限公司 Multi-sensor self-walking universal intelligent chassis
CN207996183U (en) 2017-01-17 2018-10-23 美国iRobot公司 Mobile clean robot
US10394246B2 (en) * 2017-03-31 2019-08-27 Neato Robotics, Inc. Robot with automatic styles
CN110621208A (en) 2017-06-02 2019-12-27 伊莱克斯公司 Method for detecting a height difference of a surface in front of a robotic cleaning device
US10780364B2 (en) * 2017-07-05 2020-09-22 Skip Hop, Inc. Children's toy for promoting movement
EP3668362B1 (en) 2017-08-16 2023-07-19 SharkNinja Operating LLC Robotic vacuum
EP4235343A3 (en) 2017-08-22 2023-10-04 Pentair Water Pool and Spa, Inc. Pool cleaner control system
JP2019041830A (en) * 2017-08-30 2019-03-22 キヤノン株式会社 Ultrasonic device
AU2018329459B2 (en) 2017-09-07 2021-11-04 Sharkninja Operating Llc Robotic cleaner
WO2019063066A1 (en) 2017-09-26 2019-04-04 Aktiebolaget Electrolux Controlling movement of a robotic cleaning device
WO2019126332A1 (en) * 2017-12-19 2019-06-27 Carnegie Mellon University Intelligent cleaning robot
US10795377B2 (en) * 2018-01-03 2020-10-06 AI Incorporated Method for autonomously controlling speed of components and functions of a robot
US11568236B2 (en) 2018-01-25 2023-01-31 The Research Foundation For The State University Of New York Framework and methods of diverse exploration for fast and safe policy improvement
US11154170B2 (en) * 2018-02-07 2021-10-26 Techtronic Floor Care Technology Limited Autonomous vacuum operation in response to dirt detection
US11505229B2 (en) 2018-04-13 2022-11-22 Milwaukee Electric Tool Corporation Tool support
CN110442120B (en) * 2018-05-02 2022-08-05 深圳市优必选科技有限公司 Method for controlling robot to move in different scenes, robot and terminal equipment
CN108452338A (en) * 2018-05-28 2018-08-28 广州市君望机器人自动化有限公司 Disinfection robot with Anti-bumping protection function and anticollision device, collision-prevention device
JP7262076B2 (en) * 2018-06-28 2023-04-21 パナソニックIpマネジメント株式会社 Mobile robot and control method
EP3829824A4 (en) 2018-08-01 2022-06-15 SharkNinja Operating LLC Robotic vacuum cleaner
JP7248792B2 (en) 2018-11-09 2023-03-29 ▲広▼▲東▼美的白色家▲電▼技▲術▼▲創▼新中心有限公司 movable electric device
CN111492234A (en) * 2018-11-09 2020-08-04 广东美的白色家电技术创新中心有限公司 Movable electric device
CA3120728A1 (en) * 2018-11-21 2020-05-28 Ali Ebrahimi Afrouzi Methods and systems for robotic surface coverage
DE102018222136A1 (en) * 2018-12-18 2020-06-18 Robert Bosch Gmbh Autonomous work tool
US11442454B2 (en) 2019-03-21 2022-09-13 Sharkninja Operating Llc Adaptive sensor array system and method
US11266287B2 (en) 2019-05-29 2022-03-08 Irobot Corporation Control of autonomous mobile robots
CN112205937B (en) * 2019-07-12 2022-04-05 北京石头世纪科技股份有限公司 Automatic cleaning equipment control method, device, equipment and medium
US11327483B2 (en) * 2019-09-30 2022-05-10 Irobot Corporation Image capture devices for autonomous mobile robots and related systems and methods
US11467585B2 (en) * 2019-11-08 2022-10-11 Irobot Corporation Control of autonomous mobile robots
US20210386261A1 (en) * 2020-06-12 2021-12-16 Sharkninja Operating Llc Robotic cleaner having surface type sensor
ES2887526A1 (en) * 2020-06-22 2021-12-22 Cecotec Res And Development SELF-MOVING DISINFECTION APPARATUS (Machine-translation by Google Translate, not legally binding)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020120364A1 (en) * 1997-11-27 2002-08-29 Andre Colens Mobile robots and their control system
US20040111184A1 (en) * 2002-09-13 2004-06-10 Chiappetta Mark J. Navigational control system for a robotic device

Family Cites Families (1214)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL28010C (en) 1928-01-03
US1780221A (en) 1930-05-08 1930-11-04 Buchmann John Brush
FR722755A (en) 1930-09-09 1932-03-25 Machine for dusting, stain removal and cleaning of laid floors and carpets
US1970302A (en) 1932-09-13 1934-08-14 Charles C Gerhardt Brush
US2136324A (en) 1934-09-05 1938-11-08 Simon Louis John Apparatus for cleansing floors and like surfaces
US2302111A (en) 1940-11-26 1942-11-17 Air Way Electric Appl Corp Vacuum cleaner
US2353621A (en) 1941-10-13 1944-07-11 Ohio Citizens Trust Company Dust indicator for air-method cleaning systems
US2770825A (en) 1951-09-10 1956-11-20 Bissell Carpet Sweeper Co Carpet sweeper and brush cleaning combs therefor
GB702426A (en) 1951-12-28 1954-01-13 Bissell Carpet Sweeper Co Improvements in or relating to carpet sweepers
US2930055A (en) 1957-12-16 1960-03-29 Burke R Fallen Floor wax dispensing and spreading unit
US3888181A (en) 1959-09-10 1975-06-10 Us Army Munition control system
US3119369A (en) 1960-12-28 1964-01-28 Ametek Inc Device for indicating fluid flow
US3166138A (en) 1961-10-26 1965-01-19 Jr Edward D Dunn Stair climbing conveyance
US3550714A (en) 1964-10-20 1970-12-29 Mowbot Inc Lawn mower
US3375375A (en) 1965-01-08 1968-03-26 Honeywell Inc Orientation sensing means comprising photodetectors and projected fans of light
US3381652A (en) 1965-10-21 1968-05-07 Nat Union Electric Corp Visual-audible alarm for a vacuum cleaner
US3404772A (en) 1965-12-01 1968-10-08 Erba Maschb A G Wide package and method of manufacturing same
DE1503746B1 (en) 1965-12-23 1970-01-22 Bissell Gmbh Carpet sweeper
US3333564A (en) 1966-06-28 1967-08-01 Sunbeam Corp Vacuum bag indicator
US3569727A (en) 1968-09-30 1971-03-09 Bendix Corp Control means for pulse generating apparatus
SE320779B (en) 1968-11-08 1970-02-16 Electrolux Ab
US3649981A (en) 1970-02-25 1972-03-21 Wayne Manufacturing Co Curb travelling sweeper vehicle
US3989311A (en) 1970-05-14 1976-11-02 Debrey Robert J Particle monitoring apparatus
US3674316A (en) 1970-05-14 1972-07-04 Robert J De Brey Particle monitor
US3845831A (en) 1970-08-11 1974-11-05 Martin C Vehicle for rough and muddy terrain
US3690559A (en) 1970-09-16 1972-09-12 Robert H Rudloff Tractor mounted pavement washer
DE2049136A1 (en) 1970-10-07 1972-04-13 Bosch Gmbh Robert vehicle
CA908697A (en) 1971-01-21 1972-08-29 Bombardier Jerome Suspension for tracked vehicles
ES403465A1 (en) 1971-05-26 1975-05-01 Tecneco Spa Device for measuring the opacity of smokes
US3678882A (en) 1971-05-28 1972-07-25 Nat Union Electric Corp Combination alarm and filter bypass device for a suction cleaner
DE2128842C3 (en) 1971-06-11 1980-12-18 Robert Bosch Gmbh, 7000 Stuttgart Fuel electrode for electrochemical fuel elements
SE362784B (en) 1972-02-11 1973-12-27 Electrolux Ab
US4175892A (en) 1972-05-10 1979-11-27 Brey Robert J De Particle monitor
US3809004A (en) 1972-09-18 1974-05-07 W Leonheart All terrain vehicle
FR2211202B3 (en) 1972-12-21 1976-10-15 Haaga Hermann
US3863285A (en) 1973-07-05 1975-02-04 Hiroshi Hukuba Carpet sweeper
US3851349A (en) 1973-09-26 1974-12-03 Clarke Gravely Corp Floor scrubber flow divider
GB1473109A (en) 1973-10-05 1977-05-11
US4119900A (en) 1973-12-21 1978-10-10 Ito Patent-Ag Method and system for the automatic orientation and control of a robot
IT1021244B (en) 1974-09-10 1978-01-30 Ceccato & Co ROTARY BRUSH WITH VERTICAL SHAFT FOR VEHICLE WASHING SYSTEMS IN GENERAL
US4012681A (en) 1975-01-03 1977-03-15 Curtis Instruments, Inc. Battery control system for battery operated vehicles
US3989931A (en) 1975-05-19 1976-11-02 Rockwell International Corporation Pulse count generator for wide range digital phase detector
SE394077B (en) 1975-08-20 1977-06-06 Electrolux Ab DEVICE BY DUST CONTAINER.
JPS5933511B2 (en) 1976-02-19 1984-08-16 増田 将翁 Internal grinding machine for cylindrical workpieces
US4099284A (en) 1976-02-20 1978-07-11 Tanita Corporation Hand sweeper for carpets
JPS5316183A (en) 1976-07-28 1978-02-14 Hitachi Ltd Fluid pressure driving device
JPS5321869U (en) 1976-07-31 1978-02-23
JPS5321869A (en) 1976-08-13 1978-02-28 Sharp Corp Simplified cleaner with dust removing means
JPS53110257A (en) 1977-03-08 1978-09-26 Matsushita Electric Ind Co Ltd Automatic vacuum cleaner
US4618213A (en) 1977-03-17 1986-10-21 Applied Elastomerics, Incorporated Gelatinous elastomeric optical lens, light pipe, comprising a specific block copolymer and an oil plasticizer
SE407738B (en) 1977-09-15 1979-04-23 Electrolux Ab VACUUM CLEANER INDICATOR DEVICE
US4198727A (en) 1978-01-19 1980-04-22 Farmer Gary L Baseboard dusters for vacuum cleaners
FR2416480A1 (en) 1978-02-03 1979-08-31 Thomson Csf RADIANT SOURCE LOCATION DEVICE AND STEERING TRACKING SYSTEM INCLUDING SUCH A DEVICE
US4196727A (en) 1978-05-19 1980-04-08 Becton, Dickinson And Company See-through anesthesia mask
EP0007789B1 (en) 1978-08-01 1984-03-14 Imperial Chemical Industries Plc Driverless vehicle carrying directional detectors auto-guided by light signals
EP0007790A1 (en) 1978-08-01 1980-02-06 Imperial Chemical Industries Plc Driverless vehicle carrying non-directional detectors auto-guided by light signals
USD258901S (en) 1978-10-16 1981-04-14 Douglas Keyworth Wheeled figure toy
JPS595315B2 (en) 1978-10-31 1984-02-03 東和精工株式会社 Lower tag attaching device
GB2038615B (en) 1978-12-31 1983-04-13 Nintendo Co Ltd Self-moving type vacuum cleaner
US5164579A (en) 1979-04-30 1992-11-17 Diffracto Ltd. Method and apparatus for electro-optically determining the dimension, location and attitude of objects including light spot centroid determination
US4373804A (en) 1979-04-30 1983-02-15 Diffracto Ltd. Method and apparatus for electro-optically determining the dimension, location and attitude of objects
US4297578A (en) 1980-01-09 1981-10-27 Carter William R Airborne dust monitor
US4367403A (en) 1980-01-21 1983-01-04 Rca Corporation Array positioning system with out-of-focus solar cells
US4305234A (en) 1980-02-04 1981-12-15 Flo-Pac Corporation Composite brush
US4492058A (en) 1980-02-14 1985-01-08 Adolph E. Goldfarb Ultracompact miniature toy vehicle with four-wheel drive and unusual climbing capability
US4369543A (en) 1980-04-14 1983-01-25 Jen Chen Remote-control radio vacuum cleaner
JPS5714726A (en) 1980-07-01 1982-01-26 Minolta Camera Co Ltd Measuring device for quantity of light
JPS5764217A (en) 1980-10-07 1982-04-19 Canon Inc Automatic focusing camera
JPS5771968A (en) 1980-10-21 1982-05-06 Nagasawa Seisakusho Button lock
US4401909A (en) 1981-04-03 1983-08-30 Dickey-John Corporation Grain sensor using a piezoelectric element
US4769700A (en) 1981-11-20 1988-09-06 Diffracto Ltd. Robot tractors
US4482960A (en) 1981-11-20 1984-11-13 Diffracto Ltd. Robot tractors
JPS5814730A (en) 1981-07-20 1983-01-27 Shin Etsu Polymer Co Ltd Silicone rubber molded body
USD278733S (en) 1981-08-25 1985-05-07 Tomy Kogyo Company, Incorporated Animal-like figure toy
US4416033A (en) 1981-10-08 1983-11-22 The Hoover Company Full bag indicator
US4652917A (en) 1981-10-28 1987-03-24 Honeywell Inc. Remote attitude sensor using single camera and spiral patterns
JPS58100840A (en) 1981-12-12 1983-06-15 Canon Inc Finder of camera
JPS595315A (en) 1982-07-02 1984-01-12 Hitachi Ltd Moving type device for automatic monitoring and checking work
CH656665A5 (en) 1982-07-05 1986-07-15 Sommer Schenk Ag METHOD AND CLEANING DEVICE FOR CLEANING A WATER BASIN.
JPS5914711A (en) 1982-07-13 1984-01-25 株式会社クボタ Unmanned running working vehicle
GB2128842B (en) 1982-08-06 1986-04-16 Univ London Method of presenting visual information
US4445245A (en) 1982-08-23 1984-05-01 Lu Ning K Surface sweeper
JPS5933511U (en) 1982-08-24 1984-03-01 三菱電機株式会社 Safety device for self-driving trolleys
US4624026A (en) 1982-09-10 1986-11-25 Tennant Company Surface maintenance machine with rotary lip
US4556313A (en) 1982-10-18 1985-12-03 United States Of America As Represented By The Secretary Of The Army Short range optical rangefinder
JPS5994005A (en) 1982-11-22 1984-05-30 Mitsubishi Electric Corp Position detector for unmanned self-travelling truck
JPS5999308A (en) 1982-11-30 1984-06-08 Komatsu Ltd Distance measuring sensor
JPS59112311A (en) 1982-12-20 1984-06-28 Komatsu Ltd Guiding method of unmanned moving body
JPS5999308U (en) 1982-12-23 1984-07-05 三菱電機株式会社 Fasteners for lighting fixture covers
JPS59120124A (en) 1982-12-28 1984-07-11 松下電器産業株式会社 Electric cleaner
JPS59112311U (en) 1983-01-17 1984-07-28 九州日立マクセル株式会社 Cassette type cleaning device for magnetic heads
JPS59120124U (en) 1983-02-02 1984-08-13 三菱鉛筆株式会社 injection mold
JPS59131668U (en) 1983-02-24 1984-09-04 日本原子力研究所 piezoelectric valve
JPS59164973A (en) 1983-03-10 1984-09-18 Nippon Tsushin Gijutsu Kk Pair type measuring head for robot
US4481692A (en) 1983-03-29 1984-11-13 Gerhard Kurz Operating-condition indicator for vacuum cleaners
JPS59184917A (en) 1983-04-05 1984-10-20 Tsubakimoto Chain Co Guiding method of unmanned truck
US4575211A (en) 1983-04-18 1986-03-11 Canon Kabushiki Kaisha Distance measuring device
DE3317376A1 (en) 1983-05-13 1984-11-15 Diehl GmbH & Co, 8500 Nürnberg Safety circuit for a projectile fuzing circuit
JPS59212924A (en) 1983-05-17 1984-12-01 Mitsubishi Electric Corp Position detector for traveling object
US4477998A (en) 1983-05-31 1984-10-23 You Yun Long Fantastic wall-climbing toy
JPS59226909A (en) 1983-06-07 1984-12-20 Kobe Steel Ltd Positioning method of automotive robot
US4513469A (en) 1983-06-13 1985-04-30 Godfrey James O Radio controlled vacuum cleaner
JPS6089213A (en) 1983-10-19 1985-05-20 Komatsu Ltd Detecting method for position and direction of unmanned truck
EP0142594B1 (en) 1983-10-26 1989-06-28 Automax Kabushiki Kaisha Control system for mobile robot
US4700301A (en) 1983-11-02 1987-10-13 Dyke Howard L Method of automatically steering agricultural type vehicles
JPS6089213U (en) 1983-11-26 1985-06-19 小畑 邦夫 thin film gloves
JPS60118912U (en) 1984-01-18 1985-08-12 アルプス電気株式会社 Code wheel of reflective optical rotary encoder
DE3404202A1 (en) 1984-02-07 1987-05-14 Wegmann & Co Device for the remotely controlled guidance of armoured combat vehicles
DE3431164A1 (en) 1984-02-08 1985-08-14 Gerhard 7262 Althengstett Kurz VACUUM CLEANER
DE3431175C2 (en) 1984-02-08 1986-01-09 Gerhard 7262 Althengstett Kurz Protective device for dust collection devices
US4712740A (en) 1984-03-02 1987-12-15 The Regina Co., Inc. Venturi spray nozzle for a cleaning device
HU191301B (en) 1984-03-23 1987-02-27 Richter Gedeon Vegyeszeti Gyar Rt,Hu Process for preparing 1-/hydroxy-methyl/-1,6,7,11b-tetrahydro-2h,4h-/1,3/-oxazino- or -thiazino/4,3-a/isoquinoline -derivatives
US4626995A (en) 1984-03-26 1986-12-02 Ndc Technologies, Inc. Apparatus and method for optical guidance system for automatic guided vehicle
JPS60211510A (en) 1984-04-05 1985-10-23 Komatsu Ltd Position detecting method of mobile body
DE3413793A1 (en) 1984-04-12 1985-10-24 Brown, Boveri & Cie Ag, 6800 Mannheim DRIVE FOR A SWITCH
JPS60217576A (en) 1984-04-12 1985-10-31 Nippon Gakki Seizo Kk Disc case
US4832098A (en) 1984-04-16 1989-05-23 The Uniroyal Goodrich Tire Company Non-pneumatic tire with supporting and cushioning members
US4620285A (en) 1984-04-24 1986-10-28 Heath Company Sonar ranging/light detection system for use in a robot
US4649504A (en) 1984-05-22 1987-03-10 Cae Electronics, Ltd. Optical position and orientation measurement techniques
ZA853615B (en) 1984-05-31 1986-02-26 Ici Plc Vehicle guidance means
JPS60259895A (en) 1984-06-04 1985-12-21 Toshiba Corp Multi tube type super heat steam returning device
US4638445A (en) 1984-06-08 1987-01-20 Mattaboni Paul J Autonomous mobile robot
JPS6123221A (en) 1984-07-11 1986-01-31 Oki Electric Ind Co Ltd Guiding system of mobile truck
JPS6170407A (en) 1984-08-08 1986-04-11 Canon Inc Instrument for measuring distance
JPS6190697A (en) 1984-10-09 1986-05-08 松下電器産業株式会社 Clothing dryer
JPS6197712A (en) 1984-10-18 1986-05-16 Casio Comput Co Ltd Target of infrared-ray tracking robot
JPS6197711A (en) 1984-10-18 1986-05-16 Casio Comput Co Ltd Infrared-ray tracking robot system
IT8423851V0 (en) 1984-11-21 1984-11-21 Cavalli Alfredo MULTI-PURPOSE HOUSEHOLD APPLIANCE PARTICULARLY FOR CLEANING FLOORS, CARPETS AND CARPETS ON THE WORK AND SIMILAR.
JPS61160366A (en) 1984-12-30 1986-07-21 Shinwa Seisakusho:Kk Loading platform adjusting equipment for cart
GB8502506D0 (en) 1985-01-31 1985-03-06 Emi Ltd Smoke detector
JPS61190607A (en) 1985-02-18 1986-08-25 Toyoda Mach Works Ltd Numerically controlled machine tool provided with abnormality stop function
US4679152A (en) 1985-02-20 1987-07-07 Heath Company Navigation system and method for a mobile robot
DE3676221D1 (en) 1985-05-01 1991-01-31 Nippon Denso Co OPTICAL DUST DETECTOR.
USD292223S (en) 1985-05-17 1987-10-06 Showscan Film Corporation Toy robot or the like
JPS6215336A (en) 1985-06-21 1987-01-23 Murata Mach Ltd Automatically running type cleaning truck
FR2583701B1 (en) 1985-06-21 1990-03-23 Commissariat Energie Atomique VARIABLE GEOMETRY CRAWLER VEHICLE
WO1987000265A1 (en) 1985-06-28 1987-01-15 Moorhouse, D., J. Detonator actuator
US4662854A (en) 1985-07-12 1987-05-05 Union Electric Corp. Self-propellable toy and arrangement for and method of controlling the movement thereof
IT206218Z2 (en) 1985-07-26 1987-07-13 Dulevo Spa MOTOR SWEEPER WITH REMOVABLE CONTAINER
JPS6255760A (en) 1985-09-04 1987-03-11 Fujitsu Ltd Transaction system for reenter transmission of transfer accumulation closing data
SE451770B (en) 1985-09-17 1987-10-26 Hyypae Ilkka Kalevi KIT FOR NAVIGATION OF A LARGE VESSEL IN ONE PLAN, EXTRA A TRUCK, AND TRUCK FOR EXTENDING THE KIT
JPH0752104B2 (en) 1985-09-25 1995-06-05 松下電工株式会社 Reflective photoelectric switch
JPS6274018A (en) 1985-09-27 1987-04-04 Kawasaki Heavy Ind Ltd Operating method for converter waste gas treatment device
DE3534621A1 (en) 1985-09-28 1987-04-02 Interlava Ag VACUUM CLEANER
JPH0421069Y2 (en) 1985-09-30 1992-05-14
NO864109L (en) 1985-10-17 1987-04-21 Knepper Hans Reinhard PROCEDURE FOR AUTOMATIC LINING OF AUTOMATIC FLOOR CLEANING MACHINES AND FLOOR CLEANING MACHINE FOR PERFORMING THE PROCEDURE.
JPH0319408Y2 (en) 1985-10-19 1991-04-24
JPS6270709U (en) 1985-10-22 1987-05-06
JPS62120510A (en) 1985-11-21 1987-06-01 Hitachi Ltd Control method for automatic cleaner
US4909972A (en) 1985-12-02 1990-03-20 Britz Johannes H Method and apparatus for making a solid foamed tire core
FR2591329B1 (en) 1985-12-10 1992-05-22 Canon Kk APPARATUS AND METHOD FOR PROCESSING THREE-DIMENSIONAL INFORMATION
JPS62154008A (en) 1985-12-27 1987-07-09 Hitachi Ltd Travel control method for self-travel robot
US4654924A (en) 1985-12-31 1987-04-07 Whirlpool Corporation Microcomputer control system for a canister vacuum cleaner
JPH0724640B2 (en) 1986-01-16 1995-03-22 三洋電機株式会社 Vacuum cleaner
JPS62120510U (en) 1986-01-24 1987-07-31
EP0231419A1 (en) 1986-02-05 1987-08-12 Interlava AG Indicating and function controlling optical unit for a vacuum cleaner
US4817000A (en) 1986-03-10 1989-03-28 Si Handling Systems, Inc. Automatic guided vehicle system
JPS62154008U (en) 1986-03-19 1987-09-30
GB8607365D0 (en) 1986-03-25 1986-04-30 Roneo Alcatel Ltd Electromechanical drives
JPS62164431U (en) 1986-04-08 1987-10-19
USD298766S (en) 1986-04-11 1988-11-29 Playtime Products, Inc. Toy robot
JPH0782385B2 (en) 1986-05-12 1995-09-06 三洋電機株式会社 Mobile guidance device
JPS62263508A (en) 1986-05-12 1987-11-16 Sanyo Electric Co Ltd Autonomous type work track
US4829442A (en) 1986-05-16 1989-05-09 Denning Mobile Robotics, Inc. Beacon navigation system and method for guiding a vehicle
US4777416A (en) 1986-05-16 1988-10-11 Denning Mobile Robotics, Inc. Recharge docking system for mobile robot
US4710020A (en) 1986-05-16 1987-12-01 Denning Mobil Robotics, Inc. Beacon proximity detection system for a vehicle
JPS62189057U (en) 1986-05-22 1987-12-01
US4955714A (en) 1986-06-26 1990-09-11 Stotler James G System for simulating the appearance of the night sky inside a room
US4752799A (en) 1986-07-07 1988-06-21 Honeywell Inc. Optical proximity sensing optics
FR2601443B1 (en) 1986-07-10 1991-11-29 Centre Nat Etd Spatiales POSITION SENSOR AND ITS APPLICATION TO TELEMETRY, ESPECIALLY FOR SPATIAL ROBOTICS
JPH07102204B2 (en) 1986-09-25 1995-11-08 株式会社マキタ Brush cleaner
FI74829C (en) 1986-10-01 1988-03-10 Allaway Oy Method for controlling a plant such as vacuum cleaner, central vacuum cleaner, mechanical air conditioning system or the like.
KR940002923B1 (en) 1986-10-08 1994-04-07 가부시키가이샤 히타치세이사쿠쇼 Method and apparatus for operating vacuum cleaner
US4920060A (en) 1986-10-14 1990-04-24 Hercules Incorporated Device and process for mixing a sample and a diluent
US4796198A (en) 1986-10-17 1989-01-03 The United States Of America As Represented By The United States Department Of Energy Method for laser-based two-dimensional navigation system in a structured environment
JPS6371857U (en) 1986-10-28 1988-05-13
EP0265542A1 (en) 1986-10-28 1988-05-04 Richard R. Rathbone Optical navigation system
IE59553B1 (en) 1986-10-30 1994-03-09 Inst For Ind Res & Standards Position sensing apparatus
US4733431A (en) 1986-12-09 1988-03-29 Whirlpool Corporation Vacuum cleaner with performance monitoring system
FR2620070A2 (en) 1986-12-11 1989-03-10 Jonas Andre AUTOBULATED MOBILE UNIT AND CLEANING APPARATUS SUCH AS A VACUUM COMPRISING SUCH A UNIT
JPS63158032A (en) 1986-12-22 1988-07-01 三洋電機株式会社 Moving working vehicle with cord reel
US4735136A (en) 1986-12-23 1988-04-05 Whirlpool Corporation Full receptacle indicator for compactor
CA1311852C (en) 1987-01-09 1992-12-22 James R. Allard Knowledge acquisition tool for automated knowledge extraction
JPS63183032A (en) 1987-01-26 1988-07-28 松下電器産業株式会社 Cleaning robot
JPS63203483A (en) 1987-02-18 1988-08-23 Res Dev Corp Of Japan Active adaptation type crawler travel vehicle
US4855915A (en) 1987-03-13 1989-08-08 Dallaire Rodney J Autoguided vehicle using reflective materials
AU594235B2 (en) 1987-03-30 1990-03-01 Matsushita Electric Industrial Co., Ltd. Floor nozzle for vacuum cleaner
US4818875A (en) 1987-03-30 1989-04-04 The Foxboro Company Portable battery-operated ambient air analyzer
JPH0786767B2 (en) 1987-03-30 1995-09-20 株式会社日立製作所 Travel control method for self-propelled robot
DK172087A (en) 1987-04-03 1988-10-04 Rotowash Scandinavia APPLIANCES FOR WATER CLEANING OF FLOOR OR WALL SURFACES
JP2606842B2 (en) 1987-05-30 1997-05-07 株式会社東芝 Electric vacuum cleaner
IL82731A (en) 1987-06-01 1991-04-15 El Op Electro Optic Ind Limite System for measuring the angular displacement of an object
SE464837B (en) 1987-06-22 1991-06-17 Arnex Hb PROCEDURE AND DEVICE FOR LASER OPTICAL NAVIGATION
JPH0759702B2 (en) 1987-09-07 1995-06-28 三菱電機株式会社 Guest-host liquid crystal composition
US4858132A (en) 1987-09-11 1989-08-15 Ndc Technologies, Inc. Optical navigation system for an automatic guided vehicle, and method
KR910009450B1 (en) 1987-10-16 1991-11-16 문수정 Superconducting coils and method of manufacturing the same
GB8728508D0 (en) 1987-12-05 1988-01-13 Brougham Pickard J G Accessory unit for vacuum cleaner
EP0321592B1 (en) 1987-12-16 1992-06-03 Hako-Werke GMBH & Co. Hand-controlled sweeping apparatus
JPH01162454A (en) 1987-12-18 1989-06-26 Fujitsu Ltd Sub-rate exchanging system
JPH01180010A (en) 1988-01-08 1989-07-18 Sanyo Electric Co Ltd Moving vehicle
US5002145A (en) 1988-01-29 1991-03-26 Nec Corporation Method and apparatus for controlling automated guided vehicle
US5024529A (en) 1988-01-29 1991-06-18 Synthetic Vision Systems, Inc. Method and system for high-speed, high-resolution, 3-D imaging of an object at a vision station
US4891762A (en) 1988-02-09 1990-01-02 Chotiros Nicholas P Method and apparatus for tracking, mapping and recognition of spatial patterns
DE3803824A1 (en) 1988-02-09 1989-08-17 Gerhard Kurz INSTALLATION DEVICE FOR SENSORS AND SENSORS
US4782550A (en) 1988-02-12 1988-11-08 Von Schrader Company Automatic surface-treating apparatus
US4851661A (en) 1988-02-26 1989-07-25 The United States Of America As Represented By The Secretary Of The Navy Programmable near-infrared ranging system
US4905151A (en) 1988-03-07 1990-02-27 Transitions Research Corporation One dimensional image visual system for a moving vehicle
DE3812633A1 (en) 1988-04-15 1989-10-26 Daimler Benz Ag METHOD FOR CONTACTLESS RESISTANCE MEASUREMENT
JP2583958B2 (en) 1988-04-20 1997-02-19 松下電器産業株式会社 Floor nozzle for vacuum cleaner
US4919489A (en) 1988-04-20 1990-04-24 Grumman Aerospace Corporation Cog-augmented wheel for obstacle negotiation
US4977618A (en) 1988-04-21 1990-12-11 Photonics Corporation Infrared data communications
US4919224A (en) 1988-05-16 1990-04-24 Industrial Technology Research Institute Automatic working vehicular system
JPH01175669U (en) 1988-05-23 1989-12-14
US4887415A (en) 1988-06-10 1989-12-19 Martin Robert L Automated lawn mower or floor polisher
KR910006887B1 (en) 1988-06-15 1991-09-10 마쯔시다덴기산교 가부시기가이샤 Dust detector for vacuum cleaner
JPH026312U (en) 1988-06-27 1990-01-17
JPH0540519Y2 (en) 1988-07-15 1993-10-14
GB8817039D0 (en) 1988-07-18 1988-08-24 Martecon Uk Ltd Improvements in/relating to polymer filled tyres
US4857912A (en) 1988-07-27 1989-08-15 The United States Of America As Represented By The Secretary Of The Navy Intelligent security assessment system
USD318500S (en) 1988-08-08 1991-07-23 Monster Robots Inc. Monster toy robot
KR910006885B1 (en) 1988-08-15 1991-09-10 미쯔비시 덴끼 가부시기가이샤 Floor detector for vacuum cleaners
US5040116A (en) 1988-09-06 1991-08-13 Transitions Research Corporation Visual navigation and obstacle avoidance structured light system
US4954962A (en) 1988-09-06 1990-09-04 Transitions Research Corporation Visual navigation and obstacle avoidance structured light system
US4932831A (en) 1988-09-26 1990-06-12 Remotec, Inc. All terrain mobile robot
US4933864A (en) 1988-10-04 1990-06-12 Transitions Research Corporation Mobile robot navigation employing ceiling light fixtures
US5155684A (en) 1988-10-25 1992-10-13 Tennant Company Guiding an unmanned vehicle by reference to overhead features
JPH0546239Y2 (en) 1988-10-31 1993-12-02
US4962453A (en) 1989-02-07 1990-10-09 Transitions Research Corporation Autonomous vehicle for working on a surface and method of controlling same
JPH0779791B2 (en) 1988-11-07 1995-08-30 松下電器産業株式会社 Vacuum cleaner
GB2225221A (en) 1988-11-16 1990-05-30 Unilever Plc Nozzle arrangement on robot vacuum cleaning machine
JPH0824652B2 (en) 1988-12-06 1996-03-13 松下電器産業株式会社 Electric vacuum cleaner
JPH063251Y2 (en) 1988-12-13 1994-01-26 極東工業株式会社 Pipe support
DE3914306A1 (en) 1988-12-16 1990-06-28 Interlava Ag DEVICE FOR REGULATING AND / OR DISPLAYING THE OPERATION OF VACUUM CLEANERS
IT1228112B (en) 1988-12-21 1991-05-28 Cavi Pirelli S P A M Soc METHOD AND OPTICAL SENSOR FOR DETERMINING THE POSITION OF A MOBILE BODY
US4918441A (en) 1988-12-22 1990-04-17 Ford New Holland, Inc. Non-contact sensing unit for row crop harvester guidance system
US4893025A (en) 1988-12-30 1990-01-09 Us Administrat Distributed proximity sensor system having embedded light emitters and detectors
US4967862A (en) 1989-03-13 1990-11-06 Transitions Research Corporation Tether-guided vehicle and method of controlling same
JPH06105781B2 (en) 1989-04-25 1994-12-21 住友電気工業株式会社 Method of manufacturing integrated circuit
JP2815606B2 (en) 1989-04-25 1998-10-27 株式会社トキメック Control method of concrete floor finishing robot
US4971591A (en) 1989-04-25 1990-11-20 Roni Raviv Vehicle with vacuum traction
JP2520732B2 (en) 1989-04-25 1996-07-31 株式会社テック Vacuum cleaner suction body
US5154617A (en) 1989-05-09 1992-10-13 Prince Corporation Modular vehicle electronic system
US5182833A (en) 1989-05-11 1993-02-02 Matsushita Electric Industrial Co., Ltd. Vacuum cleaner
FR2648071B1 (en) 1989-06-07 1995-05-19 Onet SELF-CONTAINED METHOD AND APPARATUS FOR AUTOMATIC FLOOR CLEANING BY EXECUTING PROGRAMMED MISSIONS
US5051906A (en) 1989-06-07 1991-09-24 Transitions Research Corporation Mobile robot navigation employing retroreflective ceiling features
JPH0313611A (en) 1989-06-07 1991-01-22 Toshiba Corp Automatic cleaner
JPH03129328A (en) 1989-06-27 1991-06-03 Victor Co Of Japan Ltd Electromagnetic radiation flux scanning device and display device
US4961303A (en) 1989-07-10 1990-10-09 Ford New Holland, Inc. Apparatus for opening conditioning rolls
JPH0351023A (en) 1989-07-20 1991-03-05 Matsushita Electric Ind Co Ltd Self-propelled cleaner
US5127128A (en) 1989-07-27 1992-07-07 Goldstar Co., Ltd. Cleaner head
US5144715A (en) 1989-08-18 1992-09-08 Matsushita Electric Industrial Co., Ltd. Vacuum cleaner and method of determining type of floor surface being cleaned thereby
US4961304A (en) 1989-10-20 1990-10-09 J. I. Case Company Cotton flow monitoring system for a cotton harvester
US5045769A (en) 1989-11-14 1991-09-03 The United States Of America As Represented By The Secretary Of The Navy Intelligent battery charging system
US5033291A (en) 1989-12-11 1991-07-23 Tekscan, Inc. Flexible tactile sensor for measuring foot pressure distributions and for gaskets
JP2714588B2 (en) 1989-12-13 1998-02-16 株式会社ブリヂストン Tire inspection device
IL92720A (en) 1989-12-15 1993-02-21 Neta Holland Toothbrush
JPH03186243A (en) 1989-12-15 1991-08-14 Matsushita Electric Ind Co Ltd Upright type vacuum cleaner
US5063846A (en) 1989-12-21 1991-11-12 Hughes Aircraft Company Modular, electronic safe-arm device
JPH03197758A (en) 1989-12-25 1991-08-29 Yokohama Rubber Co Ltd:The Soundproof double floor
JPH03201903A (en) 1989-12-28 1991-09-03 Seibutsukei Tokutei Sangyo Gijutsu Kenkyu Suishin Kiko Autonomic traveling system for field working vehicle
US5093956A (en) 1990-01-12 1992-03-10 Royal Appliance Mfg. Co. Snap-together housing
US5647554A (en) 1990-01-23 1997-07-15 Sanyo Electric Co., Ltd. Electric working apparatus supplied with electric power through power supply cord
US5020186A (en) 1990-01-24 1991-06-04 Black & Decker Inc. Vacuum cleaners
US5084934A (en) 1990-01-24 1992-02-04 Black & Decker Inc. Vacuum cleaners
US5187662A (en) 1990-01-24 1993-02-16 Honda Giken Kogyo Kabushiki Kaisha Steering control system for moving vehicle
US5115538A (en) 1990-01-24 1992-05-26 Black & Decker Inc. Vacuum cleaners
US4956891A (en) 1990-02-21 1990-09-18 Castex Industries, Inc. Floor cleaner
JP3149430B2 (en) 1990-02-22 2001-03-26 松下電器産業株式会社 Upright vacuum cleaner
US5049802A (en) 1990-03-01 1991-09-17 Caterpillar Industrial Inc. Charging system for a vehicle
AU630550B2 (en) 1990-04-10 1992-10-29 Matsushita Electric Industrial Co., Ltd. Vacuum cleaner with fuzzy control
US5018240A (en) 1990-04-27 1991-05-28 Cimex Limited Carpet cleaner
US5170352A (en) 1990-05-07 1992-12-08 Fmc Corporation Multi-purpose autonomous vehicle with path plotting
JP2886617B2 (en) 1990-05-14 1999-04-26 松下電工株式会社 Recognition method of position and orientation of moving object
US5111401A (en) 1990-05-19 1992-05-05 The United States Of America As Represented By The Secretary Of The Navy Navigational control system for an autonomous vehicle
JPH08393Y2 (en) 1990-06-01 1996-01-10 株式会社豊田自動織機製作所 Air supply device in jet loom
US5142985A (en) 1990-06-04 1992-09-01 Motorola, Inc. Optical detection device
US5109566A (en) 1990-06-28 1992-05-05 Matsushita Electric Industrial Co., Ltd. Self-running cleaning apparatus
JPH04227507A (en) 1990-07-02 1992-08-17 Nec Corp Method for forming and keeping map for moving robot
JPH0474285A (en) 1990-07-17 1992-03-09 Medama Kikaku:Kk Position detecting and display device for specific person or object
JPH0484921A (en) 1990-07-27 1992-03-18 Mitsubishi Electric Corp Vacuum cleaner
US5093955A (en) 1990-08-29 1992-03-10 Tennant Company Combined sweeper and scrubber
US5307273A (en) 1990-08-29 1994-04-26 Goldstar Co., Ltd. Apparatus and method for recognizing carpets and stairs by cleaning robot
EP0550473B1 (en) 1990-09-24 1996-12-11 André COLENS Continuous, self-contained mowing system
US5202742A (en) 1990-10-03 1993-04-13 Aisin Seiki Kabushiki Kaisha Laser radar for a vehicle lateral guidance system
US5086535A (en) 1990-10-22 1992-02-11 Racine Industries, Inc. Machine and method using graphic data for treating a surface
US5204814A (en) 1990-11-13 1993-04-20 Mobot, Inc. Autonomous lawn mower
JPH0824655B2 (en) 1990-11-26 1996-03-13 松下電器産業株式会社 Electric vacuum cleaner
JPH0542088A (en) 1990-11-26 1993-02-23 Matsushita Electric Ind Co Ltd Controller for electric system
KR930000081B1 (en) 1990-12-07 1993-01-08 주식회사 금성사 Cleansing method of electric vacuum cleaner
US5136675A (en) 1990-12-20 1992-08-04 General Electric Company Slewable projection system with fiber-optic elements
US5098262A (en) 1990-12-28 1992-03-24 Abbott Laboratories Solution pumping system with compressible pump cassette
US5062819A (en) 1991-01-28 1991-11-05 Mallory Mitchell K Toy vehicle apparatus
JP2983658B2 (en) 1991-02-14 1999-11-29 三洋電機株式会社 Electric vacuum cleaner
US5094311A (en) 1991-02-22 1992-03-10 Gmfanuc Robotics Corporation Limited mobility transporter
US5327952A (en) 1991-03-08 1994-07-12 The Goodyear Tire & Rubber Company Pneumatic tire having improved wet traction
US5173881A (en) 1991-03-19 1992-12-22 Sindle Thomas J Vehicular proximity sensing system
JP3148270B2 (en) 1991-03-20 2001-03-19 日立機電工業株式会社 Automatic guided vehicle power supply device
US5165064A (en) 1991-03-22 1992-11-17 Cyberotics, Inc. Mobile robot guidance and navigation system
US5105550A (en) 1991-03-25 1992-04-21 Wilson Sporting Goods Co. Apparatus for measuring golf clubs
US5321614A (en) 1991-06-06 1994-06-14 Ashworth Guy T D Navigational control apparatus and method for autonomus vehicles
US5400244A (en) 1991-06-25 1995-03-21 Kabushiki Kaisha Toshiba Running control system for mobile robot provided with multiple sensor information integration system
KR930005714B1 (en) 1991-06-25 1993-06-24 주식회사 금성사 Attratus and method for controlling speed of suction motor in vacuum cleaner
US5152202A (en) 1991-07-03 1992-10-06 The Ingersoll Milling Machine Company Turning machine with pivoted armature
US5560065A (en) 1991-07-03 1996-10-01 Tymco, Inc. Broom assisted pick-up head
DE4122280C2 (en) 1991-07-05 1994-08-18 Henkel Kgaa Mobile floor cleaning machine
ATE166170T1 (en) 1991-07-10 1998-05-15 Samsung Electronics Co Ltd MOVABLE MONITORING DEVICE
JP2795384B2 (en) 1991-07-24 1998-09-10 株式会社テック Vacuum cleaner suction body
JPH0542076A (en) 1991-08-09 1993-02-23 Matsushita Electric Ind Co Ltd Floor nozzle for electric cleaner
JPH0546246A (en) 1991-08-10 1993-02-26 Nec Home Electron Ltd Cleaning robot and its travelling method
KR930003937Y1 (en) 1991-08-14 1993-06-25 주식회사 금성사 Apparatus for detecting suction dirt for vacuum cleaner
US5442358A (en) 1991-08-16 1995-08-15 Kaman Aerospace Corporation Imaging lidar transmitter downlink for command guidance of underwater vehicle
US5227985A (en) 1991-08-19 1993-07-13 University Of Maryland Computer vision system for position monitoring in three dimensions using non-coplanar light sources attached to a monitored object
JP2738610B2 (en) 1991-09-07 1998-04-08 富士重工業株式会社 Travel control device for self-propelled bogie
JP2901112B2 (en) 1991-09-19 1999-06-07 矢崎総業株式会社 Vehicle periphery monitoring device
DE4131667C2 (en) 1991-09-23 2002-07-18 Schlafhorst & Co W Device for removing thread remnants
JP3198553B2 (en) 1991-10-07 2001-08-13 松下電器産業株式会社 Electric vacuum cleaner
US5239720A (en) 1991-10-24 1993-08-31 Advance Machine Company Mobile surface cleaning machine
JP2555263Y2 (en) 1991-10-28 1997-11-19 日本電気ホームエレクトロニクス株式会社 Cleaning robot
DE69222025T2 (en) 1991-11-05 1998-02-05 Seiko Epson Corp., Tokio/Tokyo MICRO ROBOT
JPH05150827A (en) 1991-11-29 1993-06-18 Suzuki Motor Corp Guide system for unattended vehicle
JPH05150829A (en) 1991-11-29 1993-06-18 Suzuki Motor Corp Guide system for automatic vehicle
JPH0554620U (en) 1991-12-26 1993-07-23 株式会社小松エスト Load sweeper gutta brush pressing force adjustment device
KR940006561B1 (en) 1991-12-30 1994-07-22 주식회사 금성사 Auto-drive sensor for vacuum cleaner
US5222786A (en) 1992-01-10 1993-06-29 Royal Appliance Mfg. Co. Wheel construction for vacuum cleaner
IL100633A (en) 1992-01-12 1999-04-11 Israel State Large area movement robot
JP3076122B2 (en) 1992-01-13 2000-08-14 オリンパス光学工業株式会社 camera
DE4201596C2 (en) 1992-01-22 2001-07-05 Gerhard Kurz Floor nozzle for vacuum cleaners
NZ245692A (en) 1992-01-22 1995-07-26 Acushnet Co Monitoring initial flight of golf ball using two cameras
JPH063251U (en) 1992-01-31 1994-01-18 日本電気ホームエレクトロニクス株式会社 Cleaning robot
US5502638A (en) 1992-02-10 1996-03-26 Honda Giken Kogyo Kabushiki Kaisha System for obstacle avoidance path planning for multiple-degree-of-freedom mechanism
US5276618A (en) 1992-02-26 1994-01-04 The United States Of America As Represented By The Secretary Of The Navy Doorway transit navigational referencing system
US5568589A (en) 1992-03-09 1996-10-22 Hwang; Jin S. Self-propelled cleaning machine with fuzzy logic control
JPH05257533A (en) 1992-03-12 1993-10-08 Tokimec Inc Method and device for sweeping floor surface by moving robot
JP3397336B2 (en) 1992-03-13 2003-04-14 神鋼電機株式会社 Unmanned vehicle position / direction detection method
KR940004375B1 (en) 1992-03-25 1994-05-23 삼성전자 주식회사 Drive system for automatic vacuum cleaner
JPH05285861A (en) 1992-04-07 1993-11-02 Fujita Corp Marking method for ceiling
US5277064A (en) 1992-04-08 1994-01-11 General Motors Corporation Thick film accelerometer
JPH05302836A (en) 1992-04-27 1993-11-16 Yashima Denki Co Ltd Encoder having eight-pole magnetized ball
JPH05312514A (en) 1992-05-11 1993-11-22 Yashima Denki Co Ltd Encoder equipped with light reflecting/absorbing ball
FR2691093B1 (en) 1992-05-12 1996-06-14 Univ Joseph Fourier ROBOT FOR GUIDANCE OF GESTURES AND CONTROL METHOD.
DE4217093C1 (en) 1992-05-22 1993-07-01 Siemens Ag, 8000 Muenchen, De
GB2267360B (en) 1992-05-22 1995-12-06 Octec Ltd Method and system for interacting with floating objects
US5206500A (en) 1992-05-28 1993-04-27 Cincinnati Microwave, Inc. Pulsed-laser detection with pulse stretcher and noise averaging
JPH05341904A (en) 1992-06-12 1993-12-24 Yashima Denki Co Ltd Encoder provided with hall element and magnetized ball
US5637973A (en) 1992-06-18 1997-06-10 Kabushiki Kaisha Yaskawa Denki Noncontacting electric power transfer apparatus, noncontacting signal transfer apparatus, split-type mechanical apparatus employing these transfer apparatus and a control method for controlling same
JPH064130A (en) 1992-06-23 1994-01-14 Sanyo Electric Co Ltd Cleaning robot
US6615434B1 (en) 1992-06-23 2003-09-09 The Kegel Company, Inc. Bowling lane cleaning machine and method
US5279672A (en) 1992-06-29 1994-01-18 Windsor Industries, Inc. Automatic controlled cleaning machine
US5303448A (en) 1992-07-08 1994-04-19 Tennant Company Hopper and filter chamber for direct forward throw sweeper
US5331713A (en) 1992-07-13 1994-07-26 White Consolidated Industries, Inc. Floor scrubber with recycled cleaning solution
JPH0638912A (en) * 1992-07-22 1994-02-15 Matsushita Electric Ind Co Ltd Dust detecting device for vacuum cleaner
JPH06154143A (en) 1992-08-07 1994-06-03 Johnson Kk Floor washing machine
US5410479A (en) 1992-08-17 1995-04-25 Coker; William B. Ultrasonic furrow or crop row following sensor
JPH0662991A (en) 1992-08-21 1994-03-08 Yashima Denki Co Ltd Vacuum cleaner
JPH06105781A (en) 1992-09-30 1994-04-19 Sanyo Electric Co Ltd Self-mobile vacuum cleaner
US5613269A (en) 1992-10-26 1997-03-25 Miwa Science Laboratory Inc. Recirculating type cleaner
US5324948A (en) 1992-10-27 1994-06-28 The United States Of America As Represented By The United States Department Of Energy Autonomous mobile robot for radiologic surveys
JPH06137828A (en) 1992-10-29 1994-05-20 Kajima Corp Detecting method for position of obstacle
US5548511A (en) 1992-10-29 1996-08-20 White Consolidated Industries, Inc. Method for controlling self-running cleaning apparatus
JPH06149350A (en) 1992-10-30 1994-05-27 Johnson Kk Guidance system for self-traveling car
US5319828A (en) 1992-11-04 1994-06-14 Tennant Company Low profile scrubber
US5369838A (en) 1992-11-16 1994-12-06 Advance Machine Company Automatic floor scrubber
US5261139A (en) 1992-11-23 1993-11-16 Lewis Steven D Raised baseboard brush for powered floor sweeper
USD345707S (en) 1992-12-18 1994-04-05 U.S. Philips Corporation Dust sensor device
GB2273865A (en) 1992-12-19 1994-07-06 Fedag A vacuum cleaner with an electrically driven brush roller
US5284452A (en) 1993-01-15 1994-02-08 Atlantic Richfield Company Mooring buoy with hawser tension indicator system
US5491670A (en) 1993-01-21 1996-02-13 Weber; T. Jerome System and method for sonic positioning
US5315227A (en) 1993-01-29 1994-05-24 Pierson Mark V Solar recharge station for electric vehicles
US5310379A (en) 1993-02-03 1994-05-10 Mattel, Inc. Multiple configuration toy vehicle
DE9303254U1 (en) 1993-03-05 1993-09-30 Raimondi S.r.l., Modena Machine for washing tiled surfaces
US5451135A (en) 1993-04-02 1995-09-19 Carnegie Mellon University Collapsible mobile vehicle
JP2551316B2 (en) 1993-04-09 1996-11-06 株式会社日立製作所 panel
US5345649A (en) 1993-04-21 1994-09-13 Whitlow William T Fan brake for textile cleaning machine
US5352901A (en) 1993-04-26 1994-10-04 Cummins Electronics Company, Inc. Forward and back scattering loss compensated smoke detector
US5363935A (en) 1993-05-14 1994-11-15 Carnegie Mellon University Reconfigurable mobile vehicle with magnetic tracks
US5435405A (en) 1993-05-14 1995-07-25 Carnegie Mellon University Reconfigurable mobile vehicle with magnetic tracks
JPH06327598A (en) 1993-05-21 1994-11-29 Tokyo Electric Co Ltd Intake port body for vacuum cleaner
US5440216A (en) 1993-06-08 1995-08-08 Samsung Electronics Co., Ltd. Robot cleaner
US5460124A (en) 1993-07-15 1995-10-24 Perimeter Technologies Incorporated Receiver for an electronic animal confinement system
IT1264951B1 (en) 1993-07-20 1996-10-17 Anna Maria Boesi ASPIRATING APPARATUS FOR CLEANING SURFACES
FR2708188A1 (en) 1993-07-28 1995-02-03 Philips Laboratoire Electroniq Vacuum cleaner with means of soil detection and adjustment of the engine power according to the detected soil.
JPH0747046A (en) 1993-08-03 1995-02-21 Matsushita Electric Ind Co Ltd Self-mobile electric vacuum cleaner
KR0140499B1 (en) 1993-08-07 1998-07-01 김광호 Vacuum cleaner and control method
US5510893A (en) 1993-08-18 1996-04-23 Digital Stream Corporation Optical-type position and posture detecting device
US5586063A (en) 1993-09-01 1996-12-17 Hardin; Larry C. Optical range and speed detection system
CA2128676C (en) 1993-09-08 1997-12-23 John D. Sotack Capacitive sensor
KR0161031B1 (en) 1993-09-09 1998-12-15 김광호 Position error correction device of robot
KR100197676B1 (en) 1993-09-27 1999-06-15 윤종용 Robot cleaner
JP3319093B2 (en) 1993-11-08 2002-08-26 松下電器産業株式会社 Mobile work robot
GB9323316D0 (en) 1993-11-11 1994-01-05 Crowe Gordon M Motorized carrier
DE4338841C2 (en) 1993-11-13 1999-08-05 Axel Dickmann lamp
GB2284957B (en) 1993-12-14 1998-02-18 Gec Marconi Avionics Holdings Optical systems for the remote tracking of the position and/or orientation of an object
JP2594880B2 (en) 1993-12-29 1997-03-26 西松建設株式会社 Autonomous traveling intelligent work robot
US5511147A (en) 1994-01-12 1996-04-23 Uti Corporation Graphical interface for robot
JPH07222705A (en) 1994-02-10 1995-08-22 Fujitsu General Ltd Floor cleaning robot
BE1008777A6 (en) 1994-02-11 1996-08-06 Solar And Robotics Sa Power system of mobile autonomous robots.
SE502428C2 (en) 1994-02-21 1995-10-16 Electrolux Ab Nozzle
US5608306A (en) 1994-03-15 1997-03-04 Ericsson Inc. Rechargeable battery pack with identification circuit, real time clock and authentication capability
JP3201903B2 (en) 1994-03-18 2001-08-27 富士通株式会社 Semiconductor logic circuit and semiconductor integrated circuit device using the same
JPH07262025A (en) 1994-03-18 1995-10-13 Fujitsu Ltd Execution control system
JPH07311041A (en) 1994-03-22 1995-11-28 Minolta Co Ltd Position detector
JP3530954B2 (en) 1994-03-24 2004-05-24 清之 竹迫 Far-infrared sterilizer
SE502834C2 (en) 1994-03-29 1996-01-29 Electrolux Ab Method and apparatus for detecting obstacles in self-propelled apparatus
US5646494A (en) 1994-03-29 1997-07-08 Samsung Electronics Co., Ltd. Charge induction apparatus of robot cleaner and method thereof
JPH07270518A (en) 1994-03-31 1995-10-20 Komatsu Ltd Distance measuring instrument
JPH07265240A (en) 1994-03-31 1995-10-17 Hookii:Kk Wall side cleaning body for floor cleaner
KR970000582B1 (en) 1994-03-31 1997-01-14 삼성전자 주식회사 Method for controlling driving of a robot cleaner
JPH07281742A (en) 1994-04-04 1995-10-27 Kubota Corp Traveling controller for beam light guided work vehicle
JP3293314B2 (en) * 1994-04-14 2002-06-17 ミノルタ株式会社 Cleaning robot
DE4414683A1 (en) 1994-04-15 1995-10-19 Vorwerk Co Interholding Cleaning device
US5455982A (en) 1994-04-22 1995-10-10 Advance Machine Company Hard and soft floor surface cleaning apparatus
US5802665A (en) 1994-04-25 1998-09-08 Widsor Industries, Inc. Floor cleaning apparatus with two brooms
US5485653A (en) 1994-04-25 1996-01-23 Windsor Industries, Inc. Floor cleaning apparatus
ES2134475T3 (en) 1994-05-10 1999-10-01 Heinrich Iglseder PROCEDURE TO DETECT PARTICLES IN A TWO-PHASE CURRENT, USE OF THE PROCEDURE AND DUST VACUUM CLEANER.
US5507067A (en) 1994-05-12 1996-04-16 Newtronics Pty Ltd. Electronic vacuum cleaner control system
JPH07319542A (en) 1994-05-30 1995-12-08 Minolta Co Ltd Self-traveling work wagon
JPH07313417A (en) 1994-05-30 1995-12-05 Minolta Co Ltd Self-running working car
SE514791C2 (en) 1994-06-06 2001-04-23 Electrolux Ab Improved method for locating lighthouses in self-propelled equipment
JP3051023B2 (en) 1994-06-10 2000-06-12 東芝セラミックス株式会社 Processing method and apparatus for high-precision analysis of impurities in siliconaceous analysis sample
JPH08322774A (en) 1995-03-24 1996-12-10 Minolta Co Ltd Working apparatus
US5636402A (en) 1994-06-15 1997-06-10 Minolta Co., Ltd. Apparatus spreading fluid on floor while moving
US5735959A (en) 1994-06-15 1998-04-07 Minolta Co, Ltd. Apparatus spreading fluid on floor while moving
JPH08256960A (en) 1995-01-24 1996-10-08 Minolta Co Ltd Working device
JPH08393A (en) 1994-06-16 1996-01-09 Okamura Corp Adjustment device for breadthwise space between chair armrests
JPH0816776A (en) 1994-06-30 1996-01-19 Tokyo Koku Keiki Kk Graphic display circuit equipped with smoothing processing circuit
JP3346513B2 (en) 1994-07-01 2002-11-18 ミノルタ株式会社 Map storage method and route creation method using the map
BE1008470A3 (en) 1994-07-04 1996-05-07 Colens Andre Device and automatic system and equipment dedusting sol y adapted.
JPH0822322A (en) 1994-07-07 1996-01-23 Johnson Kk Method and device for controlling floor surface cleaning car
JP2569279B2 (en) 1994-08-01 1997-01-08 コナミ株式会社 Non-contact position detection device for moving objects
CA2137706C (en) 1994-12-09 2001-03-20 Murray Evans Cutting mechanism
US5551525A (en) 1994-08-19 1996-09-03 Vanderbilt University Climber robot
JP3296105B2 (en) 1994-08-26 2002-06-24 ミノルタ株式会社 Autonomous mobile robot
US5454129A (en) 1994-09-01 1995-10-03 Kell; Richard T. Self-powered pool vacuum with remote controlled capabilities
JP3197758B2 (en) 1994-09-13 2001-08-13 日本電信電話株式会社 Optical coupling device and method of manufacturing the same
JPH0884696A (en) 1994-09-16 1996-04-02 Fuji Heavy Ind Ltd Cleaning robot control method and device therefor
JP3188116B2 (en) 1994-09-26 2001-07-16 日本輸送機株式会社 Self-propelled vacuum cleaner
JPH0889449A (en) 1994-09-27 1996-04-09 Kunihiro Michihashi Suctional structure
US6188643B1 (en) 1994-10-13 2001-02-13 Schlumberger Technology Corporation Method and apparatus for inspecting well bore casing
US5498948A (en) 1994-10-14 1996-03-12 Delco Electornics Self-aligning inductive charger
JPH08123548A (en) 1994-10-24 1996-05-17 Minolta Co Ltd Autonomous traveling vehicle
US5546631A (en) 1994-10-31 1996-08-20 Chambon; Michael D. Waterless container cleaner monitoring system
GB9422911D0 (en) 1994-11-14 1995-01-04 Moonstone Technology Ltd Capacitive touch detectors
US5505072A (en) 1994-11-15 1996-04-09 Tekscan, Inc. Scanning circuit for pressure responsive array
US5560077A (en) 1994-11-25 1996-10-01 Crotchett; Diane L. Vacuum dustpan apparatus
JP3396977B2 (en) 1994-11-30 2003-04-14 松下電器産業株式会社 Mobile work robot
GB9500943D0 (en) 1994-12-01 1995-03-08 Popovich Milan M Optical position sensing system
US5710506A (en) 1995-02-07 1998-01-20 Benchmarq Microelectronics, Inc. Lead acid charger
KR100384194B1 (en) 1995-03-22 2003-08-21 혼다 기켄 고교 가부시키가이샤 Adsorption wall walking device
JP3201208B2 (en) 1995-03-23 2001-08-20 ミノルタ株式会社 Autonomous vehicles
US5634237A (en) 1995-03-29 1997-06-03 Paranjpe; Ajit P. Self-guided, self-propelled, convertible cleaning apparatus
IT236779Y1 (en) 1995-03-31 2000-08-17 Dulevo Int Spa SUCTION AND FILTER SWEEPER MACHINE
JPH08286744A (en) 1995-04-14 1996-11-01 Minolta Co Ltd Autonomous running vehicle
US5947225A (en) 1995-04-14 1999-09-07 Minolta Co., Ltd. Automatic vehicle
JPH08286741A (en) 1995-04-14 1996-11-01 Minolta Co Ltd Autonomous running vehicle
ES2171664T3 (en) 1995-04-21 2002-09-16 Vorwerk Co Interholding ADDITIONAL VACUUM CLEANER PART FOR CLEANING IN SURFACES.
GB2300082B (en) 1995-04-21 1999-09-22 British Aerospace Altitude measuring methods
US5537711A (en) 1995-05-05 1996-07-23 Tseng; Yu-Che Electric board cleaner
SE9501810D0 (en) 1995-05-16 1995-05-16 Electrolux Ab Scratch of elastic material
IL113913A (en) 1995-05-30 2000-02-29 Friendly Machines Ltd Navigation method and system
US5655658A (en) 1995-05-31 1997-08-12 Eastman Kodak Company Cassette container having effective centering capability
US5781697A (en) 1995-06-02 1998-07-14 Samsung Electronics Co., Ltd. Method and apparatus for automatic running control of a robot
US5608944A (en) 1995-06-05 1997-03-11 The Hoover Company Vacuum cleaner with dirt detection
US5935333A (en) 1995-06-07 1999-08-10 The Kegel Company Variable speed bowling lane maintenance machine
JPH08335112A (en) 1995-06-08 1996-12-17 Minolta Co Ltd Mobile working robot system
JPH08339297A (en) 1995-06-12 1996-12-24 Fuji Xerox Co Ltd User interface device
JP2640736B2 (en) 1995-07-13 1997-08-13 株式会社エイシン技研 Cleaning and bowling lane maintenance machines
US5764888A (en) 1995-07-20 1998-06-09 Dallas Semiconductor Corporation Electronic micro identification circuit that is inherently bonded to someone or something
US5555587A (en) 1995-07-20 1996-09-17 The Scott Fetzer Company Floor mopping machine
JPH0943901A (en) 1995-07-28 1997-02-14 Dainippon Ink & Chem Inc Manufacture of electrophotographic toner
JPH0944240A (en) 1995-08-01 1997-02-14 Kubota Corp Guide device for moving vehicle
JPH0947413A (en) 1995-08-08 1997-02-18 Minolta Co Ltd Cleaning robot
DE69622103T2 (en) 1995-08-28 2003-01-23 Matsushita Electric Works, Ltd. Optical distance measuring system with triangulation
USD375592S (en) 1995-08-29 1996-11-12 Aktiebolaget Electrolux Vacuum cleaner
JPH0966855A (en) 1995-09-04 1997-03-11 Minolta Co Ltd Crawler vehicle
JP4014662B2 (en) 1995-09-18 2007-11-28 ファナック株式会社 Robot teaching operation panel
JP3152622B2 (en) 1995-09-19 2001-04-03 光雄 藤井 Wiper cleaning method and device
US5819008A (en) 1995-10-18 1998-10-06 Rikagaku Kenkyusho Mobile robot sensor system
US5995449A (en) 1995-10-20 1999-11-30 Baker Hughes Inc. Method and apparatus for improved communication in a wellbore utilizing acoustic signals
SE505115C2 (en) 1995-10-27 1997-06-30 Electrolux Ab Vacuum cleaner nozzle comprising a brush nozzle and method for effecting suction along the front edge of the brush nozzle, seen in the direction of movement
KR0133745B1 (en) 1995-10-31 1998-04-24 배순훈 Dust meter device of a vacuum cleaner
US6167587B1 (en) 1997-07-09 2001-01-02 Bissell Homecare, Inc. Upright extraction cleaning machine
US6041472A (en) 1995-11-06 2000-03-28 Bissell Homecare, Inc. Upright water extraction cleaning machine
US5867861A (en) 1995-11-13 1999-02-09 Kasen; Timothy E. Upright water extraction cleaning machine with two suction nozzles
US5777596A (en) 1995-11-13 1998-07-07 Symbios, Inc. Touch sensitive flat panel display
US5996167A (en) 1995-11-16 1999-12-07 3M Innovative Properties Company Surface treating articles and method of making same
JPH09145309A (en) 1995-11-20 1997-06-06 Kenichi Suzuki Position detection system
JP3025348U (en) 1995-11-30 1996-06-11 株式会社トミー Traveling body
JPH09160644A (en) 1995-12-06 1997-06-20 Fujitsu General Ltd Control method for floor cleaning robot
US6049620A (en) 1995-12-15 2000-04-11 Veridicom, Inc. Capacitive fingerprint sensor with adjustable gain
KR970032722A (en) 1995-12-19 1997-07-22 최진호 Cordless cleaner
JPH09179685A (en) 1995-12-22 1997-07-11 Fujitsu Ltd Wireless optical pointing device and light emitting indicator and optical signal detector to be used for the device
JPH09179625A (en) 1995-12-26 1997-07-11 Hitachi Electric Syst:Kk Method for controlling traveling of autonomous traveling vehicle and controller therefor
JPH09179100A (en) 1995-12-27 1997-07-11 Sharp Corp Picture display device
US5793900A (en) 1995-12-29 1998-08-11 Stanford University Generating categorical depth maps using passive defocus sensing
US6373573B1 (en) 2000-03-13 2002-04-16 Lj Laboratories L.L.C. Apparatus for measuring optical characteristics of a substrate and pigments applied thereto
US5989700A (en) 1996-01-05 1999-11-23 Tekscan Incorporated Pressure sensitive ink means, and methods of use
JPH09185410A (en) 1996-01-08 1997-07-15 Hitachi Electric Syst:Kk Method and device for controlling traveling of autonomous traveling vehicle
US5784755A (en) 1996-01-18 1998-07-28 White Consolidated Industries, Inc. Wet extractor system
JPH09192069A (en) 1996-01-19 1997-07-29 Fujitsu General Ltd Floor surface washing wheel
US5611106A (en) 1996-01-19 1997-03-18 Castex Incorporated Carpet maintainer
US6220865B1 (en) 1996-01-22 2001-04-24 Vincent J. Macri Instruction for groups of users interactively controlling groups of images to make idiosyncratic, simulated, physical movements
US6830120B1 (en) 1996-01-25 2004-12-14 Penguin Wax Co., Ltd. Floor working machine with a working implement mounted on a self-propelled vehicle for acting on floor
JPH09204223A (en) 1996-01-29 1997-08-05 Minolta Co Ltd Autonomous mobile working vehicle
US6574536B1 (en) 1996-01-29 2003-06-03 Minolta Co., Ltd. Moving apparatus for efficiently moving on floor with obstacle
JP3660042B2 (en) 1996-02-01 2005-06-15 富士重工業株式会社 Cleaning robot control method
DE19605573C2 (en) 1996-02-15 2000-08-24 Eurocopter Deutschland Three-axis rotary control stick
DE19605780A1 (en) 1996-02-16 1997-08-21 Branofilter Gmbh Detection device for filter bags in vacuum cleaners
US5828770A (en) 1996-02-20 1998-10-27 Northern Digital Inc. System for determining the spatial position and angular orientation of an object
JP3697768B2 (en) 1996-02-21 2005-09-21 神鋼電機株式会社 Automatic charging system
US5659918A (en) 1996-02-23 1997-08-26 Breuer Electric Mfg. Co. Vacuum cleaner and method
WO1997033212A1 (en) 1996-03-06 1997-09-12 Gmd - Forschungszentrum Informationstechnik Gmbh Autonomous mobile robot system for sensor-based and map-based navigation in pipe networks
JPH09244730A (en) 1996-03-11 1997-09-19 Komatsu Ltd Robot system and controller for robot
JPH09251318A (en) 1996-03-18 1997-09-22 Minolta Co Ltd Level difference sensor
BE1013948A3 (en) 1996-03-26 2003-01-14 Egemin Naanloze Vennootschap MEASURING SYSTEM FOR POSITION OF THE KEYS OF A VEHICLE AND ABOVE sensing device.
JPH09263140A (en) 1996-03-27 1997-10-07 Minolta Co Ltd Unmanned service car
JPH09265319A (en) 1996-03-28 1997-10-07 Minolta Co Ltd Autonomously traveling vehicle
JPH09269810A (en) 1996-03-29 1997-10-14 Minolta Co Ltd Traveling object controller
US5735017A (en) 1996-03-29 1998-04-07 Bissell Inc. Compact wet/dry vacuum cleaner with flexible bladder
JPH09269807A (en) 1996-03-29 1997-10-14 Minolta Co Ltd Traveling object controller
US5732401A (en) 1996-03-29 1998-03-24 Intellitecs International Ltd. Activity based cost tracking systems
SE509317C2 (en) 1996-04-25 1999-01-11 Electrolux Ab Nozzle arrangement for a self-propelled vacuum cleaner
US5935179A (en) 1996-04-30 1999-08-10 Aktiebolaget Electrolux System and device for a self orienting device
SE506372C2 (en) 1996-04-30 1997-12-08 Electrolux Ab Self-propelled device
SE506907C2 (en) 1996-04-30 1998-03-02 Electrolux Ab Self-orientating device system and device
DE19617986B4 (en) 1996-05-04 2004-02-26 Ing. Haaga Werkzeugbau Kg sweeper
US5742975A (en) 1996-05-06 1998-04-28 Windsor Industries, Inc. Articulated floor scrubber
SE9601742L (en) 1996-05-07 1997-11-08 Besam Ab Ways to determine the distance and position of an object
JP3343027B2 (en) 1996-05-17 2002-11-11 アマノ株式会社 Squeegee for floor washer
US5831597A (en) 1996-05-24 1998-11-03 Tanisys Technology, Inc. Computer input device for use in conjunction with a mouse input device
JPH09319431A (en) 1996-06-03 1997-12-12 Minolta Co Ltd Movable robot
JP3493539B2 (en) 1996-06-03 2004-02-03 ミノルタ株式会社 Traveling work robot
JPH09315061A (en) 1996-06-03 1997-12-09 Minolta Co Ltd Ic card and ic card-mounting apparatus
JPH09319434A (en) 1996-06-03 1997-12-12 Minolta Co Ltd Movable robot
JPH09324875A (en) 1996-06-03 1997-12-16 Minolta Co Ltd Tank
JPH09319432A (en) 1996-06-03 1997-12-12 Minolta Co Ltd Mobile robot
JPH09325812A (en) 1996-06-05 1997-12-16 Minolta Co Ltd Autonomous mobile robot
JP3581911B2 (en) 1996-06-07 2004-10-27 コニカミノルタホールディングス株式会社 Mobile vehicle
US6101671A (en) 1996-06-07 2000-08-15 Royal Appliance Mfg. Co. Wet mop and vacuum assembly
US6065182A (en) 1996-06-07 2000-05-23 Royal Appliance Mfg. Co. Cordless wet mop and vacuum assembly
US5983448A (en) 1996-06-07 1999-11-16 Royal Appliance Mfg. Co. Cordless wet mop and vacuum assembly
US5709007A (en) 1996-06-10 1998-01-20 Chiang; Wayne Remote control vacuum cleaner
US5767960A (en) 1996-06-14 1998-06-16 Ascension Technology Corporation Optical 6D measurement system with three fan-shaped beams rotating around one axis
US6030465A (en) 1996-06-26 2000-02-29 Matsushita Electric Corporation Of America Extractor with twin, counterrotating agitators
US6052821A (en) 1996-06-26 2000-04-18 U.S. Philips Corporation Trellis coded QAM using rate compatible, punctured, convolutional codes
US5812267A (en) 1996-07-10 1998-09-22 The United States Of America As Represented By The Secretary Of The Navy Optically based position location system for an autonomous guided vehicle
US6142252A (en) 1996-07-11 2000-11-07 Minolta Co., Ltd. Autonomous vehicle that runs while recognizing work area configuration, and method of selecting route
JP3395874B2 (en) 1996-08-12 2003-04-14 ミノルタ株式会社 Mobile vehicle
US5926909A (en) 1996-08-28 1999-07-27 Mcgee; Daniel Remote control vacuum cleaner and charging system
US5756904A (en) 1996-08-30 1998-05-26 Tekscan, Inc. Pressure responsive sensor having controlled scanning speed
JPH10105236A (en) 1996-09-30 1998-04-24 Minolta Co Ltd Positioning device for traveling object and its method
US5829095A (en) 1996-10-17 1998-11-03 Nilfisk-Advance, Inc. Floor surface cleaning machine
DE19643465C2 (en) 1996-10-22 1999-08-05 Bosch Gmbh Robert Control device for an optical sensor, in particular a rain sensor
JPH10117973A (en) 1996-10-23 1998-05-12 Minolta Co Ltd Autonomous moving vehicle
JPH10118963A (en) 1996-10-23 1998-05-12 Minolta Co Ltd Autonomous mobil vehicle
DE19644570C2 (en) 1996-10-26 1999-11-18 Kaercher Gmbh & Co Alfred Mobile floor cleaning device
US5815884A (en) 1996-11-27 1998-10-06 Yashima Electric Co., Ltd. Dust indication system for vacuum cleaner
DE69607629T2 (en) 1996-11-29 2000-10-19 Yashima Electric Co., Ltd. vacuum cleaner
JP3525658B2 (en) 1996-12-12 2004-05-10 松下電器産業株式会社 Operation controller for air purifier
US5974348A (en) 1996-12-13 1999-10-26 Rocks; James K. System and method for performing mobile robotic work operations
US5940346A (en) 1996-12-13 1999-08-17 Arizona Board Of Regents Modular robotic platform with acoustic navigation system
JPH10177414A (en) 1996-12-16 1998-06-30 Matsushita Electric Ind Co Ltd Device for recognizing traveling state by ceiling picture
US5987696A (en) 1996-12-24 1999-11-23 Wang; Kevin W. Carpet cleaning machine
US6146278A (en) 1997-01-10 2000-11-14 Konami Co., Ltd. Shooting video game machine
EP0954773B1 (en) 1997-01-22 2002-09-04 Siemens Aktiengesellschaft Method and device for docking an autonomous mobile unit
US6076226A (en) 1997-01-27 2000-06-20 Robert J. Schaap Controlled self operated vacuum cleaning system
JP3375843B2 (en) 1997-01-29 2003-02-10 本田技研工業株式会社 Robot autonomous traveling method and autonomous traveling robot control device
JP3731021B2 (en) 1997-01-31 2006-01-05 株式会社トプコン Position detection surveying instrument
US5942869A (en) 1997-02-13 1999-08-24 Honda Giken Kogyo Kabushiki Kaisha Mobile robot control device
JP3323772B2 (en) 1997-02-13 2002-09-09 本田技研工業株式会社 Autonomous mobile robot with deadlock prevention device
US5819367A (en) 1997-02-25 1998-10-13 Yashima Electric Co., Ltd. Vacuum cleaner with optical sensor
JPH10240343A (en) 1997-02-27 1998-09-11 Minolta Co Ltd Autonomously traveling vehicle
JPH10240342A (en) 1997-02-28 1998-09-11 Minolta Co Ltd Autonomous traveling vehicle
DE19708955A1 (en) 1997-03-05 1998-09-10 Bosch Siemens Hausgeraete Multifunctional suction cleaning device
US5995884A (en) 1997-03-07 1999-11-30 Allen; Timothy P. Computer peripheral floor cleaning system and navigation method
US5860707A (en) 1997-03-13 1999-01-19 Rollerblade, Inc. In-line skate wheel
DE69817191T2 (en) 1997-03-18 2004-06-17 Solar And Robotics S.A. ROBOT MOWER
US5767437A (en) 1997-03-20 1998-06-16 Rogers; Donald L. Digital remote pyrotactic firing mechanism
WO1998041822A1 (en) 1997-03-20 1998-09-24 Crotzer David R Dust sensor apparatus
JPH10260727A (en) 1997-03-21 1998-09-29 Minolta Co Ltd Automatic traveling working vehicle
US6587573B1 (en) 2000-03-20 2003-07-01 Gentex Corporation System for controlling exterior vehicle lights
JPH10295595A (en) 1997-04-23 1998-11-10 Minolta Co Ltd Autonomously moving work wagon
US5987383C1 (en) 1997-04-28 2006-06-13 Trimble Navigation Ltd Form line following guidance system
US6557104B2 (en) 1997-05-02 2003-04-29 Phoenix Technologies Ltd. Method and apparatus for secure processing of cryptographic keys
US6108031A (en) 1997-05-08 2000-08-22 Kaman Sciences Corporation Virtual reality teleoperated remote control vehicle
KR200155821Y1 (en) 1997-05-12 1999-10-01 최진호 Remote controller of vacuum cleaner
JPH10314088A (en) 1997-05-15 1998-12-02 Fuji Heavy Ind Ltd Self-advancing type cleaner
CA2290348A1 (en) 1997-05-19 1998-11-26 Creator Ltd. Apparatus and methods for controlling household appliances
US6070290A (en) 1997-05-27 2000-06-06 Schwarze Industries, Inc. High maneuverability riding turf sweeper and surface cleaning apparatus
IL133233A (en) 1997-05-30 2005-05-17 British Broadcasting Corp Position determination
GB2326353B (en) 1997-06-20 2001-02-28 Wong T K Ass Ltd Toy
JPH1115941A (en) 1997-06-24 1999-01-22 Minolta Co Ltd Ic card, and ic card system including the same
US6009358A (en) 1997-06-25 1999-12-28 Thomas G. Xydis Programmable lawn mower
JPH1118752A (en) 1997-07-05 1999-01-26 Masaru Motonaga Aloe vinegar and its production
US6032542A (en) 1997-07-07 2000-03-07 Tekscan, Inc. Prepressured force/pressure sensor and method for the fabrication thereof
US6438793B1 (en) 1997-07-09 2002-08-27 Bissell Homecare, Inc. Upright extraction cleaning machine
US6192548B1 (en) 1997-07-09 2001-02-27 Bissell Homecare, Inc. Upright extraction cleaning machine with flow rate indicator
US6131237A (en) 1997-07-09 2000-10-17 Bissell Homecare, Inc. Upright extraction cleaning machine
US5905209A (en) 1997-07-22 1999-05-18 Tekscan, Inc. Output circuit for pressure sensor
WO1999005580A2 (en) 1997-07-23 1999-02-04 Duschek Horst Juergen Method for controlling an unmanned transport vehicle and unmanned transport vehicle system therefor
US5950408A (en) 1997-07-25 1999-09-14 Mtd Products Inc Bag-full indicator mechanism
US5821730A (en) 1997-08-18 1998-10-13 International Components Corp. Low cost battery sensing technique
US6226830B1 (en) 1997-08-20 2001-05-08 Philips Electronics North America Corp. Vacuum cleaner with obstacle avoidance
US5998953A (en) 1997-08-22 1999-12-07 Minolta Co., Ltd. Control apparatus of mobile that applies fluid on floor
JPH1165655A (en) 1997-08-26 1999-03-09 Minolta Co Ltd Controller for mobile object
EP0939598B2 (en) 1997-08-25 2013-03-20 Koninklijke Philips Electronics N.V. Electrical surface treatment device with an acoustic surface type detector
TW410593U (en) 1997-08-29 2000-11-01 Sanyo Electric Co Suction head for electric vacuum cleaner
JPH1185269A (en) 1997-09-08 1999-03-30 Seibutsukei Tokutei Sangyo Gijutsu Kenkyu Suishin Kiko Guide control device for moving vehicle
US6199181B1 (en) 1997-09-09 2001-03-06 Perfecto Technologies Ltd. Method and system for maintaining restricted operating environments for application programs or operating systems
US6023814A (en) 1997-09-15 2000-02-15 Imamura; Nobuo Vacuum cleaner
SE510524C2 (en) 1997-09-19 1999-05-31 Electrolux Ab Electronic demarcation system
KR19990025888A (en) 1997-09-19 1999-04-06 손욱 Manufacturing Method of Anode Plate for Lithium-Based Secondary Battery
AU4222197A (en) 1997-09-19 1999-04-12 Hitachi Limited Synchronous integrated circuit device
US5933102A (en) 1997-09-24 1999-08-03 Tanisys Technology, Inc. Capacitive sensitive switch method and system
JPH11102220A (en) 1997-09-26 1999-04-13 Minolta Co Ltd Controller for moving body
JPH11102219A (en) 1997-09-26 1999-04-13 Minolta Co Ltd Controller for moving body
US6076026A (en) 1997-09-30 2000-06-13 Motorola, Inc. Method and device for vehicle control events data recording and securing
US20010032278A1 (en) 1997-10-07 2001-10-18 Brown Stephen J. Remote generation and distribution of command programs for programmable devices
SE511504C2 (en) 1997-10-17 1999-10-11 Apogeum Ab Method and apparatus for associating anonymous reflectors to detected angular positions
US5974365A (en) 1997-10-23 1999-10-26 The United States Of America As Represented By The Secretary Of The Army System for measuring the location and orientation of an object
DE19747318C1 (en) 1997-10-27 1999-05-27 Kaercher Gmbh & Co Alfred Cleaning device
US5943730A (en) 1997-11-24 1999-08-31 Tennant Company Scrubber vac-fan seal
CN1183427C (en) 1997-11-27 2005-01-05 阳光及自动化公司 Improvements to mobile robots and their control system
US6125498A (en) 1997-12-05 2000-10-03 Bissell Homecare, Inc. Handheld extraction cleaner
JPH11175149A (en) 1997-12-10 1999-07-02 Minolta Co Ltd Autonomous traveling vehicle
GB2332283A (en) 1997-12-10 1999-06-16 Nec Technologies Coulometric battery state of charge metering
JPH11174145A (en) 1997-12-11 1999-07-02 Minolta Co Ltd Ultrasonic range finding sensor and autonomous driving vehicle
US6055042A (en) 1997-12-16 2000-04-25 Caterpillar Inc. Method and apparatus for detecting obstacles using multiple sensors for range selective detection
JPH11178764A (en) 1997-12-22 1999-07-06 Honda Motor Co Ltd Traveling robot
JP3426487B2 (en) 1997-12-22 2003-07-14 本田技研工業株式会社 Cleaning robot
SE523080C2 (en) 1998-01-08 2004-03-23 Electrolux Ab Docking system for self-propelled work tools
SE511254C2 (en) 1998-01-08 1999-09-06 Electrolux Ab Electronic search system for work tools
US6003196A (en) 1998-01-09 1999-12-21 Royal Appliance Mfg. Co. Upright vacuum cleaner with cyclonic airflow
US6099091A (en) 1998-01-20 2000-08-08 Letro Products, Inc. Traction enhanced wheel apparatus
US5967747A (en) 1998-01-20 1999-10-19 Tennant Company Low noise fan
US5984880A (en) 1998-01-20 1999-11-16 Lander; Ralph H Tactile feedback controlled by various medium
JP3479212B2 (en) 1998-01-21 2003-12-15 本田技研工業株式会社 Control method and device for self-propelled robot
JP3597384B2 (en) 1998-06-08 2004-12-08 シャープ株式会社 Electric vacuum cleaner
CA2251295C (en) 1998-01-27 2002-08-20 Sharp Kabushiki Kaisha Electric vacuum cleaner
US6030464A (en) 1998-01-28 2000-02-29 Azevedo; Steven Method for diagnosing, cleaning and preserving carpeting and other fabrics
JPH11213157A (en) 1998-01-29 1999-08-06 Minolta Co Ltd Camera mounted mobile object
DE19804195A1 (en) 1998-02-03 1999-08-05 Siemens Ag Path planning procedure for a mobile unit for surface processing
US6272936B1 (en) 1998-02-20 2001-08-14 Tekscan, Inc Pressure sensor
SE9800583D0 (en) 1998-02-26 1998-02-26 Electrolux Ab Nozzle
JPH11246806A (en) 1998-03-02 1999-09-14 Toyo Ink Mfg Co Ltd Waterborne pigment dispersion and recording solution for ink jetting
US6026539A (en) 1998-03-04 2000-02-22 Bissell Homecare, Inc. Upright vacuum cleaner with full bag and clogged filter indicators thereon
US6036572A (en) 1998-03-04 2000-03-14 Sze; Chau-King Drive for toy with suction cup feet
ITTO980209A1 (en) 1998-03-12 1998-06-12 Cavanna Spa PROCEDURE FOR COMMANDING THE OPERATION OF MACHINES FOR THE TREATMENT OF ARTICLES, FOR EXAMPLE FOR THE PACKAGING OF PRODUCTS
JPH11282533A (en) 1998-03-26 1999-10-15 Sharp Corp Mobile robot system
JP3479215B2 (en) 1998-03-27 2003-12-15 本田技研工業株式会社 Self-propelled robot control method and device by mark detection
US6263989B1 (en) 1998-03-27 2001-07-24 Irobot Corporation Robotic platform
KR100384980B1 (en) 1998-04-03 2003-06-02 마츠시타 덴끼 산교 가부시키가이샤 Rotational brush device and electric instrument using same
US6023813A (en) 1998-04-07 2000-02-15 Spectrum Industrial Products, Inc. Powered floor scrubber and buffer
US6041471A (en) 1998-04-09 2000-03-28 Madvac International Inc. Mobile walk-behind sweeper
JPH11295412A (en) 1998-04-09 1999-10-29 Minolta Co Ltd Apparatus for recognizing position of mobile
US6154279A (en) 1998-04-09 2000-11-28 John W. Newman Method and apparatus for determining shapes of countersunk holes
AUPP299498A0 (en) 1998-04-15 1998-05-07 Commonwealth Scientific And Industrial Research Organisation Method of tracking and sensing position of objects
US6233504B1 (en) 1998-04-16 2001-05-15 California Institute Of Technology Tool actuation and force feedback on robot-assisted microsurgery system
DE19820628C1 (en) 1998-05-08 1999-09-23 Kaercher Gmbh & Co Alfred Roller mounting or carpet sweeper
IL124413A (en) 1998-05-11 2001-05-20 Friendly Robotics Ltd System and method for area coverage with an autonomous robot
JP3895464B2 (en) 1998-05-11 2007-03-22 株式会社東海理化電機製作所 Data carrier system
EP2306229A1 (en) 1998-05-25 2011-04-06 Panasonic Corporation Range finder device and camera
ATE255241T1 (en) 1998-07-20 2003-12-15 Procter & Gamble ROBOT SYSTEM
US6941199B1 (en) 1998-07-20 2005-09-06 The Procter & Gamble Company Robotic system
JP2000047728A (en) 1998-07-28 2000-02-18 Denso Corp Electric charging controller in moving robot system
US6108859A (en) 1998-07-29 2000-08-29 Alto U. S. Inc. High efficiency squeegee
EP1098587A1 (en) 1998-07-31 2001-05-16 Volker Sommer Household robot for the automatic suction of dust from the floor surfaces
US6112143A (en) 1998-08-06 2000-08-29 Caterpillar Inc. Method and apparatus for establishing a perimeter defining an area to be traversed by a mobile machine
WO2000010062A2 (en) 1998-08-10 2000-02-24 Siemens Aktiengesellschaft Method and device for determining a path around a defined reference position
US6088020A (en) 1998-08-12 2000-07-11 Mitsubishi Electric Information Technology Center America, Inc. (Ita) Haptic device
JP2000056831A (en) 1998-08-12 2000-02-25 Minolta Co Ltd Moving travel vehicle
US6491127B1 (en) 1998-08-14 2002-12-10 3Com Corporation Powered caster wheel module for use on omnidirectional drive systems
JP2000056006A (en) 1998-08-14 2000-02-25 Minolta Co Ltd Position recognizing device for mobile
JP3478476B2 (en) 1998-08-18 2003-12-15 シャープ株式会社 Cleaning robot
JP2000066722A (en) 1998-08-19 2000-03-03 Minolta Co Ltd Autonomously traveling vehicle and rotation angle detection method
JP2000075925A (en) 1998-08-28 2000-03-14 Minolta Co Ltd Autonomous traveling vehicle
US6216307B1 (en) 1998-09-25 2001-04-17 Cma Manufacturing Co. Hand held cleaning device
US20020104963A1 (en) 1998-09-26 2002-08-08 Vladimir Mancevski Multidimensional sensing system for atomic force microscopy
JP2000102499A (en) 1998-09-30 2000-04-11 Kankyo Co Ltd Vacuum cleaner with rotary brush
US6108269A (en) 1998-10-01 2000-08-22 Garmin Corporation Method for elimination of passive noise interference in sonar
CA2251243C (en) 1998-10-21 2006-12-19 Robert Dworkowski Distance tracking control system for single pass topographical mapping
DE19849978C2 (en) 1998-10-29 2001-02-08 Erwin Prasler Self-propelled cleaning device
CN1127402C (en) 1998-11-30 2003-11-12 索尼公司 Robot device and control method thereof
JP3980205B2 (en) 1998-12-17 2007-09-26 コニカミノルタホールディングス株式会社 Work robot
GB2344747B (en) 1998-12-18 2002-05-29 Notetry Ltd Autonomous vacuum cleaner
GB2344888A (en) 1998-12-18 2000-06-21 Notetry Ltd Obstacle detection system
GB2344745B (en) 1998-12-18 2002-06-05 Notetry Ltd Vacuum cleaner
GB2344750B (en) 1998-12-18 2002-06-26 Notetry Ltd Vacuum cleaner
GB2344884A (en) 1998-12-18 2000-06-21 Notetry Ltd Light Detection Apparatus - eg for a robotic cleaning device
GB2344751B (en) 1998-12-18 2002-01-09 Notetry Ltd Vacuum cleaner
US6513046B1 (en) 1999-12-15 2003-01-28 Tangis Corporation Storing and recalling information to augment human memories
GB9827779D0 (en) 1998-12-18 1999-02-10 Notetry Ltd Improvements in or relating to appliances
US6108076A (en) 1998-12-21 2000-08-22 Trimble Navigation Limited Method and apparatus for accurately positioning a tool on a mobile machine using on-board laser and positioning system
US6339735B1 (en) 1998-12-29 2002-01-15 Friendly Robotics Ltd. Method for operating a robot
KR200211751Y1 (en) 1998-12-31 2001-02-01 송영소 Dust collection tester for vacuum cleaner
DE19900484A1 (en) 1999-01-08 2000-08-10 Wap Reinigungssysteme Measuring system for residual dust monitoring for safety vacuums
US6154917A (en) 1999-01-08 2000-12-05 Royal Appliance Mfg. Co. Carpet extractor housing
US6238451B1 (en) 1999-01-08 2001-05-29 Fantom Technologies Inc. Vacuum cleaner
US6282526B1 (en) 1999-01-20 2001-08-28 The United States Of America As Represented By The Secretary Of The Navy Fuzzy logic based system and method for information processing with uncertain input data
US6167332A (en) 1999-01-28 2000-12-26 International Business Machines Corporation Method and apparatus suitable for optimizing an operation of a self-guided vehicle
US6124694A (en) 1999-03-18 2000-09-26 Bancroft; Allen J. Wide area navigation for a robot scrubber
JP3513419B2 (en) 1999-03-19 2004-03-31 キヤノン株式会社 Coordinate input device, control method therefor, and computer-readable memory
JP2000275321A (en) 1999-03-25 2000-10-06 Ushio U-Tech Inc Method and system for measuring position coordinate of traveling object
JP4198262B2 (en) 1999-03-29 2008-12-17 富士重工業株式会社 Position adjustment mechanism of dust absorber in floor cleaning robot
KR20010053488A (en) 1999-05-10 2001-06-25 이데이 노부유끼 Toboy device and method for controlling the same
US7707082B1 (en) 1999-05-25 2010-04-27 Silverbrook Research Pty Ltd Method and system for bill management
US6202243B1 (en) 1999-05-26 2001-03-20 Tennant Company Surface cleaning machine with multiple control positions
GB2350696A (en) 1999-05-28 2000-12-06 Notetry Ltd Visual status indicator for a robotic machine, eg a vacuum cleaner
US6261379B1 (en) 1999-06-01 2001-07-17 Fantom Technologies Inc. Floating agitator housing for a vacuum cleaner head
AU772590B2 (en) 1999-06-08 2004-04-29 Diversey, Inc. Floor cleaning apparatus
JP3598881B2 (en) 1999-06-09 2004-12-08 株式会社豊田自動織機 Cleaning robot
WO2000077910A1 (en) 1999-06-11 2000-12-21 Abb Research Ltd. Method and assembly for the wireless supply of electric energy to a number of actuators, actuator and primary winding therefor and system for a machine with a number of actuators
US6446302B1 (en) 1999-06-14 2002-09-10 Bissell Homecare, Inc. Extraction cleaning machine with cleaning control
ES2222906T3 (en) 1999-06-17 2005-02-16 SOLAR & ROBOTICS S.A. AUTOMATIC OBJECT COLLECTION DEVICE.
AU6065700A (en) 1999-06-30 2001-01-31 Nilfisk-Advance, Inc. Riding floor scrubber
JP4165965B2 (en) 1999-07-09 2008-10-15 フィグラ株式会社 Autonomous work vehicle
US6611738B2 (en) 1999-07-12 2003-08-26 Bryan J. Ruffner Multifunctional mobile appliance
GB9917232D0 (en) 1999-07-23 1999-09-22 Notetry Ltd Method of operating a floor cleaning device
GB9917348D0 (en) 1999-07-24 1999-09-22 Procter & Gamble Robotic system
US6283034B1 (en) 1999-07-30 2001-09-04 D. Wayne Miles, Jr. Remotely armed ammunition
US6677938B1 (en) 1999-08-04 2004-01-13 Trimble Navigation, Ltd. Generating positional reality using RTK integrated with scanning lasers
JP3700487B2 (en) 1999-08-30 2005-09-28 トヨタ自動車株式会社 Vehicle position detection device
DE69927590T2 (en) 1999-08-31 2006-07-06 Swisscom Ag Mobile robot and control method for a mobile robot
JP2001087182A (en) 1999-09-20 2001-04-03 Mitsubishi Electric Corp Vacuum cleaner
US6480762B1 (en) 1999-09-27 2002-11-12 Olympus Optical Co., Ltd. Medical apparatus supporting system
DE19948974A1 (en) 1999-10-11 2001-04-12 Nokia Mobile Phones Ltd Method for recognizing and selecting a tone sequence, in particular a piece of music
US6530102B1 (en) 1999-10-20 2003-03-11 Tennant Company Scrubber head anti-vibration mounting
JP2001121455A (en) 1999-10-29 2001-05-08 Sony Corp Charge system of and charge control method for mobile robot, charge station, mobile robot and its control method
JP4207336B2 (en) 1999-10-29 2009-01-14 ソニー株式会社 Charging system for mobile robot, method for searching for charging station, mobile robot, connector, and electrical connection structure
JP2001216482A (en) 1999-11-10 2001-08-10 Matsushita Electric Ind Co Ltd Electric equipment and portable recording medium
US6459955B1 (en) 1999-11-18 2002-10-01 The Procter & Gamble Company Home cleaning robot
US6548982B1 (en) 1999-11-19 2003-04-15 Regents Of The University Of Minnesota Miniature robotic vehicles and methods of controlling same
US6374155B1 (en) 1999-11-24 2002-04-16 Personal Robotics, Inc. Autonomous multi-platform robot system
US6362875B1 (en) 1999-12-10 2002-03-26 Cognax Technology And Investment Corp. Machine vision system and method for inspection, homing, guidance and docking with respect to remote objects
US6263539B1 (en) 1999-12-23 2001-07-24 Taf Baig Carpet/floor cleaning wand and machine
JP4019586B2 (en) 1999-12-27 2007-12-12 富士電機リテイルシステムズ株式会社 Store management system, information management method, and computer-readable recording medium recording a program for causing a computer to execute the method
JP2001197008A (en) 2000-01-13 2001-07-19 Tsubakimoto Chain Co Mobile optical communication system, photodetection device, optical communication device, and carrier device
US6467122B2 (en) 2000-01-14 2002-10-22 Bissell Homecare, Inc. Deep cleaner with tool mount
US6146041A (en) 2000-01-19 2000-11-14 Chen; He-Jin Sponge mop with cleaning tank attached thereto
US6332400B1 (en) 2000-01-24 2001-12-25 The United States Of America As Represented By The Secretary Of The Navy Initiating device for use with telemetry systems
US8412377B2 (en) 2000-01-24 2013-04-02 Irobot Corporation Obstacle following sensor scheme for a mobile robot
US6594844B2 (en) 2000-01-24 2003-07-22 Irobot Corporation Robot obstacle detection system
US7155308B2 (en) 2000-01-24 2006-12-26 Irobot Corporation Robot obstacle detection system
US6418586B2 (en) 2000-02-02 2002-07-16 Alto U.S., Inc. Liquid extraction machine
GB2358843B (en) 2000-02-02 2002-01-23 Logical Technologies Ltd An autonomous mobile apparatus for performing work within a pre-defined area
JP2001289939A (en) 2000-02-02 2001-10-19 Mitsubishi Electric Corp Ultrasonic wave transmitter/receiver and peripheral obstacle detector for vehicle
US6421870B1 (en) 2000-02-04 2002-07-23 Tennant Company Stacked tools for overthrow sweeping
DE10006493C2 (en) 2000-02-14 2002-02-07 Hilti Ag Method and device for optoelectronic distance measurement
US6276478B1 (en) 2000-02-16 2001-08-21 Kathleen Garrubba Hopkins Adherent robot
DE10007864A1 (en) 2000-02-21 2001-08-30 Wittenstein Gmbh & Co Kg Detecting, determining, locating at least one object and/or space involves transmitting spatial coordinates and/or coordinates of any object in space to robot to orient it
WO2001062173A2 (en) 2000-02-25 2001-08-30 The Board Of Trustees Of The Leland Stanford Junior University Methods and apparatuses for maintaining a trajectory in sterotaxi for tracking a target inside a body
US6285930B1 (en) 2000-02-28 2001-09-04 Case Corporation Tracking improvement for a vision guidance system
US6278918B1 (en) 2000-02-28 2001-08-21 Case Corporation Region of interest selection for a vision guidance system
US6490539B1 (en) 2000-02-28 2002-12-03 Case Corporation Region of interest selection for varying distances between crop rows for a vision guidance system
JP2001258807A (en) 2000-03-16 2001-09-25 Sharp Corp Self-traveling vacuum cleaner
JP2001265437A (en) 2000-03-16 2001-09-28 Figla Co Ltd Traveling object controller
US6443509B1 (en) 2000-03-21 2002-09-03 Friendly Robotics Ltd. Tactile sensor
US6540424B1 (en) 2000-03-24 2003-04-01 The Clorox Company Advanced cleaning system
JP2001275908A (en) 2000-03-30 2001-10-09 Matsushita Seiko Co Ltd Cleaning device
JP4032603B2 (en) 2000-03-31 2008-01-16 コニカミノルタセンシング株式会社 3D measuring device
JP2001277163A (en) 2000-04-03 2001-10-09 Sony Corp Device and method for controlling robot
US20010045883A1 (en) 2000-04-03 2001-11-29 Holdaway Charles R. Wireless digital launch or firing system
JP4480843B2 (en) 2000-04-03 2010-06-16 ソニー株式会社 Legged mobile robot, control method therefor, and relative movement measurement sensor for legged mobile robot
US6870792B2 (en) 2000-04-04 2005-03-22 Irobot Corporation Sonar Scanner
US6662889B2 (en) 2000-04-04 2003-12-16 Irobot Corporation Wheeled platforms
US6956348B2 (en) 2004-01-28 2005-10-18 Irobot Corporation Debris sensor for cleaning apparatus
KR100332984B1 (en) 2000-04-24 2002-04-15 이충전 Combine structure of edge brush in a vaccum cleaner type upright
DE10020503A1 (en) 2000-04-26 2001-10-31 Bsh Bosch Siemens Hausgeraete Machining appliance incorporates vacuum generator between machining appliance and machined surface, with support and working appliance
JP2001306170A (en) 2000-04-27 2001-11-02 Canon Inc Image processing device, image processing system, method for restricting use of image processing device and storage medium
US6769004B2 (en) 2000-04-27 2004-07-27 Irobot Corporation Method and system for incremental stack scanning
EP1279081B1 (en) 2000-05-01 2012-01-04 iRobot Corporation Method and system for remote control of mobile robot
US6845297B2 (en) 2000-05-01 2005-01-18 Irobot Corporation Method and system for remote control of mobile robot
US6741054B2 (en) 2000-05-02 2004-05-25 Vision Robotics Corporation Autonomous floor mopping apparatus
US6633150B1 (en) 2000-05-02 2003-10-14 Personal Robotics, Inc. Apparatus and method for improving traction for a mobile robot
JP2001320781A (en) 2000-05-10 2001-11-16 Inst Of Physical & Chemical Res Support system using data carrier system
US6454036B1 (en) 2000-05-15 2002-09-24 ′Bots, Inc. Autonomous vehicle navigation system and method
US6854148B1 (en) 2000-05-26 2005-02-15 Poolvernguegen Four-wheel-drive automatic swimming pool cleaner
US6481515B1 (en) 2000-05-30 2002-11-19 The Procter & Gamble Company Autonomous mobile surface treating apparatus
US6385515B1 (en) 2000-06-15 2002-05-07 Case Corporation Trajectory path planner for a vision guidance system
US6629028B2 (en) 2000-06-29 2003-09-30 Riken Method and system of optical guidance of mobile body
US6397429B1 (en) 2000-06-30 2002-06-04 Nilfisk-Advance, Inc. Riding floor scrubber
US6539284B2 (en) 2000-07-25 2003-03-25 Axonn Robotics, Llc Socially interactive autonomous robot
EP1176487A1 (en) 2000-07-27 2002-01-30 Gmd - Forschungszentrum Informationstechnik Gmbh Autonomously navigating robot system
US6571422B1 (en) 2000-08-01 2003-06-03 The Hoover Company Vacuum cleaner with a microprocessor-based dirt detection circuit
KR100391179B1 (en) 2000-08-02 2003-07-12 한국전력공사 Teleoperated mobile cleanup device for highly radioactive fine waste
US6720879B2 (en) 2000-08-08 2004-04-13 Time-N-Space Technology, Inc. Animal collar including tracking and location device
US6832407B2 (en) 2000-08-25 2004-12-21 The Hoover Company Moisture indicator for wet pick-up suction cleaner
JP2002073170A (en) 2000-08-25 2002-03-12 Matsushita Electric Ind Co Ltd Movable working robot
WO2002019104A1 (en) 2000-08-28 2002-03-07 Sony Corporation Communication device and communication method, network system, and robot apparatus
JP3674481B2 (en) * 2000-09-08 2005-07-20 松下電器産業株式会社 Self-propelled vacuum cleaner
US7040869B2 (en) 2000-09-14 2006-05-09 Jan W. Beenker Method and device for conveying media
KR20020022444A (en) 2000-09-20 2002-03-27 김대홍 Fuselage and wings and model plane using the same
US20050255425A1 (en) 2000-09-21 2005-11-17 Pierson Paul R Mixing tip for dental materials
US6502657B2 (en) 2000-09-22 2003-01-07 The Charles Stark Draper Laboratory, Inc. Transformable vehicle
EP1191166A1 (en) 2000-09-26 2002-03-27 The Procter & Gamble Company Process of cleaning the inner surface of a water-containing vessel
IL138695A (en) * 2000-09-26 2004-08-31 Rafael Armament Dev Authority Unmanned mobile device
US6674259B1 (en) 2000-10-06 2004-01-06 Innovation First, Inc. System and method for managing and controlling a robot competition
USD458318S1 (en) 2000-10-10 2002-06-04 Sharper Image Corporation Robot
US6658693B1 (en) 2000-10-12 2003-12-09 Bissell Homecare, Inc. Hand-held extraction cleaner with turbine-driven brush
US6690993B2 (en) 2000-10-12 2004-02-10 R. Foulke Development Company, Llc Reticle storage system
US6457206B1 (en) 2000-10-20 2002-10-01 Scott H. Judson Remote-controlled vacuum cleaner
NO313533B1 (en) 2000-10-30 2002-10-21 Torbjoern Aasen Mobile robot
US6615885B1 (en) 2000-10-31 2003-09-09 Irobot Corporation Resilient wheel structure
JP2002307354A (en) 2000-11-07 2002-10-23 Sega Toys:Kk Electronic toy
AUPR154400A0 (en) 2000-11-17 2000-12-14 Duplex Cleaning Machines Pty. Limited Robot machine
US6496754B2 (en) 2000-11-17 2002-12-17 Samsung Kwangju Electronics Co., Ltd. Mobile robot and course adjusting method thereof
US6572711B2 (en) 2000-12-01 2003-06-03 The Hoover Company Multi-purpose position sensitive floor cleaning device
US6571415B2 (en) 2000-12-01 2003-06-03 The Hoover Company Random motion cleaner
SE0004465D0 (en) 2000-12-04 2000-12-04 Abb Ab Robot system
JP4084921B2 (en) 2000-12-13 2008-04-30 日産自動車株式会社 Chip removal device for broaching machine
US6684511B2 (en) 2000-12-14 2004-02-03 Wahl Clipper Corporation Hair clipping device with rotating bladeset having multiple cutting edges
JP3946499B2 (en) 2000-12-27 2007-07-18 フジノン株式会社 Method for detecting posture of object to be observed and apparatus using the same
US6661239B1 (en) 2001-01-02 2003-12-09 Irobot Corporation Capacitive sensor systems and methods with increased resolution and automatic calibration
US6388013B1 (en) 2001-01-04 2002-05-14 Equistar Chemicals, Lp Polyolefin fiber compositions
US6444003B1 (en) 2001-01-08 2002-09-03 Terry Lee Sutcliffe Filter apparatus for sweeper truck hopper
JP2002204768A (en) 2001-01-12 2002-07-23 Matsushita Electric Ind Co Ltd Self-propelled cleaner
JP4479101B2 (en) 2001-01-12 2010-06-09 パナソニック株式会社 Self-propelled vacuum cleaner
US6658325B2 (en) 2001-01-16 2003-12-02 Stephen Eliot Zweig Mobile robotic with web server and digital radio links
US6883201B2 (en) 2002-01-03 2005-04-26 Irobot Corporation Autonomous floor-cleaning robot
US6690134B1 (en) 2001-01-24 2004-02-10 Irobot Corporation Method and system for robot localization and confinement
US7571511B2 (en) 2002-01-03 2009-08-11 Irobot Corporation Autonomous floor-cleaning robot
CN1229068C (en) 2001-01-25 2005-11-30 皇家菲利浦电子有限公司 Robot for vacuum cleaning surface via cycloid movement
FR2820216B1 (en) 2001-01-26 2003-04-25 Wany Sa METHOD AND DEVICE FOR DETECTING OBSTACLE AND MEASURING DISTANCE BY INFRARED RADIATION
ITMI20010193A1 (en) 2001-02-01 2002-08-01 Pierangelo Bertola CRUSHER COLLECTION BRUSH WITH MEANS PERFECTED FOR THE HOLDING OF DIRT COLLECTION
ITFI20010021A1 (en) 2001-02-07 2002-08-07 Zucchetti Ct Sistemi S P A AUTOMATIC VACUUM CLEANING APPARATUS FOR FLOORS
USD471243S1 (en) 2001-02-09 2003-03-04 Irobot Corporation Robot
US6530117B2 (en) 2001-02-12 2003-03-11 Robert A. Peterson Wet vacuum
US6810305B2 (en) 2001-02-16 2004-10-26 The Procter & Gamble Company Obstruction management system for robots
JP4438237B2 (en) 2001-02-22 2010-03-24 ソニー株式会社 Receiving apparatus and method, recording medium, and program
CA2438069C (en) 2001-02-24 2010-07-20 Dyson Limited A collecting chamber for a vacuum cleaner
SE518483C2 (en) 2001-02-28 2002-10-15 Electrolux Ab Wheel suspension for a self-cleaning cleaner
SE518482C2 (en) 2001-02-28 2002-10-15 Electrolux Ab Obstacle detection system for a self-cleaning cleaner
DE10110905A1 (en) 2001-03-07 2002-10-02 Kaercher Gmbh & Co Alfred Soil cultivation device, in particular floor cleaning device
DE10110906A1 (en) 2001-03-07 2002-09-19 Kaercher Gmbh & Co Alfred sweeper
DE10110907A1 (en) 2001-03-07 2002-09-19 Kaercher Gmbh & Co Alfred Floor cleaning device
SE0100926L (en) 2001-03-15 2002-10-01 Electrolux Ab Proximity sensing system for an autonomous device and ultrasonic sensor
SE518683C2 (en) 2001-03-15 2002-11-05 Electrolux Ab Method and apparatus for determining the position of an autonomous apparatus
SE0100924D0 (en) 2001-03-15 2001-03-15 Electrolux Ab Energy-efficient navigation of an autonomous surface treatment apparatus
KR100922506B1 (en) 2001-03-16 2009-10-20 비젼 로보틱스 코포레이션 Autonomous canister vacuum cleaner, system thereof and method of vacuum cleaning using the same
JP4698048B2 (en) 2001-03-19 2011-06-08 富士通テン株式会社 FM-CW radar on-road stationary object detection method
SE523318C2 (en) 2001-03-20 2004-04-13 Ingenjoers N D C Netzler & Dah Camera based distance and angle gauges
JP3849442B2 (en) 2001-03-27 2006-11-22 株式会社日立製作所 Self-propelled vacuum cleaner
DE10116892A1 (en) 2001-04-04 2002-10-17 Outokumpu Oy Process for conveying granular solids
US7328196B2 (en) 2003-12-31 2008-02-05 Vanderbilt University Architecture for multiple interacting robot intelligences
JP2002369778A (en) 2001-04-13 2002-12-24 Yashima Denki Co Ltd Dust detecting device and vacuum cleaner
AU767561B2 (en) 2001-04-18 2003-11-13 Samsung Kwangju Electronics Co., Ltd. Robot cleaner, system employing the same and method for reconnecting to external recharging device
KR100437372B1 (en) 2001-04-18 2004-06-25 삼성광주전자 주식회사 Robot cleaning System using by mobile communication network
RU2220643C2 (en) 2001-04-18 2004-01-10 Самсунг Гванджу Электроникс Ко., Лтд. Automatic cleaning apparatus, automatic cleaning system and method for controlling of system (versions)
US6929548B2 (en) 2002-04-23 2005-08-16 Xiaoling Wang Apparatus and a method for more realistic shooting video games on computers or similar devices
US6687571B1 (en) 2001-04-24 2004-02-03 Sandia Corporation Cooperating mobile robots
US6438456B1 (en) 2001-04-24 2002-08-20 Sandia Corporation Portable control device for networked mobile robots
US6408226B1 (en) 2001-04-24 2002-06-18 Sandia Corporation Cooperative system and method using mobile robots for testing a cooperative search controller
FR2823842B1 (en) 2001-04-24 2003-09-05 Romain Granger MEASURING METHOD FOR DETERMINING THE POSITION AND ORIENTATION OF A MOBILE ASSEMBLY, AND DEVICE FOR CARRYING OUT SAID METHOD
US6540607B2 (en) 2001-04-26 2003-04-01 Midway Games West Video game position and orientation detection system
JP2002323925A (en) 2001-04-26 2002-11-08 Matsushita Electric Ind Co Ltd Moving working robot
US20020159051A1 (en) 2001-04-30 2002-10-31 Mingxian Guo Method for optical wavelength position searching and tracking
US7809944B2 (en) 2001-05-02 2010-10-05 Sony Corporation Method and apparatus for providing information for decrypting content, and program executed on information processor
US6487474B1 (en) 2001-05-10 2002-11-26 International Business Machines Corporation Automated data storage library with multipurpose slots providing user-selected control path to shared robotic device
JP2002333920A (en) 2001-05-11 2002-11-22 Figla Co Ltd Movement controller for traveling object for work
US6711280B2 (en) 2001-05-25 2004-03-23 Oscar M. Stafsudd Method and apparatus for intelligent ranging via image subtraction
EP1408729B1 (en) 2001-05-28 2016-10-26 Husqvarna AB Improvement to a robotic lawnmower
JP4802397B2 (en) 2001-05-30 2011-10-26 コニカミノルタホールディングス株式会社 Image photographing system and operation device
US6763282B2 (en) 2001-06-04 2004-07-13 Time Domain Corp. Method and system for controlling a robot
JP2002355206A (en) 2001-06-04 2002-12-10 Matsushita Electric Ind Co Ltd Traveling vacuum cleaner
JP3356170B1 (en) 2001-06-05 2002-12-09 松下電器産業株式会社 Cleaning robot
JP2002366227A (en) 2001-06-05 2002-12-20 Matsushita Electric Ind Co Ltd Movable working robot
US6901624B2 (en) 2001-06-05 2005-06-07 Matsushita Electric Industrial Co., Ltd. Self-moving cleaner
JP4017840B2 (en) 2001-06-05 2007-12-05 松下電器産業株式会社 Self-propelled vacuum cleaner
US6670817B2 (en) 2001-06-07 2003-12-30 Heidelberger Druckmaschinen Ag Capacitive toner level detection
US20050053912A1 (en) 2001-06-11 2005-03-10 Roth Mark B. Methods for inducing reversible stasis
US7429843B2 (en) 2001-06-12 2008-09-30 Irobot Corporation Method and system for multi-mode coverage for an autonomous robot
ATE510247T1 (en) 2001-06-12 2011-06-15 Irobot Corp METHOD AND SYSTEM FOR MULTI-MODAL COVERING FOR AN AUTONOMOUS ROBOT
US6507773B2 (en) 2001-06-14 2003-01-14 Sharper Image Corporation Multi-functional robot with remote and video system
US6473167B1 (en) 2001-06-14 2002-10-29 Ascension Technology Corporation Position and orientation determination using stationary fan beam sources and rotating mirrors to sweep fan beams
US6685092B2 (en) 2001-06-15 2004-02-03 Symbol Technologies, Inc. Molded imager optical package and miniaturized linear sensor-based code reading engines
JP2003005296A (en) 2001-06-18 2003-01-08 Noritsu Koki Co Ltd Photographic processing device
US6604021B2 (en) 2001-06-21 2003-08-05 Advanced Telecommunications Research Institute International Communication robot
JP4553524B2 (en) 2001-06-27 2010-09-29 フィグラ株式会社 Liquid application method
JP2003010076A (en) 2001-06-27 2003-01-14 Figla Co Ltd Vacuum cleaner
JP2003015740A (en) 2001-07-04 2003-01-17 Figla Co Ltd Traveling controller for traveling object for work
US6622465B2 (en) 2001-07-10 2003-09-23 Deere & Company Apparatus and method for a material collection fill indicator
JP4601215B2 (en) 2001-07-16 2010-12-22 三洋電機株式会社 Cryogenic refrigerator
US20030233870A1 (en) 2001-07-18 2003-12-25 Xidex Corporation Multidimensional sensing system for atomic force microscopy
US20030015232A1 (en) 2001-07-23 2003-01-23 Thomas Nguyen Portable car port
JP2003036116A (en) 2001-07-25 2003-02-07 Toshiba Tec Corp Autonomous travel robot
US6585827B2 (en) 2001-07-30 2003-07-01 Tennant Company Apparatus and method of use for cleaning a hard floor surface utilizing an aerated cleaning liquid
US7051399B2 (en) 2001-07-30 2006-05-30 Tennant Company Cleaner cartridge
US6735811B2 (en) 2001-07-30 2004-05-18 Tennant Company Cleaning liquid dispensing system for a hard floor surface cleaner
US6671925B2 (en) 2001-07-30 2004-01-06 Tennant Company Chemical dispenser for a hard floor surface cleaner
JP2003038401A (en) 2001-08-01 2003-02-12 Toshiba Tec Corp Cleaner
JP2003038402A (en) 2001-08-02 2003-02-12 Toshiba Tec Corp Cleaner
JP2003047579A (en) 2001-08-06 2003-02-18 Toshiba Tec Corp Vacuum cleaner
FR2828589B1 (en) 2001-08-07 2003-12-05 France Telecom ELECTRIC CONNECTION SYSTEM BETWEEN A VEHICLE AND A CHARGING STATION OR THE LIKE
KR100420171B1 (en) 2001-08-07 2004-03-02 삼성광주전자 주식회사 Robot cleaner and system therewith and method of driving thereof
US6580246B2 (en) 2001-08-13 2003-06-17 Steven Jacobs Robot touch shield
JP2003061882A (en) 2001-08-28 2003-03-04 Matsushita Electric Ind Co Ltd Self-propelled vacuum cleaner
US20030168081A1 (en) 2001-09-06 2003-09-11 Timbucktoo Mfg., Inc. Motor-driven, portable, adjustable spray system for cleaning hard surfaces
JP2003084994A (en) 2001-09-12 2003-03-20 Olympus Optical Co Ltd Medical system
DE10242257C5 (en) 2001-09-14 2017-05-11 Vorwerk & Co. Interholding Gmbh Automatically movable floor dust collecting device, and combination of such a collecting device and a base station
ES2248614T3 (en) 2001-09-14 2006-03-16 VORWERK & CO. INTERHOLDING GMBH AUTOMATICALLY TRANSFERABLE FLOOR POWDER APPLIANCE, AS WELL AS A COMBINATION OF A CLASS PICKUP APPLIANCE AND A BASE STATION.
JP2003179556A (en) 2001-09-21 2003-06-27 Casio Comput Co Ltd Information transmission method, information transmission system, imaging apparatus and information transmission method
EP1441632B1 (en) 2001-09-26 2013-05-01 F. Robotics Acquisitions Ltd. Robotic vacuum cleaner
IL145680A0 (en) 2001-09-26 2002-06-30 Friendly Robotics Ltd Robotic vacuum cleaner
US6624744B1 (en) 2001-10-05 2003-09-23 William Neil Wilson Golf cart keyless control system
US6980229B1 (en) 2001-10-16 2005-12-27 Ebersole Jr John F System for precise rotational and positional tracking
GB0126497D0 (en) 2001-11-03 2002-01-02 Dyson Ltd An autonomous machine
GB0126492D0 (en) 2001-11-03 2002-01-02 Dyson Ltd An autonomous machine
DE10155271A1 (en) 2001-11-09 2003-05-28 Bosch Gmbh Robert Common rail injector
US6776817B2 (en) 2001-11-26 2004-08-17 Honeywell International Inc. Airflow sensor, system and method for detecting airflow within an air handling system
JP2003167628A (en) 2001-11-28 2003-06-13 Figla Co Ltd Autonomous traveling service car
KR100449710B1 (en) 2001-12-10 2004-09-22 삼성전자주식회사 Remote pointing method and apparatus therefor
JP3626724B2 (en) 2001-12-14 2005-03-09 株式会社日立製作所 Self-propelled vacuum cleaner
US6860206B1 (en) 2001-12-14 2005-03-01 Irobot Corporation Remote digital firing system
JP3986310B2 (en) 2001-12-19 2007-10-03 シャープ株式会社 Parent-child type vacuum cleaner
JP3907169B2 (en) 2001-12-21 2007-04-18 富士フイルム株式会社 Mobile robot
JP2003190064A (en) 2001-12-25 2003-07-08 Duskin Co Ltd Self-traveling vacuum cleaner
US7335271B2 (en) 2002-01-02 2008-02-26 Lewis & Clark College Adhesive microstructure and method of forming same
US6886651B1 (en) 2002-01-07 2005-05-03 Massachusetts Institute Of Technology Material transportation system
USD474312S1 (en) 2002-01-11 2003-05-06 The Hoover Company Robotic vacuum cleaner
WO2003062852A1 (en) 2002-01-18 2003-07-31 Hitachi,Ltd. Radar device
ATE301302T1 (en) 2002-01-24 2005-08-15 Irobot Corp METHOD AND SYSTEM FOR ROBOT LOCATION AND WORKING AREA RESTRICTION
US9128486B2 (en) 2002-01-24 2015-09-08 Irobot Corporation Navigational control system for a robotic device
US6674687B2 (en) 2002-01-25 2004-01-06 Navcom Technology, Inc. System and method for navigation using two-way ultrasonic positioning
US6856811B2 (en) 2002-02-01 2005-02-15 Warren L. Burdue Autonomous portable communication network
US6844606B2 (en) 2002-02-04 2005-01-18 Delphi Technologies, Inc. Surface-mount package for an optical sensing device and method of manufacture
JP2003241836A (en) 2002-02-19 2003-08-29 Keio Gijuku Control method and apparatus for free-running mobile unit
US6735812B2 (en) 2002-02-22 2004-05-18 Tennant Company Dual mode carpet cleaning apparatus utilizing an extraction device and a soil transfer cleaning medium
US6756703B2 (en) 2002-02-27 2004-06-29 Chi Che Chang Trigger switch module
US7860680B2 (en) 2002-03-07 2010-12-28 Microstrain, Inc. Robotic system for powering and interrogating sensors
JP3863447B2 (en) 2002-03-08 2006-12-27 インターナショナル・ビジネス・マシーンズ・コーポレーション Authentication system, firmware device, electrical device, and authentication method
JP3812463B2 (en) 2002-03-08 2006-08-23 株式会社日立製作所 Direction detecting device and self-propelled cleaner equipped with the same
JP2002360482A (en) 2002-03-15 2002-12-17 Matsushita Electric Ind Co Ltd Self-propelled cleaner
US6658354B2 (en) 2002-03-15 2003-12-02 American Gnc Corporation Interruption free navigator
AU2003220444A1 (en) 2002-03-21 2003-10-08 Rapistan System Advertising Corp. Graphical system configuration program for material handling
JP4032793B2 (en) 2002-03-27 2008-01-16 ソニー株式会社 Charging system, charging control method, robot apparatus, charging control program, and recording medium
JP2004001162A (en) 2002-03-28 2004-01-08 Fuji Photo Film Co Ltd Pet robot charging system, receiving arrangement, robot, and robot system
US7103457B2 (en) 2002-03-28 2006-09-05 Dean Technologies, Inc. Programmable lawn mower
JP2003296855A (en) 2002-03-29 2003-10-17 Toshiba Corp Monitoring device
KR20030082040A (en) 2002-04-16 2003-10-22 삼성광주전자 주식회사 Robot cleaner
JP2003304992A (en) 2002-04-17 2003-10-28 Hitachi Ltd Self-running type vacuum cleaner
US20040068351A1 (en) 2002-04-22 2004-04-08 Neal Solomon System, methods and apparatus for integrating behavior-based approach into hybrid control model for use with mobile robotic vehicles
US20040134337A1 (en) 2002-04-22 2004-07-15 Neal Solomon System, methods and apparatus for mobile software agents applied to mobile robotic vehicles
US20040030570A1 (en) 2002-04-22 2004-02-12 Neal Solomon System, methods and apparatus for leader-follower model of mobile robotic system aggregation
US20040068415A1 (en) 2002-04-22 2004-04-08 Neal Solomon System, methods and apparatus for coordination of and targeting for mobile robotic vehicles
US20040030571A1 (en) 2002-04-22 2004-02-12 Neal Solomon System, method and apparatus for automated collective mobile robotic vehicles used in remote sensing surveillance
US20040068416A1 (en) 2002-04-22 2004-04-08 Neal Solomon System, method and apparatus for implementing a mobile sensor network
US20040030448A1 (en) 2002-04-22 2004-02-12 Neal Solomon System, methods and apparatus for managing external computation and sensor resources applied to mobile robotic network
JP2003310509A (en) 2002-04-23 2003-11-05 Hitachi Ltd Mobile cleaner
US6691058B2 (en) 2002-04-29 2004-02-10 Hewlett-Packard Development Company, L.P. Determination of pharmaceutical expiration date
US7113847B2 (en) 2002-05-07 2006-09-26 Royal Appliance Mfg. Co. Robotic vacuum with removable portable vacuum and semi-automated environment mapping
US6836701B2 (en) 2002-05-10 2004-12-28 Royal Appliance Mfg. Co. Autonomous multi-platform robotic system
JP2003330543A (en) 2002-05-17 2003-11-21 Toshiba Tec Corp Charging type autonomous moving system
JP2003340759A (en) 2002-05-20 2003-12-02 Sony Corp Robot device and robot control method, recording medium and program
GB0211644D0 (en) 2002-05-21 2002-07-03 Wesby Philip B System and method for remote asset management
DE10226853B3 (en) 2002-06-15 2004-02-19 Kuka Roboter Gmbh Method for limiting the force of a robot part
US6967275B2 (en) 2002-06-25 2005-11-22 Irobot Corporation Song-matching system and method
KR100483548B1 (en) 2002-07-26 2005-04-15 삼성광주전자 주식회사 Robot cleaner and system and method of controlling thereof
KR100556612B1 (en) 2002-06-29 2006-03-06 삼성전자주식회사 Apparatus and method of localization using laser
US20050150519A1 (en) 2002-07-08 2005-07-14 Alfred Kaercher Gmbh & Co. Kg Method for operating a floor cleaning system, and floor cleaning system for use of the method
DE10231386B4 (en) 2002-07-08 2004-05-06 Alfred Kärcher Gmbh & Co. Kg Sensor device and self-propelled floor cleaning device with a sensor device
DE10231390A1 (en) 2002-07-08 2004-02-05 Alfred Kärcher Gmbh & Co. Kg Suction device for cleaning purposes
DE10231387A1 (en) 2002-07-08 2004-02-12 Alfred Kärcher Gmbh & Co. Kg Floor cleaning device
DE10231388A1 (en) 2002-07-08 2004-02-05 Alfred Kärcher Gmbh & Co. Kg Tillage system
DE10231391A1 (en) 2002-07-08 2004-02-12 Alfred Kärcher Gmbh & Co. Kg Tillage system
DE10231384A1 (en) 2002-07-08 2004-02-05 Alfred Kärcher Gmbh & Co. Kg Method for operating a floor cleaning system and floor cleaning system for applying the method
US6925357B2 (en) 2002-07-25 2005-08-02 Intouch Health, Inc. Medical tele-robotic system
US6741364B2 (en) 2002-08-13 2004-05-25 Harris Corporation Apparatus for determining relative positioning of objects and related methods
US20040031113A1 (en) 2002-08-14 2004-02-19 Wosewick Robert T. Robotic surface treating device with non-circular housing
US7085623B2 (en) 2002-08-15 2006-08-01 Asm International Nv Method and system for using short ranged wireless enabled computers as a service tool
AU2003256435A1 (en) 2002-08-16 2004-03-03 Evolution Robotics, Inc. Systems and methods for the automated sensing of motion in a mobile robot using visual data
USD478884S1 (en) 2002-08-23 2003-08-26 Motorola, Inc. Base for a cordless telephone
US7103447B2 (en) 2002-09-02 2006-09-05 Sony Corporation Robot apparatus, and behavior controlling method for robot apparatus
US7054716B2 (en) 2002-09-06 2006-05-30 Royal Appliance Mfg. Co. Sentry robot system
US20040143919A1 (en) 2002-09-13 2004-07-29 Wildwood Industries, Inc. Floor sweeper having a viewable receptacle
US8386081B2 (en) * 2002-09-13 2013-02-26 Irobot Corporation Navigational control system for a robotic device
US8428778B2 (en) 2002-09-13 2013-04-23 Irobot Corporation Navigational control system for a robotic device
WO2004031878A1 (en) 2002-10-01 2004-04-15 Fujitsu Limited Robot
JP2004123040A (en) 2002-10-07 2004-04-22 Figla Co Ltd Omnidirectional moving vehicle
US7054718B2 (en) 2002-10-11 2006-05-30 Sony Corporation Motion editing apparatus and method for legged mobile robot and computer program
US6871115B2 (en) 2002-10-11 2005-03-22 Taiwan Semiconductor Manufacturing Co., Ltd Method and apparatus for monitoring the operation of a wafer handling robot
US7303010B2 (en) 2002-10-11 2007-12-04 Intelligent Robotic Corporation Apparatus and method for an autonomous robotic system for performing activities in a well
US6804579B1 (en) 2002-10-16 2004-10-12 Abb, Inc. Robotic wash cell using recycled pure water
KR100459465B1 (en) 2002-10-22 2004-12-03 엘지전자 주식회사 Dust suction structure of robot cleaner
KR100492577B1 (en) 2002-10-22 2005-06-03 엘지전자 주식회사 Suction head of robot cleaner
US7069124B1 (en) 2002-10-28 2006-06-27 Workhorse Technologies, Llc Robotic modeling of voids
KR100468107B1 (en) 2002-10-31 2005-01-26 삼성광주전자 주식회사 Robot cleaner system having external charging apparatus and method for docking with the same apparatus
KR100466321B1 (en) 2002-10-31 2005-01-14 삼성광주전자 주식회사 Robot cleaner, system thereof and method for controlling the same
JP2004148021A (en) 2002-11-01 2004-05-27 Hitachi Home & Life Solutions Inc Self-traveling cleaner
US7079924B2 (en) 2002-11-07 2006-07-18 The Regents Of The University Of California Vision-based obstacle avoidance
JP2004160102A (en) 2002-11-11 2004-06-10 Figla Co Ltd Vacuum cleaner
GB2395261A (en) 2002-11-11 2004-05-19 Qinetiq Ltd Ranging apparatus
US7032469B2 (en) 2002-11-12 2006-04-25 Raytheon Company Three axes line-of-sight transducer
US20050209736A1 (en) 2002-11-13 2005-09-22 Figla Co., Ltd. Self-propelled working robot
JP2004174228A (en) 2002-11-13 2004-06-24 Figla Co Ltd Self-propelled work robot
KR100542340B1 (en) 2002-11-18 2006-01-11 삼성전자주식회사 home network system and method for controlling home network system
JP2004166968A (en) 2002-11-20 2004-06-17 Zojirushi Corp Self-propelled cleaning robot
US7346428B1 (en) 2002-11-22 2008-03-18 Bissell Homecare, Inc. Robotic sweeper cleaner with dusting pad
US7320149B1 (en) 2002-11-22 2008-01-22 Bissell Homecare, Inc. Robotic extraction cleaner with dusting pad
JP3885019B2 (en) 2002-11-29 2007-02-21 株式会社東芝 Security system and mobile robot
US7496665B2 (en) 2002-12-11 2009-02-24 Broadcom Corporation Personal access and control of media peripherals on a media exchange network
GB2396407A (en) 2002-12-19 2004-06-23 Nokia Corp Encoder
JP3731123B2 (en) 2002-12-20 2006-01-05 新菱冷熱工業株式会社 Object position detection method and apparatus
DE10261788B3 (en) 2002-12-23 2004-01-22 Alfred Kärcher Gmbh & Co. Kg Mobile tillage device
DE10261787B3 (en) 2002-12-23 2004-01-22 Alfred Kärcher Gmbh & Co. Kg Mobile tillage device
JP3884377B2 (en) 2002-12-27 2007-02-21 ジーイー・メディカル・システムズ・グローバル・テクノロジー・カンパニー・エルエルシー X-ray equipment
JP2004219185A (en) 2003-01-14 2004-08-05 Meidensha Corp Electrical inertia evaluation device for dynamometer and its method
US20040148419A1 (en) 2003-01-23 2004-07-29 Chen Yancy T. Apparatus and method for multi-user entertainment
US7146682B2 (en) 2003-01-31 2006-12-12 The Hoover Company Powered edge cleaner
JP2004237392A (en) 2003-02-05 2004-08-26 Sony Corp Robotic device and expression method of robotic device
JP2004237075A (en) 2003-02-06 2004-08-26 Samsung Kwangju Electronics Co Ltd Robot cleaner system provided with external charger and connection method for robot cleaner to external charger
KR100485696B1 (en) 2003-02-07 2005-04-28 삼성광주전자 주식회사 Location mark detecting method for a robot cleaner and a robot cleaner using the same method
GB2398394B (en) 2003-02-14 2006-05-17 Dyson Ltd An autonomous machine
JP2004267236A (en) 2003-03-05 2004-09-30 Hitachi Ltd Self-traveling type vacuum cleaner and charging device used for the same
US20040181706A1 (en) 2003-03-13 2004-09-16 Chen Yancy T. Time-controlled variable-function or multi-function apparatus and methods
US7805220B2 (en) 2003-03-14 2010-09-28 Sharper Image Acquisition Llc Robot vacuum with internal mapping system
US20050010331A1 (en) 2003-03-14 2005-01-13 Taylor Charles E. Robot vacuum with floor type modes
US20040200505A1 (en) 2003-03-14 2004-10-14 Taylor Charles E. Robot vac with retractable power cord
KR100492590B1 (en) 2003-03-14 2005-06-03 엘지전자 주식회사 Auto charge system and return method for robot
US7801645B2 (en) 2003-03-14 2010-09-21 Sharper Image Acquisition Llc Robotic vacuum cleaner with edge and object detection system
US20040244138A1 (en) 2003-03-14 2004-12-09 Taylor Charles E. Robot vacuum
JP2004275468A (en) 2003-03-17 2004-10-07 Hitachi Home & Life Solutions Inc Self-traveling vacuum cleaner and method of operating the same
JP3484188B1 (en) 2003-03-31 2004-01-06 貴幸 関島 Steam injection cleaning device
KR20040086940A (en) 2003-04-03 2004-10-13 엘지전자 주식회사 Mobile robot in using image sensor and his mobile distance mesurement method
US7627197B2 (en) 2003-04-07 2009-12-01 Honda Motor Co., Ltd. Position measurement method, an apparatus, a computer program and a method for generating calibration information
KR100486737B1 (en) 2003-04-08 2005-05-03 삼성전자주식회사 Method and apparatus for generating and tracing cleaning trajectory for home cleaning robot
US7057120B2 (en) 2003-04-09 2006-06-06 Research In Motion Limited Shock absorbent roller thumb wheel
KR100488524B1 (en) 2003-04-09 2005-05-11 삼성전자주식회사 Charging equipment for robot
US20040221790A1 (en) 2003-05-02 2004-11-11 Sinclair Kenneth H. Method and apparatus for optical odometry
US6975246B1 (en) 2003-05-13 2005-12-13 Itt Manufacturing Enterprises, Inc. Collision avoidance using limited range gated video
US6888333B2 (en) 2003-07-02 2005-05-03 Intouch Health, Inc. Holonomic platform for a robot
US7133746B2 (en) 2003-07-11 2006-11-07 F Robotics Acquistions, Ltd. Autonomous machine for docking with a docking station and method for docking
DE10331874A1 (en) 2003-07-14 2005-03-03 Robert Bosch Gmbh Remote programming of a program-controlled device
DE10333395A1 (en) 2003-07-16 2005-02-17 Alfred Kärcher Gmbh & Co. Kg Floor Cleaning System
AU2004202836B2 (en) 2003-07-24 2006-03-09 Samsung Gwangju Electronics Co., Ltd. Dust Receptacle of Robot Cleaner
AU2004202834B2 (en) 2003-07-24 2006-02-23 Samsung Gwangju Electronics Co., Ltd. Robot Cleaner
KR100478681B1 (en) 2003-07-29 2005-03-25 삼성광주전자 주식회사 an robot-cleaner equipped with floor-disinfecting function
CN2637136Y (en) 2003-08-11 2004-09-01 泰怡凯电器(苏州)有限公司 Self-positioning mechanism for robot
EP1669172B1 (en) 2003-08-12 2013-10-02 Advanced Telecommunications Research Institute International Communication robot control system
US7027893B2 (en) 2003-08-25 2006-04-11 Ati Industrial Automation, Inc. Robotic tool coupler rapid-connect bus
US7174238B1 (en) 2003-09-02 2007-02-06 Stephen Eliot Zweig Mobile robotic system with web server and digital radio links
US20070061041A1 (en) 2003-09-02 2007-03-15 Zweig Stephen E Mobile robot with wireless location sensing apparatus
JP4427059B2 (en) 2003-09-05 2010-03-03 ブランズウィック ボウリング アンド ビリヤーズ コーポレイション Cross-reference of applications and methods related to conditioning bowling lanes using high precision feed injectors
US7784147B2 (en) 2003-09-05 2010-08-31 Brunswick Bowling & Billiards Corporation Bowling lane conditioning machine
US7225501B2 (en) 2003-09-17 2007-06-05 The Hoover Company Brush assembly for a cleaning device
JP2005088179A (en) 2003-09-22 2005-04-07 Honda Motor Co Ltd Autonomous mobile robot system
US7030768B2 (en) 2003-09-30 2006-04-18 Wanie Andrew J Water softener monitoring device
JP2005135400A (en) 2003-10-08 2005-05-26 Figla Co Ltd Self-propelled working robot
EP1672455A4 (en) 2003-10-08 2007-12-05 Figla Co Ltd Self-propelled working robot
TWM247170U (en) 2003-10-09 2004-10-21 Cheng-Shiang Yan Self-moving vacuum floor cleaning device
JP2005118354A (en) 2003-10-17 2005-05-12 Matsushita Electric Ind Co Ltd House interior cleaning system and operation method
US7392566B2 (en) 2003-10-30 2008-07-01 Gordon Evan A Cleaning machine for cleaning a surface
DE60319542T2 (en) 2003-11-07 2009-04-02 Harman Becker Automotive Systems Gmbh Methods and apparatus for access control to encrypted data services for an entertainment and information processing device in a vehicle
DE10357635B4 (en) 2003-12-10 2013-10-31 Vorwerk & Co. Interholding Gmbh Floor cleaning device
DE10357637A1 (en) 2003-12-10 2005-07-07 Vorwerk & Co. Interholding Gmbh Self-propelled or traveling sweeper and combination of a sweeper with a base station
DE10357636B4 (en) 2003-12-10 2013-05-08 Vorwerk & Co. Interholding Gmbh Automatically movable floor dust collecting device
US7201786B2 (en) 2003-12-19 2007-04-10 The Hoover Company Dust bin and filter for robotic vacuum cleaner
KR20050063546A (en) 2003-12-22 2005-06-28 엘지전자 주식회사 Robot cleaner and operating method thereof
ITMI20032565A1 (en) 2003-12-22 2005-06-23 Calzoni Srl OPTICAL DEVICE INDICATOR OF PLANATA ANGLE FOR AIRCRAFT
EP1553472A1 (en) 2003-12-31 2005-07-13 Alcatel Remotely controlled vehicle using wireless LAN
KR20050072300A (en) 2004-01-06 2005-07-11 삼성전자주식회사 Cleaning robot and control method thereof
US7624473B2 (en) 2004-01-07 2009-12-01 The Hoover Company Adjustable flow rate valve for a cleaning apparatus
JP2005210199A (en) 2004-01-20 2005-08-04 Alps Electric Co Ltd Inter-terminal connection method in radio network
US7332890B2 (en) 2004-01-21 2008-02-19 Irobot Corporation Autonomous robot auto-docking and energy management systems and methods
KR101358475B1 (en) 2004-01-21 2014-02-06 아이로보트 코퍼레이션 Method of docking an autonomous robot
DE102004004505B9 (en) 2004-01-22 2010-08-05 Alfred Kärcher Gmbh & Co. Kg Soil cultivation device and method for its control
WO2005083541A1 (en) 2004-01-28 2005-09-09 Irobot Corporation Debris sensor for cleaning apparatus
JP2005211364A (en) 2004-01-30 2005-08-11 Funai Electric Co Ltd Self-propelled cleaner
JP2005211493A (en) 2004-01-30 2005-08-11 Funai Electric Co Ltd Self-propelled cleaner
JP2005211360A (en) 2004-01-30 2005-08-11 Funai Electric Co Ltd Self-propelled cleaner
US20050183230A1 (en) 2004-01-30 2005-08-25 Funai Electric Co., Ltd. Self-propelling cleaner
JP2005211365A (en) 2004-01-30 2005-08-11 Funai Electric Co Ltd Autonomous traveling robot cleaner
EP2073088B1 (en) 2004-02-03 2011-06-15 F. Robotics Aquisitions Ltd. Robot docking station and robot for use therewith
WO2005077244A1 (en) 2004-02-04 2005-08-25 S. C. Johnson & Son, Inc. Surface treating device with cartridge-based cleaning system
US8045494B2 (en) 2004-02-06 2011-10-25 Koninklijke Philips Electronics N.V. System and method for hibernation mode for beaconing devices
JP2005224263A (en) 2004-02-10 2005-08-25 Funai Electric Co Ltd Self-traveling cleaner
JP2005224265A (en) 2004-02-10 2005-08-25 Funai Electric Co Ltd Self-traveling vacuum cleaner
DE102004007677B4 (en) 2004-02-16 2011-11-17 Miele & Cie. Kg Suction nozzle for a vacuum cleaner with a dust flow indicator
JP2005230032A (en) 2004-02-17 2005-09-02 Funai Electric Co Ltd Autonomous running robot cleaner
KR100561863B1 (en) 2004-02-19 2006-03-16 삼성전자주식회사 Navigation method and navigation apparatus using virtual sensor for mobile robot
DE102004010827B4 (en) 2004-02-27 2006-01-05 Alfred Kärcher Gmbh & Co. Kg Soil cultivation device and method for its control
KR100571834B1 (en) 2004-02-27 2006-04-17 삼성전자주식회사 Method and apparatus of detecting dust on the floor in a robot for cleaning
JP4309785B2 (en) 2004-03-08 2009-08-05 フィグラ株式会社 Electric vacuum cleaner
US20060020369A1 (en) 2004-03-11 2006-01-26 Taylor Charles E Robot vacuum cleaner
US20050273967A1 (en) 2004-03-11 2005-12-15 Taylor Charles E Robot vacuum with boundary cones
US7360277B2 (en) 2004-03-24 2008-04-22 Oreck Holdings, Llc Vacuum cleaner fan unit and access aperture
US7148458B2 (en) 2004-03-29 2006-12-12 Evolution Robotics, Inc. Circuit for estimating position and orientation of a mobile object
US7535071B2 (en) 2004-03-29 2009-05-19 Evolution Robotics, Inc. System and method of integrating optics into an IC package
WO2005098475A1 (en) 2004-03-29 2005-10-20 Evolution Robotics, Inc. Sensing device and method for measuring position and orientation relative to multiple light sources
US7720554B2 (en) 2004-03-29 2010-05-18 Evolution Robotics, Inc. Methods and apparatus for position estimation using reflected light sources
US7603744B2 (en) 2004-04-02 2009-10-20 Royal Appliance Mfg. Co. Robotic appliance with on-board joystick sensor and associated methods of operation
US7617557B2 (en) 2004-04-02 2009-11-17 Royal Appliance Mfg. Co. Powered cleaning appliance
JP2005296511A (en) 2004-04-15 2005-10-27 Funai Electric Co Ltd Self-propelled vacuum cleaner
US7640624B2 (en) 2004-04-16 2010-01-05 Panasonic Corporation Of North America Dirt cup with dump door in bottom wall and dump door actuator on top wall
TWI258259B (en) 2004-04-20 2006-07-11 Jason Yan Automatic charging system of mobile robotic electronic device
TWI262777B (en) 2004-04-21 2006-10-01 Jason Yan Robotic vacuum cleaner
US7041029B2 (en) 2004-04-23 2006-05-09 Alto U.S. Inc. Joystick controlled scrubber
USD510066S1 (en) 2004-05-05 2005-09-27 Irobot Corporation Base station for robot
JP2005346700A (en) 2004-05-07 2005-12-15 Figla Co Ltd Self-propelled working robot
US7208697B2 (en) 2004-05-20 2007-04-24 Lincoln Global, Inc. System and method for monitoring and controlling energy usage
JP4163150B2 (en) 2004-06-10 2008-10-08 日立アプライアンス株式会社 Self-propelled vacuum cleaner
EP1776624A1 (en) 2004-06-24 2007-04-25 iRobot Corporation Programming and diagnostic tool for a mobile robot
US7778640B2 (en) 2004-06-25 2010-08-17 Lg Electronics Inc. Method of communicating data in a wireless mobile communication system
US7254864B2 (en) 2004-07-01 2007-08-14 Royal Appliance Mfg. Co. Hard floor cleaner
US7706917B1 (en) 2004-07-07 2010-04-27 Irobot Corporation Celestial navigation system for an autonomous robot
US8972052B2 (en) 2004-07-07 2015-03-03 Irobot Corporation Celestial navigation system for an autonomous vehicle
JP2006026028A (en) 2004-07-14 2006-02-02 Sanyo Electric Co Ltd Cleaner
US20060020370A1 (en) 2004-07-22 2006-01-26 Shai Abramson System and method for confining a robot
US6993954B1 (en) 2004-07-27 2006-02-07 Tekscan, Incorporated Sensor equilibration and calibration system and method
KR20040072581A (en) 2004-07-29 2004-08-18 (주)제이씨 프로텍 An amplification relay device of electromagnetic wave and a radio electric power conversion apparatus using the above device
DE102004038074B3 (en) 2004-07-29 2005-06-30 Alfred Kärcher Gmbh & Co. Kg Self-propelled cleaning robot for floor surfaces has driven wheel rotated in arc about eccentric steering axis upon abutting obstacle in movement path of robot
JP4201747B2 (en) 2004-07-29 2008-12-24 三洋電機株式会社 Self-propelled vacuum cleaner
KR100641113B1 (en) 2004-07-30 2006-11-02 엘지전자 주식회사 Mobile robot and his moving control method
JP4268911B2 (en) 2004-08-04 2009-05-27 日立アプライアンス株式会社 Self-propelled vacuum cleaner
KR100601960B1 (en) 2004-08-05 2006-07-14 삼성전자주식회사 Simultaneous localization and map building method for robot
DE102004041021B3 (en) 2004-08-17 2005-08-25 Alfred Kärcher Gmbh & Co. Kg Floor cleaning system with self-propelled, automatically-controlled roller brush sweeper and central dirt collection station, reverses roller brush rotation during dirt transfer and battery charging
GB0418376D0 (en) 2004-08-18 2004-09-22 Loc8Tor Ltd Locating system
US20060042042A1 (en) 2004-08-26 2006-03-02 Mertes Richard H Hair ingestion device and dust protector for vacuum cleaner
EP1796879A2 (en) 2004-08-27 2007-06-20 Sharper Image Corporation Robot cleaner with improved vacuum unit
KR100664053B1 (en) 2004-09-23 2007-01-03 엘지전자 주식회사 Cleaning tool auto change system and method for robot cleaner
KR100677252B1 (en) 2004-09-23 2007-02-02 엘지전자 주식회사 Remote observation system and method in using robot cleaner
DE102004046383B4 (en) 2004-09-24 2009-06-18 Stein & Co Gmbh Device for brushing roller of floor care appliances
DE102005044617A1 (en) 2004-10-01 2006-04-13 Vorwerk & Co. Interholding Gmbh Method for the care and / or cleaning of a floor covering and flooring and Bodenpflege- and or cleaning device for this purpose
US7430462B2 (en) 2004-10-20 2008-09-30 Infinite Electronics Inc. Automatic charging station for autonomous mobile machine
US8078338B2 (en) 2004-10-22 2011-12-13 Irobot Corporation System and method for behavior based control of an autonomous vehicle
KR100656701B1 (en) 2004-10-27 2006-12-13 삼성광주전자 주식회사 Robot cleaner system and Method for return to external charge apparatus
JP4074285B2 (en) 2004-10-29 2008-04-09 モレックス インコーポレーテッド Flat cable insertion structure and insertion method
JP4485320B2 (en) 2004-10-29 2010-06-23 アイシン精機株式会社 Fuel cell system
KR100575708B1 (en) 2004-11-11 2006-05-03 엘지전자 주식회사 Distance detection apparatus and method for robot cleaner
KR20060059006A (en) 2004-11-26 2006-06-01 삼성전자주식회사 Method and apparatus of self-propelled mobile unit with obstacle avoidance during wall-following
JP4277214B2 (en) 2004-11-30 2009-06-10 日立アプライアンス株式会社 Self-propelled vacuum cleaner
KR100664059B1 (en) 2004-12-04 2007-01-03 엘지전자 주식회사 Obstacle position recognition apparatus and method in using robot cleaner
WO2006061133A1 (en) 2004-12-09 2006-06-15 Alfred Kärcher Gmbh & Co. Kg Cleaning robot
KR100588061B1 (en) 2004-12-22 2006-06-09 주식회사유진로보틱스 Cleaning robot having double suction device
US20060143295A1 (en) 2004-12-27 2006-06-29 Nokia Corporation System, method, mobile station and gateway for communicating with a universal plug and play network
KR100499770B1 (en) 2004-12-30 2005-07-07 주식회사 아이오. 테크 Network based robot control system
KR100588059B1 (en) 2005-01-03 2006-06-09 주식회사유진로보틱스 A non-contact close obstacle detection device for a cleaning robot
JP2006227673A (en) 2005-02-15 2006-08-31 Matsushita Electric Ind Co Ltd Autonomous travel device
US7389156B2 (en) 2005-02-18 2008-06-17 Irobot Corporation Autonomous surface cleaning robot for wet and dry cleaning
US8392021B2 (en) 2005-02-18 2013-03-05 Irobot Corporation Autonomous surface cleaning robot for wet cleaning
ATE468062T1 (en) 2005-02-18 2010-06-15 Irobot Corp AUTONOMOUS SURFACE CLEANING ROBOT FOR WET AND DRY CLEANING
US7620476B2 (en) 2005-02-18 2009-11-17 Irobot Corporation Autonomous surface cleaning robot for dry cleaning
US20060184293A1 (en) 2005-02-18 2006-08-17 Stephanos Konandreas Autonomous surface cleaning robot for wet cleaning
KR100661339B1 (en) 2005-02-24 2006-12-27 삼성광주전자 주식회사 Automatic cleaning apparatus
KR100654676B1 (en) 2005-03-07 2006-12-08 삼성광주전자 주식회사 Mobile robot having body sensor
ES2238196B1 (en) 2005-03-07 2006-11-16 Electrodomesticos Taurus, S.L. BASE STATION WITH VACUUM ROBOT.
JP2006247467A (en) 2005-03-08 2006-09-21 Figla Co Ltd Self-travelling working vehicle
JP2006260161A (en) 2005-03-17 2006-09-28 Figla Co Ltd Self-propelled working robot
JP4533787B2 (en) 2005-04-11 2010-09-01 フィグラ株式会社 Work robot
JP2006296697A (en) 2005-04-20 2006-11-02 Figla Co Ltd Cleaning robot
TWI278731B (en) 2005-05-09 2007-04-11 Infinite Electronics Inc Self-propelled apparatus for virtual wall system
US20060259494A1 (en) 2005-05-13 2006-11-16 Microsoft Corporation System and method for simultaneous search service and email search
US7389166B2 (en) 2005-06-28 2008-06-17 S.C. Johnson & Son, Inc. Methods to prevent wheel slip in an autonomous floor cleaner
US7578020B2 (en) 2005-06-28 2009-08-25 S.C. Johnson & Son, Inc. Surface treating device with top load cartridge-based cleaning system
JP4492462B2 (en) 2005-06-30 2010-06-30 ソニー株式会社 Electronic device, video processing apparatus, and video processing method
US20070006404A1 (en) 2005-07-08 2007-01-11 Gooten Innolife Corporation Remote control sweeper
JP4630146B2 (en) 2005-07-11 2011-02-09 本田技研工業株式会社 Position management system and position management program
US20070017061A1 (en) 2005-07-20 2007-01-25 Jason Yan Steering control sensor for an automatic vacuum cleaner
JP2007034866A (en) 2005-07-29 2007-02-08 Hitachi Appliances Inc Travel control method for moving body and self-propelled cleaner
JP2007034886A (en) 2005-07-29 2007-02-08 Seiko Epson Corp Image output device, image output method, and network connection apparatus
US20070028574A1 (en) 2005-08-02 2007-02-08 Jason Yan Dust collector for autonomous floor-cleaning device
US7456596B2 (en) 2005-08-19 2008-11-25 Cisco Technology, Inc. Automatic radio site survey using a robot
AU2006284577B2 (en) 2005-09-02 2012-09-13 Neato Robotics, Inc. Multi-function robotic device
DE102005046639A1 (en) 2005-09-29 2007-04-05 Vorwerk & Co. Interholding Gmbh Automatically displaceable floor dust collector, has passive wheel is monitored for its movement and measure is initiated when intensity of movement of passive wheel changes
DE102005046813A1 (en) 2005-09-30 2007-04-05 Vorwerk & Co. Interholding Gmbh Household appliance e.g. floor dust collecting device, operating method for room, involves arranging station units that transmit radio signals, in addition to base station, and orienting household appliance in room by processing signals
WO2007060949A1 (en) 2005-11-25 2007-05-31 K.K. Dnaform Method for detection and amplification of nucleic acid
EP2544065B1 (en) 2005-12-02 2017-02-08 iRobot Corporation Robot system
US9144360B2 (en) 2005-12-02 2015-09-29 Irobot Corporation Autonomous coverage robot navigation system
EP2120122B1 (en) 2005-12-02 2013-10-30 iRobot Corporation Coverage robot mobility
EP1969437B1 (en) 2005-12-02 2009-09-09 iRobot Corporation Coverage robot mobility
EP2270619B1 (en) 2005-12-02 2013-05-08 iRobot Corporation Modular robot
US7568259B2 (en) 2005-12-13 2009-08-04 Jason Yan Robotic floor cleaner
KR100683074B1 (en) 2005-12-22 2007-02-15 (주)경민메카트로닉스 Robot cleaner
TWI290881B (en) 2005-12-26 2007-12-11 Ind Tech Res Inst Mobile robot platform and method for sensing movement of the same
TWM294301U (en) 2005-12-27 2006-07-21 Supply Internat Co Ltd E Self-propelled vacuum cleaner with dust collecting structure
US7539557B2 (en) 2005-12-30 2009-05-26 Irobot Corporation Autonomous mobile robot
KR20070074146A (en) 2006-01-06 2007-07-12 삼성전자주식회사 Cleaner system
KR20070074147A (en) 2006-01-06 2007-07-12 삼성전자주식회사 Cleaner system
JP2007213180A (en) 2006-02-08 2007-08-23 Figla Co Ltd Movable body system
EP1836941B1 (en) 2006-03-14 2014-02-12 Toshiba TEC Kabushiki Kaisha Electric vacuum cleaner
ES2681523T3 (en) 2006-03-17 2018-09-13 Irobot Corporation Lawn Care Robot
CA2541635A1 (en) 2006-04-03 2007-10-03 Servo-Robot Inc. Hybrid sensing apparatus for adaptive robotic processes
EP2027806A1 (en) 2006-04-04 2009-02-25 Samsung Electronics Co., Ltd. Robot cleaner system having robot cleaner and docking station
KR20070104989A (en) 2006-04-24 2007-10-30 삼성전자주식회사 Robot cleaner system and method to eliminate dust thereof
EP3031377B1 (en) 2006-05-19 2018-08-01 iRobot Corporation Removing debris from cleaning robots
US7211980B1 (en) 2006-07-05 2007-05-01 Battelle Energy Alliance, Llc Robotic follow system and method
DE602007007026D1 (en) 2006-09-05 2010-07-22 Lg Electronics Inc cleaning robot
US7408157B2 (en) 2006-09-27 2008-08-05 Jason Yan Infrared sensor
US7318248B1 (en) 2006-11-13 2008-01-15 Jason Yan Cleaner having structures for jumping obstacles
WO2008085503A2 (en) 2007-01-05 2008-07-17 Powercast Corporation Powering cell phones and similar devices using rf energy harvesting
KR101168481B1 (en) 2007-05-09 2012-07-26 아이로보트 코퍼레이션 Autonomous coverage robot
US20080302586A1 (en) 2007-06-06 2008-12-11 Jason Yan Wheel set for robot cleaner
JP2009015611A (en) 2007-07-05 2009-01-22 Figla Co Ltd Charging system, charging unit, and system for automatically charging moving robot
JP5040519B2 (en) 2007-08-14 2012-10-03 ソニー株式会社 Image processing apparatus, image processing method, and program
US20090048727A1 (en) 2007-08-17 2009-02-19 Samsung Electronics Co., Ltd. Robot cleaner and control method and medium of the same
KR101330734B1 (en) 2007-08-24 2013-11-20 삼성전자주식회사 Robot cleaner system having robot cleaner and docking station
JP5091604B2 (en) 2007-09-26 2012-12-05 株式会社東芝 Distribution evaluation method, product manufacturing method, distribution evaluation program, and distribution evaluation system
FR2923465B1 (en) 2007-11-13 2013-08-30 Valeo Systemes Thermiques Branche Thermique Habitacle LOADING AND UNLOADING DEVICE FOR HANDLING TROLLEY.
JP5150827B2 (en) 2008-01-07 2013-02-27 株式会社高尾 A gaming machine with speaker breakage detection function
JP5042076B2 (en) 2008-03-11 2012-10-03 新明和工業株式会社 Suction device and suction wheel
JP5054620B2 (en) 2008-06-17 2012-10-24 未来工業株式会社 Ventilation valve
JP5023269B2 (en) 2008-08-22 2012-09-12 サンノプコ株式会社 Surfactant and coating composition containing the same
JP2010198552A (en) 2009-02-27 2010-09-09 Konica Minolta Holdings Inc Driving state monitoring device
JP5046246B2 (en) 2009-03-31 2012-10-10 サミー株式会社 Pachinko machine
TWI399190B (en) 2009-05-21 2013-06-21 Ind Tech Res Inst Cleaning apparatus and detecting method thereof
JP5302836B2 (en) 2009-09-28 2013-10-02 黒崎播磨株式会社 Stopper control type immersion nozzle
US8833123B2 (en) 2010-07-30 2014-09-16 Komatsu Ltd. Method for manufacturing branched pipe and branched pipe manufacturing device
JP5312514B2 (en) 2011-04-28 2013-10-09 上銀科技股▲分▼有限公司 Crossed roller bearing
WO2013007273A1 (en) 2011-07-08 2013-01-17 Cardionovum Sp.Z.O.O. Balloon surface coating
JP5257533B2 (en) 2011-09-26 2013-08-07 ダイキン工業株式会社 Power converter
DE102012102404A1 (en) 2012-03-21 2013-09-26 Bitzer Kühlmaschinenbau Gmbh refrigeration plant
JP6003251B2 (en) 2012-06-06 2016-10-05 ブラザー工業株式会社 Exposure equipment
KR101438603B1 (en) 2012-10-05 2014-09-05 현대자동차 주식회사 Cooling system for vehicle
JP6154143B2 (en) 2013-01-25 2017-06-28 Juki株式会社 Electronic component mounting apparatus and electronic component mounting method
JP6293095B2 (en) 2015-07-06 2018-03-14 ショット日本株式会社 Airtight terminal with fuse
US10144090B2 (en) 2015-07-17 2018-12-04 Shanghai Seeyao Electronics Co., Ltd. Process and device for simultaneous laser welding

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020120364A1 (en) * 1997-11-27 2002-08-29 Andre Colens Mobile robots and their control system
US20040111184A1 (en) * 2002-09-13 2004-06-10 Chiappetta Mark J. Navigational control system for a robotic device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220022715A1 (en) * 2018-12-07 2022-01-27 Yujin Robot Co., Ltd. Autonomously traveling mobile robot and traveling control method therefor
US12089793B2 (en) * 2018-12-07 2024-09-17 Yujin Robot Co., Ltd. Autonomously traveling mobile robot and traveling control method therefor

Also Published As

Publication number Publication date
US8781626B2 (en) 2014-07-15
US8428778B2 (en) 2013-04-23
US20180263454A1 (en) 2018-09-20
US20130211589A1 (en) 2013-08-15
WO2011014785A3 (en) 2011-10-27
US9949608B2 (en) 2018-04-24
US10813517B2 (en) 2020-10-27
US20100063628A1 (en) 2010-03-11
WO2011014785A2 (en) 2011-02-03
US20140289991A1 (en) 2014-10-02

Similar Documents

Publication Publication Date Title
US20210145234A1 (en) Navigational control system for a robotic device
US8386081B2 (en) Navigational control system for a robotic device
US10595695B2 (en) Debris sensor for cleaning apparatus
US8718821B2 (en) Navigational control system for a robotic device
AU2004316426B2 (en) Debris sensor for cleaning apparatus
EP3043544B1 (en) A navigational control system for a robotic device
AU2012200539B2 (en) Debris sensor for cleaning apparatus

Legal Events

Date Code Title Description
AS Assignment

Owner name: IROBOT CORPORATION, MASSACHUSETTS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:LANDRY, GREGG W.;COHEN, DAVID A.;OZICK, DANIEL N.;AND OTHERS;SIGNING DATES FROM 20090925 TO 20091015;REEL/FRAME:056372/0569

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

AS Assignment

Owner name: BANK OF AMERICA, N.A., AS ADMINISTRATIVE AGENT, NORTH CAROLINA

Free format text: SECURITY INTEREST;ASSIGNOR:IROBOT CORPORATION;REEL/FRAME:061878/0097

Effective date: 20221002

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION

AS Assignment

Owner name: IROBOT CORPORATION, MASSACHUSETTS

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:BANK OF AMERICA, N.A., AS ADMINISTRATIVE AGENT;REEL/FRAME:064430/0001

Effective date: 20230724