JP2004219185A - Electrical inertia evaluation device for dynamometer and its method - Google Patents

Electrical inertia evaluation device for dynamometer and its method Download PDF

Info

Publication number
JP2004219185A
JP2004219185A JP2003005296A JP2003005296A JP2004219185A JP 2004219185 A JP2004219185 A JP 2004219185A JP 2003005296 A JP2003005296 A JP 2003005296A JP 2003005296 A JP2003005296 A JP 2003005296A JP 2004219185 A JP2004219185 A JP 2004219185A
Authority
JP
Japan
Prior art keywords
unit
signal
value
inertia
control unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003005296A
Other languages
Japanese (ja)
Inventor
Masahiko Suzuki
雅彦 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP2003005296A priority Critical patent/JP2004219185A/en
Publication of JP2004219185A publication Critical patent/JP2004219185A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an evaluation method and a device therefor capable of performing a response evaluation of electrical inertia simultaneously with a vehicle test performed by loading a vehicle on a roller. <P>SOLUTION: A driving force and a target driving force are found based on signals introduced from a torque control part and an electrical inertia part provided in a chassis dynamometer system. Then, errors of both signals are found, and the error signal is used as an evaluation index. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、ダイナモメータの試験装置に係わり、特に試験装置に使用される電気慣性の性能試験方法とその装置に関する。
【0002】
【従来の技術】
シャシーダイナモメータシステムでは、完成車の駆動輪を対状態に配設されたローラ上に載置し、所定の運転指令にて車両を制御すると共に、ローラの回転軸に連結されたダイナモメータを動力吸収体として車両の性能試験や耐久試験を室内で可能としている。
ダイナモメータは、インバータ等よりなるコントローラによって制御され、また、このコントローラは、速度制御部、走行抵抗制御部、電気慣性部等を有する制御部よりの信号に対応した信号を出力してダイナモメータを制御する。
【0003】
ここで、走行抵抗は、車両のタイヤ転がり抵抗と空気抵抗からなる平坦路定常走行抵抗に慣性抵抗と、更には登降坂抵抗を加えたものからなり、この走行抵抗は、ダイナモメータにおいては各抵抗成分の係数変換によってトルク単位で設定される。
また、走行抵抗のうち、慣性抵抗は実車と等価な慣性分に設定されるフライホイールを使用することがあるが、このフライホイールは設置スペースが大きくなることや、高価であることから、ダイナモメータの吸収トルク分として制御する電気慣性補償方法が採用され、その方法としては、特許文献1等が知られている。
【0004】
【特許文献1】
特許第3158461号公報(図1又は図5)
【0005】
【発明が解決しようとする課題】
前述したようなダイナモメータシステムを用いて車両試験を行う場合、モード運転指令値に基づいてドライバーがスロットル開度制御を行い、この開度信号によって車両速度制御が実施されるが、試験時における車両の速度制御はフィードバック制御によって実施される。
【0006】
ところで、電気慣性補償方法を使用したダイナモメータシステムにおいては、その電気慣性の応答が正しく行われているか否かの評価が実施される。
この評価は仕事量として評価されるが、従来においては、前記したフィードバック制御による実試験時のデータと、検出ループを制御回路より切り離したオープンループ制御した両データを比較し、その差の大小によって評価していた。
すなわち、車両をローラに搭載しての車両試験中での電気慣性の応答評価方法は存在してなかった。
【0007】
本発明が目的とするところは、車両をローラに搭載しての車両試験と同時に、電気慣性の応答評価を可能とした評価方法とその装置を提供することにある。
【0008】
【課題を解決するための手段】
本発明の第1は、被試験車両をローラ上に載置し、速度制御部、トルク制御部及び電気慣性部を有するシャシーダイナモメータシステムによって試験を行うものにおいて、
運転指令値に基づく前記車両駆動中のトルク制御部と電気慣性部よりの信号を導入し、この導入信号に基づき駆動力値と目標駆動力値とを演算して求め、且つ、この両信号の誤差を求め、この誤差信号を電気慣性評価のための評価指数とすることを特徴としたものである。
【0009】
本発明の第2は、前記目標駆動力値は、車両重量と加速度信号との積値と、前記トルク制御部より得られた走行抵抗値との和算にて求め、前記駆動力値は、トルク制御部より得られたメカロス信号とトルク増幅信号との和算値と、シャシーダイナモメータの機械慣性値と加速度信号との積値との和算にて求めたことを特徴としたものである。
【0010】
本発明の第3は、被試験車両をローラ上に載置し、速度制御部、トルク制御部及び電気慣性部を有するシャシーダイナモメータシステムによって試験を行うものにおいて、
前記電気慣性部の加速度信号と車両重量信号との積値を求める第1の乗算部と、この乗算部の出力信号と前記トルク制御部よりの走行抵抗値との和を求めて目標駆動力値とする加算部と、前記加速度信号とシャシーダイナモメータの機械慣性値との積値を求める第2の乗算部と、この乗算部の積値と前記トルク制御部よりのメカロス信号とトルク増幅信号との和算値との和を求めて駆動力値とする加算部と、この加算部によって求められた駆動力値と前記加算部によつて求められた目標駆動力とを導入して比較する比較部とを有する評価装置を備えたことを特徴としたものである。
【0011】
【発明の実施の形態】
図1は、本発明の実施形態を示すダイナモメータシステムの構成図で、1はモード運転指令部、2はドライバーで、このドライバーはロボット等が使用され、指令部1からの運転指令値Vrefに基づいてスロットル開度制御が行われる。3は被試験車両で、この車両の駆動輪はローラ上に載置され、開度指令値θに基づいて駆動力Fvを出力する。
【0012】
10は速度制御部で、この速度制御部10は第1の加算部11において駆動力Fvと後述のトルク信号Fmとが加算され、その差信号が第2の加算部12に出力される。13はシャシーダイナモメータの機械慣性Wchdyと被試験車両の駆動輪回転部の慣性W2に基づく一次遅れ要素部、14は速度検出器が持つ一次遅れ要素部で、その出力信号は第2の加算部12に印加されて加算部11よりの信号と加算され、その偏差信号が一次遅れ要素13に出力される。要素13の出力信号は、図示省略されたコントローラとしてのインバータの制御指令とされると共に、ドライバー2にもフィードバックされて指令値Vrefとの偏差が求められ、その誤差信号が0となるよう開度指令値θが制御される。
また、要素13よりの速度検出信号Vdetは、トルク制御部(走行抵抗制御部)20と電気慣性部30に出力される。
【0013】
トルク制御部20は、走行抵抗設定部21と検出部の遅れ要素22を有している。走行抵抗設定部21は速度検出信号に対応した走行抵抗値Frlを出力し、遅れ要素22からはメカロス値Fmlを出力してそれぞれは第3の加算部23に印加され、この加算部において両者の偏差分が求められる。偏差信号は、第4の加算部24において電気慣性部よりの慣性補償信号と加算されてトルク演算部25に出力される。トルク演算部25は入力された信号に基づいてトルク値Fmを演算し、その値を第1の加算部11とストレインアンプ26にそれぞれ出力する。ストレインアンプ26はトルク値Fmに基づく信号Fdyを出力し、トルク演算部24と第5の加算部27にそれぞれ印加する。加算部27では、この信号Fdyと遅れ要素22よりのメカロス値Fmlとの加算演算(Fdy+Fml)が行われ、その結果を第6の加算部28に出力して電気慣性補償信号との減算を実行する。その偏差値が制動力Fcとして表示される。
【0014】
電気慣性部30は、微分演算部31を有しており、この演算部31において検出された速度信号が微分されて加速度信号として乗算器32に出力される。33は慣性設定部で、この設定部においては、車両重量Wとシャシーダイナモメータの機械慣性Wchdyとの差分の値が設定され、この差分の値と加速度信号とか乗算器32において乗算されて慣性補償信号として加算部24と28に出力される。
【0015】
上記までは、従来のシャシーダイナモメータシステムにおける構成で、したがって、トルク制御部20や電気慣性部30等の構成は種々考えられているが、ここでは、例として図1のものを表示した。
【0016】
40の部分が本発明に係わる評価装置で、41は加算部、42は第1の乗算部である。乗算部42では、加速度信号dVm/dtと車両重量Wとの掛け算が行われ、その演算値は加算部41に出力されて走行抵抗値Frlと加算され、比較部45の一方の入力端子に出力される。
加速度信号dVm/dtは第2の乗算部43にも印加され、ここでシャシーダイナモメータの機械慣性値Wchdyとの掛け算が実行された後、加算部44に出力される。加算部44には第5の加算部27からの出力信号が印加されており、この信号と乗算結果との加算が行われて比較部45の他方の入力端子に印加される。
【0017】
以上のように構成された本発明において、その動作を説明する。
【0018】
モード運転指令部1よりの運転指令値Vrefに基づいて、ドライバー2はスロットル開度制御を行って車両3を駆動する。車両3は、駆動輪の搭載されたローラをFvの駆動力で駆動すると共に、信号Fvは加算部11において検出されたトルク信号Fmとの差信号が求められ、更に加算部12において速度検出器が持つ一次遅れ要素部14よりの信号との偏差信号が求められる。一次遅れ要素部13では入力された偏差信号に基づいて演算を実行し、その演算値によって図示省略されたダイナモメータの速度を制御する。
【0019】
検出器によって検出された速度信号は、ドライバー2にフィードバックされて指令値Frefに対する補正信号とされる。
また、検出された速度信号Vdetは、トルク制御部20と電気慣性部30にも出力される。トルク制御部20の走行抵抗設定部21では、入力された速度検出信号に対応した走行抵抗値Frlを出力し、加算部23で遅れ要素22からのメカロス値Fmlとの偏差分を求める。偏差信号は、第4の加算部24において電気慣性部よりの慣性補償信号と加算されてトルク演算部25に出力する。トルク演算部25は入力された信号に基づいてトルク値Fmを演算し、その値を第1の加算部11とストレインアンプ26にそれぞれ出力する。
【0020】
電気慣性部30では、微分演算部31において検出された速度信号が微分された加速度信号に基づいて慣性補償信号が算出され、トルク制御部に慣性の補償信号として出力する。したがって、トルク演算部25から出力されるトルク信号Fmは慣性補償されたトルク信号となって、車両3の性能試験等が行われる。
【0021】
上記のような通常の性能試験等が行われているとき、本発明では同時に電気慣性性能試験が実行できる。
すなわち、電気慣性の評価装置40の加算部41には、走行抵抗値Frlと乗算部42からの乗算信号(dVm/dt×W)とが入力されて加算され、加算信号Fv* ((=Frl+(dVm/dt×W))が得られる。この信号Fv*が目標駆動力となって比較部45に入力される。
【0022】
一方、加算部44には、加算部27よりの信号(Fdy+Fml)と乗算部43からの信号(Wchdy×dFm/dt)とが印加されて信号Fv((=(Fdy+Fml)+(Wchdy×dFm/dt))が得られる。この信号Fvが駆動力となって比較部45に入力される。
比較部45では、入力された目標駆動力Fv*と駆動力Fvとを比較し、その差信号をもとにして電気慣性が適切であったか否かの性能評価を行なう。
【0023】
図2,図3は電気慣性データ評価のために、目標駆動力及び目標仕事率を演算し、実測データとの誤差評価の実施例である。
目標仕事率W*を、W*=Fv*×Vm(ただし、Vmは車速)とし、仕事率Wを、 W=Fv×Vmとして計算し、図1によって検出された目標値Fv*と実測値Fvをプロットし、1次回帰を実施して誤差を求めたものである。
図2は、MT車の駆動力1次回帰データ、図3はMT車の仕事率1次回帰データである。
【0024】
また、従来においては被試験車がローラに搭載された形での電気慣性性能表示はなかったが、しかし、ECE規格では車両が走行した状態での規格となっている。そこで、この規格に則り電気慣性の実験を行った結果が次の通りである。
【0025】
まず、電気慣性応答性能の評価方法としては、図4で示すように実速度−目標速度の差速度を計算し、試験方法に記載の運転パターンにおいて、速度の変曲点の波形の変化時からその変化値の63%までの時間を計測する。その値を電気慣性制御の63%応答時間とする。
【0026】
図5(a)は電気慣性設定時の応答確認データで、車重設定を2700kg、機械慣性800kg、電気慣性1900kgの場合を示す。
同図(b)は、参考として車重設定を8000kg、機械慣性800kg、電気慣性7200kgの場合を示したもので、いずれの場合においてもシャシーダイナモメータ単体のデータとしては、正慣性側において0,1sec以下となり、差車速90%到達応答時間0,1secの使用を満足していることが確認された。
【0027】
図6は、或る車種AのAT車をローラに搭載して得られたデータで、ECE15で規定された内容で確認したところ、この車種Aの場合には全域でほぼ問題なく規定値内に収まっていることが計測できた。
なお、この評価時に使用した諸条件は、車種Aの重量は1295kg、シャシーダイナモメータの機械固定慣性800kg、電気慣性分495kgで、運転モードはTRIAS15MODEであった。
【0028】
【発明の効果】
以上のとおり、本発明によれば、電気慣性部を有するシャシーダイナモメータシステムにおいて、電気慣性性能を評価するために車両試験中の目標駆動力と駆動力を求め、両者の誤差信号をもとに評価するようにしたものである。
したがって、車両の性能試験等と同時進行のデータにて評価作業が実行できるので、試験時間が大幅に短縮されるものである。
【図面の簡単な説明】
【図1】本発明の実施形態を示す構成図。
【図2】駆動力1次回帰データ。
【図3】仕事率1次回帰データ。
【図4】電気慣性応答の性能評価方法の説明図。
【図5】電気慣性応答性能の採取結果図で、(a)は電気慣性設定時の応答確認データ、(b)は参考電気慣性データ。
【図6】実車搭載時の各種データ。
【符号の説明】
1…モード運転指令部
2…ドライバー
3…車両
10…速度制御部
20…トルク制御部
30…電気慣性部
40…評価装置
41,44…加算部
42,43…乗算部
45…比較部
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a dynamometer test device, and more particularly to a method and a device for testing the performance of an electric inertia used in a test device.
[0002]
[Prior art]
In the chassis dynamometer system, the drive wheels of the completed vehicle are placed on rollers arranged in pairs, the vehicle is controlled by a predetermined driving command, and the dynamometer connected to the rotating shaft of the rollers is driven by the power. As an absorber, performance tests and durability tests of vehicles can be performed indoors.
The dynamometer is controlled by a controller including an inverter and the like, and the controller outputs a signal corresponding to a signal from a control unit having a speed control unit, a running resistance control unit, an electric inertia unit, and the like to control the dynamometer. Control.
[0003]
Here, the running resistance is obtained by adding an inertia resistance to a steady road running resistance including a tire rolling resistance and an air resistance of a vehicle and an inertia resistance, and furthermore, an uphill and downhill resistance. It is set in units of torque by component coefficient conversion.
Of the running resistance, a flywheel whose inertia resistance is set to the inertia equivalent to the actual vehicle is sometimes used. However, since this flywheel requires a large installation space and is expensive, a dynamometer is used. An electric inertia compensation method of controlling as an absorption torque component is adopted, and Patent Literature 1 and the like are known as the method.
[0004]
[Patent Document 1]
Japanese Patent No. 3158461 (FIG. 1 or FIG. 5)
[0005]
[Problems to be solved by the invention]
When a vehicle test is performed using the dynamometer system as described above, the driver controls the throttle opening based on the mode operation command value, and the vehicle speed control is performed by the opening signal. Is performed by feedback control.
[0006]
By the way, in a dynamometer system using the electric inertia compensation method, an evaluation is made as to whether or not the response of the electric inertia is correctly performed.
This evaluation is evaluated as the workload.Conventionally, the data at the time of the actual test by the feedback control and the data subjected to the open loop control in which the detection loop is separated from the control circuit are compared. I was evaluating.
That is, there is no method for evaluating the response of the electric inertia during the vehicle test in which the vehicle is mounted on the roller.
[0007]
It is an object of the present invention to provide an evaluation method and an apparatus thereof that enable a response test of an electric inertia simultaneously with a vehicle test in which a vehicle is mounted on a roller.
[0008]
[Means for Solving the Problems]
In a first aspect of the present invention, a test vehicle is mounted on a roller, and a test is performed by a chassis dynamometer system having a speed control unit, a torque control unit, and an electric inertia unit.
A signal from the torque control unit and the electric inertia unit during driving of the vehicle based on a driving command value is introduced, and a driving force value and a target driving force value are calculated and obtained based on the introduced signal, and An error is obtained, and this error signal is used as an evaluation index for evaluating electric inertia.
[0009]
According to a second aspect of the present invention, the target driving force value is obtained by adding a product value of a vehicle weight and an acceleration signal to a running resistance value obtained by the torque control unit, and the driving force value is It is characterized in that the sum is obtained by summing a sum of a mechanical loss signal and a torque amplification signal obtained from a torque control unit and a product of a mechanical inertia value of a chassis dynamometer and an acceleration signal. .
[0010]
In a third aspect of the present invention, a test vehicle is mounted on a roller, and a test is performed by a chassis dynamometer system having a speed control unit, a torque control unit, and an electric inertia unit.
A first multiplication unit for obtaining a product value of the acceleration signal of the electric inertia unit and the vehicle weight signal; and a target driving force value obtained by obtaining a sum of an output signal of the multiplication unit and a running resistance value from the torque control unit. An adding unit, a second multiplying unit for obtaining a product value of the acceleration signal and the mechanical inertia value of the chassis dynamometer, and a product value of the multiplying unit, a mechanical loss signal and a torque amplification signal from the torque control unit. And a comparison unit that introduces and compares the driving force value obtained by the adding unit with the target driving force obtained by the adding unit. And an evaluation device having a section.
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
FIG. 1 is a configuration diagram of a dynamometer system showing an embodiment of the present invention. 1 is a mode operation command unit, 2 is a driver, and this driver uses a robot or the like. The throttle opening control is performed based on this. Reference numeral 3 denotes a vehicle under test. The driving wheels of the vehicle are mounted on rollers and output a driving force Fv based on the opening command value θ.
[0012]
Reference numeral 10 denotes a speed control unit. The speed control unit 10 adds a driving force Fv and a torque signal Fm described later in a first addition unit 11, and outputs a difference signal to a second addition unit 12. Reference numeral 13 denotes a primary delay element based on the mechanical inertia Wchdy of the chassis dynamometer and the inertia W2 of the drive wheel rotating unit of the vehicle under test. Reference numeral 14 denotes a primary delay element of the speed detector. 12 and is added to the signal from the adder 11, and the deviation signal is output to the first-order lag element 13. The output signal of the element 13 is used as a control command for an inverter (not shown) as a controller, and is also fed back to the driver 2 to determine a deviation from the command value Vref. The command value θ is controlled.
The speed detection signal Vdet from the element 13 is output to the torque control unit (running resistance control unit) 20 and the electric inertia unit 30.
[0013]
The torque control unit 20 has a running resistance setting unit 21 and a delay element 22 of a detection unit. The running resistance setting unit 21 outputs a running resistance value Frl corresponding to the speed detection signal, outputs a mechanical loss value Fml from the delay element 22 and applies them to a third adding unit 23. The deviation is determined. The deviation signal is added to the inertia compensation signal from the electric inertia section in the fourth addition section 24 and output to the torque calculation section 25. The torque calculator 25 calculates a torque value Fm based on the input signal, and outputs the value to the first adder 11 and the strain amplifier 26, respectively. The strain amplifier 26 outputs a signal Fdy based on the torque value Fm, and applies the signal Fdy to the torque calculation unit 24 and the fifth addition unit 27, respectively. The adder 27 performs an addition operation (Fdy + Fml) of the signal Fdy and the mechanical loss value Fml from the delay element 22, and outputs the result to the sixth adder 28 to perform subtraction from the electric inertia compensation signal. I do. The deviation value is displayed as the braking force Fc.
[0014]
The electric inertia unit 30 has a differential operation unit 31, and the velocity signal detected by the operation unit 31 is differentiated and output to the multiplier 32 as an acceleration signal. An inertia setting unit 33 sets a value of a difference between the vehicle weight W and the mechanical inertia Wchdy of the chassis dynamometer, and multiplies the difference value by an acceleration signal or a multiplier 32 to compensate for inertia. The signals are output to the adders 24 and 28 as signals.
[0015]
Up to the above, the configuration of the conventional chassis dynamometer system has been considered, and accordingly, various configurations of the torque control unit 20, the electric inertia unit 30, and the like have been considered. Here, FIG. 1 is shown as an example.
[0016]
40 is an evaluation device according to the present invention, 41 is an adder, and 42 is a first multiplier. The multiplication unit 42 multiplies the acceleration signal dVm / dt by the vehicle weight W, outputs the calculated value to the addition unit 41, adds the calculated value to the running resistance value Frl, and outputs the calculated value to one input terminal of the comparison unit 45. Is done.
The acceleration signal dVm / dt is also applied to the second multiplier 43, where the multiplication with the mechanical inertia value Wchdy of the chassis dynamometer is performed, and then output to the adder 44. The output signal from the fifth adder 27 is applied to the adder 44, the signal is added to the multiplication result, and applied to the other input terminal of the comparator 45.
[0017]
The operation of the present invention configured as described above will be described.
[0018]
The driver 2 drives the vehicle 3 by controlling the throttle opening based on the operation command value Vref from the mode operation command unit 1. The vehicle 3 drives the roller on which the driving wheels are mounted with the driving force of Fv, and obtains a difference signal between the signal Fv and the torque signal Fm detected by the adding unit 11. A deviation signal from the signal from the first-order lag element section 14 of the is obtained. The first-order lag element unit 13 performs a calculation based on the input deviation signal, and controls the speed of a dynamometer (not shown) according to the calculated value.
[0019]
The speed signal detected by the detector is fed back to the driver 2 to be a correction signal for the command value Fref.
The detected speed signal Vdet is also output to the torque control unit 20 and the electric inertia unit 30. The running resistance setting unit 21 of the torque control unit 20 outputs the running resistance value Frl corresponding to the input speed detection signal, and the adding unit 23 obtains a deviation from the mechanical loss value Fml from the delay element 22. The deviation signal is added to the inertia compensation signal from the electric inertia unit in the fourth addition unit 24 and output to the torque calculation unit 25. The torque calculator 25 calculates a torque value Fm based on the input signal, and outputs the value to the first adder 11 and the strain amplifier 26, respectively.
[0020]
In the electric inertia unit 30, an inertia compensation signal is calculated based on the acceleration signal obtained by differentiating the speed signal detected in the differential operation unit 31, and is output to the torque control unit as an inertia compensation signal. Therefore, the torque signal Fm output from the torque calculation unit 25 is a torque signal subjected to inertia compensation, and a performance test of the vehicle 3 is performed.
[0021]
When the normal performance test or the like as described above is being performed, the electric inertia performance test can be simultaneously performed in the present invention.
That is, the running resistance value Frl and the multiplication signal (dVm / dt × W) from the multiplication unit 42 are input to the addition unit 41 of the electric inertia evaluation device 40 and added, and the addition signal Fv * ((= Frl + (DVm / dt × W)) This signal Fv * is input to the comparing section 45 as the target driving force.
[0022]
On the other hand, the signal (Fdy + Fml) from the addition unit 27 and the signal (Wchdy × dFm / dt) from the multiplication unit 43 are applied to the addition unit 44, and the signal Fv ((= (Fdy + Fml) + (Wchdy × dFm / dt)) is obtained, and this signal Fv is input to the comparison unit 45 as a driving force.
The comparing unit 45 compares the input target driving force Fv * with the driving force Fv, and evaluates whether or not the electric inertia is appropriate based on the difference signal.
[0023]
FIGS. 2 and 3 show an embodiment in which a target driving force and a target power are calculated for evaluating the electric inertia data, and an error is evaluated from the measured data.
The target power W * is calculated as W * = Fv * × Vm (where Vm is the vehicle speed), and the power W is calculated as W = Fv × Vm. The target value Fv * detected by FIG. Fv is plotted and linear regression is performed to determine an error.
FIG. 2 shows primary regression data of the driving force of the MT vehicle, and FIG. 3 shows primary regression data of the power of the MT vehicle.
[0024]
Conventionally, there has been no indication of the electric inertia performance when the test vehicle is mounted on rollers, but the ECE standard is a standard when the vehicle is running. Then, the result of conducting an experiment of electric inertia according to this standard is as follows.
[0025]
First, as an evaluation method of the electric inertia response performance, a difference speed between an actual speed and a target speed is calculated as shown in FIG. 4, and in the operation pattern described in the test method, from the time when the waveform of the speed inflection point changes. The time until 63% of the change value is measured. This value is defined as 63% response time of the electric inertia control.
[0026]
FIG. 5A shows response confirmation data at the time of setting the electric inertia, and shows the case where the vehicle weight setting is 2700 kg, the mechanical inertia is 800 kg, and the electric inertia is 1900 kg.
FIG. 4B shows the case where the vehicle weight is set to 8000 kg, the mechanical inertia is 800 kg, and the electric inertia is 7200 kg for reference. It was 1 sec or less, and it was confirmed that the use of the response time of 0.1 sec in which the difference vehicle speed reached 90% was satisfied.
[0027]
FIG. 6 shows data obtained by mounting an AT car of a certain vehicle type A on a roller, and confirmed by the contents specified by ECE15. It was able to measure that it was settled.
The conditions used at the time of this evaluation were as follows: the weight of the vehicle type A was 1295 kg, the mechanical fixed inertia of the chassis dynamometer was 800 kg, the electric inertia was 495 kg, and the operation mode was TRIAS15MODE.
[0028]
【The invention's effect】
As described above, according to the present invention, in a chassis dynamometer system having an electric inertia unit, a target driving force and a driving force during a vehicle test are determined in order to evaluate the electric inertia performance, and based on an error signal between the two. This is to be evaluated.
Therefore, the evaluation work can be performed using data that is concurrent with the vehicle performance test and the like, so that the test time is greatly reduced.
[Brief description of the drawings]
FIG. 1 is a configuration diagram showing an embodiment of the present invention.
FIG. 2 shows primary regression data of driving force.
FIG. 3 shows power primary regression data.
FIG. 4 is an explanatory diagram of a method for evaluating the performance of the electric inertia response.
FIGS. 5A and 5B are graphs showing the results of collecting electric inertia response performance, wherein FIG. 5A shows response confirmation data when electric inertia is set, and FIG. 5B shows reference electric inertia data.
FIG. 6 shows various data when mounted on an actual vehicle.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Mode driving command part 2 ... Driver 3 ... Vehicle 10 ... Speed control part 20 ... Torque control part 30 ... Electric inertia part 40 ... Evaluation devices 41 and 44 ... Addition parts 42 and 43 ... Multiplication part 45 ... Comparison part

Claims (3)

被試験車両をローラ上に載置し、速度制御部、トルク制御部及び電気慣性部を有するシャシーダイナモメータシステムによって試験を行うものにおいて、
運転指令値に基づく前記車両駆動中のトルク制御部と電気慣性部よりの信号を導入し、この導入信号に基づき駆動力値と目標駆動力値とを演算して求め、且つ、この両信号の誤差を求め、この誤差信号を電気慣性評価のための評価指数とすることを特徴としたダイナモメータの電気慣性評価方法。
Place the vehicle under test on the roller, and perform a test by a chassis dynamometer system having a speed control unit, a torque control unit, and an electric inertia unit,
A signal from the torque control unit and the electric inertia unit during driving of the vehicle based on a driving command value is introduced, and a driving force value and a target driving force value are calculated and obtained based on the introduced signal, and An electric inertia evaluation method for a dynamometer, wherein an error is obtained, and this error signal is used as an evaluation index for evaluating electric inertia.
前記目標駆動力値は、車両重量と加速度信号との積値と、前記トルク制御部より得られた走行抵抗値との和算にて求め、前記駆動力値は、トルク制御部より得られたメカロス信号とトルク増幅信号との和算値と、シャシーダイナモメータの機械慣性値と加速度信号との積値との和算にて求めたことを特徴とした請求項1記載のダイナモメータの電気慣性評価方法。The target driving force value is obtained by adding the product value of the vehicle weight and the acceleration signal and the running resistance value obtained by the torque control unit, and the driving force value is obtained by the torque control unit. 2. The electric inertia of a dynamometer according to claim 1, wherein the electric inertia of the dynamometer is obtained by adding the sum of the mechanical loss signal and the torque amplification signal to the product of the mechanical inertia of the chassis dynamometer and the acceleration signal. Evaluation method. 被試験車両をローラ上に載置し、速度制御部、トルク制御部及び電気慣性部を有するシャシーダイナモメータシステムによって試験を行うものにおいて、
前記電気慣性部の加速度信号と車両重量信号との積値を求める第1の乗算部と、この乗算部の出力信号と前記トルク制御部よりの走行抵抗値との和を求めて目標駆動力値とする加算部と、前記加速度信号とシャシーダイナモメータの機械慣性値との積値を求める第2の乗算部と、この乗算部の積値と前記トルク制御部よりのメカロス信号とトルク増幅信号との和算値との和を求めて駆動力値とする加算部と、この加算部によって求められた駆動力値と前記加算部によつて求められた目標駆動力とを導入して比較する比較部とを有する評価装置を備えたことを特徴とするダイナモメータの電気慣性評価装置。
Place the vehicle under test on the roller, and perform a test by a chassis dynamometer system having a speed control unit, a torque control unit, and an electric inertia unit,
A first multiplication unit for obtaining a product value of the acceleration signal of the electric inertia unit and the vehicle weight signal; and a target driving force value obtained by obtaining a sum of an output signal of the multiplication unit and a running resistance value from the torque control unit. An adding unit, a second multiplying unit for obtaining a product value of the acceleration signal and the mechanical inertia value of the chassis dynamometer, and a product value of the multiplying unit, a mechanical loss signal and a torque amplification signal from the torque control unit. And a comparison unit that introduces and compares the driving force value obtained by the adding unit with the target driving force obtained by the adding unit. An electrical inertia evaluation device for a dynamometer, comprising: an evaluation device having a section.
JP2003005296A 2003-01-14 2003-01-14 Electrical inertia evaluation device for dynamometer and its method Withdrawn JP2004219185A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003005296A JP2004219185A (en) 2003-01-14 2003-01-14 Electrical inertia evaluation device for dynamometer and its method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003005296A JP2004219185A (en) 2003-01-14 2003-01-14 Electrical inertia evaluation device for dynamometer and its method

Publications (1)

Publication Number Publication Date
JP2004219185A true JP2004219185A (en) 2004-08-05

Family

ID=32895983

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003005296A Withdrawn JP2004219185A (en) 2003-01-14 2003-01-14 Electrical inertia evaluation device for dynamometer and its method

Country Status (1)

Country Link
JP (1) JP2004219185A (en)

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7663333B2 (en) 2001-06-12 2010-02-16 Irobot Corporation Method and system for multi-mode coverage for an autonomous robot
US8239992B2 (en) 2007-05-09 2012-08-14 Irobot Corporation Compact autonomous coverage robot
US8253368B2 (en) 2004-01-28 2012-08-28 Irobot Corporation Debris sensor for cleaning apparatus
US8368339B2 (en) 2001-01-24 2013-02-05 Irobot Corporation Robot confinement
US8380350B2 (en) 2005-12-02 2013-02-19 Irobot Corporation Autonomous coverage robot navigation system
US8386081B2 (en) 2002-09-13 2013-02-26 Irobot Corporation Navigational control system for a robotic device
US8382906B2 (en) 2005-02-18 2013-02-26 Irobot Corporation Autonomous surface cleaning robot for wet cleaning
US8390251B2 (en) 2004-01-21 2013-03-05 Irobot Corporation Autonomous robot auto-docking and energy management systems and methods
US8387193B2 (en) 2005-02-18 2013-03-05 Irobot Corporation Autonomous surface cleaning robot for wet and dry cleaning
US8396592B2 (en) 2001-06-12 2013-03-12 Irobot Corporation Method and system for multi-mode coverage for an autonomous robot
US8412377B2 (en) 2000-01-24 2013-04-02 Irobot Corporation Obstacle following sensor scheme for a mobile robot
US8417383B2 (en) 2006-05-31 2013-04-09 Irobot Corporation Detecting robot stasis
US8418303B2 (en) 2006-05-19 2013-04-16 Irobot Corporation Cleaning robot roller processing
US8428778B2 (en) 2002-09-13 2013-04-23 Irobot Corporation Navigational control system for a robotic device
US8474090B2 (en) 2002-01-03 2013-07-02 Irobot Corporation Autonomous floor-cleaning robot
US8515578B2 (en) 2002-09-13 2013-08-20 Irobot Corporation Navigational control system for a robotic device
US8600553B2 (en) 2005-12-02 2013-12-03 Irobot Corporation Coverage robot mobility
US8761931B2 (en) 2005-12-02 2014-06-24 Irobot Corporation Robot system
US8780342B2 (en) 2004-03-29 2014-07-15 Irobot Corporation Methods and apparatus for position estimation using reflected light sources
US8788092B2 (en) 2000-01-24 2014-07-22 Irobot Corporation Obstacle following sensor scheme for a mobile robot
US8874264B1 (en) 2004-07-07 2014-10-28 Irobot Corporation Celestial navigation system for an autonomous robot
US8930023B2 (en) 2009-11-06 2015-01-06 Irobot Corporation Localization by learning of wave-signal distributions
US8972052B2 (en) 2004-07-07 2015-03-03 Irobot Corporation Celestial navigation system for an autonomous vehicle
US9008835B2 (en) 2004-06-24 2015-04-14 Irobot Corporation Remote control scheduler and method for autonomous robotic device
US10314449B2 (en) 2010-02-16 2019-06-11 Irobot Corporation Vacuum brush

Cited By (74)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8412377B2 (en) 2000-01-24 2013-04-02 Irobot Corporation Obstacle following sensor scheme for a mobile robot
US9446521B2 (en) 2000-01-24 2016-09-20 Irobot Corporation Obstacle following sensor scheme for a mobile robot
US8478442B2 (en) 2000-01-24 2013-07-02 Irobot Corporation Obstacle following sensor scheme for a mobile robot
US8565920B2 (en) 2000-01-24 2013-10-22 Irobot Corporation Obstacle following sensor scheme for a mobile robot
US8761935B2 (en) 2000-01-24 2014-06-24 Irobot Corporation Obstacle following sensor scheme for a mobile robot
US8788092B2 (en) 2000-01-24 2014-07-22 Irobot Corporation Obstacle following sensor scheme for a mobile robot
US9144361B2 (en) 2000-04-04 2015-09-29 Irobot Corporation Debris sensor for cleaning apparatus
US8686679B2 (en) 2001-01-24 2014-04-01 Irobot Corporation Robot confinement
US9622635B2 (en) 2001-01-24 2017-04-18 Irobot Corporation Autonomous floor-cleaning robot
US8368339B2 (en) 2001-01-24 2013-02-05 Irobot Corporation Robot confinement
US9582005B2 (en) 2001-01-24 2017-02-28 Irobot Corporation Robot confinement
US9038233B2 (en) 2001-01-24 2015-05-26 Irobot Corporation Autonomous floor-cleaning robot
US7663333B2 (en) 2001-06-12 2010-02-16 Irobot Corporation Method and system for multi-mode coverage for an autonomous robot
US8838274B2 (en) 2001-06-12 2014-09-16 Irobot Corporation Method and system for multi-mode coverage for an autonomous robot
US8396592B2 (en) 2001-06-12 2013-03-12 Irobot Corporation Method and system for multi-mode coverage for an autonomous robot
US9104204B2 (en) 2001-06-12 2015-08-11 Irobot Corporation Method and system for multi-mode coverage for an autonomous robot
US8463438B2 (en) 2001-06-12 2013-06-11 Irobot Corporation Method and system for multi-mode coverage for an autonomous robot
US8474090B2 (en) 2002-01-03 2013-07-02 Irobot Corporation Autonomous floor-cleaning robot
US8516651B2 (en) 2002-01-03 2013-08-27 Irobot Corporation Autonomous floor-cleaning robot
US9128486B2 (en) 2002-01-24 2015-09-08 Irobot Corporation Navigational control system for a robotic device
US8793020B2 (en) 2002-09-13 2014-07-29 Irobot Corporation Navigational control system for a robotic device
US8428778B2 (en) 2002-09-13 2013-04-23 Irobot Corporation Navigational control system for a robotic device
US8386081B2 (en) 2002-09-13 2013-02-26 Irobot Corporation Navigational control system for a robotic device
US8515578B2 (en) 2002-09-13 2013-08-20 Irobot Corporation Navigational control system for a robotic device
US9949608B2 (en) 2002-09-13 2018-04-24 Irobot Corporation Navigational control system for a robotic device
US8461803B2 (en) 2004-01-21 2013-06-11 Irobot Corporation Autonomous robot auto-docking and energy management systems and methods
US8390251B2 (en) 2004-01-21 2013-03-05 Irobot Corporation Autonomous robot auto-docking and energy management systems and methods
US8749196B2 (en) 2004-01-21 2014-06-10 Irobot Corporation Autonomous robot auto-docking and energy management systems and methods
US9215957B2 (en) 2004-01-21 2015-12-22 Irobot Corporation Autonomous robot auto-docking and energy management systems and methods
US8854001B2 (en) 2004-01-21 2014-10-07 Irobot Corporation Autonomous robot auto-docking and energy management systems and methods
US8378613B2 (en) 2004-01-28 2013-02-19 Irobot Corporation Debris sensor for cleaning apparatus
US8598829B2 (en) 2004-01-28 2013-12-03 Irobot Corporation Debris sensor for cleaning apparatus
US8253368B2 (en) 2004-01-28 2012-08-28 Irobot Corporation Debris sensor for cleaning apparatus
US8456125B2 (en) 2004-01-28 2013-06-04 Irobot Corporation Debris sensor for cleaning apparatus
US9360300B2 (en) 2004-03-29 2016-06-07 Irobot Corporation Methods and apparatus for position estimation using reflected light sources
US8780342B2 (en) 2004-03-29 2014-07-15 Irobot Corporation Methods and apparatus for position estimation using reflected light sources
US9486924B2 (en) 2004-06-24 2016-11-08 Irobot Corporation Remote control scheduler and method for autonomous robotic device
US9008835B2 (en) 2004-06-24 2015-04-14 Irobot Corporation Remote control scheduler and method for autonomous robotic device
US9229454B1 (en) 2004-07-07 2016-01-05 Irobot Corporation Autonomous mobile robot system
US8972052B2 (en) 2004-07-07 2015-03-03 Irobot Corporation Celestial navigation system for an autonomous vehicle
US8874264B1 (en) 2004-07-07 2014-10-28 Irobot Corporation Celestial navigation system for an autonomous robot
US9223749B2 (en) 2004-07-07 2015-12-29 Irobot Corporation Celestial navigation system for an autonomous vehicle
US8855813B2 (en) 2005-02-18 2014-10-07 Irobot Corporation Autonomous surface cleaning robot for wet and dry cleaning
US9445702B2 (en) 2005-02-18 2016-09-20 Irobot Corporation Autonomous surface cleaning robot for wet and dry cleaning
US8985127B2 (en) 2005-02-18 2015-03-24 Irobot Corporation Autonomous surface cleaning robot for wet cleaning
US8382906B2 (en) 2005-02-18 2013-02-26 Irobot Corporation Autonomous surface cleaning robot for wet cleaning
US8392021B2 (en) 2005-02-18 2013-03-05 Irobot Corporation Autonomous surface cleaning robot for wet cleaning
US8387193B2 (en) 2005-02-18 2013-03-05 Irobot Corporation Autonomous surface cleaning robot for wet and dry cleaning
US8670866B2 (en) 2005-02-18 2014-03-11 Irobot Corporation Autonomous surface cleaning robot for wet and dry cleaning
US9144360B2 (en) 2005-12-02 2015-09-29 Irobot Corporation Autonomous coverage robot navigation system
US9149170B2 (en) 2005-12-02 2015-10-06 Irobot Corporation Navigating autonomous coverage robots
US8954192B2 (en) 2005-12-02 2015-02-10 Irobot Corporation Navigating autonomous coverage robots
US8600553B2 (en) 2005-12-02 2013-12-03 Irobot Corporation Coverage robot mobility
US9392920B2 (en) 2005-12-02 2016-07-19 Irobot Corporation Robot system
US9599990B2 (en) 2005-12-02 2017-03-21 Irobot Corporation Robot system
US8380350B2 (en) 2005-12-02 2013-02-19 Irobot Corporation Autonomous coverage robot navigation system
US8761931B2 (en) 2005-12-02 2014-06-24 Irobot Corporation Robot system
US9492048B2 (en) 2006-05-19 2016-11-15 Irobot Corporation Removing debris from cleaning robots
US10244915B2 (en) 2006-05-19 2019-04-02 Irobot Corporation Coverage robots and associated cleaning bins
US9955841B2 (en) 2006-05-19 2018-05-01 Irobot Corporation Removing debris from cleaning robots
US8528157B2 (en) 2006-05-19 2013-09-10 Irobot Corporation Coverage robots and associated cleaning bins
US8418303B2 (en) 2006-05-19 2013-04-16 Irobot Corporation Cleaning robot roller processing
US8417383B2 (en) 2006-05-31 2013-04-09 Irobot Corporation Detecting robot stasis
US9317038B2 (en) 2006-05-31 2016-04-19 Irobot Corporation Detecting robot stasis
US9480381B2 (en) 2007-05-09 2016-11-01 Irobot Corporation Compact autonomous coverage robot
US8438695B2 (en) 2007-05-09 2013-05-14 Irobot Corporation Autonomous coverage robot sensing
US8239992B2 (en) 2007-05-09 2012-08-14 Irobot Corporation Compact autonomous coverage robot
US8839477B2 (en) 2007-05-09 2014-09-23 Irobot Corporation Compact autonomous coverage robot
US10070764B2 (en) 2007-05-09 2018-09-11 Irobot Corporation Compact autonomous coverage robot
US11072250B2 (en) 2007-05-09 2021-07-27 Irobot Corporation Autonomous coverage robot sensing
US11498438B2 (en) 2007-05-09 2022-11-15 Irobot Corporation Autonomous coverage robot
US8930023B2 (en) 2009-11-06 2015-01-06 Irobot Corporation Localization by learning of wave-signal distributions
US10314449B2 (en) 2010-02-16 2019-06-11 Irobot Corporation Vacuum brush
US11058271B2 (en) 2010-02-16 2021-07-13 Irobot Corporation Vacuum brush

Similar Documents

Publication Publication Date Title
JP2004219185A (en) Electrical inertia evaluation device for dynamometer and its method
CN104718103B (en) The control device of electric motor of electric vehicle
EP3214422B1 (en) Electric-vehicle testing apparatus, method and computer program
CN107839749B (en) Method for controlling steering road feel and whole vehicle stability of electric wheel vehicle
US9157833B2 (en) Running-resistance control device
JP7045946B2 (en) Chassis dynamometer device, its control method, and program for chassis dynamometer device
JP5098736B2 (en) Vehicle speed control device
CN109305049B (en) Vehicle starting control method and device
KR20120042793A (en) Driving control method of tire testing machine and tire testing machine
JPH1114505A (en) Controller for running resistance of chassis dynamometer
US11879809B2 (en) Vehicle action simulation method and vehicle action simulation system
JP5830870B2 (en) Rotating body speed / acceleration measurement / control device
JP5294314B2 (en) Chassis dynamometer restraint device and vehicle stiffness characteristic identification method
JP4039296B2 (en) Verification method of inertia load of chassis dynamometer
JP3127547B2 (en) Chassis dynamometer
JP2010112903A (en) Vehicle behavior test device
CN106950495A (en) Electric automobile off-line test method and device
JP2000314681A (en) Engine test equipment
JPH052261B2 (en)
CN101907522B (en) Control method of road resistance for alternating current power dynamometer
JP5414662B2 (en) Method for creating characteristic map of dynamometer and dynamometer
JP2005265417A (en) Control method of dynamometer
JP2024017535A (en) Electric inertia control device and vehicle testing device
JP2006090795A (en) Performance evaluation method and system for chassis dynamometer
JPS62284242A (en) Chassis dynamo for brake test

Legal Events

Date Code Title Description
A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20040910