TWI258218B - Semiconductor device and fabrication method thereof - Google Patents

Semiconductor device and fabrication method thereof Download PDF

Info

Publication number
TWI258218B
TWI258218B TW094112198A TW94112198A TWI258218B TW I258218 B TWI258218 B TW I258218B TW 094112198 A TW094112198 A TW 094112198A TW 94112198 A TW94112198 A TW 94112198A TW I258218 B TWI258218 B TW I258218B
Authority
TW
Taiwan
Prior art keywords
mixed crystal
region
layer
substrate
type
Prior art date
Application number
TW094112198A
Other languages
English (en)
Other versions
TW200623414A (en
Inventor
Yosuke Shimamune
Akira Katakami
Akiyoshi Hatada
Masashi Shima
Naoyoshi Tamura
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Publication of TW200623414A publication Critical patent/TW200623414A/zh
Application granted granted Critical
Publication of TWI258218B publication Critical patent/TWI258218B/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7842Field effect transistors with field effect produced by an insulated gate means for exerting mechanical stress on the crystal lattice of the channel region, e.g. using a flexible substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02373Group 14 semiconducting materials
    • H01L21/02381Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/0257Doping during depositing
    • H01L21/02573Conductivity type
    • H01L21/02579P-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02636Selective deposition, e.g. simultaneous growth of mono- and non-monocrystalline semiconductor materials
    • H01L21/02639Preparation of substrate for selective deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
    • H01L21/28506Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers
    • H01L21/28512Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table
    • H01L21/28518Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table the conductive layers comprising silicides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/30604Chemical etching
    • H01L21/30608Anisotropic liquid etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/04Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their crystalline structure, e.g. polycrystalline, cubic or particular orientation of crystalline planes
    • H01L29/045Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their crystalline structure, e.g. polycrystalline, cubic or particular orientation of crystalline planes by their particular orientation of crystalline planes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0642Isolation within the component, i.e. internal isolation
    • H01L29/0649Dielectric regions, e.g. SiO2 regions, air gaps
    • H01L29/0653Dielectric regions, e.g. SiO2 regions, air gaps adjoining the input or output region of a field-effect device, e.g. the source or drain region
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0843Source or drain regions of field-effect devices
    • H01L29/0847Source or drain regions of field-effect devices of field-effect transistors with insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
    • H01L29/161Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table including two or more of the elements provided for in group H01L29/16, e.g. alloys
    • H01L29/165Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table including two or more of the elements provided for in group H01L29/16, e.g. alloys in different semiconductor regions, e.g. heterojunctions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/45Ohmic electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/4966Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET the conductor material next to the insulator being a composite material, e.g. organic material, TiN, MoSi2
    • H01L29/4975Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET the conductor material next to the insulator being a composite material, e.g. organic material, TiN, MoSi2 being a silicide layer, e.g. TiSi2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/51Insulating materials associated therewith
    • H01L29/518Insulating materials associated therewith the insulating material containing nitrogen, e.g. nitride, oxynitride, nitrogen-doped material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/665Unipolar field-effect transistors with an insulated gate, i.e. MISFET using self aligned silicidation, i.e. salicide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66568Lateral single gate silicon transistors
    • H01L29/66613Lateral single gate silicon transistors with a gate recessing step, e.g. using local oxidation
    • H01L29/66628Lateral single gate silicon transistors with a gate recessing step, e.g. using local oxidation recessing the gate by forming single crystalline semiconductor material at the source or drain location
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66568Lateral single gate silicon transistors
    • H01L29/66636Lateral single gate silicon transistors with source or drain recessed by etching or first recessed by etching and then refilled
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7833Field effect transistors with field effect produced by an insulated gate with lightly doped drain or source extension, e.g. LDD MOSFET's; DDD MOSFET's
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7842Field effect transistors with field effect produced by an insulated gate means for exerting mechanical stress on the crystal lattice of the channel region, e.g. using a flexible substrate
    • H01L29/7848Field effect transistors with field effect produced by an insulated gate means for exerting mechanical stress on the crystal lattice of the channel region, e.g. using a flexible substrate the means being located in the source/drain region, e.g. SiGe source and drain
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S257/00Active solid-state devices, e.g. transistors, solid-state diodes
    • Y10S257/90MOSFET type gate sidewall insulating spacer

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Thin Film Transistor (AREA)

Description

1258218 九、發明說明: [相關申請案之參照] 本申請案基於於2004年12月28日提交的日本優先 權申請案No· 2004-38061 9,由此,其全部内容由參照包括。 【發明所屬之技術領域】 本發明係有關於一種半導體裝置,更詳而言之,係一 種通過加應力及改變製造過程而得到改善的操作速度的半 導體裝置。 【先前技術】 h著裝置的小型化趨勢,現在可以製造超精細、超高 速的半導體裝置,其閘極長度為i 〇〇奈米甚至更小。 在這些超精細、超高速的電晶體中,與傳統的半導體 裝置相比’位於閘極電極正下方的通道區域的面積被縮小 亚且鈿加於如此之通道區域的應力嚴重影響通過該通道區 域的電子或電洞的移動率。 因此,人們做了各種嘗試,以通過優化施加於如此之 通道區域的應力來改善半導體裝置的操作速度。 在使用矽基板作為通道區域的半導體裝置中,電洞的 ^動率迷常小於電子的移動率,因此,在設計半導體積體 毛路中’ &善用電洞作為載子的p通道職電晶體的操 速度極其重要。 " 如此之p通道_電晶豸,-熟知的方法是通過 =㈣域施加單軸擠壓應力來改善載子的移動率,並建 A用第1圖的架構來對通道區域施加單㈣壓應力。 316980 1258218 麥照第1圖,在矽基板i上經由 極3,於閘極雷揣Q t z I成閑極電 ^ 7 極3的兩外侧的矽基板1中形成p 區h與1 b以定義诵、者 p孓擴月文 表面形成側壁絕終γ Q Λ 〃 包桎3的側壁 腠3Α與3Β,其同時也覆蓋矽美;te彳μ 部份表面。 反|义丞板1的 L放£ la與lb分別作為M〇s 伸區與汲極延伸區,廿R # 包日日紅的源極延 亚且由擴放區la經由閘極電極3 方的通道區域運拉拄t广,, 节征〇止下
$運在擴散區lb的電洞流受施加 的閘極電壓控制。 阑杜甩極3 在弟1圖的架構中,分別在側壁絕 3B的外側形成盘石夕μ彳且古石曰… 家腰从與
、 ” 土板1具有观日日(epitaxial)關係的SiG -犯晶區;IA與1 β,並延續於今& . 卫I、·只擴政£ la與lb,在SiGe混晶區 中分別形成P型源極區與汲極區。 在第1圖架構的M0S電晶體中,SiGe混晶區1Α> ΐβ 的晶格常數大於石夕基板i的晶袼常數,因此,⑽混晶區 修1A與1B要承受第1圖所示的箭頭a的擠壓應力,由此,
SxGe混晶區^與1B沿著大體與矽基板}垂直的箭頭匕方 向發生形變。 由於SiGe混晶區1A與1B磊晶形成於矽基板丨上, 箭頭b所示的SlGe混晶區1A與…的形變在矽基板的通道 區域中引起相應的形變,如箭頭c所示,而通道區域中如 此之形變又在通道區域中引起單軸擠壓應力,如箭頭3所 對第1圖的M0S電晶體的通道區域所施加如此之單車由 316980 6 1258218 払I應力,導致構成該通這區域的矽晶體的對稱性得到。 部調節,並且由於這樣的局部調節,解決了價帶中=帝= 與輕電洞的退化(degenemurn)。由此,提高了通道區S 電洞的移動率,從而使電晶體的操作速度得到改善。— 應當注意,通過局部引入應力來增加通道區域中電洞 移動率的現象在閘極長度為1GG奈米或更小的超精細^導 體裝置中更加明顯。 參考資料 (專利參考1 )美國專利6,621,131 (專利參考2)日本公開專利申請2〇〇4_31753 (非專利參考 1) Th⑽pson,S.E.,et al. , ieee
Transactions on Electron Devices, v〇l.5i , N〇11
November,2004,pp· 179H797 【發明内容】 第2圖顯示基於如此之原理並在非專利參考丨中描述 φ心通道廳電晶體的架構。本圖中與前面所述相應的部 分用同一參考號標示,不再作描述。 ί ”、、第2圖,猫晶形成s i g e混晶區1 a與1 β,以分別 填充形成於石夕基板1中的溝渠,所達到的高度高㈣中以 虛線L表示的矽基板丨與閘極電極3之間的界面。 、另外,應當注意,在SiGe混晶區u與ιβ中形成曲 复片:的相互面對的侧表面1As與1Bs,使得混晶區1Α 與1β之間的距離從閘極絕緣膜2的下表面沿著矽基板1 向下的方向持續增加。 3J6980 1258218 另外在第2圖的傳統架構中,在s i ^混晶區)A與 β增長到高於前面的水平L的高度上,形成料物層 卜在夕Ba碎閘極電極3上也形成類似的石夕化物層4。 ^另外與第2圖的MOS電晶體相應的非專利參考j彼 =.SiGe此晶區i A與1β所使用的siGe混晶的組成為 i“3Ge。·】”該非專利參考j進一步披露:s—混晶區μ 與1Β所使用的鍺濃度為15個原子百分率。由此,該非專 _利參考1披露:當錯濃度超過20個原子百分率的濃度時, 猫晶將 > 肖失。 另方面為在如此之傳統的ρ通道MOS電晶體中, 進-步增加通道區域中的單車由擦壓應力將進一步提高㈣ 道MOS笔晶體的操作速度。 。另外’左思到’在專利參考i的傳統技術中,在州 C的溫度下對SiGe混晶區心1β進行蟲晶再生製程,而 使用超過65(TC的溫度會導致擴散區㈣ic、w 馨摻雜物質進行多餘的重新分佈,並且,p通道_電晶體 變成難以獲得理想的操作特性。 另外’左思到’第2圖傳統的p通道廳電晶體直接 在磊晶生長的SlGe混晶區“與⑶上形成矽化物膜4,而 被認為是用來生成90奈米節點甚至更小的傑出候選石夕化 物―矽化鎳膜在其中累積拉伸應力。因此,在第2圖的架 耩中,如此直接在SiGe混晶區1A與1B上形成石夕化物層, 不可避免地抵消,至少是部分抵消了為提高電洞移動率曰而 施加於P通道MOS電晶體的通道區域的應力。 316980 8 1258218 . 另外,在SiGe混晶區1A與1B上如此形成矽化物層 會弓丨起各種問題,例如隨著SiGe混晶層中鍺濃度的增加, ^ 熱電阻或矽化物的形態(morphology)退化,並且,如果為 • 增加如第2圖P通道M0S電晶體的應力,而使SiGe混晶含 有南濃度的鍺,就難以用通常的自行對準矽化物製程在 S1 Ge混晶層上形成如此之矽化物層。 本發明之主要目的在於提供半導體裝置,其包括: 矽基板,其包括通道區域; ^ _電極,其與該通道區域相應,在财基板上經由 閘極絕緣膜形成,在該閘極電極互相對立的侧壁表面上分 別有側壁絕緣膜; 由P型擴散區構成的源極與汲極延伸區,越過該通道 區域,分別形成於該閘極電極的外側的矽基板中; 由P型擴散區構成的源極與沒極區,分別延續該源極
延伸區與/及極延伸區,形成於該些側壁絕緣膜的外側的石夕 基板中;以及 對slGe混晶區,其分別形成於該側壁絕緣膜的 側的砍基板中,以分別由源極區與汲健包括,_
區與該矽基板呈磊晶關係 A 閘極絕緣膜與 各SiGe混晶區所生長到的高度超過該 該矽基板之間的界面, 晶區的側壁表 该些分面相對 各SiGe混晶區具有面對另一個混 面,該侧壁表面由複數個分面(facet)定義, 於該矽基板主表面分別形成不同的角度。 3]6980 9 1258218 本4明之另一目的是提供一種製造半導體 :::::體具有-對S1 Ge擠1應力源',其分別位於通道 區域的外側,该方法包括以下步驟: 、 之問極絕緣膜切基板上形成與該通道區域相應 對電極各自的外侧相應,在該梦基板中形成- 與該閘極電極各自的外側相應, 為源極與w,該閉極電極各 絕:二】=隔的距離與該閉極電極上各自的閉極側壁 分別與該源極區與該汲極區相應, 一 姓刻製程形成一對溝渠,該溝竿且^由^ 土板中藉由 側壁表面,並且在各溝渠中,該側壁表== 源㈣汲極區的p型擴散區連續覆蓋;以及-冓成该 猎由p型SiGe層的蟲晶生長填充該溝渠, 在400至55(ΓΓ的、、四痒τ^ 長 的,皿度下進行該痛Ge層的蟲晶生 法 再—目的是提供—種製造半導體裝置的方
灯/ ¥肢裝置在通道區域的兩外側端具有-對Si G 擠愿應力源,該方法包括以下步驟· #SlGe 之間板上形成與該通道區域相應 與該開極電極的兩外側相應,在該魏中形成一對 3]6980 1258218 p型擴散區; 分別與該閘極電極的外 對溝梁,兮日日 > “在该石夕基板中形成一 才溝木,该閘極電極各自的外 與該閘極電極上夂自、一该通迢區域相隔的距離 呈有Hu 側壁絕緣膜厚度相應,各溝泪 具有由稷數個分面定義的側壁表面; 口溝巿 在各溝渠中,由摻雜為石s 侧壁表面與底面;以及 夕却曰曰層復盖該溝渠的 =溝木中’通過在該石夕蟲晶層上蟲 混晶層來填充該溝渠, Pi MGe 下進=晶生長該P型㈣層的步驟在400至55(rC的溫度 ,據本|明,通過在該通道區域的兩外側蟲晶生長 = lGe混晶層,單軸擠壓應力被施加到該通道區域,從而 改σ 了通過该通道區域的電洞的移動率。 由此’本發明通過形成該對Ρ型SiGe混晶區來優化 施加於通道區域的單轴應力。該對p型混晶區中互相 面對的側壁表面分別由複數個分面構成,這些分面相對於 該石夕基板的主表面分別形成不同的角度,並且與傳統的架 構相比,半導體裝置的操作速度進一步得到改善。在傳統 ,架構中,該SlGe混晶區的側壁表面由連續、彎曲的表面 疋我,因此,在通道區域兩側的SiGe混晶區之間的距離從 閘極絕緣膜與石夕基板之間的界面沿石夕基板向下快速增大。 4寸另!疋通過°襄δ玄SiGe混晶區形成楔形(we(jge)的侧 壁表面’使得各SiGe混晶區從該通道區域的兩外側進入閘 11 316980 1258218 極側壁絕緣膜正下方的區域,從而有可能通過本發明最大 化通道區域中施加於該矽基板的單軸擠壓應力,並將應力 集中於楔形尖端部分。 另外’由於各p型Si Ge混晶區形成於該石夕基板的有 限區域上,發現增加該P型SiGe混晶區的鍺濃度,使其超 過與臨界厚度相應的界限濃度,達到以原子百分數表示的 /辰度40/。疋有可能的,這與形成連續、二維膜的情況相反。 由此,通過擠壓應力對半導體裝置的改善效果達到最大化。 〇 士另一方面,本發明的發明人發現:當鍺原子濃度超過 28%b寸,p型SiGe混晶區開始出現晶體品質退化問題,從 =免該問題的角度而言,在本發明中更傾向於抑制鍺原; 濃度,使其不超過28%。 “ 外,根據本發明,通過在該半導體裝置的閘極絕緣 膜與石夕基板之間的界面外生長?型SiGe混晶區,有可能減 由形成方“亥半導體裝置的源極/沒極區的石夕化物層引 的拉伸應力的副面效果。摩告 兮、s…广丄丄 &田〆主思,如此之拉伸應力抵消 該通迢區域中產生的單軸擠壓應力的效果。 制是,通過在該p型SlGe混晶區上蟲晶生長p型 夕層或低録濃度的p31SlGe層,有可能避免難以在高錯濃 又的SiGe混晶層上形切化物層的相關問題。 應當注意,當石夕基板是(〇〇1)基板 猶方向形成於該石夕基板上時,通過對 ;道區域施加擠編所產生的電洞移動率的增加;:的 316980 12 1258218 極的::,在本發明中’在形成p型擴散區後,在閉極電 ::,溝渠,並通過沉積溫度 二晶層填充這些溝渠㈣本發明, 構具有/放區的推雜分佈輪廓不會改變’而且有可能架 特性的半導體裝置。另外,由於如此之低溫生 型⑽混晶層。百刀數表不的浪度達權的鍺引入p 另外’根據本發明,有可处、s、風+ 0 · r >溫磊晶人 通過在⑽混晶層上低 帽罩声,=/Λ 或錯濃度為20%甚至更少的石夕蟲晶 物層另^置的源極/沒極區有電連接的石夕化 極絕緣膜上:基=::,秒化物層的高度遠在閘 矽化物岸 、"面之上,如此之架構削弱了該 厂二£的拉伸應力抵消該通道區域中產生的單軸擠 壓應力的問題。 ^ ^ ^ 料,通過形成如此之鍺濃度相對低的帽罩層,有可 二#=物層在錯濃度增加時發生的熱電阻的退化或石夕 曰、面形恶的退化’從而使石夕化物具有穩定、可靠的 活娟p。 種情=本=二:::广基板中形成溝渠。在這 在。亥溝木表面生長P型石夕蟲晶層,之後,再 「 Ge混晶層。根據如此之製程,有效避免了源極延伸 區娜延伸區中的換雜分佈輪輪 產生於制閉極電極的同時注入摻雜物質。I该問通 同時,在如此之由s1Ge混晶應力源在通道區域施加 316980 ]3 1258218 .濟屢應力的超精細、超高速的半導體裝置中,在裝置隔離 區形成後但在閘極絕緣膜形成之前,習慣要在通道區域中 進订原始氧化物去除製程。而由此所產生的熟知結果是: =去徐如此之原始氧化物膜而在高溫氫氣中所作的熱回火 衣私,導致石夕原子在外露的石夕基板表面自動減弱,從而在 形成裝置區的石夕基板上出現變曲的凸表面。因此,為形成 返溝木而對如此之凸石夕表面施行姓刻製程時,在溝渠 _底部出現相應的凸表面形狀。由此,蟲晶生長在這些溝渠 M SlGe混晶區通過發生於其中的自我限制式製程,形成 千坦的分面,因此,構成擠壓應力源的SiGe混晶區的容量 5凸表面的容量降低,從而導致SiGe混晶 麗應力的減少,這是我們所不希望的。
/與上述相反,本發明將形成閘極絕緣膜前為去除原始 乳化物所作的熱回火製程的溫度限制到_t:或更低,Y
進一步通過在無氫的惰性惫辦中 W 乱版中轭仃该熱回火製程,藉此 鲁成功地避免了擠壓應力的減少。 【實施方式】 、,下係藉由特定的具體實例說明本發明之實施方 :,熟悉此技藝之人士可由本說明書所揭示之:二 蹲本發明之其他優點與功效。本發明亦可藉由 :具體實例加以施行或應用,本說明書中的各料 = 基於不同觀點與應用,在不悖離本發明之下亦可 修飾與變更。 ’、月中下4行各種 [第一實施例] 316980 ]4 1258218 第3圖顯示依據本發明第一實施例,?型刪電晶體 1 0的架構。 蒼照第3圖,由STI (淺溝渠隔離)褒置隔離區⑴, 在(001)表面方向的石夕基板上定義的〇型裝置區iia上, 形成該p通道MOS電晶體10,其中,與該裝置區nA中的 通道區域相應’在該石夕基板n上形成高質量的由熱氧化膜 或SiON膜構成的閘極絕緣膜12,其厚度約為】2奈米。 在該問極絕緣膜12上,形成摻雜為p型的多::;閉 广極13 ’其中’在該裝置區UA中,外露在該多晶矽閘 f電極13兩外側的石夕基板表面由㈤氧化物膜i2i覆蓋 4 主Λ’各氧化物膜121連續延伸並覆蓋該間極 :極13的側壁表面。此外,側壁絕緣膜m與ΐ3β婉由久 :的熱氧化物謂’形成於該閘極電極13各自的:絲 此夕卜,在該側壁絕緣膜13A與13_ •中形成溝渠11TA與⑽,其中,該溝渠m二;二: 別由PS SiGe混晶區14A與14β埴 : 刀 mA與11TB的石夕基板u上。八充—日日生長於溝渠 與構成石夕基板11的石夕晶體相比,县 板11的該SiGe混晶區14A與14Β 曰曰κ到该石夕基 因此,通過參照第1圖所解釋的機制,該=:二曰吊品數,
與14B引入單軸擠壓應力,該單 此日日區14A 極13正下方的嫩U中所形成該閉極電 而且,稭由第3圖的P通亀電晶體丨。,通過在該 316980 ]5 1258218 閘極電極13的兩外侧,向矽基板11區傾斜注入n型換广准 物質如銻,與該裝置區Π a相應,在石夕基板11中形成n 型袋狀注入區11 ρ。另外,形成ρ型源極延伸區丨丨a與ρ 型汲極延伸區lib,與該袋狀注入區lip部分重疊。 5亥p型源極與汲極延伸區11 a與11 b分別延伸到今 型SiGe混晶區14A與14B,其中,應當注意,該p型Si(^ 混晶區14A與14B分別延續p型擴散區11 s與11D形成。 應當注思’该p型擴散區11S與11D分別構成該p通道 電晶體1 0的源極區與^汲極區。 應當注意,形成該p型擴散區11 s與11D以分別包括 該S i Ge混晶區14A與14B。如此之架構使具有一小能隙的 P型SiGe混晶區14A或14B避免與構成該裝置區1 ιΑ的打 型矽井直接接觸,並抑制Si/SiGe界面的ρη結合發生漏電 電流。 此外’藉由第3圖的架構,在該SiGe混晶區14Α與 ⑩14B上分別形成矽磊晶層15A與15B,並在該矽磊晶層15八 與15B表面形成矽化物層16A與ι6Β。此外,在該閘極電 極13上形成類似的矽化物層1μ。 在本實施例的p通道MOS電晶體1〇中,si Ge混晶區 14A與14B都各自由侧壁表面Ha'Hb'Hc以及底面14d 定義,如第3圖所示,其中,應當注意,側壁表面14a、 14b和14c以及底面l4d都各自由平坦的分面(facet)構成。 在本例中,底面14d由與該矽基板丨丨的主表面平行 的(001 )表面構成,而分面14b與底面I4d形成大體垂直 316980 16 1258218 的角度θ2。另外,分面14c與底φ Hd形成比θ2更小的 角度Θ1。 口此由枚數個平坦的分面14a至14d架構該 :日日區14A與14B的底面和側壁表面,藉此優化與該間極 二極13正下方的通道區域相應、在裝置區11 a中引入的 早軸松壓應力域,進而提供P通道電晶體,其性能優於傳 、,先使用Si Ge心阳區作為擠壓應力源的p通道電晶體,這正 是本發明的目的。 鲁在第3圖的架構中,應當注意,定義閘極絕緣膜12 正下方的通道區域的SiGe混晶區14Α與14β相對的側壁表 面由刀面14b構成,該分面垂直延伸到該矽基板11的主表 面。因此,與第1圖或第2圖的傳統架構相反,從該閉極 絕緣膜12與矽基板Π之間的界面沿矽基板11向下的方 向互相對立的si Ge混晶區14A與14B之間的距離不會增 加’這樣就有可能將單軸擠壓應力有效地限制於通道區域。 _ 化裡,應當 >主意分面14c使得SiGe混晶區與 不會從構成源極區14S或汲極區14])的?型擴散區凸出到 構成矽基板11中的裝置區的η型井中。 另方面在各SiGe混晶區14Α與14Β中,應當注 思,疋義Si Ge混晶區14A或14β的側壁表面與矽基板j j 的主表面之間的角度,在侧面14b與14c的相交處突然從 Θ2變為Θ1,而如此之不連續的角度變化使得擠壓應力能夠 市中农位於Si Ge混晶區14A與14B之間的裝置區11 a部分。 第4A至4F圖顯示根據本發明第一實施例,對p型半 316980 1258218 導體裝置所作的各種改進。圖中與前面解釋相應的部分用 相同的夺考號標示,不再作描述。應當注意,第4A至 圖頒不矽化物區16A至16C形成之前的狀態。在這些圖以 及以後要解釋的圖中都省略袋狀注入區11 p的圖示。 茶知、第4A圖,SiGe混晶區14A與14B的侧壁表面由 大體垂直於矽基板π主表面的分面14b和平行於矽基板 11主表面的底面! 4d構成,其中,分面i扑與底面^ W之 間的角度大體為90度。 在第4A圖的架構中,在其中形成Si(Je混晶區UA與 14B的溝渠丨丨^與11Τβ通過乾式蝕刻製程而形成,在如 第5Α圖所示,其中,s—混晶區UA與ΐ4β的底面⑷ 的位置固疋,以便SiGe混晶區14A與14B的角落部分,即 分面14b與底面14d相交的位置,不會從該源極/汲極區 11S與11D凸出到11型井區域。後面會詳細敍述如何用SiGe 混晶區14A與14B填充溝渠11 τΑ與丨丨Τβ。 舁上述相反,第4Β圖的架構與前面所解釋的第3圖 的架構相應唭中,由乾式蝕刻製程形成溝渠im與⑽, 藉此首先形成垂直於㈣板u的分面14b,如第5β圖所 不,在該乾式触刻製程後,通過在氯氣中對石夕基才反u施加 溫度為55(TC的熱製程,在分面⑽下形成分面W。該分 面14c由石夕(⑴)表面構成,其與石夕基板u形成%度角。 在第4B圖的架構中,由於分面Uc切去分面】扑盥 底面14(3相交的角落,即使加e混晶區HA與]4β的底面 14d在石夕基板η中處於較深的位置,仍可以減少言亥角落部 3]6980 18 1258218 源極11S或11D凸出到n型井的風險。後面會詳細敍 k “可用产Ge混晶區14Α與14β填充溝渠uTA與㈣。 人在弟4C圖的架構巾,通過使用有機驗金屬姓刻劑(水 。四甲基乳(hydrat觸 tetramethyl ammcmmm) J衣私’或作為替代,在氫氣和氣化氫氣體中應用刪。〔 :::處理,形成溝渠mAw1TB,如第%圖所示。在這 •基:二,:有在Β混晶區⑷與14B中形成垂直於矽 ^ 、刀面Ub,而是直接從閑極絕緣膜12與矽基板 之間的界面開始’形成與矽基板u的主表面呈,度角、 由石夕(111)表面構成的分面14c。 在帛4D圖的架構中,首先進行乾式钱刻 崎i為細或膽驗、水合氨或類似物的濕式簡程, 错以切基板u中形成溝渠⑽與UTB,如第5圖所示。 =過如此之乾式_製程,首先切基板η中形成 「、石夕基㈣的主表面垂直的分面Ub,接著通過使用麵, =分面W施行濕式姓刻製程,將分面地#變為由π⑴ 表面構成的斜面。此外,另形成由(ηυ表“成 14c 〇 f此尤田/主思,廷樣形成的分面14b與分面14c 一 形靖為上述溝渠⑽與ΐιτβ,以便該 溝渠㈣與⑽在石夕基板u中向著通道區域方向伸入侧 壁嫩m與13B正下方的地區。這裡,應當注意,與 石夕u⑴表面相應,分面14c與石夕基板u的主表面構成 316980 19 1258218 、’勺56度角。同樣與矽(丨丨丨)表面相應,分面^扑與矽基 板11的主表面構成約14 6度角。 根據第4D圖的架構,為填充該楔形溝渠丨丨^與ιιτβ 而生長的SiGe混晶區14Α與14Β各自有尖端伸入側壁絕緣 膜13A與13B正下方的區域,並與閘極絕緣膜12正下方的 通道區域接近。由此,強勁的單軸擠壓應力被施加於該通 ^區域彳文而大大改善了該通道區域中的電洞移動率。同 時,通過兩晶體表面相交而定義的SiGe混晶1 m與ΐ4β 的尖銳尖端,導致應力集中於如此之尖端部分,從而使通 道區域應力增加的效果得到進一步加強。 基於第4D圖的架構,第4E圖的架構省略了在 混晶區14A與14B上形成矽磊晶層15A與15β的情況。 另外,第4F圖的架構同樣是基於第4])圖的架構。該 4F圖的架構的特別之處在於:與間極絕緣膜以正下方的 區域相應,在矽基板U上磊晶生成SiGe混晶之通道層 齡11G。根據如此之架構嗵道層nG本身引入單軸擠壓岸s力, 從而:可能進一步改善通道層11G中的電洞移動率。 乂第6圖疋總結第5A至5D所示的溝渠丨丨TA與丨丨TB的 ^成製㈣示意圖’其中該溝渠聰與膽即為進行磊 日日生長Si Ge混晶區14Α與14Β之處。 茶照第6圖,石夕基板u是具有(〇〇1)表面的(〇⑴ 基板。溝渠1ΠΑ與11TB的側壁表面各自由底面⑷與分 面14b、14c定義。分面14b與石夕基板u的主表面形成的 角度為Θ2,而分面14c與石夕基板u的主表面形成的角度 3]6980 20 1258218 ,:1 «閘極蜿緣膜12與矽基板u之間的界面開始向下, j木度yl處形成底面14d,在深度y2處形成分面⑽。通 吊傾向於讓閘極電極13切基板u上沿〈⑽方向伸展, 閉極電極13也可沿<1GG>方向伸展。 是在第4A圖的架構中,傾向於將角度Θ1與Θ2 的任個设置為約90度,將深度yl設在20至γ〇 + # 2 =應當注意’使用乾式㈣製程可以高精度控制如 之 >木度y 1。 戶之ί 構中’傾向於將角度Θ1設在40至60 70奈米,將严^為1 9〇度。傾向於將深度71設在20至 板y2 4在10至60奈米之間。通過對石夕基 wt w㈣丨製程可以高精度控 特別是,如斟楚D η 八Β 石夕(⑴)表面 11Γ所作的解釋,如果分面l4c由 該角产61^ 度01取56度。但是,應當注意, 後,接著在^ φ56度°應#注意’在上述乾式钱刻製程 控制角戶=2中約550t下執行熱處理製程,以高精度 度,如果分(架:)中/度Θ1與θ2取5°至6° 為56度。作是,备译)表面構成,角度Θ1與Θ2 仏圖的架構—中,^^與^不限於心^此夕卜在第 在20至70奈米 又\為令時,傾向於將深度yi設置 r ,,3 V- ^ B。應當注意,可以通過對矽基板11 鈀灯系式蝕刻製程來 版 該濕式钱刻製尸你田女以工制角度Θ1 'θ2與深度y卜 機鹼金屬蝕刻劑,例如TMAli,或作 3]6980 21 1258218 為替代’也可以在氫氣和虹氣中進行高溫氣相㈣製程。 …此外,在第4D至奵圖的架構中,通過對石夕基板。 連f施行乾式钮刻製程與使用有機鹼金屬餘刻劑T M A Η 的濕式蝕刻製程’傾向於將深度yl控制到2〇至奈 圍,將深度y2控制到1〇至6〇奈米範圍,將角度^控^ 到40至60度範圍,以及將角度⑽控制到9〇至範 :。應當注意,形成溝渠㈣與ηΤΒ時,藉由乾式:: 衣程與濕式I虫刻製程的結合,本發明有可能精確地控制角 度Θ1與Θ2,以及深度^與“。在本例中,如果分面⑷ 與14c由石夕(111)表面構成,角度㊀丨與的分別為π度 矛146度。但疋,應當注意,第4D至4ρ圖的架構並不限 於由矽(ill)表面構成分面14b與14c的情況。 在第^至㈤圖的任一方法中,應當注意,在形成溝 渠11TA與11TB之前,先在側壁絕緣膜UA與ΐ3β外側的 矽基板11中形成ρ型源極區113與卩型汲極區。應當 庄思4朱11TA與11TB形成於如此之p型擴散區内部, 以便不超過其p/n結合界面。 在第5A至5D圖的任—方法中,可以在形成源極/汲 極擴散區IIS、11D之前,直接在石夕基板^的裝置區uA 中的η型石夕井中,形成溝渠11ΤΑ~1Τβ,然後在供應具 有ρ型杈質氣體的矽氣體源的同時,在溝渠丨丨^與ιιτβ 表面選擇性地生長ρ型矽層,如第7圖所示。 [第二實施例]
下面將參照第δΑ至肫圖解釋第4D圖的ρ通道M0S 316980 22 1258218 電晶體的製造製程。 —參照第8A圖’裝置區11A由阳型裝置隔離結構 疋義於P型石夕基板11的表面,通過另“型摻雜物質注入壯 置區11A,在裝置區πα中形成n型井。 接著,在第8B圖的步驟中,通過圖刻(ρ_Γη㈣均 二形成於石夕基板Π上的Sl〇N膜與多晶石續,與裝置區⑴ 目應,在矽基板11上形成閘極絕緣膜12與多晶矽閘極杂 極13,並在將多晶石夕閘極電極13作為遮罩的屯 =雜物質如…藉以在論11"形成。型源極延; σ° 11a與p型〉及極延伸區ub。 =’在多晶石夕間極電極13上形成側壁絕緣膜⑽ 缘膜1二:再次注入P型摻雜物質如β+,這樣,在側壁絕 與13Β外側之石夕基板1}的裝置區iu中 型源極區11S與ρ型汲極區11D。 接著’在第8C步驟中,首先由乾式㈣ t側壁絕緣膜13A與⑽相㈣基板η的裝置區的-邻 为,蝕刻深度為10至6〇奈米。 4 通過如此之乾式钱刻製程,在石夕基板u 使得各溝渠由垂直於矽美 5 、夕基板11的主表面的垂直側壁表面 的牛2底面疋義’類似第5A圖所述的情況。在第8C圖 的步驟中,該垂直側辟多 渴式卿二步由以細細刻劑的 矣^虫刻衣㈣刻,使得溝渠㈣與11τβ形成楔形側壁 '、亥楔形侧壁表面由分面14b與14c定義。在第% 圖的狀態中,應當注意’通過從側壁絕緣膜m與ΐ3β外 316980 23 .1258218 .側邊緣向中心伸入,使該楔形的尖端形成位於閘極電極13 正下方的通道區域附近。 ’ ,著’在第8D圖的步驟巾,在去除原始氧化物膜後, .:弟C圖的架構引人充有惰性氣體,如氫氣、氮氣、氮氣、 乳氣或類似物的低壓CVD裝置,並將其壓力保持在5至 :犯OPa。在氫氣中溫度加熱到4〇〇至55(rc(Heat—彻)後, 忒壓力5至l 330Pa最多保持5分鐘(H2_Bake)。 β 接著,在基板溫度為400至55CTC時將惰性氣體,如 氫、氮、氦或氬的部分分壓保持在5至133〇Pa的同時,在 供應作為蝕刻氣體、部分壓力為i至1〇Pa的氯化氫(hcl) 氣月豆外以1至4 0分的持續時間分別供應石夕烧($丨)氣 體、鍺垸(GeH4)氣體和二職(B2He)氣體,分別作為石夕 氣體源、鍺氣體源和摻質氣體,其部分氣壓分別為丨至1〇 Pa、0. 1 至 i〇pa 和 1){1〇-5至 lxl〇_3pa。藉此在溝渠 與11ΤΒ中分別磊晶生長ρ型SiGe混晶區14Α與14β • (SiGe-Depo ) ° 對於如此之SiGe混晶區14A與14B的蠢晶生長,當 石夕(100 )表面或(Π 1 )表面外露於溝渠11Μ與11 tb的 底面或侧壁表面時,尤其會改善SiGe混晶區ι4Α與14B 的晶體質量。從這個觀點看,對於溝渠11TA與11Τβ,如 第8C圖所示,由形成矽(1丨丨)表面的分面14b與分面14c 定義楔形側壁表面的架構更有優勢。 在第8D圖的製程中,填充溝渠11TA與11Τβ的SlGe 混晶區14A與14B引入單軸擠壓應力,其來源於該裝置區 24 3]6980 1258218 • 11A中閘極絕緣膜12正下方通道區域中的矽基板丨1的晶 格苇數與S i Ge混晶區14A與14B的晶格常數之間的差異<
由於楔形的尖端部分伸入矽基板u中位於側壁絕緣膜f3A 與13B正下方的區域,大的擠壓應力被施加到閘極絕緣膜 12正下方的通道區域。 接著,在第8D圖的步驟中,在溫度等於或低於形成 SiGe混晶層14A與14B的溫度下,與部分壓力為!至1〇ρ& 的氯化氫(HCL)氣體一起,供應部分壓力分別為i至ι〇ρ& 和1x10 4至lxl(T2pa的矽烷氣體與二硼烷氣體,藉此在 SiGe混晶區14A與14B上形成主要由矽構成、厚度為〇至 20奈米的p型半導體層。藉此’分別在以以混晶區I" 與14B上形成帽罩層15A與15B(CapSi_Dep〇)。這裡,厚 度Ys為〇奈米表示不形成帽罩層ι5Α與。 應t注意,由於該帽罩層15A與15B是第8E圖的矽 化物形成製程的預備步驟,因此,傾向於使用?型矽層作 籲為帽罩層15A與15B,因為即使帽罩層15八與15β有可能 包括原子濃度為0至20%的鍺,在該?型矽層上仍易於2 成矽化物。另外,可以使用SiGeC混晶層作為帽罩層15^ 與15B,其包含以原子濃度表示的2%的碳(Carb〇n)。如果 帽罩層15A與15B要包含錯,可以在帽罩層生長製程中在 氣體源中加入鍺烷(GeHO氣體,其部分壓力為〇至〇 4pa。 如果構成側壁絕緣膜1 3A與1 3B的材料包含相當大量 的矽,就會惡化SiGe混晶層生長的選擇性,如果按:上= 製程進行SlGe混晶層區域的生長呵能會導致在側壁絕緣 316980 25 1258218 膜13A與13B上生長SiGe晶核。 在這種情況下,將第8D圖的結構,以與生長以以混 晶層區域14A與14B才目同或更低的溫&,短期暴露在氣化 氫(HCL)氣體中,以便通過後蝕刻(p〇stEtch)去除側壁 絕緣膜13A與13B或裝置離結構UI有可能成切化物 生長的晶核的部分。
然後,在雜氣體巾將所獲得的結構冷卻到侧。〇以 下(Coo 1 Down ),並將其從低壓CVD裝置中取出。 應當注意、,在典型的持、續時間為〇至60分鐘供應部 分壓力為10至500Pa氯化氫氣體的同時,此後蝕刻 (Posmch)製程可以在氫、氮、氦或類似物的惰性或還 原氣體中進行,製程壓力為5至1〇〇〇Pa。 接者’在第8E圖的製寇ψ 收α 衣矛玉中,將所取出的第8D圖的基 板引入賴裝置,通過自行對準魏物製程,在帽罩層15八 與⑽上分別形成石夕化鎳切化銘的魏物膜⑽與⑽。 在第8Ε圖的步驟中,同時也在客β 2^日日a 也在夕日日矽閘極電極13上形成 矽化物膜16C。 因此,通過第8D圖的製程,其中,通過55(TC甚至更 低的低溫製程形成slGe混晶層,無論是 =主入區’遂是在源極/沒極延伸區lla與llb,亦或在源 極/錄區11S與11D,甚至是在形成源極々極區⑴與 :1D㈣成S, G e混晶區! 4 A與丨4 β,摻雜物質的分佈輪靡 都不f發生顯著變化。由此保障了理想的操作特性。 同時,在第8D圖的步驟中,應 2.6 316980 1258218 晶層14A與14B從位於閘極絕緣膜12與矽基板u之間的 界面到溝渠11TA與11TB的厚度”達2〇至7〇奈米噠要 繼續在該界面外繼續磊晶生長高度γι為〇至3〇奈米= SiGe混晶層14A與14B。應當注意,如果高度γι為〇奈 米,意味著SiGe混晶層14A與14B不會在閘極絕緣膜& 與矽基板11之間的界面外生長。 在第8D圖的製程巾,通過在閘極絕緣膜12與石夕基板 11之間的界面之外生長S i Ge混晶區J 4A與i 4B,可以以較 大的間距隔離累積拉伸應力的石夕化物層i 6Α ] 6β與存在撥 壓應力的通道區域々樣,有可能抑制魏物層ΐβΑ與ΐ6β 的拉伸應力對SiGe混晶區14A與14B在通道區域中所產生 的單軸擠壓應力的抵消效果。因此,優先㈣ 層16A與16B的自行對準石夕化物製程,以便石夕化物層16八 與16B不會越過帽罩層15A與15β接觸SiGe混晶區“A 與 14B。 應當注意,第9圖中,在閘極絕緣膜12與矽基板u 之間的界面之外所生長的SiGe混晶區14A與14β的部分在 面向通道區域的一側具有由分面14a定義的側表面,而面 向裝置隔離結構1II的一側由分面14e定義。由此,傾向 於使分面14a形成40至90度角Θ3,分面14b形成40至 60度角Θ4。 特別是,通過將θ3設置為90度甚至更小,帽罩層15a 與1 5B上的矽化物層1 6A與16B不會與閘極電極丨3的側壁 絕緣膜1 3A或1 3B接觸,從而抑制通過矽化物層} 6A與j⑽ 27 316980 1258218 發生斷路的問題或抑制閘極電極13與矽化物層16A或16B 之間寄生電容(parasitic ⑽)的形成。 下面將彳木时藉由第8])圖的製程形成的以以混晶區 /、14β中的鍺濃度與厚度Y1和Y2之間的關係。 / _ 1又而δ ’衆所周知,隨著磊晶厚度超過關鍵厚度, :::發生應變’當在如此之發生應變的系統中進行磊晶 _ 站日日、’、〇構申會包括錯位(dislocation)之類的缺陷, 這樣,、該半導體層的品質使其不足以充當半導體裝置的作 另.方面通過作為本發明基礎的實驗研究發現,如 =在半導體I置的裝置區11A上形成有限面積的⑽混晶 會出現以下情況:即使將半導體層的厚度增加到所謂 的關鍵厚度之上,所生長並形成發生應變的系統的半導體 層的品質並不會惡化,這與在二維表面上連續作磊a曰 :模型相反;也會發生下列情況:即使鍺濃度峨;鍵濃 度水平,㈣認為可能會形成錯位之類的缺陷的水平,半 導體層的品質並不惡化。另外,應當注意,這個“有效的” 關鍵厚度隨著生長溫度的降低而增長,從而有可能借助在 =?曰局部區域中有選擇生長的SlGe混晶層,更有:地在 M0S電晶體的通道區域產生扭曲。 例如,已經證實,當如第9圖所定義的厚度丫丨為2〇 奈米、厚度Y2為60奈米的SiGe膜用於SiG曰
c化日日區1 4A 與14B時,甚至鍺濃度水平超出傳統可接受的限制濃度水 平20%達到24%時,SlGe混晶區14A與14B中的晶體品質 316980 28 .1258218
.在該實驗中’應當注意,在SlGe混晶區“A ”主已經磊晶生長了 P型矽的帽罩層15A與15B,1 居度為10奈米。 〃 可处另外’已經證實’鍺的原子濃度水平在40%以下都有 月匕進RS—混晶區14A與14β的蟲晶生長。 2外’已經發現在如此之鍺濃度極高的siGi晶層 為p型㈣的硼的可溶度提高,從而可用的摻質濃 為㈣W上述試驗恤混晶區14A與14β 二:=濃度範圍為咖幻爲3。另一方面,在以 二為特徵的帽罩層15Α與15Β巾,硼的摻質濃度約 為 1x10 至 lxl〇2Gcnf3 。 因此’本發明通過增加充當擠壓應力源的混晶 二A與14B中的錯濃度,可以對p型_電晶體的通道 域施加更大的單軸擠壓應力。 [第三實施例] m μ ί 1〇Α圖疋總結上述在低壓CVD裝置中所進行的第8D 回、,程的示意圖,是本發明的第三實施例。 苓照第10A圖,首先在溫度為4〇(rc甚至更低時,將 古 勺基板引入低壓〇])裝置,然後在氫氣中將溫度提 向到預定的製程溫度400至55(TC (HeatUp)。 ,士,著,將要處理的基板在同一製程溫度、同一氫氣中 保持取長5分鐘,並執行氫熱處理製程(H2-Bake)。
•隧後5在同一製程溫度下改變引入到低壓CVD裝置的 處理氣體,並在溝渠1ΠΑ與11TB中進行SWe混晶區14A 29 316980 .1258218 • 與14B的蟲晶生長(SiGeDepo),如前所述。 另外,在第10A圖的步驟中,在保持同一製程溫度4〇〇 - 至5〇〇t的同時,將引入到低壓CVD裝置的處理氣體的成 . 分或部分壓力改變為P型SiGe混晶區14A與14B的蟲晶 生長’並在Si Ge混晶區14A與14B上磊晶生長p型石夕或p 型 SiGe (C)的帽罩層 15A 與 15B (Cap Si DeP〇)。 接著,在第10A圖的步驟中,在形成帽罩層15人與15]8 後’在製私溫度為4 0 0至5 5 0 °C時,在惰性氣體或氫氣中, 將氯化氫氣體引入低壓CVD裝置。由此從侧壁絕緣膜13A、 13B或裝置隔離結構丨丨!中去除任何有可能在第8E圖的矽 化物形成製程中變成矽化物形成晶核的結構(p〇stEtch), 並在氣氣或惰性氣體中將基板溫度降到4 〇 〇 或更低 (Cool Down ) ° 因此,第10A圖的製程避免了在製程途中取出基板, 使其外露於大氣中的步驟,這樣就可以在無污染源的低壓 ⑩CVD衣置中有效、連續地從办到此觀執行製 程步驟。此外,通過在同一基板溫度下執行HrBake到 〇stEtch的‘私,避免了上下改變基板溫度的處理步驟, 從而大大提高了整體製程的產能。 第10B圖顯示與前面所述的第9圖的實施例相應的製 程,其中,在形成溝渠117^與ητΒ後,通過在其中磊晶 生長P型矽層來形成源極區lls與汲極區nD,以覆蓋這 些溝渠的侧壁表面。 蒼照第1 OB ®,在本例中,可以在上述H2—Bake製程 30 3]6980 1258218 後,在指定的製程溫度400至550°C下,將部分分壓分別 為1至10Pa、lxl(T4至lxl(T2Pa以及1至l〇Pa的矽烷氣 體、二硼烷氣體以及氯化氫氣體引入低壓CVD裝置,藉以 形成源極區11S與汲極區11D。 另外,如第1 0C圖所示,可以根據需要,在第1 〇A圖 的製程中略去P〇s ΐ Etch製程。 [弟四貫施例] 第11圖為顯示低壓CVD裝置40的架構的示意圖,該 裝置用於前面所述的第8D圖的製程或第1 〇A至1 〇c圖的製 程。 參照第11圖,低壓CVD裝置40是所謂的簇型(cluster) 基板處理裝置,其中,用於執行第1〇A至1〇c圖製程步驟 的CVD反應爐經由充滿惰性氣體如氮氣的基板運輸室μ 與預處理室43相連,具有結構與g 1〇c圖的狀態相應的基 Μ經由未圖示的間門引人到基板運輪室42,該基板運輸 _至42再將引入的基板運輸到預處理室43。 在預處理室43中 ^丨 ---1 你挪枰虱氟酸(DHF)中執杆 的製程以及隨後的水沖洗製程,或者通過氫基(hydr〇= 清^先製程、或替代地通過卵氣相製程,進行去除 京>n氧化物膜的預處理。 ” 不需要外露於空氣,經過預處 運輪室42運於到, 衣私的基板經由基板 建如到CVD反應爐41,接著 圖的製程步驟。 執仃弟10A至10c [弟五貫施例] 316980 31 1258218 ’閘極絕緣膜12通常採用 與熱氧化膜相比,Si〇N膜 上述p通道MOS電晶體中 熱氧化物膜或SiON膜,其中3 具有較大的特定的介電常數。 在形成如此之開極絕緣膜^2的製程中, =極絕緣膜〗2之前,在氫氣中對 丨:在進 订熱處理製程,以去除其原始氧化物膜。 ’表面進 應當注意,在石夕基板u中形成溝渠而與咖以 ^石夕基板11上僅僅形成裝置隔離結構⑴的階段 2氣中的熱處理製程。通過如此之製程,徹底去除了: 基板U表面的原始氧化物膜,從而避免了 =上的釘札(p_lng),這樣,㈣子就有可 土= = :11定義的裝置區-中切基板11上自由f也:: 由於梦基板11表面㈣子的自由遷移,在裝置區⑴ 中形成波動(undulation),如第12A至12c圖所示。這裡, 應當注意,第12A圖是平面視圖,其顯示石夕基板u =里 置隔離區111和裝置區11A的部分,而帛12β圖是第似 圖沿閘極寬度方向的橫斷面視圖。另外,第12c圖顯示第 12B圖處於如下狀態時的結構:在裝置區丨丨A中形成溝| 11TA與11TB,並用p型SiGe混晶區14A與14B填充哕、、聋 渠 11TA 與 11TB。 參照第12B圖,如果裝置區11A具有較大的閘極寬度 ⑽’就會在裝置區1 ία中的矽基板丨丨表面形成明顯的波動^ 其中,如果溝渠11TA與11TB的形成如第12C圖所示,唁 316980 32 1258218 矽基板表面的波動會傳送到溝渠^以與1]Τβ的底部。 另方面在以SiGe混晶區14Α與14Β填充的溝渠 1ΠΑ與11TB巾,由於對晶體生長製程的時間的自我限制 效果’在SiGe混晶區14A與14B的上表面出現平坦的表面 因此,在這樣的情況下,在波動的底面上形成具有平 坦的上表面的SlGe混晶區。由此,由底面波動引起的 混晶量的增加或減少在第12C圖虛線表示的高度上互相抵 消,這樣,在通道區域中所獲得的擠壓應力類似於在平坦 表面上形成的SiGe混晶區所產生的擠壓應力。 另一方面,如果閘極寬度GW很小,只在裝置區UA 的表面上出現凸表面,如第13A圖與13β圖所示,如果溝 糸11TA與11TB形成於具有如此之凸表面的矽基板表面, 亚用SiGe混晶區14A與14B填充該溝渠ΠΤΑ與ΠΤΒ,由 於SiGe混晶區14A與14β的自我限制效果,在SiGe混晶區 14A與14B上形成平坦的表面。這樣,SiGe混晶區與 .14B有效的容量被底面的凸表面減少,從而大大減少了通 道區域中的擠壓應力。 因此,本實施例在閘極絕緣膜12形成前,在不超過 900 C的溫度下,在不包含氫的氣體中,如在氮氣、氬氣或 氦氣中執行原始氧化物的去除製程,以從矽基板表面去除 原始氧化物膜。 在低溫、不含氫的氣體中進行如此之原始氧化物的去 除製程,對在溝渠ΠΤΑ與11TB底面形成凸表面產生抑制 作用’如第13C圖所示,避免了填充溝渠1 與1 HR的 33 316980 1258218
SlGe混晶區14A與UB的有致容量的減少 實施例架構的通道區域中就有可处21丄 很據本 有可旎引入大的單軸擠壓應 力。 [第六實施例] 同時,在第80圖的製程中,當多晶石夕問極電極13的 表面外露時’在用SlGe混晶區14A與14B填充溝竿而 與謂時,不可避免地在多晶μ極電極13的表面 生SiGe混晶的沉積。 座 因此,對於第8D圖的製程,通過使用氧化石夕膜以 化石夕版,在形成多晶石夕閘極電極13時,在與多晶梦間極電 極13相應、用於形成閘極電極13的多晶石夕膜13M上,形 成遮罩Μ,如第14A圖所示。 接著,在第14Β圖的步驟中,在3〇〇至55代的溫卢 下,將第14Α圖的結構暴露於氯/二石朋燒混合氣體中,以^ _請上形成與閘極電極13的形成區域相應的硕 (Boron)膜1 3Βο,其厚度為丨至丨〇奈米。 接著’在第14C的製程中,圖刻多晶石夕膜i3M以形成 閘極電極13和側壁絕緣膜13A與13β。應注意第i4c 標出CVD氧化物膜121。在f 14C圖的架構中' 需要強°調、, 该硼遮罩圖刻13Bo形成於多晶矽閘極電極丨3的頂部。 由於在如此之石朋遮罩圖刻13B〇上不會生長_混晶 層,因此,即使在第8D圖的步驟中,當在溝渠丨丨以與ιιτβ 中生長SiGe混晶㊣14Α與14Β時,在多晶矽閘極電極13 上也不會生長SiGe混晶層。 316980 34 1258218 另外,在第14B圖的步 ,1 | 。^ 适谇地并 夕晶矽閘極電極13的多晶矽膜13Μ部分摻雜為ρ型。 上述實施例僅例示性說明本發明之原理及其功 非用於限制本發明。任何熟習此項技藝之人士均可二 ^發明之精神及範訂,對上述實施例進行修飾與改堤 =因此’本發明之權利保魏圍,應如後述 範圍所列。 τ月寻刊 【圖式簡單說明】 昂1圖為示意圖,其顯示用SiGe混晶 力源的半導體裝置的原理; 〜4應 ,2圖為顯示用SlGe混晶層作為該擠壓應力源 、·先+ V體裝置的架構的示意圖; 、 加槿6!3 f為顯示依據本發明第-實施例的半導體裝置的 木構的示意圖; 1曰7 各種二二二4:圖為顯示針對第3圖的半導體裝置所作的 口種改達的不意圖; 導# = 1至甚5 D圖為顯示依據本發明第一實施例,各種半 钕肢的溝渠形成製程的示意圖; 第6圖為依據本發明第—實施例定義 種芩數的示意圖; 夏们各 弟7圖為顯不依據本發明改進的半導體裝置的製造制 %的示意圖; 衣 f 8A至8E圖為不意圖,其顯示依據本發明第二實施 弟4D圖的半導體裳置的製造製程; 、 316980 35 1258218 . 弟9圖為定義第4D圖的半導體裝置的參數的示意圖; 第10A至i〇c圖為示意圖,其分別顯示依據本發明第 ‘ 二只施例中半導體裝置的各種製造方法; , 第11圖為不意圖,其顯示依據本發明第四實施例, 通過f用簽型基板處理裝置進行SiGe混晶層的生長方法; 第12A至12C圖為解釋本發明關於第五實施例的目標 的不意圖, 第13A至13C圖為解釋本發明第五實施例的示意圖; 籲以及 第14A至14C圖為解釋本發明第六實施例的示意圖。 【主要元件符號說明】
Ml $夕基板 1A,1B,14A,14B SiGe混晶區 la,lb,lc,ld,11D,11S 擴散區 lAs,IBs 侧表面 2, 12 閘極絕緣膜 3, 13 問極電極 3A,3B,13A,13B 側壁絕緣膜 4, 16A,16B,16C 矽化物層 10 電晶體 11A 裝置區 11a 源極延伸區 lib >及極延伸區 11D >及極區 36 3]6980 1258218
11G 111
Up
11S
11TA, 11TB 121 13Bo 13M • 14a,14b,14c 14d 14e
15A,15B 40 41 42 • 43
L
M 通道層 ST I裝置隔離區 袋狀注入區 源極區 >冓渠 氧化物膜 硼遮罩圖刻 多晶紗月臭 侧壁表面 底面 分面 秒蟲晶層 低壓CVD裝置 CVD反應爐 基板運輸室 預處理室 水平 遮罩 37 316980

Claims (1)

  1. .1258218 十、申請專利範圍: h 一種半導體裝置,其包括: 矽基板,其中包括通道區域; 在該矽基板上經 對立的側壁表面 閘極毛極,其與該通道區域相應5 由閘極絕緣膜形成5在該閘極電極互相 上分別有側壁絕緣膜;
    由p型擴散區構成的 沒極延伸區形成於該閘極 該通道區域互相對立; 源極與汲極延伸區,該源極與 電極兩外側的矽基板中,隔著 由P型擴散區構成的源極與汲極區 區分別形成於該側壁絕緣膜外側的龜;二= 6玄源極與汲極延伸區;以及 男 “—對siGe混晶區,其分別磊晶形成於該側壁絕緣 艇外側的碎基板中,以分別由該源極與汲極區包括,該 混晶區與該矽基板呈磊晶關係; 〆
    各SiGe混晶區所生長到的高度超過形成於該閘極 絕緣膜與該矽基板之間的閘極絕緣膜界面, 该對Si Ge混晶區分別由互相面對的側壁表面 義, / 其中5在各Si Ge混晶區中,該側壁表面由複數個 刀面定義,访些分面相對該矽基板的主表面分別形成彼 此不同的角度。 2.如申請專利範圍第]項之半導體裝置,其中,該矽基板 的王表面形成(〇〇])表面,該閘極電極在該矽基板上 316980 38 1258218 一般沿<110〉方向或<100〉方向延伸。 3·如:請專利範圍第1項之半導體裝置,其中,各SiGe 斤匕日日區所3的Ge以原子百分數表示的濃度水平超過 20%。 4.如申請專利範圍第3項之半導體裝置,其卜以原子百 分數表示的該濃度水平不超過40%。 5·如申請專利範圍第丨項之半導體裝置,其中,各 混晶區位於該閘極絕緣膜界面下方的部分具有^至 7〇·的厚度,而1玄SiGe昆晶區位於該閘極絕緣膜界面 之上或上方的部分具有〇至30nm的厚度。 6·如申請專利範圍第丨項之半導體裝置,其中,在各以以 混晶區中,各分面具有平坦化的表面。 。 7·如申請專利範圍第】項之半導體裝置,其中,在各以以 混晶區中,各分面由晶體表面定義。 ° 8·如申請專利範圍第丨項之半導體裝置,其中,在各 混晶區中,該些複數個分面包括最高分面,該最D高分1 : 的形成使得該對Si Ge混晶區互相面對的側表面之間的 距離沿著該矽基板向上的方向增加,該最高分面定義位 於遠閘桠絶緣膜界面上方的s丨Ge混晶區的頂部。 9·如申請專利範圍第】項之半導體裝置,其中,^各以以 心I3B區中,这些複數個分面包括相對於該主表面少垂直 方向延伸的垂直分面。 ^ 10·如申請專利範圍第!項之半導體裝置,其中,在各 混晶區中:該些複數個分面包括沿著該矽基板向下的方 316980 39 1258218 面之間的距離 向減少該對Si Ge混晶區互相面對的側表 的分面。 11 ·如申清專利範圍第1項之半導體裝置,1 "、f,在各 SiGe 混晶區巾,該些複數個分面包括沿著該石夕基板向上的方 向減少該對S! G e混晶區互相面對的側表面之間的距離 的分面。 ϋ如申請專利範圍第8項之半導體裝置,其中’在各SiGe • 混晶區中,該些複數個分面包括垂直分面,該垂;分1 J 延續該最高分面,垂直延伸到該矽基板的主表面,該垂 直分面定義位於該頂部的SiGe混晶區下方的Sik混晶 區的主要部分。 a曰曰 13.如申請專利範圍第12項之半導體裝置唭中,在各SiGe 混晶區中,該些複數個分面包括分面,該分面延續該垂 直刀面在包括5玄s丨Ge混晶區底面的該$丨以混晶區的 底部i沿該向上的方向減少該對SiGe混晶區互相面對 φ 的侧表面之間的距離。 14·如申請專利範圍第8項之半導體裝置,其中,在各 混晶區中,該些複數個分面包括主分面,該主分面延續 忒取:分面’沿著該矽基板向下的方向,減少該對SiGe 此日日區互相®對的側表面之間的距離,該主分面定義該 S1 Ge心SQ區的王要部分,其位於該$ 1 混晶區的頂部 的正下方, 访妓數個分面復包括較低分面,該較低分面延續該 主刀面〃沿者·达矽基板向上的方向;減少該對s]Ge混 40 3]6980 1258218 晶區互相面對白勺侧矣而 」调衣面之間的距離,該較低分面定義該 S!Ge混晶區的底部,其位於該以以混晶 的正下方並包括該⑽混晶區的底面。要心 1。·如申凊專利靶圍第! 4項之半導體裝置,其中,該主分 面與該較低分面大體由(111)表面或晶體結構相同的 表面構成。 ♦ 16.如申請專利範圍第8項之半導體裝置,其中,在各 ,晶區中,該複數個分面包括主分面,該主分面延續該 最问分面,沿著該矽基板向上的方向,減少該對 混晶區互相面對的側表面之間的距離,該主分面定義該 SiGe混晶區的主要部分,其位於該SiGe混晶區的頂部 的正下方。 1 7·如申請專利範圍第}項之半導體裝置,其中,各SiGe 混晶區上有矽化物膜,該矽化物膜大體不含鍺。 18·如申請專利範圍第丨項之半導體裝置,在該SlGe混晶 區上復包括P型矽層,在該P型矽層中形成矽化物層。 1 9·如申請專利範圍第1 8項之半導體裝置,其中,該石夕化 物層之底面位於該閘極絕緣膜界面的上方。 2 0 ·如申請專利範圍第18項之半導體裝置,其中,該p型 石夕層大體不含錯。 21 · —種製造半導體裝置的方法,該半導體裝置在通道區域 的兩外側具有一對Si Ge擠壓應力源,該方法包括以下 在矽基板上形成閘極絕緣膜; 4] 3]6980 1258218 與該通道區域相應,在該矽基板上經 膜形成閘極電極; ’上、.·…閘極絕緣 與綠、閘極電極的兩外側相應,在該 對P型擴散區; 攸甲心成一 擴散Ϊ = 1 電極的兩外側㈣基板中形成-心型 的側辟〜:與汲極區,由/分別形成於該閘極電極上 離;、土、吧緣版將該閉極電極的兩外側與該通道區域隔 刻製源ί與祕區相應,在師基板中藉由钱 義的側辟去對溝渠,使得該溝渠具有由複數個分面定 节源極^ =並使得該溝渠的侧壁表面與底面由構成 人及極區的ρ型擴散區連續覆蓋;以及 石石日日生長ρ型SiGe混晶I,藉以填充該溝竿, 的蟲^至爾的溫度下_^^混晶層 22· =,圍第21項之方法,在該剛❿混晶層 ,㈠^包括以下步驟:對該溝渠的外露表面進 订。括清洗製程與原始氧化物膜去除製程的預處理制 程’亚在該預處理製程之後,在氫氣中對該溝渠的外露 衣面進行熱回火製程。 23. 如申料利_隸項之方法,其中,在氫氣中進行 的該熱回火步驟的溫度與該SlGe混晶層蟲 度一致。 24. 如申請專利範圍第2]項之方法,其中,通過切氣體 L· K). ^ 3]6980 1258218 源與鍺氣體源、中添加p型摻質氣體與蚀刻氣體,藉由低 廢CVD製程進行該13型SiGe混晶層的蠢晶生長。 25. ^申請專.圍f 24項之方法,其中,以分別確定的 流速供應該矽氣體源與該鍺氣體源,從而進行該p型 .e此層的蠢晶生長,使得該$丨g e混晶層所含錯的 濃度大約為20%,或更多但低於28%。 26. 如申請專利範圍第21項之方法,其中,在該矽基板與 °玄閘極纟巴緣膜之間的界面外進行該p型Si Ge混晶層的 蠢晶生長。 2 7 ·如申明專利範圍第21項之方法,復包括如下步驟··在 忒P.型S1 Ge混晶層的磊晶生長之後,在該p型s丨Ge 心bb層上蟲晶生長帽罩層5該帽罩層由以矽為主、大體 不含鍺的p型半導體層構成。 28·如申請專利範圍第21項之方法,復包括如下步驟··在 該P型SiGe混晶層的磊晶生長之後,在該p型SiGe • 混晶層上蠢晶生長帽罩層,該帽罩層由以矽為主、所含 鍺的濃度不超過20%的p型半導體層構成。 29·如申⑽专利範圍罘27項之方法,其中,磊晶形成該p 型帽罩層的步驟的操作溫度太體等於或低於磊晶生長 該P型SiGe混晶層的溫度。 30·如申請專利範圍第28項之方法,復包括如下步驟:在 該帽罩層上形成矽化物層,該矽化物層的底面不超過該 ρ型S1G e混晶層與該帽罩層之間的界面。 3 ].如申請專利範圍苐3 〇項之方法,復包括如下步驟:在 43 3]6980 1258218 =該帽罩層的步狀後,但在形成料化物層的步驟 2:體=氣體_彳壁絕緣膜的表面,所用的溫 又,八或低於磊晶生長該丨〕型SiG 32. 如申請專利範 曰曰盾的-度。 # ^ ^ ^ 1之方法,其中,在該閘極電極 ㈣的狀態下進行該⑴心混晶層的蟲 晶生長。 33. 二申請專利範圍第21項之方法,其中,形成該溝渠的 乂驟包括乾式蝕刻製程與濕式蝕刻製程。 I如申請專利範圍第21項之方法,其中,形成該閘極絕 緣版的步驟包括下列步驟:去除㈣基板表面的原始氧 化物胰,亚在已去除該原始氧化物膜的矽基板表面形成 5玄閘極絕緣膜,該去除原始氧化物膜的步驟包括:在 900 C或更低的溫度下,在不含氫的非氧化氣體中回火 路秒基板。 35. —種製造半導體裝置的方法,該半導體裝置在通道區域 的兩外侧具有一對SlGe擠壓應力源,該方法包括以下 步驟: 啦'石夕基板上形成閘極絕緣膜; 興该通迫區域相應,在該石夕基板上經由該閘極絕緣 月吳形成閘極電極; 在遠閘極電極的雨外側的石夕基板中形成一對p变 擴散; 长該砂基板中形成一對屢渠,分別與該半導體裝置 的源極與汲極區對應,該溝渠具有由複數個分面定義的 Μ 316980 1258218 側表面; 在各溝渠中,由摻雜為P型的矽磊晶層覆蓋該溝渠 的側表面和底面;以及 在各溝渠中,磊晶生長p型Si Ge混晶層以填充該 溝渠, 在400至550°C的溫度下進行該p型SiGe混晶層 的蟲晶生長。
    3]6980
TW094112198A 2004-12-28 2005-04-18 Semiconductor device and fabrication method thereof TWI258218B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004380619A JP4369359B2 (ja) 2004-12-28 2004-12-28 半導体装置

Publications (2)

Publication Number Publication Date
TW200623414A TW200623414A (en) 2006-07-01
TWI258218B true TWI258218B (en) 2006-07-11

Family

ID=36147607

Family Applications (1)

Application Number Title Priority Date Filing Date
TW094112198A TWI258218B (en) 2004-12-28 2005-04-18 Semiconductor device and fabrication method thereof

Country Status (7)

Country Link
US (8) US7791064B2 (zh)
EP (1) EP1677360B1 (zh)
JP (1) JP4369359B2 (zh)
KR (1) KR100657395B1 (zh)
CN (1) CN100470838C (zh)
DE (1) DE602005021196D1 (zh)
TW (1) TWI258218B (zh)

Families Citing this family (222)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8994104B2 (en) 1999-09-28 2015-03-31 Intel Corporation Contact resistance reduction employing germanium overlayer pre-contact metalization
US7238985B2 (en) * 2003-08-13 2007-07-03 International Rectifier Corporation Trench type mosgated device with strained layer on trench sidewall
JP4369359B2 (ja) 2004-12-28 2009-11-18 富士通マイクロエレクトロニクス株式会社 半導体装置
US7335959B2 (en) * 2005-01-06 2008-02-26 Intel Corporation Device with stepped source/drain region profile
JP2006351581A (ja) * 2005-06-13 2006-12-28 Fujitsu Ltd 半導体装置の製造方法
US7579617B2 (en) * 2005-06-22 2009-08-25 Fujitsu Microelectronics Limited Semiconductor device and production method thereof
JP4984665B2 (ja) * 2005-06-22 2012-07-25 富士通セミコンダクター株式会社 半導体装置およびその製造方法
US8105908B2 (en) * 2005-06-23 2012-01-31 Applied Materials, Inc. Methods for forming a transistor and modulating channel stress
US7494858B2 (en) * 2005-06-30 2009-02-24 Intel Corporation Transistor with improved tip profile and method of manufacture thereof
US7892905B2 (en) * 2005-08-02 2011-02-22 Globalfoundries Singapore Pte. Ltd. Formation of strained Si channel and Si1-xGex source/drain structures using laser annealing
CN1941296A (zh) * 2005-09-28 2007-04-04 中芯国际集成电路制造(上海)有限公司 应变硅cmos晶体管的原位掺杂硅锗与碳化硅源漏极区
CN100442476C (zh) 2005-09-29 2008-12-10 中芯国际集成电路制造(上海)有限公司 用于cmos技术的应变感应迁移率增强纳米器件及工艺
US7939413B2 (en) * 2005-12-08 2011-05-10 Samsung Electronics Co., Ltd. Embedded stressor structure and process
US7863197B2 (en) * 2006-01-09 2011-01-04 International Business Machines Corporation Method of forming a cross-section hourglass shaped channel region for charge carrier mobility modification
DE102006009226B9 (de) * 2006-02-28 2011-03-10 Advanced Micro Devices, Inc., Sunnyvale Verfahren zum Herstellen eines Transistors mit einer erhöhten Schwellwertstabilität ohne Durchlass-Strombeeinträchtigung und Transistor
US8017487B2 (en) 2006-04-05 2011-09-13 Globalfoundries Singapore Pte. Ltd. Method to control source/drain stressor profiles for stress engineering
US7750416B2 (en) 2006-05-03 2010-07-06 Taiwan Semiconductor Manufacturing Company, Ltd. Modifying work function in PMOS devices by counter-doping
JP2007335573A (ja) * 2006-06-14 2007-12-27 Hitachi Ltd 半導体装置およびその製造方法
US8853746B2 (en) 2006-06-29 2014-10-07 International Business Machines Corporation CMOS devices with stressed channel regions, and methods for fabricating the same
JP5076388B2 (ja) 2006-07-28 2012-11-21 富士通セミコンダクター株式会社 半導体装置及びその製造方法
KR100725376B1 (ko) 2006-07-31 2007-06-07 삼성전자주식회사 반도체 장치 및 그 제조 방법
KR100746232B1 (ko) * 2006-08-25 2007-08-03 삼성전자주식회사 스트레인드 채널을 갖는 모스 트랜지스터 및 그 제조방법
JP5070779B2 (ja) * 2006-09-21 2012-11-14 ソニー株式会社 半導体装置の製造方法および半導体装置
US7534689B2 (en) * 2006-11-21 2009-05-19 Advanced Micro Devices, Inc. Stress enhanced MOS transistor and methods for its fabrication
US7704840B2 (en) * 2006-12-15 2010-04-27 Advanced Micro Devices, Inc. Stress enhanced transistor and methods for its fabrication
JP2008159803A (ja) * 2006-12-22 2008-07-10 Toshiba Corp 半導体装置
US7538387B2 (en) * 2006-12-29 2009-05-26 Taiwan Semiconductor Manufacturing Company, Ltd. Stack SiGe for short channel improvement
US8217423B2 (en) * 2007-01-04 2012-07-10 International Business Machines Corporation Structure and method for mobility enhanced MOSFETs with unalloyed silicide
JP5326274B2 (ja) 2007-01-09 2013-10-30 ソニー株式会社 半導体装置および半導体装置の製造方法
JP2008171999A (ja) * 2007-01-11 2008-07-24 Toshiba Corp 半導体装置およびその製造方法
CN101226899A (zh) * 2007-01-19 2008-07-23 中芯国际集成电路制造(上海)有限公司 在硅凹陷中后续外延生长应变硅mos晶片管的方法和结构
JP5100137B2 (ja) * 2007-01-26 2012-12-19 株式会社東芝 半導体装置の製造方法および半導体装置
DE102007004862B4 (de) * 2007-01-31 2014-01-30 Globalfoundries Inc. Verfahren zur Herstellung von Si-Ge enthaltenden Drain/Source-Gebieten in Transistoren mit geringerem Si/Ge-Verlust
CN101641792B (zh) * 2007-02-22 2012-03-21 富士通半导体股份有限公司 半导体器件及其制造方法
US7732285B2 (en) * 2007-03-28 2010-06-08 Intel Corporation Semiconductor device having self-aligned epitaxial source and drain extensions
US20080237634A1 (en) * 2007-03-30 2008-10-02 International Business Machines Corporation Crystallographic recess etch for embedded semiconductor region
US7691752B2 (en) * 2007-03-30 2010-04-06 Intel Corporation Methods of forming improved EPI fill on narrow isolation bounded source/drain regions and structures formed thereby
KR101264113B1 (ko) * 2007-07-16 2013-05-13 삼성전자주식회사 변형된 채널을 갖는 cmos 소자 및 이의 제조방법
US7687337B2 (en) * 2007-07-18 2010-03-30 Freescale Semiconductor, Inc. Transistor with differently doped strained current electrode region
CN101364545B (zh) * 2007-08-10 2010-12-22 中芯国际集成电路制造(上海)有限公司 应变硅晶体管的锗硅和多晶硅栅极结构
JP5178103B2 (ja) * 2007-09-12 2013-04-10 株式会社東芝 半導体装置およびその製造方法
JP5200476B2 (ja) * 2007-09-27 2013-06-05 富士通セミコンダクター株式会社 半導体装置及びその製造方法
JP5389346B2 (ja) * 2007-10-11 2014-01-15 富士通セミコンダクター株式会社 Mos電界効果トランジスタおよびその製造方法
JP2009099702A (ja) 2007-10-16 2009-05-07 Toshiba Corp 半導体装置及びその製造方法
US7964910B2 (en) * 2007-10-17 2011-06-21 International Business Machines Corporation Planar field effect transistor structure having an angled crystallographic etch-defined source/drain recess and a method of forming the transistor structure
JP2009111200A (ja) * 2007-10-31 2009-05-21 Panasonic Corp 半導体装置及びその製造方法
JP5211647B2 (ja) 2007-11-01 2013-06-12 富士通セミコンダクター株式会社 半導体装置及びその製造方法
JP2009152312A (ja) * 2007-12-19 2009-07-09 Toshiba Corp 半導体装置及びその製造方法
WO2009093328A1 (ja) 2008-01-25 2009-07-30 Fujitsu Microelectronics Limited 半導体装置及びその製造方法
US8624295B2 (en) 2008-03-20 2014-01-07 Taiwan Semiconductor Manufacturing Company, Ltd. SRAM devices utilizing strained-channel transistors and methods of manufacture
WO2009122542A1 (ja) * 2008-03-31 2009-10-08 富士通マイクロエレクトロニクス株式会社 半導体装置及びその製造方法
US7960229B2 (en) * 2008-04-10 2011-06-14 Globalfoundries Inc. Metal oxide semiconductor transistor with reduced gate height, and related fabrication methods
JP5329835B2 (ja) 2008-04-10 2013-10-30 株式会社東芝 半導体装置の製造方法
US7772095B2 (en) * 2008-05-28 2010-08-10 International Business Machines Corporation Integrated circuit having localized embedded SiGe and method of manufacturing
CN101593702B (zh) * 2008-05-30 2010-12-22 中芯国际集成电路制造(北京)有限公司 应变金属氧化物半导体器件的制造方法
JP2010003812A (ja) 2008-06-19 2010-01-07 Fujitsu Microelectronics Ltd 半導体装置およびその製造方法
JP4770885B2 (ja) 2008-06-30 2011-09-14 ソニー株式会社 半導体装置
DE102008035816B4 (de) 2008-07-31 2011-08-25 GLOBALFOUNDRIES Dresden Module One Ltd. Liability Company & Co. KG, 01109 Leistungssteigerung in PMOS- und NMOS-Transistoren durch Verwendung eines eingebetteten verformten Halbleitermaterials
US8212336B2 (en) * 2008-09-15 2012-07-03 Acorn Technologies, Inc. Field effect transistor source or drain with a multi-facet surface
DE102008049733B3 (de) * 2008-09-30 2010-06-17 Advanced Micro Devices, Inc., Sunnyvale Transistor mit eingebettetem Si/Ge-Material mit geringerem Abstand zum Kanalgebiet und Verfahren zur Herstellung des Transistors
DE102008049723B4 (de) * 2008-09-30 2012-01-26 Advanced Micro Devices, Inc. Transistor mit eingebettetem Si/Ge-Material mit einer besseren substratüberspannenden Gleichmäßigkeit
US7994014B2 (en) * 2008-10-10 2011-08-09 Advanced Micro Devices, Inc. Semiconductor devices having faceted silicide contacts, and related fabrication methods
JP5315922B2 (ja) * 2008-10-27 2013-10-16 富士通セミコンダクター株式会社 半導体装置の製造方法
KR20100081667A (ko) * 2009-01-07 2010-07-15 삼성전자주식회사 스트레인드 채널을 갖는 반도체 장치 및 그 제조 방법
JP5206427B2 (ja) * 2009-01-08 2013-06-12 富士通セミコンダクター株式会社 半導体装置の製造方法
KR20100088854A (ko) * 2009-02-02 2010-08-11 삼성전자주식회사 반도체 장치 및 그의 제조 방법
US9337407B2 (en) * 2009-03-31 2016-05-10 Epistar Corporation Photoelectronic element and the manufacturing method thereof
DE102009015748B4 (de) * 2009-03-31 2014-05-22 Globalfoundries Dresden Module One Limited Liability Company & Co. Kg Verringern des Silizidwiderstands in SiGe-enthaltenden Drain/Source-Gebieten von Transistoren
US8093665B2 (en) 2009-05-18 2012-01-10 Macronix International Co., Ltd. Semiconductor device and method for fabricating the same
DE102009031114B4 (de) * 2009-06-30 2011-07-07 Globalfoundries Dresden Module One LLC & CO. KG, 01109 Halbleiterelement, das in einem kristallinen Substratmaterial hergestellt ist und ein eingebettetes in-situ n-dotiertes Halbleitermaterial aufweist, und Verfahren zur Herstellung desselben
JP5051301B2 (ja) * 2009-07-16 2012-10-17 トヨタ自動車株式会社 内燃機関の制御弁異常判定装置
JP5420345B2 (ja) * 2009-08-14 2014-02-19 ルネサスエレクトロニクス株式会社 半導体装置およびその製造方法
CN102024761A (zh) 2009-09-18 2011-04-20 中芯国际集成电路制造(上海)有限公司 用于形成半导体集成电路器件的方法
US8022488B2 (en) * 2009-09-24 2011-09-20 International Business Machines Corporation High-performance FETs with embedded stressors
US8455859B2 (en) * 2009-10-01 2013-06-04 Taiwan Semiconductor Manufacturing Company, Ltd. Strained structure of semiconductor device
US8368127B2 (en) * 2009-10-08 2013-02-05 Globalfoundries Singapore Pte., Ltd. Method of fabricating a silicon tunneling field effect transistor (TFET) with high drive current
US8035141B2 (en) * 2009-10-28 2011-10-11 International Business Machines Corporation Bi-layer nFET embedded stressor element and integration to enhance drive current
US8338258B2 (en) * 2009-11-25 2012-12-25 International Business Machines Corporation Embedded stressor for semiconductor structures
CN102129995B (zh) * 2010-01-12 2012-12-05 中芯国际集成电路制造(上海)有限公司 金属硅化物接触层的形成方法以及场效应晶体管
KR101576529B1 (ko) * 2010-02-12 2015-12-11 삼성전자주식회사 습식 식각을 이용한 실리콘 파셋트를 갖는 반도체 장치 및 제조방법
US8236660B2 (en) 2010-04-21 2012-08-07 International Business Machines Corporation Monolayer dopant embedded stressor for advanced CMOS
US8828850B2 (en) 2010-05-20 2014-09-09 Taiwan Semiconductor Manufacturing Company, Ltd. Reducing variation by using combination epitaxy growth
US9263339B2 (en) 2010-05-20 2016-02-16 Taiwan Semiconductor Manufacturing Company, Ltd. Selective etching in the formation of epitaxy regions in MOS devices
US9064688B2 (en) 2010-05-20 2015-06-23 Taiwan Semiconductor Manufacturing Company, Ltd. Performing enhanced cleaning in the formation of MOS devices
US8299535B2 (en) * 2010-06-25 2012-10-30 International Business Machines Corporation Delta monolayer dopants epitaxy for embedded source/drain silicide
JP2012019004A (ja) * 2010-07-07 2012-01-26 Panasonic Corp 半導体装置及びその製造方法
JP2012019095A (ja) * 2010-07-08 2012-01-26 Hitachi Kokusai Electric Inc 半導体装置の製造方法および基板処理装置
US8278196B2 (en) * 2010-07-21 2012-10-02 Taiwan Semiconductor Manufacturing Company, Ltd. High surface dopant concentration semiconductor device and method of fabricating
KR20120019214A (ko) * 2010-08-25 2012-03-06 삼성전자주식회사 반도체 집적 회로 장치
KR101703096B1 (ko) * 2010-09-02 2017-02-07 삼성전자 주식회사 반도체 장치의 제조방법
US8928094B2 (en) 2010-09-03 2015-01-06 Taiwan Semiconductor Manufacturing Company, Ltd. Strained asymmetric source/drain
KR101776926B1 (ko) * 2010-09-07 2017-09-08 삼성전자주식회사 반도체 소자 및 그 제조 방법
US8377780B2 (en) * 2010-09-21 2013-02-19 International Business Machines Corporation Transistors having stressed channel regions and methods of forming transistors having stressed channel regions
US8405155B2 (en) * 2010-09-23 2013-03-26 United Microelectronics Corp. Semiconductor structure with gate structure, source/drain region and recess filling with epitaxial layer
TWI497718B (zh) * 2010-09-23 2015-08-21 United Microelectronics Corp 半導體結構
CN102437184B (zh) * 2010-09-29 2015-07-08 联华电子股份有限公司 半导体结构
KR101811796B1 (ko) 2010-10-06 2018-01-25 삼성전자주식회사 급경사 접합 프로파일을 갖는 소스/드레인 영역들을 구비하는 반도체 소자 및 그 제조방법
JP2012089784A (ja) * 2010-10-22 2012-05-10 Renesas Electronics Corp 半導体装置および半導体装置の製造方法
US8709897B2 (en) * 2010-11-30 2014-04-29 Taiwan Semiconductor Manufacturing Company, Ltd. High performance strained source-drain structure and method of fabricating the same
US8901537B2 (en) 2010-12-21 2014-12-02 Intel Corporation Transistors with high concentration of boron doped germanium
US9484432B2 (en) 2010-12-21 2016-11-01 Intel Corporation Contact resistance reduction employing germanium overlayer pre-contact metalization
US8455930B2 (en) 2011-01-05 2013-06-04 Taiwan Semiconductor Manufacturing Company, Ltd. Strained semiconductor device with facets
US8796788B2 (en) 2011-01-19 2014-08-05 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor devices with strained source/drain structures
KR20120099863A (ko) * 2011-03-02 2012-09-12 삼성전자주식회사 트랜지스터 및 그 제조 방법
US20120228628A1 (en) * 2011-03-07 2012-09-13 Toshiba America Electronic Components, Inc. Semiconductor device and method of fabricating the same
US8466502B2 (en) 2011-03-24 2013-06-18 United Microelectronics Corp. Metal-gate CMOS device
US8445363B2 (en) 2011-04-21 2013-05-21 United Microelectronics Corp. Method of fabricating an epitaxial layer
US8324059B2 (en) * 2011-04-25 2012-12-04 United Microelectronics Corp. Method of fabricating a semiconductor structure
US8426284B2 (en) 2011-05-11 2013-04-23 United Microelectronics Corp. Manufacturing method for semiconductor structure
US8481391B2 (en) 2011-05-18 2013-07-09 United Microelectronics Corp. Process for manufacturing stress-providing structure and semiconductor device with such stress-providing structure
CN102800700B (zh) * 2011-05-26 2015-04-29 中芯国际集成电路制造(上海)有限公司 晶体管及其形成方法
US8431460B2 (en) 2011-05-27 2013-04-30 United Microelectronics Corp. Method for fabricating semiconductor device
US8492290B2 (en) * 2011-06-21 2013-07-23 International Business Machines Corporation Fabrication of silicon oxide and oxynitride having sub-nanometer thickness
CN102867749B (zh) * 2011-07-06 2014-11-05 中芯国际集成电路制造(上海)有限公司 Mos晶体管的形成方法
US8999794B2 (en) * 2011-07-14 2015-04-07 Taiwan Semiconductor Manufacturing Company, Ltd. Self-aligned source and drain structures and method of manufacturing same
US8716750B2 (en) 2011-07-25 2014-05-06 United Microelectronics Corp. Semiconductor device having epitaxial structures
US8575043B2 (en) 2011-07-26 2013-11-05 United Microelectronics Corp. Semiconductor device and manufacturing method thereof
CN102931233B (zh) * 2011-08-08 2016-03-16 中芯国际集成电路制造(上海)有限公司 Nmos晶体管及其形成方法
US8884341B2 (en) 2011-08-16 2014-11-11 Taiwan Semiconductor Manufacturing Company, Ltd. Integrated circuits
US8647941B2 (en) 2011-08-17 2014-02-11 United Microelectronics Corp. Method of forming semiconductor device
KR20130020221A (ko) * 2011-08-19 2013-02-27 삼성전자주식회사 반도체 소자 및 그 제조 방법
US8674433B2 (en) 2011-08-24 2014-03-18 United Microelectronics Corp. Semiconductor process
FR2979480B1 (fr) * 2011-08-25 2013-09-27 Commissariat Energie Atomique Procede de realisation d'un dispositif a transistors contraints par siliciuration des zones de source et de drain
US8927374B2 (en) 2011-10-04 2015-01-06 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor device and fabrication method thereof
US8476169B2 (en) 2011-10-17 2013-07-02 United Microelectronics Corp. Method of making strained silicon channel semiconductor structure
US20130095627A1 (en) * 2011-10-18 2013-04-18 Globalfoundries Inc. Methods of Forming Source/Drain Regions on Transistor Devices
US8691659B2 (en) 2011-10-26 2014-04-08 United Microelectronics Corp. Method for forming void-free dielectric layer
US8754448B2 (en) 2011-11-01 2014-06-17 United Microelectronics Corp. Semiconductor device having epitaxial layer
US9847225B2 (en) * 2011-11-15 2017-12-19 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor device and method of manufacturing the same
US8647953B2 (en) * 2011-11-17 2014-02-11 United Microelectronics Corp. Method for fabricating first and second epitaxial cap layers
US8709930B2 (en) 2011-11-25 2014-04-29 United Microelectronics Corp. Semiconductor process
US8921206B2 (en) * 2011-11-30 2014-12-30 United Microelectronics Corp. Semiconductor process
US20130149830A1 (en) * 2011-12-07 2013-06-13 Samsung Electronics Co., Ltd. Methods of forming field effect transistors having silicon-germanium source/drain regions therein
US20130183801A1 (en) * 2012-01-18 2013-07-18 Tsung-Min Kuo Method for manufacturing semiconductor devices
US9548378B2 (en) * 2012-02-09 2017-01-17 GlobalFoundries, Inc. Epitaxial channel formation methods and structures
US9136348B2 (en) 2012-03-12 2015-09-15 United Microelectronics Corp. Semiconductor structure and fabrication method thereof
US9202914B2 (en) * 2012-03-14 2015-12-01 United Microelectronics Corporation Semiconductor device and method for fabricating the same
US8664069B2 (en) 2012-04-05 2014-03-04 United Microelectronics Corp. Semiconductor structure and process thereof
US8866230B2 (en) 2012-04-26 2014-10-21 United Microelectronics Corp. Semiconductor devices
US8835243B2 (en) 2012-05-04 2014-09-16 United Microelectronics Corp. Semiconductor process
WO2013171988A1 (ja) * 2012-05-16 2013-11-21 株式会社アルバック 成膜方法及び成膜装置
CN103426766B (zh) * 2012-05-24 2016-04-20 中芯国际集成电路制造(上海)有限公司 Pmos晶体管及其形成方法
KR101986534B1 (ko) 2012-06-04 2019-06-07 삼성전자주식회사 내장된 스트레인-유도 패턴을 갖는 반도체 소자 및 그 형성 방법
US8951876B2 (en) 2012-06-20 2015-02-10 United Microelectronics Corp. Semiconductor device and manufacturing method thereof
US8796695B2 (en) 2012-06-22 2014-08-05 United Microelectronics Corp. Multi-gate field-effect transistor and process thereof
US9799750B2 (en) * 2012-07-17 2017-10-24 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor device and fabrication method thereof
KR20140016008A (ko) * 2012-07-30 2014-02-07 삼성전자주식회사 반도체 소자 및 그 제조 방법
US8912608B2 (en) 2012-08-17 2014-12-16 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor device and fabrication method thereof
US8710632B2 (en) 2012-09-07 2014-04-29 United Microelectronics Corp. Compound semiconductor epitaxial structure and method for fabricating the same
KR20140036823A (ko) 2012-09-18 2014-03-26 삼성전자주식회사 반도체 소자 제조 방법
KR20140038826A (ko) 2012-09-21 2014-03-31 삼성전자주식회사 트랜지스터를 포함하는 반도체 소자 및 그 제조 방법
KR20140039544A (ko) 2012-09-24 2014-04-02 삼성전자주식회사 반도체 소자 및 그 제조 방법
US9105490B2 (en) 2012-09-27 2015-08-11 Taiwan Semiconductor Manufacturing Company, Ltd. Contact structure of semiconductor device
US8823065B2 (en) * 2012-11-08 2014-09-02 Taiwan Semiconductor Manufacturing Company, Ltd. Contact structure of semiconductor device
US9287138B2 (en) 2012-09-27 2016-03-15 Taiwan Semiconductor Manufacturing Company, Ltd. FinFET low resistivity contact formation method
CN103779278A (zh) * 2012-10-22 2014-05-07 中芯国际集成电路制造(上海)有限公司 Cmos管的形成方法
US9117925B2 (en) 2013-01-31 2015-08-25 United Microelectronics Corp. Epitaxial process
US9123633B2 (en) * 2013-02-01 2015-09-01 Taiwan Semiconductor Manufacturing Company, Ltd. Methods for forming semiconductor regions in trenches
US9356136B2 (en) * 2013-03-07 2016-05-31 Taiwan Semiconductor Manufacturing Co., Ltd. Engineered source/drain region for n-Type MOSFET
US8753902B1 (en) 2013-03-13 2014-06-17 United Microelectronics Corp. Method of controlling etching process for forming epitaxial structure
US20140264444A1 (en) * 2013-03-13 2014-09-18 International Business Machines Corporation Stress-enhancing selective epitaxial deposition of embedded source and drain regions
US8940640B2 (en) * 2013-03-13 2015-01-27 Taiwan Semiconductor Manufacturing Company, Ltd. Source/drain structure of semiconductor device
US9034705B2 (en) 2013-03-26 2015-05-19 United Microelectronics Corp. Method of forming semiconductor device
US9064893B2 (en) 2013-05-13 2015-06-23 United Microelectronics Corp. Gradient dopant of strained substrate manufacturing method of semiconductor device
US8853060B1 (en) 2013-05-27 2014-10-07 United Microelectronics Corp. Epitaxial process
US9076652B2 (en) 2013-05-27 2015-07-07 United Microelectronics Corp. Semiconductor process for modifying shape of recess
US8765546B1 (en) 2013-06-24 2014-07-01 United Microelectronics Corp. Method for fabricating fin-shaped field-effect transistor
US9245955B2 (en) 2013-06-28 2016-01-26 Stmicroelectronics, Inc. Embedded shape SiGe for strained channel transistors
US8895396B1 (en) 2013-07-11 2014-11-25 United Microelectronics Corp. Epitaxial Process of forming stress inducing epitaxial layers in source and drain regions of PMOS and NMOS structures
US9601619B2 (en) * 2013-07-16 2017-03-21 Taiwan Semiconductor Manufacturing Company, Ltd. MOS devices with non-uniform P-type impurity profile
US9209175B2 (en) 2013-07-17 2015-12-08 Taiwan Semiconductor Manufacturing Company, Ltd. MOS devices having epitaxy regions with reduced facets
US8981487B2 (en) 2013-07-31 2015-03-17 United Microelectronics Corp. Fin-shaped field-effect transistor (FinFET)
US9224734B2 (en) * 2013-09-13 2015-12-29 Taiwan Semiconductor Manufacturing Company, Ltd. CMOS devices with reduced leakage and methods of forming the same
US9054217B2 (en) 2013-09-17 2015-06-09 Samsung Electronics Co., Ltd. Method for fabricating semiconductor device having an embedded source/drain
CN104671194B (zh) * 2013-12-03 2016-08-17 中芯国际集成电路制造(上海)有限公司 防止结构层脱落的mems器件及其制备方法
US9691898B2 (en) * 2013-12-19 2017-06-27 Taiwan Semiconductor Manufacturing Co., Ltd. Germanium profile for channel strain
US10164107B2 (en) * 2014-01-24 2018-12-25 Taiwan Semiconductor Manufacturing Company Ltd. Embedded source or drain region of transistor with laterally extended portion
US9853154B2 (en) 2014-01-24 2017-12-26 Taiwan Semiconductor Manufacturing Company Ltd. Embedded source or drain region of transistor with downward tapered region under facet region
US9379214B2 (en) * 2014-02-14 2016-06-28 Semi Solutions Llc Reduced variation MOSFET using a drain-extension-last process
EP3120388A4 (en) * 2014-03-21 2017-11-29 Intel Corporation Techniques for integration of ge-rich p-mos source/drain contacts
CN103871902A (zh) 2014-03-24 2014-06-18 上海华力微电子有限公司 半导体处理工艺及半导体器件的制备方法
US10084063B2 (en) * 2014-06-23 2018-09-25 Taiwan Semiconductor Manufacturing Company Ltd. Semiconductor device and manufacturing method thereof
US9893183B2 (en) * 2014-07-10 2018-02-13 Taiwan Semiconductor Manufacturing Company Ltd. Semiconductor structure and manufacturing method thereof
KR102202754B1 (ko) 2014-08-14 2021-01-15 삼성전자주식회사 반도체 장치
CN105470134B (zh) * 2014-09-09 2019-06-28 中芯国际集成电路制造(上海)有限公司 一种半导体器件及其制造方法、电子装置
US9312274B1 (en) 2014-10-15 2016-04-12 Globalfoundries Inc. Merged fin structures for finFET devices
CN107546108A (zh) * 2014-10-30 2018-01-05 应用材料公司 在低温下生长薄外延膜的方法
CN105869991B (zh) 2015-01-23 2018-05-11 上海华力微电子有限公司 用于改善SiGe厚度的均匀性的方法和系统
CN105990172B (zh) 2015-01-30 2018-07-31 上海华力微电子有限公司 嵌入式SiGe外延测试块的设计
CN105990342B (zh) 2015-02-13 2019-07-19 上海华力微电子有限公司 具有用于嵌入锗材料的成形腔的半导体器件及其制造工艺
US9431536B1 (en) 2015-03-16 2016-08-30 Taiwan Semiconductor Manufacturing Co., Ltd. Semiconductor device structure with raised source/drain having cap element
CN104851884A (zh) 2015-04-14 2015-08-19 上海华力微电子有限公司 用于锗硅填充材料的成形腔
CN104821336B (zh) 2015-04-20 2017-12-12 上海华力微电子有限公司 用于使用保形填充层改善器件表面均匀性的方法和系统
US10665693B2 (en) 2015-04-30 2020-05-26 Taiwan Semiconductor Manufacturing Co., Ltd. Semiconductor structure and manufacturing method thereof
CN105097554B (zh) 2015-08-24 2018-12-07 上海华力微电子有限公司 用于减少高浓度外延工艺中的位错缺陷的方法和系统
KR102374321B1 (ko) 2015-10-14 2022-03-14 삼성전자주식회사 반도체 장치 제조 방법
CN106653751B (zh) 2015-11-04 2019-12-03 中芯国际集成电路制造(北京)有限公司 半导体器件及其制造方法
CN108292674B (zh) * 2015-12-24 2022-05-13 英特尔公司 形成掺杂源极/漏极触点的方法及由其形成的结构
US10043666B2 (en) * 2016-02-26 2018-08-07 Applied Materials, Inc. Method for inter-chamber process
CN107403835B (zh) * 2016-05-19 2021-12-14 联芯集成电路制造(厦门)有限公司 半导体装置及其制作工艺
US9716165B1 (en) 2016-06-21 2017-07-25 United Microelectronics Corporation Field-effect transistor and method of making the same
US10236214B2 (en) * 2016-06-29 2019-03-19 International Business Machines Corporation Vertical transistor with variable gate length
US10276663B2 (en) * 2016-07-18 2019-04-30 United Microelectronics Corp. Tunneling transistor and method of fabricating the same
US9865730B1 (en) 2016-10-31 2018-01-09 International Business Machines Corporation VTFET devices utilizing low temperature selective epitaxy
US10147609B2 (en) 2016-12-15 2018-12-04 Taiwan Semiconductor Manufacturing Co., Ltd. Semiconductor epitaxy bordering isolation structure
US10199485B2 (en) * 2017-01-18 2019-02-05 United Microelectronics Corp. Semiconductor device including quantum wires
FR3063835B1 (fr) * 2017-03-13 2019-04-26 Commissariat A L'energie Atomique Et Aux Energies Alternatives Transistor a regions source et drain structurees et son procede d'elaboration
KR102414182B1 (ko) * 2017-06-29 2022-06-28 삼성전자주식회사 반도체 소자
US10347764B2 (en) 2017-06-30 2019-07-09 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor device with multi-layered source/drain regions having different dopant concentrations and manufacturing method thereof
TWI743252B (zh) 2017-06-30 2021-10-21 台灣積體電路製造股份有限公司 鰭狀場效電晶體裝置與其形成方法
US10672888B2 (en) 2017-08-21 2020-06-02 International Business Machines Corporation Vertical transistors having improved gate length control
US10868181B2 (en) * 2017-09-27 2020-12-15 Taiwan Semiconductor Manufacturing Co., Ltd. Semiconductor structure with blocking layer and method for forming the same
CN109817713B (zh) * 2017-11-22 2022-04-15 中芯国际集成电路制造(上海)有限公司 半导体器件及其形成方法
TWI827644B (zh) * 2018-08-28 2024-01-01 日商索尼半導體解決方案公司 半導體裝置及其製造方法
US11443980B2 (en) * 2019-09-27 2022-09-13 Taiwan Semiconductor Manufacturing Company, Ltd. Method of fabricating semiconductor device with metal pad extending into top metal layer
TWI715311B (zh) * 2019-11-26 2021-01-01 國立交通大學 具有寬能隙三五族汲極之金屬氧化物矽半導體場效電晶體及其製造方法
DE102020132562B4 (de) * 2020-01-30 2024-02-22 Taiwan Semiconductor Manufacturing Co., Ltd. Verfahren zur herstellung einer halbleitervorrichtung und halbleitervorrichtung
US11522050B2 (en) * 2020-01-30 2022-12-06 Taiwan Semiconductor Manufacturing Co., Ltd. Method of manufacturing a semiconductor device and a semiconductor device
CN113224158A (zh) 2020-02-04 2021-08-06 联芯集成电路制造(厦门)有限公司 半导体晶体管及其制作方法
CN112382570B (zh) * 2020-11-02 2024-04-26 上海华力集成电路制造有限公司 Pmos的制造方法
US20220238711A1 (en) * 2021-01-27 2022-07-28 Micron Technology, Inc. Semiconductor device having mos transistor for efficient stress transfer
CN113540248A (zh) * 2021-06-16 2021-10-22 先之科半导体科技(东莞)有限公司 一种大电流的多通道mosfet管

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63153863A (ja) 1986-12-18 1988-06-27 Fujitsu Ltd 半導体装置の製造方法
US5710450A (en) * 1994-12-23 1998-01-20 Intel Corporation Transistor with ultra shallow tip and method of fabrication
US6777759B1 (en) * 1997-06-30 2004-08-17 Intel Corporation Device structure and method for reducing silicide encroachment
EP0908219B1 (en) 1997-10-09 1999-12-08 Gkss-Forschungszentrum Geesthacht Gmbh Multi-stage process for the separation/recovery of gases
US6365446B1 (en) 2000-07-03 2002-04-02 Chartered Semiconductor Manufacturing Ltd. Formation of silicided ultra-shallow junctions using implant through metal technology and laser annealing process
US6621131B2 (en) 2001-11-01 2003-09-16 Intel Corporation Semiconductor transistor having a stressed channel
US6835246B2 (en) 2001-11-16 2004-12-28 Saleem H. Zaidi Nanostructures for hetero-expitaxial growth on silicon substrates
KR100406537B1 (ko) * 2001-12-03 2003-11-20 주식회사 하이닉스반도체 반도체장치의 제조 방법
JP2004031753A (ja) 2002-06-27 2004-01-29 Renesas Technology Corp 半導体装置の製造方法
US6921913B2 (en) * 2003-03-04 2005-07-26 Taiwan Semiconductor Manufacturing Co., Ltd. Strained-channel transistor structure with lattice-mismatched zone
US20050090082A1 (en) * 2003-10-28 2005-04-28 Texas Instruments Incorporated Method and system for improving performance of MOSFETs
US7413957B2 (en) * 2004-06-24 2008-08-19 Applied Materials, Inc. Methods for forming a transistor
JP4837902B2 (ja) * 2004-06-24 2011-12-14 富士通セミコンダクター株式会社 半導体装置
US7157374B1 (en) * 2004-06-28 2007-01-02 Advanced Micro Devices, Inc. Method for removing a cap from the gate of an embedded silicon germanium semiconductor device
US7332439B2 (en) * 2004-09-29 2008-02-19 Intel Corporation Metal gate transistors with epitaxial source and drain regions
US7163878B2 (en) * 2004-11-12 2007-01-16 Texas Instruments Incorporated Ultra-shallow arsenic junction formation in silicon germanium
JP4369359B2 (ja) * 2004-12-28 2009-11-18 富士通マイクロエレクトロニクス株式会社 半導体装置
JP4481181B2 (ja) * 2005-01-27 2010-06-16 富士通マイクロエレクトロニクス株式会社 半導体装置およびその製造方法
US7579617B2 (en) * 2005-06-22 2009-08-25 Fujitsu Microelectronics Limited Semiconductor device and production method thereof

Also Published As

Publication number Publication date
US9401427B2 (en) 2016-07-26
US9112027B2 (en) 2015-08-18
US8853673B2 (en) 2014-10-07
US20140361340A1 (en) 2014-12-11
CN1797783A (zh) 2006-07-05
US20150295086A1 (en) 2015-10-15
EP1677360A3 (en) 2007-09-05
US20090134381A1 (en) 2009-05-28
DE602005021196D1 (de) 2010-06-24
US7667227B2 (en) 2010-02-23
US20100301394A1 (en) 2010-12-02
KR100657395B1 (ko) 2006-12-20
KR20060076150A (ko) 2006-07-04
US9577098B2 (en) 2017-02-21
JP2006186240A (ja) 2006-07-13
EP1677360A2 (en) 2006-07-05
US9865734B2 (en) 2018-01-09
JP4369359B2 (ja) 2009-11-18
US20130248930A1 (en) 2013-09-26
US20160308053A1 (en) 2016-10-20
US8466450B2 (en) 2013-06-18
TW200623414A (en) 2006-07-01
US20170117412A1 (en) 2017-04-27
US7791064B2 (en) 2010-09-07
EP1677360B1 (en) 2010-05-12
US20060138398A1 (en) 2006-06-29
CN100470838C (zh) 2009-03-18

Similar Documents

Publication Publication Date Title
TWI258218B (en) Semiconductor device and fabrication method thereof
TWI254355B (en) Strained transistor with hybrid-strain inducing layer
TWI342051B (en) Semiconductor device, metal oxide semiconductor device and method for forming metal oxide semiconductor device
TWI280662B (en) Heterojunction field effect transistors using silicon-germanium and silicon-carbon alloys
US9911829B2 (en) FinFET with bottom SiGe layer in source/drain
TWI273705B (en) Transistor with strained region and method of manufacture
TWI275137B (en) Semiconductor device fabrication method
CN104992979B (zh) 具有自对准外延源和漏的多栅半导体器件
TWI324386B (en) Semiconductor device and method for manufacturing the same
TWI338350B (en) Methods of forming a semiconductor structure
TWI297214B (en) Semiconductor device and semiconductor device manufacturing method
TWI360197B (en) Method of fabricating an integrated circuit channe
TWI263328B (en) Semiconductor devices having faceted channels and methods of fabricating such devices
TW200539443A (en) Epitaxy layer and method of forming the same
TWI279880B (en) Manufacture method for semiconductor device having field oxide film
TW200539381A (en) Semiconductor manufacturing method and semiconductor device
JPS598375A (ja) 縦型構造電界効果トランジスタ
TW200908096A (en) Semiconductor device fabrication method, semiconductor device, and semiconductor layer formation method
TWI251291B (en) Methods for fabricating semiconductor devices
WO2014029149A1 (zh) 半导体器件及其制造方法
TW200931590A (en) Semiconductor device and method of manufacturing the same
TWI258172B (en) Transistor device with strained Ge layer by selectively grown and fabricating method thereof
TWI254974B (en) Semiconductor device
US7898038B2 (en) Method to improve writer leakage in SiGe bipolar device
WO2012000316A1 (zh) 一种隔离区、半导体器件及其形成方法