JP3812463B2 - Direction detecting device and self-propelled cleaner equipped with the same - Google Patents

Direction detecting device and self-propelled cleaner equipped with the same Download PDF

Info

Publication number
JP3812463B2
JP3812463B2 JP2002062815A JP2002062815A JP3812463B2 JP 3812463 B2 JP3812463 B2 JP 3812463B2 JP 2002062815 A JP2002062815 A JP 2002062815A JP 2002062815 A JP2002062815 A JP 2002062815A JP 3812463 B2 JP3812463 B2 JP 3812463B2
Authority
JP
Japan
Prior art keywords
light
light receiving
self
propelled cleaner
receiving means
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002062815A
Other languages
Japanese (ja)
Other versions
JP2003262520A (en
Inventor
穣 荒井
郁雄 竹内
篤志 小関
索 柄川
泰治 田島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2002062815A priority Critical patent/JP3812463B2/en
Publication of JP2003262520A publication Critical patent/JP2003262520A/en
Application granted granted Critical
Publication of JP3812463B2 publication Critical patent/JP3812463B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Electric Suction Cleaners (AREA)
  • Electric Vacuum Cleaner (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は方向検出装置に係り、特に自走式掃除機や自走式台車に好適な方向検出装置に関する。
【0002】
【従来の技術】
自走式移動体に用いる従来の位置検出装置の例が、特開平7−311041号公報に記載されている。この位置検出装置は、自律的に現在位置を把握するために、駆動輪を有する移動体の上面に平面的に所定距離離れた位置に2つの受光部を取り付けている。これらの受光部は旋回可能になっている。それとともに基準局の側面には、平面的に所定距離離れた位置に2つの発光部を取付けている。移動体上の受光部が旋回しながらサンプリングすると受光量が変化する。受光量のピークとなった旋回角に基づいて、相対位置と相対的な姿勢角を求めている。
【0003】
【発明が解決しようとする課題】
上記公報に記載の位置検出方法では、移動体に2組の旋回可能な受光軸を設けているので、受光部の構成が複雑になっている。そのため、家庭用の掃除機等にこれらの受光体を搭載するときには、小型化の阻害要因となっている。
【0004】
本発明は、上記従来技術の不具合に鑑みなされたものであり、その目的は移動体に搭載する方向検出装置を小型化することにある。本発明の他の目的は、安価な方向検出装置を実現することにある。
【0005】
【課題を解決するための手段】
上記目的を達成するため本発明は、光を発光し固設された発光体と、移動体に搭載された光センサユニットとを備えた方向検出装置において、前記光センサユニットに、発光体から発光された光を受光する複数の第1の受光手段と、この第1の受光手段よりも受光可能な入射範囲が狭い第2の受光手段と、を備え、前記移動体を回転させ前記第2の受光手段が前記発光体を検出した方向に基づいて、前記発光体が各方向に存在するときの各前記第1の受光手段の受光強度の比と対応する評価関数の値と評価関数を求めるために前記第1の受光手段のうちどの素子を用いたかが記録される方向検出データベースが構築され、前記発光体の方向は前記方向検出データベースのデータに基づいて検出されるものである。
【0007】
上記目的を達成するための他の特徴として、移動体を自走式掃除機とし、上記いずれかの特徴の方向検出装置を搭載したものである。
【0008】
【発明の実施の形態】
以下本発明に係る方向検出装置の一実施例を、自走式掃除機に搭載した例について図面を用いて説明する。図1に、自走式掃除機の模式図を示す。自走式掃除機4の上部には、赤外線を発光する光センサユニット1が取り付けられている。自走式掃除機4から離れた位置に、発光体5が固定されている。光センサユニット1は、発光体5から照射される変調された赤外線11を受けるために、広指向角の受光素子2と狭指向角の受光素子3とを備えている。これらの受光素子2、3の個々の受光強度情報は、自走式掃除機4内部に設けた演算手段7に送られる。
【0009】
演算手段7は、自走式掃除機4を駆動する駆動系の制御部6に接続されている。駆動系は一対の駆動輪10を有しており、演算手段7は、駆動輪10の回転速度と回転量を駆動系制御部6に指令する。演算手段7の指令に応じた回転速度と回転量で駆動輪10が回転すると、駆動系制御部6から演算手段7に実際の駆動輪10の回転速度と回転量の情報が送られる。自走式掃除機4の前下部には掃除機部8が設けられており、自走式掃除機4の移動とともに床面に散乱したごみ等を吸い込む。演算手段7はこの掃除機部8にも接続されており、掃除機部8の運転と停止を制御する。演算手段7はさらに、記憶手段9と接続されている。記憶手段9は、広指向角の受光素子2の受光強度と、発光体5に対する光センサユニット1の姿勢角の関係についての情報を記憶する。演算手段7の指令情報および記憶手段に記憶される情報は、この自走式掃除機4に設けた図示しない入力手段または、この自走式掃除機4とは別体に設けたリモコンから入力される。
【0010】
このように構成した自走式掃除機に搭載される光センサユニットの詳細を、図2および図3に示す。図2は、光センサユニットの斜視図である。光センサユニット1は、円筒形状をしており、その外周部に広指向角の受光素子2と狭指向角の受光素子3が配置されている。図3に、光センサユニット1の横断面図を示す。広指向角の受光素子2を、円周方向60度おきに6個配置する。各受光素子2の受光可能な入射角範囲は、光軸から左右にそれぞれ60度以上になっており、入射角で120度以上の範囲については、発光体5からの赤外光11を検出できる。これにより、360度どの方向に発光体5が存在しても、いずれかの隣り合う2個の広指向角の受光素子2が、赤外光11を検出できる。
【0011】
狭指向角の受光素子3は、円周方向に1か所だけ設けられており、広指向角の受光素子2、2の中間に位置している。狭指向角の受光素子3の前面には図示しないスリットが形成されている。このスリットは、発光体5が発光する赤外光11の受光可能な範囲、すなわち入射角の方向と広さを調整する。これにより、狭指向角の受光素子3の受光範囲を、広指向角の受光素子2の受光範囲に比べて狭くしている。
【0012】
図4に、図1に示した自走式掃除機4の上面図を示す。光センサユニット1は、2個の駆動輪10の中央部の真上に位置している。駆動輪10の一方を正転させ、もう一方を同じ速度で逆転させると、自走式掃除機は光センサユニット1を中心に、その場で回転する。
【0013】
広指向角の受光素子2の赤外線11に対する感度Sと入射角θの関係を、図5に示す。受光素子2の感度は、受光素子2に垂直な方向からの入射時にピークとなり、入射角が垂直方向からずれるにつれて急激に感度が低くなる。図6および図7を用いて、光センサユニット1の受光範囲を説明する。図6の位置に発光体5が位置した場合には、広指向角の受光素子2a、2bの2つの受光素子が受光可能である。このときの受光素子2a、bの感度S2a、S2bを示したのが、図5である。
【0014】
光センサユニット1と発光体5との距離が充分に離れている場合は、各受光素子2a、2bから発光体5までの距離はほぼ等しいとみなされる。そこで、発光体5までの距離が略等しい関係から各受光素子2a、2bが光センサユニット1の中央にあると摸擬する。そして、各受光素子2a、2bの受光強度の比を用いて光センサユニット1の中央部における受光強度を求め、光センサユニット1に対する発光体5の方向を求める。
【0015】
本方法を用いれば、発光体5がどの方向にあっても広指向角の受光素子2のうち2個以上が受光可能となる。したがって、受光量が上位2個の素子を選んで受光量の比を求めれば、発光体5の方向を定めることができる。さらに円周上に配置した全部の広指向角の受光素子2の受光強度を同時に検出できるようにすれば、自走式掃除機4の走行中にも、発光体5の位置を検出できる。
【0016】
狭指向角の受光素子3の感度特性を、図8に示す。図8の細い実線は、スリットを形成しないときの感度分布特性であり、太い実線はスリットを形成した場合である。図7にこの狭指向角の受光素子3で発光体5を検出する様子を示す。スリットを形成したことにより、狭指向角の受光素子3は略垂直に入射する発光素子5bからの赤外光しか受光できない。すなわち図7に示すように、発光体5が狭指向角の受光素子3の垂直面から離れた方向にある発光体5aのときは、感度は図8に示すように略0となる。
【0017】
なお、狭指向角の受光素子が赤外線11を検出したかどうかにより、発光体5が光センサユニット1の所定方向にあるかどうかを判別する。狭指向角の受光素子の分解能は、受光素子の検出可能な入射角の範囲により定まる。また、受光素子の特性が図8において細線で示したように左右対称であっても、受光可能な入射角の範囲はスリットにより定まる。
【0018】
図9に、自走式掃除機4が狭指向角の受光素子3を用いて発光体5を検出する例を示す。自走式掃除機4をその場で回転させ、狭指向角の受光素子3が赤外線11を検出した方向を発光体5の方向とみなす。狭指向角の受光素子3の受光可能範囲が要求される分解能よりも広い場合には、自走式掃除機4をその場で回転させる際に、狭指向角の受光素子3が赤外線11を検出し始めた方向と赤外線11を検出できなくなった方向との2つの方向の中間の方向を発光体5の方向とみなす。
【0019】
図10に、発光体5の方向を検出する際の情報の流れを示す。狭指向性の受光素子3の受光量に基づいて演算手段7が受光の有無を判定する。受光素子3が受光していると判定したときは、そのときの発光体5の方向を角度情報として記憶し、走行経路を計画するときに用いる。一方、広指向性の受光素子2の受光強度を、記憶手段9に記憶されている方向検出データベースと比較するために、比較可能な形に変換する。つまり、広指向性の受光素子2のなかで最も受光強度が強い素子と、2番目に受光強度が強い素子の受光強度の比から評価関数を決定し、データベースの記憶値と比較する。評価関数は受光強度の比と1対1に対応するものであれば良い。
【0020】
評価関数の値と評価関数を求めるためにどの素子の受光強度を用いたかの情報とを、方向検出データベースと照合する。方向検出データベースには、発光体5が各方向に存在するときの評価関数の値と評価関数を求めるためにどの素子を用いたかが記録されている。方向検出データベースと評価関数を照合するときは、評価関数の値を求めるのに用いた素子のデータを、データベースから検索する。次に検索されたデータを補間もしくは外挿する。これにより、評価関数の値に対応する方向が求められる。この方向は走行経路を計画するときに用いられる。
【0021】
広指向角の受光素子2は方向検出データベースのデータに基づいて発光体5の方向を検出する。経年変化や光学系の汚れなどで素子の特性が変化したときは、方向検出データベースを再構築する。図11に、方向検出データベースの再構築のフローチャートを示す。
【0022】
ステップ100で再構築を開始する。狭指向角の受光素子3を用いて、正確な発光体5の方向を検出する(ステップ110)。次に上述した評価関数を計算する(ステップ120)。発光体5の方向、評価関数の値および評価関数の値を求めるのに用いた広指向角の受光素子2の番号を記憶手段9に記憶する(ステップ130)。
【0023】
所定の角度だけ自走式掃除機4を、その場で回転させる。このときの回転の角度は駆動輪10に取り付けたエンコーダから求める(ステップ140)。方向検出データベースの再構築を始めてから、自走式掃除機4を合計360度以上回転したか否かを判断する(ステップ150)。360度以上回転していれば方向検出データベースの再構築を終了する(ステップ160)。自走式掃除機4の回転が360度に満たない場合は、ステップ120に戻る。以下、上述したステップを繰り返す。
【0024】
以上の動作を実行すると、広指向角のセンサ2が発光体5の方向を正確に検出できる。方向検出データベースをユーザが任意に再構築することもできるし、自走式掃除機4を起動するごとに再構築しても良い。また、狭指向角の受光素子3が発光体5の方向を検出し、広指向角の受光素子2も発光体5の方向を検出したときであって、2種の受光素子2、3の検出角度の差が大きくなったときに自動的に実行するようにしても良い。なお、この場合、データベースを再構築せずに、ユーザに対してデータベースの再構築を促す表示をするようにしてもよい。
【0025】
図12に、発光体5を基準にして位置を検出する方法を示す。発光体5c、5dを自走式掃除機4の使用環境に設置する。発光体5c、5dが発する赤外線11、11は、それぞれ異なる変調周波数で変調されている。この変調周波数の違いにより、発光源を区別できる。自走式掃除機4は、図の左方であるAの位置で発光体5c、5dの方向を検出する。この点Aから距離Lだけ右方に離れた位置Bまで自走式掃除機4が走行したことを計測するのに、自走式掃除機4の駆動輪10に取り付けたエンコーダ(図示せず)を使用する。
【0026】
位置Bで、再度発光体5c、5dの方向を検出する。この動作により、自走式掃除機4の移動方向に対する発光体5c、5dの方向が求められる。すなわち、発光体5cの位置Aにおける方向はθAcであり、発光体5dの位置Aにおける方向はθAdであり、発光体5cの位置Bにおける方向はθBcであり、発光体5dの位置Bにおける方向はθBdである。これらの角度と、自走式掃除機4の移動距離Lとから、三角測量の原理を用いて、発光体5c、5dと自走式掃除機4の相対的な位置関係が求められる。なお、発光体5c、5dの座標が既知であれば、位置A、Bの座標を求めることもできる。
【0027】
なお、上記実施例では移動体として自走式掃除機を例に取り説明したが、工場内で使用される無人搬送車や各種自走ロボットに本発明を適用できることは言うまでもない。無人搬送車の場合、発光体位置を求めるのが容易であり、かつ通常搬送路は概略定まっているので、高精度に搬送車の位置決め等が可能になる。
【0028】
【発明の効果】
以上述べたように本発明によれば、予め設定した発光体の移動体に対する方向角度を三角測量の原理を用いて求めることができるので、方向検出装置の可動部品数を低減でき、方向検出装置の信頼性を高めるとともに、安価に方向検出装置を実現できる。
【図面の簡単な説明】
【図1】本発明に係る自走式掃除機の一実施例の模式図。
【図2】図1に示した自走式掃除機に用いられる光センサユニットの斜視図。
【図3】図2の光センサユニットの横断面図。
【図4】図1に示した自走式掃除機の上面図。
【図5】第1の受光手段の感度を説明するグラフ。
【図6】第1の受光手段を説明する図。
【図7】第2の受光手段を説明する図。
【図8】第2の受光手段の感度を説明するグラフ。
【図9】図1に示した自走式掃除機の動作を説明する図。
【図10】方向検出時の情報の流れを説明するブロック図。
【図11】方向検出データベースの再構築の手順を説明するフローチャート。
【図12】図1に示した自走式掃除機の動作を説明する図。
【符号の説明】
1…光センサユニット、2、2a、2b…広指向角の受光素子(第1の受光手段)、3…狭指向角の受光素子(第2の受光手段)、4…移動体、5、5a、5b、5c、5d…発光体、6…駆動系制御部、7…演算手段、9…記憶手段、10…駆動輪。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a direction detection device, and more particularly to a direction detection device suitable for a self-propelled cleaner or a self-propelled carriage.
[0002]
[Prior art]
An example of a conventional position detection device used for a self-propelled moving body is described in Japanese Patent Laid-Open No. 7-311041. In order to autonomously grasp the current position, this position detection device has two light receiving units attached to a top surface of a moving body having drive wheels at a position that is a predetermined distance in plan. These light receiving parts can be turned. At the same time, two light-emitting portions are attached to the side surface of the reference station at a position that is a predetermined distance in plan. When sampling is performed while the light receiving unit on the moving body is turning, the amount of received light changes. The relative position and the relative attitude angle are obtained based on the turning angle at which the amount of received light is peaked.
[0003]
[Problems to be solved by the invention]
In the position detection method described in the above publication, since two sets of pivotable light receiving shafts are provided on the moving body, the configuration of the light receiving unit is complicated. For this reason, when these photoreceptors are mounted on a household vacuum cleaner or the like, this is an obstacle to downsizing.
[0004]
The present invention has been made in view of the above-described problems of the prior art, and an object thereof is to downsize a direction detection device mounted on a moving body. Another object of the present invention is to realize an inexpensive direction detecting device.
[0005]
[Means for Solving the Problems]
In order to achieve the above object, the present invention provides a direction detecting device including a light emitter fixed by emitting light, and a light sensor unit mounted on a moving body. The light sensor unit emits light from the light emitter. A plurality of first light receiving means for receiving the received light, and a second light receiving means having a narrow incident range capable of receiving light than the first light receiving means, and rotating the movable body to provide the second light receiving means . In order to obtain the evaluation function value and evaluation function corresponding to the ratio of the received light intensity of each of the first light receiving means when the light emitting body exists in each direction based on the direction in which the light receiving means detects the light emitting body. A direction detection database that records which element of the first light receiving means is used is constructed, and the direction of the light emitter is detected based on the data of the direction detection database.
[0007]
As another feature for achieving the above object, the mobile body is a self-propelled cleaner, and the direction detection device having any one of the above features is mounted.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an example of a direction detection device according to the present invention mounted on a self-propelled cleaner will be described with reference to the drawings. In FIG. 1, the schematic diagram of a self-propelled cleaner is shown. An optical sensor unit 1 that emits infrared rays is attached to the upper part of the self-propelled cleaner 4. A light emitter 5 is fixed at a position away from the self-propelled cleaner 4. The optical sensor unit 1 includes a light receiving element 2 having a wide directional angle and a light receiving element 3 having a narrow directional angle in order to receive the modulated infrared ray 11 emitted from the light emitter 5. Information on the received light intensity of each of the light receiving elements 2 and 3 is sent to a calculation means 7 provided in the self-propelled cleaner 4.
[0009]
The calculation means 7 is connected to a control unit 6 of a drive system that drives the self-propelled cleaner 4. The drive system has a pair of drive wheels 10, and the calculation means 7 instructs the drive system control unit 6 on the rotation speed and the rotation amount of the drive wheels 10. When the drive wheel 10 rotates at the rotation speed and the rotation amount according to the command from the calculation means 7, information on the actual rotation speed and rotation amount of the drive wheel 10 is sent from the drive system control unit 6 to the calculation means 7. A vacuum cleaner unit 8 is provided at the front lower part of the self-propelled cleaner 4, and sucks dust and the like scattered on the floor surface with the movement of the self-propelled cleaner 4. The calculation means 7 is also connected to the cleaner unit 8 and controls the operation and stop of the cleaner unit 8. The computing means 7 is further connected to the storage means 9. The storage unit 9 stores information on the relationship between the light receiving intensity of the light receiving element 2 having a wide directivity angle and the attitude angle of the optical sensor unit 1 with respect to the light emitter 5. The command information of the calculation means 7 and the information stored in the storage means are input from an input means (not shown) provided in the self-propelled cleaner 4 or a remote controller provided separately from the self-propelled cleaner 4. The
[0010]
Details of the optical sensor unit mounted on the self-propelled cleaner configured as described above are shown in FIGS. FIG. 2 is a perspective view of the optical sensor unit. The optical sensor unit 1 has a cylindrical shape, and a light receiving element 2 having a wide directivity angle and a light receiving element 3 having a narrow directivity angle are disposed on the outer periphery thereof. FIG. 3 shows a cross-sectional view of the optical sensor unit 1. Six light receiving elements 2 with wide directivity are arranged every 60 degrees in the circumferential direction. The incident angle range in which each light receiving element 2 can receive light is 60 degrees or more on the left and right from the optical axis, and the infrared light 11 from the light emitter 5 can be detected in the range where the incident angle is 120 degrees or more. . Thus, regardless of which direction the light emitter 5 is 360 degrees, any two adjacent light-receiving elements 2 having a wide directivity angle can detect the infrared light 11.
[0011]
The light receiving element 3 with a narrow directivity angle is provided only in one place in the circumferential direction, and is positioned between the light receiving elements 2 and 2 with a wide directivity angle. A slit (not shown) is formed on the front surface of the light receiving element 3 having a narrow directivity angle. This slit adjusts the range in which the infrared light 11 emitted from the light emitter 5 can be received, that is, the direction and width of the incident angle. As a result, the light receiving range of the light receiving element 3 with a narrow directivity angle is made narrower than the light receiving range of the light receiving element 2 with a wide directivity angle.
[0012]
FIG. 4 shows a top view of the self-propelled cleaner 4 shown in FIG. The optical sensor unit 1 is located immediately above the center of the two drive wheels 10. When one of the drive wheels 10 is rotated forward and the other is rotated at the same speed, the self-propelled cleaner rotates around the optical sensor unit 1 on the spot.
[0013]
FIG. 5 shows a relationship between the sensitivity S of the light receiving element 2 having a wide directivity angle to the infrared ray 11 and the incident angle θ. The sensitivity of the light receiving element 2 peaks when incident from a direction perpendicular to the light receiving element 2, and the sensitivity rapidly decreases as the incident angle deviates from the vertical direction. The light receiving range of the optical sensor unit 1 will be described with reference to FIGS. 6 and 7. When the light emitter 5 is positioned at the position shown in FIG. 6, the two light receiving elements 2a and 2b having wide directivity can receive light. FIG. 5 shows the sensitivities S 2a and S 2b of the light receiving elements 2a and 2b at this time.
[0014]
When the distance between the optical sensor unit 1 and the light emitter 5 is sufficiently large, the distances from the light receiving elements 2a and 2b to the light emitter 5 are considered to be substantially equal. Therefore, it is simulated that each light receiving element 2a, 2b is in the center of the optical sensor unit 1 because the distance to the light emitter 5 is substantially equal. Then, the received light intensity at the center of the optical sensor unit 1 is obtained using the ratio of the received light intensity of each of the light receiving elements 2a and 2b, and the direction of the light emitter 5 with respect to the optical sensor unit 1 is obtained.
[0015]
If this method is used, two or more of the light receiving elements 2 having a wide directivity angle can receive light regardless of the direction of the light emitter 5. Therefore, the direction of the light emitter 5 can be determined by selecting the top two elements with the light reception amount and determining the ratio of the light reception amounts. Further, if the light receiving intensities of all the light receiving elements 2 having wide directivity angles arranged on the circumference can be detected simultaneously, the position of the light emitter 5 can be detected even while the self-propelled cleaner 4 is traveling.
[0016]
FIG. 8 shows the sensitivity characteristics of the light receiving element 3 having a narrow directivity angle. The thin solid line in FIG. 8 is the sensitivity distribution characteristic when the slit is not formed, and the thick solid line is the case where the slit is formed. FIG. 7 shows how the light emitter 5 is detected by the light receiving element 3 having a narrow directivity angle. By forming the slit, the light receiving element 3 with a narrow directivity angle can receive only infrared light from the light emitting element 5b that is incident substantially vertically. That is, as shown in FIG. 7, when the light emitter 5 is a light emitter 5a in a direction away from the vertical plane of the light receiving element 3 having a narrow directivity angle, the sensitivity is substantially zero as shown in FIG.
[0017]
Whether or not the light emitter 5 is in a predetermined direction of the optical sensor unit 1 is determined depending on whether or not the light receiving element 3 having a narrow directivity angle has detected the infrared ray 11. The resolution of the light receiving element 3 having a narrow directivity angle is determined by the range of incident angles that can be detected by the light receiving element 3 . Even if the characteristics of the light receiving element are symmetrical as shown by thin lines in FIG. 8, the range of incident angles at which light can be received is determined by the slits.
[0018]
FIG. 9 shows an example in which the self-propelled cleaner 4 detects the light emitter 5 using the light receiving element 3 having a narrow directivity angle. The self-propelled cleaner 4 is rotated on the spot, and the direction in which the light receiving element 3 with a narrow directivity angle detects the infrared rays 11 is regarded as the direction of the light emitter 5. When the light receivable range of the light receiving element 3 with the narrow directivity is wider than the required resolution, the light receiving element 3 with the narrow directivity detects the infrared rays 11 when the self-propelled cleaner 4 is rotated on the spot. The direction between the two directions of the direction in which the infrared rays 11 can no longer be detected is regarded as the direction of the light emitter 5.
[0019]
FIG. 10 shows the flow of information when detecting the direction of the light emitter 5. Based on the amount of light received by the light receiving element 3 having a narrow directivity, the calculation means 7 determines whether light is received. When it is determined that the light receiving element 3 is receiving light, the direction of the light emitter 5 at that time is stored as angle information and used when planning a travel route. On the other hand, the received light intensity of the wide directional light receiving element 2 is converted into a comparable form for comparison with the direction detection database stored in the storage means 9. In other words, the evaluation function is determined from the ratio of the light receiving intensity of the element having the strongest light receiving intensity and the element having the second highest light receiving intensity among the light receiving elements 2 having the wide directivity, and compared with the stored value of the database. The evaluation function only needs to have a one-to-one correspondence with the ratio of received light intensity.
[0020]
The direction detection database is collated with the value of the evaluation function and information indicating which element's received light intensity is used to obtain the evaluation function. In the direction detection database, the value of the evaluation function when the light emitter 5 exists in each direction and which element is used to obtain the evaluation function are recorded. When collating the direction detection database with the evaluation function, the data of the element used for obtaining the value of the evaluation function is searched from the database. Next, the retrieved data is interpolated or extrapolated. Thereby, the direction corresponding to the value of the evaluation function is obtained. This direction is used when planning a travel route.
[0021]
The light receiving element 2 having a wide directivity angle detects the direction of the light emitter 5 based on the data of the direction detection database. When the element characteristics change due to secular change or contamination of the optical system, the direction detection database is reconstructed. FIG. 11 shows a flowchart of rebuilding the direction detection database.
[0022]
In step 100, reconstruction is started. Using the light receiving element 3 having a narrow directivity angle, the accurate direction of the light emitter 5 is detected (step 110). Next, the above-described evaluation function is calculated (step 120). The direction of the light emitter 5, the value of the evaluation function, and the number of the light receiving element 2 with a wide directivity used for obtaining the value of the evaluation function are stored in the storage means 9 (step 130).
[0023]
The self-propelled cleaner 4 is rotated on the spot by a predetermined angle. The rotation angle at this time is obtained from an encoder attached to the drive wheel 10 (step 140). After the reconstruction of the direction detection database is started, it is determined whether or not the self-propelled cleaner 4 has rotated a total of 360 degrees or more (step 150). If the rotation is 360 degrees or more, the reconstruction of the direction detection database is terminated (step 160). If the rotation of the self-propelled cleaner 4 is less than 360 degrees, the process returns to step 120. Thereafter, the above steps are repeated.
[0024]
When the above operation is executed, the sensor 2 with a wide directivity angle can accurately detect the direction of the light emitter 5. The direction detection database can be arbitrarily reconstructed by the user, or may be reconstructed every time the self-propelled cleaner 4 is activated. The light receiving element 3 with a narrow directivity angle detects the direction of the light emitter 5, and the light receiving element 2 with a wide directivity angle also detects the direction of the light emitter 5. It may be automatically executed when the angle difference becomes large. In this case, the user may be prompted to reconstruct the database without reconstructing the database.
[0025]
FIG. 12 shows a method for detecting the position with the light emitter 5 as a reference. The light emitters 5c and 5d are installed in an environment where the self-propelled cleaner 4 is used. Infrared rays 11 and 11 emitted from the light emitters 5c and 5d are modulated at different modulation frequencies. The light source can be distinguished by the difference in the modulation frequency. The self-propelled cleaner 4 detects the direction of the light emitters 5c and 5d at the position A on the left side of the figure. An encoder (not shown) attached to the drive wheel 10 of the self-propelled cleaner 4 is used to measure that the self-propelled cleaner 4 has traveled to a position B that is separated from the point A by a distance L to the right. Is used.
[0026]
At the position B, the direction of the light emitters 5c and 5d is detected again. By this operation, the direction of the light emitters 5c and 5d with respect to the moving direction of the self-propelled cleaner 4 is obtained. That is, the direction at the position A of the light emitter 5c is θAc, the direction at the position A of the light emitter 5d is θAd, the direction at the position B of the light emitter 5c is θBc, and the direction at the position B of the light emitter 5d is θBd. From these angles and the moving distance L of the self-propelled cleaner 4, the relative positional relationship between the light emitters 5c and 5d and the self-propelled cleaner 4 is obtained using the principle of triangulation. If the coordinates of the light emitters 5c and 5d are known, the coordinates of the positions A and B can be obtained.
[0027]
In the above embodiment, the self-propelled cleaner is taken as an example of the moving body, but it goes without saying that the present invention can be applied to automatic guided vehicles and various self-propelled robots used in factories. In the case of an automatic guided vehicle, it is easy to obtain the position of the light emitter, and since the normal transport path is roughly determined, it is possible to position the transport vehicle with high accuracy.
[0028]
【The invention's effect】
As described above, according to the present invention, since the direction angle of the preset light emitter with respect to the moving body can be obtained using the principle of triangulation, the number of movable parts of the direction detection device can be reduced, and the direction detection device The direction detection device can be realized at a low cost.
[Brief description of the drawings]
FIG. 1 is a schematic view of an embodiment of a self-propelled cleaner according to the present invention.
FIG. 2 is a perspective view of an optical sensor unit used in the self-propelled cleaner shown in FIG.
3 is a cross-sectional view of the photosensor unit of FIG.
4 is a top view of the self-propelled cleaner shown in FIG. 1. FIG.
FIG. 5 is a graph for explaining the sensitivity of the first light receiving means.
FIG. 6 is a diagram illustrating a first light receiving unit.
FIG. 7 is a diagram illustrating a second light receiving unit.
FIG. 8 is a graph for explaining the sensitivity of the second light receiving means.
FIG. 9 is a diagram for explaining the operation of the self-propelled cleaner shown in FIG. 1;
FIG. 10 is a block diagram illustrating the flow of information when detecting a direction.
FIG. 11 is a flowchart for explaining a procedure for reconstructing a direction detection database;
12 is a diagram for explaining the operation of the self-propelled cleaner shown in FIG. 1;
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Optical sensor unit 2, 2a, 2b ... Light receiving element (first light receiving means) with wide directivity angle, 3 ... Light receiving element with narrow directivity angle (second light receiving means), 4 ... Moving body, 5, 5a 5b, 5c, 5d ... luminous body, 6 ... drive system controller, 7 ... computing means, 9 ... storage means, 10 ... drive wheel.

Claims (4)

光を発光し固設された発光体と、移動体に搭載された光センサユニットとを備えた方向検出装置において、前記光センサユニットに、発光体から発光された光を受光する複数の第1の受光手段と、この第1の受光手段よりも受光可能な入射範囲が狭い第2の受光手段と、を備え、
前記移動体を回転させ前記第2の受光手段が前記発光体を検出した方向に基づいて、前記発光体が各方向に存在するときの各前記第1の受光手段の受光強度比と対応する評価関数の値と評価関数を求めるために前記第1の受光手段のうちどの素子を用いたかが記録される方向検出データベースが構築され、前記発光体の方向は前記方向検出データベースのデータに基づいて検出される方向検出装置。
In a direction detection device including a light emitter fixed by emitting light and a light sensor unit mounted on a moving body, a plurality of first light receiving light emitted from the light emitter is received by the light sensor unit. And a second light receiving means having a narrow incident range capable of receiving light than the first light receiving means ,
Based on the direction in which the moving body is rotated and the second light receiving means detects the light emitting body, the evaluation corresponding to the light reception intensity ratio of each first light receiving means when the light emitting body exists in each direction. A direction detection database in which which element of the first light receiving means is used to obtain the function value and the evaluation function is recorded, and the direction of the light emitter is detected based on the data of the direction detection database. that direction detecting apparatus.
前記移動体に移動体の移動量を検出する手段を設けたことを特徴とする請求項1または2に記載の方向検出装置。  The direction detecting device according to claim 1, wherein the moving body is provided with means for detecting a moving amount of the moving body. 前記第1および第2の受光手段は、略円筒上に形成された受光面の外周部に設けられており、前記第2の受光手段を移動体の進行方向またはその逆方向に設けたことを特徴とする請求項1に記載の方向検出装置。The first and second light receiving means are provided on an outer peripheral portion of a light receiving surface formed substantially on a cylinder, and the second light receiving means is provided in the traveling direction of the moving body or in the opposite direction. The direction detection device according to claim 1, wherein 前記移動体が自走式掃除機であり、請求項1に記載の方向検出装置を搭載したことを特徴とする自走式掃除機。The said mobile body is a self-propelled cleaner, The self-propelled cleaner characterized by mounting the direction detection apparatus of Claim 1 .
JP2002062815A 2002-03-08 2002-03-08 Direction detecting device and self-propelled cleaner equipped with the same Expired - Fee Related JP3812463B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002062815A JP3812463B2 (en) 2002-03-08 2002-03-08 Direction detecting device and self-propelled cleaner equipped with the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002062815A JP3812463B2 (en) 2002-03-08 2002-03-08 Direction detecting device and self-propelled cleaner equipped with the same

Publications (2)

Publication Number Publication Date
JP2003262520A JP2003262520A (en) 2003-09-19
JP3812463B2 true JP3812463B2 (en) 2006-08-23

Family

ID=29196396

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002062815A Expired - Fee Related JP3812463B2 (en) 2002-03-08 2002-03-08 Direction detecting device and self-propelled cleaner equipped with the same

Country Status (1)

Country Link
JP (1) JP3812463B2 (en)

Families Citing this family (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8412377B2 (en) 2000-01-24 2013-04-02 Irobot Corporation Obstacle following sensor scheme for a mobile robot
US8788092B2 (en) 2000-01-24 2014-07-22 Irobot Corporation Obstacle following sensor scheme for a mobile robot
US6956348B2 (en) 2004-01-28 2005-10-18 Irobot Corporation Debris sensor for cleaning apparatus
US7571511B2 (en) 2002-01-03 2009-08-11 Irobot Corporation Autonomous floor-cleaning robot
US6690134B1 (en) 2001-01-24 2004-02-10 Irobot Corporation Method and system for robot localization and confinement
US8396592B2 (en) 2001-06-12 2013-03-12 Irobot Corporation Method and system for multi-mode coverage for an autonomous robot
US7429843B2 (en) 2001-06-12 2008-09-30 Irobot Corporation Method and system for multi-mode coverage for an autonomous robot
US9128486B2 (en) 2002-01-24 2015-09-08 Irobot Corporation Navigational control system for a robotic device
US8386081B2 (en) 2002-09-13 2013-02-26 Irobot Corporation Navigational control system for a robotic device
US8428778B2 (en) 2002-09-13 2013-04-23 Irobot Corporation Navigational control system for a robotic device
KR100492588B1 (en) * 2003-01-23 2005-06-03 엘지전자 주식회사 Position information recognition apparatus for automatic running vacuum cleaner
US7332890B2 (en) 2004-01-21 2008-02-19 Irobot Corporation Autonomous robot auto-docking and energy management systems and methods
US7720554B2 (en) 2004-03-29 2010-05-18 Evolution Robotics, Inc. Methods and apparatus for position estimation using reflected light sources
EP1776624A1 (en) 2004-06-24 2007-04-25 iRobot Corporation Programming and diagnostic tool for a mobile robot
US7706917B1 (en) 2004-07-07 2010-04-27 Irobot Corporation Celestial navigation system for an autonomous robot
US8972052B2 (en) 2004-07-07 2015-03-03 Irobot Corporation Celestial navigation system for an autonomous vehicle
US8392021B2 (en) 2005-02-18 2013-03-05 Irobot Corporation Autonomous surface cleaning robot for wet cleaning
ATE468062T1 (en) 2005-02-18 2010-06-15 Irobot Corp AUTONOMOUS SURFACE CLEANING ROBOT FOR WET AND DRY CLEANING
US7620476B2 (en) 2005-02-18 2009-11-17 Irobot Corporation Autonomous surface cleaning robot for dry cleaning
US8930023B2 (en) 2009-11-06 2015-01-06 Irobot Corporation Localization by learning of wave-signal distributions
EP2120122B1 (en) 2005-12-02 2013-10-30 iRobot Corporation Coverage robot mobility
EP2544065B1 (en) 2005-12-02 2017-02-08 iRobot Corporation Robot system
US9144360B2 (en) 2005-12-02 2015-09-29 Irobot Corporation Autonomous coverage robot navigation system
EP2270619B1 (en) 2005-12-02 2013-05-08 iRobot Corporation Modular robot
JP2007248214A (en) * 2006-03-15 2007-09-27 Yunitekku:Kk Horizontal angle measuring method and position measuring method
EP3031377B1 (en) 2006-05-19 2018-08-01 iRobot Corporation Removing debris from cleaning robots
US8417383B2 (en) 2006-05-31 2013-04-09 Irobot Corporation Detecting robot stasis
KR100791383B1 (en) 2006-07-07 2008-01-07 삼성전자주식회사 Method for estimating relative position between moving robot and transmitter and apparatus thereof
KR101168481B1 (en) 2007-05-09 2012-07-26 아이로보트 코퍼레이션 Autonomous coverage robot
US8800107B2 (en) 2010-02-16 2014-08-12 Irobot Corporation Vacuum brush
CN103631267B (en) * 2012-08-24 2017-10-27 科沃斯机器人股份有限公司 Intelligent robot and its method for being moved to most bright position
CN103838241B (en) * 2012-11-27 2019-01-22 科沃斯机器人股份有限公司 Intelligent control machine people and its method for being moved to bright light place
CN106737700A (en) * 2015-11-23 2017-05-31 芋头科技(杭州)有限公司 A kind of smart machine system and method for being moved to bright light place
WO2018023227A1 (en) * 2016-07-31 2018-02-08 杨洁 Robot mobile technology data acquisition method and robot
WO2018023228A1 (en) * 2016-07-31 2018-02-08 杨洁 Information pushing method for moving robot according to light intensity and robot
CN107361707B (en) * 2017-06-12 2021-03-30 北京小米移动软件有限公司 Light intensity information processing method and device

Also Published As

Publication number Publication date
JP2003262520A (en) 2003-09-19

Similar Documents

Publication Publication Date Title
JP3812463B2 (en) Direction detecting device and self-propelled cleaner equipped with the same
EP2859423B1 (en) System and method for guiding a robot cleaner along a path
JP2717800B2 (en) Steering control device for self-propelled vehicles
EP1368715A1 (en) Method and device for determining position of an autonomous apparatus
JPH078271B2 (en) Self-propelled vacuum cleaner
US20200191561A1 (en) Wheel Balancer System With Hood Mounted Measurement Sensors
JPH05150827A (en) Guide system for unattended vehicle
US8049902B2 (en) Mobile vehicle
JP7002791B2 (en) Information processing equipment and mobile robots
JP2020010982A (en) Self-propelled cleaner
JP2019141313A (en) Self-propelled vacuum cleaner
JP3982959B2 (en) Mobile body position detection equipment
US20230225580A1 (en) Robot cleaner and robot cleaner control method
KR102653633B1 (en) Automated guided vehicle and method for controlling movement of automated guided vehicle
JP2988699B2 (en) Moving object position detection device
JP2769904B2 (en) Steering control device for self-propelled vehicles
JP2950974B2 (en) Moving object position detection device
JPH03154904A (en) Position controller for self-traveling vehicle
KR20240042394A (en) Automated guided vehicle and method for controlling movement of automated guided vehicle
JP2506146B2 (en) Work vehicle guidance system using beam light
JP2543873Y2 (en) Deflection detection device for automatic guided vehicles
JPH06147911A (en) Device for correcting direction of moving robot
JP2503533Y2 (en) Vehicle position / speed detector
JP3005873B2 (en) Automatic guided vehicle guidance system
JP2862562B2 (en) Traveling course and condition input device for moving objects

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040311

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050801

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060214

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060407

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060407

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060509

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060522

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090609

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100609

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100609

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110609

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110609

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120609

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120609

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130609

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees