JP2003262520A - Direction detecting device and self-traveling cleaner loaded with it - Google Patents

Direction detecting device and self-traveling cleaner loaded with it

Info

Publication number
JP2003262520A
JP2003262520A JP2002062815A JP2002062815A JP2003262520A JP 2003262520 A JP2003262520 A JP 2003262520A JP 2002062815 A JP2002062815 A JP 2002062815A JP 2002062815 A JP2002062815 A JP 2002062815A JP 2003262520 A JP2003262520 A JP 2003262520A
Authority
JP
Japan
Prior art keywords
light
direction
light receiving
means
self
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002062815A
Other languages
Japanese (ja)
Other versions
JP3812463B2 (en
Inventor
Minoru Arai
Saku Egawa
Atsushi Koseki
Taiji Tajima
Ikuo Takeuchi
篤志 小関
索 柄川
泰治 田島
郁雄 竹内
穣 荒井
Original Assignee
Hitachi Ltd
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, 株式会社日立製作所 filed Critical Hitachi Ltd
Priority to JP2002062815A priority Critical patent/JP3812463B2/en
Publication of JP2003262520A publication Critical patent/JP2003262520A/en
Application granted granted Critical
Publication of JP3812463B2 publication Critical patent/JP3812463B2/en
Application status is Expired - Fee Related legal-status Critical
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To improve the reliability of a direction detecting device used for a self-traveling moving body by simplifying the means.
SOLUTION: The direction detecting device of the self-traveling moving body has an optical sensor unit 1, an arithmetic means 7, and a storing means 9, all of which are loaded in the moving body. On the outside or the moving body, a light emitting means 5 is provided in a fixed state. A plurality of photoreceptor elements 2, 2, etc., is attached to the optical sensor unit 1. The light receivable ranges of adjacent photoreceptor elements partially overlap each other. The arithmetic means 7 detects the direction to the light emitting means 5 by comparing the intensities of the light rays received by means of the photoreceptor elements 2 with each other.
COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は方向検出装置に係り、特に自走式掃除機や自走式台車に好適な方向検出装置に関する。 BACKGROUND OF THE INVENTION [0001] [Technical Field of the Invention The present invention relates to a direction detecting device, and more particularly to self-propelled cleaner and propelled preferred direction detection device carriage. 【0002】 【従来の技術】自走式移動体に用いる従来の位置検出装置の例が、特開平7−311041号公報に記載されている。 [0002] Examples of the Related Art used self-propelled mobile conventional position detecting apparatus is disclosed in JP-A-7-311041. この位置検出装置は、自律的に現在位置を把握するために、駆動輪を有する移動体の上面に平面的に所定距離離れた位置に2つの受光部を取り付けている。 The position detecting device, in order to grasp the autonomously current position is planar mounted two light receiving portions in a position at a predetermined distance on the upper surface of the moving body having a driving wheel. これらの受光部は旋回可能になっている。 These light-receiving portion is made possible turning. それとともに基準局の側面には、平面的に所定距離離れた位置に2つの発光部を取付けている。 The sides of it with reference station are fitted with two light emitting portions in a position planarly separated by a predetermined distance. 移動体上の受光部が旋回しながらサンプリングすると受光量が変化する。 Received light amount and the light receiving portion of the moving body is sampled while rotating to change. 受光量のピークとなった旋回角に基づいて、相対位置と相対的な姿勢角を求めている。 Based on the swivel angle peaked light reception amounts, seeking the relative position and relative posture angle. 【0003】 【発明が解決しようとする課題】上記公報に記載の位置検出方法では、移動体に2組の旋回可能な受光軸を設けているので、受光部の構成が複雑になっている。 [0003] In the [0006] position detecting method according to the above publication, since the provided two pairs of pivotable light receiving axis in the mobile, the configuration of the light receiving portion is complicated. そのため、家庭用の掃除機等にこれらの受光体を搭載するときには、小型化の阻害要因となっている。 Therefore, when mounting these photoreceptor vacuum cleaner or the like for home use, which is an impediment to miniaturization. 【0004】本発明は、上記従来技術の不具合に鑑みなされたものであり、その目的は移動体に搭載する方向検出装置を小型化することにある。 [0004] The present invention has been made in view the problem of the prior art, and its object is to reduce the size of the direction detection apparatus mounted on a mobile. 本発明の他の目的は、 It is another object of the present invention,
安価な方向検出装置を実現することにある。 It is to realize an inexpensive direction detecting apparatus. 【0005】 【課題を解決するための手段】上記目的を達成するための本発明の特徴は、光を発光し固設された発光体と、移動体に搭載された光センサユニットとを備えた方向検出装置において、光センサユニットに、発光体から発光された光を受光する複数の第1の受光手段と、この第1の受光手段よりも受光可能な入射範囲が狭い第2の受光手段と、これら第1および第2の受光手段が受光した受光量を評価する演算手段と、予め求めた受光量を記憶する記憶手段とを設け、記憶手段に記憶された受光量と演算手段が演算した受光量とに基づいて移動体と発光体との相対方向を検出ものである。 [0005] [Means for Solving the Problems] feature of the present invention for achieving the above object, comprising a light emitting body that is fixed to emit light and a light sensor unit mounted on the mobile in the direction detection device, the optical sensor unit, a plurality of first light receiving means for receiving the light emitted from the light emitter, and the first incident extent possible light than the light receiving means is narrow second light receiving means and calculating means for the first and second light receiving means for evaluating the received light amount of the received light, provided storage means for storing previously determined amount of light received, stored received light amount and calculating means is calculated in the storage means is intended detects the relative direction of the light emitter and the moving object based on the received light amount. 【0006】そしてこの特徴において、光センサユニットでは、周方向についてはいずれの方向からの光も受光可能なように複数の第1の受光手段を周方向に配置し、 [0006] Then, in this aspect, the optical sensor unit, the circumferential direction also light from any direction by arranging a plurality of first light receiving means in the circumferential direction so as to be received,
第2の受光手段からの入力を演算手段が判別して光センサユニットと発光体との相対方向を判断することが望ましい。 It is desirable to input from the second light receiving means to determine calculating means determines the relative direction of the optical sensor unit and the light emitter. また、移動体に移動体の移動量を検出する手段を設けるようにしてもよく、移動体を回動させて、記憶手段に記憶された第1および第2の受光手段の受光データを更新するようにしてもよい。 Also, may be provided with means for detecting the amount of movement of the moving body in the moving body, the moving body is rotated, and updates the received data of the first and second light receiving means stored in the storage means it may be so. さらに、第1および第2 Further, first and second
の受光手段を、略円筒上に形成された受光面の外周部に設け、第2の受光手段を移動体の進行方向またはその逆方向に設けてもよい。 The light receiving means is provided on the outer peripheral portion of the light receiving surface formed on a substantially cylindrical, may be provided a second light receiving means in the traveling direction or the opposite direction of the moving body. 【0007】上記目的を達成するための他の特徴として、移動体を自走式掃除機とし、上記いずれかの特徴の方向検出装置を搭載したものである。 [0007] Other features to achieve the above object, a mobile and self-propelled cleaner, but provided with a direction detection device of any of the above features. 【0008】 【発明の実施の形態】以下本発明に係る方向検出装置の一実施例を、自走式掃除機に搭載した例について図面を用いて説明する。 [0008] One embodiment of the direction detection apparatus according to the following the present invention PREFERRED EMBODIMENT will be described with reference to the drawings example mounted on self-propelled cleaner. 図1に、自走式掃除機の模式図を示す。 Figure 1 shows a schematic diagram of a self-propelled cleaner. 自走式掃除機4の上部には、赤外線を発光する光センサユニット1が取り付けられている。 At the top of the self-propelled cleaner 4, the optical sensor unit 1 which emits infrared light is attached. 自走式掃除機4 Self-propelled vacuum cleaner 4
から離れた位置に、発光体5が固定されている。 A position apart from the light emitting element 5 is fixed. 光センサユニット1は、発光体5から照射される変調された赤外線11を受けるために、広指向角の受光素子2と狭指向角の受光素子3とを備えている。 Optical sensor unit 1, for receiving the infrared 11 modulated is radiated from the light emitting body 5, and a light receiving element 3 of the light receiving element 2 and the narrow directional angle of the wide directivity angle. これらの受光素子2、3の個々の受光強度情報は、自走式掃除機4内部に設けた演算手段7に送られる。 Individual light reception intensity information of the light receiving elements 2 and 3 are sent to the arithmetic unit 7 provided inside 4 self-propelled cleaner. 【0009】演算手段7は、自走式掃除機4を駆動する駆動系の制御部6に接続されている。 [0009] computing means 7 is connected to the control unit 6 of a drive system for driving a self-propelled cleaner 4. 駆動系は一対の駆動輪10を有しており、演算手段7は、駆動輪10の回転速度と回転量を駆動系制御部6に指令する。 Drive system has a pair of drive wheels 10, the arithmetic unit 7 commands the rotational speed and amount of rotation of the drive wheel 10 to the driving system control unit 6. 演算手段7の指令に応じた回転速度と回転量で駆動輪10が回転すると、駆動系制御部6から演算手段7に実際の駆動輪10の回転速度と回転量の情報が送られる。 When the drive wheel 10 by the rotation amount and the rotation speed corresponding to the command of the arithmetic unit 7 is rotated, the rotation speed and rotation amount of information of the actual driving wheel 10 to the arithmetic unit 7 from the driving system control unit 6 is sent. 自走式掃除機4の前下部には掃除機部8が設けられており、自走式掃除機4の移動とともに床面に散乱したごみ等を吸い込む。 Self-propelled cleaner and cleaner unit 8 in the front lower portion of 4 is provided, sucking scattered dust on the floor surface with the movement of the self-propelled cleaner 4. 演算手段7はこの掃除機部8にも接続されており、 Calculating means 7 is also connected to the vacuum cleaner unit 8,
掃除機部8の運転と停止を制御する。 Controlling the operation and stop of the cleaner unit 8. 演算手段7はさらに、記憶手段9と接続されている。 Calculating means 7 is further connected to the storage means 9. 記憶手段9は、広指向角の受光素子2の受光強度と、発光体5に対する光センサユニット1の姿勢角の関係についての情報を記憶する。 Storage means 9 stores the received light intensity of the light receiving element 2 of the wide directivity angle, the information about the relationship between the posture angle of the optical sensor unit 1 to the light emitting element 5. 演算手段7の指令情報および記憶手段に記憶される情報は、この自走式掃除機4に設けた図示しない入力手段または、この自走式掃除機4とは別体に設けたリモコンから入力される。 Information stored in the command information and storing means for calculating means 7, the self-propelled cleaner input means (not shown) provided in the 4 or the self-propelled cleaner 4 is input from the remote controller provided separately that. 【0010】このように構成した自走式掃除機に搭載される光センサユニットの詳細を、図2および図3に示す。 [0010] The details of the optical sensor unit mounted on the thus constituted self-propelled cleaner, shown in FIGS. 図2は、光センサユニットの斜視図である。 Figure 2 is a perspective view of an optical sensor unit. 光センサユニット1は、円筒形状をしており、その外周部に広指向角の受光素子2と狭指向角の受光素子3が配置されている。 Optical sensor unit 1 has a cylindrical shape, the light receiving element 3 of the light receiving element 2 and the narrow directional angle of the wide directivity angle is disposed on the outer periphery thereof. 図3に、光センサユニット1の横断面図を示す。 Figure 3 shows a cross-sectional view of the optical sensor unit 1. 広指向角の受光素子2を、円周方向60度おきに6 The light receiving element 2 of the wide directivity angle in the circumferential direction at intervals of 60 degrees 6
個配置する。 To individual arrangement. 各受光素子2の受光可能な入射角範囲は、 Capable of receiving light incident angle range of the light receiving element 2,
光軸から左右にそれぞれ60度以上になっており、入射角で120度以上の範囲については、発光体5からの赤外光11を検出できる。 It has become more respectively 60 degrees to the left and right from the optical axis, for a range of more than 120 degrees angle of incidence, can detect infrared light 11 from the light emitting body 5. これにより、360度どの方向に発光体5が存在しても、いずれかの隣り合う2個の広指向角の受光素子2が、赤外光11を検出できる。 Thus, even if there is the light emitter 5 in any direction of 360 degrees, the light receiving element 2 of the two wide directivity angle adjacent one is able to detect infrared light 11. 【0011】狭指向角の受光素子3は、円周方向に1か所だけ設けられており、広指向角の受光素子2、2の中間に位置している。 [0011] the light-receiving element 3 of the narrow directivity angle is provided only one place in the circumferential direction, it is located in the middle of the light receiving elements 2, 2 wide directivity angle. 狭指向角の受光素子3の前面には図示しないスリットが形成されている。 Slits are formed (not shown) in front of the light receiving element 3 of the narrow directivity angle. このスリットは、 The slit,
発光体5が発光する赤外光11の受光可能な範囲、すなわち入射角の方向と広さを調整する。 Receiving range of the infrared light 11 emitting element 5 emits light, i.e., to adjust the direction and extent of the angle of incidence. これにより、狭指向角の受光素子3の受光範囲を、広指向角の受光素子2 Thus, the receiving range of the light receiving element 3 of the narrow directivity angle, the light receiving elements of wide directivity angle 2
の受光範囲に比べて狭くしている。 It is narrower than the light-receiving range. 【0012】図4に、図1に示した自走式掃除機4の上面図を示す。 [0012] FIG. 4 shows a top view of the self-propelled cleaner 4 shown in FIG. 光センサユニット1は、2個の駆動輪10 Optical sensor unit 1, two drive wheels 10
の中央部の真上に位置している。 It is located directly above the center of. 駆動輪10の一方を正転させ、もう一方を同じ速度で逆転させると、自走式掃除機は光センサユニット1を中心に、その場で回転する。 While rotated forward of the drive wheels 10, when reversing the other at the same speed, self-propelled cleaner around the optical sensor unit 1 and rotates on the spot. 【0013】広指向角の受光素子2の赤外線11に対する感度Sと入射角θの関係を、図5に示す。 [0013] The relationship between the sensitivity S and the incident angle θ with respect to the infrared 11 of the light receiving element 2 of the wide directivity angle, shown in FIG. 受光素子2 The light-receiving element 2
の感度は、受光素子2に垂直な方向からの入射時にピークとなり、入射角が垂直方向からずれるにつれて急激に感度が低くなる。 Sensitivity peaked when incident from a direction perpendicular to the light receiving element 2, rapidly sensitivity decreases as the incident angle deviates from the vertical direction. 図6および図7を用いて、光センサユニット1の受光範囲を説明する。 With reference to FIGS. 6 and 7, illustrating a receiving range of the optical sensor unit 1. 図6の位置に発光体5 Emitters in the position of FIG. 6 5
が位置した場合には、広指向角の受光素子2a、2bの2つの受光素子が受光可能である。 There when position, the light receiving element 2a of the wide directivity angle, the two light-receiving elements 2b can be received. このときの受光素子2a、bの感度S 2a 、S 2bを示したのが、図5である。 Receiving element 2a in this case, b in the sensitivity S 2a, that showed S 2b, a diagram 5. 【0014】光センサユニット1と発光体5との距離が充分に離れている場合は、各受光素子2a、2bから発光体5までの距離はほぼ等しいとみなされる。 [0014] If the distance between the optical sensor unit 1 and the light emitting element 5 are sufficiently separated, the distance of the respective light receiving elements 2a, 2b to to the light-emitting element 5 is considered substantially equal. そこで、 there,
発光体5までの距離が略等しい関係から各受光素子2 Each light receiving distance to the light emitting element 5 from substantially equal relationship element 2
a、2bが光センサユニット1の中央にあると摸擬する。 a, if 2b is in the middle of the optical sensor unit 1 to 摸擬. そして、各受光素子2a、2bの受光強度の比を用いて光センサユニット1の中央部における受光強度を求め、光センサユニット1に対する発光体5の方向を求める。 Then, each of the light receiving element 2a, obtains the received light intensity in the central portion of the optical sensor unit 1 using the ratio of the intensity of received light 2b, obtaining the direction of the light-emitting element 5 with respect to the optical sensor unit 1. 【0015】本方法を用いれば、発光体5がどの方向にあっても広指向角の受光素子2のうち2個以上が受光可能となる。 The use of [0015] the method, two or more of the light receiving element 2 of the wide directivity angle even light emitter 5 in any direction is possible light. したがって、受光量が上位2個の素子を選んで受光量の比を求めれば、発光体5の方向を定めることができる。 Therefore, the amount of light received by obtaining the ratio of the amount of light received by selecting the top two elements, it is possible to determine the direction of the light emitting body 5. さらに円周上に配置した全部の広指向角の受光素子2の受光強度を同時に検出できるようにすれば、 In more the received light intensity of the light receiving element 2 of the wide directivity angle of all arranged on the circumference so that it can be detected simultaneously,
自走式掃除機4の走行中にも、発光体5の位置を検出できる。 Even during running of the self-propelled cleaner 4, it is possible to detect the position of the light emitter 5. 【0016】狭指向角の受光素子3の感度特性を、図8 The narrow directivity angle sensitivity characteristic of the light receiving element 3, FIG. 8
に示す。 To show. 図8の細い実線は、スリットを形成しないときの感度分布特性であり、太い実線はスリットを形成した場合である。 Thin solid line of FIG. 8 is a sensitivity distribution characteristic when forming no slit, and a thick line is a case of forming a slit. 図7にこの狭指向角の受光素子3で発光体5を検出する様子を示す。 Figure 7 shows the state of detecting the light emitter 5 by the light receiving element 3 of the narrow directivity angle. スリットを形成したことにより、狭指向角の受光素子3は略垂直に入射する発光素子5bからの赤外光しか受光できない。 By forming the slits can not be red only outside light receiving from the light emitting element 5b is the light receiving element 3 of the narrow directivity angle incident substantially vertically. すなわち図7に示すように、発光体5が狭指向角の受光素子3の垂直面から離れた方向にある発光体5aのときは、感度は図8に示すように略0となる。 That is, as shown in FIG. 7, when the light emitter 5a of the light emitting element 5 is in a direction away from the vertical plane of the light receiving element 3 of the narrow directivity angle, sensitivity becomes substantially 0 as shown in FIG. 【0017】なお、狭指向角の受光素子2が赤外線11 [0017] In addition, the light-receiving element 2 of the narrow beam angle infrared 11
を検出したかどうかにより、発光体5が光センサユニット1の所定方向にあるかどうかを判別する。 The depending on whether the detected light emitter 5 to determine whether the predetermined direction of the optical sensor unit 1. 狭指向角の受光素子2の分解能は、受光素子2の検出可能な入射角の範囲により定まる。 Resolution of the light receiving element 2 of the narrow directivity angle is determined by the range of detectable angles of incidence of the light receiving element 2. また、受光素子の特性が図8において細線で示したように左右対称であっても、受光可能な入射角の範囲はスリットにより定まる。 Even symmetrical so that the characteristic of the light receiving element is indicated by a thin line in FIG. 8, the range of receivable angle of incidence determined by the slit. 【0018】図9に、自走式掃除機4が狭指向角の受光素子3を用いて発光体5を検出する例を示す。 [0018] FIG. 9 shows an example of detecting a light emitter 5 with a light-receiving element 3 of the self-propelled cleaner 4 is narrow directivity angle. 自走式掃除機4をその場で回転させ、狭指向角の受光素子3が赤外線11を検出した方向を発光体5の方向とみなす。 Rotating the self-propelled cleaner 4 in situ, consider the direction in which the light receiving element 3 detects the infrared 11 narrow directional angle to the direction of the light emitting body 5. 狭指向角の受光素子3の受光可能範囲が要求される分解能よりも広い場合には、自走式掃除機4をその場で回転させる際に、狭指向角の受光素子3が赤外線11を検出し始めた方向と赤外線11を検出できなくなった方向との2つの方向の中間の方向を発光体5の方向とみなす。 If broader than the resolution of the light receiving range is required for the light receiving element 3 of the narrow directivity angle, when rotating the self-propelled cleaner 4 in situ, the light receiving element 3 of the narrow directivity angle detecting infrared 11 two intermediate directions in the direction of the directionally no longer able to detect the direction and the infrared 11 began regarded as the direction of the light emitting body 5. 【0019】図10に、発光体5の方向を検出する際の情報の流れを示す。 [0019] FIG. 10 shows the flow of information when detecting the direction of the light emitting body 5. 狭指向性の受光素子3の受光量に基づいて演算手段7が受光の有無を判定する。 Calculating means 7 based on the received light amount of narrow directivity of the light receiving element 3 determines the presence or absence of light reception. 受光素子3 The light-receiving element 3
が受光していると判定したときは、そのときの発光体5 Luminescent body 5 but when it is determined that the received, then
の方向を角度情報として記憶し、走行経路を計画するときに用いる。 The direction is stored as the angle information is used when planning a travel route. 一方、広指向性の受光素子2の受光強度を、記憶手段9に記憶されている方向検出データベースと比較するために、比較可能な形に変換する。 On the other hand, the light receiving intensity of the light receiving element 2 of the wide directivity, to compare the direction detection database stored in the storage means 9, into a comparable form. つまり、 That is,
広指向性の受光素子2のなかで最も受光強度が強い素子と、2番目に受光強度が強い素子の受光強度の比から評価関数を決定し、データベースの記憶値と比較する。 The most light intensity is high element among the wide directivity of the light receiving element 2, to determine the evaluation function from the ratio of the received light intensity of a strong element received light intensity is the second, compared with the stored value of the database. 評価関数は受光強度の比と1対1に対応するものであれば良い。 Evaluation function as long as it corresponds to the ratio of the light-receiving intensity and one to one. 【0020】評価関数の値と評価関数を求めるためにどの素子の受光強度を用いたかの情報とを、方向検出データベースと照合する。 [0020] and of the information using the received light intensity of which element to determine the value and the evaluation function of the evaluation function, matching the direction detection database. 方向検出データベースには、発光体5が各方向に存在するときの評価関数の値と評価関数を求めるためにどの素子を用いたかが記録されている。 The direction detection database, or light emitters 5 were used which elements to determine the value and the evaluation function of the evaluation function when present in each direction is recorded.
方向検出データベースと評価関数を照合するときは、評価関数の値を求めるのに用いた素子のデータを、データベースから検索する。 When matching an evaluation function and direction detection database, the data of the device used to determine the value of the evaluation function is retrieved from the database. 次に検索されたデータを補間もしくは外挿する。 Then interpolating or extrapolating the retrieved data. これにより、評価関数の値に対応する方向が求められる。 Thus, the direction is determined corresponding to the value of the evaluation function. この方向は走行経路を計画するときに用いられる。 This direction is used when planning a travel route. 【0021】広指向角の受光素子2は方向検出データベースのデータに基づいて発光体5の方向を検出する。 The light receiving element 2 of the wide directivity angle detects the direction of the light-emitting element 5 on the basis of the data of the direction detection database. 経年変化や光学系の汚れなどで素子の特性が変化したときは、方向検出データベースを再構築する。 When the characteristics of the element in the dirt of the aging and the optical system is changed, to reconstruct the direction detection database. 図11に、方向検出データベースの再構築のフローチャートを示す。 Figure 11 shows a flow chart of reconstruction of the direction detection database. 【0022】ステップ100で再構築を開始する。 [0022] to start the reconstruction in step 100. 狭指向角の受光素子3を用いて、正確な発光体5の方向を検出する(ステップ110)。 Using a light-receiving element 3 of the narrow directivity angle, it detects the direction of the correct light emitters 5 (step 110). 次に上述した評価関数を計算する(ステップ120)。 Then calculate the evaluation function described above (step 120). 発光体5の方向、評価関数の値および評価関数の値を求めるのに用いた広指向角の受光素子2の番号を記憶手段9に記憶する(ステップ13 Direction of the light emitting element 5, and stores the number of the light receiving element 2 of the wide directivity angle used to determine the values ​​of and evaluation functions of the evaluation function in the storage means 9 (step 13
0)。 0). 【0023】所定の角度だけ自走式掃除機4を、その場で回転させる。 The predetermined angle of the self-propelled cleaner 4 is rotated on the spot. このときの回転の角度は駆動輪10に取り付けたエンコーダから求める(ステップ140)。 The angle of rotation at this time is determined from the encoder mounted on the drive wheel 10 (step 140). 方向検出データベースの再構築を始めてから、自走式掃除機4を合計360度以上回転したか否かを判断する(ステップ150)。 From the start of reconstruction of the direction detection database, determines whether the rotation of the self-propelled cleaner 4 Total 360 degrees or more (step 150). 360度以上回転していれば方向検出データベースの再構築を終了する(ステップ160)。 If rotated 360 degrees or more ends the reconstruction of the direction detection database (step 160).
自走式掃除機4の回転が360度に満たない場合は、ステップ120に戻る。 If the rotation of the self-propelled cleaner 4 is less than 360 degrees, the flow returns to step 120. 以下、上述したステップを繰り返す。 Hereinafter, repeat the above-mentioned steps. 【0024】以上の動作を実行すると、広指向角のセンサ2が発光体5の方向を正確に検出できる。 [0024] executing the above operation, the sensor 2 of the wide directivity angle can accurately detect the direction of the light emitting body 5. 方向検出データベースをユーザが任意に再構築することもできるし、自走式掃除機4を起動するごとに再構築しても良い。 The direction detection database a user may arbitrarily reconstruction may be rebuilt each time starting the self-propelled cleaner 4. また、狭指向角の受光素子3が発光体5の方向を検出し、広指向角の受光素子2も発光体5の方向を検出したときであって、2種の受光素子2、3の検出角度の差が大きくなったときに自動的に実行するようにしても良い。 Further, the light receiving element 3 of the narrow directivity angle detects the direction of the light emitting element 5, the light receiving element 2 of the wide directivity angle even when detecting the direction of the light emitting element 5, the two detection light receiving elements 2 and 3 automatically it may be performed when the difference angle is increased. なお、この場合、データベースを再構築せずに、ユーザに対してデータベースの再構築を促す表示をするようにしてもよい。 In this case, without rebuilding the database may be displayed to prompt the rebuilding of the database to the user. 【0025】図12に、発光体5を基準にして位置を検出する方法を示す。 [0025] FIG. 12 illustrates a method of detecting the position with respect to the light emitter 5. 発光体5c、5dを自走式掃除機4 Light-emitting body 5c, 5d a self-propelled vacuum cleaner 4
の使用環境に設置する。 It is installed in the use environment. 発光体5c、5dが発する赤外線11、11は、それぞれ異なる変調周波数で変調されている。 Infrared 11 and 11 emitters 5c, 5d emitted is modulated with different modulation frequencies. この変調周波数の違いにより、発光源を区別できる。 This difference in the modulation frequency can be distinguished from the light emitting source. 自走式掃除機4は、図の左方であるAの位置で発光体5c、5dの方向を検出する。 Self-propelled cleaner 4 detects the direction of the light emitting element 5c, 5d at the position of A is towards the left of FIG. この点Aから距離L The distance L from this point A
だけ右方に離れた位置Bまで自走式掃除機4が走行したことを計測するのに、自走式掃除機4の駆動輪10に取り付けたエンコーダ(図示せず)を使用する。 To measure the self-propelled cleaner 4 has traveled to a position B away to the right only, using the encoder mounted on the drive wheel 10 of the self-propelled cleaner 4 (not shown). 【0026】位置Bで、再度発光体5c、5dの方向を検出する。 [0026] In position B, again emitters 5c, to detect the direction of 5d. この動作により、自走式掃除機4の移動方向に対する発光体5c、5dの方向が求められる。 By this operation, the light emitter 5c with respect to the moving direction of the self-propelled cleaner 4, the direction of 5d obtained. すなわち、発光体5cの位置Aにおける方向はθAcであり、発光体5dの位置Aにおける方向はθAdであり、発光体5 That is, the direction at the position A of the light emitting element 5c is .theta.ac, direction at the position A of the light emitter 5d is ShitaAd, emitters 5
cの位置Bにおける方向はθBcであり、発光体5dの位置Bにおける方向はθBdである。 Direction at the position B of c is ShitaBc, direction at the position B of the light emitter 5d is ShitaBd. これらの角度と、自走式掃除機4の移動距離Lとから、三角測量の原理を用いて、発光体5c、5dと自走式掃除機4の相対的な位置関係が求められる。 And these angles, and a moving distance L of the self-propelled cleaner 4, using the principle of triangulation, light emitter 5c, the relative positional relationship 5d self-propelled cleaner 4 is determined. なお、発光体5c、5dの座標が既知であれば、位置A、Bの座標を求めることもできる。 The light-emitting element 5c, if 5d coordinates are known, it is also possible to determine the position A, the coordinates of B. 【0027】なお、上記実施例では移動体として自走式掃除機を例に取り説明したが、工場内で使用される無人搬送車や各種自走ロボットに本発明を適用できることは言うまでもない。 [0027] In the above embodiment has been described taking as an example the self-propelled cleaning device as mobile, it is needless to say that the present invention can be applied to an automated guided vehicle and various self-propelled robot used in a factory. 無人搬送車の場合、発光体位置を求めるのが容易であり、かつ通常搬送路は概略定まっているので、高精度に搬送車の位置決め等が可能になる。 For AGV, it is easy to determine the illuminant position, and since typically the conveying path is definite outline allows such positioning of the transport vehicle with high accuracy. 【0028】 【発明の効果】以上述べたように本発明によれば、予め設定した発光体の移動体に対する方向角度を三角測量の原理を用いて求めることができるので、方向検出装置の可動部品数を低減でき、方向検出装置の信頼性を高めるとともに、安価に方向検出装置を実現できる。 According to the present invention as described according to the present invention above, since the direction angles for the mobile emitters previously set can be determined using the principle of triangulation, the moving parts of the direction detection device can reduce the number, thereby enhancing the reliability of the direction detection device, it can be realized inexpensively direction detecting device.

【図面の簡単な説明】 【図1】本発明に係る自走式掃除機の一実施例の模式図。 Schematic diagram of one embodiment of a self-propelled cleaner according to BRIEF DESCRIPTION OF THE DRAWINGS [Figure 1] present invention. 【図2】図1に示した自走式掃除機に用いられる光センサユニットの斜視図。 2 is a perspective view of the optical sensor unit used in the self-propelled cleaner shown in FIG. 【図3】図2の光センサユニットの横断面図。 Figure 3 is a cross-sectional view of the optical sensor unit of FIG. 【図4】図1に示した自走式掃除機の上面図。 Figure 4 is a top view of the self-propelled cleaner shown in FIG. 【図5】第1の受光手段の感度を説明するグラフ。 Figure 5 is a graph illustrating the sensitivity of the first light-receiving means. 【図6】第1の受光手段を説明する図。 6 is a diagram illustrating a first light receiving means. 【図7】第2の受光手段を説明する図。 7 is a diagram illustrating a second light receiving means. 【図8】第2の受光手段の感度を説明するグラフ。 Figure 8 is a graph illustrating the sensitivity of the second light receiving means. 【図9】図1に示した自走式掃除機の動作を説明する図。 9 is a diagram for explaining the operation of the self-propelled cleaner shown in FIG. 【図10】方向検出時の情報の流れを説明するブロック図。 10 is a block diagram illustrating the flow of information during direction detection. 【図11】方向検出データベースの再構築の手順を説明するフローチャート。 Figure 11 is a flowchart for explaining the procedure of reconstruction of the direction detection database. 【図12】図1に示した自走式掃除機の動作を説明する図。 12 is a diagram for explaining the operation of the self-propelled cleaner shown in FIG. 【符号の説明】 1…光センサユニット、2、2a、2b…広指向角の受光素子(第1の受光手段)、3…狭指向角の受光素子(第2の受光手段)、4…移動体、5、5a、5b、5c、 [Description of Reference Numerals] 1 ... optical sensor unit, 2, 2a, 2b ... light-receiving element (first light receiving means) of the wide directivity angle, 3 ... receiving element of the narrow directional angle (second light receiving means), 4 ... moving body, 5,5a, 5b, 5c,
5d…発光体、6…駆動系制御部、7…演算手段、9… 5d ... light emitter, 6 ... driving system control unit, 7 ... arithmetic unit, 9 ...
記憶手段、10…駆動輪。 Storage means, 10 ... drive wheels.

フロントページの続き (72)発明者 小関 篤志 茨城県土浦市神立町502番地 株式会社日 立製作所機械研究所内(72)発明者 柄川 索 茨城県土浦市神立町502番地 株式会社日 立製作所機械研究所内(72)発明者 田島 泰治 茨城県土浦市神立町502番地 株式会社日 立製作所機械研究所内Fターム(参考) 2F065 AA03 AA09 AA31 AA37 BB15 CC00 DD02 FF09 FF17 FF41 JJ05 JJ09 LL28 MM04 QQ25 3B006 KA01 3B057 DA04 DE02 Of the front page Continued (72) inventor Atsushi Ozeki Tsuchiura, Ibaraki Prefecture Kandatsu-cho address 502 CO., LTD Date falling Mfg Mechanical Engineering Research Laboratory within the (72) inventor Ekawa search Tsuchiura, Ibaraki Prefecture Kandatsu-cho, 502 address, Inc. Date falling Works machinery research house (72) inventor Tsuchiura, Ibaraki Prefecture Kandatsu-cho address 502 Taiji Tajima, Inc. Date falling Mfg mechanical Engineering Research Laboratory within the F-term (reference) 2F065 AA03 AA09 AA31 AA37 BB15 CC00 DD02 FF09 FF17 FF41 JJ05 JJ09 LL28 MM04 QQ25 3B006 KA01 3B057 DA04 DE02

Claims (1)

  1. 【特許請求の範囲】 【請求項1】光を発光し固設された発光体と、移動体に搭載された光センサユニットとを備えた方向検出装置において、前記光センサユニットに、発光体から発光された光を受光する複数の第1の受光手段と、この第1の受光手段よりも受光可能な入射範囲が狭い第2の受光手段と、これら第1および第2の受光手段が受光した受光量を評価する演算手段と、予め求めた受光量を記憶する記憶手段とを設け、記憶手段に記憶された受光量と演算手段が演算した受光量とに基づいて移動体と発光体との相対方向を検出する方向検出装置。 And [claimed 1] luminous body which is fixed to emit light in a direction detecting device and an optical sensor unit mounted on the moving body, the optical sensor unit, a light emitter a plurality of first light receiving means for receiving the emitted light, and the first light receiving second light receiving means capable of receiving light incident range is narrower than the section, the first and second light receiving means has received and calculating means for evaluating the received light amount, provided the storage means for storing previously determined amount of received light, the light receiving amount and calculating means stored in the storage means of the light emitter and the moving object based on the received light amount calculated direction detecting device for detecting the relative direction. 【請求項2】前記光センサユニットでは、周方向についてはいずれの方向からの光も受光可能なように複数の第1の受光手段を周方向に配置し、前記第2の受光手段からの入力を前記演算手段が判別して光センサユニットと発光体との相対方向を判断することを特徴とする請求項1に記載の方向検出装置。 The method according to claim 2, wherein the optical sensor unit, also light from any direction in the circumferential direction by arranging a plurality of first light receiving means in the circumferential direction so as to be received, the input from the second light receiving means direction detecting apparatus according to claim 1, characterized in that to determine the relative direction of the light emitter and said calculating means determines to optical sensor units. 【請求項3】前記移動体に移動体の移動量を検出する手段を設けたことを特徴とする請求項1または2に記載の方向検出装置。 3. A direction detecting apparatus according to claim 1 or 2, characterized in that a means for detecting the amount of movement of the moving body to the moving body. 【請求項4】移動体を回動させて、前記記憶手段に記憶された第1および第2の受光手段の受光データを更新することを特徴とする請求項1または2に記載の方向検出装置。 4. A rotates the movable body, the direction detection apparatus according to claim 1 or 2, characterized in that updating the received data of the first and second light receiving means stored in said storage means . 【請求項5】前記第1および第2の受光手段は、略円筒上に形成された受光面の外周部に設けられており、前記第2の受光手段を移動体の進行方向またはその逆方向に設けたことを特徴とする請求項1または2に記載の方向検出装置。 Wherein said first and second light receiving means are arranged on the outer peripheral portion of the light receiving surface formed on a substantially cylindrical, the traveling direction or the opposite direction of the moving body the second light receiving means direction detecting apparatus according to claim 1 or 2, characterized in that provided in the. 【請求項6】前記移動体が自走式掃除機であり、請求項1ないし5のいずれかに記載の方向検出装置を搭載したことを特徴とする自走式掃除機。 Wherein a said moving body self-propelled cleaner, self-propelled cleaner characterized by being equipped with a direction detection apparatus according to any one of claims 1 to 5.
JP2002062815A 2002-03-08 2002-03-08 Direction detecting device and it equipped with self-propelled cleaner Expired - Fee Related JP3812463B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002062815A JP3812463B2 (en) 2002-03-08 2002-03-08 Direction detecting device and it equipped with self-propelled cleaner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002062815A JP3812463B2 (en) 2002-03-08 2002-03-08 Direction detecting device and it equipped with self-propelled cleaner

Publications (2)

Publication Number Publication Date
JP2003262520A true JP2003262520A (en) 2003-09-19
JP3812463B2 JP3812463B2 (en) 2006-08-23

Family

ID=29196396

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002062815A Expired - Fee Related JP3812463B2 (en) 2002-03-08 2002-03-08 Direction detecting device and it equipped with self-propelled cleaner

Country Status (1)

Country Link
JP (1) JP3812463B2 (en)

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007248214A (en) * 2006-03-15 2007-09-27 Yunitekku:Kk Horizontal angle measuring method and position measuring method
US8060256B2 (en) 2006-07-07 2011-11-15 Samsung Electronics Co., Ltd. Apparatus, method, and medium for localizing moving robot and transmitter
US8239992B2 (en) 2007-05-09 2012-08-14 Irobot Corporation Compact autonomous coverage robot
US8253368B2 (en) 2004-01-28 2012-08-28 Irobot Corporation Debris sensor for cleaning apparatus
US8368339B2 (en) 2001-01-24 2013-02-05 Irobot Corporation Robot confinement
US8374721B2 (en) 2005-12-02 2013-02-12 Irobot Corporation Robot system
US8380350B2 (en) 2005-12-02 2013-02-19 Irobot Corporation Autonomous coverage robot navigation system
US8386081B2 (en) 2002-09-13 2013-02-26 Irobot Corporation Navigational control system for a robotic device
US8382906B2 (en) 2005-02-18 2013-02-26 Irobot Corporation Autonomous surface cleaning robot for wet cleaning
US8390251B2 (en) 2004-01-21 2013-03-05 Irobot Corporation Autonomous robot auto-docking and energy management systems and methods
US8387193B2 (en) 2005-02-18 2013-03-05 Irobot Corporation Autonomous surface cleaning robot for wet and dry cleaning
US8396592B2 (en) 2001-06-12 2013-03-12 Irobot Corporation Method and system for multi-mode coverage for an autonomous robot
US8412377B2 (en) 2000-01-24 2013-04-02 Irobot Corporation Obstacle following sensor scheme for a mobile robot
US8417383B2 (en) 2006-05-31 2013-04-09 Irobot Corporation Detecting robot stasis
US8418303B2 (en) 2006-05-19 2013-04-16 Irobot Corporation Cleaning robot roller processing
US8428778B2 (en) 2002-09-13 2013-04-23 Irobot Corporation Navigational control system for a robotic device
US8463438B2 (en) 2001-06-12 2013-06-11 Irobot Corporation Method and system for multi-mode coverage for an autonomous robot
US8515578B2 (en) 2002-09-13 2013-08-20 Irobot Corporation Navigational control system for a robotic device
US8584305B2 (en) 2005-12-02 2013-11-19 Irobot Corporation Modular robot
US8600553B2 (en) 2005-12-02 2013-12-03 Irobot Corporation Coverage robot mobility
WO2014029365A1 (en) * 2012-08-24 2014-02-27 科沃斯机器人科技(苏州)有限公司 Intelligent robot and method for moving same to brightest location
US8739355B2 (en) 2005-02-18 2014-06-03 Irobot Corporation Autonomous surface cleaning robot for dry cleaning
CN103838241A (en) * 2012-11-27 2014-06-04 科沃斯机器人科技(苏州)有限公司 Intelligent control robot and method for enabling intelligent control robot to move to bright positions
US8780342B2 (en) 2004-03-29 2014-07-15 Irobot Corporation Methods and apparatus for position estimation using reflected light sources
US8788092B2 (en) 2000-01-24 2014-07-22 Irobot Corporation Obstacle following sensor scheme for a mobile robot
US8800107B2 (en) 2010-02-16 2014-08-12 Irobot Corporation Vacuum brush
US8874264B1 (en) 2004-07-07 2014-10-28 Irobot Corporation Celestial navigation system for an autonomous robot
US8930023B2 (en) 2009-11-06 2015-01-06 Irobot Corporation Localization by learning of wave-signal distributions
US8972052B2 (en) 2004-07-07 2015-03-03 Irobot Corporation Celestial navigation system for an autonomous vehicle
US9008835B2 (en) 2004-06-24 2015-04-14 Irobot Corporation Remote control scheduler and method for autonomous robotic device
US9038233B2 (en) 2001-01-24 2015-05-26 Irobot Corporation Autonomous floor-cleaning robot
CN106737700A (en) * 2015-11-23 2017-05-31 芋头科技(杭州)有限公司 System and method for intelligent device to move to bright position
CN107361707A (en) * 2017-06-12 2017-11-21 北京小米移动软件有限公司 Light intensity information processing method and device
WO2018023227A1 (en) * 2016-07-31 2018-02-08 杨洁 Robot mobile technology data acquisition method and robot
WO2018023228A1 (en) * 2016-07-31 2018-02-08 杨洁 Information pushing method for moving robot according to light intensity and robot

Cited By (86)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8761935B2 (en) 2000-01-24 2014-06-24 Irobot Corporation Obstacle following sensor scheme for a mobile robot
US8478442B2 (en) 2000-01-24 2013-07-02 Irobot Corporation Obstacle following sensor scheme for a mobile robot
US8412377B2 (en) 2000-01-24 2013-04-02 Irobot Corporation Obstacle following sensor scheme for a mobile robot
US8565920B2 (en) 2000-01-24 2013-10-22 Irobot Corporation Obstacle following sensor scheme for a mobile robot
US8788092B2 (en) 2000-01-24 2014-07-22 Irobot Corporation Obstacle following sensor scheme for a mobile robot
US9446521B2 (en) 2000-01-24 2016-09-20 Irobot Corporation Obstacle following sensor scheme for a mobile robot
US9144361B2 (en) 2000-04-04 2015-09-29 Irobot Corporation Debris sensor for cleaning apparatus
US9582005B2 (en) 2001-01-24 2017-02-28 Irobot Corporation Robot confinement
US9038233B2 (en) 2001-01-24 2015-05-26 Irobot Corporation Autonomous floor-cleaning robot
US8368339B2 (en) 2001-01-24 2013-02-05 Irobot Corporation Robot confinement
US8686679B2 (en) 2001-01-24 2014-04-01 Irobot Corporation Robot confinement
US9622635B2 (en) 2001-01-24 2017-04-18 Irobot Corporation Autonomous floor-cleaning robot
US8396592B2 (en) 2001-06-12 2013-03-12 Irobot Corporation Method and system for multi-mode coverage for an autonomous robot
US8463438B2 (en) 2001-06-12 2013-06-11 Irobot Corporation Method and system for multi-mode coverage for an autonomous robot
US8838274B2 (en) 2001-06-12 2014-09-16 Irobot Corporation Method and system for multi-mode coverage for an autonomous robot
US9104204B2 (en) 2001-06-12 2015-08-11 Irobot Corporation Method and system for multi-mode coverage for an autonomous robot
US9128486B2 (en) 2002-01-24 2015-09-08 Irobot Corporation Navigational control system for a robotic device
US8781626B2 (en) 2002-09-13 2014-07-15 Irobot Corporation Navigational control system for a robotic device
US8428778B2 (en) 2002-09-13 2013-04-23 Irobot Corporation Navigational control system for a robotic device
US8386081B2 (en) 2002-09-13 2013-02-26 Irobot Corporation Navigational control system for a robotic device
US8793020B2 (en) 2002-09-13 2014-07-29 Irobot Corporation Navigational control system for a robotic device
US9949608B2 (en) 2002-09-13 2018-04-24 Irobot Corporation Navigational control system for a robotic device
US8515578B2 (en) 2002-09-13 2013-08-20 Irobot Corporation Navigational control system for a robotic device
US8390251B2 (en) 2004-01-21 2013-03-05 Irobot Corporation Autonomous robot auto-docking and energy management systems and methods
US9215957B2 (en) 2004-01-21 2015-12-22 Irobot Corporation Autonomous robot auto-docking and energy management systems and methods
US8598829B2 (en) 2004-01-28 2013-12-03 Irobot Corporation Debris sensor for cleaning apparatus
US8456125B2 (en) 2004-01-28 2013-06-04 Irobot Corporation Debris sensor for cleaning apparatus
US8378613B2 (en) 2004-01-28 2013-02-19 Irobot Corporation Debris sensor for cleaning apparatus
US8253368B2 (en) 2004-01-28 2012-08-28 Irobot Corporation Debris sensor for cleaning apparatus
US8780342B2 (en) 2004-03-29 2014-07-15 Irobot Corporation Methods and apparatus for position estimation using reflected light sources
US9360300B2 (en) 2004-03-29 2016-06-07 Irobot Corporation Methods and apparatus for position estimation using reflected light sources
US9486924B2 (en) 2004-06-24 2016-11-08 Irobot Corporation Remote control scheduler and method for autonomous robotic device
US9008835B2 (en) 2004-06-24 2015-04-14 Irobot Corporation Remote control scheduler and method for autonomous robotic device
US8874264B1 (en) 2004-07-07 2014-10-28 Irobot Corporation Celestial navigation system for an autonomous robot
US8972052B2 (en) 2004-07-07 2015-03-03 Irobot Corporation Celestial navigation system for an autonomous vehicle
US9223749B2 (en) 2004-07-07 2015-12-29 Irobot Corporation Celestial navigation system for an autonomous vehicle
US9229454B1 (en) 2004-07-07 2016-01-05 Irobot Corporation Autonomous mobile robot system
US8985127B2 (en) 2005-02-18 2015-03-24 Irobot Corporation Autonomous surface cleaning robot for wet cleaning
US8739355B2 (en) 2005-02-18 2014-06-03 Irobot Corporation Autonomous surface cleaning robot for dry cleaning
US8774966B2 (en) 2005-02-18 2014-07-08 Irobot Corporation Autonomous surface cleaning robot for wet and dry cleaning
US9445702B2 (en) 2005-02-18 2016-09-20 Irobot Corporation Autonomous surface cleaning robot for wet and dry cleaning
US8392021B2 (en) 2005-02-18 2013-03-05 Irobot Corporation Autonomous surface cleaning robot for wet cleaning
US8387193B2 (en) 2005-02-18 2013-03-05 Irobot Corporation Autonomous surface cleaning robot for wet and dry cleaning
US8382906B2 (en) 2005-02-18 2013-02-26 Irobot Corporation Autonomous surface cleaning robot for wet cleaning
US8670866B2 (en) 2005-02-18 2014-03-11 Irobot Corporation Autonomous surface cleaning robot for wet and dry cleaning
US8855813B2 (en) 2005-02-18 2014-10-07 Irobot Corporation Autonomous surface cleaning robot for wet and dry cleaning
US8782848B2 (en) 2005-02-18 2014-07-22 Irobot Corporation Autonomous surface cleaning robot for dry cleaning
US8600553B2 (en) 2005-12-02 2013-12-03 Irobot Corporation Coverage robot mobility
US8380350B2 (en) 2005-12-02 2013-02-19 Irobot Corporation Autonomous coverage robot navigation system
US8761931B2 (en) 2005-12-02 2014-06-24 Irobot Corporation Robot system
US9392920B2 (en) 2005-12-02 2016-07-19 Irobot Corporation Robot system
US8950038B2 (en) 2005-12-02 2015-02-10 Irobot Corporation Modular robot
US8954192B2 (en) 2005-12-02 2015-02-10 Irobot Corporation Navigating autonomous coverage robots
US9144360B2 (en) 2005-12-02 2015-09-29 Irobot Corporation Autonomous coverage robot navigation system
US8978196B2 (en) 2005-12-02 2015-03-17 Irobot Corporation Coverage robot mobility
US8584305B2 (en) 2005-12-02 2013-11-19 Irobot Corporation Modular robot
US8661605B2 (en) 2005-12-02 2014-03-04 Irobot Corporation Coverage robot mobility
US8584307B2 (en) 2005-12-02 2013-11-19 Irobot Corporation Modular robot
US9599990B2 (en) 2005-12-02 2017-03-21 Irobot Corporation Robot system
US8374721B2 (en) 2005-12-02 2013-02-12 Irobot Corporation Robot system
JP2007248214A (en) * 2006-03-15 2007-09-27 Yunitekku:Kk Horizontal angle measuring method and position measuring method
US8418303B2 (en) 2006-05-19 2013-04-16 Irobot Corporation Cleaning robot roller processing
US9492048B2 (en) 2006-05-19 2016-11-15 Irobot Corporation Removing debris from cleaning robots
US8572799B2 (en) 2006-05-19 2013-11-05 Irobot Corporation Removing debris from cleaning robots
US8528157B2 (en) 2006-05-19 2013-09-10 Irobot Corporation Coverage robots and associated cleaning bins
US9955841B2 (en) 2006-05-19 2018-05-01 Irobot Corporation Removing debris from cleaning robots
US10244915B2 (en) 2006-05-19 2019-04-02 Irobot Corporation Coverage robots and associated cleaning bins
US8417383B2 (en) 2006-05-31 2013-04-09 Irobot Corporation Detecting robot stasis
US9317038B2 (en) 2006-05-31 2016-04-19 Irobot Corporation Detecting robot stasis
US8060256B2 (en) 2006-07-07 2011-11-15 Samsung Electronics Co., Ltd. Apparatus, method, and medium for localizing moving robot and transmitter
US8239992B2 (en) 2007-05-09 2012-08-14 Irobot Corporation Compact autonomous coverage robot
US9480381B2 (en) 2007-05-09 2016-11-01 Irobot Corporation Compact autonomous coverage robot
US10299652B2 (en) 2007-05-09 2019-05-28 Irobot Corporation Autonomous coverage robot
US10070764B2 (en) 2007-05-09 2018-09-11 Irobot Corporation Compact autonomous coverage robot
US8438695B2 (en) 2007-05-09 2013-05-14 Irobot Corporation Autonomous coverage robot sensing
US8839477B2 (en) 2007-05-09 2014-09-23 Irobot Corporation Compact autonomous coverage robot
US8930023B2 (en) 2009-11-06 2015-01-06 Irobot Corporation Localization by learning of wave-signal distributions
US10314449B2 (en) 2010-02-16 2019-06-11 Irobot Corporation Vacuum brush
US8800107B2 (en) 2010-02-16 2014-08-12 Irobot Corporation Vacuum brush
CN103631267A (en) * 2012-08-24 2014-03-12 科沃斯机器人科技(苏州)有限公司 An intelligent robot and a method for moving the same to the brightest position
WO2014029365A1 (en) * 2012-08-24 2014-02-27 科沃斯机器人科技(苏州)有限公司 Intelligent robot and method for moving same to brightest location
CN103838241A (en) * 2012-11-27 2014-06-04 科沃斯机器人科技(苏州)有限公司 Intelligent control robot and method for enabling intelligent control robot to move to bright positions
CN106737700A (en) * 2015-11-23 2017-05-31 芋头科技(杭州)有限公司 System and method for intelligent device to move to bright position
WO2018023227A1 (en) * 2016-07-31 2018-02-08 杨洁 Robot mobile technology data acquisition method and robot
WO2018023228A1 (en) * 2016-07-31 2018-02-08 杨洁 Information pushing method for moving robot according to light intensity and robot
CN107361707A (en) * 2017-06-12 2017-11-21 北京小米移动软件有限公司 Light intensity information processing method and device

Also Published As

Publication number Publication date
JP3812463B2 (en) 2006-08-23

Similar Documents

Publication Publication Date Title
US8989946B2 (en) System and method for area coverage using sector decomposition
US5367458A (en) Apparatus and method for identifying scanned reflective anonymous targets
AU2013317738B2 (en) Proximity sensing on mobile robots
US9229454B1 (en) Autonomous mobile robot system
US9895808B2 (en) Methods and systems for complete coverage of a surface by an autonomous robot
US6417839B1 (en) System for position and orientation determination of a point in space using scanning laser beams
EP1547361B1 (en) A navigational control system for a robotic device
EP0382693B1 (en) Autonomous vehicle for working on a surface and method of controlling same
US20060150361A1 (en) Autonomous machine
KR100600487B1 (en) Robot cleaner cordinates compensating method and robot cleaner system using the same
US20030060928A1 (en) Robotic vacuum cleaner
US20060020369A1 (en) Robot vacuum cleaner
US7507948B2 (en) Method of detecting object using structured light and robot using the same
AU2008250667B2 (en) Method for determining position, laser beam detector and detector-reflector device for a system for determining position
CN101430207B (en) Light generating apparatus and method using the three-dimensional map of the structure
US20080249661A1 (en) Wall-following robot cleaner and method to control the same
US20140129027A1 (en) Simultaneous Localization And Mapping For A Mobile Robot
JP4195894B2 (en) Docking system
US20040220698A1 (en) Robotic vacuum cleaner with edge and object detection system
CN100493857C (en) Position calculation system for mobile robot and charging-stand return system and method using the same
JP3563735B2 (en) The method and system to be confined to identify the position of the robot
EP2175337A2 (en) Autonomous moving apparatus
US10152062B2 (en) Coverage robot navigating
US20050187678A1 (en) Method and/or apparatus for navigating mobile robot using virtual sensor
US7953551B2 (en) Method and apparatus for moving in minimum cost path using grid map

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040311

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050801

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060214

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060407

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060407

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060509

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060522

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090609

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100609

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100609

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110609

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110609

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120609

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120609

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130609

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees