JP3197758B2 - Optical coupling device and method of manufacturing the same - Google Patents
Optical coupling device and method of manufacturing the sameInfo
- Publication number
- JP3197758B2 JP3197758B2 JP21839994A JP21839994A JP3197758B2 JP 3197758 B2 JP3197758 B2 JP 3197758B2 JP 21839994 A JP21839994 A JP 21839994A JP 21839994 A JP21839994 A JP 21839994A JP 3197758 B2 JP3197758 B2 JP 3197758B2
- Authority
- JP
- Japan
- Prior art keywords
- layer
- semiconductor laser
- coupling device
- core layer
- optical coupling
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Optical Integrated Circuits (AREA)
- Semiconductor Lasers (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は半導体レーザと、フッ素
化ポリイミドを構成材料とした光導波路とを、同一の基
板上に一体化して構成し、半導体レーザからの出射光
を、フッ素化ポリイミド導波路を介して外部に出射した
り、また、光導波路に入射された外部からの光をフォト
ダイオードで検出する構造の光結合装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor laser and an optical waveguide made of fluorinated polyimide, which are integrated on the same substrate. The present invention relates to an optical coupling device having a structure in which light emitted from the outside through a wave path or external light incident on an optical waveguide is detected by a photodiode.
【0002】[0002]
【従来の技術】従来、半導体レーザ等の半導体光素子と
光導波路からなる光結合装置の一体化形成は、例えば、
春季応用物理学会予稿集29p−ZH−1,(1988
年),pp.846(鈴木与志雄ら:「半導体光源、ガラ
ス導波路集積化光素子の作製」)において発表されてい
る。これは、図13(a)、(b)に示すように、スパ
ッタ法などにより上部クラッド層15としてSiO2膜
(屈折率が低いためにクラッド層とする)等、コア層9
としてSiN(屈折率が比較的高いためコア層とする)
等を形成していたが、この方法ではビームの中心線とコ
ア層とが斜めになるコア傾斜部10が形成されるために
〔図13(a)〕、光が散乱し、またコア層とクラッド
層の屈折率差Δnを小さく制御できないので、コア層9
を厚くすることができず、高々1μm程度であり、たと
え、光導波路の端面を半導体レーザ出射端面と数μmか
ら十数μmのギャップを有するようにコア層9の端面を
エッチングしたとしても〔図13(b)〕、半導体レー
ザの活性層7の高さと、光導波路のコア層9の高さの位
置合わせはすこぶる困難であり、接続効率が悪いばかり
でなく、半導体光素子と光導波路との間に空気などの隙
間が発生することにより、半導体光素子端面に塵埃や、
水滴などが付着するうえ、コア傾斜部10を除去する際
に、例えばイオンエッチング等で除去するとイオン衝撃
によって、半導体光素子に損傷が加えられ半導体光素子
の特性の劣化を引き起こすという問題があった。一方、
レジスト等に用いられているPMMA〔ポリ(メチルメ
タクリレート)〕等の有機物により光導波路を構成する
と、屈折率差Δnを小さくすることができるのでコア層
9を厚くすることができるメリットがあり、半導体レー
ザの活性層7の位置と、コア層9の位置合わせが容易と
なり光接続効率が向上するメリットがある。しかし、上
記のPMMAなどの有機物の耐熱温度はせいぜい230
℃位であり、半導体レーザの作製の最終段階で行われる
半導体レーザ基板の薄片化のための裏面研磨除去17
(図10参照)、および裏面オーミック電極18(図1
0参照)の形成のために約400℃の熱処理を行う必要
があり、このため半導体レーザと一体化して形成するこ
とは耐熱性などの問題があって極めて難しい。それで、
従来はいったん半導体レーザ基板の薄片化のための裏面
研磨除去17と、裏面オーミック電極18を形成して半
導体光素子を作製したうえで、その薄片化された基板
を、別の基板に接着固定した状態で光導波路の作製を行
わねばならないので、半導体光素子と光導波路を一体化
して形成することは製造工程が複雑となり、かつ実用上
問題があった。また、この種の有機物をエッチングする
際には、Tiなどの金属をマスクとして用いることか
ら、コア層のエッチングや最終段階での光導波路のエッ
チングの後に、残留したTiなどの金属マスクの除去の
際に、半導体基板を溶解する塩酸などの酸性液で溶解し
て除去するか、あるいはC−F(炭素−フッ素)系の反
応性ガスでドライエッチングして除去することになり、
ポリイミド光導波路や半導体レーザ基板が損傷されると
いう問題があって、従来は半導体光素子と一体化形成が
できる光導波路は存在しなかった。2. Description of the Related Art Conventionally, integrated formation of a semiconductor optical device such as a semiconductor laser and an optical coupling device comprising an optical waveguide is performed by, for example,
Proceedings of the Spring Society of Applied Physics 29p-ZH-1, (1988
Year), pp. 846 (Yoshio Suzuki et al .: "Semiconductor light source, fabrication of glass waveguide integrated optical device"). This is because, as shown in FIGS. 13A and 13B, a core layer 9 such as an SiO 2 film (which is a clad layer because of its low refractive index) is used as the upper clad layer 15 by sputtering or the like.
(Since it has a relatively high refractive index, it is used as a core layer)
However, in this method, since the core inclined portion 10 in which the center line of the beam and the core layer are inclined is formed (FIG. 13A), light is scattered, and Since the refractive index difference Δn of the cladding layer cannot be controlled to be small, the core layer 9
Cannot be thickened, and is at most about 1 μm. Even if the end face of the core layer 9 is etched so that the end face of the optical waveguide has a gap of several μm to tens of μm with the emission end face of the semiconductor laser [FIG. 13 (b)], it is extremely difficult to align the height of the active layer 7 of the semiconductor laser with the height of the core layer 9 of the optical waveguide, and not only the connection efficiency is poor but also the semiconductor optical device and the optical waveguide When a gap such as air is generated therebetween, dust and
In addition to the adhesion of water droplets and the like, when the core inclined portion 10 is removed, if the core inclined portion 10 is removed, for example, by ion etching or the like, there is a problem that the semiconductor optical device is damaged due to ion bombardment and the characteristics of the semiconductor optical device deteriorate. . on the other hand,
When the optical waveguide is made of an organic substance such as PMMA [poly (methyl methacrylate)] used for a resist or the like, the refractive index difference Δn can be reduced, and therefore, there is an advantage that the core layer 9 can be thickened. There is a merit that the position of the active layer 7 of the laser and the core layer 9 can be easily aligned and the optical connection efficiency is improved. However, the heat resistant temperature of the above-mentioned organic substances such as PMMA is 230 at most.
℃, and the back surface polishing removal 17 for thinning the semiconductor laser substrate performed in the final stage of the fabrication of the semiconductor laser.
(See FIG. 10), and the back ohmic electrode 18 (FIG. 1).
0), it is necessary to perform a heat treatment at about 400 ° C., and it is extremely difficult to integrally form the semiconductor laser with the semiconductor laser due to problems such as heat resistance. So,
Conventionally, a semiconductor optical device was manufactured by forming a backside ohmic electrode 18 and polishing the backside once for thinning a semiconductor laser substrate, and then bonding the thinned substrate to another substrate. Since the optical waveguide must be manufactured in this state, the integrated formation of the semiconductor optical device and the optical waveguide complicates the manufacturing process and has a practical problem. Also, when etching this kind of organic substance, a metal such as Ti is used as a mask, so that after the etching of the core layer and the etching of the optical waveguide in the final stage, the removal of the remaining metal mask such as Ti is performed. At this time, the semiconductor substrate is removed by dissolving with an acidic solution such as hydrochloric acid that dissolves the semiconductor substrate, or is removed by dry etching with a CF (carbon-fluorine) -based reactive gas.
There is a problem that the polyimide optical waveguide and the semiconductor laser substrate are damaged, and there has been no optical waveguide that can be integrally formed with the semiconductor optical element.
【0003】[0003]
【発明が解決しようとする課題】本発明の目的は、上述
した従来技術における問題点を解消するものであって、
半導体光素子と光導波路との光接続効率が良く、半導体
光素子の損傷、劣化が少なく、耐熱性のある新規な光導
波路を構成することにより半導体光素子と光導波路とを
同一基板上に一体に作製することが可能な構造の高性能
で耐久性に優れた光結合装置およびその製造方法を提供
することにある。そして、本発明は具体的に下記の課題
を解決するものである。 (1)コア層とクラッド層の屈折率差Δnを小さくし
て、コア層の厚さを大きくして、半導体レーザの活性層
と光導波路のコア層の中心線を同一高さにすることが容
易に実現できるようにすること、またコア層の端面が基
板と垂直(半導体光素子の端面と平行)となるように構
成することにより光接続効率を向上させる。 (2)半導体光素子の作製プロセスにおけ最高温度40
0℃に耐えられる耐熱性のある光導波路を実現する。 (3)半導体光素子の端面の保護と電極パッドの設置を
同時に実現する。 (4)フッ素化ポリイミド光導波路のエッチング後に残
留するマスクの除去が光導波路および半導体光素子に損
傷、劣化を与えないようなマスクを選択する。SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned problems in the prior art.
The optical connection efficiency between the semiconductor optical device and the optical waveguide is good, the semiconductor optical device and the optical waveguide are integrated on the same substrate by constructing a new optical waveguide with good heat resistance and less damage and deterioration of the semiconductor optical device. An object of the present invention is to provide an optical coupling device having a structure that can be manufactured at a high performance and having excellent durability and a method of manufacturing the same. The present invention specifically solves the following problems. (1) It is possible to reduce the refractive index difference Δn between the core layer and the cladding layer and increase the thickness of the core layer so that the center lines of the active layer of the semiconductor laser and the core layer of the optical waveguide are at the same height. The optical connection efficiency is improved by making it easy to realize, and by configuring the end surface of the core layer to be perpendicular to the substrate (parallel to the end surface of the semiconductor optical device). (2) Maximum temperature 40 in the fabrication process of the semiconductor optical device
An optical waveguide having heat resistance that can withstand 0 ° C. is realized. (3) The protection of the end face of the semiconductor optical device and the installation of the electrode pads are simultaneously realized. (4) Select a mask such that removal of the mask remaining after etching the fluorinated polyimide optical waveguide does not damage or deteriorate the optical waveguide and the semiconductor optical device.
【0004】[0004]
【課題を解決するための手段】上記本発明の課題を解決
するために、本発明の光結合装置およびその製造方法
は、特許請求の範囲に記載されているような構成とする
ものである。すなわち、請求項1に記載のように、半導
体レーザ基板と、該半導体レーザ基板上に、フッ素含有
量がそれぞれ異なるフッ素化ポリイミドよりなる下部ク
ラッド層、コア層および上部クラツド層を積層した三層
構造の光導波路を一体に構成した光結合装置であって、
半導体レーザの出射端面を、上記フッ素化ポリイミドよ
りなる下部クラッド層と同じ組成のフッ素含有量の多い
フッ素化ポリイミドで被覆し、フッ素含有量の少ないフ
ッ素化ポリイミドからなるコア層の端面と、半導体レー
ザの出射端面との間にギャップを設け、かつ半導体レー
ザ基板の活性層の中心線がコア層の中心線とほぼ同一高
さにあって、上記コア層よりもフッ素含有量の多いフッ
素化ポリイミドにより上記ギャップを埋めると共に、上
記コア層上に上部クラッド層を形成した構造とするもの
である。また、請求項2に記載のように、フォトダイオ
ード基板と、該フォトダイオード基板上に、フッ素含有
量がそれぞれ異なるフッ素化ポリイミドよりなる下部ク
ラッド層、コア層および上部クラツド層を積層した三層
構造の光導波路を一体に構成した光結合装置であって、
フォトダイオードの受光端面を、上記フッ素化ポリイミ
ドよりなる下部クラッド層と同じ組成のフッ素含有量の
多いフッ素化ポリイミドで被覆し、フッ素含有量の少な
いフッ素化ポリイミドからなるコア層の端面と、フォト
ダイオードの受光端面との間にギャップを設け、かつフ
ォトダイオード基板の活性層の中心線がコア層の中心線
とほぼ同一高さにあって、上記コア層よりもフッ素含有
量の多いフッ素化ポリイミドにより上記ギャップを埋め
ると共に、上記コア層上に上部クラッド層を形成した構
造とするものである。そして、請求項3に記載のよう
に、請求項1または請求項2において、フッ素化ポリイ
ミドは、酸二無水物である6FDA〔2,2-Bis(3,4-dic
arboxyphenyl)hexafluoropropane Dianhydride…2,2-
ビス(3,4-ジカーボキシフェニール)ヘキサフルオロプ
ロパン ジアンハイドライド〕およびPMDA〔Pyromel
litic Dianhydride…ピロメリティック アンハイドライ
ド〕と、フッ素化ジアミンであるTFDB〔2,2-Bis(t
rifluoromethyl)-4,4′-diaminobiphenyl…2,2-ビス
(トリフルオロメチル)-4,4′-ジアミノビフェニー
ル〕との重合・脱水反応に基づいて生成されるフッ素化
ポリイミドを用いるものである。また、本発明は請求項
4に記載のように、請求項1に記載の光結合装置を製造
する方法であって、半導体レーザの電流供給領域の電極
パッド上に設ける電極膜を、酸素プラズマに耐性のある
金または白金、もしくは金または白金を主成分とする合
金を用いて形成する工程と、半導体レーザの電極パッド
の上に、光導波路を構成するフッ素化ポリイミドよりな
る下部クラッド層、コア層および上部クラッド層の三層
を積層した後、該フッ素化ポリイミドよりなる三層を、
シリコーンベースの感光性レジストをマスクとして、酸
素プラズマによりエッチングする工程と、上記上部クラ
ッド層の形成後に、酸素プラズマにより光導波路を形成
するためのエッチングを行うと同時に、電極パッド部の
金、白金、もしくはこれらの合金からなる電極膜の表面
まで、積層されたフッ素化ポリイミドよりなる三層をエ
ッチングして、電極部の窓開けを行い電極パッドとする
工程を、少なくとも含む光結合装置の製造方法とするも
のである。 また、本発明は請求項5に記載のように、請
求項2に記載の光結合装置を製造する方法であって、フ
ォトダイオードの電流取り出し領域の電極パッド上に設
ける電極膜を、酸素プラズマに耐性のある金または白
金、もしくは金または白金を主成分とする合金を用いて
形成する工程と、フォトダイオードの電極パッドの上
に、光導波路を構成するフッ素化ポリイミドよりなる下
部クラッド層、コア層および上部クラッド層の三層を積
層した後、該フッ素化ポリイミドよりなる三層を、シリ
コーンベースの感光性レジストをマスクとして、酸素プ
ラズマによりエッチングする工程と、上記上部クラッド
層の形成後に、酸素プラズマにより光導波路を形成する
ためのエッチングを行うと同時に、電極パッド部の金、
白金、もしくはこれらの合金からなる電極膜の表面ま
で、積層されたフッ素化ポリイミドよりなる三層をエッ
チングして、電極部の窓開けを行い電極パッドとする工
程を、少なくとも含む光結合装置の製造方法とするもの
である。 また、本発明は請求項6に記載のように、請求
項4または請求項5記載の光結合装置の製造方法におい
て、光導波路を構成するフッ素化ポリイミドよりなる下
部クラッド層、コア層および上部クラッド層の三層を積
層する工程において、酸二無水物とフッ素化ジアミンの
重合・脱水反応により生成されるフッ素化ポリイミドを
積層する光結合装置の製造方法とするものである。そし
て、上記のシリコーンベースの感光性レジスト(SPP
…silicone-basedpositive photoresist)は、アセチル
化された〔ポリ(フェニールシルセスキオキサン)…po
ly(phenylsilsesquioxane)〕と感光剤であるジアゾナ
フトキノン(diazonaphthoqinone)を含有するポジティ
ブの感光性レジストである。本発明の光結合装置および
その製造方法において、従来技術と異なる具体的な点を
挙げると、 (1)光導波路の下部クラッド層および上部クラッド層
のみで半導体光素子(半導体レーザ及びフォトダイオー
ド)端面を被覆するものである。 (2)光導波路の材料として、耐熱性が高く、しかもコ
ア層とクラッド層の屈折率差Δnを小さく制御できるフ
ッ素化ポリイミドを使用すると同時に、電極パッドの最
上層の電極膜にAuやPt、もしくはこれらの金属を主
成分とする合金を用いるものである。 (3)クラッド層およびコア層を形成した後、コア層と
半導体レーザ端面との間にギャップを設け、コア部をエ
ッチングした後、そのギャップを下部クラッド層と同じ
材質のフッ素化ポリイミドで埋め込む構造とする。 (4)フッ素化ポリイミド光導波路におけるコア層の端
面の形成および三層構造を形成するために、フッ素化ポ
リイミド層で覆われた電極パッドの窓開けを行うために
SPPレジストをマスクとして酸素プラズマによりエッ
チングすることにより、同一基板に一体に構成された光
結合装置を作製する。In order to solve the above-mentioned problems of the present invention, an optical coupling device and a method of manufacturing the same according to the present invention are configured as described in the appended claims. That is, a three-layer structure in which a semiconductor laser substrate and a lower clad layer, a core layer, and an upper clad layer made of fluorinated polyimides having different fluorine contents are laminated on the semiconductor laser substrate as described in claim 1. An optical coupling device in which the optical waveguides are integrally configured,
The emission end face of the semiconductor laser is coated with a high fluorine content fluorinated polyimide having the same composition as the lower cladding layer made of the above fluorinated polyimide, and an end face of a core layer made of a low fluorine content fluorinated polyimide, and a semiconductor. A gap is provided between the laser light emitting end face , and the center line of the active layer of the semiconductor laser substrate is substantially at the same height as the center line of the core layer, and the fluorine content is higher than that of the core layer. The gap is filled with polyimide, and an upper clad layer is formed on the core layer. According to a second aspect of the present invention, a photodiode
A fluorine-containing substrate on a photodiode substrate and the photodiode substrate.
The lower part made of fluorinated polyimide
Lad layer, core layer and upper clad layer
An optical coupling device in which an optical waveguide having a structure is integrally formed,
Connect the light-receiving end face of the photodiode to the fluorinated polyimide
Of the same composition as the lower cladding layer consisting of
Coated with high fluorinated polyimide, low fluorine content
End face of the core layer made of fluorinated polyimide
Provide a gap between the light-receiving end face of the diode and the
The center line of the active layer of the photodiode substrate is the center line of the core layer.
Approximately the same height as above, containing fluorine more than the above core layer
Fill the above gap with a large amount of fluorinated polyimide
And an upper clad layer formed on the core layer.
It is to be made. And as described in claim 3 , in claim 1 or claim 2, the fluorinated polyimide is 6FDA [2,2-Bis (3,4-dic) which is an acid dianhydride.
arboxyphenyl) hexafluoropropane Dianhydride… 2,2-
Bis (3,4-dicarboxyphenyl) hexafluoropropane dianhydride] and PMDA [Pyromel
litic Dianhydride: pyromellitic anhydride] and fluorinated diamine TFDB [2,2-Bis (t
[Rifluoromethyl) -4,4'-diaminobiphenyl ... 2,2-bis (trifluoromethyl) -4,4'-diaminobiphenyl]]. Further, the present invention is defined by the claims.
As described in 4, wherein a method of manufacturing an optical coupling device according to claim 1, the electrode film provided on the electrode <br/> pad of the current supply region of the semiconductor laser, the resistance to oxygen plasma A step of forming using gold or platinum, or an alloy containing gold or platinum as a main component, and a lower cladding layer, a core layer, and an upper layer made of fluorinated polyimide constituting an optical waveguide on an electrode pad of a semiconductor laser ; After laminating the three layers of the cladding layer, three layers of the fluorinated polyimide,
Using a silicone-based photosensitive resist as a mask, a step of etching with oxygen plasma, and after forming the upper cladding layer, performing etching for forming an optical waveguide by oxygen plasma, and at the same time, gold, platinum, Or, up to the surface of the electrode film made of these alloys, etching the three layers of fluorinated polyimide laminated, and opening the window of the electrode portion to an electrode pad, at least including a method of manufacturing an optical coupling device and Is what you do. Further, the present invention provides a
A method for manufacturing an optical coupling device according to claim 2, wherein
On the electrode pad in the current extraction area of the photodiode.
The electrode film to be used is made of gold or white
Using gold or an alloy containing gold or platinum as a main component
Forming process and over the photodiode electrode pad
In addition, below the fluorinated polyimide constituting the optical waveguide
Three layers, the inner cladding layer, core layer, and upper cladding layer.
After the layering, the three layers of the fluorinated polyimide are
Using cone-based photosensitive resist as a mask, oxygen
The process of etching by plasma and the upper cladding
After the layer is formed, an optical waveguide is formed by oxygen plasma
At the same time as etching for
Until the surface of the electrode film made of platinum or their alloy
Etch three layers of fluorinated polyimide
To open the window of the electrode part and use it as an electrode pad.
A method of manufacturing an optical coupling device including at least
It is. In addition, the present invention provides
6. The method for manufacturing an optical coupling device according to claim 4 or claim 5.
The lower part made of fluorinated polyimide constituting the optical waveguide
Three layers, the inner cladding layer, core layer, and upper cladding layer.
In the layering step, the acid dianhydride and the fluorinated diamine
Fluorinated polyimide produced by polymerization and dehydration reactions
This is a method for manufacturing a stacked optical coupling device. Then, the silicone-based photosensitive resist (SPP)
... silicone-basedpositive pyr) is acetylated [poly (phenylsilsesquioxane) ... po
ly (phenylsilsesquioxane)] and diazonaphthoquinone as a photosensitive agent. In the optical coupling device and the method of manufacturing the same according to the present invention, specific points different from the prior art are as follows. Is to be coated. (2) As a material for the optical waveguide, a fluorinated polyimide having high heat resistance and capable of controlling the refractive index difference Δn between the core layer and the cladding layer to be small is used, and at the same time, Au, Pt, or the like is formed on the uppermost electrode film of the electrode pad. Alternatively, an alloy containing these metals as main components is used. (3) A structure in which after forming the cladding layer and the core layer, a gap is provided between the core layer and the end face of the semiconductor laser, the core is etched, and the gap is filled with fluorinated polyimide of the same material as the lower cladding layer. And (4) In order to form the end face of the core layer in the fluorinated polyimide optical waveguide and to form a three-layer structure, the electrode pad covered with the fluorinated polyimide layer is opened by oxygen plasma using the SPP resist as a mask to open a window. By etching, an optical coupling device integrally formed on the same substrate is manufactured.
【0005】[0005]
【作用】本発明の光結合装置は、請求項1および請求項
2に記載のように、半導体レーザ基板と同一の基板上に
一体化して形成した光導波路を耐熱性の高いフッ素化ポ
リイミドにより作製しているので、半導体光素子の製造
工程における最高加熱温度400℃においても変質する
ことがなく、半導体光素子の製造プロセスにおいて十分
に耐久性があるため、半導体レーザやフォトダイオード
などの半導体光素子との一体化を容易に実現することが
できる。また、半導体光素子端面を高耐熱性のみならず
耐腐食性の高いフッ素化ポリイミドで覆っていることか
ら、水滴、塵埃などが端面に付着して半導体レーザの反
射率の変化を引き起こすことがなく安定した半導体レー
ザの光出力特性、およびフォトダイオードの暗電流特性
が得られる。さらに、コア層とクラッド層の屈折率差Δ
nを小さくできることから、コア層を厚くでき、半導体
レーザの活性層とコア層の位置合わせが容易になると共
に、半導体光素子のエッチドミラー面側にコア層のエッ
チドミラーが形成されているために、光散乱が少なく高
い光接続効率で再現性よく作製することができる。そし
て、本発明の光結合装置の製造方法は、請求項3に記載
のように、光導波路のエッチング後に残留したマスクが
半導体レーザ基板および光導波路に損傷を与えることが
なく、容易にマスクの除去ができることから良好な光導
波路の伝達特性が得られる。According to the optical coupling device of the present invention, an optical waveguide integrally formed on the same substrate as a semiconductor laser substrate is made of fluorinated polyimide having high heat resistance. The semiconductor optical device does not deteriorate even at the maximum heating temperature of 400 ° C. in the semiconductor optical device manufacturing process, and has sufficient durability in the semiconductor optical device manufacturing process. Can be easily realized. In addition, since the end face of the semiconductor optical device is covered with fluorinated polyimide having high corrosion resistance as well as high heat resistance, water droplets, dust, etc. do not adhere to the end face and cause a change in the reflectance of the semiconductor laser. Stable light output characteristics of the semiconductor laser and dark current characteristics of the photodiode can be obtained. Further, the refractive index difference Δ between the core layer and the cladding layer
Since n can be reduced, the core layer can be thickened, the alignment between the active layer of the semiconductor laser and the core layer is facilitated, and the etched mirror of the core layer is formed on the etched mirror surface side of the semiconductor optical device. Therefore, it can be manufactured with low light scattering and high optical connection efficiency with good reproducibility. In the method of manufacturing an optical coupling device according to the present invention, the mask remaining after etching the optical waveguide does not damage the semiconductor laser substrate and the optical waveguide, and the mask is easily removed. Therefore, good transmission characteristics of the optical waveguide can be obtained.
【0006】[0006]
【実施例】以下に本発明の実施例を挙げ、図面を用いて
さらに詳細に説明する。図1(a)、(b)は、本発明
の実施例で例示する光結合装置の構成を示す模式図であ
る。本実施例においては、半導体光素子として半導体レ
ーザを用いた場合について説明する。本発明の光結合装
置を実現するために、酸二無水物である6FDAとPM
DAの2種類と、フッ素化ジアミンTFDBとの混合物
を作製した。すなわち、酸二無水物/フッ素化ジアミ
ン:6FDA/TFDB(屈折率は波長λ:0.84μ
mに対して1.59)と、酸二無水物/フッ素化ジアミ
ン:PMDA/TFDB(屈折率は波長λ:0.84μ
mに対して1.53)の混合比を変えた2種類のフッ素
化ポリイミド(両者の屈折率は波長λ0.84μmに対
して1.533と1.541で屈折率差Δn:0.00
8)重合体をあらかじめ作製した。まず、図1(a)、
(b)に示すように、厚さ350μm程度の半導体レー
ザ基板(GaAs基板)1に、3つの量子井戸構造の活
性層を持つ半導体レーザ部2を多数作製しておく。その
一つの半導体レーザのワンチップに相当する寸法は約
0.8×1.0mm位である。ここで、電極について説
明する。図2(a)は、図1(b)のA−A断面、図2
(b)は、図1(b)のB−B断面を示し、以下図11
まで同様に表示した。図2(a)、(b)に示すよう
に、半導体レーザの 電流注入領域3ではAuZnNi
のオーミックコンタクを形成し、それ以外の部分はSi
O2やSi3N4などの絶縁膜を、半導体レーザ部2から
電極パッド部4まで被覆しておき、その上に電極の密着
性を良くするためにCrなどの膜を薄く形成し、Auや
Ptもしくはこれらの金属を主成分とする合金からなる
電極膜5を形成する。この場合、半導体レーザ部2のエ
ッチドミラー6の深さは、活性層7から下へ5.5μ
m、上へ2.5μmの合計8μmの厚さを、純塩素の反
応性ガスを用いてエッチングした。次に、光導波路の下
部クラッド層8を形成するために屈折率1.533のフ
ッ素化ポリイミドを塗付した後、ベークして脱水反応を
起こさせ、半導体レーザ部2はもちろんのこと、電極パ
ッド部4のすべてを被覆した〔図3(a)、(b)〕。
上記フッ素化ポリイミドの厚さは半導体レーザ端面近傍
を除いたところでは、目標値4μmに対して3.9μm
の厚さであった。引き続きコア層9を形成するために、
クラッド層と屈折率の異なる1.541のフッ素化ポリ
イミドを塗付・焼結した〔図4(a)、(b)〕。この
場合、屈折率差Δnを0.008と小さく制御できるこ
とから、シングルモードが得られるコア層9の厚さは
3.5μmであるので、このときのコア層9の厚みの目
標を3μmとした。実際には3.0μmの厚みのほぼ目
標値どおりに形成できた。この後、図5(a)、(b)
に示すように、光を導波するための伝搬路を酸素プラズ
マに曝された部分がSiO2変質層12に変化するシリ
コーンベースのポジティブの感光性レジストであるSP
Pレジスト11を用いて、ホトリソグラフィをした後、
酸素ガス雰囲気中で半導体レーザの端面近傍に形成され
るコア傾斜部10を、反応性エッチングにより除去し
た。なお、本実施例では電極パッド部4の上に形成され
るコア層9はエッチングしなかった。この時のエッチン
グ深さは多少オーバぎみで約4μmであった。コア層9
の端面と半導体レーザの端面との間に、10μmのギャ
ップ(隙間)13を形成した。この反応性エッチングに
おいて、下部クラッド層8は、半導体レーザ上に残され
た状態となっている。したがって、本実施例のようにコ
ア層9をオーバエッチングしても半導体レーザ端面がフ
ッ素化ポリイミドで覆われているため、エッチングの際
のイオン衝撃を半導体レーザ端面が受けることがないこ
とから、後述するように、半導体レーザの特性の劣化を
引き起こすことはない。また、最終的に裏面電極形成後
に電流を注入した場合に、コア層の中心はエッチングの
底面から5.4μmで、活性層7の高さ5.5μmとの
ずれは約0.1μmしかないので、コア層が3μmと厚
いために十分に半導体レーザの活性層7から出射したビ
ームはコア層9内へ伝達されていく。コア層9上に残さ
れたSPPレジスト11の表面が、酸素プラズマに曝さ
れSiO2に変化してSiO2変質層12が形成されてい
るため、10%の緩衝フッ酸に数秒ほど浸漬し、ソルフ
ァインTMを用いて除去しエチルアルコールでリンスす
ると、フッ素化ポリイミド層が損傷されることなく、S
PPレジスト11のみがきれいに除去された〔図6
(a)(b)〕。その後、再度、フッ素化ポリイミドよ
りなるクラッド材を、下部クラッド層8形成と同様の手
順で塗付・焼結して、上部クラッド層15を形成すると
同時に、半導体レーザとコア層9との間にあるギャップ
13をも埋めた〔図7(a)、(b)〕。また、フッ素
化ポリイミドの粘度が高いために平坦化にも有効で、塗
布・ベーク後、半導体レーザ端面付近のギャップ13部
の段差は大幅に減少した。この三層構造のフッ素化ポリ
イミドを、先に作製した半導体レーザ部2と光軸の合致
した光導波路とするために、SPPレジスト11を用い
たホトリソグラフィ技術と、酸素プラズマによる反応性
イオンエッチング加工により光導波路16を形成すると
同時に、電極パッド部4上のフッ素化ポリイミド層を窓
開けして、電極膜(Au)5を露出させた〔図8
(a)、(b)〕。なお、図9は半導体レーザ基板のワ
ンチップを示す平面図で、光導波路(三層構造)16の
位置を示す。さらに、半導体レーザの裏面電極形成のた
めに、約280μmほど半導体レーザ基板の薄片化のた
めの裏面研磨除去17を行い、約70μm近くまで薄片
化し、裏面オーミック電極18形成のために、AuGe
Ni合金を抵抗加熱により蒸着して、ベーク炉で400
℃で20秒ほど焼成し、図10(a)、(b)に示す本
発明の半導体レーザと光導波路を同一基板上に形成した
光結合装置を得た。図10(a)、(b)に示すよう
に、本発明の光結合装置は、耐熱性、かつ耐食性の良好
なフッ素化ポリイミドからなる光導波路(三層構造)に
より、半導体レーザあるいはフォトダイオード等の半導
体光素子を覆う形をとっているので、素子の端面に塵埃
とか水滴が付着することがなく、使用可能な環境条件が
緩和される。また、フッ素化ポリイミドを使用すること
によって、コア層とクラッド層の屈折率差Δnが小さく
できるので、コア層9を厚くすることができ、半導体レ
ーザの活性層7との高さの調整が容易となり、しかもコ
ア層9の端面を半導体光素子端面と平行にエッチングし
て除去することができるため、半導体光素子からの出射
あるいは半導体光素子への入射の際に散乱光が少なく、
光接続効率を大幅に向上させることができる。次に、フ
ッ素化ポリイミドからなる導波路の作製による半導体レ
ーザ特性の劣化の有無を確認するために、図11に示す
ように、窓開けした電極パッド4に、測定用プローブ2
4を当てて、電流を半導体レーザ部2に注入して半導体
レーザを発光させた。その注入電流I(mA)と出力光
L(mW)との関係を、図12に示す。半導体レーザ端
面が空気でなく、屈折率が約1.5のポリイミド導波路
が接触し、半導体レーザ共振面(端面)の反射率が低下
することから、若干発振のためのしきい値電流は低下す
るが、発振出力勾配などまったく低下は認められなかっ
た。また、上記のI−L特性から分るように、光接続効
率が1dB以下と優れた結果が得られた。上述したよう
に、本実施例では、半導体光素子として半導体レーザを
取り上げ説明したが、フォトダイオードでも同じであ
り、このフォトダイオードの場合、光はフッ素化ポリイ
ミド導波路をを伝達した後、フォトダイオード端面の活
性層に入射され、上部オーミックコンタクト領域から電
極パッド部において、フォトダイオードに入射した光量
に相当する電流が引き出せる。光の伝達の向きがフォト
ダイオードと半導体レーザとで異なるだけであって、構
造的にはまったく同じである。また、半導体レーザ基板
として上記実施例ではGaAs基板を使用したが、その
他、InP基板などのよりバンドギャップの小さい高波
長用の基板を用いても本実施例と同様の効果が得られる
ものであり、本発明は半導体レーザ基板の種類を限定す
るものではない。DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described below in more detail with reference to the drawings. FIGS. 1A and 1B are schematic diagrams illustrating a configuration of an optical coupling device exemplified in an embodiment of the present invention. In this embodiment, a case where a semiconductor laser is used as a semiconductor optical device will be described. In order to realize the optical coupling device of the present invention, 6FDA which is an acid dianhydride and PM
A mixture of two types of DA and fluorinated diamine TFDB was prepared. That is, acid dianhydride / fluorinated diamine: 6FDA / TFDB (refractive index is wavelength λ: 0.84 μm
1.59) and acid dianhydride / fluorinated diamine: PMDA / TFDB (refractive index is wavelength λ: 0.84 μm)
two kinds of fluorinated polyimides having different mixing ratios of 1.53 with respect to m (the refractive index of both is 1.533 and 1.541 with respect to the wavelength λ0.84 μm, the refractive index difference Δn: 0.00)
8) A polymer was prepared in advance. First, FIG.
As shown in (b), a large number of semiconductor laser units 2 having three quantum well structure active layers are formed on a semiconductor laser substrate (GaAs substrate) 1 having a thickness of about 350 μm. The dimension corresponding to one chip of the one semiconductor laser is about 0.8 × 1.0 mm. Here, the electrodes will be described. FIG. 2A is a cross-sectional view taken along a line AA in FIG.
FIG. 11B shows a cross section taken along line BB of FIG.
Are displayed in the same manner. As shown in FIGS. 2A and 2B, AuZnNi is used in the current injection region 3 of the semiconductor laser.
Ohmic contact is formed, and other parts are Si
An insulating film such as O 2 or Si 3 N 4 is coated from the semiconductor laser portion 2 to the electrode pad portion 4 and a thin film of Cr or the like is formed thereon to improve the adhesion of the electrodes. Film 5 made of Pt or Pt or an alloy containing these metals as main components is formed. In this case, the depth of the etched mirror 6 of the semiconductor laser unit 2 is 5.5 μm below the active layer 7.
Then, a total of 8 μm in thickness of 2.5 μm was etched using a reactive gas of pure chlorine. Next, in order to form the lower cladding layer 8 of the optical waveguide, a fluorinated polyimide having a refractive index of 1.533 is applied, followed by baking to cause a dehydration reaction. The entire part 4 was covered (FIGS. 3A and 3B).
The thickness of the fluorinated polyimide except for the vicinity of the end face of the semiconductor laser was 3.9 μm for the target value of 4 μm.
Was thick. In order to continuously form the core layer 9,
A 1.541 fluorinated polyimide having a different refractive index from the cladding layer was applied and sintered [FIGS. 4 (a) and 4 (b)]. In this case, since the refractive index difference Δn can be controlled as small as 0.008, the thickness of the core layer 9 for obtaining a single mode is 3.5 μm. Therefore, the target thickness of the core layer 9 at this time is set to 3 μm. . In practice, a thickness of 3.0 μm could be formed almost as desired. Thereafter, FIGS. 5A and 5B
As shown in FIG. 2 , SP, which is a silicone-based positive photosensitive resist in which a portion exposed to oxygen plasma on a propagation path for guiding light is changed into a SiO 2 altered layer 12.
After performing photolithography using P resist 11,
The core inclined part 10 formed near the end face of the semiconductor laser in an oxygen gas atmosphere was removed by reactive etching. In this embodiment, the core layer 9 formed on the electrode pad portion 4 was not etched. The etching depth at this time was slightly oversized and was about 4 μm. Core layer 9
A gap (gap) 13 of 10 μm was formed between the end face of the semiconductor laser and the end face of the semiconductor laser. In this reactive etching, the lower cladding layer 8 is left on the semiconductor laser. Therefore, even if the core layer 9 is over-etched as in the present embodiment, the semiconductor laser end face is covered with the fluorinated polyimide, so that the semiconductor laser end face is not subjected to ion bombardment during etching. As a result, the characteristics of the semiconductor laser are not degraded. When a current is finally injected after the formation of the back electrode, the center of the core layer is 5.4 μm from the bottom surface of the etching, and the deviation from the height of the active layer 7 to 5.5 μm is only about 0.1 μm. Since the core layer is as thick as 3 μm, the beam emitted from the active layer 7 of the semiconductor laser is sufficiently transmitted into the core layer 9. Surface of the SPP resist 11 left on the core layer 9, since the SiO 2 affected layer 12 is exposed to an oxygen plasma changed to SiO 2 is formed, was immersed a few seconds to 10% of the buffered hydrofluoric acid, When removed using Solfine ™ and rinsed with ethyl alcohol, the fluorinated polyimide layer is not damaged and S
Only the PP resist 11 was completely removed [FIG.
(A) (b)]. Thereafter, a cladding material made of fluorinated polyimide is again applied and sintered in the same procedure as the formation of the lower cladding layer 8 to form the upper cladding layer 15 and at the same time, between the semiconductor laser and the core layer 9. A certain gap 13 was also filled (FIGS. 7A and 7B). Further, since the viscosity of the fluorinated polyimide is high, it is also effective for flattening. After coating and baking, the step in the gap 13 near the end face of the semiconductor laser is greatly reduced. In order to convert the fluorinated polyimide having the three-layer structure into an optical waveguide whose optical axis matches that of the semiconductor laser unit 2 previously manufactured, a photolithography technique using an SPP resist 11 and a reactive ion etching process using oxygen plasma At the same time as forming the optical waveguide 16, the fluorinated polyimide layer on the electrode pad portion 4 was opened to expose the electrode film (Au) 5 [FIG.
(A), (b)]. FIG. 9 is a plan view showing one chip of the semiconductor laser substrate, and shows the position of the optical waveguide (three-layer structure) 16. Further, in order to form a backside electrode of the semiconductor laser, the backside polishing removal 17 for thinning the semiconductor laser substrate is performed by about 280 μm, the thinning is performed to about 70 μm, and AuGe is formed to form the backside ohmic electrode 18.
Ni alloy is deposited by resistance heating and is baked at 400
The resultant was baked at about 20 ° C. for about 20 seconds to obtain an optical coupling device in which the semiconductor laser of the present invention and the optical waveguide shown in FIGS. 10A and 10B were formed on the same substrate. As shown in FIGS. 10A and 10B, the optical coupling device of the present invention uses a light guide (three-layer structure) made of fluorinated polyimide having good heat resistance and corrosion resistance to form a semiconductor laser or a photodiode. In this case, dust and water droplets do not adhere to the end face of the device, and the environmental conditions in which the device can be used are reduced. Also, by using fluorinated polyimide, the refractive index difference Δn between the core layer and the cladding layer can be reduced, so that the core layer 9 can be made thicker and the height of the active layer 7 of the semiconductor laser can be easily adjusted. In addition, since the end face of the core layer 9 can be removed by etching in parallel with the end face of the semiconductor optical element, scattered light is small when emitted from the semiconductor optical element or incident on the semiconductor optical element,
Optical connection efficiency can be greatly improved. Next, as shown in FIG. 11, a measurement probe 2 was attached to an electrode pad 4 having a window opened, in order to confirm whether or not the semiconductor laser characteristics were degraded due to the fabrication of a waveguide made of fluorinated polyimide.
4 and the current was injected into the semiconductor laser section 2 to cause the semiconductor laser to emit light. FIG. 12 shows the relationship between the injection current I (mA) and the output light L (mW). Since the end face of the semiconductor laser is not air and a polyimide waveguide having a refractive index of about 1.5 is in contact with the semiconductor laser and the reflectivity of the semiconductor laser resonance face (end face) is reduced, the threshold current for oscillation slightly decreases. However, no decrease such as the oscillation output gradient was observed. Further, as can be seen from the above IL characteristics, excellent results were obtained with an optical connection efficiency of 1 dB or less. As described above, in the present embodiment, a semiconductor laser is described as a semiconductor optical element. However, the same applies to a photodiode. In the case of this photodiode, light is transmitted through a fluorinated polyimide waveguide, and A current corresponding to the amount of light incident on the photodiode can be drawn from the upper ohmic contact region to the electrode pad portion from the active layer on the end face. Only the direction of light transmission differs between the photodiode and the semiconductor laser, and the structure is exactly the same. Although the GaAs substrate is used as the semiconductor laser substrate in the above embodiment, the same effect as that of the present embodiment can be obtained by using a substrate for a high wavelength having a smaller band gap such as an InP substrate. The present invention does not limit the type of the semiconductor laser substrate.
【0007】[0007]
【発明の効果】以上詳細に説明したごとく、本発明の光
結合装置およびその製造方法は、以下に示す効果があ
る。 (1)半導体光素子(半導体レーザあるいはフォトダイ
オード)端面をはじめ、電極パッド以外がフッ素化ポリ
イミドで覆われているために、端面に塵埃とか水滴が付
着することがなく、使用可能な環境条件が緩和される。 (2)フッ素化ポリイミドを使用することによって、コ
ア層とクラッド層の屈折率差Δnが小さくできるためコ
ア層を厚くすることができ、半導体レーザの活性層との
高さの調整が容易となり、しかもコア端面を半導体光素
子端面と平行にエッチングして除去するために、半導体
光素子からの出射あるいは半導体光素子への入射の際の
散乱光が少なく光接続効率を大幅に向上できる。また、
端面から塵埃とか水滴の付着が防止でき、光結合装置の
耐久性および信頼性が向上する。 (3)SPPレジストを使用し、酸素プラズマのみでエ
ッチングすることにより、電極パッドの窓開けにおい
て、AuまたはPt、もしくはこれらの合金膜がストッ
パとなるので窓開けが極めて容易となる。また、光導波
路のエッチング後に残留したSPPマスクを、光導波路
に損傷を与えることなく容易に除去することができるの
で、半導体レーザなどの光素子との一体化構成が実現で
きる。すなわち、SPPマスクを用いた酸素プラズマに
よるエッチングとフッ素化ポリイミドの耐熱性が半導体
光素子製造プロセスとの整合性が取れるため一体化を容
易に実現することができる。As described in detail above, the optical coupling device and the method of manufacturing the same according to the present invention have the following effects. (1) Because the fluorinated polyimide covers the surface other than the electrode pads, including the end face of the semiconductor optical device (semiconductor laser or photodiode), no dust or water droplets adhere to the end face, and the usable environmental conditions are limited. Be relaxed. (2) By using a fluorinated polyimide, the refractive index difference Δn between the core layer and the cladding layer can be reduced, so that the core layer can be made thicker, and the height of the active layer of the semiconductor laser can be easily adjusted. Moreover, since the core end face is etched away in parallel with the semiconductor optical element end face, scattered light at the time of emission from the semiconductor optical element or incidence on the semiconductor optical element is small, and the optical connection efficiency can be greatly improved. Also,
Adhesion of dust and water droplets from the end face can be prevented, and the durability and reliability of the optical coupling device are improved. (3) By using an SPP resist and etching only with oxygen plasma, Au, Pt, or an alloy film thereof serves as a stopper in opening a window of an electrode pad, so that opening of the window becomes extremely easy. Further, since the SPP mask remaining after etching the optical waveguide can be easily removed without damaging the optical waveguide, an integrated configuration with an optical element such as a semiconductor laser can be realized. That is, since the etching by oxygen plasma using the SPP mask and the heat resistance of the fluorinated polyimide are compatible with the semiconductor optical device manufacturing process, integration can be easily realized.
【図1】本発明の実施例で例示した光結合装置の構成を
示す模式図。FIG. 1 is a schematic diagram illustrating a configuration of an optical coupling device exemplified in an embodiment of the present invention.
【図2】本発明の実施例で例示した光結合装置の作製過
程を示す断面図。FIG. 2 is a cross-sectional view illustrating a manufacturing process of the optical coupling device exemplified in the embodiment of the present invention.
【図3】本発明の実施例で例示した光結合装置の作製過
程を示す断面図。FIG. 3 is a cross-sectional view illustrating a manufacturing process of the optical coupling device exemplified in the embodiment of the present invention.
【図4】本発明の実施例で例示した光結合装置の作製過
程を示す断面図。FIG. 4 is a cross-sectional view illustrating a manufacturing process of the optical coupling device exemplified in the embodiment of the present invention.
【図5】本発明の実施例で例示した光結合装置の作製過
程を示す断面図。FIG. 5 is a cross-sectional view illustrating a manufacturing process of the optical coupling device exemplified in the embodiment of the present invention.
【図6】本発明の実施例で例示した光結合装置の作製過
程を示す断面図。FIG. 6 is a cross-sectional view showing a manufacturing process of the optical coupling device exemplified in the embodiment of the present invention.
【図7】本発明の実施例で例示した光結合装置の作製過
程を示す断面図。FIG. 7 is a cross-sectional view illustrating a manufacturing process of the optical coupling device exemplified in the embodiment of the present invention.
【図8】本発明の実施例で例示した光結合装置の作製過
程を示す断面図。FIG. 8 is a cross-sectional view showing a manufacturing process of the optical coupling device exemplified in the embodiment of the present invention.
【図9】本発明の実施例で例示した光結合装置の構成を
示す平面図。FIG. 9 is a plan view showing the configuration of the optical coupling device exemplified in the embodiment of the present invention.
【図10】本発明の実施例で例示した光結合装置の構成
を示す断面図。FIG. 10 is a sectional view showing the configuration of the optical coupling device exemplified in the embodiment of the present invention.
【図11】本発明の実施例で例示した光結合装置の構成
を示す断面図。FIG. 11 is a cross-sectional view illustrating a configuration of an optical coupling device exemplified in an embodiment of the present invention.
【図12】本発明の実施例で例示した光結合装置の特性
を示すグラフ。FIG. 12 is a graph showing characteristics of the optical coupling device exemplified in the embodiment of the present invention.
【図13】従来の光結合装置の構成を示す模式図。FIG. 13 is a schematic diagram showing a configuration of a conventional optical coupling device.
1…半導体レーザ基板(GaAs基板) 2…半導体レーザ部 3…電流注入領域 4…電極パッド部 5…電極膜 6…エッチドミラー 7…活性層 8…下部クラッド層 9…コア層 10…コア傾斜部 11…SPPレジスト(シリコーンベースの感光性レジ
スト)層 12…SiO2変質層 13…ギャップ 14…ビーム 15…上部クラッド層 16…光導波路(3層構造) 17…半導体レーザ基板の薄片化のための裏面研磨除去 18…裏面オーミック電極 19…マスク 20…反応性イオン 21…コア傾斜部を除去した部分(コア層の端面をエッ
チング除去) 22…絶縁膜 23…Au(金)電極 24…測定用プローブDESCRIPTION OF SYMBOLS 1 ... Semiconductor laser substrate (GaAs substrate) 2 ... Semiconductor laser part 3 ... Current injection area 4 ... Electrode pad part 5 ... Electrode film 6 ... Etched mirror 7 ... Active layer 8 ... Lower cladding layer 9 ... Core layer 10 ... Core inclination part 11 ... SPP resist (silicone-based photoresist) layer 12 ... SiO 2 alteration layer 13 ... gap 14 ... beam 15 ... upper clad layer 16 ... optical waveguide (3-layer structure) 17 ... for thinning the semiconductor laser substrate 18: Backside ohmic electrode 19: Mask 20: Reactive ions 21: Portion where core inclined portion is removed (etching end surface of core layer) 22: Insulating film 23: Au (gold) electrode 24: Measurement probe
───────────────────────────────────────────────────── フロントページの続き (72)発明者 鍔本 美恵子 東京都武蔵野市御殿山1丁目1番3号 エヌ・ティ・ティ・アドバンステクノロ ジ株式会社内 (56)参考文献 特開 平4−328504(JP,A) 特開 平8−46292(JP,A) 特開 昭58−155788(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01S 5/00 - 5/50 G02B 6/12 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Mieko Tsubamoto 1-3-1 Gotenyama, Musashino City, Tokyo NTT Advanced Technology Co., Ltd. (56) References JP-A-4-328504 ( JP, A) JP-A-8-46292 (JP, A) JP-A-58-155788 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) H01S 5/00-5/50 G02B 6/12
Claims (6)
上に、フッ素含有量がそれぞれ異なるフッ素化ポリイミ
ドよりなる下部クラッド層、コア層および上部クラツド
層を積層した三層構造の光導波路を一体に構成した光結
合装置であって、半導体レーザの出射端面を、上記フッ
素化ポリイミドよりなる下部クラッド層と同じ組成のフ
ッ素含有量の多いフッ素化ポリイミドで被覆し、フッ素
含有量の少ないフッ素化ポリイミドからなるコア層の端
面と、半導体レーザの出射端面との間にギャップを設
け、かつ半導体レーザ基板の活性層の中心線がコア層の
中心線とほぼ同一高さにあって、上記コア層よりもフッ
素含有量の多いフッ素化ポリイミドにより上記ギャップ
を埋めると共に、上記コア層上に上部クラッド層を形成
してなることを特徴とする光結合装置。1. A semiconductor laser substrate and an optical waveguide having a three-layer structure in which a lower clad layer, a core layer and an upper clad layer made of fluorinated polyimides having different fluorine contents are laminated on the semiconductor laser substrate. An optical coupling device, comprising: an emission end face of a semiconductor laser, coated with a fluorine-containing polyimide having a high fluorine content having the same composition as the lower cladding layer made of the fluorinated polyimide, and a fluorinated polyimide having a low fluorine content. A gap is provided between the end face of the core layer made of the semiconductor laser and the emission end face of the semiconductor laser, and the center line of the active layer of the semiconductor laser substrate is substantially at the same height as the center line of the core layer; In addition to filling the gap with a fluorinated polyimide having a higher fluorine content, an upper clad layer is formed on the core layer. Optical coupling device for.
ード基板上に、 フッ素含有量がそれぞれ異なるフッ素化
ポリイミドよりなる下部クラッド層、コア層および上部
クラツド層を積層した三層構造の光導波路を一体に構成
した光結合装置であって、フォトダイオードの受光端面
を、上記フッ素化ポリイミドよりなる下部クラッド層と
同じ組成のフッ素含有量の多いフッ素化ポリイミドで被
覆し、フッ素含有量の少ないフッ素化ポリイミドからな
るコア層の端面と、フォトダイオードの受光端面との間
にギャップを設け、かつフォトダイオード基板の活性層
の中心線がコア層の中心線とほぼ同一高さにあって、上
記コア層よりもフッ素含有量の多いフッ素化ポリイミド
により上記ギャップを埋めると共に、上記コア層上に上
部クラッド層を形成してなることを特徴とする光結合装
置。 2. A photodiode substrate, comprising : a photodiode substrate;
To over de substrate, lower cladding layer fluorine content is formed of different fluorinated polyimide, respectively, an optical waveguide of a three-layer structure of a core layer and an upper Kuratsudo layer An optical coupling device which is constructed integrally, the photodiode The light-receiving end face is coated with a fluorine-containing polyimide having a high fluorine content of the same composition as the lower cladding layer made of the fluorinated polyimide, and an end face of a core layer made of a fluorinated polyimide having a low fluorine content, A gap is provided between the photodiode and the light-receiving end face , and the center line of the active layer of the photodiode substrate is substantially at the same height as the center line of the core layer, and the fluorine content is higher than that of the core layer. An optical coupling device, wherein the gap is filled with polyimide and an upper clad layer is formed on the core layer.
化ポリイミドは、酸二無水物とフッ素化ジアミンの重合
・脱水反応に基づいて生成されるフッ素化ポリイミドで
あることを特徴とする光結合装置。 3. The optical coupling system according to claim 1, wherein the fluorinated polyimide is a fluorinated polyimide formed based on a polymerization / dehydration reaction between an acid dianhydride and a fluorinated diamine. apparatus.
法であって、半導体レーザの電流供給領域の電極パッド
上に設ける電極膜を、酸素プラズマに耐性のある金また
は白金、もしくは金または白金を主成分とする合金を用
いて形成する工程と、 半導体レーザの電極パッドの上に、光導波路を構成する
フッ素化ポリイミドよりなる下部クラッド層、コア層お
よび上部クラッド層の三層を積層した後、該フッ素化ポ
リイミドよりなる三層を、シリコーンベースの感光性レ
ジストをマスクとして、酸素プラズマによりエッチング
する工程と、 上記上部クラッド層の形成後に、酸素プラズマにより光
導波路を形成するためのエッチングを行うと同時に、電
極パッド部の金、白金、もしくはこれらの合金からなる
電極膜の表面まで、積層されたフッ素化ポリイミドより
なる三層をエッチングして、電極部の窓開けを行い電極
パッドとする工程を、少なくとも含むことを特徴とする
光結合装置の製造方法。 4. A method of manufacturing an optical coupling device according to claim 1, electrode pads of the current supply region of the semiconductor laser
An electrode film provided on a step of an alloy mainly composed of gold or platinum which is resistant to oxygen plasma, or gold, or platinum, on the electrode pads of the semiconductor laser, fluorine constituting the optical waveguide After laminating three layers of a lower clad layer, a core layer and an upper clad layer made of fluorinated polyimide, a step of etching the three layers made of the fluorinated polyimide with oxygen plasma using a silicone-based photosensitive resist as a mask, After the formation of the upper cladding layer, etching for forming an optical waveguide by oxygen plasma is performed, and at the same time, fluorinated polyimide laminated to the surface of an electrode film made of gold, platinum, or an alloy thereof of an electrode pad portion. Etching at least three layers to form a window in the electrode portion to form an electrode pad. The method of manufacturing an optical coupling device, characterized in that.
法であって、フォトダイオードの電流取り出し領域の電
極パッド上に設ける電極膜を、 酸素プラズマに耐性のあ
る金または白金、もしくは金または白金を主成分とする
合金を用いて形成する工程と、 フォトダイオードの電
極パッドの上に、光導波路を構成するフッ素化ポリイミ
ドよりなる下部クラッド層、コア層および上部クラッド
層の三層を積層した後、該フッ素化ポリイミドよりなる
三層を、シリコーンベースの感光性レジストをマスクと
して、酸素プラズマによりエッチングする工程と、 上記上部クラッド層の形成後に、酸素プラズマにより光
導波路を形成するためのエッチングを行うと同時に、電
極パッド部の金、白金、もしくはこれらの合金からなる
電極膜の表面まで、積層されたフッ素化ポリイミドより
なる三層をエッチングして、電極部の窓開けを行い電極
パッドとする工程を、少なくとも含むことを特徴とする
光結合装置の製造方法。 5. A method for manufacturing the optical coupling device according to claim 2.
Method for detecting the current in the current extraction region of the photodiode.
Pole electrode film provided on the pad, and forming with gold or platinum is resistant to oxygen plasma, or an alloy of gold or platinum as a main component, electrostatic photodiode
On the pole pad, a lower cladding layer made of fluorinated polyimide constituting an optical waveguide, a core layer and three layers of an upper cladding layer are laminated, and then the three layers made of the fluorinated polyimide are coated with a silicone-based photosensitive resist. Using an oxygen plasma as a mask, and after forming the upper cladding layer, performing etching for forming an optical waveguide by oxygen plasma, and simultaneously forming an electrode pad portion of gold, platinum, or an alloy thereof. A method for manufacturing an optical coupling device, comprising at least a step of etching three layers of fluorinated polyimide laminated to a surface of an electrode film to open a window of an electrode portion to form an electrode pad.
の製造方法において、光導波路を構成するフッ素化ポリIn the method of manufacturing, the fluorinated poly constituting the optical waveguide
イミドよりなる下部クラッド層、コア層および上部クラLower cladding layer, core layer and upper cladding layer made of imide
ッド層の三層を積層する工程において、酸二無水物とフIn the step of laminating the three pad layers, the acid dianhydride and the
ッ素化ジアミンの重合・脱水反応により生成されるフッFluorine generated by polymerization and dehydration of fluorinated diamine
素化ポリイミドを積層することを特徴とする光結合装Optical coupling device characterized by laminating polished polyimide 置Place
の製造方法。Manufacturing method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21839994A JP3197758B2 (en) | 1994-09-13 | 1994-09-13 | Optical coupling device and method of manufacturing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21839994A JP3197758B2 (en) | 1994-09-13 | 1994-09-13 | Optical coupling device and method of manufacturing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0883952A JPH0883952A (en) | 1996-03-26 |
JP3197758B2 true JP3197758B2 (en) | 2001-08-13 |
Family
ID=16719306
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP21839994A Expired - Lifetime JP3197758B2 (en) | 1994-09-13 | 1994-09-13 | Optical coupling device and method of manufacturing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3197758B2 (en) |
Cited By (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7706917B1 (en) | 2004-07-07 | 2010-04-27 | Irobot Corporation | Celestial navigation system for an autonomous robot |
US8606401B2 (en) | 2005-12-02 | 2013-12-10 | Irobot Corporation | Autonomous coverage robot navigation system |
US8656550B2 (en) | 2002-01-03 | 2014-02-25 | Irobot Corporation | Autonomous floor-cleaning robot |
US8726454B2 (en) | 2007-05-09 | 2014-05-20 | Irobot Corporation | Autonomous coverage robot |
US8739355B2 (en) | 2005-02-18 | 2014-06-03 | Irobot Corporation | Autonomous surface cleaning robot for dry cleaning |
US8761931B2 (en) | 2005-12-02 | 2014-06-24 | Irobot Corporation | Robot system |
US8774966B2 (en) | 2005-02-18 | 2014-07-08 | Irobot Corporation | Autonomous surface cleaning robot for wet and dry cleaning |
US8781626B2 (en) | 2002-09-13 | 2014-07-15 | Irobot Corporation | Navigational control system for a robotic device |
US8780342B2 (en) | 2004-03-29 | 2014-07-15 | Irobot Corporation | Methods and apparatus for position estimation using reflected light sources |
US8930023B2 (en) | 2009-11-06 | 2015-01-06 | Irobot Corporation | Localization by learning of wave-signal distributions |
US8950038B2 (en) | 2005-12-02 | 2015-02-10 | Irobot Corporation | Modular robot |
US8972052B2 (en) | 2004-07-07 | 2015-03-03 | Irobot Corporation | Celestial navigation system for an autonomous vehicle |
US8978196B2 (en) | 2005-12-02 | 2015-03-17 | Irobot Corporation | Coverage robot mobility |
US8985127B2 (en) | 2005-02-18 | 2015-03-24 | Irobot Corporation | Autonomous surface cleaning robot for wet cleaning |
US9104204B2 (en) | 2001-06-12 | 2015-08-11 | Irobot Corporation | Method and system for multi-mode coverage for an autonomous robot |
US9144361B2 (en) | 2000-04-04 | 2015-09-29 | Irobot Corporation | Debris sensor for cleaning apparatus |
US9215957B2 (en) | 2004-01-21 | 2015-12-22 | Irobot Corporation | Autonomous robot auto-docking and energy management systems and methods |
US9317038B2 (en) | 2006-05-31 | 2016-04-19 | Irobot Corporation | Detecting robot stasis |
US9446521B2 (en) | 2000-01-24 | 2016-09-20 | Irobot Corporation | Obstacle following sensor scheme for a mobile robot |
US9486924B2 (en) | 2004-06-24 | 2016-11-08 | Irobot Corporation | Remote control scheduler and method for autonomous robotic device |
US9492048B2 (en) | 2006-05-19 | 2016-11-15 | Irobot Corporation | Removing debris from cleaning robots |
US9582005B2 (en) | 2001-01-24 | 2017-02-28 | Irobot Corporation | Robot confinement |
US10314449B2 (en) | 2010-02-16 | 2019-06-11 | Irobot Corporation | Vacuum brush |
-
1994
- 1994-09-13 JP JP21839994A patent/JP3197758B2/en not_active Expired - Lifetime
Cited By (46)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9446521B2 (en) | 2000-01-24 | 2016-09-20 | Irobot Corporation | Obstacle following sensor scheme for a mobile robot |
US9144361B2 (en) | 2000-04-04 | 2015-09-29 | Irobot Corporation | Debris sensor for cleaning apparatus |
US9622635B2 (en) | 2001-01-24 | 2017-04-18 | Irobot Corporation | Autonomous floor-cleaning robot |
US9582005B2 (en) | 2001-01-24 | 2017-02-28 | Irobot Corporation | Robot confinement |
US9104204B2 (en) | 2001-06-12 | 2015-08-11 | Irobot Corporation | Method and system for multi-mode coverage for an autonomous robot |
US8656550B2 (en) | 2002-01-03 | 2014-02-25 | Irobot Corporation | Autonomous floor-cleaning robot |
US8671507B2 (en) | 2002-01-03 | 2014-03-18 | Irobot Corporation | Autonomous floor-cleaning robot |
US8781626B2 (en) | 2002-09-13 | 2014-07-15 | Irobot Corporation | Navigational control system for a robotic device |
US9949608B2 (en) | 2002-09-13 | 2018-04-24 | Irobot Corporation | Navigational control system for a robotic device |
US9215957B2 (en) | 2004-01-21 | 2015-12-22 | Irobot Corporation | Autonomous robot auto-docking and energy management systems and methods |
US8780342B2 (en) | 2004-03-29 | 2014-07-15 | Irobot Corporation | Methods and apparatus for position estimation using reflected light sources |
US9360300B2 (en) | 2004-03-29 | 2016-06-07 | Irobot Corporation | Methods and apparatus for position estimation using reflected light sources |
US9486924B2 (en) | 2004-06-24 | 2016-11-08 | Irobot Corporation | Remote control scheduler and method for autonomous robotic device |
US8634958B1 (en) | 2004-07-07 | 2014-01-21 | Irobot Corporation | Celestial navigation system for an autonomous robot |
US9223749B2 (en) | 2004-07-07 | 2015-12-29 | Irobot Corporation | Celestial navigation system for an autonomous vehicle |
US7706917B1 (en) | 2004-07-07 | 2010-04-27 | Irobot Corporation | Celestial navigation system for an autonomous robot |
US8594840B1 (en) | 2004-07-07 | 2013-11-26 | Irobot Corporation | Celestial navigation system for an autonomous robot |
US8972052B2 (en) | 2004-07-07 | 2015-03-03 | Irobot Corporation | Celestial navigation system for an autonomous vehicle |
US8634956B1 (en) | 2004-07-07 | 2014-01-21 | Irobot Corporation | Celestial navigation system for an autonomous robot |
US8874264B1 (en) | 2004-07-07 | 2014-10-28 | Irobot Corporation | Celestial navigation system for an autonomous robot |
US9229454B1 (en) | 2004-07-07 | 2016-01-05 | Irobot Corporation | Autonomous mobile robot system |
US8985127B2 (en) | 2005-02-18 | 2015-03-24 | Irobot Corporation | Autonomous surface cleaning robot for wet cleaning |
US8782848B2 (en) | 2005-02-18 | 2014-07-22 | Irobot Corporation | Autonomous surface cleaning robot for dry cleaning |
US9445702B2 (en) | 2005-02-18 | 2016-09-20 | Irobot Corporation | Autonomous surface cleaning robot for wet and dry cleaning |
US10470629B2 (en) | 2005-02-18 | 2019-11-12 | Irobot Corporation | Autonomous surface cleaning robot for dry cleaning |
US8774966B2 (en) | 2005-02-18 | 2014-07-08 | Irobot Corporation | Autonomous surface cleaning robot for wet and dry cleaning |
US8739355B2 (en) | 2005-02-18 | 2014-06-03 | Irobot Corporation | Autonomous surface cleaning robot for dry cleaning |
US9599990B2 (en) | 2005-12-02 | 2017-03-21 | Irobot Corporation | Robot system |
US8978196B2 (en) | 2005-12-02 | 2015-03-17 | Irobot Corporation | Coverage robot mobility |
US10524629B2 (en) | 2005-12-02 | 2020-01-07 | Irobot Corporation | Modular Robot |
US9144360B2 (en) | 2005-12-02 | 2015-09-29 | Irobot Corporation | Autonomous coverage robot navigation system |
US8761931B2 (en) | 2005-12-02 | 2014-06-24 | Irobot Corporation | Robot system |
US9392920B2 (en) | 2005-12-02 | 2016-07-19 | Irobot Corporation | Robot system |
US8950038B2 (en) | 2005-12-02 | 2015-02-10 | Irobot Corporation | Modular robot |
US8606401B2 (en) | 2005-12-02 | 2013-12-10 | Irobot Corporation | Autonomous coverage robot navigation system |
US10244915B2 (en) | 2006-05-19 | 2019-04-02 | Irobot Corporation | Coverage robots and associated cleaning bins |
US9492048B2 (en) | 2006-05-19 | 2016-11-15 | Irobot Corporation | Removing debris from cleaning robots |
US9955841B2 (en) | 2006-05-19 | 2018-05-01 | Irobot Corporation | Removing debris from cleaning robots |
US9317038B2 (en) | 2006-05-31 | 2016-04-19 | Irobot Corporation | Detecting robot stasis |
US10070764B2 (en) | 2007-05-09 | 2018-09-11 | Irobot Corporation | Compact autonomous coverage robot |
US8726454B2 (en) | 2007-05-09 | 2014-05-20 | Irobot Corporation | Autonomous coverage robot |
US10299652B2 (en) | 2007-05-09 | 2019-05-28 | Irobot Corporation | Autonomous coverage robot |
US9480381B2 (en) | 2007-05-09 | 2016-11-01 | Irobot Corporation | Compact autonomous coverage robot |
US11498438B2 (en) | 2007-05-09 | 2022-11-15 | Irobot Corporation | Autonomous coverage robot |
US8930023B2 (en) | 2009-11-06 | 2015-01-06 | Irobot Corporation | Localization by learning of wave-signal distributions |
US10314449B2 (en) | 2010-02-16 | 2019-06-11 | Irobot Corporation | Vacuum brush |
Also Published As
Publication number | Publication date |
---|---|
JPH0883952A (en) | 1996-03-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3197758B2 (en) | Optical coupling device and method of manufacturing the same | |
Fang et al. | Electrically pumped hybrid AlGaInAs-silicon evanescent laser | |
US6229949B1 (en) | Polymer optical waveguide, optical integrated circuit, optical module and optical communication apparatus | |
JPH0792337A (en) | Polymer core optical waveguide and its production | |
JPH0548444B2 (en) | ||
EP0860724A1 (en) | Opto-hybride device assembling method | |
US6913705B2 (en) | Manufacturing method for optical integrated circuit having spatial reflection type structure | |
CN112013975A (en) | Miniaturized up-conversion single photon detector | |
JPH10189243A (en) | El display device | |
JP3835906B2 (en) | Polymer optical waveguide, optical integrated circuit, and optical module | |
JP4506216B2 (en) | Optical coupling device and manufacturing method thereof | |
JP3200996B2 (en) | Optical waveguide device | |
JP2006184773A (en) | Optical waveguide and opto-electric hybrid substrate having the same | |
JP2007010692A (en) | Optical waveguide and method of manufacturing the same | |
FR2818755A1 (en) | OPTICALLY ACTIVE DEVICE HAVING A CHANNEL ON AN OPTICAL SUBSTRATE | |
WO1998011460A1 (en) | Production method of waveguide type optical device | |
JP2002156538A (en) | Optical waveguide device and its manufacturing method | |
JP3290888B2 (en) | Laser length measuring device and manufacturing method thereof | |
US20040008963A1 (en) | Optical device, method for producing the same, and method for producing polyimide film | |
JP2002162658A (en) | Optical waveguide element and optical wavelength converter | |
JP2011123094A (en) | Spot size converter | |
JP3209654B2 (en) | Encoder | |
JPH07318765A (en) | Connecting structure of optical waveguide and semiconductor photodetector | |
JP2003279777A (en) | Manufacturing method of light guide device | |
JP2001264560A (en) | Polymer optical waveguide having function to receive and emit light, and method of manufacturing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090608 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090608 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100608 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100608 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110608 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120608 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130608 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140608 Year of fee payment: 13 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
EXPY | Cancellation because of completion of term |