CN105097554B - 用于减少高浓度外延工艺中的位错缺陷的方法和系统 - Google Patents

用于减少高浓度外延工艺中的位错缺陷的方法和系统 Download PDF

Info

Publication number
CN105097554B
CN105097554B CN201510524163.4A CN201510524163A CN105097554B CN 105097554 B CN105097554 B CN 105097554B CN 201510524163 A CN201510524163 A CN 201510524163A CN 105097554 B CN105097554 B CN 105097554B
Authority
CN
China
Prior art keywords
semiconductor
layer
epitaxial growth
region
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201510524163.4A
Other languages
English (en)
Other versions
CN105097554A (zh
Inventor
李润领
周海锋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Huali Microelectronics Corp
Original Assignee
Shanghai Huali Microelectronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Huali Microelectronics Corp filed Critical Shanghai Huali Microelectronics Corp
Priority to CN201510524163.4A priority Critical patent/CN105097554B/zh
Priority to US14/879,057 priority patent/US10332979B2/en
Publication of CN105097554A publication Critical patent/CN105097554A/zh
Application granted granted Critical
Publication of CN105097554B publication Critical patent/CN105097554B/zh
Priority to US16/409,876 priority patent/US10868144B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66568Lateral single gate silicon transistors
    • H01L29/66636Lateral single gate silicon transistors with source or drain recessed by etching or first recessed by etching and then refilled
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/02428Structure
    • H01L21/0243Surface structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02441Group 14 semiconducting materials
    • H01L21/02447Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02441Group 14 semiconducting materials
    • H01L21/0245Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02494Structure
    • H01L21/02496Layer structure
    • H01L21/0251Graded layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02529Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/20Deposition of semiconductor materials on a substrate, e.g. epitaxial growth solid phase epitaxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/8238Complementary field-effect transistors, e.g. CMOS
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/085Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
    • H01L27/088Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate
    • H01L27/092Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate complementary MIS field-effect transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/085Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
    • H01L27/088Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate
    • H01L27/092Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate complementary MIS field-effect transistors
    • H01L27/0922Combination of complementary transistors having a different structure, e.g. stacked CMOS, high-voltage and low-voltage CMOS
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0843Source or drain regions of field-effect devices
    • H01L29/0847Source or drain regions of field-effect devices of field-effect transistors with insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
    • H01L29/161Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table including two or more of the elements provided for in group H01L29/16, e.g. alloys
    • H01L29/165Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table including two or more of the elements provided for in group H01L29/16, e.g. alloys in different semiconductor regions, e.g. heterojunctions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7842Field effect transistors with field effect produced by an insulated gate means for exerting mechanical stress on the crystal lattice of the channel region, e.g. using a flexible substrate
    • H01L29/7848Field effect transistors with field effect produced by an insulated gate means for exerting mechanical stress on the crystal lattice of the channel region, e.g. using a flexible substrate the means being located in the source/drain region, e.g. SiGe source and drain

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Recrystallisation Techniques (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

提供了利用半导体材料的应力以改善器件性能的半导体器件,该半导体器件包括半导体结和半导体场效应晶体管。还描述了用于制作半导体结构的方法。提供了嵌入在半导体基底中的没有位错缺陷的外延生长的结构。该外延结构可延伸超出半导体基底的表面并终结于面状结构。该外延结构是使用在相邻层之间提供连续转换的多层生长工艺来形成的。

Description

用于减少高浓度外延工艺中的位错缺陷的方法和系统
技术领域
本发明涉及半导体工艺及器件。
背景技术
自从早年德州仪器的Jack Kilby博士发明了集成电路之时起,科学家和工程师已经在半导体器件和工艺方面作出了众多发明和改进。近50年来,半导体尺寸已经有了明显的降低,这导致了不断增长的处理速度和不断降低的功耗。迄今为止,半导体发展大致遵循着摩尔定律,摩尔定律大意是指密集集成电路中晶体管的数量约每两年翻倍。现在,半导体工艺正在朝着20nm以下发展,并且一些公司正在着手14nm工艺。这里提供一个参考,硅原子约为0.2nm,这意味着通过20nm工艺制造出的两个独立组件之间的距离仅仅约为一百个硅原子。
半导体器件的制造因此变得越来越具有挑战性,朝着物理上可能的极限推进。华力微电子有限公司TM是致力于半导体器件和工艺研发的领先的半导体制造公司之一。
半导体技术的近期发展之一是将硅锗(SiGe)用在半导体制造中。例如,SiGe可被用于制造具有可调带隙的互补金属氧化物半导体(CMOS)器件。对于基于SiGe的工艺,尽管已经有一些常规技术,很遗憾这些技术出于以下提出的原因都是不足的。因此,需要改善的方法和系统。
发明内容
本文描述了利用半导体材料的应力以改善器件性能的半导体器件,该半导体器件包括半导体结和半导体场效应晶体管。还描述了用于制作没有或基本没有位错缺陷的半导体结构。例如,提供了嵌入在半导体基底中的没有位错缺陷的外延生长结构。示例性外延结构延伸超出半导体基底的表面并且终结于面状结构。外延结构是使用在相邻层之间提供连续转换的多层生长工艺来形成的。
外延多层结构的益处在于不含位错缺陷,使得它们可有利地用在需要精细控制开关速度、漏泄电流和发热的20nm和亚20nm半导体制造工艺中。另外,这些结构任选地由二元或化合物半导体材料或半导体合金来形成,诸如由Si1-xGex或Si1-xCx形成,以允许这些结构被用在利用受应力的硅来提高电气和开关性能的晶体管技术中。任选地,C或Ge的浓度异常的高,C的浓度诸如介于0到5%之间,Ge的浓度诸如大于30%或介于30%到50%之间,从而相比于包括低C或Ge浓度的器件允许具有源于受应力的器件的增强的性能。另外,所公开的器件和方法与高k栅极电介质相兼容,从而提供了额外的性能优势。
栅极结构较优地形成在半导体基底的沟槽、沟道或凹陷区域中,诸如具有选自40.0nm和80.0nm之间的深度的凹陷区域中。在一个实施例中,凹陷区域是U形沟槽。为了形成场效应晶体管(FET)器件,在相隔栅极沟道区域的凹陷区域中形成两个多层结构。将沟道区域放在该些多层结构之间使得沟道区域中的压力/应力得到控制,以允许调节带隙以及其他有益的性能特性。
在第一方面,本发明提供用于制作半导体结构的方法。此方面的方法对于形成嵌入式半导体结构以创建半导体结是有用的。此方面的方法还允许在半导体场效应晶体管中创建嵌入式源极区域和漏极区域。在特定实施例中,此方面的方法包括提供具有凹陷区域的半导体基底层,在该凹陷区域中外延生长半导体的多个层以形成嵌入在该半导体基底层中的半导体多层。在示例性实施例中,该半导体多层没有或基本没有位错缺陷并且包括延伸超出该半导体基底层的表面的凸起特征,该凸起特征终结于面状结构。在实施例中,提供具有凹陷区域的半导体基底层包括提供半导体层,以及诸如通过以蚀刻工艺从半导体基底层移除材料来在该半导体层中形成该凹陷区域。在一些实施例中,该凹陷区域具有小于20nm或选自0.2nm至20nm的范围的特征尺寸。
任选地,该面状结构具有50到60度之间、53度到57度之间或者54度到55度之间的面角。在特定实施例中,该面角为54.74度。
在特定实施例中,外延生长半导体的多个层包括在第一外延生长条件下在凹陷区域中外延生长第一半导体层,在第一转换生长条件下在第一半导体层上外延生长第一半导体转换区域以及在第二外延生长条件下在第一半导体转换区域上外延生长第二半导体层。在示例性实施例中,第一转换生长条件提供第一外延生长条件和第二外延生长条件之间的连续转换。例如,在一个实施例中,在第一转换生长条件下形成的第一半导体转换区域具有变化的组成,从而提供第一半导体层和第二半导体层的组成之间的连续转换。在特定实施例中,第一外延生长条件包括第一温度、压力和气体浓度。在特定实施例中,第二外延生长条件包括第二温度、压力和气体浓度。在实施例中,气体浓度条件在第一和第二外延生长条件之间改变。例如,在一个实施例中,包括在第一外延生长条件中的气体未包括在第二外延生长条件中。在进一步实施例中,包括在第一外延生长条件中的第一气体未包括在第二外延生长条件中且包括在第二外延生长条件中的第二气体未包括在第一外延生长条件中,但是第一气体和第二气体两者皆包括在第一转换生长条件中。例如,为了提供前一实施例中的第一和第二外延生长条件之间的连续转换,第一转换生长条件在第一转换生长条件的开头包括第一气体但不包括第二气体,而在第一转换生长条件的结尾包括第二气体但不包括第一气体。
任选地,外延生长半导体的多个层还包括在第二转换生长条件下在第二半导体层上外延生长第二半导体转换区域,以及在第三外延生长条件下在第二半导体转换区域上外延生长第三半导体层。在另一示例性实施例中,第二转换生长条件提供第二外延生长条件和第三外延生长条件之间的连续转换。例如,在一个实施例中,在第二转换生长条件下形成的第二半导体转换区域具有变化的组成,从而提供第二半导体层和第三半导体层的组成之间的连续转换。对于一些实施例,第三半导体层包括延伸超出半导体基底层的表面的终结于第一面状结构的凸起特征。
在一些实施例中,外延生长半导体的多个层还包括在附加转换生长条件下在顶端半导体层上外延生长附加半导体转换区域,以及在另外的外延生长条件下在该附加半导体转换区域上外延生长另外的半导体层。任选地,该另外的半导体层包括延伸超出半导体基底层的表面的终结于面状结构的凸起特征。
在各种实施例中,半导体基底层包括硅或掺杂硅。任选地,半导体多层中的每一层独立地包括二元或化合物半导体材料或半导体合金,诸如Si1-xGex或Si1-xCx,其中0<x<1。
在实施例中,该半导体结构是半导体结的组件。在实施例中,该半导体结构是晶体管的组件。在特定实施例中,半导体基底层具有两个凹陷区域,并且外延生长半导体的多个层形成嵌入在每一凹陷区域中的半导体多层。例如,在实施例中,嵌入在这两个凹陷区域中的相邻半导体多层相隔半导体基底层中的沟道区域,诸如其中该些半导体多层和该沟道区域构成场效应晶体管。
在另一方面,本发明提供半导体结。在实施例中,此方面的半导体结是使用本文描述的方法所形成的。在此方面的实施例中,半导体结包括嵌入在半导体基底层中的半导体多层,例如该半导体多层没有或基本没有位错缺陷并且包括延伸超出半导体基底层的表面且终结于第一面状结构的凸起特征。任选地,该面状结构具有50到60度之间、53度到57度之间或者54度到55度之间的面角。在特定实施例中,该面角为54.74度。
在实施例中,例如,半导体基底层包括硅或掺杂硅。在一些实施例中,半导体多层包括二元或化合物半导体材料或半导体合金,诸如Si1-xGex或Si1-xCx,其中0<x<1。任选地,该半导体多层包括多个具有不同半导体浓度的外延生长的层。在实施例中,例如,每个外延生长的层是在外延生长条件下形成的,并且这些外延生长条件在外延生长相邻层之间的转换期间连续地变化。任选地,相邻的外延生长的层相隔转换区域,该转换区域在相邻的外延生长的层的半导体浓度之间提供连续的半导体浓度转换。
在另一方面,提供了场效应晶体管。此方面的场效应晶体管优选地利用上述有利特征,诸如可用于改善开关速度或用于提供期望的电气特性的特征。例如,在一个实施例中,场效应晶体管包括:嵌入在半导体基底层中的源极区域,该源极区域包括没有或基本没有位错缺陷的第一半导体多层,该源极区域包括延伸超出半导体基底层的表面并且终结于第一面状结构的第一凸起特征;嵌入在半导体基底层中的漏极区域,该漏极区域包括没有或基本没有位错缺陷的第二半导体多层,该漏极区域包括延伸超出半导体基底层的表面并且终结于第二面状结构的第二凸起特征;以及定位于该源极区域和该漏极区域之间的沟道区域,该沟道区域包括半导体基底层的受应力区域。在示例性实施例中,基底层包括硅、掺杂硅或硅n-阱。
任选地,第一面状结构、第二面状结构、或第一面状结构和第二面状结构两者具有50和60度之间、53和57度之间或者54和55度之间的面角。在特定实施例中,该面角为54.74度。
此方面的晶体管可用于在20nm或低于20nm处理节点下制作的半导体器件。在实施例中,例如,源极区域、漏极区域或者源极区域和漏极区域两者独立地具有小于20nm或从0.2nm至20nm的范围中选择的特征尺寸。在实施例中,例如,源极区域、漏极区域或者源极区域和漏极区域两者独立地具有从2nm至15nm的范围或从2nm至10nm的范围中选择的特征尺寸。
在实施例中,第一半导体多层和第二半导体多层各自独立地包括碳化硅、硅锗合金、二元半导体或化合物半导体。例如,半导体多层中的每一层独立地包括Si1-xGex或Si1- xCx,其中0<x<1。在一些实施例中,源极和漏极区域具有相同结构。在其他实施例中,源极和漏极区域的结构是不同的。例如,源极和漏极区域中的每一者具有可独立选择的层数、浓度、组成等等。
在各种实施例中,第一半导体多层和第二半导体多层各自独立地包括多个具有不同半导体浓度的外延生长的层。例如,在一个实施例中,每个外延生长的层是在外延生长条件下形成的,并且其中这些外延生长条件在外延生长相邻层之间的转换期间连续地变化。这些实施例可用于通过转换区域将相邻的外延生长的层隔开,该转换区域在这些相邻的外延生长的层的半导体浓度之间提供连续的半导体浓度转换。
应领会,本发明的实施例提供优于常规技术的诸多优点。
本文中已采用的术语和表达是用作描述而非用于限制的术语,并且使用这些术语和表达并不意味着排除所示和所描述特征或其部分的任何等效特征,应认识到在要求保护的本发明范围内可存在各种修改。因此,应理解尽管已借助实施例和可选的特征详细地公开了本发明,但是本文所公开的构思的变型和变体是本领域技术人员所容易采用的,并且此类变型和变体也被考虑在由所附权利要求所限定的本发明的范围之内。另外,在不希望被任何具体理论所束缚的情况下,本文可能存在对关于本文所公开的器件和方法的背后原理的看法或理解的讨论。应认识到无论任何机制解释或假设的最终正确性如何,本发明的实施例都是可操作和可使用的。
附图简述
图1提供用于生长多层半导体结构的生长条件的示意性绘图,其中在生长相邻层之间没有沉积发生。
图2A提供具有位错缺陷的SiGe嵌入结构的图像。
图2B提供图2A的示意性图解以更清楚地说明该位错缺陷。
图3A提供用于生长多层半导体结构的生长条件的示意性绘图,其中在生长相邻层之间的转换期间沉积继续。
图3B提供用于生长多层半导体结构的生长条件的示意性绘图,其中在生长相邻层之间的转换期间沉积继续。
图4提供用于形成嵌入式多层半导体结构实施例的工艺流程的示意性图解。
图5提供嵌入式多层半导体结构实施例的放大的示意性图解。
图6提供嵌入在半导体基底中的多层半导体结构的电子显微镜图像。
图7提供用于在场效应晶体管管中形成嵌入式多层半导体结构的工艺流程的示意性图解。
图8提供具有嵌入的源极区域和漏极区域的CMOS器件的示意性图解。
具体实施方式
本发明涉及集成电路。根据各种实施例,在外延生长工艺期间通过平滑的转换来引入不同的气态物种,这制造出基本均匀的器件。还提供了其他实施例。
给出以下描述以使得本领域技术人员能够实施和使用本发明并将其结合到具体应用背景中。各种变型、以及在不同应用中的各种用法对于本领域技术人员将是容易显见的,并且本文定义的一般性原理可适用于范围广阔的实施例。由此,本发明并不限于本文中给出的实施例,而是应被授予与本文中公开的原理和新颖性特征相一致的最广义的范围。
在以下详细描述中,阐述了许多特定细节以提供对本发明的透彻理解。然而,对于本领域技术人员显而易见的是,本发明的实践可不必局限于这些具体细节。换言之,公知的结构和器件以框图形式示出而没有详细显示,以避免淡化本发明的发明点。
外延生长提供用于形成各种结晶结构的稳健过程,这些结晶结构包括诸如生长在半导体中的沟道、沟槽或其他凹陷特征中的嵌入式结构。由于Si与SiGe之间的晶格失配,嵌入在Si中的SiGe结构的使用使得周围的Si材料受到明显的应力。类似地,SiC结构也会向周围的Si材料提供应力。在实施例中,嵌入的Si1-xGex和Si1-xCx(其中0<x<1)结构和层可使用外延生长来形成。在MOSFET器件的沟道区域中使用受应力的硅提供了电子和空穴移动性方面的优势,从而允许更高的开关速度。
多层的SiGe结构对于满足压力和器件要求是有用的,并且允许使用高锗浓度,诸如大于30%或接近50%的浓度。用于外延地生长多层SiGe膜的技术一般包括在相邻层之间改变生长条件。例如,不同层的外延生长可能要求不同的温度、压力和气体浓度。
图1提供用于两个不同半导体层的外延生长的随时间的常规生长条件的概览。在步骤i,建立用于第一层的外延生长的温度、压力和气体浓度。为了生长第二层,需要不同的条件,如在步骤i+1所图解的。在所示的实施例中,在步骤之间的转换期间,停止沉积/生长,同时使温度从步骤i所需要的温度逐渐下降至步骤i+1所需要的温度。在温度达到步骤i+1所需要的目标温度后,在下一层所需要的条件下恢复沉积。通常,气体n和气体m在该转换期间被从外延腔室清除,并且在步骤i+1被再次引入。另外,可在步骤i+1期间引入其他类型的气态物种。
这种在相邻层之间停止沉积的生长技术对于形成多层Si1-xGex或Si1-xCx结构是有用的,尽管所形成的结构可能受到位错缺陷的影响并且只能达到有限的Si或C浓度。不希望被任何理论所束缚,相信在不同成分的相邻层的晶格结构具有足够大的差异从而晶体生长包括位错以容适该差异的情况下发生此类缺陷。防止形成位错缺陷对于处于和低于40nm技术节点的半导体逻辑器件是重要的。
图2A提供外延生长的嵌入式多层结构的图像,该嵌入式多层结构包括通过箭头突出显示的位错缺陷。此结构是使用与图1中所述的生长类似的技术制备而成的,其中在生长步骤之间的转换期间停止沉积。图2B提供图2A的示意性图解以更清楚地说明该位错缺陷的位置和定向。
图3A和3B提供用于外延生长的示例沉积条件的示意性绘图,其中允许温度、压力和气体浓度在诸步骤之间的转换期间变化,并且继续进行沉积。例如,在图3A和3B中,在步骤i和i+1之间的转换1期间以及在步骤j和j+1之间的转换2期间允许温度、压力和气体浓度随时间平滑地变化。
作为示例,图3A中所示的外延工艺涉及降低气体n和气体m的浓度水平。在步骤i和步骤i+1期间,气体n和气体m未被清除,但是在该转换步骤期间逐渐下降。例如,气体n和气体m被不断地泵送至外延腔室中以使它们的浓度维持在如图所示的预定水平。在该转换步骤期间,气体n和气体m不再被引入到外延腔室中,但是它们不被清除或以其他方式移除。气体n和气体m的浓度逐渐下降到图3A中所示的较低水平,因为它们被沉积到下面的半导体器件上或外延腔室的表面上。根据各种实施例,图3A中的转换1被特别校准成允许气体n和气体m下降至预定浓度目标水平。取决于应用,压力和温度的改变可通过主动冷却生长腔室和从腔室中移除气体粒子来实现。在某些实施例中,允许腔室温度在一段时间内冷却,并且气体浓度水平的下降在实质上降低了腔室压力。
图3B涉及增大气体n和气体m的浓度。在步骤j后并不从腔室移除气体n和气体m,在转换步骤期间引入额外的气体n和气体m,并且气体n和气体m斜坡上升至步骤j+1中的浓度水平。如上所述,可根据需要调节温度和压力水平。
应该领会,图3A和图3B中所图解的转换过程的有利之处在于允许沉积在诸步骤之间继续,并且在具有不同浓度的诸外延层之间的转换层中提供平滑的浓度梯度。此类技术实现的另一益处是预防最终结构中的位错缺陷。
在示例性实施例中,为嵌入式半导体结构的初始层和最终层的外延生长选择沉积条件,例如以提供所需的应力和电气特性,其中在起始和结束条件之间具有单个连续转换。以此方式,可创建具有单个较大连续转换的结构,再次消除了位错缺陷的形成。
图4提供用于形成嵌入式外延多层半导体结构的工艺流程的示意性概览。在面板A中,提供了半导体基底400,诸如包括硅基板410中的N-阱405的基底。如面板B中所示,在半导体基底400中形成有U形沟槽415。该半导体基底随后被暴露于外延生长沉积条件以在沟槽415中形成嵌入式半导体的第一层420,如面板C中所绘。例如,一个或更多个气态物种被泵送至外延生长腔室中以生长第一层420。作为示例,用于形成第一层420的外延生长条件可对应于作为图3A的步骤i所示出的温度、压力和气体浓度。
第一转换时段跟随在第一层420的生长之后,以提供薄的第一转换层,其中允许外延生长条件从用于形成第一层420和后续生长的第二层430的生长条件连续地改变。作为示例,用于继第一层420之后的第一转换层的外延生长条件可对应于作为图3A的转换1所示出的温度、压力和气体浓度,其中温度、压力和气体浓度被允许从在第一层420的生长(步骤i)期间所用的温度、压力和气体浓度连续地变化至后续生长的第二层(步骤i+1)。面板D显示在第一层420上外延生长的半导体材料的第二层430。例如,在不移除用于生长第一层420的气态物种的情况下,继第一转换时段之后向外延生长腔室中引入用于形成第二层430的气态物种。从用于形成层420的气体到用于形成层430的气体的转换是连续过程,这允许这些层维持均匀性并且这些层之间具有平滑的晶体结构转换。因此,包括来自层420和430两者的材料的第一转换层形成和定位在层420和430之间。
第二转换时段跟随在第二层430的生长之后,以提供薄的第二转换层,其中允许外延生长条件从用于形成第二层430和后续生长的第三层440的生长条件连续地改变。作为示例,用于继第二层430之后的第二转换层的外延生长条件可对应于作为图3B的转换2所示出的温度、压力和气体浓度,其中温度、压力和气体浓度被允许从在第三层440的生长(图3B中的步骤j)期间所用的温度、压力和气体浓度连续地变化至后续生长的第三层(图3B的步骤j+1)。继第二转换之后,在第二层430上外延生长半导体材料的第三层440以形成最终的嵌入式结构,如面板E中所示。如图4中所绘,第三层440以面状结构终结。在各种实施例中,不同浓度的SiGe构成图4中的该嵌入式半导体器件的各层。例如,取决于在外延生长过程期间引入的气态物种的浓度和比例,SiGe和Si材料在各种层中可处于不同的浓度水平。应领会,可使用外延工艺以形成其他类型的材料。
如图所示,图4被用于制造CMOS器件。但是应理解图4及其描述在这里是作为示例来提供的。具有从一种材料到另一种材料(或一种浓度/比例到另一种浓度/比例)的转换的外延工艺也可被用于处理其他类型的半导体器件。
图5示出了图4的面板E中所绘的嵌入式结构的放大图,并且示出了第一层420与第二层430之间的第一转换区域425。图5还示出了第二层430与第三层440之间的第二转换区域435。这里,第一转换区域425提供第一层420和第二层430的浓度之间的连续浓度梯度。应领会,第一转换区域425是由于在外延工艺期间从一种类型的气态材料逐渐地切换为另一种而形成的。通过具有转换区域425,层420和层430之间的差异并不突兀,而是有缓冲的。类似地,第二转换区域435提供第二层430和第三层440的浓度之间的连续浓度梯度。此配置有利地使第一层420和第二层430之间以及第二层430和第三层440之间的压力和应力最小化,并且防止在外延生长期间形成位错缺陷。应领会,通过具有转换层,各种半导体区域的均匀性相比于常规结构得到了改善,并且降低了具有图2中所示类型的缺陷的可能性。
另外,图5图解了该嵌入式外延多层结构的面状结构,其包括该嵌入式结构的终结表面的各面的特定角度配置。面角445在图5中被标识出。在各种实现中,面角445约为54.74度(+/-1度)。不希望被任何理论所束缚,相信半导体的不同晶体平面之间的方向控制着该嵌入式半导体结构的终结表面的面角和结构。尽管由于结构的特定组成可以实现该面状结构的各种面角,但是使用硅作为基底材料和该面状结构的主要成分可设置面角可能所处的边界。另外,该面状结构是在外延晶体生长期间实现的成形结构,而不是抛光、磨平或蚀刻技术的结果。应领会,所示的面角445独特地归因于具有转换层以及用于形成该转换层的过程。例如,通过在从一种材料变为另一种材料(例如,层420到层430)时具有平滑的转换,这些层的晶格结构得以维持并且基本是结晶的。面角445与层440的结晶结构的角度相关联。例如,在一个实施例中,层440包括SiGe材料。
嵌入式SiGe结构是使用本文所述的技术来实验性地形成的,其中具有不同锗浓度的层的多层SiGe结构由在相邻层之间提供连续浓度梯度的薄转换区域隔开。图6提供使用所述的方法形成的嵌入式多层结构的电子显微镜图像,并且图解延伸超出半导体基底材料的表面的面状结构。如图6所示,该嵌入式多层结构没有位错缺陷。
图7提供用于形成场效应晶体管的工艺流程的示意性概览,其中源极区域和漏极区域包括诸如上文所述的那些嵌入式多层外延结构。此配置对于例如形成CMOS晶体管结构是有用的,并且本领域技术人员将领会此类配置所实现的优点。最初,栅极膜堆栈被沉积在半导体基底的表面上,并且被图案化以在源极区域和漏极区域之间限定沟道区域,如面板A中所绘。
面板B显示诸如通过硬掩模或其他恰当的掩模材料来对NFET结构和PFET栅极的掩模,以允许图案化和形成PFET源极和漏极腔,诸如U形腔或其他形状的腔。
面板C显示生长出的PFET Si1-xGex源极和漏极区域。这里,源极区域和漏极区域被描绘为延伸超出半导体基底并且终结于面状结构的嵌入式材料。源极区域和漏极区域较优地根据本文描述的方法被构造为多层外延形成的结构,诸如通过使用第一外延生长条件以形成第一层、使用第一转换生长条件以形成第一转换层、使用第二外延生长条件以形成第二层、使用第二转换生长条件以形成第二转换层以及使用第三外延生长条件以形成第三层。同样,此配置的有益之处在于使得结构没有位错缺陷,同时向源极区域和漏极区域之间的半导体沟道区域给予应力以得到有利的电气特性。
最后,在面板D中,掩模材料被移除并且可对器件进行额外处理,诸如制备NFET器件或包括沉积、蚀刻、掩模、光刻、掺杂等等的其他工艺。
图8提供具有嵌入式源极区域和漏极区域的CMOS器件的示意性图解,其中包括NFET器件810和PFET器件830。在NFET器件810中,沟道区域815定位于源极区域820和漏极区域825之间。类似地,在PFET器件830中,沟道区域835定位于源极区域840和漏极区域845之间。每个源极和漏极区域被示意性地图解为诸如使用本文描述的多层外延生长工艺形成的多层,在该工艺中,使用相邻层之间的连续转换以使晶体结构中的位错缺陷的形成最小化。在实施例中,NFET器件810的源极820和漏极825具有与PFET器件830的源极840和漏极845的组成不相关的组成,诸如不同的掺杂浓度、不同的半导体浓度等等,以便为每一类型的场效应晶体管提供合适的电气特性。在示例性实施例中,提供受到压力/应力的沟道区域815和835,该压力/应力是由于靠近周围的源极和漏极区域并且源极和漏极区域与沟道区域的组成不同所导致的,诸如产生操作场效应晶体管810和830所希望的电气特性的压力/应力水平。
请读者注意与本说明书同时提交的且对公众查阅本说明书开放的所有文件及文献,且所有这样的文件及文献的内容以参考方式并入本文。除非另有明确说明,否则本说明书(包含任何所附权利要求、摘要和附图)中所揭示的所有特征皆可由用于达到相同、等效或类似目的的可替代特征来替换。因此,除非另有明确说明,否则所公开的每一个特征仅是一组等效或类似特征的一个示例。
而且,权利要求中未明确表示“用于执行特定功能的装置”、或“用于用于执行特定功能的步骤”的任意组件皆不应被理解为如35 USC第112章节第6段中所规定的“装置”或“步骤”条款。特别地,在此处的权利要求中使用“....的步骤”或“....的动作”并不表示涉及35 USC§112第6段的规定。
注意,在使用到的情况下,标志左、右、前、后、顶、底、正、反、顺时针和逆时针仅仅是出于方便的目的所使用的,而并不暗示任何具体的固定方向。事实上,它们被用于反映对象的各个部分之间的相对位置和/或方向。
尽管上文是对特定实施例的全面描述,但是也可使用各种变型、替换构造和等效方案。因此,上述描述和说明不应当被解释为限制由所附权利要求限定的本发明的范围。

Claims (20)

1.一种用于制作半导体结构的方法,包括:
提供具有凹陷区域的半导体基底层;
在所述凹陷区域中外延生长半导体的多个层以形成嵌入在所述半导体基底层中的半导体多层,其中所述半导体多层包括延伸超出所述半导体基底层的表面的凸起特征,所述凸起特征终结于面状结构;
其中外延生长半导体的多个层包括:
在第一外延生长温度、压力和气体浓度条件下在所述凹陷区域中外延生长第一半导体层;
在第一转换生长温度、压力和气体浓度条件下在所述第一半导体层上外延生长第一半导体转换区域;以及
在第二外延生长温度、压力和气体浓度条件下在所述第一半导体转换区域上外延生长第二半导体层;
其中所述第一转换生长条件提供所述第一外延生长温度、压力和气体浓度条件和所述第二外延生长温度、压力和气体浓度条件之间的连续逐渐转换。
2.如权利要求1所述的方法,其特征在于,外延生长半导体的多个层还包括:
在第二转换生长温度、压力和气体浓度条件下在所述第二半导体层上外延生长第二半导体转换区域;以及
在第三外延生长温度、压力和气体浓度条件下在所述第二半导体转换区域上外延生长第三半导体层;
其中所述第二转换生长条件提供所述第二外延生长温度、压力和气体浓度条件和所述第三外延生长温度、压力和气体浓度条件之间的连续逐渐转换。
3.如权利要求2所述的方法,其特征在于,所述第三半导体层包括延伸超出所述半导体基底层的表面的终结于所述面状结构的所述凸起特征。
4.如权利要求1所述的方法,其特征在于,所述半导体基底层包括硅或掺杂硅,并且其中所述半导体多层中的每一层独立地包括化合物半导体。
5.如权利要求4所述的方法,其特征在于,所述化合物半导体为二元半导体。
6.如权利要求5所述的方法,其特征在于,所述二元半导体为碳化硅或硅锗合金。
7.如权利要求1所述的方法,其特征在于,所述半导体基底层具有两个凹陷区域,并且其中外延生长半导体的多个层形成嵌入在每一凹陷区域中的半导体多层。
8.如权利要求1所述的方法,其特征在于,嵌入在两个所述凹陷区域中的相邻半导体多层相隔所述半导体基底层中的沟道区域,其中所述半导体多层和所述沟道区域构成场效应晶体管。
9.如权利要求1所述的方法,其特征在于,所述第一外延生长温度、压力和气体浓度条件包括第一气体,所述第一气体未包括在所述第二外延生长温度、压力和气体浓度条件中。
10.一种场效应晶体管,包括:
嵌入在半导体基底层中的源极区域,所述源极区域包括第一半导体多层,所述源极区域包括延伸超出所述半导体基底层的表面并且终结于第一面状结构的第一凸起特征,所述第一凸起特征由54±1度的面角来表征;
嵌入在所述半导体基底层中的漏极区域,所述漏极区域包括第二半导体多层,所述漏极区域包括延伸超出所述半导体基底层的表面并且终结于第二面状结构的第二凸起特征,所述第二凸起特征由54±1度的面角来表征;以及
定位于所述源极区域和所述漏极区域之间的沟道区域,所述沟道区域包括所述半导体基底层的受应力区域;
所述第一半导体多层和所述第二半导体多层各自独立地包括多个具有不同半导体浓度的外延生长的层;
每个外延生长的层是在不同生长温度、压力和气体浓度条件下形成的;
所述生长温度、压力和气体浓度条件在外延生长相邻层之间的转换期间连续地变化,在相邻的所述外延生长的层之间形成转换区域;
所述转换区域在所述相邻的外延生长的层的半导体浓度之间提供连续的半导体浓度转换。
11.如权利要求10所述的场效应晶体管,其特征在于,所述基底层包括硅、掺杂硅或硅n-阱。
12.如权利要求10所述的场效应晶体管,其特征在于,所述源极区域、所述漏极区域或者所述源极区域和所述漏极区域两者具有从0.2nm至20nm的范围中选择的特征尺寸。
13.如权利要求10所述的场效应晶体管,其特征在于,所述特征包括厚度、宽度、或者与相邻场效应晶体管的间距。
14.如权利要求10所述的场效应晶体管,其特征在于,所述第一半导体多层和所述第二半导体多层各自独立地包括化合物半导体。
15.如权利要求14所述的场效应晶体管,其特征在于,所述化合物半导体为二元半导体。
16.如权利要求15所述的场效应晶体管,其特征在于,所述二元半导体为碳化硅或硅锗合金。
17.一种半导体结,包括:
嵌入在半导体基底层中的半导体多层,其中所述半导体多层包括延伸超出所述半导体基底层的表面且终结于第一面状结构的凸起特征,所述凸起特征由54±1度的面角来表征;
所述半导体多层包括多个具有不同半导体浓度的外延生长的层;
每个外延生长的层是在不同生长温度、压力和气体浓度条件下形成的;
所述生长温度、压力和气体浓度条件在外延生长相邻层之间的转换期间连续地变化,在相邻的所述外延生长的层之间形成转换区域;
所述转换区域在所述相邻的外延生长的层的半导体浓度之间提供连续的半导体浓度转换。
18.如权利要求17所述的半导体结,其特征在于,所述半导体基底层包括硅,以及所述半导体多层包括化合物半导体。
19.如权利要求18所述的半导体结,其特征在于,所述化合物半导体为二元半导体。
20.如权利要求19所述的半导体结,其特征在于,所述二元半导体为碳化硅或硅锗合金。
CN201510524163.4A 2015-08-24 2015-08-24 用于减少高浓度外延工艺中的位错缺陷的方法和系统 Active CN105097554B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201510524163.4A CN105097554B (zh) 2015-08-24 2015-08-24 用于减少高浓度外延工艺中的位错缺陷的方法和系统
US14/879,057 US10332979B2 (en) 2015-08-24 2015-10-08 Methods and systems for reducing dislocation defects in high concentration epitaxy processes
US16/409,876 US10868144B2 (en) 2015-08-24 2019-05-13 Methods and systems for reducing dislocation defects in high concentration epitaxy processes

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510524163.4A CN105097554B (zh) 2015-08-24 2015-08-24 用于减少高浓度外延工艺中的位错缺陷的方法和系统

Publications (2)

Publication Number Publication Date
CN105097554A CN105097554A (zh) 2015-11-25
CN105097554B true CN105097554B (zh) 2018-12-07

Family

ID=54577705

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510524163.4A Active CN105097554B (zh) 2015-08-24 2015-08-24 用于减少高浓度外延工艺中的位错缺陷的方法和系统

Country Status (2)

Country Link
US (2) US10332979B2 (zh)
CN (1) CN105097554B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114093901A (zh) * 2020-08-25 2022-02-25 上海华力微电子有限公司 图像传感器掺杂外延层形成方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101114673A (zh) * 2006-07-28 2008-01-30 富士通株式会社 半导体器件及其制造方法

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050061511A (ko) 2002-10-03 2005-06-22 코닌클리즈케 필립스 일렉트로닉스 엔.브이. 에피택셜층을 형성하는 방법 및 장치
EP1439570A1 (en) 2003-01-14 2004-07-21 Interuniversitair Microelektronica Centrum ( Imec) SiGe strain relaxed buffer for high mobility devices and a method of fabricating it
US6949482B2 (en) 2003-12-08 2005-09-27 Intel Corporation Method for improving transistor performance through reducing the salicide interface resistance
US7045407B2 (en) 2003-12-30 2006-05-16 Intel Corporation Amorphous etch stop for the anisotropic etching of substrates
US6946350B2 (en) 2003-12-31 2005-09-20 Intel Corporation Controlled faceting of source/drain regions
JP4369359B2 (ja) 2004-12-28 2009-11-18 富士通マイクロエレクトロニクス株式会社 半導体装置
ATE449418T1 (de) 2005-12-23 2009-12-15 Imec Methode für ein selektives epitaktisches wachstum von source/drain gebieten
US7479422B2 (en) * 2006-03-10 2009-01-20 Freescale Semiconductor, Inc. Semiconductor device with stressors and method therefor
US8017487B2 (en) 2006-04-05 2011-09-13 Globalfoundries Singapore Pte. Ltd. Method to control source/drain stressor profiles for stress engineering
DE102006035665B4 (de) * 2006-07-31 2010-12-09 Advanced Micro Devices, Inc., Sunnyvale Verfahren zur Herstellung eines Feldeffekttransistors und Feldeffekttransistor
US7494884B2 (en) 2006-10-05 2009-02-24 Taiwan Semiconductor Manufacturing Company, Ltd. SiGe selective growth without a hard mask
US7553717B2 (en) 2007-05-11 2009-06-30 Texas Instruments Incorporated Recess etch for epitaxial SiGe
US7737468B2 (en) 2007-05-21 2010-06-15 Infineon Technologies Ag Semiconductor devices having recesses filled with semiconductor materials
US7989298B1 (en) 2010-01-25 2011-08-02 International Business Machines Corporation Transistor having V-shaped embedded stressor
JP5544986B2 (ja) 2010-04-01 2014-07-09 信越半導体株式会社 貼り合わせsoiウェーハの製造方法、及び貼り合わせsoiウェーハ
US8183118B2 (en) 2010-08-26 2012-05-22 United Microelectronics Corp. Method for fabricating MOS transistor
US20120161105A1 (en) * 2010-12-22 2012-06-28 Willy Rachmady Uniaxially strained quantum well device and method of making same
DE102010064282B4 (de) * 2010-12-28 2012-09-06 GLOBALFOUNDRIES Dresden Module One Ltd. Liability Company & Co. KG Transistor mit eingebetteten sigma-förmigen sequenziell hergestellten Halbleiterlegierungen
CN102842503B (zh) 2011-06-20 2015-04-01 中芯国际集成电路制造(北京)有限公司 半导体器件的制造方法
US8912568B2 (en) 2011-06-20 2014-12-16 Semiconductor Manufacturing International (Beijing) Corporation Semiconductor device and manufacturing method thereof
US8674447B2 (en) 2012-04-27 2014-03-18 International Business Machines Corporation Transistor with improved sigma-shaped embedded stressor and method of formation
US8928126B2 (en) * 2012-11-07 2015-01-06 United Microelectronics Corp. Epitaxial layer
US9142643B2 (en) * 2012-11-15 2015-09-22 Taiwan Semiconductor Manufacturing Company, Ltd. Method for forming epitaxial feature
KR102155181B1 (ko) * 2014-01-28 2020-09-11 삼성전자주식회사 반도체 장치 및 그 제조 방법
KR102216511B1 (ko) * 2014-07-22 2021-02-18 삼성전자주식회사 반도체 소자
US10170554B2 (en) * 2014-12-26 2019-01-01 Taiwan Semiconductor Manufacturing Company Ltd. Semiconductor device and manufacturing method thereof

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101114673A (zh) * 2006-07-28 2008-01-30 富士通株式会社 半导体器件及其制造方法

Also Published As

Publication number Publication date
CN105097554A (zh) 2015-11-25
US20190267472A1 (en) 2019-08-29
US20170062583A1 (en) 2017-03-02
US10332979B2 (en) 2019-06-25
US10868144B2 (en) 2020-12-15

Similar Documents

Publication Publication Date Title
JP6304899B2 (ja) 希土類酸化物ゲート誘電体を備えた、シリコン基板上に成長したiii−n半導体素子
TWI222106B (en) Semiconductor substrate, field-effect transistor, and their production methods
TWI310990B (en) Quantum well transistor using high dielectric constant dielectric layer
KR102039389B1 (ko) 갈륨 질화물 나노와이어 기반의 전자 장치
US9224605B2 (en) Forming alternative material fins with reduced defect density by performing an implantation/anneal defect generation process
US20050145941A1 (en) High performance strained silicon FinFETs device and method for forming same
EP2432005A1 (en) Epitaxial substrate for electronic device and process for producing same
JP5065676B2 (ja) 基板上に歪層を製造する方法及び層構造
CN102473642A (zh) 半导体装置及其制造方法
JP2006501637A (ja) シリコン−ゲルマニウム合金及びシリコン−カーボン合金を用いるヘテロ接合電界効果トランジスタ
Radhakrishnan et al. Demonstration of AlGaN/GaN high-electron-mobility transistors on 100 mm diameter Si (111) by plasma-assisted molecular beam epitaxy
US9123627B1 (en) Methods of forming alternative material fins with reduced defect density for a FinFET semiconductor device
US11302782B2 (en) In-situ straining epitaxial process
CN108807499A (zh) 半导体异质结构及其形成方法
Mizerov et al. Features of the initial stage of GaN growth on Si (111) substrates by nitrogen-plasma-assisted molecular-beam epitaxy
Higashiwaki et al. Epitaxial growth of high-quality InN films on sapphire substrates by plasma-assisted molecular-beam epitaxy
JP5824814B2 (ja) 半導体ウエーハ及び半導体素子及びその製造方法
JP2005510081A (ja) 低エネルギープラズマ強化化学蒸着法による高移動度のシリコンゲルマニウム構造体の製造方法
JP2006004970A (ja) 窒化物半導体薄膜の作製方法
JP2005350321A (ja) 窒化物半導体成長用基板
CN105097554B (zh) 用于减少高浓度外延工艺中的位错缺陷的方法和系统
JP2008288395A (ja) 伸張歪ゲルマニウム薄膜の作製方法、伸張歪ゲルマニウム薄膜、及び多層膜構造体
CN102214685B (zh) 具有悬空源漏的半导体结构及其形成方法
KR102288586B1 (ko) 연속적으로 감소된 결정학적 전위 밀도 영역을 갖는 iii족-질화물 구조체
US8080826B1 (en) High performance active and passive structures based on silicon material bonded to silicon carbide

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant