JP2006227673A - Autonomous travel device - Google Patents

Autonomous travel device Download PDF

Info

Publication number
JP2006227673A
JP2006227673A JP2005037138A JP2005037138A JP2006227673A JP 2006227673 A JP2006227673 A JP 2006227673A JP 2005037138 A JP2005037138 A JP 2005037138A JP 2005037138 A JP2005037138 A JP 2005037138A JP 2006227673 A JP2006227673 A JP 2006227673A
Authority
JP
Japan
Prior art keywords
autonomous
autonomous vehicle
target point
camera
driving apparatus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005037138A
Other languages
Japanese (ja)
Inventor
Takashi Anezaki
隆 姉崎
Original Assignee
Matsushita Electric Ind Co Ltd
松下電器産業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Ind Co Ltd, 松下電器産業株式会社 filed Critical Matsushita Electric Ind Co Ltd
Priority to JP2005037138A priority Critical patent/JP2006227673A/en
Publication of JP2006227673A publication Critical patent/JP2006227673A/en
Application status is Pending legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To enable an autonomous travel device to perform operations at many points continuously in a short time by correcting displacement during movement to target points.
SOLUTION: A target point on a ceiling or wall is detected with an autonomous-vehicle-mounted camera, information on displacement from a target point input in advance is calculated, a route integration value and the deviation information are substituted into a vehicle motion equation to provide vehicle position control, which corrects the displacement from the target point during movement to enable an operation with a working device.
COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、無人搬送車の自律運転時の位置検出制御方法に関し、特に誘導路として床面に部分的に磁気テープや反射テープ等を敷設せずに、無人搬送車付属のカメラによって検出した位置ずれ情報と無人搬送車の車輪に設けたエンコーダによる経路積算値とにより搬送車の自立運転を高速にかつ精度良く、作業機器による屋内作業を行うようにした無人搬送車の自律走行装置に関するものである。 The present invention relates to a position detection control method during the autonomous operation of the AGV, position without partially laid magnetic tape or reflective tape or the like on the floor surface was detected by the automatic guided vehicle in the camera's particular as taxiway shift information and good accuracy and at high speed autonomous operation of the transport vehicle by a route integrated value by the encoder provided to the wheels of the AGV, relates autonomous device of the automatic guided vehicle which is to perform the indoor work by the work equipment is there.

従来の無人搬送車の自律走行装置としては、自己の位置座標を求めて移動順序に従って目標地点に向かって走行し、目標地点近くで停止後、搭載した作業機器(作業ツールや監視カメラなど)の目標地点からのずれを修正して目標地点で作業機器による屋内作業を行うものがあった。 Conventional automatic guided vehicle of the autonomous driving apparatus, travels toward the target location according to the movement order, obtain the position coordinates of the self, after the stop near target point, equipped with working appliances (such as a work tool and monitoring cameras) there was to perform indoor work by work equipment at the target point to correct the deviation from the target point.

すなわち、この従来の無人搬送車の自律走行装置は、予め入力した移動プログラムに従って作業地点に移動する自走式台車と、この自走式台車の荷台上に設けた電子式光波測距測角儀と、自走式台車の荷台上に設けた動力駆動のXYテーブルと、XYテーブル上に設けた作業機器と、自走式台車の走行制御およびXYテーブルや作業機器の駆動制御を行う制御部とを有し、地図等を転写した環境モデルと、この環境モデル内における作業地点の座標と、自走式台車の移動、作業機器の位置出しおよび作業メニューに関するプログラムを制御部のコンピュータに予め入力し、出発点での自己位置同定を終えた自走式台車を作業地点に向かって移動させ、さらに、前記光波測距測角儀で床面の基準点に配置した反射ターゲットまでの距離を測定し That is, the conventional automated guided vehicle autonomous driving apparatus includes a self-propelled carriage which moves to the working point according to the movement program input in advance, measuring electronic optical distance provided on the bed of the self-propelled truck SumiTadashi When a self-propelled XY table power drive provided on the bed of the truck, and work equipment provided on the XY table, and a control unit for controlling the driving of the traveling control and the XY table or work equipment of the self-propelled carriage anda environmental model the transfer of the map or the like, the coordinates of the working point within the environment model, the self-propelled movement of the carriage, previously input to the program control unit of the computer relating to positioning and working menus work equipment the self-propelled carriage having finished the self-localization of the starting point is moved towards the working point, further measures the distance to the reflecting target is arranged on the reference point of the floor surface in the optical distance measuring angle Yi 作業地点の近くに停止した自走式台車と作業地点との間のずれ量を演算し、そのずれを前記XYテーブルで修正して作業機器を作業地点に位置決めし、その後、作業機器による作業を行うように構成されたものであった。 Calculates the amount of deviation between the working point and the self-propelled truck stopped near the work point, the work equipment is positioned at the working point by modifying the deviation in the XY table, then, the work by working equipment It was those that are configured to perform.
特開2001−289638号公報 JP 2001-289638 JP

しかしながら、前記従来の構成では、自己の位置座標を求めて予め入力した移動順序に従って目標地点に向かって走行し、目標地点近くで停止後、搭載した作業機器(作業ツールや監視カメラなど)の目標地点からのずれを修正して目標地点で作業機器による作業を行うことになるため、移動中の位置ずれ修正が不可能であり、多数地点での作業を連続で短時間に行う等の場合に支障が生じるという問題があった。 However, in the conventional configuration, obtain the position coordinates of the self-traveling towards the target location according to the movement order entered previously, after the stop near the target point, the target of mounting the work equipment (such as a work tool and monitoring cameras) since which is working by the work equipment at the target point to correct the deviation from the point, it is impossible to position shift correction of moving, if such be performed in a short period of time working with multiple locations on a continuous there is a problem that trouble occurs.

本発明は、前記従来の課題を解決するもので、移動中の位置ずれ修正が行え、多数地点での作業を連続で短時間に行うことを可能とする自律走行装置を提供することを目的とする。 The present invention is intended to solve the conventional problems, it can misalignment correction of the move, and aims to provide a self-driving device that allows to carry out in a short time to work at multiple locations on a continuous to.

上記目的を達成するために、本発明の自律走行装置は、自律走行車付属カメラにて天井、壁面の目標地点を検出し、予め入力した目標地点との位置ずれ情報を算出し、経路積算値および前期位置ずれ情報を台車運動方程式に算入して台車位置制御を行い、移動しながら目標地点からのずれを修正し、作業機器による屋内作業を行うものである。 To achieve the above object, autonomous driving apparatus of the present invention, the ceiling in autonomous vehicles accessory camera, detects the target point of the wall surface, calculates the position deviation information from the target point previously input, path integration value and year positional displacement information be included in carriage motion equation performs carriage position control, to correct the deviation from the target point while moving, and performs indoor work by the working equipment.

本構成によって、移動中での位置ずれ修正が可能となり、多数地点での作業を連続で短時間に行うことを可能となる。 This structure enables the position deviation corrected in a mobile, it is possible to be performed in a short period of time working with many points in a row.

以上のように、本発明の自律走行装置によれば、自律走行車付属カメラにて天井、壁面の目標地点を検出し、予め入力した目標地点との位置ずれ情報を算出し、経路積算値および前期位置ずれ情報を台車運動方程式に算入して台車位置制御を行う構成を有するため、移動しながら目標地点からのずれを修正し、多数地点での作業機器による屋内作業を連続で短時間に行うことができるという効果を奏する。 As described above, according to the autonomous driving apparatus of the present invention, the ceiling in autonomous vehicles accessory camera, detects the target point of the wall surface, calculates the position deviation information from the target point inputted in advance, the path integration value and because having a configuration for performing carriage position control by inclusion of year misalignment information to carriage motion equation, correct the deviation from the target point while moving, in a short time indoor work in continuous according to the working equipment in many locations there is an effect that it is possible.

以下本発明の実施の形態について、図面を参照しながら説明する。 The following embodiments of the present invention will be described with reference to the drawings.

図1に示すように、駆動手段10は自律走行車1の前後進、および左右側の移動を制御するものであって、駆動手段10は自律走行車1を右側に移動させるよう左側走行モータ111を駆動する左側モータ駆動部11と、自律走行車1掃除機を左側に移動させるよう右側走行モータ121を駆動する右側モータ駆動部12とから構成されている。 As shown in FIG. 1, forward and backward driving means 10 is autonomous vehicle 1, and a controls the movement of the left and right side, the drive means 10 is a left traveling motor 111 to move the autonomous vehicle 1 on the right a left motor driving unit 11 for driving the, and a right motor driving unit 12 for driving the right travel motor 121 to move the autonomous vehicle 1 cleaner to the left. 左側走行モータ111と右側走行モータ121には図示しない駆動輪がそれぞれ取付けられている。 Drive wheels (not shown) to the left traveling motor 111 and the right traveling motor 121 is mounted, respectively.

さらに、走行距離検出手段20は、駆動手段10により移動される自律走行車1の走行距離を検出するものであって、走行距離検出手段20は、駆動手段10の制御により駆動する左側駆動輪の回転数、すなわち、左側走行モータ111の回転数に比例するパルス信号を発生させて自律走行車1が右側に移動した走行距離を検出する左側エンコーダ21と、駆動手段10の制御により駆動する右側駆動輪の回転数、すなわち、右側走行モータ121の回転数に比例するパルス信号を発生させて自律走行車1が左側に移動した走行距離を検出する右側エンコーダ22とから構成されている。 Moreover, the travel distance detecting means 20 is for detecting the traveling distance of the autonomous vehicle 1 is moved by the drive means 10, the travel distance detecting means 20, the left driving wheel driven by the control of the drive means 10 rpm, i.e., a left encoder 21 autonomous vehicle 1 by generating a pulse signal proportional to the rotational speed of the left traveling motor 111 detects the travel distance moved to the right, the right driving driven by the control of the drive means 10 rotational speed of the wheel, i.e., and a right side encoder 22 for detecting a travel distance of autonomous vehicles 1 by generating a pulse signal proportional to the rotational speed of the right traveling motor 121 is moved to the left.

また、方向各検出手段30は、駆動手段10により移動される自律走行車1の走行方向変化を検出するものであって、この方向角検出手段30は駆動手段10により移動される自律走行車1の回転時に変化する電圧レベルにしたがって自律走行車1の回転速度を感知して走行方向変化を検出するジャイロセンサなどの方向角センサである。 The direction the detecting means 30 is for detecting the traveling direction change of the autonomous vehicle 1 is moved by the drive means 10, the autonomous vehicle this direction angle detecting means 30 is moved by the drive means 10 1 the direction angle sensor such as a gyro sensor for detecting a traveling direction change by sensing the rotational speed of the autonomous vehicle 1 according to the voltage level which varies during rotation of.

位置ずれ情報算出手段40は、駆動手段10により移動される自律走行車1の走行経路に存在する天井および壁面までの目標地点を検出し予め入力した目標地点との位置ずれ情報を算出するものであって、この位置ずれ情報算出手段40は自律走行車1の走行経路に存在する天井および壁面までの目標地点を検出する自律走行車付属カメラ部41から構成されている。 Misalignment information calculation unit 40 calculates a positional deviation information of the target point previously input detects the target point of the ceiling and the wall surface exists in the traveling path of the autonomous vehicle 1 is moved by the drive means 10 there, this misalignment information calculation unit 40 is composed of an autonomous vehicle comes camera unit 41 for detecting a target point ceiling and wall surfaces are present in the travel path of the autonomous vehicle 1.

位置ずれ情報算出手段40の自律走行車付属カメラ部41は、自律走行車1の走行経路に存在する天井および壁面までの目標地点を検出する自律走行車付属カメラ411の画像を入力処理する第1のセンサ駆動部412と、自律走行車付属カメラ411を所望の方向へ回転させるステップインモータ413と、ステップインモータ413を駆動するステップインモータ駆動部414とから構成されている。 Autonomous vehicle comes camera unit 41 of the displacement information calculating unit 40, first inputs processing an image of the autonomous vehicle comes camera 411 for detecting a target point ceiling and wall surfaces are present in the travel path of the autonomous vehicle 1 1 a sensor driving unit 412, a stepping motor 413 for rotating the autonomous vehicle comes camera 411 in a desired direction, and a stepping motor driving unit 414 that drives the stepping motor 413.

また、図1において、制御手段50は、走行距離検出手段20により検出された走行距離データ、および方向各検出手段30により検出された走行方向データが所定時間間隔で入力されて自律走行車1の現在位置を演算し、位置ずれ情報算出手段40により算出された天井および壁面までの目標地点に対する位置ずれ情報が入力され、その情報結果にしたがって自律走行車1の走行経路を制御することによって、自律走行車1が正常軌道から逸脱せずに目標地点まで正確に走行できるよう制御する中央処理装置CPUである。 Further, in FIG. 1, the control means 50, Mileage data detected by the detecting means 20, and the direction the travel direction data detected by the detection means 30 of the autonomous vehicle 1 are input at predetermined time intervals the current position is calculated, the input positional displacement information with respect to the target point of the ceiling and wall surfaces calculated by the position deviation information computation means 40, by controlling the traveling path of the autonomous vehicle 1 in accordance with the information result, the autonomous vehicle 1 is a central processing unit CPU for controlling so that it can accurately travel to the target location without departing from the normal track.

以下、上記のように構成された自律走行車の位置認識方法、および制御方法とその作用効果について説明する。 Hereinafter, the configuration position recognition method of an autonomous vehicle as described above, and the control and the advantages thereof will be described. 図2は本実施形態における自律走行車の走行制御動作順を示すフローチャートであり、図中のSはその各ステップを表す。 Figure 2 is a flowchart showing a running control operation sequence of the autonomous vehicle in the present embodiment, S in the drawing represent the respective steps.

まず、ユーザーが自律走行車1の所定位置に装着されている動作スイッチをオンさせると、ステップS1では図示しない電源手段から供給される駆動電圧を制御手段50から入力されて自律走行車1を走行作業機能に適するよう初期化させながらユーザーの入力した作業命令に従って動作を開始する。 First, when the user turns on the operation switch mounted on the predetermined position of the autonomous vehicle 1, the autonomous vehicle 1 is inputted to the driving voltage supplied from the power supply means (not shown) in step S1 from the control means 50 running while it initialized to suitable work function to start the operation in accordance with the work instruction entered by the user.

次いで、ステップS2では作業初期に走行領域内の所定位置に任意の方向へ置かれた自律走行車1に装着された第1の自律走行車付属カメラ411から、ステップインモータ413の駆動にしたがって回転されながら自律走行車1の走行経路に存在する天井および壁面までの目標地点を検出することにより、自律走行車1と目標地点に対する位置ずれ情報を算出する。 Then, the first autonomous vehicle accessory camera 411 mounted on the autonomous vehicle 1 placed in an arbitrary direction at a predetermined position of the running area to work early In step S2, the rotation according to the drive of the stepping motor 413 It is by detecting the target point of the ceiling and the wall surface exists in the traveling path of the autonomous vehicle 1 while, to calculate the positional displacement information with respect to 1 and the target point autonomous vehicles.

自律走行車1と前方壁面WFとの角度を演算する例を図3を参照して説明する。 An example of calculating the angle between the autonomous vehicle 1 and the front wall WF will be described with reference to FIG.

第1の自律走行車付属カメラ411を所定角度に回転させつつ壁面WFまでの距離を測定した時、i番目の方向が壁面WFと垂直の方向であると仮定すれば、i−1、i+1番目の方向の距離d(i−1)、d(i)、d(i+1)は下記式を満足させる。 When the first autonomous vehicle comes camera 411 measures the distance to the wall surface WF while rotating at a predetermined angle, i-th direction assuming the direction of the wall surface WF and vertical, i-1, i + 1 th direction distance d (i-1), d (i), d (i + 1) is to satisfy the following expression.

cos△θ・d(i−1)=cos△θ・d(i+1)=d(i)であればcos -1 {d(i)/d(i−1)}=cos -1 {d(i)/d(i+1)}=△θである。 cos △ θ · d (i- 1) = cos △ θ · d (i + 1) = If d (i) cos -1 {d (i) / d (i-1)} = cos -1 {d ( i) / d (i + 1)} = △ is theta.

もし、d(i−1)=d(i)であるか、d(i+1)=d(i)である場合には、 If either a d (i-1) = d (i), in the case of d (i + 1) = d (i) is
0<cos -1 {d(i)/d(i−1)}<△θ 0 <cos -1 {d (i ) / d (i-1)} <△ θ
0<cos -1 {d(i)/d(i+1)}<△θ 0 <cos -1 {d (i ) / d (i + 1)} <△ θ
を満足する方向中から最短距離を示す方向が壁面WFと垂直の方向iに最も近いことを類推することができる。 Direction indicated shortest distance from among a direction which satisfies it can be inferred that the closest in the direction i of the wall surface WF perpendicular. すなわち、i方向が壁面WFと垂直の方向であれば、i方向と自律走行車1の正面のなす角θiは、自律走行車1と壁面WFのなす角θに近似であると見なすことができる。 That is, if the i direction wall surfaces WF and direction of the vertical, the angle θi of the front of the i direction and the autonomous vehicle 1 can be regarded as an approximation to the angle θ of the autonomous vehicle 1 and the wall surface WF .

次いで、ステップS3では制御手段50から出力される制御信号を駆動手段10に入力して右側走行モータ121を駆動させることにより、自律走行車1をθiだけ左側に回転させて自律走行車1を前方の壁面WFに垂直に整列させ、ステップS4で第1の自律走行車付属カメラ411から第1のセンサ駆動部412により、図4に示すように、自律走行車1の左側が壁面WLからの離隔距離d1を算出してその算出された離隔距離データd1を制御手段50に出力する。 Then, by driving the right traveling motor 121 by inputting the control signal outputted from the control unit 50 In step S3 the drive means 10, the front autonomous vehicle 1 is rotated to the left of the autonomous vehicle 1 by θi is vertically aligned on the wall surface WF of the first sensor drive section 412 from the first autonomous vehicle comes camera 411 in step S4, as shown in FIG. 4, spaced left autonomous vehicle 1 from the wall surface WL and calculates the distance d1 and outputs the distance data d1 that calculated for the control unit 50.

さらに、第1の自律走行車付属カメラ411から第1のセンサ駆動部412により、図4に示すように、自律走行車1の右側が壁面WRからの離隔距離d2を算出してその算出された離隔距離データd2を制御手段50に出力する。 Further, the first sensor drive section 412 from the first autonomous vehicle accessory camera 411, as shown in FIG. 4, the autonomous vehicle 1 right thereof is calculated by calculating the distance d2 from the wall surface WR and it outputs the distance data d2 to the control means 50.

この際、離隔距離データをd1>d2とすれば、駆動手段10では制御手段50から出力される制御信号が入力されて右側走行モータ121を駆動させることにより、自律走行車1を左側に90°回転させて(d1+d2)/2になる中間地点に移動させる。 At this time, if the distance data d1> d2 and, by driving the right traveling motor 121 control signal output from the control unit 50, drive means 10 is inputted, 90 ° the autonomous vehicle 1 on the left rotate (d1 + d2) is moved to an intermediate point becomes / 2.

上記過程を繰り返すと、図5に示すような複雑な構造の走行領域内でも走行領域(部屋)の中心点に移動できるようになるため、ステップS5では自律走行車1の位置が中心点であるかを判別し、部屋の中心点でない場合(NOのとき)には、前記ステップS4に戻り自律走行車1が部屋の中心点に移動する時までステップS4以下の動作を繰返し行う。 Repeating the above process, since to move the center point of the travel region in the travel area of ​​the complicated structure shown in FIG. 5 (room), is at the center point position of the autonomous vehicle 1 in step S5 or it determines, if not the central point of the room (nO), the autonomous vehicle 1 returns to the step S4 is repeated a step S4 following operation until when moving to the center point of the room.

前記ステップS5での判別の結果、自律走行車1の位置が部屋の中心点の場合(YESのとき)には、大きさと構造の知られている空間(走行領域)で現在の位置は把握しているものの、方向は分からない状態であるため、ステップS6に進んで制御手段50は、最終的に方向を把握するために左側走行モータ111と右側走行モータ121を駆動させることにより、自律走行車1を部屋の中心点から壁面に垂直になるよう移動させる。 Result of the discrimination at step S5, in case the position of the autonomous vehicle 1 is the center point of the room (in case of YES), the current position in space (running region) known sizes and structure is grasped although it is, because the direction is a state not known, the control unit 50 proceeds to step S6, and finally by driving the left traveling motor 111 and the right traveling motor 121 in order to grasp the direction, autonomous vehicles moving so as to be perpendicular to the wall 1 from the center point of the room.

上記のような方法で現在の位置座標を得た自律走行車1は、ステップS9に進んであらかじめ入力されている走行経路にしたがって掃除、あるいは監視などの付与された作業を行うための始発点(原点)に移動しながらステップS10に進んで付与された作業を行うようになる。 Autonomous vehicle to obtain a current position coordinates in a manner as described above 1, the cleaning according to the travel route is input in advance advances to step S9, or initial set point for working granted such monitoring ( while moving to the origin) will perform the tasks granted proceeds to step S10.

次いで、ステップS11では自律走行車1が付与された作業を行いつつ走行を終えたかを判別し、走行を終えていない場合(NOのとき)には、前記ステップS10に戻りステップS10以下の動作を繰返し行い、走行を終えた場合(YESのとき)には、自律走行車1の走行動作を停止しつつ動作を終了する。 Then either determine the autonomous vehicle 1 in step S11 has finished traveling while performing work granted, if not finished running (in case of NO), the step S10 following the operation returns to the step S10 repeatedly performed, when finished running (in case of YES), the operation ends while stopping the driving operation of the autonomous vehicle 1.

本発明の自律走行装置は、移動しながら目標地点からのずれを修正し、自立運転を高速にかつ精度良く行えるという効果を奏するものであり、多数地点での作業機器による屋内作業を連続で短時間に行うことができるようにした無人搬送車の自律運転時の位置検出制御にも適用できる。 Autonomous driving apparatus of the present invention modifies the deviation from the target point while moving, the self-sustained operation is intended to achieve the effect of enabling accurately to and at a high speed, short indoor work by working equipment in many locations in a row can be applied to the position detection control when autonomous operation of the AGV that can be performed on time.

本発明の一実施形態における自律走行装置の制御ブロック図 Control block diagram of the autonomous driving apparatus in an embodiment of the present invention 自律走行装置の制御動作順を示すフローチャート Flowchart showing the control operation sequence of the autonomous driving apparatus 自律走行車の前方壁面との角度演算に関する説明図 Illustration regarding angle calculation the front wall of autonomous vehicles 自律走行車の左右両側壁面の中間地点への移動に関する説明図 Illustration about moving to an intermediate point of the left and right side wall of autonomous vehicles 自律走行車の部屋の中心点への移動に関する説明図 Illustration about moving to the center point of the autonomous vehicles room

符号の説明 DESCRIPTION OF SYMBOLS

10 駆動手段 11 左側モータ駆動部 12 右側モータ駆動部 20 走行距離検出手段 21 左側エンコーダ 22 右側エンコーダ 30 方向各検出手段 40 位置ずれ情報算出手段 41 自律走行車付属カメラ部 50 制御手段 411 第1の自律走行車付属カメラ 412 第1のセンサ駆動部 413 ステップインモータ 10 driving means 11 the left motor driving unit 12 right motor driving unit 20 the travel distance detecting means 21 left encoder 22 right encoder 30 direction each detector 40 the misalignment information calculation unit 41 autonomous vehicle comes camera unit 50 control unit 411 first Autonomous vehicle accessory camera 412 first sensor drive portion 413 stepping motor

Claims (4)

  1. 自律走行車付属カメラにて天井、壁面の目標地点を検出し、予め入力した目標地点との位置ずれ情報を算出し、経路積算値および前期位置ずれ情報を台車運動方程式に算入して台車位置制御を行い、移動しながら目標地点からのずれを修正し、作業機器による屋内作業を行う自律走行装置。 Ceiling in autonomous vehicles accessory camera, detects the target point of the wall surface, calculates the position deviation information from the target point inputted in advance, carriage position control with inclusion path integrated value and the previous period misalignment information to carriage motion equation It was carried out, to correct the deviation from the target point while moving, autonomous driving apparatus for performing indoor work by work equipment.
  2. 自律走行車付属カメラが上向きカメラである請求項1記載の自律走行装置。 Autonomous driving apparatus of claim 1, wherein the autonomous vehicle comes camera is upward looking camera.
  3. 経路積算値の積算を行うエンコーダを、自律走行車の車輪に設けた請求項1記載の自律走行装置。 An encoder that performs the integration of the path accumulated value, autonomous driving apparatus of claim 1, wherein provided on the wheels of the autonomous vehicle.
  4. 自律走行車付属カメラが上向きカメラである請求項3記載の自律走行装置。 Autonomous driving apparatus of claim 3, wherein the autonomous vehicle comes camera is upward looking camera.
JP2005037138A 2005-02-15 2005-02-15 Autonomous travel device Pending JP2006227673A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005037138A JP2006227673A (en) 2005-02-15 2005-02-15 Autonomous travel device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005037138A JP2006227673A (en) 2005-02-15 2005-02-15 Autonomous travel device

Publications (1)

Publication Number Publication Date
JP2006227673A true JP2006227673A (en) 2006-08-31

Family

ID=36989037

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005037138A Pending JP2006227673A (en) 2005-02-15 2005-02-15 Autonomous travel device

Country Status (1)

Country Link
JP (1) JP2006227673A (en)

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7706917B1 (en) 2004-07-07 2010-04-27 Irobot Corporation Celestial navigation system for an autonomous robot
US8239992B2 (en) 2007-05-09 2012-08-14 Irobot Corporation Compact autonomous coverage robot
US8253368B2 (en) 2004-01-28 2012-08-28 Irobot Corporation Debris sensor for cleaning apparatus
US8368339B2 (en) 2001-01-24 2013-02-05 Irobot Corporation Robot confinement
US8374721B2 (en) 2005-12-02 2013-02-12 Irobot Corporation Robot system
US8380350B2 (en) 2005-12-02 2013-02-19 Irobot Corporation Autonomous coverage robot navigation system
US8382906B2 (en) 2005-02-18 2013-02-26 Irobot Corporation Autonomous surface cleaning robot for wet cleaning
US8386081B2 (en) 2002-09-13 2013-02-26 Irobot Corporation Navigational control system for a robotic device
US8390251B2 (en) 2004-01-21 2013-03-05 Irobot Corporation Autonomous robot auto-docking and energy management systems and methods
US8387193B2 (en) 2005-02-18 2013-03-05 Irobot Corporation Autonomous surface cleaning robot for wet and dry cleaning
US8396592B2 (en) 2001-06-12 2013-03-12 Irobot Corporation Method and system for multi-mode coverage for an autonomous robot
US8412377B2 (en) 2000-01-24 2013-04-02 Irobot Corporation Obstacle following sensor scheme for a mobile robot
US8417383B2 (en) 2006-05-31 2013-04-09 Irobot Corporation Detecting robot stasis
US8418303B2 (en) 2006-05-19 2013-04-16 Irobot Corporation Cleaning robot roller processing
US8428778B2 (en) 2002-09-13 2013-04-23 Irobot Corporation Navigational control system for a robotic device
US8463438B2 (en) 2001-06-12 2013-06-11 Irobot Corporation Method and system for multi-mode coverage for an autonomous robot
US8474090B2 (en) 2002-01-03 2013-07-02 Irobot Corporation Autonomous floor-cleaning robot
US8515578B2 (en) 2002-09-13 2013-08-20 Irobot Corporation Navigational control system for a robotic device
US8600553B2 (en) 2005-12-02 2013-12-03 Irobot Corporation Coverage robot mobility
US8788092B2 (en) 2000-01-24 2014-07-22 Irobot Corporation Obstacle following sensor scheme for a mobile robot
US8930023B2 (en) 2009-11-06 2015-01-06 Irobot Corporation Localization by learning of wave-signal distributions
US8972052B2 (en) 2004-07-07 2015-03-03 Irobot Corporation Celestial navigation system for an autonomous vehicle
US9008835B2 (en) 2004-06-24 2015-04-14 Irobot Corporation Remote control scheduler and method for autonomous robotic device
US10314449B2 (en) 2010-02-16 2019-06-11 Irobot Corporation Vacuum brush

Cited By (77)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8412377B2 (en) 2000-01-24 2013-04-02 Irobot Corporation Obstacle following sensor scheme for a mobile robot
US8788092B2 (en) 2000-01-24 2014-07-22 Irobot Corporation Obstacle following sensor scheme for a mobile robot
US8478442B2 (en) 2000-01-24 2013-07-02 Irobot Corporation Obstacle following sensor scheme for a mobile robot
US8565920B2 (en) 2000-01-24 2013-10-22 Irobot Corporation Obstacle following sensor scheme for a mobile robot
US9446521B2 (en) 2000-01-24 2016-09-20 Irobot Corporation Obstacle following sensor scheme for a mobile robot
US8761935B2 (en) 2000-01-24 2014-06-24 Irobot Corporation Obstacle following sensor scheme for a mobile robot
US9144361B2 (en) 2000-04-04 2015-09-29 Irobot Corporation Debris sensor for cleaning apparatus
US8368339B2 (en) 2001-01-24 2013-02-05 Irobot Corporation Robot confinement
US9582005B2 (en) 2001-01-24 2017-02-28 Irobot Corporation Robot confinement
US8686679B2 (en) 2001-01-24 2014-04-01 Irobot Corporation Robot confinement
US9038233B2 (en) 2001-01-24 2015-05-26 Irobot Corporation Autonomous floor-cleaning robot
US9622635B2 (en) 2001-01-24 2017-04-18 Irobot Corporation Autonomous floor-cleaning robot
US8463438B2 (en) 2001-06-12 2013-06-11 Irobot Corporation Method and system for multi-mode coverage for an autonomous robot
US8396592B2 (en) 2001-06-12 2013-03-12 Irobot Corporation Method and system for multi-mode coverage for an autonomous robot
US9104204B2 (en) 2001-06-12 2015-08-11 Irobot Corporation Method and system for multi-mode coverage for an autonomous robot
US8838274B2 (en) 2001-06-12 2014-09-16 Irobot Corporation Method and system for multi-mode coverage for an autonomous robot
US8516651B2 (en) 2002-01-03 2013-08-27 Irobot Corporation Autonomous floor-cleaning robot
US8671507B2 (en) 2002-01-03 2014-03-18 Irobot Corporation Autonomous floor-cleaning robot
US8474090B2 (en) 2002-01-03 2013-07-02 Irobot Corporation Autonomous floor-cleaning robot
US8656550B2 (en) 2002-01-03 2014-02-25 Irobot Corporation Autonomous floor-cleaning robot
US9128486B2 (en) 2002-01-24 2015-09-08 Irobot Corporation Navigational control system for a robotic device
US9949608B2 (en) 2002-09-13 2018-04-24 Irobot Corporation Navigational control system for a robotic device
US8793020B2 (en) 2002-09-13 2014-07-29 Irobot Corporation Navigational control system for a robotic device
US8428778B2 (en) 2002-09-13 2013-04-23 Irobot Corporation Navigational control system for a robotic device
US8515578B2 (en) 2002-09-13 2013-08-20 Irobot Corporation Navigational control system for a robotic device
US8386081B2 (en) 2002-09-13 2013-02-26 Irobot Corporation Navigational control system for a robotic device
US9215957B2 (en) 2004-01-21 2015-12-22 Irobot Corporation Autonomous robot auto-docking and energy management systems and methods
US8461803B2 (en) 2004-01-21 2013-06-11 Irobot Corporation Autonomous robot auto-docking and energy management systems and methods
US8749196B2 (en) 2004-01-21 2014-06-10 Irobot Corporation Autonomous robot auto-docking and energy management systems and methods
US8390251B2 (en) 2004-01-21 2013-03-05 Irobot Corporation Autonomous robot auto-docking and energy management systems and methods
US8854001B2 (en) 2004-01-21 2014-10-07 Irobot Corporation Autonomous robot auto-docking and energy management systems and methods
US8253368B2 (en) 2004-01-28 2012-08-28 Irobot Corporation Debris sensor for cleaning apparatus
US8378613B2 (en) 2004-01-28 2013-02-19 Irobot Corporation Debris sensor for cleaning apparatus
US8456125B2 (en) 2004-01-28 2013-06-04 Irobot Corporation Debris sensor for cleaning apparatus
US8598829B2 (en) 2004-01-28 2013-12-03 Irobot Corporation Debris sensor for cleaning apparatus
US9008835B2 (en) 2004-06-24 2015-04-14 Irobot Corporation Remote control scheduler and method for autonomous robotic device
US9486924B2 (en) 2004-06-24 2016-11-08 Irobot Corporation Remote control scheduler and method for autonomous robotic device
US8634956B1 (en) 2004-07-07 2014-01-21 Irobot Corporation Celestial navigation system for an autonomous robot
US8594840B1 (en) 2004-07-07 2013-11-26 Irobot Corporation Celestial navigation system for an autonomous robot
US9229454B1 (en) 2004-07-07 2016-01-05 Irobot Corporation Autonomous mobile robot system
US8972052B2 (en) 2004-07-07 2015-03-03 Irobot Corporation Celestial navigation system for an autonomous vehicle
US9223749B2 (en) 2004-07-07 2015-12-29 Irobot Corporation Celestial navigation system for an autonomous vehicle
US7706917B1 (en) 2004-07-07 2010-04-27 Irobot Corporation Celestial navigation system for an autonomous robot
US8634958B1 (en) 2004-07-07 2014-01-21 Irobot Corporation Celestial navigation system for an autonomous robot
US8874264B1 (en) 2004-07-07 2014-10-28 Irobot Corporation Celestial navigation system for an autonomous robot
US8670866B2 (en) 2005-02-18 2014-03-11 Irobot Corporation Autonomous surface cleaning robot for wet and dry cleaning
US8855813B2 (en) 2005-02-18 2014-10-07 Irobot Corporation Autonomous surface cleaning robot for wet and dry cleaning
US9445702B2 (en) 2005-02-18 2016-09-20 Irobot Corporation Autonomous surface cleaning robot for wet and dry cleaning
US8392021B2 (en) 2005-02-18 2013-03-05 Irobot Corporation Autonomous surface cleaning robot for wet cleaning
US8382906B2 (en) 2005-02-18 2013-02-26 Irobot Corporation Autonomous surface cleaning robot for wet cleaning
US8774966B2 (en) 2005-02-18 2014-07-08 Irobot Corporation Autonomous surface cleaning robot for wet and dry cleaning
US8985127B2 (en) 2005-02-18 2015-03-24 Irobot Corporation Autonomous surface cleaning robot for wet cleaning
US8387193B2 (en) 2005-02-18 2013-03-05 Irobot Corporation Autonomous surface cleaning robot for wet and dry cleaning
US8761931B2 (en) 2005-12-02 2014-06-24 Irobot Corporation Robot system
US8606401B2 (en) 2005-12-02 2013-12-10 Irobot Corporation Autonomous coverage robot navigation system
US9599990B2 (en) 2005-12-02 2017-03-21 Irobot Corporation Robot system
US9144360B2 (en) 2005-12-02 2015-09-29 Irobot Corporation Autonomous coverage robot navigation system
US8380350B2 (en) 2005-12-02 2013-02-19 Irobot Corporation Autonomous coverage robot navigation system
US8954192B2 (en) 2005-12-02 2015-02-10 Irobot Corporation Navigating autonomous coverage robots
US8374721B2 (en) 2005-12-02 2013-02-12 Irobot Corporation Robot system
US8600553B2 (en) 2005-12-02 2013-12-03 Irobot Corporation Coverage robot mobility
US9392920B2 (en) 2005-12-02 2016-07-19 Irobot Corporation Robot system
US9149170B2 (en) 2005-12-02 2015-10-06 Irobot Corporation Navigating autonomous coverage robots
US8528157B2 (en) 2006-05-19 2013-09-10 Irobot Corporation Coverage robots and associated cleaning bins
US8418303B2 (en) 2006-05-19 2013-04-16 Irobot Corporation Cleaning robot roller processing
US10244915B2 (en) 2006-05-19 2019-04-02 Irobot Corporation Coverage robots and associated cleaning bins
US9955841B2 (en) 2006-05-19 2018-05-01 Irobot Corporation Removing debris from cleaning robots
US9492048B2 (en) 2006-05-19 2016-11-15 Irobot Corporation Removing debris from cleaning robots
US8417383B2 (en) 2006-05-31 2013-04-09 Irobot Corporation Detecting robot stasis
US9317038B2 (en) 2006-05-31 2016-04-19 Irobot Corporation Detecting robot stasis
US8438695B2 (en) 2007-05-09 2013-05-14 Irobot Corporation Autonomous coverage robot sensing
US8239992B2 (en) 2007-05-09 2012-08-14 Irobot Corporation Compact autonomous coverage robot
US10070764B2 (en) 2007-05-09 2018-09-11 Irobot Corporation Compact autonomous coverage robot
US9480381B2 (en) 2007-05-09 2016-11-01 Irobot Corporation Compact autonomous coverage robot
US8839477B2 (en) 2007-05-09 2014-09-23 Irobot Corporation Compact autonomous coverage robot
US8930023B2 (en) 2009-11-06 2015-01-06 Irobot Corporation Localization by learning of wave-signal distributions
US10314449B2 (en) 2010-02-16 2019-06-11 Irobot Corporation Vacuum brush

Similar Documents

Publication Publication Date Title
Paromtchik et al. Autonomous parallel parking of a nonholonomic vehicle
US7536242B2 (en) Optical laser guidance system apparatus and method
US6142252A (en) Autonomous vehicle that runs while recognizing work area configuration, and method of selecting route
US7649331B2 (en) Mobile robot
JP5721980B2 (en) Automatic guided vehicle and a travel control method
CN102269994B (en) Automatic guided vehicle and method for drive control of same
US5663879A (en) Method and apparatus for smooth control of a vehicle with automatic recovery for interference
US8364309B1 (en) User-assisted robot navigation system
JP3972244B2 (en) Remote-controlled cutting robot
US20100241289A1 (en) Method and apparatus for path planning, selection, and visualization
US20110082613A1 (en) Semiautomatic parking machine
US20100324771A1 (en) Autonomous moving body, its control method, and control system
US5896488A (en) Methods and apparatus for enabling a self-propelled robot to create a map of a work area
US5804942A (en) Position determining apparatus and control method of robot
EP0232424B1 (en) Industrial robot
RU2283750C1 (en) Cleaning robot coordinate correction method and automatic cleaning system operating with use of such method
JP2572968B2 (en) Induction method of autonomous vehicles
KR20030003094A (en) Parking assisting device
EP0304942A2 (en) Production system using unmanned automatically guided vehicles
US9072218B2 (en) Boundary sensor assembly for a robotic lawn mower, robotic lawn mower and robotic lawn mower system
JPWO2008081655A1 (en) The parking assist apparatus, the parking assist apparatus parts, parking assist method, the parking support program, calculation method and calculation program vehicle travel parameters, vehicle travel parameter calculation apparatus, and vehicle travel parameter calculation apparatus part
CN1577199A (en) Driving assist apparatus and method for vehicle
JP2006260161A (en) Self-propelled working robot
JPH07205085A (en) Position detection and control device of mobile robot
JP2010079869A (en) Autonomous moving apparatus