JP2005265885A - Optical coupling apparatus, support base for optical coupling apparatus and method of manufacturing them - Google Patents

Optical coupling apparatus, support base for optical coupling apparatus and method of manufacturing them Download PDF

Info

Publication number
JP2005265885A
JP2005265885A JP2004073791A JP2004073791A JP2005265885A JP 2005265885 A JP2005265885 A JP 2005265885A JP 2004073791 A JP2004073791 A JP 2004073791A JP 2004073791 A JP2004073791 A JP 2004073791A JP 2005265885 A JP2005265885 A JP 2005265885A
Authority
JP
Japan
Prior art keywords
light
optical waveguide
support
coupling device
light emitting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004073791A
Other languages
Japanese (ja)
Other versions
JP4506216B2 (en
Inventor
Hidehiko Nakada
英彦 中田
Takahiro Arakida
孝博 荒木田
Kenji Suzuki
健二 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2004073791A priority Critical patent/JP4506216B2/en
Publication of JP2005265885A publication Critical patent/JP2005265885A/en
Application granted granted Critical
Publication of JP4506216B2 publication Critical patent/JP4506216B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Semiconductor Lasers (AREA)
  • Light Receiving Elements (AREA)
  • Optical Couplings Of Light Guides (AREA)
  • Optical Integrated Circuits (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an optical coupling apparatus for an optical waveguide apparatus or the like, with which the positioning is easily performed at high accuracy when mounting a light emitting (or light receiving) element and an optical waveguide, to provide a support base used for the optical coupling apparatus, and to provide a method of manufacturing them. <P>SOLUTION: The optical coupling apparatus as an optical waveguide apparatus 10 has: an optical waveguide 6 which is so composed to guide light 5 via a light reflection face (45 degree tilt mirror face 4) formed on an end face; a light emitting (or a light receiving) element 3 arranged opposing to a mirror face 4; and a Si substrate 1 on which the optical waveguide 6 and the light emitting (or a light receiving) element 3 are respectively fixed. A recessed parts 2 and 14 are formed by an anisotropic etching of the substrate 1, the light emitting (or a light receiving) element 3 is fixed in the recessed part 2, and a recessed part 14 serves as a release groove of an adhesive in adhering and fixing of the optical waveguide 6. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、光導波路と発光又は受光素子とを支持体に固定してなる光結合装置及びその支持体、並びにこれらの製造方法に関し、特に光通信用、ディスプレイ用として好適な装置及び製造方法に関するものである。   The present invention relates to an optical coupling device in which an optical waveguide and a light-emitting or light-receiving element are fixed to a support, a support for the same, and a manufacturing method thereof, and more particularly to a device and a manufacturing method suitable for optical communication and display. Is.

これまで、電子機器内のボード間又はボード内のチップ間など、比較的短距離間の情報伝達は、主に電気信号により行われてきたが、集積回路の性能を向上させるためには、信号の高速化や信号配線の高密度化が必要となる。しかし、電気信号配線においては、配線の時定数による信号遅延やノイズの発生等の問題から、電気信号の高速化や電気信号配線の高密度化が困難である。   Until now, information transmission over a relatively short distance, such as between boards in an electronic device or between chips in a board, has been carried out mainly by electrical signals, but in order to improve the performance of integrated circuits, And high-density signal wiring are required. However, in the electric signal wiring, it is difficult to increase the speed of the electric signal and increase the density of the electric signal wiring due to problems such as signal delay and noise generation due to the time constant of the wiring.

こうした問題を解決する光配線(光インターコネクション)が注目されている。光配線は、電子機器間、電子機器内のボード間又はボード内のチップ間など、種々の個所に適用可能であり、例えば、チップ間のような短距離間の信号の伝送には、チップが搭載されている基板上に光導波路を形成し、信号変調されたレーザ光等の伝送路とした光伝送、通信システムを構築することができる。   Optical wiring (optical interconnection) that solves these problems is drawing attention. Optical wiring can be applied to various locations such as between electronic devices, between boards in electronic devices, or between chips in a board. For example, chips are used for transmission of signals over a short distance such as between chips. It is possible to construct an optical transmission and communication system in which an optical waveguide is formed on a substrate on which it is mounted, and a signal modulation laser beam or the like is used as a transmission path.

他方、光導波路をディスプレイの光源モジュールとして用いることも知られている。例えば、映像ソフト、ゲーム、コンピュータ画面、映画等を自分だけのデイ画面で楽しめるヘッドマウントディスプレイ(Head Mounted Display)の開発が成されており、サングラスのように掛けるだけで、臨場感あふれる映像をいつでもどこでも気軽に体感できるパーソナルなディスプレイがある(米国特許第5,467,104号公報参照)。   On the other hand, it is also known to use an optical waveguide as a light source module of a display. For example, the development of a head mounted display that allows you to enjoy video software, games, computer screens, movies, etc. on your own day screen has been developed. There is a personal display that can be easily felt anywhere (see US Pat. No. 5,467,104).

従来、光導波路からなる光導波部品と面型発光又は受光素子とを結合させる構造としては、例えば特開2002−31747公報に開示されているように、基板表面に位置合わせをして発光素子を実装し、同じ基板のガイド溝に光導波部品を実装し、更に発光素子上部に光路変換部を位置合わせして実装した形態が開示されている。しかし、光路変換部が別部品となっているため、部品点数が3点となって位置合わせ回数が多く、位置合わせ精度も出しづらいため、組立工程が複雑であるという問題がある。   Conventionally, as a structure for coupling an optical waveguide component composed of an optical waveguide and a planar light emitting or light receiving element, as disclosed in, for example, JP-A-2002-31747, the light emitting element is aligned with the substrate surface. A configuration is disclosed in which an optical waveguide component is mounted in a guide groove on the same substrate, and an optical path conversion unit is aligned and mounted on the light emitting element. However, since the optical path conversion unit is a separate part, the number of parts is three, the number of times of alignment is large, and it is difficult to obtain alignment accuracy, so that the assembly process is complicated.

また、特開2003−215371公報には、端面に45度傾斜ミラーが形成された光導波部品と面型発光素子との結合構造が開示されている。この構造では、発光素子が光導波路部品の上方に配置されており、基板とは鼓型のはんだバンプを介してのみ接続されている。このような実装形態では、発光素子から出る熱が十分に放熱されないため、熱的な問題がある。また、位置ずれに非常にシビアな光結合においては、素子の位置ずれに対する信頼性の問題もあるが、これを満たす構造ではない。   Japanese Patent Application Laid-Open No. 2003-215371 discloses a coupling structure of an optical waveguide component having a 45-degree tilt mirror formed on an end surface and a surface light emitting element. In this structure, the light emitting element is disposed above the optical waveguide component, and is connected to the substrate only via a drum-shaped solder bump. In such a mounting form, heat generated from the light emitting element is not sufficiently dissipated, which causes a thermal problem. Further, in the optical coupling that is very severe with respect to the positional deviation, there is a problem of reliability with respect to the positional deviation of the element, but the structure does not satisfy this.

他方、こうした問題点をある程度解消できる光導波路装置として、後記の特許文献1(国際公開WO 00/08505)、後記の特許文献2(特開平10−300961号)、後記の特許文献3(特開2000−292656)の各公報には、基板に凹部を設け、この凹部に実装した発光素子に対向して、傾斜したミラー面を有する光導波部品を基板上に固定した構造が知られている。   On the other hand, as optical waveguide devices that can solve such problems to some extent, Patent Document 1 (International Publication WO 00/08505), Patent Document 2 (Japanese Patent Laid-Open No. 10-300961), and Patent Document 3 (Japanese Patent Laid-Open No. 2000-292656) discloses a structure in which a concave portion is provided in a substrate, and an optical waveguide component having an inclined mirror surface is fixed on the substrate so as to face a light emitting element mounted in the concave portion.

例えば、図8に示すように、実装基板50の主表面に凹部52が設けられ、この凹部52に発光素子54が載置されている。実装基板50の主表面上には、光導波路56が取り付けられ、この光導波路56の端部58は傾斜ミラー面となっていて発光素子54上に位置している。発光素子54から出射された光60は、端部58で反射されて、光導波路56のコア62に入る。光60は、コア62内を矢印方向に進み、光ファイバ等に伝送される。   For example, as shown in FIG. 8, a recess 52 is provided on the main surface of the mounting substrate 50, and the light emitting element 54 is placed in the recess 52. An optical waveguide 56 is attached on the main surface of the mounting substrate 50, and an end 58 of the optical waveguide 56 is an inclined mirror surface and is located on the light emitting element 54. The light 60 emitted from the light emitting element 54 is reflected by the end portion 58 and enters the core 62 of the optical waveguide 56. The light 60 travels in the direction of the arrow in the core 62 and is transmitted to an optical fiber or the like.

国際公開WO 00/08505(第4頁10〜17行目、FIG.3)International Publication WO 00/08505 (Page 4, Lines 10-17, FIG. 3) 特開平10−300961号(第28欄25〜47行目、図14〜図17)JP-A-10-300961 (Column 28, lines 25-47, FIGS. 14-17) 特開2000−292656号(第6欄8〜19行目、第8欄2〜16行目、図4及び図12)JP 2000-292656 (6th column, 8th to 19th line, 8th column, 2nd to 16th line, FIGS. 4 and 12)

しかしながら、上記した従来の構造では、例えば図8において、凹部52を基板50に形成するときの加工精度や、発光素子54を接着固定するときの位置ずれ、更には光導波路56を基板40に接着固定するときの位置ずれ及び発光素子44との間での位置ずれを十分に防止することができない。   However, in the conventional structure described above, for example, in FIG. 8, the processing accuracy when the recess 52 is formed on the substrate 50, the displacement when the light emitting element 54 is bonded and fixed, and the optical waveguide 56 is bonded to the substrate 40. A positional shift when fixing and a positional shift between the light emitting element 44 cannot be sufficiently prevented.

本発明の目的は、発光(又は受光)素子及び光導波路の実装時の位置合わせを容易かつ高精度に行える光導波路装置等の光結合装置と、これに用いる支持体、並びにそれらの製造方法を提供することにある。   An object of the present invention is to provide an optical coupling device such as an optical waveguide device that can easily and accurately align a light-emitting (or light-receiving) element and an optical waveguide during mounting, a support used therefor, and a method for manufacturing the same. It is to provide.

即ち、本発明は、端面に形成された光反射面(例えば後述の45度傾斜ミラー面:以下、同様)を介して光を内部又は外部へ導びくように構成された光導波部(例えば後述の光導波路:以下、同様)と、前記端面に対向して配置された発光又は受光素子(例えば後述のLD又はLED等の発光素子:以下、同様)と、前記光導波部及び前記発光又は受光素子をそれぞれ固定した支持体(例えば後述のSi基板:以下、同様)とを有し、この支持体の異方性エッチングによって凹部(例えば後述の比較的深い凹部:以下、同様)が形成され、この凹部内の所定位置に前記発光又は受光素子が固定されている、光結合装置(以下、本発明の第1の光結合装置と称する。)と、この本発明の第1の光結合装置に用いる前記支持体(以下、本発明の第1の支持体と称する。)に係るものである。   That is, the present invention provides an optical waveguide (for example, described later) configured to guide light to the inside or the outside through a light reflecting surface (for example, a 45-degree inclined mirror surface described below) formed on the end face. Optical waveguide: the same applies hereinafter), a light emitting or receiving element (for example, a light emitting element such as an LD or LED described later: the same applies hereinafter) disposed opposite to the end face, the optical waveguide and the light emitting or receiving light. A support (e.g., a Si substrate described below), which is fixed to each element, and a recess (e.g., a relatively deep recess described below) is formed by anisotropic etching of the support. An optical coupling device (hereinafter referred to as a first optical coupling device of the present invention) in which the light emitting or light receiving element is fixed at a predetermined position in the recess, and a first optical coupling device of the present invention. The support to be used (hereinafter referred to as “No. Those of the called support.).

また、本発明は、端面に形成された光反射面を介して光を内部又は外部へ導びくように構成されたエアリッジ型の光導波部と、前記端面に対向して配置された発光又は受光素子と、前記光導波部及び前記発光又は受光素子をそれぞれ固定した支持体とを有し、この支持体に形成された凹部内の所定位置に前記発光又は受光素子が固定され、前記所定位置とは別の位置にて前記光導波部のコアが前記支持体とは非接触の状態で前記凹部(特に前記光導波部との間に空間を存在させるように形成された凹部(以下、同様)内に配置されていると共に、前記コア以外の領域で前記光導波部が前記支持体に固定されている、光結合装置(以下、本発明の第2の光結合装置と称する。)と、この本発明の第2の光結合装置に用いる前記支持体(以下、本発明の第2の支持体と称する。)にも係るものである。   The present invention also provides an air ridge type optical waveguide portion configured to guide light to the inside or the outside through a light reflecting surface formed on the end face, and light emission or light reception arranged to face the end face. An element, and a support body to which the optical waveguide section and the light emitting or light receiving element are respectively fixed, and the light emitting or light receiving element is fixed at a predetermined position in a recess formed in the support body. Is in a position where the core of the optical waveguide is not in contact with the support at a different position (particularly, a recess formed so as to have a space between the optical waveguide and the like (hereinafter the same)) And an optical coupling device (hereinafter referred to as a second optical coupling device of the present invention) in which the optical waveguide section is fixed to the support in a region other than the core. The support used for the second optical coupling device of the present invention (hereinafter referred to as the present invention). It referred to as a second support bright.) To also relate.

また、本発明は、異方性エッチングによって支持体に凹部を形成する工程と、この凹部内の所定位置に発光又は受光素子を固定する工程と、端面に形成された光反射面を介して光を内部又は外部へ導びくように構成された光導波部を、前記端面に対向して前記発光又は受光素子が配置されるように、前記支持体に固定する工程とを有する、光結合装置の製造方法(以下、本発明の第1の製造方法と称する。)と、前記凹部を異方性エッチングによって形成する工程を有する前記支持体の製造方法(以下、本発明の第2の製造方法と称する。)も提供するものである。   The present invention also includes a step of forming a recess in the support by anisotropic etching, a step of fixing a light emitting or receiving element at a predetermined position in the recess, and light through a light reflecting surface formed on the end face. An optical waveguide configured to guide the light inward or outward to the support so that the light-emitting or light-receiving element is disposed facing the end face. A manufacturing method (hereinafter referred to as a first manufacturing method of the present invention) and a method for manufacturing the support (hereinafter referred to as a second manufacturing method of the present invention), which includes the step of forming the recesses by anisotropic etching. Also provided).

本発明の第1の光結合装置、本発明の第1の支持体、本発明の第1及び第2の製造方法によれば、異方性エッチングによって前記支持体に凹部を形成し、この凹部内の所定位置に前記発光又は受光素子を固定し、前記光導波部の前記端面に対向して前記発光又は受光素子が配置されるようにしているので、前記発光又は受光素子の裏面全体を前記支持体に接触させた状態でこの素子を実装し、この素子の発光又は受光部上に前記光導波部を配置することができ、前記発光又は受光素子の放熱効率を上げることができるだけでなく、前記異方性エッチングによって容易かつ高精度に前記凹部を形成することができ、前記発光又は受光素子と前記光導波部との間のギャップを容易かつ精密にコントロールすることができ、良好な光結合を得ることができる。   According to the first optical coupling device of the present invention, the first support of the present invention, and the first and second manufacturing methods of the present invention, a recess is formed in the support by anisotropic etching. The light-emitting or light-receiving element is fixed at a predetermined position inside, and the light-emitting or light-receiving element is disposed so as to face the end face of the optical waveguide portion. The element can be mounted in contact with the support, and the optical waveguide can be disposed on the light emitting or receiving part of the element, not only can the heat dissipation efficiency of the light emitting or receiving element be increased, The anisotropic etching can easily and precisely form the concave portion, and the gap between the light emitting or receiving element and the optical waveguide portion can be easily and precisely controlled. To get It can be.

また、本発明の第2の光結合装置、本発明の第2の支持体によれば、前記支持体に形成された前記凹部内の所定位置に前記発光又は受光素子が固定され、前記所定位置とは別の位置にて前記エアリッジ型の光導波部のコアが前記支持体とは非接触の状態で前記凹部に配置されていると共に、前記コア以外の領域で前記光導波部が前記支持体に固定されている。従って、前記凹部内の所定位置に固定した前記発光又は受光素子に対し、高精度な位置合わせが必要とされる前記光導波部をエアリッジ型とし、そのコアを前記支持体とは非接触状態に配置して前記支持体に対する固定を前記コア以外の領域(特にクラッド)で行えばよく、このために前記発光又は受光素子に対する前記コアの位置を決め易く、前記支持体に対する固定さえ十分に行えば常に正規の状態に位置合わせすることができ、またその固定面積も小さくて固定に用いる接着剤量が少なくなり、安定に接着(即ち、安定に位置合わせ)を行うことができる。しかも、光導波部をエアリッジ型として前記コアを前記支持体と非接触としたので、コア−空気間の全反射による光伝搬性能が向上し、かつ漏れ光(クラッドモード)も少なくなる。   Further, according to the second optical coupling device of the present invention and the second support of the present invention, the light emitting or light receiving element is fixed at a predetermined position in the recess formed in the support, and the predetermined position The core of the air ridge type optical waveguide section is disposed in the concave portion in a non-contact state with the support at a position different from the position of the optical waveguide section, and the optical waveguide section is disposed in the region other than the core. It is fixed to. Therefore, the optical waveguide that requires high-precision alignment with respect to the light emitting or receiving element fixed at a predetermined position in the concave portion is an air ridge type, and the core is in a non-contact state with the support. It may be arranged and fixed to the support in an area other than the core (especially the clad). For this purpose, it is easy to determine the position of the core with respect to the light emitting or receiving element, and even if it is sufficiently fixed to the support. It can always be aligned in a normal state, and its fixed area is small, and the amount of adhesive used for fixing is reduced, so that stable bonding (that is, stable alignment) can be performed. In addition, since the optical waveguide portion is an air ridge type and the core is not in contact with the support, the light propagation performance by total reflection between the core and air is improved, and leakage light (cladding mode) is also reduced.

上記したような効果から、本発明の支持体と光結合構造によって、低コストかつ高性能な光結合構造を実現することができる。   From the above effects, a low-cost and high-performance optical coupling structure can be realized by the support and the optical coupling structure of the present invention.

本発明の第1の光結合装置、本発明の第1の支持体、本発明の第1及び第2の製造方法においては、前記光導波部が前記支持体に接着によって固定され、この接着固定領域の外側位置に前記凹部が形成されており、この凹部が、前記発光又は受光素子を固定するための第1凹部(例えば後述の比較的深い凹部:以下、同様)と、前記光導波部の前記接着固定領域外へはみ出る接着剤を受け入れるための第2凹部(例えば後述の比較的浅い接着剤逃がし溝:以下、同様)とからなり、これらの第1凹部及び第2凹部が前記異方性エッチングによってそれぞれ形成されていることが望ましい。   In the first optical coupling device of the present invention, the first support of the present invention, and the first and second manufacturing methods of the present invention, the optical waveguide section is fixed to the support by bonding, and this adhesive fixing The concave portion is formed at a position outside the region, and the concave portion includes a first concave portion (for example, a relatively deep concave portion to be described later; the same applies hereinafter) for fixing the light emitting or light receiving element, and the optical waveguide portion. It comprises a second recess (for example, a relatively shallow adhesive release groove, which will be described later) for receiving the adhesive that protrudes outside the adhesive fixing region, and these first and second recesses are the anisotropic. It is desirable that each is formed by etching.

即ち、前記第2凹部の存在によって、前記支持体への前記光導波部の接着固定に用いる接着剤がはみ出てもそれを受け入れる(逃がす)ことができ、接着剤の塗布量が多少変化しても、接着剤の厚みを常に一定にすることができるため、接着の信頼性、ひいては前記光導波部と前記発光又は受光素子との位置合わせ精度を向上することができる。更に、前記支持体の外周に接着剤がはみ出すことを防ぐことができるため、組み立て時に前記支持体や前記光導波部が組み立て治具(真空チャックなど)に付着してしまう不良を防ぐことができ、ハンドリング等の組み立ての歩留まりが向上する。   That is, due to the presence of the second concave portion, even if the adhesive used for bonding and fixing the optical waveguide portion to the support protrudes, it can be received (released), and the amount of adhesive applied changes slightly. However, since the thickness of the adhesive can be made constant at all times, it is possible to improve the reliability of bonding, and thus the alignment accuracy between the optical waveguide and the light emitting or receiving element. Furthermore, since it is possible to prevent the adhesive from protruding to the outer periphery of the support body, it is possible to prevent defects in which the support body and the optical waveguide section adhere to an assembly jig (such as a vacuum chuck) during assembly. The yield of assembly such as handling is improved.

また、本発明の第2の光結合装置、本発明の第2の支持体においても、前記光導波部が前記支持体に接着によって固定されてよいが、この接着固定領域の内側位置に前記発光又は受光素子、前記コアを配置するための前記凹部が形成されているのがよく、特に、この凹部の外側位置で前記光導波部のクラッドが前記支持体に固定されているのが望ましい。これによって、前記コアを前記支持体に対して確実に非接触状態で配置できると共に、前記発光又は受光素子と前記光導波部との位置合わせも行い易くなる。   Also in the second optical coupling device of the present invention and the second support of the present invention, the optical waveguide section may be fixed to the support by bonding, but the light emission is performed at an inner position of the bonding fixing region. Alternatively, the recess for arranging the light receiving element and the core is preferably formed, and in particular, the cladding of the optical waveguide is preferably fixed to the support at a position outside the recess. Accordingly, the core can be reliably arranged in a non-contact state with respect to the support body, and the light emitting or light receiving element and the optical waveguide portion can be easily aligned.

こうした凹部は、前記支持体の本体に固定された固定片によって形成されてよい。   Such a recess may be formed by a fixed piece fixed to the main body of the support.

本発明のいずれの光結合装置、支持体及び製造方法においても、前記支持体が半導体(特にシリコン)からなっており、比抵抗が0.05Ω-cmであり、前記支持体に対する前記光導波部及び前記発光又は受光素子の固定面とは反対側の支持体面に電極が設けられ、この電極と前記発光又は受光素子の電極とが前記支持体を通して電気的に導通されていると、Si等の半導体は熱伝導率が高くて放熱特性に優れると共に、前記支持体を低抵抗のSi等で形成することによって支持体全体を電気的なグラウンド(接地電極)にすることが可能となり、信号ラインへの雑音を低減でき、高周波動作が可能となる。   In any of the optical coupling devices, supports, and manufacturing methods of the present invention, the support is made of a semiconductor (particularly silicon), has a specific resistance of 0.05 Ω-cm, and the optical waveguide section with respect to the support When an electrode is provided on the support surface opposite to the fixed surface of the light emitting or light receiving element, and this electrode and the electrode of the light emitting or light receiving element are electrically connected through the support, Semiconductors have high thermal conductivity and excellent heat dissipation characteristics, and by forming the support with low resistance Si or the like, it becomes possible to make the entire support an electrical ground (ground electrode) and to the signal line. Noise can be reduced, and high-frequency operation becomes possible.

また、前記光反射面がほぼ45度に傾斜した光学ミラー面であると、光の伝搬面積(光の集光又は放出面積)が拡大されると共に、光入射又は出射量が増えるので、この光学ミラー面に対向して面型の前記発光又は受光素子が配置されていることが、光の伝搬性能及び変換効率を高くする上で望ましい。   Further, when the light reflecting surface is an optical mirror surface inclined at about 45 degrees, the light propagation area (light condensing or emitting area) is expanded and the amount of light incident or emitted is increased. In order to increase the light propagation performance and the conversion efficiency, it is desirable that the planar light emitting or light receiving element is disposed facing the mirror surface.

また、前記光導波部と前記発光又は受光素子とにそれぞれ、位置合わせ用のマーカが設けられていると、実装時の位置合わせをマーカの光学的検知等によって一層容易かつ正確に行える。   In addition, if a positioning marker is provided for each of the optical waveguide section and the light emitting or light receiving element, positioning during mounting can be performed more easily and accurately by optical detection of the marker.

また、前記光導波部が複数のコアを有し、これらのコアのそれぞれの前記端面に対向して前記発光又は受光素子の発光又は受光部が配置されていてよいが、前記光導波部の光導波面積が前記端面で拡大されていて光出射端へ向けて徐々に縮小されており、面積拡大された前記端面に対向して前記発光又は受光素子の複数の発光又は受光部が配置されると、前記傾斜面による光伝搬性能の向上に加えて更に光の集光又は放出量を一層増やし、かつ前記光導波部に対する前記発光又は受光素子の位置合わせも更に容易となる。   Further, the optical waveguide section may have a plurality of cores, and the light emitting or light receiving sections of the light emitting or light receiving elements may be arranged to face the end faces of these cores. When the wave area is enlarged at the end face and gradually reduced toward the light emitting end, and a plurality of light emitting or receiving portions of the light emitting or receiving element are arranged to face the end face enlarged in area. In addition to improving the light propagation performance due to the inclined surface, the amount of light condensing or emitting is further increased, and the alignment of the light emitting or light receiving element with respect to the optical waveguide is further facilitated.

この場合、本発明は、光通信用又はディスプレイ用として構成された光結合装置に好適である。例えば、前記光導波部に効率良く入射した後に出射した信号光を次段回路の受光素子(光配線やフォトディテクタ等)に入射させるように構成した光通信や、前記信号光を走査手段で走査して投影するように構成したディスプレイ等の光情報処理装置等に有効に用いることができる。   In this case, the present invention is suitable for an optical coupling device configured for optical communication or display. For example, optical communication configured such that signal light emitted after being efficiently incident on the optical waveguide portion is incident on a light receiving element (such as an optical wiring or a photodetector) in the next-stage circuit, or the signal light is scanned by a scanning unit. It can be effectively used for an optical information processing apparatus such as a display configured to project.

また、本発明の第1及び第2の製造方法においては、前記異方性エッチングに共通のマスクを用いて前記第1凹部と前記第2凹部とを同時に形成するのがよく、特に、前記共通のマスクにおいて、前記第1凹部用の開口部の幅よりも前記第2凹部用の開口部の幅を小さくすると、前記支持体の異方性エッチングが前者の開口部では比較的深くて幅の広い凹部を形成して前記発光又は受光素子の固定にとって好適となり、また後者の開口部では異方性エッチングが早めに停止(ストップ)して比較的浅くて幅の狭い凹部を形成して前記接着剤の逃がし溝を同時に形成することができる。   In the first and second manufacturing methods of the present invention, the first recess and the second recess may be formed at the same time using a common mask for the anisotropic etching. In this mask, when the width of the opening for the second recess is made smaller than the width of the opening for the first recess, the anisotropic etching of the support is relatively deep and wide in the former opening. A wide concave portion is formed to be suitable for fixing the light emitting or light receiving element, and anisotropic etching is stopped early in the latter opening portion to form a relatively shallow and narrow concave portion to form the adhesive. The agent escape groove can be formed simultaneously.

次に、本発明の好ましい実施の形態を図面参照下に具体的に説明する。   Next, a preferred embodiment of the present invention will be specifically described with reference to the drawings.

第1の実施の形態
図1〜図4は、本発明の第1の実施の形態を示すものである。
First Embodiment FIGS. 1 to 4 show a first embodiment of the present invention.

本実施の形態による光結合装置としての光導波路装置は、その平面図である図1(A)、そのIB−IB線断面図である図1(B)、及びそのIC−IC線断面図である図1(C)に示すように、支持体である低抵抗(≦0.05Ω-cm)の例えばSi(シリコン)基板1の一端側に比較的深くて幅の広い断面ほぼ逆台形状の凹部2が後記の異方性エッチングによって形成され、この凹部2内に発光又は受光素子としてのレーザダイオード(LD)3が実装され、更に端面に形成された例えば45度傾斜した光反射面(光学ミラー面)4を介して発光素子3からの光5を内部へ導びき、出射面17から出射光18として出射するように構成された光導波部としての光導波路6が基板1(実際には絶縁層21)上に接着剤15によって接着固定されている。   The optical waveguide device as the optical coupling device according to the present embodiment is shown in FIG. 1A, which is a plan view thereof, FIG. 1B, which is a sectional view taken along line IB-IB, and a sectional view taken along IC-IC line. As shown in FIG. 1C, a relatively deep and wide cross-section having a substantially inverted trapezoidal shape is formed on one end side of, for example, a Si (silicon) substrate 1 having a low resistance (≦ 0.05 Ω-cm) as a support. A concave portion 2 is formed by anisotropic etching described later, a laser diode (LD) 3 as a light emitting or receiving element is mounted in the concave portion 2, and a light reflecting surface (optical) inclined at, for example, 45 degrees formed on the end surface. An optical waveguide 6 serving as an optical waveguide configured to guide the light 5 from the light emitting element 3 to the inside through the mirror surface 4 and to emit the light 5 as the outgoing light 18 from the outgoing surface 17 is the substrate 1 (actually, Bonded and fixed with adhesive 15 on insulating layer 21) It has been.

この光導波路装置10において、光導波路6は、下クラッド7と上クラッド8との間に複数本並置されたコア9が挟持されたシート状の積層体からなり、これらの各層は、基板1上に屈折率のそれぞれ異なる公知の高分子材料を順次積層し、コア材料をパターニングすることによって形成されるが、コア9の屈折率は各クラッド7及び8の屈折率よりも大きい。各コア9はそれぞれ例えば40〜50μm幅に形成され、シート厚が例えば100μmの光導波路6のミラー面4に対向した下方の正規の位置には、各コア9の光反射面4とそれぞれ対向して上記の発光素子3の各発光部11(発光面積は例えば10μm)が配置されており、実装時の両者の位置合わせのためのマーカ12、13が光導波路6及び発光素子3にそれぞれ設けられている。   In this optical waveguide device 10, the optical waveguide 6 is composed of a sheet-like laminate in which a plurality of cores 9 juxtaposed between a lower clad 7 and an upper clad 8, and these layers are formed on the substrate 1. Are formed by sequentially laminating known polymer materials having different refractive indexes and patterning the core material. The refractive index of the core 9 is larger than the refractive indexes of the clads 7 and 8. Each core 9 is formed to have a width of 40 to 50 μm, for example, and is opposed to the light reflecting surface 4 of each core 9 at a normal position below the mirror surface 4 of the optical waveguide 6 having a sheet thickness of 100 μm, for example. Each light emitting portion 11 (light emitting area is, for example, 10 μm) of the light emitting element 3 is arranged, and markers 12 and 13 are provided on the optical waveguide 6 and the light emitting element 3 for alignment of both at the time of mounting. ing.

また、上記の凹部4に連設して比較的浅くて幅の小さい線状の断面ほぼV字状の凹部(溝)14が、基板1の両側部にそれぞれ形成され、これらの凹部14−14間が、光導波路6の下クラッド7を接着剤15によって基板1に接着する接着領域16となっている。この凹部14は、光導波路6の接着固定時に接着剤15が外方へはみ出たときにこれを受け入れる(逃がす)ための溝として機能する。但し、発光素子固定用の凹部2も、はみ出た接着剤を一部受け入れることができる。   Also, recesses (grooves) 14 having a comparatively shallow and narrow linear cross-section, which are provided continuously with the recesses 4, are formed on both sides of the substrate 1, respectively, and these recesses 14-14. A space between the lower clad 7 of the optical waveguide 6 is bonded to the substrate 1 with an adhesive 15. The concave portion 14 functions as a groove for receiving (releasing) the adhesive 15 when it protrudes outward when the optical waveguide 6 is bonded and fixed. However, the protruding part 2 for fixing the light emitting element can also partially accept the protruding adhesive.

また発光素子3は、例えばTi/Pt/Auの積層構造の電極19を介して基板1と電気的に接続された状態で凹部2内に実装され、基板1の裏面に設けられた例えばTi/Pt/Auの積層構造のグラウンド(接地)用の裏面電極20とは基板1を通して電気的に導通しており、更に上面電極パッド22が、基板1上の絶縁膜21上に形成された端子電極23に対し例えば金属ワイヤ24によって電気的に接続されている。但し、図1(A)では、この金属ワイヤ24は図示省略している。   The light-emitting element 3 is mounted in the recess 2 while being electrically connected to the substrate 1 via, for example, an electrode 19 having a laminated structure of Ti / Pt / Au, for example, Ti / Pt provided on the back surface of the substrate 1. A terminal electrode in which a back electrode 20 for grounding (grounding) having a Pt / Au laminated structure is electrically connected through the substrate 1 and a top electrode pad 22 is formed on an insulating film 21 on the substrate 1. For example, a metal wire 24 is electrically connected to 23. However, this metal wire 24 is not shown in FIG.

図2(A)は、図1(A)のII−II線に沿う断面において、上記のマーカ(ここでは導波路側のマーカ12)を明示し、これを実装時の検出光25の反射によって検出する状態を示している。このマーカ12を形成するには、図2(B)に示すように、支持体26上に下クラッド7を形成した後に、複数のコア9を下クラッド7上に形成し、コア9−9間の下クラッド7上に金属等のパターニングでマーカ12を形成する。そして、更に上クラッド8を被着した後に光導波路6を支持体26から剥離する。この導波路6は、真空チャック等で保持して上記した接着剤15によって基板1上の所定位置に接着固定する。   FIG. 2A clearly shows the above-described marker (here, the waveguide-side marker 12) in the cross section taken along the line II-II in FIG. 1A, and this is reflected by reflection of the detection light 25 at the time of mounting. The state to detect is shown. In order to form this marker 12, as shown in FIG. 2 (B), after forming the lower clad 7 on the support 26, a plurality of cores 9 are formed on the lower clad 7, and between the cores 9-9. A marker 12 is formed on the lower clad 7 by patterning of metal or the like. Further, after the upper clad 8 is attached, the optical waveguide 6 is peeled off from the support 26. The waveguide 6 is held and fixed to a predetermined position on the substrate 1 by the above-described adhesive 15 while being held by a vacuum chuck or the like.

次に、本実施の形態による光導波路6に用いる基板1の製造方法を図3(図1(A)のIB−IB線断面に相当)及び図4(図1(A)のIC−IC線断面に相当)について説明する。   Next, the manufacturing method of the substrate 1 used for the optical waveguide 6 according to the present embodiment is shown in FIG. 3 (corresponding to the section taken along line IB-IB in FIG. 1A) and FIG. 4 (IC-IC line in FIG. 1A). Will be described.

まず、図3(1)及び図4(1)に示すように、表面に熱酸化膜21のある低抵抗Si基板1(≦0.05Ω-cm、結晶方位<100>)を用い、発光素子を実装する凹部と、接着剤の逃がし(流れ止め)溝となる凹部とを形成する位置が開口するようにフォトレジスト27をパターニングする。その後、フッ素ガスを用いた反応性イオンエッチング(RIE:Reactive Ion Etching)により、フォトレジスト開口部分の熱酸化膜21を除去する。マスクにしたフォトレジスト27は酸素プラズマによるアッシングで除去する。   First, as shown in FIGS. 3 (1) and 4 (1), a low-resistance Si substrate 1 (≦ 0.05 Ω-cm, crystal orientation <100>) having a thermal oxide film 21 on the surface is used, and a light-emitting element is used. The photoresist 27 is patterned so that the positions for forming the recesses for mounting the recesses and the recesses for the adhesive escape (flow stop) grooves are opened. Thereafter, the thermal oxide film 21 in the opening portion of the photoresist is removed by reactive ion etching (RIE) using fluorine gas. The masked photoresist 27 is removed by ashing with oxygen plasma.

次いで、図3(2)及び図4(2)に示すように、70℃のKOH水溶液(濃度:20wt%)に浸漬してSi基板1の異方性エッチングを行い、凹部2及び14を連設して形成する。接着剤の流れ止め用の溝14は、マスク開口部の幅を細くしておくことにより、<111>面が出たところでエッチングがほぼストップするため、発光素子を実装する凹部2に比較して浅い溝14を凹部2と同時に形成することができる。この異方性エッチングにより、凹部2は側壁面が傾斜して形成されるが、その深さは、エッチング時間によって高精度に制御できる。   Next, as shown in FIGS. 3 (2) and 4 (2), the Si substrate 1 is anisotropically etched by dipping in a KOH aqueous solution (concentration: 20 wt%) at 70 ° C. to connect the recesses 2 and 14 together. To form. Since the groove 14 for preventing the flow of the adhesive is made narrower in the width of the mask opening, the etching is almost stopped when the <111> plane comes out. The shallow groove 14 can be formed simultaneously with the recess 2. By this anisotropic etching, the recess 2 is formed with an inclined side wall surface, but the depth can be controlled with high accuracy by the etching time.

次いで、図3(3)及び図4(3)に示すように、発光素子を実装する凹部2及び基板上面に電極19及び23を常法によって形成する。ここでは、これらの電極は、下からTi/Pt/Auの3層構造とし、これらの金属膜形成には蒸着を用い、パターン形成にはフォトレジストを用いたリフトオフ工程を用いて電極パターンを形成する。この膜形成の方法としては他にも、メッキやスパッタなどでもよく、パターン形成も、エッチングによる方法を採用する場合もある。   Next, as shown in FIGS. 3 (3) and 4 (3), electrodes 19 and 23 are formed by a conventional method on the recess 2 for mounting the light emitting element and the upper surface of the substrate. Here, these electrodes have a three-layer structure of Ti / Pt / Au from the bottom, vapor deposition is used for forming these metal films, and electrode patterns are formed using a lift-off process using a photoresist for pattern formation. To do. Other methods for forming this film may include plating, sputtering, and the like, and pattern formation may be employed by etching.

次いで、図3(4)及び図4(4)に示すように、基板裏面の酸化膜21を上記と同様のRIEによって除去する。   Next, as shown in FIGS. 3 (4) and 4 (4), the oxide film 21 on the back surface of the substrate is removed by RIE similar to the above.

最後に、図3(5)及び図4(5)に示すように、基板裏面に電極20を形成する。この電極20は、上記の電極19と同じ構造とする。   Finally, as shown in FIGS. 3 (5) and 4 (5), an electrode 20 is formed on the back surface of the substrate. The electrode 20 has the same structure as the electrode 19 described above.

なお、電極19及び裏面電極20とSi基板1との間の接触抵抗を低減するために、300〜400℃程度で数秒〜数分のアロイ化(加熱)を行うこともある。   In order to reduce the contact resistance between the electrode 19 and the back electrode 20 and the Si substrate 1, alloying (heating) may be performed at about 300 to 400 ° C. for several seconds to several minutes.

また、ウェハ状態で基板を製造する場合は、実装基板1の形態にダイシングして完成させる。   Further, when a substrate is manufactured in a wafer state, it is completed by dicing into the form of the mounting substrate 1.

こうして製造された実装基板1には、図1に示したように、面型発光素子3と光導波路6とを実装する。面型発光素子3としては、例えばVCSELの8chアレイを用い、光導波路6には、有機材料で作製した光導波路シートを使用する。VCSELアレイの表面には位置合わせ用のマーカ13を形成し、光導波路6の内部にも位置合わせ用のメタルマーカ12を埋め込む。実装は、VCSEL3と光導波路6のマーカ位置を画像認識によって特定し、それぞれのマーカの相対位置が決められた値になるように光導波路6と実装基板1上の発光素子3の位置を調整して光導波路シートを実装基板1に接着する。この接着には、UV(紫外線)硬化型の接着剤を使用し、位置合わせ後にUV照射して光導波路シートを実装基板1に接着する。   As shown in FIG. 1, the surface light emitting element 3 and the optical waveguide 6 are mounted on the mounting substrate 1 manufactured in this way. For example, a VCSEL 8ch array is used as the surface light emitting element 3, and an optical waveguide sheet made of an organic material is used as the optical waveguide 6. An alignment marker 13 is formed on the surface of the VCSEL array, and an alignment metal marker 12 is also embedded in the optical waveguide 6. In mounting, the marker positions of the VCSEL 3 and the optical waveguide 6 are specified by image recognition, and the positions of the optical waveguide 6 and the light emitting element 3 on the mounting substrate 1 are adjusted so that the relative positions of the respective markers become determined values. Then, the optical waveguide sheet is bonded to the mounting substrate 1. For this bonding, a UV (ultraviolet) curable adhesive is used, and after alignment, UV irradiation is performed to bond the optical waveguide sheet to the mounting substrate 1.

本例では、位置合わせ用のマーカを用いたが、発光素子3の発光部11のパターンをマーカの代わりとして用いたり、光導波路6のコア9と45℃カット面4のエッジを光導波路シート側のマーカとして利用することもある。また、発光素子3を実際に動作させて、アクティブアライメントによって位置合わせを行うこともある。そして、発光素子3と光導波路6との結合効率を上げるために、凹部4に光導波路6とほぼ等しい透明樹脂を充填することもある。   In this example, the alignment marker is used, but the pattern of the light emitting portion 11 of the light emitting element 3 is used as a marker, or the core 9 of the optical waveguide 6 and the edge of the 45 ° C. cut surface 4 are on the optical waveguide sheet side. It may be used as a marker. In addition, the light emitting element 3 may be actually operated to perform alignment by active alignment. Then, in order to increase the coupling efficiency between the light emitting element 3 and the optical waveguide 6, the concave portion 4 may be filled with a transparent resin substantially equal to the optical waveguide 6.

以上に説明したことから明らかなように、本実施の形態によるSi基板1を用いた光導波路装置10は、次の(1)〜(5)に示す顕著な作用効果を奏するものである。   As is apparent from the above description, the optical waveguide device 10 using the Si substrate 1 according to the present embodiment has the remarkable operational effects shown in the following (1) to (5).

(1)Si基板1の異方性エッチングによって基板1に凹部2を形成し、この凹部内の 所定位置に発光素子3を固定し、光導波路6のミラー面4に対向して発光素子3が配置 されるようにしているので、発光素子3の裏面全体を基板1に接触させた状態でこの素 子を実装し、この素子の発光部上に光導波路2を配置することができ、発光素子の放熱 効率を上げることができる。Si基板1は熱伝導率が高く、放熱特性に優れている。   (1) The concave portion 2 is formed in the substrate 1 by anisotropic etching of the Si substrate 1, the light emitting element 3 is fixed at a predetermined position in the concave portion, and the light emitting element 3 is opposed to the mirror surface 4 of the optical waveguide 6. Since the light-emitting element 3 is mounted in a state where the entire back surface of the light-emitting element 3 is in contact with the substrate 1, the optical waveguide 2 can be disposed on the light-emitting portion of the element. The heat dissipation efficiency can be increased. The Si substrate 1 has high thermal conductivity and excellent heat dissipation characteristics.

(2)異方性エッチングによって容易かつ高精度に凹部2を形成することができ、発光 素子3と光導波路6との間のギャップを容易かつ精密にコントロールすることができ、 良好な光結合を得ることができる。   (2) The recess 2 can be easily and accurately formed by anisotropic etching, the gap between the light emitting element 3 and the optical waveguide 6 can be controlled easily and precisely, and good optical coupling can be achieved. Can be obtained.

(3)接着剤の逃がし溝14を異方性エッチングによって凹部2と同時に形成でき、工 程を簡略化できると共に、溝14を設けることによって、接着剤がはみ出てもそれを受 け入れる(逃がす)ことができ、接着剤の塗布量が多少変化しても、接着剤15の厚み を常に一定にすることができるため、接着の信頼性、ひいては光導波路6と発光素子3 との位置合わせ精度を向上することができる。更に、基板1の外周部へ接着剤がはみ出 すことを防ぐことができるため、組み立て時に基板1や光導波路6が組み立て治具(真 空チャックなど)に付着してしまう不良を防ぐことができ、ハンドリング等の組み立て の歩留まりが向上する。   (3) The adhesive relief groove 14 can be formed simultaneously with the recess 2 by anisotropic etching, and the process can be simplified, and by providing the groove 14, even if the adhesive protrudes, it is received (relieved). The thickness of the adhesive 15 can always be kept constant even if the amount of adhesive applied changes slightly, so that the reliability of the adhesion and thus the alignment accuracy between the optical waveguide 6 and the light emitting element 3 can be maintained. Can be improved. Furthermore, since it is possible to prevent the adhesive from protruding to the outer peripheral portion of the substrate 1, it is possible to prevent defects in which the substrate 1 and the optical waveguide 6 adhere to an assembly jig (vacuum chuck or the like) during assembly. This improves the assembly yield of handling.

(4)基板に低抵抗のSi基板1を用いることによって、基板全体を電気的なグラウン ド電極(接地電極)にすることが可能となり、信号ラインへの雑音を低減でき、高周波 動作が可能となる。   (4) By using a low-resistance Si substrate 1 as the substrate, the entire substrate can be made into an electrical ground electrode (ground electrode), noise to the signal line can be reduced, and high-frequency operation is possible. Become.

(5)上記のような効果から、本実施の形態による実装基板と光結合形態を用いること により、低コストかつ高性能な光結合構造を実現することができる。特に、光通信用と して好適な装置を提供できる。   (5) Because of the above effects, a low-cost and high-performance optical coupling structure can be realized by using the mounting substrate and the optical coupling mode according to the present embodiment. In particular, a device suitable for optical communication can be provided.

第2の実施の形態
図5〜図7は、本発明の第2の実施の形態を示すものである。
Second Embodiment FIGS. 5 to 7 show a second embodiment of the present invention.

本実施の形態では、図5(A)の平面図、その左側面図である図5(B)、そのX−X線断面図である図5(C)、そのY−Y線断面図である図5(D)、及び斜視図である図6に示すように、光導波路としてエアリッジ型の光導波路36を用い、面型発光素子としては、R(赤)、G(緑)、B(青)の各色を発光する三色の発光ダイオードLED(R)、LED(G)、LED(B)を用いている。   In this embodiment mode, FIG. 5A is a plan view, FIG. 5B is a left side view thereof, FIG. 5C is a sectional view taken along line XX, and a sectional view taken along line YY. As shown in FIG. 5D and FIG. 6 which is a perspective view, an air ridge type optical waveguide 36 is used as an optical waveguide, and R (red), G (green), B ( Three-color light emitting diodes LED (R), LED (G), and LED (B) that emit each color of blue) are used.

エアリッジ型の光導波路36は、45°ミラーが形成された端面34側のコア幅が広く、光出射側に行くほどコア幅が徐々に直線的に狭くなる形状となっており、45°ミラー部分からコア39に入射したR、G、Bの各光35(R)、35(G)、35(B)が合波され、点光源となって出射光48として出射面49から出力されるようになっている。光導波路36の両側にはコア39の存在しない部分が設けてあり、この部分が、即ちクラッド38が接着剤49によって実装基板31に接着固定される。クラッド38は、例えばSiからなる屈折率の高い支持板30上に設けられ、この支持板も含めて、基板31に設けた凸条部40上に固定される。   The air ridge type optical waveguide 36 has a shape in which the core width on the end face 34 side where the 45 ° mirror is formed is wide, and the core width gradually decreases linearly toward the light emitting side. R, G, and B light 35 (R), 35 (G), and 35 (B) incident on the core 39 from each other are combined to be a point light source and output from the exit surface 49 as the exit light 48. It has become. A portion where the core 39 does not exist is provided on both sides of the optical waveguide 36, and this portion, that is, the clad 38 is bonded and fixed to the mounting substrate 31 by the adhesive 49. The clad 38 is provided on a support plate 30 made of, for example, Si and having a high refractive index, and the clad 38 including the support plate is fixed on the ridge portion 40 provided on the substrate 31.

実装基板31には、エアリッジ型光導波路36のコア39が実装基板31に接しないように凹部44が設けてある。この凹部44の深さは、エアリッジコア39がLEDに接触しない深さにしてある。また、LEDの電極32を例えば金属ワイヤ37で取り出すための配線電極33が実装基板31上に絶縁膜(図示せず)を介して形成されている。   The mounting substrate 31 is provided with a recess 44 so that the core 39 of the air ridge type optical waveguide 36 does not contact the mounting substrate 31. The depth of the recess 44 is set so that the air ridge core 39 does not contact the LED. Further, a wiring electrode 33 for taking out the LED electrode 32 with, for example, a metal wire 37 is formed on the mounting substrate 31 via an insulating film (not shown).

本実施の形態では、光導波路36とLEDとの結合において、コア39の入射面34が広いので、その結合の位置合わせはシビアではなく、その位置合わせ精度は緩くてよい。従って、実装基板は、平坦基板(本体)31に、光導波路36との接着部分となるSi片(凹部44の両側の凸条部40)と、配線電極33をパターニングしたSi片41とを貼り合わせて、凹部44をもつ実装基板として作製することができる。平坦基板31は、Siで形成してよいが、この場合には、発光素子からの熱の放熱性が良い。   In the present embodiment, since the incident surface 34 of the core 39 is wide in the coupling between the optical waveguide 36 and the LED, the alignment of the coupling is not severe, and the alignment accuracy may be loose. Therefore, the mounting substrate is formed by attaching a Si piece (the protruding ridges 40 on both sides of the recess 44) to be bonded to the optical waveguide 36 and a Si piece 41 patterned on the wiring electrode 33 to the flat substrate (main body) 31. In addition, it can be manufactured as a mounting substrate having a recess 44. The flat substrate 31 may be formed of Si. In this case, the heat dissipation from the light emitting element is good.

このように本実施の形態によれば、基板31に形成した凹部44内の所定位置に発光素子LEDが固定され、前記所定位置とは別の位置にてエアリッジ型の光導波路36のコア39が基板31とは非接触の状態で凹部44に配置されていると共に、コア39以外の領域(即ち、クラッド38)で光導波路36が基板31に固定されている。従って、凹部44内の所定位置に固定した発光素子LEDに対し、高精度な位置合わせが必要とされる光導波部36をエアリッジ型とし、そのコア39を基板31とは非接触状態に配置して基板31に対する固定をコア以外の領域(特にクラッド38)で行い、しかもコア39の入射側の幅を大きくしているので、発光素子LEDに対するコア39の位置を決め易く、基板31に対する固定さえ十分に行えば常に正規の状態に位置合わせすることができ、またその固定面積も小さくて固定に用いる接着剤49の量が少なくなり、安定に接着(即ち、安定に位置合わせ)を行うことができる。しかも、光導波部36をエアリッジ型としてコア39を基板31と非接触としたので、コア−空気間の全反射による光伝搬性能が向上し、かつ漏れ光(クラッドモード)も少なくなると共に、コア39の入射面を広くしたので、発光光の発散角の大きいLEDからの入射光量が増大し、かつLEDとの位置合わせ精度も緩やかでよい。   As described above, according to the present embodiment, the light emitting element LED is fixed at a predetermined position in the recess 44 formed in the substrate 31, and the core 39 of the air ridge type optical waveguide 36 is formed at a position different from the predetermined position. The optical waveguide 36 is fixed to the substrate 31 in a region other than the core 39 (that is, the clad 38) while being disposed in the recess 44 in a non-contact state with the substrate 31. Therefore, the optical waveguide 36 that requires highly accurate alignment with respect to the light emitting element LED fixed at a predetermined position in the recess 44 is an air ridge type, and its core 39 is arranged in a non-contact state with the substrate 31. The substrate 31 is fixed in a region other than the core (especially the clad 38), and the width of the incident side of the core 39 is increased, so that the position of the core 39 with respect to the light emitting element LED can be easily determined, and even the substrate 31 is fixed. If it is sufficiently performed, it can always be aligned in a normal state, and the fixed area is small, and the amount of the adhesive 49 used for fixing is reduced, so that stable bonding (that is, stable alignment) can be performed. it can. In addition, since the optical waveguide 36 is an air ridge type and the core 39 is not in contact with the substrate 31, the light propagation performance due to total reflection between the core and air is improved, and leakage light (cladding mode) is reduced. Since the light incident surface 39 is widened, the amount of incident light from an LED having a large divergence angle of emitted light is increased, and the alignment accuracy with the LED may be moderate.

従って、本実施の形態においても、低コストかつ高性能な光結合構造を実現することができる。特に、ディスプレイ用として好適な装置を提供できる。   Therefore, also in this embodiment, a low-cost and high-performance optical coupling structure can be realized. In particular, an apparatus suitable for a display can be provided.

なお、コア39の幅を入射面34で広くし、かつ光出射側へ徐々に狭くしたことによる別の効果について図7を参照して説明する。   Another effect obtained by increasing the width of the core 39 at the incident surface 34 and gradually decreasing the width toward the light emitting side will be described with reference to FIG.

図7(A)は、光導波路36のうち、コア39に対し各LED(R)、(G)、(B)からの光を同時に入射面34から入射し、光出射面47から出射する状態を示している。この時に、入射面34の幅をA(μm)、出射面47の幅をB(μm)、及び入射面34から出射面47までの距離をd(mm)とする。そして、コア39の幅を直線状傾斜面46によって光入射面34から光出射面47へと直線的に小さくし、この直線状傾斜面46によってコア39とクラッド38との界面での全反射が向上し、コア39内での光導波を効率良く行える。   FIG. 7A shows a state in which light from the LEDs (R), (G), and (B) is simultaneously incident on the core 39 of the optical waveguide 36 from the incident surface 34 and is emitted from the light emitting surface 47. Is shown. At this time, the width of the entrance surface 34 is A (μm), the width of the exit surface 47 is B (μm), and the distance from the entrance surface 34 to the exit surface 47 is d (mm). The width of the core 39 is linearly reduced from the light incident surface 34 to the light emitting surface 47 by the linear inclined surface 46, and total reflection at the interface between the core 39 and the clad 38 is reduced by the linear inclined surface 46. The optical waveguide within the core 39 can be efficiently performed.

図7(B)には、入射面34から出射面47までの長さd(mm)と光損失(dB)との相関特性を示す。これによれば、出射面47の幅Bを50μmに固定し、光導波路36の許容損失をグラフ中に破線で示す2dB以下と設定した場合に、入射面34の幅Aを200μmとした条件aでは、光損失が2dB以下になるには、入射面34から出射面47までの長さdの下限は約0.7mmとなり、また、入射面34の幅Aを300μmとした条件bでは、光損失が2dB以下になるには、入射面34から出射面47までの長さdの下限は約1.5mmとなる。同様に、入射面34の幅Aを条件c、d、eのように広げていくと、光損失が2dB以下になるには、入射面34から出射面47までの長さdの下限は約3.0mm、約6.8mm、約15.0mmと大きくなる傾向がある。   FIG. 7B shows a correlation characteristic between the length d (mm) from the entrance surface 34 to the exit surface 47 and the optical loss (dB). According to this, when the width B of the emission surface 47 is fixed to 50 μm and the allowable loss of the optical waveguide 36 is set to 2 dB or less indicated by a broken line in the graph, the condition a in which the width A of the incident surface 34 is 200 μm Then, in order to reduce the optical loss to 2 dB or less, the lower limit of the length d from the incident surface 34 to the output surface 47 is about 0.7 mm, and under the condition b in which the width A of the incident surface 34 is 300 μm, the optical loss is reduced. In order to become 2 dB or less, the lower limit of the length d from the entrance surface 34 to the exit surface 47 is about 1.5 mm. Similarly, when the width A of the incident surface 34 is increased as in the conditions c, d, and e, the lower limit of the length d from the incident surface 34 to the exit surface 47 is about 3 to reduce the optical loss to 2 dB or less. There is a tendency to increase to 0 mm, about 6.8 mm, and about 15.0 mm.

この結果から、出射面47の幅Bを一定にしたとき、入射面34の幅Aを狭くして直線状傾斜面46の傾斜角を小さくすれば、光損失を2dB以下に抑え、かつ、入射面34から光出射面47までの長さdを比較的短くすることができる。従って、直線状傾斜面46による光導波効率を確実に向上させるには、上記の幅Aを規定することが望ましいことが分る。   From this result, when the width B of the exit surface 47 is made constant, if the width A of the entrance surface 34 is narrowed to reduce the tilt angle of the linear inclined surface 46, the optical loss can be suppressed to 2 dB or less and The length d from the surface 34 to the light emitting surface 47 can be made relatively short. Accordingly, it can be seen that it is desirable to define the width A in order to reliably improve the optical waveguide efficiency by the linear inclined surface 46.

以上に説明した実施の形態は、本発明の技術的思想に基づいて種々に変形が可能である。   The embodiment described above can be variously modified based on the technical idea of the present invention.

例えば、上述した発光素子の固定用の凹部や接着剤逃がし溝のパターンやその形成方法も上述したものに限定されることはなく、互いに連設していなくてもよく、また別々に形成してもよい。   For example, the pattern of the concave portion for fixing the light emitting element and the adhesive relief groove and the formation method thereof are not limited to those described above, and may not be connected to each other, or may be formed separately. Also good.

また、上述した異方性エッチングは、エッチングの進行程度を各凹部間で異ならせるようにマスク開口の幅を変えるだけでよいので、非常に効果的な方法であるが、基板の結晶方位は種々に選択してよく、またエッチングは湿式エッチングの場合には上述したKOHに限ることなく、TMAH(tetramethylammonium hydroxide)等を用いてよい。こうした異方性エッチングは、上述した第2の実施の形態における凹部44の形成に適用してよい。   The anisotropic etching described above is a very effective method because it is only necessary to change the width of the mask opening so that the degree of progress of etching differs between the recesses. In the case of wet etching, the etching is not limited to the KOH described above, and TMAH (tetramethylammonium hydroxide) or the like may be used. Such anisotropic etching may be applied to the formation of the recess 44 in the second embodiment described above.

また、上述した第1の実施の形態のように、上述した第2の実施の形態においても、基板をSi等の半導体基板とし、これを通して発光素子の電極を設置する構造としてよい。   Further, as in the first embodiment described above, also in the second embodiment described above, the substrate may be a semiconductor substrate such as Si, and the electrode of the light emitting element may be installed through the substrate.

また、上述した光導波路の構成材料や層構成も種々に変化させてよい。例えば、ニオブ酸リチウム等の無機系の材料を用い、これをCVD(化学的気相成長法)によって基板上にコア材として成膜し、レジストマスクを用いて所定パターンにエッチングすることによって、上述したと同等のコアを形成することができる。光導波路のコア形状は、直線状傾斜面を幅方向端面に有するタイプのみならず、曲線状傾斜面を幅方向端面に有するコアとしてもよい。コアの作製は成形型による成形で行ってもよい。   In addition, the constituent material and the layer configuration of the optical waveguide described above may be variously changed. For example, an inorganic material such as lithium niobate is used, and this is formed as a core material on a substrate by CVD (chemical vapor deposition), and etched into a predetermined pattern using a resist mask. A core equivalent to the above can be formed. The core shape of the optical waveguide is not limited to the type having a linear inclined surface at the end surface in the width direction, but may be a core having a curved inclined surface at the end surface in the width direction. The core may be produced by molding with a mold.

また、上述した光導波路を含む光学系の構成は適宜変更してよく、光配線等の光通信用は勿論、走査手段としてマイクロミラーデバイスやポリゴンミラー等を採用し、投影をスクリーン上に行ったり、ヘッドマウントディスプレイの如き装着型のディスプレイ等に適用してよい。   In addition, the configuration of the optical system including the above-described optical waveguide may be changed as appropriate. In addition to optical communication such as optical wiring, a micromirror device or a polygon mirror is used as a scanning unit, and projection is performed on a screen. The present invention may be applied to a wearable display such as a head mounted display.

また、上述の実施の形態は、LD、LED等の発光素子について説明したが、光導波路からの光をミラー面から出射してフォトダイオード等の受光素子で受光する構造とすることができる。この場合も、上述したと同様の作用効果を得ることができる。   Moreover, although the above-mentioned embodiment demonstrated light emitting elements, such as LD and LED, it can be set as the structure which radiate | emits the light from an optical waveguide from a mirror surface, and light-receives with light receiving elements, such as a photodiode. Also in this case, the same effect as described above can be obtained.

本発明の第1の実施の形態による光導波路装置の平面図(A)、そのIB−IB線断面図(B)及びそのIC−IC線断面図(C)である1A is a plan view of an optical waveguide device according to a first embodiment of the present invention, FIG. 1B is a sectional view taken along line IB-IB, and FIG. 1C is a sectional view taken along line IC-IC of FIG. 同、図1(A)のII−II線断面図の一部拡大図(A)及びその製造時の同様の一部拡大図(B)である。FIG. 2 is a partially enlarged view (A) of the cross-sectional view taken along the line II-II in FIG. 1 (A) and a partially enlarged view (B) similar to that at the time of manufacture. 同、光導波路装置の作製工程を順次示す断面図である。FIG. 6 is a cross-sectional view sequentially showing the manufacturing steps of the optical waveguide device. 同、光導波路装置の作製工程を順次示す断面図である。FIG. 6 is a cross-sectional view sequentially showing the manufacturing steps of the optical waveguide device. 本発明の第2の実施の形態による光導波路装置の平面図(A)、その左側面図(B)、そのX−X線断面図(C)、及びそのY−Y線断面図(D)である。The top view (A), the left view (B), the XX sectional view (C), and the YY sectional view (D) of the optical waveguide device by a 2nd embodiment of the present invention. It is. 同、光導波路の斜視図である。It is a perspective view of an optical waveguide. 同、光導波路とその光導波効率を示す平面図とグラフである。The top view and graph which show an optical waveguide and its optical waveguide efficiency similarly. 従来の光導波路装置の一例の断面図である。It is sectional drawing of an example of the conventional optical waveguide apparatus.

符号の説明Explanation of symbols

1…低抵抗Si基板、2…凹部、3…発光(又は受光)素子、4、34…ミラー面、
5、35(R)、35(G)、35(B)…入射光、6、36…光導波路、
7…下クラッド、8…上クラッド、9、39…コア、10…光導波路装置、
12…導波路側位置合わせマーカ、13…素子側位置合わせマーカ、
14…凹部(接着剤逃がし溝)、15…接着剤、16…導波路接着領域、18…出射光、
19…電極、20…裏面電極(Ti/Pt/Au)、21…絶縁層、22…電極パッド、
23…端子電極、30…支持板、31…基板、
33LED(R)、33LED(G)、33LED(B)…発光素子、40…凸状部、
41…Si片、44…凹部、49…接着剤
DESCRIPTION OF SYMBOLS 1 ... Low resistance Si substrate, 2 ... Recessed part, 3 ... Light emitting (or light-receiving) element, 4, 34 ... Mirror surface,
5, 35 (R), 35 (G), 35 (B) ... incident light, 6, 36 ... optical waveguide,
7 ... Lower cladding, 8 ... Upper cladding, 9, 39 ... Core, 10 ... Optical waveguide device,
12 ... Waveguide side alignment marker, 13 ... Element side alignment marker,
14 ... concave portion (adhesive escape groove), 15 ... adhesive, 16 ... waveguide adhesion region, 18 ... outgoing light,
DESCRIPTION OF SYMBOLS 19 ... Electrode, 20 ... Back electrode (Ti / Pt / Au), 21 ... Insulating layer, 22 ... Electrode pad,
23 ... Terminal electrode, 30 ... Support plate, 31 ... Substrate,
33LED (R), 33LED (G), 33LED (B) ... light emitting element, 40 ... convex portion,
41 ... Si piece, 44 ... concave, 49 ... adhesive

Claims (54)

端面に形成された光反射面を介して光を内部又は外部へ導びくように構成された光導波部と、前記端面に対向して配置された発光又は受光素子と、前記光導波部及び前記発光又は受光素子をそれぞれ固定した支持体とを有し、この支持体の異方性エッチングによって凹部が形成され、この凹部内の所定位置に前記発光又は受光素子が固定されている、光結合装置。   An optical waveguide configured to guide light to the inside or the outside via a light reflecting surface formed on the end surface; a light emitting or receiving element disposed to face the end surface; the optical waveguide unit; An optical coupling device having a support to which each of the light emitting or light receiving elements is fixed, a recess formed by anisotropic etching of the support, and the light emitting or receiving element being fixed at a predetermined position in the recess . 前記光導波部が前記支持体に接着によって固定され、この接着固定領域の外側位置に前記凹部が形成されている、請求項1に記載した光結合装置。   The optical coupling device according to claim 1, wherein the optical waveguide portion is fixed to the support by bonding, and the concave portion is formed at an outer position of the bonding fixing region. 前記凹部が、前記発光又は受光素子を固定するための第1凹部と、前記光導波部の前記接着固定領域外へはみ出る接着剤を受け入れるための第2凹部とからなり、これらの第1凹部及び第2凹部が前記異方性エッチングによってそれぞれ形成されている、請求項2に記載した光結合装置。   The concave portion includes a first concave portion for fixing the light emitting or light receiving element and a second concave portion for receiving an adhesive that protrudes out of the adhesive fixing region of the optical waveguide portion. The optical coupling device according to claim 2, wherein the second recesses are respectively formed by the anisotropic etching. 端面に形成された光反射面を介して光を内部又は外部へ導びくように構成されたエアリッジ型の光導波部と、前記端面に対向して配置された発光又は受光素子と、前記光導波部及び前記発光又は受光素子をそれぞれ固定した支持体とを有し、この支持体に形成された凹部内の所定位置に前記発光又は受光素子が固定され、前記所定位置とは別の位置にて前記光導波部のコアが前記支持体とは非接触の状態で前記凹部内に配置されていると共に、前記コア以外の領域で前記光導波部が前記支持体に固定されている、光結合装置。   An air ridge type optical waveguide configured to guide light to the inside or the outside through a light reflecting surface formed on the end surface, a light emitting or receiving element disposed to face the end surface, and the optical waveguide And a support body to which the light emitting or light receiving element is respectively fixed, and the light emitting or light receiving element is fixed at a predetermined position in a recess formed in the support body, and at a position different from the predetermined position. An optical coupling device, wherein the core of the optical waveguide unit is disposed in the recess in a non-contact state with the support, and the optical waveguide unit is fixed to the support in a region other than the core . 前記光導波部が前記支持体に接着によって固定され、この接着固定領域の内側位置に前記凹部が形成されている、請求項4に記載した光結合装置。   The optical coupling device according to claim 4, wherein the optical waveguide portion is fixed to the support by bonding, and the concave portion is formed at an inner position of the bonding fixing region. 前記凹部の外側位置で前記光導波部のクラッドが前記支持体に固定されている、請求項5に記載した光結合装置。   The optical coupling device according to claim 5, wherein a clad of the optical waveguide portion is fixed to the support at a position outside the concave portion. 前記凹部が、前記支持体の本体に対して固定された固定片によって形成されている、請求項4に記載した光結合装置。   The optical coupling device according to claim 4, wherein the recess is formed by a fixing piece fixed to the main body of the support. 前記支持体が半導体からなっている、請求項1又は4に記載した光結合装置。   The optical coupling device according to claim 1, wherein the support is made of a semiconductor. 前記支持体に対する前記光導波部及び前記発光又は受光素子の固定面とは反対側の支持体面に電極が設けられ、この電極と前記発光又は受光素子の電極とが前記支持体を通して電気的に導通されている、請求項8に記載した光結合装置。   An electrode is provided on the support surface opposite to the optical waveguide section and the fixed surface of the light emitting or receiving element with respect to the support, and the electrode and the electrode of the light emitting or receiving element are electrically connected through the support. The optical coupling device according to claim 8. 前記支持体の比抵抗が0.05Ω-cm以下の低抵抗基板である、請求項9に記載した光結合装置。   The optical coupling device according to claim 9, wherein the support is a low-resistance substrate having a specific resistance of 0.05 Ω-cm or less. 前記光反射面がほぼ45度に傾斜した光学ミラー面であり、この光学ミラー面に対向して面型の前記発光又は受光素子が配置されている、請求項1又は4に記載した光結合装置。   5. The optical coupling device according to claim 1, wherein the light reflecting surface is an optical mirror surface tilted at approximately 45 degrees, and the light emitting or light receiving element of a surface type is disposed to face the optical mirror surface. . 前記光導波部と前記発光又は受光素子とにそれぞれ、位置合わせ用のマーカが設けられている、請求項1又は4に記載した光結合装置。   The optical coupling device according to claim 1, wherein an alignment marker is provided on each of the optical waveguide unit and the light emitting or light receiving element. 前記光導波部が複数のコアを有し、これらのコアのそれぞれの前記端面に対向して前記発光又は受光素子の発光又は受光部が配置されている、請求項1又は4に記載した光結合装置。   5. The optical coupling according to claim 1, wherein the optical waveguide portion has a plurality of cores, and the light emitting or light receiving portions of the light emitting or light receiving elements are arranged to face the respective end faces of these cores. apparatus. 前記光導波部の光導波面積が前記端面で拡大されていて光出射端へ向けて徐々に縮小されており、面積拡大された前記端面に対向して前記発光又は受光素子の複数の発光又は受光部が配置されている、請求項1又は4に記載した光結合装置。   The optical waveguide area of the optical waveguide section is enlarged at the end face and gradually reduced toward the light emitting end, and a plurality of light emitting or receiving elements of the light emitting or light receiving element are opposed to the end face that has been enlarged in area. The optical coupling device according to claim 1, wherein the portion is disposed. 光通信用又はディスプレイ用として構成された、請求項1又は4に記載した光結合装置。   The optical coupling device according to claim 1, wherein the optical coupling device is configured for optical communication or display. 端面に形成された光反射面を介して光を内部又は外部へ導びくように構成された光導波部と、前記端面に対向して配置された発光又は受光素子とをそれぞれ固定するための光結合装置用の支持体であって、異方性エッチングによって凹部が形成され、この凹部内の所定位置に前記発光又は受光素子が固定されるように構成した、光結合装置用の支持体。   Light for fixing an optical waveguide unit configured to guide light to the inside or the outside via a light reflecting surface formed on the end surface, and a light emitting or light receiving element disposed to face the end surface A support for a coupling device, wherein a recess is formed by anisotropic etching, and the light emitting or light receiving element is fixed at a predetermined position in the recess. 前記光導波部の接着固定領域の外側位置に前記凹部が形成されている、請求項16に記載した光結合装置用の支持体。   The support for an optical coupling device according to claim 16, wherein the concave portion is formed at an outer position of an adhesive fixing region of the optical waveguide portion. 前記凹部が、前記発光又は受光素子を固定するための第1凹部と、前記光導波部の前記接着固定領域外へはみ出る接着剤を受け入れるための第2凹部とからなり、これらの第1凹部及び第2凹部が前記異方性エッチングによってそれぞれ形成されている、請求項17に記載した光結合装置用の支持体。   The concave portion includes a first concave portion for fixing the light emitting or light receiving element and a second concave portion for receiving an adhesive that protrudes out of the adhesive fixing region of the optical waveguide portion. The support body for optical coupling devices according to claim 17, wherein the second recesses are respectively formed by the anisotropic etching. 端面に形成された光反射面を介して光を内部又は外部へ導びくように構成されたエアリッジ型の光導波部と、前記端面に対向して配置された発光又は受光素子とをそれぞれ固定するための光結合装置用の支持体であって、前記発光又は受光素子を固定するための凹部が形成され、この固定位置とは別の位置にて前記光導波路部のコアが前記支持体とは非接触の状態で前記凹部内に配置されると共に、前記コア以外の領域で前記光導波部が固定されるように構成した、光結合装置用の支持体。   An air ridge type optical waveguide configured to guide light to the inside or the outside through a light reflecting surface formed on the end face, and a light emitting or light receiving element disposed to face the end face are fixed respectively. And a recess for fixing the light emitting or light receiving element, and the core of the optical waveguide portion is different from the fixing position at a position different from the fixing position. A support for an optical coupling device, which is arranged in a non-contact state in the recess and is configured such that the optical waveguide is fixed in a region other than the core. 前記光導波部の接着固定領域の内側位置に前記凹部が形成されている、請求項19に記載した光結合装置用の支持体。   The support for an optical coupling device according to claim 19, wherein the concave portion is formed at an inner position of an adhesive fixing region of the optical waveguide portion. 前記凹部の外側位置で前記光導波部のクラッドが固定されるように構成した、請求項20に記載した光結合装置用の支持体。   21. The support for an optical coupling device according to claim 20, wherein the clad of the optical waveguide portion is fixed at an outer position of the concave portion. 前記凹部が、支持体本体に固定された固定片によって形成されている、請求項19に記載した光結合装置用の支持体。   The support for an optical coupling device according to claim 19, wherein the recess is formed by a fixing piece fixed to the support body. 半導体からなっている、請求項16又は19に記載した光結合装置用の支持体。   The support for an optical coupling device according to claim 16 or 19, which is made of a semiconductor. 前記光導波部及び前記発光又は受光素子の固定面とは反対側の面に電極が設けられ、この電極と前記発光又は受光素子の電極とが電気的に導通される、請求項23に記載した光結合装置用の支持体。   24. The electrode according to claim 23, wherein an electrode is provided on a surface opposite to the fixed surface of the optical waveguide and the light emitting or receiving element, and the electrode and the electrode of the light emitting or receiving element are electrically connected. Support for optical coupling device. 比抵抗が0.05Ω-cm以下の低抵抗基板からなる、請求項24に記載した光結合装置用の支持体。   The support for an optical coupling device according to claim 24, comprising a low-resistance substrate having a specific resistance of 0.05 Ω-cm or less. 異方性エッチングによって支持体に凹部を形成する工程と、この凹部内の所定位置に発光又は受光素子を固定する工程と、端面に形成された光反射面を介して光を内部又は外部へ導くように構成された光導波部を、前記端面に対向して前記発光又は受光素子が配置されるように、前記支持体に固定する工程とを有する、光結合装置の製造方法。   A step of forming a recess in the support by anisotropic etching, a step of fixing a light emitting or light receiving element at a predetermined position in the recess, and a light is guided to the inside or outside through a light reflecting surface formed on the end face. And a step of fixing the optical waveguide section configured as described above to the support so that the light emitting or light receiving element is disposed facing the end face. 前記凹部の内側位置に前記光導波部を前記支持体に接着によって固定する、請求項26に記載した光結合装置の製造方法。   27. The method of manufacturing an optical coupling device according to claim 26, wherein the optical waveguide part is fixed to the support body by adhesion at an inner position of the recess. 前記凹部として、前記発光又は受光素子を固定するための第1凹部と、前記光導波部の接着固定領域外へはみ出る接着剤を受け入れるための第2凹部とをそれぞれ形成する、請求項27に記載した光結合装置の製造方法。   28. The concave portion is formed with a first concave portion for fixing the light emitting or light receiving element and a second concave portion for receiving an adhesive that protrudes outside an adhesive fixing region of the optical waveguide portion, respectively. Method of manufacturing an optical coupling device. 共通のマスクを用いて前記第1凹部と前記第2凹部とを同時に形成する、請求項28に記載した光結合装置の製造方法。   29. The method of manufacturing an optical coupling device according to claim 28, wherein the first concave portion and the second concave portion are simultaneously formed using a common mask. 前記共通のマスクにおいて、前記第1凹部用の開口部の幅よりも前記第2凹部用の開口部の幅を小さくする、請求項29に記載した光結合装置の製造方法。   30. The method of manufacturing an optical coupling device according to claim 29, wherein, in the common mask, a width of the opening for the second recess is made smaller than a width of the opening for the first recess. エアリッジ型の光導波部の前記端面に対向して前記発光又は受光素子を配置し、前記凹部内の所定位置に前記発光又は受光素子を固定し、前記所定位置とは別の位置にて前記光導波部のコアを前記支持体とは非接触の状態で前記凹部内に配置すると共に、前記コア以外の領域で前記光導波部を前記支持体に固定する、請求項26に記載した光結合装置の製造方法。   The light-emitting or light-receiving element is disposed facing the end face of the air ridge type optical waveguide, the light-emitting or light-receiving element is fixed at a predetermined position in the recess, and the light is emitted at a position different from the predetermined position. 27. The optical coupling device according to claim 26, wherein the core of the wave portion is disposed in the concave portion in a non-contact state with the support, and the optical waveguide portion is fixed to the support in a region other than the core. Manufacturing method. 前記光導波部を前記支持体に接着によって固定し、この接着固定領域の内側位置に前記凹部を形成する、請求項31に記載した光結合装置の製造方法。   32. The method of manufacturing an optical coupling device according to claim 31, wherein the optical waveguide unit is fixed to the support by bonding, and the concave portion is formed at an inner position of the bonding fixing region. 前記凹部の外側位置で前記光導波部のクラッドを前記支持体に固定する、請求項32に記載した光結合装置の製造方法。   33. The method of manufacturing an optical coupling device according to claim 32, wherein a clad of the optical waveguide portion is fixed to the support body at a position outside the concave portion. 支持体本体に固定された固定片によって前記凹部を形成する、請求項31に記載した光結合装置の製造方法。   32. The method for manufacturing an optical coupling device according to claim 31, wherein the concave portion is formed by a fixing piece fixed to the support body. 前記支持体を半導体で形成する、請求項26に記載した光結合装置の製造方法。   27. The method for manufacturing an optical coupling device according to claim 26, wherein the support is formed of a semiconductor. 前記支持体に対する前記光導波部及び前記発光又は受光素子の固定面とは反対側の支持体面に電極を設け、この電極と前記発光又は受光素子の電極とを前記支持体を通して電気的に導通する、請求項35に記載した光結合装置の製造方法。   An electrode is provided on a surface of the support opposite to the optical waveguide portion and the fixed surface of the light emitting or light receiving element with respect to the support, and the electrode and the electrode of the light emitting or light receiving element are electrically connected through the support. 36. A method of manufacturing an optical coupling device according to claim 35. 前記支持体の比抵抗として0.05Ω-cm以下の低抵抗基板を用いる、請求項36に記載した光結合装置の製造方法。   The method for manufacturing an optical coupling device according to claim 36, wherein a low-resistance substrate having a resistivity of 0.05 Ω-cm or less is used as the specific resistance of the support. 前記光反射面をほぼ45度に傾斜した光学ミラー面に形成し、この光学ミラー面に対向して面型の前記発光又は受光素子を配置する、請求項26に記載した光結合装置の製造方法。   27. The method of manufacturing an optical coupling device according to claim 26, wherein the light reflecting surface is formed on an optical mirror surface inclined at approximately 45 degrees, and the planar light emitting or light receiving element is disposed opposite to the optical mirror surface. . 前記光導波部と前記発光又は受光素子とにそれぞれ、位置合わせ用のマーカを設ける、請求項26に記載した光結合装置の製造方法。   27. The method of manufacturing an optical coupling device according to claim 26, wherein an alignment marker is provided on each of the optical waveguide section and the light emitting or light receiving element. 前記光導波部に複数のコアを形成し、これらのコアのそれぞれの前記端面に対向して前記発光又は受光素子の発光又は受光部を配置する、請求項26に記載した光結合装置の製造方法。   27. The method of manufacturing an optical coupling device according to claim 26, wherein a plurality of cores are formed in the optical waveguide portion, and the light emitting or light receiving portions of the light emitting or light receiving elements are arranged to face the respective end faces of these cores. . 前記光導波部の光導波面積を前記端面で拡大させて光出射端へ向けて徐々に縮小させ、面積拡大された前記端面に対向して前記発光又は受光素子の複数の発光又は受光部を配置する、請求項26に記載した光結合装置の製造方法。   The optical waveguide area of the optical waveguide section is enlarged at the end face and gradually reduced toward the light emitting end, and a plurality of light emitting or receiving sections of the light emitting or receiving element are arranged facing the end face that has been enlarged in area. The method of manufacturing an optical coupling device according to claim 26. 光通信又はディスプレイ用として構成された光結合装置を製造する、請求項26に記載した光結合装置の製造方法。   27. The method of manufacturing an optical coupling device according to claim 26, wherein an optical coupling device configured for optical communication or display is manufactured. 端面に形成された光反射面を介して光を内部又は外部へ導びくように構成された光導波部と、前記端面に対向して配置された発光又は受光素子とをそれぞれ固定するための光結合装置用の支持体の製造方法であって、前記発光又は受光素子を固定するための凹部を異方性エッチングによって形成する工程を有する、光結合装置用の支持体の製造方法。   Light for fixing an optical waveguide unit configured to guide light to the inside or the outside via a light reflecting surface formed on the end surface, and a light emitting or light receiving element disposed to face the end surface A method for manufacturing a support for an optical coupling device, the method comprising: forming a recess for fixing the light emitting or light receiving element by anisotropic etching. 前記光導波部の接着固定領域の外側位置に前記凹部を形成する、請求項43に記載した光結合装置用の支持体の製造方法。   44. The method for manufacturing a support for an optical coupling device according to claim 43, wherein the concave portion is formed at a position outside an adhesive fixing region of the optical waveguide portion. 前記凹部として、前記発光又は受光素子を固定するための第1凹部と、前記光導波部の接着固定領域外へはみ出る接着剤を受け入れるための第2凹部とをそれぞれ形成する、請求項44に記載した光結合装置用の支持体の製造方法。   45. The first concave portion for fixing the light emitting or light receiving element and the second concave portion for receiving an adhesive that protrudes outside the adhesive fixing region of the optical waveguide portion are formed as the concave portion, respectively. A method of manufacturing a support for an optical coupling device. 共通のマスクを用いて前記第1凹部と前記第2凹部とを同時に形成する、請求項45に記載した光結合装置用の支持体の製造方法。   The manufacturing method of the support body for optical coupling devices of Claim 45 which forms the said 1st recessed part and the said 2nd recessed part simultaneously using a common mask. 前記共通のマスクにおいて、前記第1凹部用の開口部の幅よりも前記第2凹部用の開口部の幅を小さくする、請求項46に記載した光結合装置用の支持体の製造方法。   47. The method of manufacturing a support for an optical coupling device according to claim 46, wherein, in the common mask, a width of the opening for the second recess is made smaller than a width of the opening for the first recess. エアリッジ型の光導波部の前記端面に対向して前記発光又は受光素子を配置し、前記凹部内の所定位置に前記発光又は受光素子を固定し、前記所定位置とは別の位置にて前記光導波部のコアを非接触の状態で前記凹部内に配置すると共に、前記コア以外の領域で前記光導波部を固定するための支持体を製造する、請求項43に記載した光結合装置用の支持体の製造方法。   The light-emitting or light-receiving element is disposed facing the end face of the air ridge type optical waveguide, the light-emitting or light-receiving element is fixed at a predetermined position in the recess, and the light is emitted at a position different from the predetermined position. 44. The optical coupling device according to claim 43, wherein the core of the wave portion is disposed in the recess in a non-contact state, and a support for fixing the optical waveguide portion in a region other than the core is manufactured. A method for producing a support. 前記光導波部を接着によって固定し、この接着固定領域の内側位置に前記凹部を形成する、請求項48に記載した光結合装置用の支持体の製造方法。   49. The method of manufacturing a support for an optical coupling device according to claim 48, wherein the optical waveguide portion is fixed by bonding, and the concave portion is formed at an inner position of the bonding fixing region. 前記光導波部のクラッドの接着固定領域より内側位置に前記凹部を形成する、請求項49に記載した光結合装置用の支持体の製造方法。   50. The method for manufacturing a support for an optical coupling device according to claim 49, wherein the concave portion is formed at a position inside an adhesive fixing region of the clad of the optical waveguide portion. 支持体本体に固定された固定片によって前記凹部を形成する、請求項48に記載した光結合装置用の支持体の製造方法。   The manufacturing method of the support body for optical coupling devices of Claim 48 which forms the said recessed part with the fixed piece fixed to the support body main body. 半導体で形成する、請求項43に記載した光結合装置用の支持体の製造方法。   The manufacturing method of the support body for optical coupling devices of Claim 43 formed with a semiconductor. 前記光導波部及び前記発光又は受光素子の固定面とは反対側の面に電極を設け、この電極と前記発光又は受光素子の電極とを電気的に導通する、請求項52に記載した光結合装置用の支持体の製造方法。   53. The optical coupling according to claim 52, wherein an electrode is provided on a surface opposite to a fixed surface of the optical waveguide and the light emitting or receiving element, and the electrode and the electrode of the light emitting or receiving element are electrically connected. A method for producing a support for an apparatus. 比抵抗が0.05Ω-cm以下の低抵抗基板を用いる、請求項53に記載した光結合装置用の支持体の製造方法。
The method for producing a support for an optical coupling device according to claim 53, wherein a low-resistance substrate having a specific resistance of 0.05 Ω-cm or less is used.
JP2004073791A 2004-03-16 2004-03-16 Optical coupling device and manufacturing method thereof Expired - Fee Related JP4506216B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004073791A JP4506216B2 (en) 2004-03-16 2004-03-16 Optical coupling device and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004073791A JP4506216B2 (en) 2004-03-16 2004-03-16 Optical coupling device and manufacturing method thereof

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2009284653A Division JP4793490B2 (en) 2009-12-16 2009-12-16 Optical coupling device and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2005265885A true JP2005265885A (en) 2005-09-29
JP4506216B2 JP4506216B2 (en) 2010-07-21

Family

ID=35090550

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004073791A Expired - Fee Related JP4506216B2 (en) 2004-03-16 2004-03-16 Optical coupling device and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4506216B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007148107A (en) * 2005-11-29 2007-06-14 Omron Corp Optical cable module, its manufacturing method and electronic equipment having the same
WO2007125995A1 (en) * 2006-04-27 2007-11-08 Omron Corporation Optical transmission module
US7590315B2 (en) * 2006-12-08 2009-09-15 Sony Corporation Optical waveguide and optical module using the same
WO2011056733A2 (en) * 2009-11-03 2011-05-12 Rbd Solutions Llc Fiber optic devices and methods of manufacturing fiber optic devices
US7978939B2 (en) 2007-10-03 2011-07-12 Fuji Xerox Co., Ltd. Optical module
JP2014067000A (en) * 2012-09-26 2014-04-17 Taida Electronic Ind Co Ltd Optical communication module and assembly method for the same
JP2014182208A (en) * 2013-03-18 2014-09-29 Fujitsu Ltd Manufacturing method and manufacturing device for optical transmission apparatuses, and optical transmission apparatus
JP2014212166A (en) * 2013-04-17 2014-11-13 日本特殊陶業株式会社 Optical waveguide device
US9715062B2 (en) 2015-01-08 2017-07-25 Fujitsu Limited Optical axis adjustment method for optical interconnection, and optical interconnection substrate

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06347665A (en) * 1993-06-08 1994-12-22 Nec Corp Production of optical device
JPH11183750A (en) * 1997-12-25 1999-07-09 Nhk Spring Co Ltd Manufacture of optical waveguide module for optical device, and optical device
JP2000019362A (en) * 1998-07-07 2000-01-21 Nec Corp Optical coupling device for array type semiconductor laser and solid-state laser device using this array type semiconductor laser
WO2000008505A1 (en) * 1998-08-05 2000-02-17 Seiko Epson Corporation Optical module
JP2001343559A (en) * 2000-05-30 2001-12-14 Kyocera Corp Optical module

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06347665A (en) * 1993-06-08 1994-12-22 Nec Corp Production of optical device
JPH11183750A (en) * 1997-12-25 1999-07-09 Nhk Spring Co Ltd Manufacture of optical waveguide module for optical device, and optical device
JP2000019362A (en) * 1998-07-07 2000-01-21 Nec Corp Optical coupling device for array type semiconductor laser and solid-state laser device using this array type semiconductor laser
WO2000008505A1 (en) * 1998-08-05 2000-02-17 Seiko Epson Corporation Optical module
JP2001343559A (en) * 2000-05-30 2001-12-14 Kyocera Corp Optical module

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4631671B2 (en) * 2005-11-29 2011-02-16 オムロン株式会社 Optical cable module and electronic device including optical cable module
JP2007148107A (en) * 2005-11-29 2007-06-14 Omron Corp Optical cable module, its manufacturing method and electronic equipment having the same
WO2007125995A1 (en) * 2006-04-27 2007-11-08 Omron Corporation Optical transmission module
JP2007298580A (en) * 2006-04-27 2007-11-15 Omron Corp Optical transmission module
US7907802B2 (en) 2006-04-27 2011-03-15 Omron Corporation Optical transmission module
US7590315B2 (en) * 2006-12-08 2009-09-15 Sony Corporation Optical waveguide and optical module using the same
US7978939B2 (en) 2007-10-03 2011-07-12 Fuji Xerox Co., Ltd. Optical module
WO2011056733A3 (en) * 2009-11-03 2011-09-29 3M Innovative Properties Company Of 3M Center Fiber optic devices and methods of manufacturing fiber optic devices
WO2011056733A2 (en) * 2009-11-03 2011-05-12 Rbd Solutions Llc Fiber optic devices and methods of manufacturing fiber optic devices
CN102859410A (en) * 2009-11-03 2013-01-02 3M创新有限公司 Fiber optic devices and methods of manufacturing fiber optic devices
US8989539B2 (en) 2009-11-03 2015-03-24 3M Innovative Properties Company Fiber optic devices and methods of manufacturing fiber optic devices
US9151913B2 (en) 2009-11-03 2015-10-06 3M Innovative Properties Company Fiber optic devices and methods of manufacturing fiber optic devices
US9846288B2 (en) 2009-11-03 2017-12-19 3M Innovative Properties Company Fiber optic devices and methods of manufacturing fiber optic devices
JP2014067000A (en) * 2012-09-26 2014-04-17 Taida Electronic Ind Co Ltd Optical communication module and assembly method for the same
JP2014182208A (en) * 2013-03-18 2014-09-29 Fujitsu Ltd Manufacturing method and manufacturing device for optical transmission apparatuses, and optical transmission apparatus
JP2014212166A (en) * 2013-04-17 2014-11-13 日本特殊陶業株式会社 Optical waveguide device
US9715062B2 (en) 2015-01-08 2017-07-25 Fujitsu Limited Optical axis adjustment method for optical interconnection, and optical interconnection substrate
US10151878B2 (en) 2015-01-08 2018-12-11 Fujitsu Limited Optical interconnection substrate including optical transmitter with light source and mark or optical receiver with light receiving unit and mark

Also Published As

Publication number Publication date
JP4506216B2 (en) 2010-07-21

Similar Documents

Publication Publication Date Title
JP5089643B2 (en) Optical connection element manufacturing method, optical transmission board, optical connection component, connection method, and optical transmission system
US7679095B2 (en) Optoelectric composite substrate and electronic apparatus
JP5910469B2 (en) Optical module and manufacturing method thereof
US7734124B2 (en) Optical waveguide and method of manufacturing the same, and method of manufacturing optical/electrical hybrid substrate
US7596289B2 (en) Optical/electrical hybrid substrate
JP4624162B2 (en) Opto-electric wiring board
US6640021B2 (en) Fabrication of a hybrid integrated circuit device including an optoelectronic chip
JP2010026508A (en) Method for manufacturing optical interface module and optical interface module
KR20060134857A (en) Optical device
JPH0567770A (en) Photoelectronic integrated circuit device
JP2019186467A (en) Semiconductor device and method for manufacturing the same
US6227723B1 (en) Substrate for mounting an optical component and optical module provided with the same
JP4506216B2 (en) Optical coupling device and manufacturing method thereof
JP2005062557A (en) Optical element device, two-dimensional optical waveguide element using the same and optoelectronic fusion wiring substrate
JP2002031747A (en) Planar optical element mounted body, its manufacturing method, and device using it
JP2008102283A (en) Optical waveguide, optical module and method of manufacturing optical waveguide
JP4306011B2 (en) Optical wiring layer and manufacturing method thereof, optical / electrical wiring substrate, manufacturing method thereof, and mounting substrate
JP2001166167A (en) Optical wiring layer and method for manufacturing the same as well as opto-electric wiring board and method for manufacturing the same as well as packaging substrate
JP4793490B2 (en) Optical coupling device and manufacturing method thereof
JP2004302188A (en) Electric wiring substrate with optical waveguide
JP3652080B2 (en) Optical connection structure
JPH1152198A (en) Optical connecting structure
JP2930178B2 (en) Light receiving structure of waveguide type optical device
JP2002365457A (en) Optical waveguide, method for manufacturing the same, and optical signal transmission device
JP2006058327A (en) Optical waveguide device and optical coupling device

Legal Events

Date Code Title Description
RD13 Notification of appointment of power of sub attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7433

Effective date: 20070125

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080829

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090527

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100119

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100304

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100406

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100419

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4506216

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees