RU2527351C2 - Ингалятор - Google Patents

Ингалятор Download PDF

Info

Publication number
RU2527351C2
RU2527351C2 RU2011120430/14A RU2011120430A RU2527351C2 RU 2527351 C2 RU2527351 C2 RU 2527351C2 RU 2011120430/14 A RU2011120430/14 A RU 2011120430/14A RU 2011120430 A RU2011120430 A RU 2011120430A RU 2527351 C2 RU2527351 C2 RU 2527351C2
Authority
RU
Russia
Prior art keywords
inhaler
composite
component
wick
heating element
Prior art date
Application number
RU2011120430/14A
Other languages
English (en)
Other versions
RU2011120430A (ru
Inventor
Хельмут БУХБЕРГЕР
Original Assignee
Батмарк Лимитед
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=41809014&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=RU2527351(C2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Батмарк Лимитед filed Critical Батмарк Лимитед
Publication of RU2011120430A publication Critical patent/RU2011120430A/ru
Application granted granted Critical
Publication of RU2527351C2 publication Critical patent/RU2527351C2/ru

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M11/00Sprayers or atomisers specially adapted for therapeutic purposes
    • A61M11/04Sprayers or atomisers specially adapted for therapeutic purposes operated by the vapour pressure of the liquid to be sprayed or atomised
    • A61M11/041Sprayers or atomisers specially adapted for therapeutic purposes operated by the vapour pressure of the liquid to be sprayed or atomised using heaters
    • A61M11/042Sprayers or atomisers specially adapted for therapeutic purposes operated by the vapour pressure of the liquid to be sprayed or atomised using heaters electrical
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • A24F40/44Wicks
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • A24F40/46Shape or structure of electric heating means
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • A24F40/48Fluid transfer means, e.g. pumps
    • A24F40/485Valves; Apertures
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/465Nicotine; Derivatives thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M11/00Sprayers or atomisers specially adapted for therapeutic purposes
    • A61M11/04Sprayers or atomisers specially adapted for therapeutic purposes operated by the vapour pressure of the liquid to be sprayed or atomised
    • A61M11/041Sprayers or atomisers specially adapted for therapeutic purposes operated by the vapour pressure of the liquid to be sprayed or atomised using heaters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M15/00Inhalators
    • A61M15/0001Details of inhalators; Constructional features thereof
    • A61M15/0021Mouthpieces therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M15/00Inhalators
    • A61M15/0086Inhalation chambers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M15/00Inhalators
    • A61M15/06Inhaling appliances shaped like cigars, cigarettes or pipes
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/10Devices using liquid inhalable precursors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/0003Accessories therefor, e.g. sensors, vibrators, negative pressure
    • A61M2016/0015Accessories therefor, e.g. sensors, vibrators, negative pressure inhalation detectors
    • A61M2016/0018Accessories therefor, e.g. sensors, vibrators, negative pressure inhalation detectors electrical
    • A61M2016/0021Accessories therefor, e.g. sensors, vibrators, negative pressure inhalation detectors electrical with a proportional output signal, e.g. from a thermistor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/11General characteristics of the apparatus with means for preventing cross-contamination when used for multiple patients
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/36General characteristics of the apparatus related to heating or cooling
    • A61M2205/3606General characteristics of the apparatus related to heating or cooling cooled
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/36General characteristics of the apparatus related to heating or cooling
    • A61M2205/3653General characteristics of the apparatus related to heating or cooling by Joule effect, i.e. electric resistance
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/75General characteristics of the apparatus with filters
    • A61M2205/7536General characteristics of the apparatus with filters allowing gas passage, but preventing liquid passage, e.g. liquophobic, hydrophobic, water-repellent membranes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/82Internal energy supply devices
    • A61M2205/8206Internal energy supply devices battery-operated
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/82Internal energy supply devices
    • A61M2205/8237Charging means

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Hematology (AREA)
  • Biomedical Technology (AREA)
  • Anesthesiology (AREA)
  • Pulmonology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Medicinal Preparation (AREA)
  • Catching Or Destruction (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
  • Emergency Medicine (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

Группа изобретений относится к компоненту ингалятора и ингалятору для периодического, синхронного с ингаляцией или вдохом образования паровоздушной смеси или/и конденсационного аэрозоля, включающему в себя корпус; размещенную в корпусе камеру; воздухозаборное отверстие для подведения воздуха из окружающей среды в камеру; электрический нагревательный элемент для испарения порции жидкого материала, причем образующийся пар в камере смешивается с воздухом, поступающим через воздухозаборное отверстие, и образуется паровоздушная смесь или/и конденсационный аэрозоль; и фитиль с капиллярной структурой, который с нагревательным элементом составляет композит, и нагревательный элемент после испарения вновь автоматически снабжается жидким материалом. Для возможности реализовать высокую удельную испарительную способность, необходимую для периодического, синхронного с ингаляцией или вдохом действия компонента ингалятора, при одновременно высоком коэффициенте полезного действия испарителя, предлагается компоновать простирающийся в/по поверхности композит, и по меньшей мере один нагреваемый участок композита размещать в камере бесконтактно, и формировать по большей части открытой капиллярную структуру фитиля в указанном участке, по меньшей мере на одной стороне простирающегося в/по поверхности композита. 3 н. и 30 з.п. ф-лы, 29 ил., 2 табл.

Description

Изобретение относится к компоненту ингалятора для периодического, синхронного с ингаляцией или вдохом образования паровоздушной смеси или/и конденсационного аэрозоля, включающему в себя:
корпус;
расположенную в корпусе камеру;
воздухозаборное отверстие для поступления воздуха из окружающей среды в камеру;
электрический нагревательный элемент для испарения порции жидкого материала, причем образовавшийся пар смешивается в камере с воздухом, поступающим через воздухозаборное отверстие, и образуется паровоздушная смесь или/и конденсационный аэрозоль;
и фитиль с капиллярной структурой, составляющий с нагревательным элементом композит, и нагревательный элемент после испарения вновь автоматически снабжается жидким материалом.
Изобретение имеет целью ингаляторы, которые обеспечивают возможность периодического, синхронного с ингаляцией или с вдохом действия. Такой режим действия имеет место, когда жидкий материал нагревается и испаряется только во время вдоха или во время ингаляции. В промежутках между двумя вдохами или ингаляциями нагревательный элемент по существу бездействует. Как правило, активация нагревательного элемента и, соответственно, подача на него напряжения происходит немедленно в начале вдоха или ингаляции, либо вручную, например, с помощью переключателя, либо, что предпочтительно, автоматически посредством подходящего сенсора и электронной управляющей схемы. В последнем случае говорят также о действии ингалятора, активируемом ингаляцией или вдохом.
В настоящей патентной заявке понятие «ингалятор» относится как к медицинским, так и к немедицинским ингаляторам. Кроме того, понятие относится к ингаляторам для введения лекарственных средств и таких веществ, которые не причислены к лекарственным препаратам. Кроме того, понятие относится к курительным изделия и изделиям, заменяющим сигареты, например, как указанные в классе A24F 47/00B Европейской патентной классификации, насколько они соответствуют тому, чтобы подавать пользователю паровоздушную смесь или/и конденсационный аэрозоль. Понятие «ингалятор» также не должно создавать никаких ограничений в том плане, каким образом сформированные паровоздушная смесь или/и конденсационный аэрозоль вводятся пользователю или в его организм. Паровоздушная смесь или/и конденсационный аэрозоль могут быть ингалированы в легкие, или же также могут быть введены только в ротовую полость - без вдыхания в легкие. Наконец, понятие «ингалятор» включает как такие устройства, которые производят непосредственную ингаляцию в легкие в единичной стадии («классические ингаляторы»), так и такие устройства, которые - как в сигарете - требуют по меньшей мере двух стадий, а именно, сначала одно втягивание в ротовую полость (объем вдоха: около 20-80 мл), и - после отключения ингалятора - следующее после этого вдыхание в легкие («ингалятор, активируемый вдохом»). Классические ингаляторы, по сравнению с активируемыми вдохом ингаляторами, имеют явственно увеличенный расход потока воздуха через ингалятор: около 100-750 мл/сек против 10-40 мл/сек. В противоположность этому, активируемые вдохом ингаляторы, как правило, проявляют значительно более высокое аэродинамическое сопротивление и, соответственно, сопротивление засасываемому потоку, чем классические ингаляторы.
Определения терминов:
Энергия испарения: явная плюс скрытая тепловая энергия, которая переносится на фактически испаренный жидкий материал.
Испарительная способность: величина энергии испарения, преобразованной в единицу времени.
Удельная испарительная способность: испарительная способность в расчете на единицу массы испаренного жидкого материала.
Коэффициент полезного действия испарителя: соотношение между энергией испарения и энергией, произведенной нагревательным элементом.
В течение многих лет было предложено множество ингаляторов и электрических курительных изделий, в которых электрическая энергия используется для того, чтобы испарить лекарственные средства или/и ароматические вещества и при необходимости подготовить полученный пар или/и образовавшийся конденсационный аэрозоль для ингаляции пользователю.
В GB 25575 A.D.1911 (на имя Elwin Kendal Hill) описан ингалятор с электрическим испарителем для испарения медикаментов. Испаритель состоит из диска 38 и перфорированной крышки 39. В пространстве между диском 38 и крышкой 39 находятся, с одной стороны, поглотительный материал 40, который поглощает медикамент, и, с другой стороны, электрический нагревательный элемент 41, например, в виде резистивной нагревательной проволоки. Жидкий медикамент автоматически подводится к поглотительному материалу 40 и, соответственно, нагревательному элементу 41 по соответствующим многочисленным фитилям 45 из бачка 30 для хранения запаса. Засасываемый во время ингаляции воздух протекает через конусообразный канал 36, в результате чего поток воздуха фокусируется на испарителе и тем самым подхватывает испаренный медикамент. Диск 38 испарителя удерживается на своем месте с помощью распорных втулок 44.
Недостатком такой компоновки прежде всего является сложность конструкции испарителя, его крепление, а также соединение фитилей с испарителем. Множество деталей и сложная структура этой конструкции делают ингалятор дорогостоящим в производстве и обусловливают трудоемкий монтаж.
Самым существенным недостатком представляется то, что отношение площади выхода пара к объему испарителя является сравнительно малым. Это определяется, с одной стороны, конкретной геометрической формой испарителя, и, с другой стороны, обусловливается тем, что поглотительный материал 40 и электрический нагревательный элемент 41 по большей части закрыты, а именно, диском 38 и крышкой 39. Эти крышки необходимы по конструктивным соображениям, чтобы удерживать вместе поглотительный материал 40 и электрический нагревательный элемент 41. Образующийся внутри испарителя пар может выходить исключительно через отверстия в крышке 39. Вследствие этого уже при сравнительно умеренной испарительной способности в испарителе может возникать кризис кипения, отчего такая компоновка представляется непригодной для периодической, синхронизированной с ингаляцией или вдохом работой, которая предусматривает главным образом высокую удельную испарительную способность при одновременно высоком коэффициенте полезного действия испарителя.
Кроме того, недостаток состоит в том, что, несмотря на меры предосторожности, которые предпринимались против поступления жидкого медикамента из бачка 30 для хранения запаса, такое поступление не может быть полностью исключено в силу конструктивных особенностей, в случае, когда бачок 30 для хранения запаса, например, переполнен вследствие неправильного обращения. Наконец, следует критически относиться к тому, что жидкий медикамент в бачке 30 для хранения запаса практически свободно доступен для окружающего воздуха, что может приводить к окислению медикамента или/и изменению его состава вследствие эффектов испарения.
В US 2057353 (на имя Clinton L. Whittemore) описано испарительное устройство для терапевтического прибора, состоящее из резервуара A для принятия жидкого медикамента x, выступающих в резервуар через дно резервуара электрических проводников 1 и 2, нагревательной проволоки 3, которая соединена с электрическими проводниками, а также фитиля D, который обмотан нагревательной проволокой 3 и простирается от нее до дна резервуара. Резервуар имеет воздухозаборное отверстие 4 и отверстие 5 для выхода пара, которые оба изогнуты внутрь, чтобы воспрепятствовать выходу медикамента из резервуара.
Недостатком этой конструкции является дорогостоящий процесс изготовления соединения между нагревательным элементом и фитилем. Фитиль нужно перед сборкой обмотать нагревательной проволокой. Эта операция становится трудоемкой прежде всего потому, что вставляемые детали обычно имеют исключительно маленькие размеры. Кроме того, затруднительно обеспечить то, чтобы все витки нагревательной проволоки прилегали к фитилю. Локальные отслоения могут приводить к перегревам нагревательной проволоки в этих областях, и резистивный материал быстрее подвергается старению. Эти проблемы касаются также областей, где нагревательная проволока соединяется с электрическими проводниками 1 и 2.
Дополнительный недостаток состоит в том, что наружная поверхность фитиля D частично покрыта намоткой нагревательного элемента 3. В этом отношении намотка создает препятствие для пара, выходящего из фитиля. Это препятствие для потока пара может привести к подобным последствиям, как уже ранее было подробно изложено в описании к GB 25575 А.D.1911. Более того, образовавшийся пар при истечении, по меньшей мере частично, контактирует с горячей нагревательной проволокой, что может вести к термическому разложению медикамента x.
В дополнение, неудачно то, что фитиль D удерживается в своем положении только относительно тонкой нагревательной проволокой 3. Уже сотрясение могло бы изменить положение фитиля D и значительно изменялись бы характеристики течения и смешения засасываемого через отверстие 4 воздуха и истекающего с фитиля D пара, и ухудшалось бы образование аэрозоля. Устройством можно пользоваться только в вертикальном или слегка наклонном положении; выход медикамента x из резервуара A не исключен полностью, несмотря на предпринятые конструктивные меры. Наконец, медикамент x в резервуаре A практически свободно подвержен воздействию окружающего воздуха, что представляет собой обстоятельство, которое тоже следует оценивать как весьма неблагоприятное.
В FR 960469 (на имя М. Eugène Vacheron) описано ингаляционное устройство с электрическим испарителем. Ингаляционное устройство включает электрические нагревательные патроны 4, 5, 6 и фитиль 16, каковой фитиль пропитан жидкостью, сохраняемой в резервуаре 1. Нагревательный патрон находится снаружи резервуара 1, то есть не связан непосредственно с фитилем. Специальные конструктивные условия делают ингаляционное устройство медленно действующим в теплотехническом отношении, и оно, пожалуй, представляется пригодным для непрерывной работы испарителя; но периодическое, синхронизированное с ингаляцией или вдохом действие кажется нереализуемым.
В CA 2309376 (на имя Matsuyama Futoshi) описан испаритель и, соответственно, распылитель медицинского назначения, состоящий из (Фиг.3) резервуара 1 с жидким препаратом и стержнеобразного пористого материала 3, который размещен в резервуаре 1. Стержнеобразный пористый материал 3 одним концом погружен в жидкий препарат, тогда как второй конец свободно выступает наружу из резервуара 1 вверх. Резервуар 1 и стержнеобразный пористый материал 3 размещены в одном дугообразном контейнере 5. Дугообразный контейнер 5, с одной стороны, удерживает резервуар 1 в своем положении, и, с другой стороны, содержит электрическое нагревательное устройство 6, которое охватывает стержнеобразный пористый материал 3 в его верхнем концевом участке, будучи на некотором расстоянии от него, причем расстояние предпочтительно варьирует в диапазоне 0,8-2,5 мм. Капиллярные силы в стержнеобразном пористом материале 3 действуют так, что жидкий препарат всасывается им снизу вверх, где препарат наконец испаряется электрическим нагревательным устройством 6. Содержащиеся в жидком препарате биологически активные вещества при этом распыляются и через отверстие 9 переходят из дугообразного контейнера 5 в наружное пространство, так что пользователь может их вдохнуть. Жидкий препарат состоит из водного раствора, в котором растворен или диспергирован концентрат биологически активного вещества. Водный раствор предпочтительно состоит из воды или смеси воды и этанола. Концентрат биологически активного вещества получают из листьев Lagerstroemia Speciosa (Лагестоемия изящная, или Банаба), и он содержит до 15% по массе коросолиевой кислоты. По непроверенным данным, концентрат биологически активного вещества действует как средство, снижающее уровень сахара в крови. Содержание концентрата биологически активного вещества (в расчете на коросолиевую кислоту) в водном растворе составляет 0,5-3,0% по массе.
Испаритель рассчитан на непрерывную работу. Электрическое нагревательное устройство 6 размещено на расстоянии от пористого материала 3, поэтому никакой связи с ним не образует. Зазор между ними обусловливает высокое тепловое сопротивление. Периодическое действие при соответствующей высокой удельной испарительной способности можно было бы реализовать, только когда теплота передавалась бы тепловым излучением. Для этого электрическое нагревательное устройство 6 нужно было бы моментально нагревать до очень высокой температуры. Жидкий препарат в первую очередь испарялся бы в краевой зоне, примыкающей к нагревательному устройству, и через уже названный зазор выходил бы в окружающее пространство. Несмотря на практическую реализуемость этой концепции, все же в любом случае образующийся пар приходил бы в контакт с раскаленной поверхностью нагревательного устройства 6, в результате чего концентрат биологически активного вещества, по меньшей мере частично, подвергался бы термическому разложению.
В US 6155268 (на имя Manabu Takeuchi) описано ароматизирующее устройство, которое состоит из (Фиг.1) камеры 121 с воздухозаборником 18 и мундштучным отверстием 22, и, соответственно, мундштуком 16, которыми сформирован газопроводный канал 20, и, кроме того, включает жидкостный контейнер 32 для размещения жидкого ароматического вещества 34, и, наконец, капиллярную трубку 36 с первым концевым участком, который погружен в жидкость в контейнере 32, и вторым концевым участком, который сообщается с газопроводным каналом 20 и, кроме того, включает нагревательный элемент 42. Жидкое ароматическое вещество 34 под действием капиллярных сил протекает по капиллярной трубке 36 к нагревательному элементу 42, где оно испаряется и в виде потока паров выходит из отверстия 36b в газопроводный канал 20. Поток воздуха, поступающий снаружи через воздухозаборник 18 в камеру 121, через перфорированную диафрагму 24, 24a фокусируется на капиллярном отверстии 36b, благодаря чему должны создаваться благоприятные условия для внутреннего смешения между паром и засасываемым воздухом, и, соответственно, для формирования аэрозоля.
В альтернативном варианте исполнения (Фиг.8-13) предлагаются пластинчатые нагревательные элементы. В дополнительных примерных вариантах исполнения (Фиг.14 и 15) капиллярная трубка во внутренней части заполнена пористой структурой 302, которая в одном варианте также может выступать наружу из капиллярной трубки, причем в этом последнем случае нагревательный элемент 425 может быть размещен на конце выступающей наружу пористой структуры.
Недостатком этих компоновок опять же является сравнительно сложная конструкция испарительного узла - в этом случае состоящего из капиллярной трубки и нагревательного элемента. Оба эти микрокомпонента должны быть соединены друг с другом, и нагревательный элемент должен быть подключен к источнику электрического питания, что в конкретном случае могло бы быть реализовано, пожалуй, только с помощью электрического проводника. К сожалению, на этот счет описание не приводит никаких более точных указаний.
Для компоновок согласно Фиг.14 и 15 справедливо подобное тому, что уже было высказано относительно GB 25575 A.D.1911: отношение площади истечения паров к объему испарителя исключительно мало. Это обусловливается тем, что пористая структура 302 в значительной мере покрыта оболочкой 301 и нагревательным элементом 425. Вследствие этого уже при умеренной испарительной способности в испарителе может возникать кризис кипения, отчего функционирование такой компоновки становится в принципе проблематичным прежде всего, когда требуется периодическое, синхронизированное с ингаляцией или вдохом действие.
Для жидкостного контейнера 32 предложены два варианта: в первом варианте (Фиг.1) жидкостный контейнер представляет собой фиксированную составную часть ароматизирующего устройства. Жидкостный контейнер можно пополнять через заправочное отверстие. Однако такое пополнение создает опасности, прежде всего тогда, когда жидкое ароматическое вещество содержит лекарственное средство или токсичные соединения, например, такие как никотин, и повторное пополнение проводит сам пользователь. В альтернативном варианте (Фиг.8) жидкостный контейнер выполнен как маленький сменный бачок. Подробности присоединения не были показаны. Маленькие сменные бачки все же всегда представляют опасность проглатывания их маленькими детьми, что потенциально может вести к летальному исходу, в особенности, когда жидкое ароматическое вещество содержит лекарственное средство или токсичные соединения, например, такие как никотин.
Компоновка согласно Фиг.8, кроме того, показывает сменный мундштук 161 с полым цилиндрическим удлинителем, который охватывает большую часть камеры 121 и простирается почти до устья капилляра 371. В камере 121 осаждаются накапливающиеся остатки конденсата, преимущественно на внутренней поверхности полого цилиндрического удлинителя, и могут быть удалены вместе с мундштуком. Проблематично, чтобы осаждение конденсата ограничивалось только внутренней поверхностью. Прежде всего, когда жидкое ароматическое вещество содержит большое количество низкокипящих фракций с высоким давлением паров, например этанола или/и воды, мундштук нужно будет заменять с более короткими интервалами. В противном случае на внутренней поверхности мундштука под действием сил поверхностного натяжения образуются капли, которые постоянно увеличиваются в объеме до тех пор, пока наконец сил адгезии уже будет недостаточно, чтобы удерживать капли, и они объединяются в более крупные жидкостные скопления. Эти жидкостные скопления могут нарушать работу устройства, но могут также представлять опасность для пользователя и окружающей среды, если такие скопления содержат остатки лекарственного препарата или токсичные вещества, например, такие как никотин. Но даже при той возможности, что сам пользователь будет удалять конденсат из устройства, остается опасность для окружающей среды.
В US 4922901, US 4947874 и US 4947875 (на имя Johnny L. Brooks и др.) описано изделие для высвобождения или введения лекарственного средства или/и ароматических веществ с помощью сменного узла 12, который содержит электрический резистивный нагревательный элемент 18, поверхность которого составляет более чем по меньшей мере 1 м2/г; электрический резистивный нагревательный элемент 18 несет аэрозолеобразующие вещества. Электрический резистивный нагревательный элемент 18 предпочтительно состоит из пористого или волокнистого материала, например углеродных волокон, каковой материал пропитан жидким аэрозолеобразователем. Кроме того, изделия содержат активируемый вдохом электронный управляющий блок 14 для регулирования тока через электрический резистивный нагревательный элемент 18, и в состоянии выделять по меньшей мере 0,8 мг аэрозоля или, соответственно, лекарственного средства на каждый вдох, причем в целом обеспечивают возможность сделать по меньшей мере 10 вдохов, прежде чем сменный узел 12 вместе с резистивным нагревательным элементом 18 нужно будет заменять на новый.
В этом изделии также весь испаряемый жидкий материал уже наличествует предварительно запасенным в резистивном нагревательном элементе 18. Подведение жидкости по фитилю не предусмотрено. Из этого следуют недостатки: аэрозолеобразующие вещества и, соответственно, лекарственное средство или/и возможные добавленные ароматические вещества, которые, например, высвобождаются во время последнего вдоха, перед этим были уже многократно нагреты, каковое обстоятельство благоприятствует термическому разложению аэрозолеобразующих веществ. Эти предшествующие нагревания к тому же являются неблагоприятными в такой мере, насколько для этого требуется дополнительная электрическая энергия, которая никак не способствует собственно испарению и, соответственно, образованию аэрозоля. В результате это ведет к очень низкому коэффициенту полезного действия испарителя. Еще один недостаток состоит в том, что в случае смесей различных аэрозолеобразующих веществ, лекарственных препаратов и ароматических веществ с различными температурами кипения отдельных компонентов химический состав образующегося аэрозоля и его органолептическое и фармакологическое действие варьирует от одной ингаляции к следующей, причем во время первого вдоха главным образом испаряются более низкокипящие фракции, и во время последнего вдоха высвобождаются главным образом высококипящие фракции. Наконец, уже после примерно 10 вдохов нужно заменять относительно дорогостоящий в изготовлении сменный узел 12 и тем самым также нагревательный элемент 18, что делает расточительным пользование таким изделием.
В US 5060671 и US 5095921 (на имя Mary E. Counts, D. Bruce Losee и др.) описано изделие 30 (Фиг.4), в котором высвобождающую ароматические вещества среду 111 нагревают электрическим нагревательным элементом 110, чтобы перевести вдыхаемые ароматические вещества в паровую или аэрозольную форму. Изделие содержит многочисленные порции высвобождающей ароматические вещества среды 111, которые последовательно нагревают и этим путем обеспечивают отдельные вдохи. Многочисленные порции высвобождающей ароматические вещества среды 111 нанесены на нагревательные элементы 110 предпочтительно в виде оболочки, покрытия или в виде тонкой пленки и могут также содержать аэрозолеобразующие вещества. Сцепление высвобождающей ароматические вещества среды 111 с нагревательными элементами 110 может быть улучшено с помощью промоторов адгезии, например, таких как пектин. Электрические нагревательные элементы 110 и нанесенные на них порции высвобождающей ароматические вещества среды 111 предпочтительно размещены в сменном блоке 11, который через контактные штифты соединен с узлом 31 многократного применения. Узел 31 многократного применения содержит источник 121 электрической энергии, а также электронный управляющий переключатель 32. В US 5322075 (на имя Seetharama С. Deevi и др.) описано подобное изделие.
Хотя это изделие устраняет некоторые из недостатков вышеописанных изделий (US 4922901, US 4947874 и US 4947875), конструкция сменного блока 11 все еще представляется усложненной, так как в конкретном случае предусмотрено большое число нагревательных элементов наряду с системой электрических контактов. Кроме того, если принимать во внимание, что сложный сменный блок 11 едва ли позволяет более 15 вдохов (ср. Фиг.7A-7K), будет ясно, что пользование таким изделием было бы дорогостоящим. Далее, в конкретном случае высвобождающая ароматические вещества среда 111 присутствует в виде тонкого слоя с относительной большой площадью, который, прежде всего во время размещения сменного блока 11, подвергается различным влияниям окружающей среды (окислению и т.д.). Чтобы исключить эти влияния, предусматривалась бы дорогостоящая упаковка, которая защищала бы среду 111 от внешнего окружения, но по возможности не контактировала. Об этом аспекте US 5060671 и US 5095921 ничего подробно не сообщают.
Публикация US 2005/0268911 (на имя Steven D. Cross и др.) очень похожа на вышеописанное изделие согласно US 5060671 и US 5095921 и описывает устройство для получения и дозирования многочисленных доз конденсационного аэрозоля для ингаляции медикаментов высокой чистоты, которое в простейшем случае (Фиг.1A) состоит из воздушного канала 10 с впускным отверстием и выпускным отверстием, многочисленных носителей 28, размещенных в воздушном канале 28, которые в каждом случае несут на себе определенные дозы действующего вещества/медикамента, и устройства для испарения этих отдельных доз. Воздушный поток, поступающий через впускное отверстие, достигает носителей 28, где в конце концов образуется конденсационный аэрозоль. Носители 28 в каждом случае содержат электрический резистивный нагревательный элемент, предпочтительно состоящий из металлической фольги 78 из нержавеющей стали. Нагревательные элементы 78 из металлической фольги преимущественно монтируют на плате (Фиг.4). Недостатки изделия согласно US 5060671 и US 5095921 в равной мере относятся и к устройству из US 2005/0268911.
В US 5505214 и US 5865185 (на имя Alfred L. Collins и др.) описано электрическое курительное изделие, состоящее из (Фиг.4; US 5505214) сменного блока 21 и детали 20 многократного применения. Сменный блок 21 содержит вещество 27 с ароматом табака, которое находится на носителе 36. Деталь 20 многократного применения содержит множество нагревательных элементов 23, которые получают питание электрическим током или энергией от одного источника энергии, например аккумулятора многократного применения, через электрическую управляющую схему. После вставления сменного блока 21 в деталь 20 многократного применения носитель 36 приходит в соприкосновение с нагревательными элементами 23. Во время ингаляции или, соответственно, вдоха в каждом случае единичный нагревательный элемент активируется электрической управляющей схемой, в результате чего носитель 36 нагревается по частям и вещество 27 с ароматом табака испаряется и, при необходимости, высвобождается в виде аэрозоля. В варианте исполнения согласно Фиг.4 деталь 20 многократного применения содержит восемь нагревательных элементов 23, сообразно чему, подобно ситуации с сигаретой, обеспечивается возможность восьми ингаляций или вдохов. После этого сменный блок 21 заменяют на новый блок.
По сравнению с изделием согласно US 5060671 и US 5095921 курительное изделие согласно US 5505214 и US 5865185 имеет то преимущество, что нагревательные элементы 23 размещены в детали 20 многократного применения стационарно и тем самым могут быть применены многократно. Электрические контакты между сменным блоком 21 и деталью 20 многократного применения не требуются. Однако недостатком по сравнению с изделием согласно US 5060671 и US 5095921 является то, что наряду с нагревательным элементами 23 дополнительно нужно нагревать носитель 36; нужная для этого теплота ухудшает коэффициент полезного действия испарителя. Остальные, уже ранее указанные недостатки изделия согласно US 5060671 и US 5095921, остаются теми же по смыслу.
В US 4735217 (на имя Donald L. Gerth и др.) описан дозатор для высвобождения испаренных медикаментов в виде мелких аэрозольных частиц, которые в результате ингаляции попадают в легкие. В показательном примере варианта исполнения (Фиг.4 и 5) дозатор состоит из пленочного сегмента 72 нагревательного элемента Nichrome® (длина × ширина × толщина: 1×1/8×0,001 дюйма (25,4×3,175×0,025 мм)), который последовательно соединен с батареей 65 и переключателем (60, 69), срабатывающим от потока воздуха или при вдохе. Испаряемый медикамент, например никотин, присутствует в виде твердой гранулы 40, которая контактирует с нагревательным элементом 72. Альтернативно, испаряемый медикамент может быть нанесен непосредственно на поверхность нагревательного элемента в виде покрытия или пленки.
Некоторые недостатки этого дозатора отчасти были упомянуты уже в US 4922901. К этому следует добавить, что теплопередача с нагревательного элемента на гранулу представляется очень неудовлетворительной. Большая часть нагревательного элемента 72 разогревается бесполезно, поскольку для гранулы используется лишь незначительная часть теплоты, выделяемой наружными участками нагревательного элемента. В принципе недостатком является и то, что для формирования гранулы применяют твердые вещества, которые в основном нужно сначала расплавить, прежде чем они могут быть испарены, вследствие чего ухудшается энергетический баланс.
В EP 1736065 (на имя Hon Lik) описана «электронная сигарета» для распыления никотинового раствора, которая в основном состоит из резервуара 11 для принятия распыляемой жидкости и распылителя 9. Внутри распылителя 9 находится распылительная камера 10, которая сформирована стенкой 25 распылительной камеры. Внутри распылительной камеры 10 размещают электрический нагревательный элемент 26, например, в виде резистивной нагревательной проволоки или керамического PTC-элемента (с положительным температурным коэффициентом). В распылителе или, соответственно, в стенке 25 распылителя дополнительно предусмотрены нагнетательные отверстия 24, 30, которые ориентированы по направлению к нагревательному элементу 26. Резервуар 11 содержит пористый наполнитель 28, например, состоящий из полимерных волокон или поропласта, который пропитан распыляемой жидкостью. Стенка 25 распылительной камеры тоже окружена пористым материалом 27, например, состоящим из никелевой пены или металлического войлока. Пористый материал 27 находится в контакте с пористым наполнителем 28 через выступ 36. Капиллярные силы действуют так, что пористый материал 27, который одновременно образует наружную оболочку распылителя 9, пропитывается распыляемой жидкостью. Кроме того, распылитель содержит в себе пьезоэлектрический элемент 23.
«Электронная сигарета» действует с активацией вдохом. Во время вдоха в распылительной камере 10 возникает пониженное давление, так как она сообщается с мундштуком 15. В результате этого воздух поступает из окружающей среды через нагнетательные отверстия 24, 30 в распылительную камеру. Высокая скорость потока в нагнетательных отверстиях 24, 30 действует так, что жидкость засасывается из пористого материала 27 и увлекается потоком воздуха в виде капелек (эффект Вентури). Содержащая никотин жидкость попадает в распылительную камеру 10, где она распыляется под действием ультразвука, генерируемого пьезоэлектрическим элементом 23. Нагревательный элемент 26 должен обеспечивать дополнительное распыление или, соответственно, испарение никотинового раствора. В альтернативном варианте исполнения распыление производится исключительно с помощью нагревательного элемента 26.
Компоновка имеет функциональное сходство с курительным устройством, раскрытым в US 4848374 (на имя Brian С. Chard и др.). В обоих случаях недостатком является то, что дозирование распыляемой жидкости или, соответственно, образуемого аэрозоля в каждом случае зависит от профиля вдохов пользователя подобно тому, как это имеет место в сигарете. Однако это нежелательно в медицинских или терапевтических вариантах применения. К этому следует добавить, что распыление с помощью ультразвука в общем производит явственно более крупные аэрозольные частицы, чем обычно образующиеся в конденсационных аэрозолях. Эти более крупные фракции частиц не достигают легочных пузырьков, но скорее главным образом абсорбируются уже в предшествующих отделах легких, что в случае системно действующих лекарственных средств, таких как никотин, очень неблагоприятно действует на кинетику всасывания и эффективность доставки действующего компонента. Кроме того, в особенности в случае альтернативного варианта исполнения без ультразвукового распыления, оказывается явно сомнительным, в состоянии ли вообще электрический нагревательный элемент, выполненный подобно нити в лампе накаливания, переносить на жидкий материал тепловую энергию, необходимую для испарения во время вдоха. Пожалуй, это было бы возможным только путем теплового излучения, для чего нагревательный элемент, как всем известно, должен быть доведен до температуры каления. Столь высокие температуры в принципе связаны с различными опасностями и недостатками - помимо всего прочего, с опасностью термического разложения распыляемой или уже распыленной жидкости. Наконец, следует оценивать как высокий риск в плане техники безопасности то, что резервуар, содержащий очень токсичный никотиновый раствор, открыт в торцевую сторону, и к тому же может быть отделен от «электрической сигареты». Этот риск уже был выявлен, и в одном усовершенствовании - как представлено в DE 202006013439 U - частично смягчен в этом отношении тем, что резервуар исполнен в виде герметично закрытого патрона, каковой патрон, разумеется, тоже имеет недостаток в том, что всегда может быть отделен от «электрической сигареты» и, например, может быть проглочен маленькими детьми.
В заключение следует отметить, что некоторые из только что представленных документов, хотя их нельзя причислить к обозначенному вначале классу изобретений, тем не менее были описаны, поскольку они по меньшей мере отображают уровень техники и в этом плане достойны того, чтобы принимать их во внимание.
В основу изобретения положена задача устранения вышеуказанных недостатков известных прототипных технических решений. В особенности изобретение имеет целью скомпоновать компонент ингалятора описанного вначале типа таким образом, чтобы можно было реализовать высокую удельную испарительную способность, необходимую для периодической, синхронной с ингаляцией или вдохом работы, при одновременно высоком коэффициенте полезного действия испарителя. При этом должно быть возможным обеспечение необходимых потребляемой мощности и расхода энергии одним аккумулятором энергии примерно в формате среднего аккумулятора для мобильного телефона. Возникновение кризиса кипения в фитиле должно быть исключено, и жидкий материал должен находиться по возможности в мягких условиях и может быть испарен также без значительного термического разложения.
Кроме того, компонент ингалятора должен обеспечивать удобное и безопасное для пользователя действие и при этом мог бы быть изготовлен по возможности экономично, что конкретно означает: композит должен пропитываться жидким материалом настолько быстро, насколько возможно, чтобы между двумя ингаляциями или вдохами не возникали существенные периоды ожидания. Компонент ингалятора должен обеспечивать возможность работы независимо от его положения. Должна быть сведена к минимуму опасность того, что жидкий материал, включая жидкие сконденсированные остатки, попадет в окружающую среду или окажет вредное влияние на функционирование компонента ингалятора. Композит должен быть таким, чтобы его можно было изготовить экономично. Компонент ингалятора должен быть выполнен удобным в обращении и эргономичным, и простым в обслуживании.
Кроме того, характеристики образуемой паровоздушной смеси или/и конденсационного аэрозоля должны быть регулируемыми, по меньшей мере в известных пределах - прежде всего в плане распределения частиц по величине в образующемся конденсационном аэрозоле, а также по самим органолептическим воздействиям.
Наконец, компонент ингалятора должен быть выполнен в двух принципиально различных вариантах, чтобы обеспечить возможность применения как в классических ингаляторах, так и в ингаляторах, активируемых вдохом.
Эта задача решена тем, что композит выполнен листообразным, и по меньшей мере один нагреваемый участок композита размещен в камере бесконтактно, причем капиллярная структура фитиля в вышеуказанном участке по меньшей мере на одной стороне листообразного композита по существу является открытой. В одном дополнительном варианте осуществления изобретения капиллярная структура фитиля в вышеуказанном участке является по большей части открытой на обеих сторонах листообразного композита. Благодаря тому, что капиллярная структура фитиля в вышеуказанном участке является по большей части открытой, образовавшийся пар может беспрепятственно вытекать из фитиля, поэтому повышается испарительная способность и, соответственно, можно избежать кризиса кипения в фитиле.
Разъяснения терминов:
«Листообразный» означает, что нагревательный элемент и фитиль размещены в одной и той же поверхности или/и в параллельных между собой поверхностях и связаны друг с другом. Капиллярный транспорт жидкого материала в листообразном композите происходит главным образом в направлении поверхности.
«Бесконтактно» означает, что стенка камеры не контактирует с остальными конструкционными элементами компонента ингалятора; благодаря бесконтактной компоновке в камере достигается то, что потери на теплопроводность композита в этом участке значительно сокращаются, и композит нагревается ровно настолько, чтобы можно было испарить запасенный в фитиле жидкий материал.
«Камера» также предполагает включение каналов; таким образом, в понятие «камера» входит также трубчатый канал; в этом случае открытый конец трубки может образовывать, например, воздухозаборное отверстие.
Листообразный композит в предпочтительном варианте исполнения имеет толщину менее 0,6 мм, и в особенности предпочтительном варианте исполнения толщину менее 0,3 мм. Такие размеры обусловливают то, что подводимая в поверхности теплота может эффективно распространяться путем теплопроводности - то есть, при малом температурном градиенте в открытой поверхности фитиля и, соответственно, капиллярной структуре, где она обеспечивает испарение жидкого материала. Кроме того, пар, уже образованный внутри фитиля, может легче достигать открытой поверхности фитиля. Эти условия позволяют дополнительно повысить испарительную способность и содействуют тому, что жидкий материал испаряется особенно бережно. Следует отметить, что при этом речь идет не столько о простом выборе размеров, но скорее о существенном признаке изобретения. Для самого автора настоящего изобретения оказалось неожиданным, когда он обнаружил в экспериментах, что плоский фитиль с открытой поверхностью фитиля и толщиной <300 мкм еще проявляет капиллярное затекание.
Как соответствующее изобретению, рассматривается то, что композит выполнен пластинчатым, пленкообразным, полосовидным или лентообразным. Эти листообразные компоновки делают применимыми способы получения, которые обеспечивают возможность в особенности экономичного массового производства.
Согласно изобретению листообразный композит содержит следующие структуры: ткань, открытопористую волокнистую структуру, открытопористую спеченную структуру, открытопористую пену, открытопористую осадительную структуру. Эти структуры в особенности пригодны для того, чтобы получить основу фитиля с высокой пористостью. Высокая пористость гарантирует, что теплота, генерированная нагревательным элементом, по большей части используется для испарения находящегося в порах жидкого материала и что может быть достигнут высокий коэффициент полезного действия испарителя. Конкретно с этими структурами может быть реализована пористость более 50%. Например, открытопористая волокнистая структура может состоять из нетканого материала, который уплотнен в любой степени, и для улучшения прочности сцепления может быть подвергнут дополнительному спеканию. Например, открытопористая спеченная структура может состоять из зернистого, волокнистого или хлопьевидного спеченного композитного материала, полученного поливным способом изготовления пленок. Например, открытопористая осадительная структура может быть приготовлена способами химического осаждения из паровой фазы (CVD), физического осаждения из паровой фазы (PVD) или газопламенного напыления. Открытопористые пены главным образом имеются в продаже на рынке и также могут быть приобретены в виде тонких мелкопористых материалов.
В варианте осуществления изобретения листообразный композит имеет по меньшей мере два слоя, причем слои включают по меньшей мере одну из следующих структур: пластину, пленку, бумагу, ткань, открытопористую волокнистую структуру, открытопористую спеченную структуру, открытопористую пену, открытопористую осадительную структуру. При этом нагревательный элемент может быть в одном определенном слое и фитиль в другом слое. Например, нагревательный элемент может быть сформирован в виде электрического резистивного нагревателя, состоящего из металлической фольги. Но также возможно, что слой функционирует и как нагревательный элемент, и как фитиль; таким образом, такой слой может состоять из ткани, сплетенной из металлической проволоки, которая, с одной стороны, благодаря своему электрическому сопротивлению вносит свой вклад в нагревание, и, с другой стороны, обеспечивает капиллярное действие для жидкого материала. Отдельные слои предпочтительно, но не обязательно соединяют между собой с помощью термической обработки, такой как спекание или сварка. Например, композит может быть выполнен как спеченный композит, состоящий из нержавеющей стальной пленки и одного или более слоев ткани, сплетенной из нержавеющей стальной проволоки (например, материал AISI 304 или AISI 316). Вместо нержавеющей стали могут также найти применение, например, сплавы для электронагревательных элементов - в особенности хромоникелевые (NiCr) сплавы и сплавы хрома, железа и алюминия (CrFeAl) ("Kanthal"), которые по сравнению с нержавеющей сталью имеют еще более высокое удельное электрическое сопротивление. С помощью термической обработки обеспечивают материальное связывание между слоями, благодаря чему слои сохраняют контакт друг с другом - также при жестких условиях, например, во время нагревания нагревательным элементом и вызываемого этим теплового расширения. Если бы контакт между слоями оказался утраченным, мог бы образоваться зазор, который мог бы нарушить, с одной стороны, капиллярное сопряжение и, с другой стороны, теплопередачу от нагревательного элемента к жидкому материалу.
В аналогичном варианте осуществления изобретения предусматривается, что композит выполнен линейным, и по меньшей мере один нагреваемый участок композита размещен в камере бесконтактно, и капиллярная структура фитиля в вышеуказанном участке является по существу открытой. Благодаря тому, что капиллярная структура фитиля в вышеуказанном участке является открытой, образующийся пар может беспрепятственно вытекать из фитиля, в результате чего повышается испарительная способность и, соответственно, можно избежать кризиса кипения в фитиле. Капиллярный транспорт жидкого материала в линейном композите происходит главным образом в продольном направлении линейного композита. Понятие «бесконтактно» и «камера» уже были разъяснены ранее.
Линейный композит предпочтительно имеет толщину менее 1,0 мм, причем толщина определяется выражением:
Figure 00000001
(A обозначает площадь поперечного сечения композита). Такие размеры обусловливают то, что подводимая в линейном направлении теплота может эффективно распространяться путем теплопроводности - то есть, при малом температурном градиенте в открытой поверхности фитиля и, соответственно, капиллярной структуре, где она обеспечивает испарение жидкого материала. Кроме того, пар, уже образованный внутри фитиля, может легче достигать открытой поверхности фитиля. Эти условия позволяют дополнительно повысить испарительную способность.
Согласно изобретению линейный композит содержит по меньшей мере одну из следующих структур: проволоку, нить, открытопористую спеченную структуру, открытопористую пену, открытопористую осадительную структуру. Эти структуры в особенности пригодны для того, чтобы получить линейный композит с достаточной механической прочностью и с высокой пористостью.
В предпочтительном варианте исполнения листообразного или линейного композита нагревательный элемент, по меньшей мере частично, объединен с фитилем. Эта компоновка дает тот преимущественный эффект, что теплота генерируется и выделяется непосредственно в основе фитиля и там напрямую переносится на испаряемый жидкий материал. Например, нагревательный элемент может представлять собой тонкую электропроводную пленку и состоять из платины, никеля, молибдена, вольфрама, тантала, каковая тонкая пленка может быть нанесена на поверхность фитиля способами физического осаждения из паровой фазы (PVD) или химического осаждения из паровой фазы (CVD). В этом случае фитиль состоит из неэлектропроводного материала, например из кварцевого стекла. В варианте осуществления изобретения, который является простейшим в плане технологии изготовления, сам фитиль, по меньшей мере частично, состоит из обладающего электрическим сопротивлением материала, например из углерода, из электропроводного или полупроводникового керамического материала или из РТС-материала (с положительным температурным коэффициентом). В особенности благоприятно, когда обладающий электрическим сопротивлением материал является металлическим. По сравнению с вышеназванными материалами металлы имеют более высокую пластичность. Это свойство оказывается преимущественным в том отношении, что композит при эксплуатации подвергается переменной термической нагрузке, вследствие чего возникают тепловые расширения. Металлы могут лучше компенсировать такие тепловые расширения. Более того, металлы имеют сравнительно более высокую ударную вязкость. Это свойство оказывается преимущественным тогда, когда компонент ингалятора подвергается воздействию ударов. Подходящими металлическими резистивными материалами являются, например, нержавеющая сталь, такая как AISI 304 или AISI 316, а также сплавы для электронагревательных элементов - в особенности хромоникелевые (NiCr) сплавы и сплавы хрома, железа и алюминия (CrFeAl) ("Kanthal"), как материалы с номерами согласно стандарту DIN 2.4658, 2.4867, 2.4869, 2.4872, 1.4843, 1.4860, 1.4725, 1.4765, 1.4767.
В дополнительном предпочтительном варианте исполнения листообразного или линейного композита предусмотрено, что соединение между нагревательным элементом и фитилем является протяженным по всей длине фитиля. При этом неважно, используется ли нагревательный элемент как таковой, то есть нагревается, по всей своей протяженности или же только по частям. Это зависит от конкретного положения электрического контактирования нагревательного элемента. Даже если это контактирование предусмотрено на наружных концах нагревательного элемента, нагревательный элемент не обязательно должен по всей своей протяженности функционировать для испарения жидкого материала. Так, нагревательный элемент может некоторыми участками контактировать с конструкционными компонентами, которые в значительной степени отводят производимую нагревательным элементом теплоту, чтобы жидкий материал в фитиле, по меньшей мере в этом участке, практически не нагревался. Правда, эту отводимую теплоту следовало бы расценивать в энергетическом балансе как потерянную. При использовании такого варианта исполнения применимы такие способы изготовления, которые по сравнению с прототипом обеспечивают явные преимущества в производственных расходах и уже делают экономичным массовое производство. Так, листообразный композит в большом количестве экземпляров можно получать из плоской заготовки многократно большей площади, причем композит вырезают из этой заготовки многократно большей площади подходящими способами резки, такими как выштамповывание или лазерная раскройка. Линейный композит может быть преимущественно получен из бесконечного материала. Понятие «бесконечный материал» также включает материал с конечной длиной, в такой мере, насколько эта длина является во много раз большей, чем длина линейного композита.
Как уже было изложено ранее, высокая пористость фитиля и, соответственно, композита является весьма желательной в плане эффективного использования выделяемой нагревательным элементом тепловой энергии. Пористость может быть дополнительно увеличена, для чего композит или его производственный полуфабрикат, например, заготовку многократно большей площади, протравливают. Например, спеченный композит, составленный пленкой из нержавеющей стали и одним или многими слоями сетки из нержавеющей стальной проволоки (например, AISI 304, AISI 316), может быть соответственно обработан в водной травильной ванне, состоящей из 50% азотной кислоты и 13% плавиковой кислоты, причем в качестве побочного эффекта проявляется также влияние на электрическое сопротивление нагревательного элемента и, соответственно, композита, а именно, оно может быть повышено.
Кроме того, поверхность композита или его производственного полуфабриката согласно изобретению может быть активирована. Эта мера включает также очистку поверхности и обусловливает лучшее смачивание материала композита жидким материалом и связанное с этим более быстрое пропитывание фитиля. Для вышеуказанного примерного спеченного композита, составленного пленкой из нержавеющей стали и одним или многими слоями сетки из нержавеющей стальной проволоки, например, весьма пригодна обработка в 20%-ной фосфорной кислоте, чтобы достигнуть вышеупомянутого эффекта.
В предпочтительном варианте осуществления изобретения фитиль компонуют как артериальный фитиль. Этот тип фитиля находит применение прежде всего в тепловых трубах и более подробно описан в соответствующей литературе, например, см. стандартный международный номер книги ISBN 0080419038. Например, такой фитиль может состоять из пучка каналов или капилляров - так называемых «артерий», которые окружены структурой с более тонкой пористостью или, соответственно, сформированы из таковой. По сравнению со структурой, имеющей однородную пористость, с такой же капиллярностью или, соответственно, таким же капиллярным давлением (высотой капиллярного подъема), пучок из каналов или капилляров создает меньшее гидравлическое сопротивление течению жидкого материала, благодаря чему впитывание жидкого материала в фитиль может происходить значительно быстрее.
В одном варианте исполнения фитиль является перфорированным в направлении толщины. Перфорирование может быть выполнено, например, с помощью лазера и оказывает следующие действия: во-первых, дополнительно увеличивает пористость; во-вторых, снижает гидравлическое сопротивление течению в направлении толщины. Последний эффект проявляется в особенности при применении артериального фитиля, в том отношении, когда жидкий материал в фитиле во время испарения испытывает повышение давления и перфорирование действует как декомпрессионная мера. Тем самым можно избежать того, что пар, образующийся в фитиле, будет вытеснять жидкий материал по артериям обратно к источнику жидкого материала, в результате чего может быть чувствительно нарушено снабжение жидким материалом.
Кроме того, соответствующим изобретению рассматривается то, что листообразный композит в основном выполнен плоским и что воздухозаборное отверстие сформировано в виде щелевидного канала, и что щелевидный канал ориентирован параллельно поверхности плоского композита. Аналогично, как соответствующее изобретению рассматривается то, что линейный композит в основном выполнен прямолинейным и что воздухозаборное отверстие сформировано в виде щелевидного канала, и что щелевидный канал ориентирован параллельно прямолинейному композиту. С помощью этих геометрически простых компоновок могут быть созданы очень благоприятные условия смешения поступающего воздуха с выходящим из фитиля паром, каковые условия смешения сверх того могут быть простым путем отрегулированы изменением положения щелевидных каналов или/и изменением ширины щели; таким образом можно в известной степени оказывать влияние на свойства сформированного аэрозоля - в особенности на величину образующихся капелек аэрозоля.
Согласно изобретению предусматривается, что композит пересекает камеру в виде перемычки и двумя концевыми участками расположен на двух электропроводных пластинчатых контактах, и нагревательный элемент электрически контактирует с контактами. Если принимать во внимание, что в отношении композита речь идет об исключительно маленькой и механически чувствительной конструкционной детали, которая, кроме того, подвергается воздействию сил течения поступающего в камеру воздуха, а также сил, обусловленных тепловым расширением, то будет ясно, что только что описанная компоновка обеспечивает возможность относительно стабильного и технологически простого в исполнении крепления и контактирования композита. В предпочтительном варианте осуществления изобретения электрическое контактирование нагревательного элемента обеспечивается сварным соединением или спеканием. Сварное соединение может быть создано точечной сваркой, контактной сваркой, ультразвуковой сваркой, лазерной сваркой, микросваркой или прочими пригодными способами сварки. В особенности благоприятным для приваривания или спекания является условие, когда пластинчатые контакты состоят из такого же или подобного материала, как в нагревательном элементе. В другом предпочтительном варианте осуществления изобретения электрическое контактирование нагревательного элемента создается клеевым соединением с помощью электропроводного клеевого средства, например, с помощью содержащего серебро клея на эпоксидной основе. В этом случае пластинчатые контакты в принципе могут состоять из любого материала для электрического контактирования в такой мере, насколько материал совместим с используемым клеевым средством; альтернативно, пластинчатые контакты могут быть сформированы в виде печатных плат или одной совместной печатной платы. Предпочтение отдают печатным платам, изготовленным по технологии с использованием толстого слоя меди, с толщинами медного слоя в диапазоне 100-500 мкм, благодаря лучшим условиям отведения теплоты. Разумеется, изобретение не ограничивается вышеназванными способами контактирования. Так, электрическое контактирование альтернативно может быть получено с использованием механических зажимов. В дополнительном варианте осуществления изобретения пластинчатые контакты выступают из наружных поверхностей корпуса в виде двух штекерных контактов. Оба штекерных контакта предназначены для того, чтобы подводить к нагревательному элементу необходимую электрическую энергию.
В предпочтительном варианте осуществления изобретения композит одним концом выступает в капиллярную щель, аэрогидродинамическое сопротивление в которой является меньшим, чем аэрогидродинамическое сопротивление в фитиле. Капиллярная щель питает фитиль жидким материалом; пониженное по сравнению с фитилем аэрогидродинамическое сопротивление действует так, что жидкий материал быстрее достигает зоны испарения в композите. Наряду с этим также сокращается время, которое требуется, чтобы фитиль после испарения вновь полностью пропитался жидким материалом. Это время соответствует периоду ожидания, который по меньшей мере должен выдерживаться между двумя вдохами или ингаляциями. Если этот период ожидания не выдерживать, это может вести к сокращению выделяемого количества пара и, соответственно, дозы лекарственного средства. Кроме того, вследствие нагревания композита на некоторых участках без присутствия жидкого материала, это может приводить к локальным перегревам, что повреждает композит или сокращает срок его службы. В одном дополнительном варианте осуществления изобретения предусматривается, что поперечное сечение капиллярной щели является большим, чем поперечное сечение композита. Этим обеспечивается то, что жидкий материал частично обходит фитиль подобно байпасу и этим путем еще быстрее достигает зоны испарения в композите. В одном предпочтительном варианте осуществления изобретения нагревательный элемент композита имеет электрическое контактирование в капиллярной щели. Тем самым достигается очень компактная компоновка.
Предпочтительный вариант осуществления изобретения относится к компоненту ингалятора с содержащим жидкий материал жидкостным контейнером, размещенным в корпусе или соединенным с корпусом, вместе со вскрываемой заглушкой; согласно изобретению предусматривается, что жидкостный контейнер нельзя ни извлечь из корпуса, ни отделить от корпуса, и жидкий материал в жидкостном контейнере может получить капиллярное сопряжение с капиллярной щелью путем ручного вскрытия вскрываемой заглушки. Жидкостный контейнер также не может быть удален пользователем из компонента ингалятора, даже когда жидкий материал израсходован, что в особенности следует расценивать как преимущество в плане безопасности тогда, когда контейнер содержит лекарственные средства или/и токсичные вещества, например, такие как никотин. Корпус компонента ингалятора слишком велик, чтобы маленькие дети могли проглотить его. Пополнение жидкостного контейнера не предусматривается; напротив, компонент ингалятора вместе с жидкостным контейнером составляет изделие одноразового употребления, которое после израсходования жидкого материала подлежит утилизации. Жидкий материал хранится в жидкостном контейнере герметично закупоренным. Доступ воздуха или ультрафиолетового (UV) излучения категорически исключен. Кроме того, жидкостный контейнер может содержать защитный газ, такой как аргон, азот или диоксид углерода, который дополнительно защищает жидкий материал от окисления. Вскрываемую заглушку жидкостного контейнера целесообразно вскрывают лишь перед самым использованием компонента ингалятора, после чего жидкий материал через капиллярную щель поступает в фитиль и впитывается им. Вскрытие вскрываемой заглушки производят простым путем вручную, без привлечения специальных вспомогательных средств.
В первом варианте исполнения жидкостный контейнер жестко и постоянно соединен с корпусом или составляет часть самого корпуса. Например, жидкостный контейнер может быть сформирован в виде отдельной детали, которую без возможности отделения скрепляют с корпусом с помощью клеевого соединения или сварного соединения. В дополнительном усовершенствовании первого варианта исполнения предусмотрен сообщающийся с капиллярной щелью резервуар, который примыкает к жидкостному контейнеру и отделен от него вскрываемой заглушкой. Резервуар предназначен для того, чтобы при вскрытой заглушке отбирать из жидкостного контейнера по меньшей мере часть жидкого материала и обеспечивать капиллярное сопряжение с капиллярной щелью. Вскрытие вскрываемой заглушки предпочтительно производят с помощью размещенного по оси корпуса сдвижного штифта, первый конец которого направлен на вскрываемую заглушку и второй конец которого при закрытой заглушке выступает над наружной поверхностью корпуса в виде кнопки, благодаря чему ко второму концу штифта может быть приложено нажимное усилие. Нажимное усилие передается штифтом на вскрываемую заглушку, в результате чего она в конечном итоге прорывается в заданном месте разрушения. Нажимное усилие может быть приложено, например, нажатием пальца. В особенности предпочтительный вариант осуществления изобретения относится к ингалятору, включающему в себя компонент ингалятора, как только что описанный, а также часть ингалятора многократного применения, которая может быть соединена с компонентом ингалятора; согласно изобретению предусмотрено, что второй конец штифта во время объединения с частью ингалятора многократного применения находится в функциональном взаимодействии с последней в виде толкателя, посредством которого прилагают вышеописанное нажимное усилие. Объединение компонента ингалятора с частью ингалятора многократного применения и вскрытие жидкостного контейнера также происходят одновременно путем единственной манипуляции.
Согласно изобретению резервуар сообщается с камерой через вентиляционный канал, через который воздух поступает в резервуар и обеспечивает выравнивание давления. Таким образом, каждая порция жидкого материала, которая поступает в капиллярную щель, немедленно замещается равной по объему порцией воздуха. Существенно то, что вентиляционный канал соединен с камерой и не сообщается с внешней окружающей средой, так как в противном случае давление всасывания во время ингаляции накладывалось бы на капиллярное течение, и жидкий материал по «принципу соломинки» засасывался бы из жидкостного контейнера.
Во втором варианте исполнения жидкостный контейнер размещают в корпусе вдоль оси сдвига между двумя упорными положениями с возможностью сдвига вручную, и жидкостный контейнер в первом упорном положении взаимодействует с неразмыкаемым блокирующим устройством и во втором упорном положении взаимодействует со вскрывающим устройством, которое вскрывает вскрываемую заглушку. С помощью блокирующего устройства по существу предотвращается извлечение жидкостного контейнера из корпуса. Жидкостный контейнер, так же как в первом варианте исполнения, не может быть удален из корпуса - с теми же преимуществами в плане безопасности, каковые уже описаны ранее. В дополнительном усовершенствовании второго варианта исполнения вскрывающее устройство включает сформированный капиллярной щелью первый пробойник, который во втором упорном положении пробивает вскрываемую заглушку, в результате чего создается капиллярное сообщение с жидким материалом. Кроме того, опять же предусмотрен вентиляционный канал, первый конец которого сообщается с камерой и второй конец которого сформирован в виде второго пробойника, который во втором упорном положении пробивает вскрываемую заглушку. Первый и второй пробойники совместно также составляют вскрывающее устройство. Работа этой конструкции подобна взаимодействию между авторучкой и ее чернильным патроном. Разумеется, первый и второй пробойники также могут быть объединены в единичный обобщенный пробойник. Неразмыкаемое блокирующее устройство в простейшем случае может состоять, например, из выступа, сформированного в корпусе или в мундштуке, в который жидкостный контейнер упирается, будучи в первом упорном положении. Наконец, второй вариант исполнения относится к компоненту ингалятора, включающему в себя мундштук с мундштучным каналом, через который пользователь получает сформированные паровоздушную смесь или/и конденсационный аэрозоль, и согласно изобретению предусматривается, что ось сдвига, по меньшей мере приблизительно, ориентирована параллельно срединной оси мундштучного канала, и жидкостный контейнер, по меньшей мере в первом упорном положении, одним концевым участком выступает из корпуса вбок рядом с мундштуком. Сдвижной жидкостный контейнер может быть сдвинут в свое второе упорное положение простым путем, для чего пользователь нажимает на выступающий конец жидкостного контейнера. Мундштук и жидкостный контейнер выступают из корпуса на одной и той же фронтальной стороне компонента ингалятора, что делает компонент ингалятора удобным в обращении и применение его эргономичным.
Кроме того, согласно изобретению может быть предусмотрен резервный накопитель, который сообщается с капиллярной щелью и сам состоит из капилляров. Резервный накопитель имеет способность отбирать жидкий материал из капиллярной щели и при необходимости опять подавать запасенный жидкий материал на фитиль через капиллярную щель независимо от положения. Тем самым компонент ингалятора можно использовать в любом произвольном положении, по меньшей мере в такой степени, насколько жидкий материал имеется в резервном накопителе. Например, капилляры могут состоять из узких прорезей, отверстий или из пористого материала, причем следует обращать внимание на то, чтобы их капиллярность и, соответственно, капиллярное давление (высота капиллярного подъема) были меньше, чем капиллярность фитиля, так как в противном случае никакое капиллярное течение не происходит.
Альтернативно вышеописанному жидкостному контейнеру, компонент ингалятора может содержать жидкостный накопитель, состоящий из эластичного открытопористого материала и пропитанный жидким материалом; согласно изобретению предусматривается, что композит сэндвичеобразно зажат между одним из двух пластинчатых контактов - как уже ранее описанных, с одной стороны, и жидкостным накопителем, с другой стороны, благодаря чему фитиль имеет капиллярное сопряжение с жидким материалом в жидкостном накопителе. Эластичный открытопористый материал, например, может состоять из волокнистого материала или из вспененного вещества. Жидкий материал самостоятельно засасывается из жидкостного накопителя в фитиль и пропитывает его. Предполагается, что капиллярность и, соответственно, капиллярное давление (высота капиллярного подъема) фитиля будут больше, чем капиллярность жидкостного накопителя. Сэндвичеобразное закрепление представляет собой конструктивно простую и экономичную в ее исполнении компоновку.
В дополнительном варианте осуществления изобретения компонент ингалятора содержит устройство для связывания конденсата, предназначенное для принятия и накопления конденсационных остатков, которые образуются в ходе формирования паровоздушной смеси или/и конденсационного аэрозоля; прежде всего, когда испаряемый жидкий материал имеет высокое содержание низкокипящих фракций с высоким давлением паров, например этанола или/и воды, могут образовываться большие количества конденсационных остатков. Такое содержание низкокипящих фракций является предпочтительным прежде всего по двум соображениям, и в случае соответствующего изобретению компонента ингалятора даже необходимо: во-первых, такое содержание снижает вязкость жидкого материала, благодаря чему жидкий материал может быстрее впитываться в фитиль. Это действие для соответствующего изобретению композита оказывается в особенности преимущественным, поскольку толщина композита, а также обусловленный этим средний диаметр пор фитиля являются исключительно малыми. Во-вторых, низкокипящие фракции обусловливают то, что содержащиеся в жидком материале лекарственные средства и другие добавки легче испаряются, образуют меньше остатков после испарения, и сокращается термическое разложение жидкого материала. Чтобы сделать эти положительные воздействия полезными в удовлетворительном масштабе, массовая доля низкокипящих фракций должна явственно превышать 50%. По этой причине при эксплуатации соответствующего изобретению компонента ингалятора следует ожидать значительных количеств конденсационных остатков, которые целесообразно должны быть связаны.
Согласно изобретению устройство для связывания конденсата состоит из открытопористого, способного впитывать жидкость материала, который размещают на расстоянии, но в непосредственной близости от открытой в вышеупомянутом участке капиллярной структуры фитиля. Открытопористый, способный впитывать жидкость материал принимает в свои поры из паровой фазы образовавшиеся конденсационные осаждения и в этом отношении действует здесь по принципу, подобному губке. Может быть беспроблемно связано и большее количество конденсата. Открытопористый, способный впитывать жидкость материал предотвращает образование в компоненте ингалятора, в особенности в камере, свободно перемещающихся скоплений конденсата, которые могут ухудшать функционирование компонента ингалятора, но также создают опасность для пользователя и окружающей среды, если эти скопления содержат лекарственные средства или токсичные вещества, такие как никотин.
Специальным размещением открытопористого, способного впитывать жидкость материала в непосредственной близости от зоны парообразования - то есть, в области высокой плотности паров - обеспечивается то, что остатки конденсата в очень высокой концентрации и тем самым очень эффективно поглощаются и им не доставляется никакой возможности достижения отдаленных областей. В особенности благоприятным является то, когда открытопористый, способный впитывать жидкость материал напрямую перекрывает открытую в вышеупомянутом участке капиллярную структуру фитиля, поскольку в этой зоне следует ожидать самой высокой плотности паров. В одном предпочтительном варианте осуществления изобретения открытопористый, способный впитывать жидкость материал включает две размещенных на некотором расстоянии друг от друга части или участка, и композит, по меньшей мере фрагментарно, размещен между обеими частями или участками. Далее, как соответствующее изобретению действительно то, что открытопористый, способный впитывать жидкость материал размещен в камере и заполняет преобладающую часть камеры. Таким образом, при более компактной компоновке можно реализовать особенно большую поглотительную способность в отношении жидких остатков конденсата. Кроме того, является предпочтительным, когда открытопористый, способный впитывать жидкость материал состоит из формостабильного материала, который даже после полного пропитывания остатками конденсата главным образом сохраняет свою форму. Чтобы выяснить, сохраняет ли конкретный материал свою форму, достаточно пропитать его водноэтанольным раствором и после трехсуточного выдерживания проверить стабильность формы. Стабильность формы гарантирует, что условия течения потоков в камере, в особенности вокруг композита, и тем самым условия формирования паровоздушной смеси или/и конденсационного аэрозоля будут оставаться постоянными. Например, открытопористый, способный впитывать жидкость материал может состоять из твердого вспененного материала, такого как металлическая пена или керамическая пена, из пористого спеченного формованного материала, из пористого наполнителя или насыпной массы без склонности к набуханию, например из сыпучей массы гранулированного осушителя, или из пористого волокнистого композита, например образованного из натуральных или химических волокон, скрепленных между собой термически или с помощью связующего средства. Кроме того, является существенным, чтобы материал был по существу химически инертным в отношении остатков конденсата.
Согласно предпочтительному варианту осуществления изобретения открытопористый, способный впитывать жидкость материал со всех сторон окружен корпусом и соединен с корпусом без возможности отделения. Тем самым должно достигаться то, что открытопористый, способный впитывать жидкость материал не сможет непосредственно контактировать с окружающей средой и его извлечение из корпуса возможно только насильственным воздействием и разрушением компонента ингалятора. Эта защитная мера оказывается предпочтительной прежде всего тогда, когда конденсат содержит лекарственные средства или/и токсичные вещества, такие как никотин. Компонент ингалятора вместе с открытопористым, способным впитывать жидкость материалом образует изделие одноразового употребления, которое по истечении предварительно заданного срока службы подлежит утилизации.
В предпочтительном дополнительном варианте осуществления изобретения предусматривается устройство для двухстадийного осаждения конденсата, состоящее, во-первых, из открытопористого, способного впитывать жидкость материала, и, во-вторых, из охладителя, способного пропускать через себя образовавшиеся паровоздушную смесь или/и конденсационный аэрозоль. Этот дополнительный вариант осуществления изобретения в особенности пригоден для использования в ингаляторах, активируемых вдохом. Охладитель охлаждает проходящие через него паровоздушную смесь и/или конденсационный аэрозоль и при этом извлекает из них дополнительный конденсат. Охладитель может быть, например, сформирован из пористого материала, проницаемого для потока и не задерживающего частицы образовавшегося конденсационного аэрозоля. Пористый материал наряду с охлаждением обеспечивает также внутреннее перемешивание протекающих через него паровоздушной смеси и, соответственно, конденсационного аэрозоля, благодаря чему становятся более однородными их свойства, например устраняются концентрационные максимумы. Пористый материал типично состоит из широкопористого материала, например, вспененного материала с открытыми ячейками, из крупнопористого губчатого наполнителя или из волокнистого материала типа нетканого холста. В качестве примера волокнистого материала типа нетканого холста следует назвать синтетические волокнистые нетканые материалы, приготовленные из полиолефиновых волокон (полиэтилена (PE), полипропилена (PP)) или волокон из сложных полиэфиров. Пористый материал также может состоять из материала насадки для регенераторов. Материал насадки для регенераторов благодаря большой площади поверхности и, соответственно, площади теплообмена способен быстро воспринимать большое количество теплоты без существенных потерь напора. Типичными материалами насадки для регенераторов являются: металлическая вата, металлические опилки, металлическая сетка, вязаная проволока, нетканый материал из металлического волокна, металлическая пена с открытыми ячейками, сыпучие материалы из металлического или керамического гранулята. Наконец, охладитель также может быть выполнен многоступенчатым, для чего сочетают друг с другом различные пористые материалы. Разумеется, изобретение не ограничивается вышеперечисленными материалами охладителя. Охлаждением и перемешиванием могут быть явственно улучшены органолептические свойства воспринимаемых пользователем паровоздушной смеси или/и конденсационного аэрозоля.
В особенно предпочтительном варианте осуществления изобретения охладитель образован табачной набивкой. Табачная набивка, наряду с охлаждением/конденсацией и гомогенизированием дополнительно обеспечивает ароматизацию протекающих через нее паровоздушной смеси или, соответственно, конденсационного аэрозоля и рекомендуется прежде всего в тех случаях, когда жидкий материал в качестве лекарственного средства содержит никотин. При лабораторных испытаниях прототипов, действующих по принципу ингалятора с активацией вдохом и содержащих никотин в лекарственных композициях в качестве жидкого материала, сверх того были обнаружены еще и дополнительные благоприятные эффекты: например, могла быть повышена пригодность для ингаляции содержащих никотин паровоздушной смеси и конденсационного аэрозоля, что отчасти несомненно следует объяснить вышеописанными эффектами. Однако есть предположение, что участвуют дополнительные механизмы действия, в частности диффузионные и адсорбционные процессы, в отношении свободного, непротонированного никотина, которые еще не были подробно исследованы. Насыпной вес табачной набивки в своем верхнем пределе ограничен тем, что набивка, с одной стороны, должна быть по возможности проницаемой для проходящих через нее аэрозольных частиц, и, с другой стороны, возникающее при этом сопротивление течению должно быть не более высоким, чем таковое в сигаретах. Табачная набивка может быть сформирована из табачной нарезки, табака мелкой резки, табака для набивки гильз, из сигарной табачной крутки или из сравнимых или подобных табачных форм. В качестве табака в особенности пригодны высушенный ферментированный табак, гомогенизированный табак, расширенный табак или их смеси. Табак может быть дополнительно соусирован, приправлен пряностями, ароматизирован или/и снабжен отдушками. Кроме того, применение табачной набивки в качестве охладителя может сделать более привлекательным или/и облегчить переход с табачных изделий на соответствующий изобретению компонент ингалятора. В предпочтительном дополнительном варианте осуществления изобретения предусматривается, что объем табачной набивки составляет более 3 см3. В собственных лабораторных испытаниях было показано, что вышеназванные действия табачной набивки становятся эффективными в удовлетворительной для пользователя мере лишь с обозначенных выше минимальных объемов.
Согласно дополнительному варианту осуществления изобретения компонент ингалятора включает образованное мундштуком мундштучное отверстие, которое сообщается с камерой и через которое пользователь получает образованные паровоздушную смесь или/и конденсационный аэрозоль, причем в ходе ингаляции между воздухозаборным отверстием и мундштучным отверстием возникает поток в направлении мундштучного отверстия, каковой поток, по меньшей мере частично, проходит вдоль композита. Согласно изобретению предусматривается, что ниже по потоку относительно композита расположено по меньшей мере одно отверстие для воздушного шунта, через которое дополнительный воздух из окружающей среды подводится в поток, и эффективная площадь поперечного сечения потока в отверстии воздушного шунта составляет по меньшей мере 0,5 см2. Эта компоновка делает компонент ингалятора применимым также для классических ингаляторов, которые главным образом предполагают по возможности малое аэродинамическое сопротивление. Воздух, дополнительно поступающий через отверстие воздушного шунта («байпасный воздух»), сам не проходит мимо композита и тем самым не оказывает никакого непосредственного влияния на образование паровоздушной смеси или/и конденсационного аэрозоля и, соответственно, на их свойства. Однако проявляется косвенное влияние в том отношении, что байпасный воздух сокращает количество воздуха, поступающего через воздухозаборное отверстие («первичного воздуха»), когда предполагается постоянное количество воздуха для ингаляции. Таким образом, количество первичного воздуха может быть произвольно уменьшено. Сокращение количества первичного воздуха, помимо всего прочего, ведет к увеличению образующихся аэрозольных частиц; правда, одновременно также возрастает количество образующихся остатков конденсата, каковому обстоятельству все же можно противостоять размещением устройства для связывания конденсата - как описано ранее. Дополнительное снижение аэродинамического сопротивления и дополнительное уменьшение количества первичного воздуха согласно изобретению достигаются тем, что отверстие воздушного шунта состоит из двух байпасных отверстий, которые размещены в противолежащих участках корпуса.
Далее, согласно изобретению предусматривается, что на оба байпасных отверстия установлены две направляющие лопасти, которые ориентированы в направлении мундштучного отверстия и повернуты друг к другу, и их свободные концы образуют соплообразное горловинное отверстие, через которое образовавшиеся паровоздушная смесь или/и конденсационный аэрозоль вытекают из камеры и затем смешиваются с поступающим из байпасных отверстий воздухом. Обе направляющие лопасти действуют таким образом, что они по существу перекрывают доступ в камеру снаружи, так что может быть явно уменьшена опасность поступления, например, дождевой воды или слюны в камеру. В дополнение, ограничивается воздухообмен между камерой и окружающей средой, благодаря чему сокращается улетучивание компонентов жидкого материала в фитиле. Такое улетучивание, в особенности во время длительных периодов хранения компонента ингалятора без применения, может оказаться неблагоприятным в том отношении, что может изменять состав жидкого материала, и в случае лекарственного препарата его дозировка может отклоняться от заданного значения.
Кроме того, соответствующим изобретению рассматривают то, что ниже по потоку относительно отверстия воздушного шунта размещен гомогенизатор потока, аэродинамическое сопротивление которого составляет менее 1 мбар (100 Па) при величине расхода воздушного потока 250 мл/сек. Через гомогенизатор потока протекают как образовавшиеся паровоздушная смесь или/и конденсационный аэрозоль, так и поступающий через отверстие воздушного шунта байпасный воздух, и этим обеспечивается перемешивание и гомогенизирование этих обеих частей потока. Размываются концентрационные максимумы, и вдыхание пользователем выходящей из мундштучного отверстия однородной смеси становится более приятным. Гомогенизатор потока может состоять, например, из нетканого или вспененного материала; пригодным является такой материал, с которым достигаются достаточные турбулентности и завихрения течения, без превышения приведенного предельного значения аэродинамического сопротивления. Только при таких условиях вышеописанный вариант осуществления изобретения применим для классического ингалятора.
В необязательном варианте осуществления изобретения предусмотрено множество параллельно размещенных композитов с различными значениями теплоемкости. В дополнительном необязательном варианте осуществления изобретения предусмотрено множество параллельно размещенных композитов с различными характеристиками нагревательных элементов. В дополнительном необязательном варианте осуществления изобретения предусмотрено множество параллельно размещенных композитов с регулируемыми по-разному электрическими нагревательными элементами. В дополнительном необязательном варианте осуществления изобретения предусмотрено множество параллельно размещенных композитов, и к отдельным композитам подводятся для испарения жидкие материалы с различным составом, причем их фитили питаются из источников с различными жидкими материалами. Вышеуказанные необязательные варианты исполнения, которые, впрочем, также могут быть произвольно скомбинированы друг с другом, обеспечивают возможность того, что процесс испарения может быть организован переменным как в пространстве, так и во времени. Эта вариабельность позволяет даже имитировать сложные условия в дистилляционной зоне сигареты.
В специальном варианте осуществления изобретения предусмотрено множество параллельно размещенных композитов, нагревательные элементы которых состоят из электрических резистивных нагревателей; согласно изобретению резистивные нагреватели соединены друг с другом последовательно. Эта специальная компоновка оказывается особенно предпочтительной, когда резистивные нагреватели состоят из металлического резистивного материала, например, такого как нержавеющая сталь или сплавы для электронагревательных проволок, поскольку благодаря последовательному подключению и сопутствующему этому повышению сопротивления ток накала может быть ограничен до уровня, который еще хорошо поддается управлению электронным регулятором и аккумулятором энергии. Кроме того, путем повышения сопротивления можно по потребности ограничивать удельную мощность в композите, так что в каждом случае может быть обеспечено стабильное испарение.
Примеры целесообразных и предпочтительных вариантов осуществления изобретения представлены в фигурах и подробнее разъяснены в последующем описании.
Показано:
Фиг.1 представляет соответствующий изобретению ингалятор в первом варианте исполнения, выполненный как ингалятор с активацией вдохом, в различных проекциях;
Фиг.2 представляет ингалятор согласно Фиг.1, с частью ингалятора многократного применения и сменным компонентом ингалятора в разобранном состоянии;
Фиг.3 представляет часть ингалятора многократного применения в различных проекциях;
Фиг.4 и Фиг.5 представляют часть ингалятора многократного применения без батарейной крышки и без крышки электрической управляющей схемы в различных проекциях;
Фиг.6 представляет сменный компонент ингалятора в различных проекциях;
Фиг.7 представляет сменный компонент ингалятора с отдельно показанным жидкостным контейнером и мундштуком;
Фиг.8 представляет ингалятор согласно Фиг.1 без крышки электрической управляющей схемы;
Фиг.9 представляет ингалятор согласно Фиг.8 в продольном разрезе по высоте листообразного композита, причем направление разреза целесообразно было проведено в стороне от композита;
Фиг.10 представляет вид разреза ингалятора вдоль линии A-A в Фиг.9, с крышкой электрической управляющей схемы;
Фиг.11 представляет ингалятор согласно Фиг.1 в поперечном разрезе по высоте листообразного композита;
Фиг.12 представляет фрагмент «a» из Фиг.10 в увеличенном виде;
Фиг.12a представляет фрагмент «b» из Фиг.12 в увеличенном виде;
Фиг.13a и Фиг.13b представляют альтернативные варианты исполнения в отношении фрагмента «a»;
Фиг.14a, Фиг.14b, а также Фиг.15a, Фиг.15b и Фиг.15c представляют поперечные разрезы листообразных композитов в различных вариантах исполнения в увеличенном виде;
Фиг.16 представляет вариант исполнения в отношении фрагмента «b» из Фиг.12 с тремя размещенными параллельно друг другу линейными композитами;
Фиг.16a представляет поперечный разрез одного отдельного линейного композита согласно Фиг.16 в увеличенном виде;
Фиг.17 представляет фрагмент «c» из Фиг.11 в увеличенном виде;
Фиг.18 представляет фрагмент «d» из Фиг.9 в увеличенном виде;
Фиг.19 представляет вид ингалятора в разрезе вдоль линии B-B в Фиг.9 с крышкой электрической управляющей схемы;
Фиг.20 представляет вид сменного компонента ингалятора в разрезе вдоль линии C-C в Фиг.7 и Фиг.11, с намеченным жидкостным контейнером;
Фиг.21 представляет соответствующий изобретению второй вариант исполнения ингалятора, выполненного как классический ингалятор, в виде аналогично Фиг.9;
Фиг.22 представляет вид ингалятора согласно Фиг.21 в разрезе вдоль линии D-D в Фиг.21 с крышкой электрической управляющей схемы;
Фиг.23 представляет сменный компонент ингалятора согласно Фиг.21 в двух проекциях;
Фиг.24a и Фиг.24b представляют сменный компонент ингалятора с альтернативной системой жидкостного контейнера, причем компонент ингалятора согласно Фиг.24b показан с жидкостным контейнером в вертикальной проекции;
Фиг.25 представляет вид ингалятора в разрезе вдоль линии E-E в Фиг.24b;
Фиг.26 представляет сменный компонент ингалятора с дополнительной альтернативной системой жидкостного накопителя;
Фиг.27 представляет поперечный разрез компонента ингалятора согласно Фиг.26 по высоте листообразного композита;
Фиг.28 представляет вид разреза, проведенного через жидкостный накопитель согласно Фиг.26 поперек листообразного композита;
Фиг.29 представляет вид сменного компонента ингалятора с двумя размещенными параллельно друг другу листообразными композитами в разрезе, причем разрез проведен по высоте листообразного композита, и вид сбоку.
Фиг.1 показывает первый примерный вариант исполнения соответствующего изобретению ингалятора, каковой ингалятор в конкретном примере выполнен как ингалятор с активацией вдохом, и его форма и размеры подобраны таким образом, чтобы ингалятор мог быть простым и удобным в обращении для пользователя. По объему ингалятор составляет примерно половину величины сигаретной пачки. Представленный примерный ингалятор главным образом состоит из двух частей, а именно из части 1 ингалятора и компонента 2 ингалятора. Компонент 2 ингалятора состоит из корпуса 3 и включает, помимо всего прочего, жидкостный контейнер 4 и мундштук 5, подобный курительной трубке. Жидкостный контейнер 4 содержит жидкий материал, который испаряется в компоненте 2 ингалятора и преобразуется в пригодные для ингаляции паровоздушную смесь или/и конденсационный аэрозоль. Образовавшиеся паровоздушная смесь или/и конденсационный аэрозоль подаются пользователю через мундштук 5. В качестве жидкого материала в принципе рассматривают все вещества и композиции, которые при атмосферных условиях могут быть испарены практически без остатка. Это условие удовлетворяется уже тогда, когда данное вещество или данная композиция находятся в разбавленном состоянии, например растворены в воде или/и этаноле, и раствор испаряется по существу без остатка. Благодаря достаточно высокому разбавлению в легколетучем растворителе, таком как этанол или/и вода, даже обычно с трудом испаряемые вещества могут удовлетворять вышеуказанному условию и можно избежать термического разложения жидкого материала или существенно сократить его.
Жидкий материал предпочтительно содержит лекарственное средство. Образуемые путем конденсации аэрозольные частицы, как правило, имеют среднемассовый аэродинамический диаметр (MMAD) менее 2 мкм и тем самым достигают даже альвеол. Соответствующий изобретению ингалятор в особенности пригоден для введения лекарственных препаратов системного действия, например, таких лекарственных средств, которые проявляют свое основное действие на центральную нервную систему. В качестве примера следует упомянуть никотин, температура кипения которого составляет 246°C. Содержащие лекарственное средство аэрозольные частицы преимущественно осаждаются в альвеолах, где лекарственное средство моментально переходит в кровеносную систему. На примере никотина следует отметить, что он уже примерно через 7-10 секунд после ингаляции достигает целевого для него органа, а именно центральной нервной системы, в фокусированной концентрации. Разумеется, данный ингалятор мог бы быть использован и без лекарственного средства, например, только с ароматическими веществами - также в виде немедицинского применения.
Часть 1 ингалятора включает, как далее разъясняется более подробно, по меньшей мере один аккумулятор энергии и электрическую управляющую схему, причем аккумулятор энергии защищен батарейной крышкой 6, и управляющая схема закрыта крышкой 7 электрической управляющей схемы.
Как показано в Фиг.2, часть 1 ингалятора и компонент 2 ингалятора в конкретном примерном варианте исполнения выполнены отделяемыми друг от друга. Разделяемое сопряжение составлено защелкивающимся соединением, сформированным из двух защелкивающихся крючков 8 и двух взаимодействующих с ними стопорных выступов 9. Эта компоновка делает часть 1 ингалятора пригодной к многократному применению, что в принципе является рациональным, когда принимают во внимание, что часть 1 ингалятора, во-первых, не приходит в контакт с жидким материалом, то есть не загрязняется жидким материалом, и, во-вторых, содержит детали, которые имеют более длительный срок службы, нежели детали компонента 2 ингалятора. После того как жидкий материал в жидкостном контейнере 4 израсходован, весь компонент 2 ингалятора целиком подлежит утилизации пользователем и заменяется новым компонентом 2 ингалятора. В этом отношении компонент 2 ингалятора представляет собой сменное изделие одноразового употребления. Надлежащая утилизация показана прежде всего тогда, когда жидкий материал содержит лекарственное средство, поскольку внутри корпуса 3 компонента 2 ингалятора в ходе образования паровоздушной смеси или/и конденсационного аэрозоля всегда возникают и накапливаются остатки конденсата. В жидкостном контейнере 4 тоже всегда остаются остатки жидкого материала. Конечно, в принципе было бы возможным исполнение части 1 ингалятора и компонента 2 ингалятора в виде цельного изделия, даже неотделимыми друг от друга. Однако такой вариант исполнения был бы неэкономичным, поскольку в этом случае все детали и компоненты ингалятора, а также весь ингалятор целиком образуют изделие одноразового употребления для однократного применения. Разумеется, настоящее изобретение включает и этот вариант осуществления, причем в данном случае весь ингалятор следует воспринимать как компонент ингалятора.
Фигуры 3-5 показывают различные виды части 1 ингалятора многократного применения с крышкой и без нее. Часть 1 ингалятора многократного применения в основном составлена следующими тремя корпусными деталями: батарейной крышкой 6, крышкой 7 электрической управляющей схемы и размещенным между ними несущим корпусом 10. Три корпусные детали по соображениям снижения веса предпочтительно изготавливают из пластмассы. Несущий корпус 10 заключает в себе электрическую управляющую схему 11 и аккумулятор 12 энергии и включает разделительную стенку 13, которая отделяет друг от друга электрическую управляющую схему 11 и аккумулятор 12 энергии. Электрическая управляющая схема 11 в примерном варианте исполнения выполнена в виде печатной платы с односторонним монтажом, которая закреплена на разделительной стенке 13, например, клеевым соединением. Аккумулятор 12 энергии предпочтительно состоит из батареи многократного применения, например, из литиево-ионного аккумулятора или литий-полимерного аккумулятора, предпочтительно в плоскопрямоугольном исполнении. Эти типы аккумуляторов в настоящее время обеспечивают наибольшие плотности энергии и тока и с давних пор находят самое разнообразное применение, причем в первую очередь следует назвать широкое использование в мобильных телефонах. Электропитание платы 11 от батареи 12 производится через два плоских контакта 14, которые припаяны на обратной стороне платы 11 - см. также Фиг.10. Плоские контакты 14 выступают насквозь через два слегка больших окошка 15 в разделительной стенке 13. Батарея 12 содержит два соответствующих контакта (не показаны), которые прижаты к плоским контактам 14, благодаря чему устанавливается разъемное электрическое соединение. Необходимое для этого прижимающее усилие предпочтительно создают с помощью пластинчатой пружины (не показана), размещенной между батареей 12 и батарейной крышкой 6. Батарейная крышка 6 разъемно соединена с несущим корпусом 10 - в примерном варианте исполнения с помощью винтового соединения (см. Фиг.1). Разумеется, батарейная крышка 6 альтернативно может быть также выполнена как сдвижная крышка на защелках. Крышку 7 электрической управляющей схемы соединяют с несущим корпусом 10 предпочтительно без возможности разделения, например с помощью клеевого или сварного соединения. Тем самым должно быть предотвращено несанкционированное вмешательство в электрическую управляющую схему 11. В обычно редком случае дефектной электрической управляющей схемы должна быть заменена вся часть 1 ингалятора, за исключением батареи. Прочие конструкционные детали и характеристики части 1 ингалятора многократного применения будут более подробно описаны позже.
Фигуры 6 и 7 показывают различные проекции сменного компонента 2 ингалятора. Как уже было упомянуто, сменный компонент 2 ингалятора в основном сформирован корпусом 3 и включает, помимо всего прочего, жидкостный контейнер 4 и мундштук 5, подобный курительной трубке. Жидкостный контейнер 4 и мундштук 5 неразъемно соединены с корпусом 3. В плане производственной технологии предпочтительным является изготовление жидкостного контейнера 4 и мундштука 5 как отдельных деталей, и лишь на последующей стадии объединение с корпусом 3, например клеевым или сварным соединением - см. Фиг.7. Конечно, в принципе также возможно формирование жидкостного контейнера 4 или/и мундштука 5 в виде цельной единой детали с корпусом 3. Из соображений снижения веса корпус 3, жидкостный контейнер 4 и мундштук 5 предпочтительно изготавливают из пластмассы, причем при выборе материала для жидкостного контейнера 4 необходимо учитывать свойства жидкого материала 16. Если жидкий материал 16 содержит, например, никотин, то могут быть использованы пластмассы согласно US 5167242 (на имя James Е. Turner и др.) и US 6790496 (на имя Gustaf Levander и др.).
Заполнение жидкостного контейнера 4 жидким материалом 16 производят через заправочное отверстие 17, предпочтительно в атмосфере защитного газа, такого как аргон или азот. На фронтальной стороне жидкостного контейнера 4 находится вскрываемая заглушка 18 в виде клапана, которую пользователь перед применением компонента 2 ингалятора вскрывает нажатием. Вскрываемая заглушка 18 позднее будет описана более подробно. Жидкостный контейнер 4 никогда не заполняют жидким материалом 16 полностью. Полное заполнение вследствие несжимаемости жидкого материала приводило бы к тому, что клапанообразную вскрываемую заглушку 18, которая всегда имеет известную упругость, уже было бы невозможно вдавить и вскрыть. После заполнения заправочное отверстие 17 воздухонепроницаемо закупоривают запорной крышкой 19. Запорная крышка 19 может быть, например, приклеена или приварена, причем по возможности следует избегать теплового воздействия на жидкий материал 16. Альтернативно, заправочное отверстие 17 может быть исполнено в виде капиллярного отверстия, и заполнение жидким материалом 16 проводят через иглу для инъекций. В этом случае от запорной крышки 19 можно было бы отказаться и заплавлять само капиллярное отверстие. Прочие детали и характеристики сменного компонента 2 ингалятора будут более подробно описаны позже.
Фиг.8 показывает ингалятор согласно Фиг.1 со снятой крышкой 7 электрической управляющей схемы. Помимо всего прочего, Фиг.8 показывает защелкивающееся соединение, состоящее из двух защелкивающихся крючков 8 и двух взаимодействующих с ними стопорных выступов 9, в соединенном зафиксированном состоянии. При этом защелкивающиеся крючки 8 исполнены в виде выступов корпуса 3, тогда как стопорные выступы 9 сформированы на контактных элементах 20. Контактные элементы 20 закреплены на несущем корпусе 10 части 1 ингалятора многократного применения с помощью клеевого соединения и исполняют еще дополнительные функции, которые более подробно будут описаны позже.
Фигуры 9-13 приводят более подробное разъяснение относительно устройства внутренних частей ингалятора и принципов его функционирования. Согласно этому внутри корпуса 3 сменного компонента 2 ингалятора сформирована камера 21. Камеру 21, как лучше всего показано в Фиг.11, пересекает в виде перемычки и поэтому является бесконтактным соответствующий изобретению листообразный композит 22. Листообразный композит 22 имеет форму плоской пленки или ленты и состоит из нагревательного элемента и фитиля. Капиллярная структура фитиля пригодна для того, чтобы засасывать жидкий материал 16. Нагревательный элемент и фитиль могут быть выполнены различными способами и соединены друг с другом. Примерные варианты исполнения более подробно будут описаны позже. Листообразный композит 22 двумя концевыми участками уложен на два электропроводных пластинчатых контакта 23, с поверхностью которых он одновременно имеет электрический контакт. Контактирование предпочтительно обеспечивается либо плоским клеевым соединением с помощью электропроводного клеевого средства, например клеящего вещества фирмы Epoxy Technology, www.epotek.com, либо путем сварного соединения. В случае сварного соединения необходимо обращать внимание на то, чтобы фитиль и, соответственно, его капиллярную структуру по возможности не нарушить при приваривании. При необходимости, сварку проводят только точечно. Указания в отношении выбора материала для пластинчатых контактов 23 уже были приведены ранее.
Область между обоими пластинчатыми контактами 23 в примерном варианте исполнения определяется тем нагреваемым участком листообразного композита 22, который бесконтактно размещен в камере 21. Бесконтактное расположение ведет к тому, что потери на теплопроводность в направлении толщины листообразного композита 22 равны нулю. Благодаря этому этот участок нагревается до такой степени, что запасенный в фитиле жидкий материал 16 достигает температуры кипения и испаряется. Согласно изобретению капиллярная структура фитиля в вышеуказанном участке, по меньшей мере на одной стороне листообразного композита, располагается по существу открытой. Эта сторона, как будет сделано понятным позднее в ходе описания примерных вариантов исполнения композита, предпочтительно представляет собой сторону 24 листообразного композита 22, отвернутую от пластинчатых контактов 23. Пар, образующийся в процессе испарения жидкого материала, также может растекаться из открытой капиллярной структуры фитиля во все стороны и без особенных препятствий. Во втором варианте исполнения листообразного композита, который тоже будет более подробно описан на примерах, капиллярная структура фитиля в вышеуказанном участке располагается по существу открытой дополнительно на стороне 25 листообразного композита 22, противоположной стороне 24, так что площадь поверхности испарения и, следовательно, также максимально достижимая испарительная способность удваиваются сравнительно со сначала названной ситуацией. Максимально достижимую испарительную способность следует определять по первому возникновению кризиса кипения в фитиле.
Далее, в корпусе 3 сформировано воздухозаборное отверстие 26 для поступления воздуха из окружающей среды в камеру 21. Поступающий воздух смешивается в камере 21 с паром, истекающим из открытой капиллярной структуры фитиля, в процессе чего образуется паровоздушная смесь или/и конденсационный аэрозоль. Воздухозаборное отверстие 26 исполнено в виде щелевидного канала. Щелевидный канал ориентирован параллельно листообразному композиту 22. В примерном варианте исполнения согласно Фиг.10 и, соответственно. Фиг.12, щелевидный канал слегка смещают в сторону от листообразного композита 22, а именно размещают на той стороне листообразного композита, на которой капиллярная структура фитиля является по существу открытой. Благодаря этой компоновке достигают того, что воздух, поступающий через щелевидный канал 26 в камеру 21, полностью обтекает открытую капиллярную структуру фитиля и могут быть созданы условия однородного смешения. Вариацией ширины щели щелевидного канала 26, когда предусматривают постоянный профиль вдоха (объем вдоха, длительность вдоха), можно изменять скорость течения поступающего воздуха, и этим путем в известных пределах оказывать влияние на динамику образования аэрозоля и тем самым на связанные с этим характеристики образуемого аэрозоля. Снижением скорости течения обусловливается возрастание средней величины аэрозольных частиц. На формирование аэрозоля также оказывает влияние геометрическое положение канала 26 относительно листообразного композита 22.
Фигуры 13a и 13b показывают альтернативные компоновки воздухозаборного отверстия 26: сообразно этому, воздухозаборное отверстие 26 в примере согласно Фиг.13a сформировано двумя щелевидными каналами 26, которые расположены на противолежащих сторонах листообразного композита 22. Поступающий в камеру 21 воздух также обтекает листообразный композит 22 с обеих сторон. В примере согласно Фиг.13b щелевидный канал 26 размещают по центру относительно листообразный композита; в этом случае листообразный композит 22 также расположен в плоскости щелевидного канала и непосредственно омывается поступающим воздухом, причем поток воздуха разделяется листообразным композитом на две части, и композит таким же образом, как в предшествующем примере, обдувается с обеих сторон. Компоновки согласно Фигурам 13a и 13b прежде всего пригодны для вариантов исполнения листообразного композита 22, на котором капиллярная структура фитиля является открытой с обеих сторон, так как в этом случае пар истекает с обеих сторон 24 и 25 листообразного композита 22. Однако они равным образом пригодны для вариантов исполнения листообразного композита 22 с капиллярной структурой, открытой только с одной стороны, в такой мере, насколько вторая часть воздушного потока, которая обтекает композит якобы пассивно, ослабляет первую часть воздушного потока, обеспечивающую образование аэрозоля, в результате чего может быть реализован еще один фактор влияния на характеристики образующегося аэрозоля.
Воздухозаборное отверстие 26, выполненное в виде щелевидного канала, получает воздух из нагнетательной камеры 27, которая служит для равномерного распределения воздуха на щелевидный канал 26, чтобы в щелевидном канале в основном со всех сторон доминировали условия однородного течения. Выше по потоку относительно нагнетательной камеры 27 находится дроссельный регулятор 28 расхода потока. Назначение дроссельного регулятора 28 расхода потока состоит в создании аэродинамического сопротивления, подобно тому, как это происходит в сигарете, чтобы пользователь во время вдоха ощущал сопротивление вдоху, подобное таковому при затяжке сигаретой. Более конкретно, аэродинамическое сопротивление при величине расхода потока 1,05 л/минуту варьирует в диапазоне 12-16 мбар (1,2-1,6 кПа) и имеет по возможности линейную характеристику. Дроссельный регулятор 28 расхода потока, например, может быть сформирован из открытопористого брикета, спеченного из металла или полимера, поры которого являются проницаемыми для воздуха. В прототипах показали себя пригодными, например, пористые спеченные полимерные брикеты фирмы Porex, www.porex.com. В примерном варианте исполнения нагнетательная камера 27 составляет часть сменного компонента 2 ингалятора и дроссельный регулятор 28 расхода потока составляет часть части 1 ингалятора многократного применения. В принципе, было бы также возможно размещать нагнетательную камеру 27 и дроссельный регулятор 28 расхода потока в сменном компоненте 2 ингалятора или же альтернативно помещать обе детали в часть 1 ингалятора многократного применения.
Фиг.10 показывает дальнейшее течение воздушного потока выше по потоку относительно дроссельного регулятора 28 расхода потока. Поток обозначен стрелками. Сообразно этому, дроссельный регулятор 28 расхода потока получает воздух из поперечного канала 29, который, в свою очередь, упирается в пространство между платой 11 и крышкой 7 электрической управляющей схемы. Собственно поступление воздуха из окружающей среды происходит через питающее отверстие 30, образованное крышкой 7 электрической управляющей схемы. Питающее отверстие 30 расположено на торцевой стороне ингалятора, противоположной мундштуку 5. Это положение лучше всего защищает от попадания дождевой воды.
Фигуры 14a, 14b и 15a, 15b, 15c показывают примерные варианты исполнения листообразного композита 22 посредством изображений поперечного сечения, причем под термином «поперечное сечение» понимают разрез перпендикулярно продольному направлению композита (ср. Фиг.9). Более конкретно. Фигуры 14a и 14b показывают варианты исполнения с открытой только с одной стороны капиллярной структурой, тогда как Фигуры 15a-15c показывают варианты исполнения, в которых капиллярная структура фитиля открыта с обеих сторон листообразного композита. В соответствии с вариантом исполнения согласно Фиг.14a листообразный композит 22 состоит из четырех слоев: а именно, из металлической фольги 31 и трех закрепленных на ней спеканием сеток 32 из металлической проволоки. Металл состоит из нержавеющей стали (например, сортов AISI 304 или AISI 316) или из электронагревательного сплава - в особенности из группы хромоникелевых (NiCr) сплавов и сплавов хрома, железа и алюминия (CrFeAl) ("Kanthal"). При использовании нержавеющей стали предпочтение отдают сортам с пониженным содержанием углерода (например, сортам AISI 304L или AISI 316L), поскольку они менее подвержены межкристаллитной коррозии. Металлическая фольга 31 в варианте исполнения из нержавеющей стали может быть приобретена, например, в фирме Record Metall-Folien GmbH, www.recordmetal.de. Металлическую сетку можно приобрести, например, в фирмах Haver & Boecker, www.haverboecker.com, или Spörl KG, www.spoerl.de. Четыре слоя скреплены между собой путем спекания. Спекание предпочтительно проводят в вакууме или в атмосфере водорода как защитного газа. Спекание в таких условиях является общепринятым согласно уровню техники и традиционно проводится, например, в фирме GKN Sinter Metals Filters GmbH, www.gkn-filters.com, a также фирмой Spörl KG, www.spoerl.de. Спекание выполняют преимущественно с образованием широкой листовой заготовки; то есть спеканию подвергают не отдельные листообразные композиты, а более крупногабаритные плоские заготовки, например, в формате 200×200 мм. Отдельные композиты вырезают после спекания путем лазерной резки или выштамповывания из крупных заготовок и затем необязательно протравливают в травильной ванне.
Таблица 1 показывает примерные технические характеристики используемых в прототипах листообразных композитов 22.
Таблица 1
Толщина металлической фольги 10 мкм
Материал металлической фольги AISI 304
Первый слой металлической сетки 36×90 мкм Диаметр проволоки × ширина ячейки
Второй слой металлической сетки 30×71 мкм Диаметр проволоки × ширина ячейки
Третий слой металлической сетки ×53 мкм Диаметр проволоки × ширина ячейки
Материал металлической сетки AISI 316L
Ширина пролета композита 14 мм
Ширина композита 2-5 мм
Толщина композита 140-160 мкм
Степень травления 50% С использованием травильной ванны Avesta 302
Пористость 65-80% В зависимости от степени травления
*) Изготовитель: фирма Avesta Finishing Chemicals, www.avestafinishing.com
Ширина пролета композита соответствует такому участку в камере 21, который композит 22 перекрывает бесконтактно; в конкретном примерном варианте исполнения этот участок соответствует расстоянию между обоими пластинчатыми контактами 23. Ширина пролета композита и ширина композита оказывают противоположное влияние на результирующее сопротивление нагревательного элемента. Степень травления определяет в целом потерю массы, достигаемую в результате травления. Первый слой из металлической сетки уложен непосредственно на металлическую фольгу 31. Третий слой из металлической сетки образует покровный слой и одновременно открытую капиллярную структуру листообразного композита 22. Листообразный композит 22 предпочтительно укладывают на пластинчатые контакты 23 металлической фольгой 31. Электрическое контактирование металлической фольги 31 предпочтительно обеспечивают плоским клеевым соединением между металлической фольгой 31 и электропроводными пластинчатыми контактами 23. В принципе, контактирование может быть создано также путем сварного соединения. Контактирующий таким образом листообразный композит 22 с техническими характеристиками согласно Таблице 1, с шириной композита 2 мм и степенью травления 35% проявляет сопротивление нагревательного элемента около 310 мОм. При использовании электронагревательных сплавов вместо нержавеющей стали сопротивление нагревательного элемента может быть явственно повышено, более конкретно, при применении сплава с DIN-номером материала 2.4872 (NiCr20AlSi) по сравнению с сортами AISI 304/AISI 316 в 1,8 раза и при использовании сплава с DIN-номером материала 1.4765 (CrAl255) вообще в 2,0 раза. По этой причине листообразный композит при ширине композита 5 мм в исполнении из материала с DIN-номером 2.4872, но при прочих равных технических характеристиках, каковые приведены выше, имел бы сопротивление нагревательного элемента около 225 мОм. Если энергопитание производится на основе литий-полимерного элемента с номинальным или безнагрузочным напряжением 3,7 В и полезным напряжением под нагрузкой около 3,1 В, то по закону Ома сила тока, который протекает через листообразный композит, рассчитывается на уровне 10 А (для сопротивления 310 мОм), или, соответственно, 13,8 А (для сопротивления 225 мОм). Эти величины силы тока могут быть беспроблемно получены из современных литий-полимерных элементов. В последующей стадии рассчитывают электрическую номинальную мощность, которая одновременно представляет собой максимально достижимую теплопроизводительность, до 31 Вт (для сопротивления 310 мОм) и, соответственно, 42,7 Вт (для сопротивления 225 мОм). Как еще описано будет позже, эти нагрузки могут быть произвольно снижены с помощью электрической управляющей схемы 11.
На основе вышеприведенных технических характеристик примерного листообразного композита с шириной композита 5 мм и степенью травления 35% рассчитывают поровый объем листообразного композита 22 на участке ширины пролета композита (испарительный участок) на уровне около 7,5 мкл. Этот объем заполнен испаряемым жидким материалом 16 и соответствует такому количеству жидкого материала, которое может быть максимально испарено при каждом вдохе или, соответственно, ингаляции (периодический режим работы ингалятора). Если жидкий материал содержит в качестве лекарственного средства, например, никотин, в концентрации типично 1,5 объемных процентов, то из этого на одно испарение или, соответственно, вдох теоретически получается максимальная выделяемая доза никотина 110 мкг, или соответственно в расчете на 10 ингаляций, общая доза в 1,1 мг. Реальная максимально достижимая доза по различным причинам будет составлять несколько меньшее значение, нежели расчетное. Однако существенным является тот факт, что при использовании соответствующего изобретению ингалятора могут быть без проблем введены дозы никотина современных сигарет (0,1-1,0 мг). Кроме того, существенным является то, что действующая доза может быть произвольно сокращена, будь то путем уменьшения концентрации действующего вещества в жидком материале, будь то выбором уменьшенной ширины композита, или же посредством ограничения подводимой тепловой нагрузки с помощью электрической управляющей схемы 11. Последняя мера, кроме того, предупреждает термическое разложение жидкого материала 16, так как композит 22 нагревается не столь сильно.
Следует отметить, что как металлическая фольга 31, так и скрепленные с фольгой спеканием металлические сетки 32 вносят свой вклад в электрическое сопротивление в цепи нагревания. Электрическое сопротивление в цепи нагревания в этом отношении можно интерпретировать как параллельное подключение этих отдельных сопротивлений. Равным образом капиллярное действие фитиля также обеспечивается взаимодействием проволочных сеток 32 с металлической фольгой 31, причем уже отдельный слой металлической сетки в сочетании с металлической фольгой 31 также может создавать капиллярный эффект. Разумеется, изобретение не ограничивается вышеуказанными техническими характеристиками. Было бы также возможным размещение на металлической фольге 31 других открытопористых структур из металла вместо металлических проволочных сеток 32; к тому же на металлической фольге 31 могли бы быть размещены или, соответственно, нанесены на нее спеканием ткань или другие открытопористые структуры из неэлектропроводного материала, например, такого как кварцевое стекло.
Фиг.14b показывает второй примерный вариант исполнения листообразного композита 22 с капиллярной структурой, открытой только на одной стороне. Этот вариант исполнения отличается от такового согласно Фиг.14a только тем, что вместо двух наружных слоев металлической сетки предусмотрен волокнистый композит в виде нетканого материала 33, который нанесен на первый слой из металлической сетки 32 спеканием. Такие нетканые материалы 33 могут быть приготовлены в исполнении из нержавеющей стали, например, от фирмы GKN Sinter Metals Filters GmbH, www.gkn-filters.com, по техническим условиям заказчика. Нетканый материал 33 предпочтительно имеет толщину 100-300 мкм и пористость >70%. Нетканый материал 33, образующий открытую капиллярную структуру фитиля, по сравнению с проволочными сетками 32 имеет явно увеличенную площадь поверхности, увеличенная площадь поверхности благоприятно влияет на процесс испарения. Разумеется, нетканый материал 33 также может быть изготовлен из электронагревательного сплава - в особенности из группы хромоникелевых (NiCr) сплавов и сплавов хрома, железа и алюминия (CrFeAl) ("Kanthal"); правда, для этой цели составляющие нетканый материал 33 сырьевые волокна должны быть получены по этим техническим условиям для материалов. Листообразный композит 22 после спекания необязательно может быть подвергнут травлению.
Фиг.15a показывает вариант исполнения листообразного композита 22 с капиллярной структурой на обеих сторонах. В соответствии с этим, листообразный композит состоит из открытопористой спеченной структуры, сформированной из однородного зернистого, волокнистого или хлопьевидного спеченного композита 34. Изготовление тонкого спеченного композита известно уже давно. Например, в US 3433632 (на имя Raymond J. Elbert) описан способ получения тонких пористых металлических пластинок с толщиной менее 75 мкм и диаметром пор между 1-50 мкм. Помимо всего прочего, были подвергнуты обработке порошки из никеля, а также нержавеющей стали (AISI 304). Значения пористости составляли до 60%, и в одном варианте с многослойной структурой достигнуты даже величины пористости до 90% (правда, только в покровном слое). В US 6652804 (на имя Peter Neumann и др.) описан подобный способ. В JP 2004/332069 (на имя Tsujimoto Tetsushi и др., фирма Mitsubishi Materials Corporation) описан усовершенствованный способ получения тонких пористых спеченных композитов из металла в предпочтительном диапазоне толщин 50-300 мкм, который отличается тем, что к обрабатываемому металлическому порошку примешивают удаляемые наполнители, в конкретном случае микросферы из акриловой смолы. Микросферы из акриловой смолы представляют собой заполнитель, который в процессе термической обработки, еще перед собственно спеканием, при температуре около 500°C в вакууме практически без остатка возгоняется и оставляет после себя полости, каковые полости остаются на своем месте во время и после спекания. Этим путем были получены листообразные композиты, состоящие из нержавеющей стали согласно спецификации AISI 316L с величинами пористости типично на уровне 70-90%. Институт энергосбережения (IEF) Исследовательского Центра Jülich, www.fz-juelish.de/ief/ief-1, тоже в состоянии производить тонкие пористые металлические пленки с толщиной 500 мкм. Способ получения основывается, как и вышеназванный способ, на так называемом способе литья пленки с регулированием толщины ракельным ножом.
В принципе, могут быть использованы все названные способы получения соответствующего изобретению листообразного спеченного композита 22, 34, причем предпочтение отдают способу согласно JP 2004/332069 ввиду высокой достигаемой пористости. Правда, следует обратить внимание на то, что средний диаметр пор в однородном спеченном композите по возможности составляет >10 мкм, чтобы обеспечивать достаточно быстрое пропитывание фитиля жидким материалом 16. Величина зерен обрабатываемого металлического порошка и микросфер из акриловой смолы согласуются с этим условием. Предпочтительный диапазон толщин 50-300 мкм, приведенный в способе согласно JP 2004/332069, совпадает с диапазоном толщин, в особенности предпочтительным для листообразного композита 22. Названные способы, наряду с обработкой нержавеющей стали, также пригодны для обработки порошкообразных электронагревательных сплавов, а также порошкообразных керамических резистивных материалов.
Фиг.15b показывает дополнительный вариант исполнения или, соответственно, модификацию листообразного композита согласно варианту исполнения по Фиг.15a, в котором в листообразном композите 22 в продольном направлении композита размещены центрированные каналы или артерии 35, преимущественные эффекты которых уже были описаны ранее. Изготовление этих каналов 35 требует приспособления вышеназванных способов получения таким образом, чтобы в исходный шликер (суспензию) для литья пленки вводить волокна, удаляемые путем окисления, возгонки или химического разложения, например, нити из способной к возгонке акриловой смолы. Нити представляют собой заполнители, которые в процессе их удаления оставляют после себя полости, образующие каналы 35. При этом лучше всего следовать трем технологическим стадиям: сначала отливают первый пленочный слой. На него наносят слой из выровненных параллельно друг другу нитей, которые позднее образуют артерии 35, Наконец, отливают второй пленочный слой, который одновременно образует покровный слой. Для наилучших условий обращения нити перед их нанесением натягивают во вспомогательной раме. Величина зерен обрабатываемых металлических порошков и, соответственно, микросфер из акриловой смолы в этом модифицированном варианте исполнения предпочтительно варьирует в диапазоне 1-10 мкм, тогда как предпочтительный диапазон диаметров нитей составляет 20-150 мкм. В одной необязательной стадии способа, дополнительной к литью пленки и спеканию, листообразный спеченный композит 22, 34 перфорируют в направлении толщины, в результате чего образуются отверстия 36. Перфорирование может быть выполнено, например, с помощью лазера. Растр перфорирования следует выбирать по возможности хаотичным; а именно, при однородном растре могла бы возникать неблагоприятная ситуация, что все отверстия 36 оказались бы проложенными между артериями 35 и артерии не были бы прорезаны. В этом случае описанные ранее преимущественные эффекты перфорирования проявились бы лишь частично.
Для дальнейшего увеличения пористости и электрического сопротивления композиты согласно вариантам исполнения по Фигурам 15a и 15b после спекания необязательно подвергают дополнительному травлению. Закрепление и контактирование листообразного спеченного композита 22, 34 на пластинчатых контактах 23 предпочтительно выполняют путем сварного соединения. Клеевое соединение возможно только тогда, когда используемое клеевое средство имеет в достаточной мере пастообразную или вязкотекучую консистенцию. В противном случае возникала бы опасность того, что клеевое средство попадет в пористую структуру композита и ухудшит капиллярное действие фитиля. При необходимости может быть преимущественным проведение перфорирования композита в области клеевого соединения.
Наконец, Фиг.15c показывает дополнительный вариант исполнения листообразного композита 22 с капиллярной структурой на обеих сторонах. Соответственно этому, листообразный композит 22 состоит из открытопористой пены 37, сформированной из электрически резистивного материала. Получение вспененного композита известно уже с давних пор. Так, уже в US 3111396 (на имя Burton В. Ball) описан способ получения металлических вспененных материалов, керамических вспененных материалов и графитовых вспененных материалов. Способ основан на том, что органическую пористую структуру пропитывают шликером, содержащим пенообразующий материал, и в процессе последующей термической обработки органическую структуру разлагают. Этим путем, помимо всего прочего, получали пены из никеля и сплавов на основе никеля. Для соответствующего изобретению листообразного композита 22 необходимы тонкие, пленкообразные пены с толщиной в диапазоне 100-500 мкм, с предпочтительным диаметром пор в диапазоне 20-150 мкм и пористостью >70%. Такой вспененный материал может быть получен в исполнении из нержавеющей стали (например, сорта AISI 316L) от фирмы Mitsubishi Materials Corporation, www.mmc.со.jp. При этом исходят из стандартизированного вспененного материала с толщиной 0,5 мм, диаметром пор в диапазоне 50-150 мкм и пористостью приблизительно 90%, каковой материал может быть уплотнен вальцеванием до любой толщины вплоть до около 100 мкм. Уплотненный материал затем необязательно может быть еще и подвергнут спеканию. Конечно, в результате сжатия снижается пористость, которая, однако, при необходимости может быть опять увеличена в ходе заключительного травления.
Хотя способ получения стандартизированного вспененного материала также основывается на обработке шликера, однако отличается от вышеописанного способа согласно US 3111396 тем, что собственно пенообразование обеспечивают с помощью пенообразующего средства и, соответственно, порообразователя, которые добавляют в шликер. Разумеется, для обработки могут быть также применены электронагревательные сплавы - в особенности из группы хромоникелевых (NiCr) сплавов и сплавов хрома, железа и алюминия (CrFeAl) ("Kanthal"). Листообразный композит 22 может состоять из единичного слоя пены или из многочисленных, связанных между собой спеканием слоев пены. Для повышения стабильности и прочности листообразного композита 22 пена 37 необязательно может быть нанесена спеканием на тонкий слой 38 носителя, например на металлическую сетку, состоящую из нержавеющей стали или электронагревательного сплава. В отношении закрепления и контактирования пены 37 на пластинчатых контактах 23 справедливо то же, что уже было приведено в связи с вариантами исполнения согласно Фигурам 15a и 15b.
Следует отметить, что все вышеописанные конструкционные формы листообразного композита 22 представляют только примерные варианты исполнения. Изобретение никоим образом не ограничивается этими примерными вариантами исполнения. Так, к примеру, листообразный вспененный материал мог бы быть закреплен на металлической фольге спеканием. Кроме того, на металлическую фольгу мог бы быть нанесен пористый осадительный слой с открытыми порами, например, по образцу способа согласно DE 1950439 (на имя Peter Batzies и др.). Наконец, разумеется, листообразный композит мог бы быть сформирован также из неметаллических материалов, таких как углеродное волокно или графитовое волокно, например, в виде ткани или нетканого материала, или из кварцевого стекла, например, в виде зернистого или волокнистого спеченного композита, причем в последнем случае электрическое резистивное нагревание мог бы обеспечивать нанесенный на стеклянную поверхность электропроводный тонкий слой. Кварцевое стекло отличается высокой устойчивостью к химическим реагентам и стойкостью к перепадам температур.
Фиг.16 и Фиг.16a показывают примерный вариант исполнения линейного композита 39, причем в данном примерном варианте исполнения предусматриваются три одинаковых, размещенных параллельно друг другу линейных композита 39a, 39b, 39c (39c не показан). Размещением многочисленных линейных композитов можно явственно увеличить площадь испарения по сравнению с единичным линейным композитом, если исходить из одинаковых суммарных площадей поперечного сечения. Единичные композиты не обязательно должны иметь идентичные характеристики. Так, например, возможно сочетание отдельных композитов 39a, 39b, 39c с различными величинами теплоемкости или/и различными характеристиками нагревательного элемента. Обусловленные этим эффекты уже были представлены ранее.
Линейные композиты в конкретном примере исполнены как проволочные спеченные композиты с открытопористой спеченной структурой 34. Проволочные спеченные композиты 39a, 39b, 39c укладывают на пластинчатые контакты 23 в выемки 108, благодаря чему позиционируют проволочные спеченные композиты. Электрическое контактирование в конкретном примерном варианте исполнения обеспечивают с помощью зажимания, для чего проволочные спеченные композиты 39a, 39b, 39c с помощью пуансона 40 в виде упорного элемента прижимают к пластинчатым контактам 23 (см. стрелку в Фиг.16a). Проволочные спеченные композиты 39a, 39b, 39c преимущественно изготавливают экструзионным способом, например, согласно AU 6393173 (на имя Ralph E. Shackleford и др.). В AU 6393173 описано получение проволоки из нержавеющей стали с диаметром проволоки 0,3-2,0 мм. Этот диапазон диаметров наверняка охватывает также предпочтительный диапазон диаметров для соответствующих изобретению линейных композитов. Более конкретно, способ получения основывается на экструзии смеси, состоящей из металлического порошка, связующего средства и пластификатора, и спекании экструдата. Металлический порошок может присутствовать в зернистой, волокнистой или хлопьевидной форме. Способ должен быть адаптирован для получения пористой спеченной структуры с открытыми порами. Адаптация состоит в том, что к вышеназванной смеси примешивают удаляемый наполнитель, например способные к возгонке микросферы из акриловой смолы. Микросферы из акриловой смолы представляют собой заполнитель, который в процессе термической обработки, еще до собственно спекания, при температуре около 500°C практически без остатка возгоняется и оставляет после себя полости. При необходимости тип и количество связующего средства и пластификатора могут быть приспособлены к добавляемому наполнителю. Размеры частиц обрабатываемого металлического порошка и микросфер из акриловой смолы должны быть так согласованы, чтобы средний диаметр пор в полученном однородном спеченном композите по возможности составлял >10 мкм; благодаря этому обеспечивается достаточно быстрое пропитывание фитиля жидким материалом 16. Разумеется, вместо нержавеющей стали могут быть также соответственно способу экструдированы и подвергнуты спеканию порошки из электронагревательных сплавов - в особенности из группы хромоникелевых (NiCr) сплавов и сплавов хрома, железа и алюминия (CrFeAl) ("Kanthal").
В общем является общепринятым, что композиты 22 и 39 перед их монтажом должны быть очищены и поверхность капиллярной структуры должна быть активирована. Эта мера обеспечивают лучшее смачивание материала композита жидким материалом 16 и тем самым связанное с этим более быстрое пропитывание фитиля. В случае нержавеющей стали, например, для достижения вышеупомянутых эффектов достаточна обработка 20%-ной фосфорной кислотой.
Далее будет более подробно описано снабжение композита 22, 39 жидким материалом 16. Приведенные ниже варианты исполнения в равной степени действительны как для листообразных, так и линейных композитов 22, 39, даже когда фигуры ограничиваются представлением только одного варианта исполнения композита. Как показано в Фиг.12a и Фиг.17, а также в Фиг.16 и Фиг.16a, композит 22, 39 одним концом выдается в капиллярную щель 41. Капиллярная щель 41 питает фитиль композита жидким материалом 16; как можно понять из фигур, поперечное сечение капиллярной щели 41 является большим, чем поперечное сечение композита 22, 39. В результате этого жидкий материал 16 вытекает в зону испарения главным образом через расширенный поперечник капиллярной щели 41, благодаря чему фитиль может быстрее пропитываться и может быть сокращен период ожидания между двумя вдохами или, соответственно, ингаляциями. Этот эффект действует по меньшей мере до устья капиллярной щели 41 в камере 21. С этого места за транспорт жидкости ответственен только один фитиль композита 22, 39. Капиллярная щель 41 по существу сформирована одним из двух пластинчатых контактов 23 и уложенной на него плоской накладкой 42, для чего в накладке 42 и в пластинчатом контакте 23 проделаны соответствующие выемки, образующие капиллярную щель 41 - см. Фиг.12a и Фиг.17. Следует отметить, что для формирования капиллярной щели 41 было бы также достаточным размещение уже единичной выемки, будь то в накладке 41 или же в пластинчатом контакте 23. При применении листообразного композита 22 в любом случае является предпочтительным размещение выемки в пластинчатом контакте 23, так как в этом случае выемка одновременно может быть использована и как вспомогательное средство для позиционирования композита 22. Накладка 42 скреплена с пластинчатым контактом 23 предпочтительно клеевым соединением и состоит из материала, хорошо смачиваемого жидким материалом 16, предпочтительно из легкого металла или из смачиваемого полимера; смачиваемость, и впрочем, также склеиваемость полимеров может быть значительно усилена путем активирования поверхности, например, плазменной обработкой в кислороде в качестве технологического газа.
Далее, выше по потоку двумя размещенными параллельно и на расстоянии друг от друга тонкими пластинками 43 образована капиллярная щель 41 (см. Фиг.17), причем одна пластинка соединена с накладкой 42 и другая пластинка связана с пластинчатым контактом 23, предпочтительно клеевым соединением. Пластинки 43 могут быть, например, выштампованы из нержавеющей стальной ленты. Как лучше всего показано в Фигурах 18-20, образующие капиллярную щель 41 пластинки 43 выдаются через выступ 44 внутрь резервуара 45. Резервуар 45 непосредственно примыкает к жидкостному контейнеру 4 и отделен от него только клапанообразной вскрываемой заглушкой 18. Вскрываемую заглушку 18 вскрывают с помощью штифта 46. Штифт 46 размещен в корпусе 3 в осевом направлении с возможностью сдвигания и предпочтительно состоит из нержавеющей стали. Первый конец 47 штифта 46 направлен на вскрываемую заглушку 18. Второй конец 48 при еще закрытой заглушке выступает из наружной поверхности корпуса 3 наружу в виде кнопки. Второй конец 48 штифта 46 находится в функциональной связи с одним из двух контактных элементов 20 части 1 ингалятора, исполняя роль толкателя, в результате чего контактный элемент 20 в процессе объединения компонента 2 ингалятора с частью 1 ингалятора упирается во второй конец 48 штифта 46, и штифт 46 тем самым сдвигается в корпус 3. Нажимное усилие, прилагаемое контактным элементом 20, передается штифтом 46 на вскрываемую заглушку 18. Вскрываемая заглушка 18 имеет по своему периметру утончение 49 материала, размер которого рассчитан так, что при приложении давления штифтом 46 к некоторому заданному месту разрушения она прорывается по широкой протяженности периметра, однако на одной стороне образуется шарнир 50. Этим путем обеспечивается то, что вскрываемая заглушка 18 открывается как клапан. Штифт 46 вблизи первого конца 47 имеет утолщение 51 с увеличенным диаметром, которое, исполняя роль упора, препятствует тому, чтобы штифт мог выскользнуть из корпуса 3 или был извлечен.
Снабжение композита 22, 39 жидким материалом 16 далее будет разъяснено обобщенно, причем условия течения наглядно показаны стрелками в Фиг.18 и Фиг.20: в процессе объединения компонента 2 ингалятора с частью 1 ингалятора многократного применения клапанообразная заглушка 18 открывается штифтом 46, и в результате резервуар 45 заполняется жидким материалом 16 под действием силы тяжести. В Фиг.19 обозначены уровни жидкости до и после заполнения. Капиллярная щель 41 засасывает жидкий материал 16 через выступ 44 и переводит его на композит 22, 39, в результате чего фитиль в конце концов полностью пропитывается жидким материалом 16. Образованный пластинками 43 выступ 44 призван препятствовать тому, чтобы в области устья капиллярной щели 41 осаждались газовые пузырьки, которые могли бы затруднять капиллярное сопряжение. Далее, в пластинчатом контакте 23 вырезан вентиляционный канал 52, который соединяет резервуар 45 с камерой 21. Назначение вентиляционного канала 52 уже было разъяснено ранее. Вентиляционный канал 52 впадает в камеру 21 предпочтительно в месте выше по потоку относительно композита 22, 39, поскольку в этой области камеры 21 едва ли следует ожидать отложений конденсата; а именно, такие отложения конденсата могли бы закупоривать вентиляционный канал 52 или попадать через вентиляционный канал 52 в резервуар 45 и загрязнять хранящийся там жидкий материал 16. Наконец, в накладку 42 встроен резервный накопитель 53 - см. также Фиг.11 и Фиг.17, действие которого также было уже разъяснено ранее.
Резервный накопитель 53 в данном примерном варианте исполнения состоит из расположенных параллельно друг другу прорезей 54, которые проделаны в накладке 42. Прорези 54 сообщаются, с одной стороны, через отверстия 55 с капиллярной щелью 41 и, с другой стороны, через вентиляционную щель 56 с камерой 21. Капиллярность прорезей 54 проявляет себя так, что жидкий материал 16 из резервуара 45 через капиллярную щель 41 и через отверстия 55 затекает в прорези 54, где он остается для промежуточного хранения и при необходимости опять может вытягиваться фитилем.
Кроме того, Фигуры 9-12 показывают размещенное в камере 21 устройство для связывания конденсата, состоящее из двух открытопористых, способных впитывать жидкость материалов или кусков губки 57. Назначение и действие устройства для связывания конденсата, а также его необходимость для соответствующего изобретению компонента ингалятора уже были обстоятельно разъяснены ранее. Обе губки 57 сформированы в виде пластин, размещенных параллельно и на расстоянии друг от друга, причем композит 22 с обеих сторон перекрыт обеими губками 57. Между обеими губками 57 сформирован проточный канал 58, в котором происходит образование паровоздушной смеси или/и конденсационного аэрозоля. Основная часть конденсационных остатков осаждается на участках 59 стенок губок 57, образующих проточный канал 58, и немедленно всасывается открытопористой структурой губок. Губки 57 закреплены на двух противолежащих стенках камеры 21, например, с помощью клеевого соединения, заполняют преобладающую часть камеры 21 и состоят предпочтительно из высокопористого, формостабильного и по возможности мелкопористого материала. А именно, при использовании крупнопористого материала возникает опасность того, что при резких перемещениях или, соответственно, ускорениях компонента 2 ингалятора капиллярных сил губчатого материала будет недостаточно, чтобы удержать жидкий конденсат, и часть конденсата будет вытряхиваться из губок 57. В качестве губчатого материала в особенности пригодными оказались волокнистые композиты, сформированные из природных или химических волокон, сцепленных между собой термически или с помощью связующего средства. На изготовлении таких волокнистых композитов специализируется фирма Filtrona Richmond Inc., www.filtronaporoustechnologies.com, причем вырабатываются как волокна из ацетата целлюлозы, сцепленные с помощью триацетина, так и термически связанные полиолефиновые и полисложноэфирные волокна.
Губки 57 размещены на некотором расстоянии от накладки 42 и связанного с накладкой 42 пластинчатого контакта 23 таким образом, что образуется зазор 60. Зазор 60 обеспечивает то, что вентиляционный канал 52, а также вентиляционная щель 56 могут беспрепятственно сообщаться с камерой 21. Губкам 57 приданы такие размеры, чтобы их поровые объемы были в состоянии поглотить предполагаемое количество образующихся остатков конденсата. Количество конденсата в первую очередь зависит от содержания в жидком материале 16 низкокипящих фракций с высоким давлением паров, а также от величины расхода воздушного потока, проходящего через воздухозаборное отверстие 26 и, соответственно, через проточный канал 58. Чем меньшее количество воздуха поступает, тем меньшее количество пара может довести воздух до состояния насыщения.
Как показано в Фигурах 9-10 и Фиг.12, после губок 57 ниже по потоку относительно композита 22 размещен охладитель 61, который в конкретном примерном варианте исполнения состоит из пористой набивки 61, поры которой являются проницаемыми для образованных паровоздушной смеси или/и конденсационного аэрозоля. Существенные действия охладителя и, соответственно, набивки 61 уже были подробно разъяснены ранее. Набивка 61 находится в загрузочной камере 62, которая со стороны поступающего потока ограничена перфорированной стенкой 63, со стороны выхода потока мундштуком 5 и со стороны оболочки корпусом 3 и стенкой жидкостного контейнера 4. Перфорированная стенка 63 поддерживает набивку 61 и одновременно придает жесткость корпусу 3. Перфорированную стенку 63 размещают несколько отстоящей от губок 57 - см. Фиг.12. Тем самым достигают того, что выходящие из проточного канала 58 паровоздушная смесь или/и конденсационный аэрозоль еще перед перфорированной стенкой 63 могут равномерно распределяться по всему поперечному сечению набивки 61 и течение сквозь набивку 61 становится однородным. Чтобы набивка 61 не могла вылезать из отверстий в перфорированной стенке 63, между набивкой 61 и перфорированной стенкой 63 размещают первую металлическую сетку 64. Со стороны мундштука набивка 61 ограничена второй металлической сеткой 65, которая препятствует тому, чтобы набивка могла попадать в канал 66 мундштука или даже в ротовую полость пользователя. Между второй металлической сеткой 65 и мундштучным каналом 66 мундштук образует коллектор 67, который предназначен для того, чтобы течение через набивку 61 было однородным также на конечном участке. Вторую металлическую сетку 65 преимущественно прикрепляют непосредственно к мундштуку 5, например приплавляют к нему. В процессе монтажа сначала укладывают первую металлическую сетку 64 на перфорированную стенку. После этого в загрузочную камеру 62 вводят предварительно заданное количество материала набивки 61, причем заполнение может быть выполнено также в несколько стадий, и набивку 61 после каждого частичного наполнения подвергают промежуточному уплотнению. Этим путем можно обеспечить однородную насыпную плотность. Альтернативно, набивка может быть предварительно уже приготовлена вне компонента 2 ингалятора, например в бумажном цилиндре с поперечным сечением, соответствующим загрузочной камере 62, и упаковку вставляют в загрузочную камеру 62. Такие упаковки, по экономическим соображениям, могут быть получены из бесконечного жгута. Наконец, устанавливают мундштук 5 и закупоривают загрузочную камеру 62.
Набивка может состоять, например, из материала для регенераторов. Прежде всего, когда жидкий материал 16 содержит никотин, оказалось в особенности предпочтительным применение табака в качестве материала набивки 61. В прототипах в отношении органолептических характеристик вдыхаемых паровоздушной смеси или/и конденсационного аэрозоля были достигнуты превосходные результаты с использованием табака мелкой резки и объемом заполнения около 7 см3. Табак может быть дополнительно ароматизирован, для чего в него вносят ароматические добавки и эфирные масла, например, такие как табачный экстракт, масло с ароматом табака, ментол, экстракт кофе, конденсат табачного дыма или летучую ароматную фракцию конденсата табачного дыма. Разумеется, изобретение не ограничивается этим выбором.
Насыпная плотность набивки 61 определяет аэродинамическое сопротивление, которое набивка оказывает паровоздушной смеси и, соответственно, конденсационному аэрозолю; насыпная плотность должна быть так согласована с аэродинамическим сопротивлением дроссельного регулятора 28 расхода потока, чтобы результирующее значение аэродинамического сопротивления находилось в пределах уже названного диапазона 12-16 мбар (1,2-1,6 кПа) при величине расхода воздуха 1,05 л/минуту. В принципе, также можно совсем отказаться от дроссельного регулятора 28 расхода потока и создавать желательное аэродинамическое сопротивление с помощью только набивки 61, для чего соответственно увеличивают ее насыпную плотность. Однако в общем следует обращать внимание на то, что фильтровое действие нежелательно; создаваемые в камере 21 аэрозольные частицы должны быть в состоянии проходить через набивку 61 по возможности без потерь. Альтернативный вариант исполнения без дроссельного регулятора 28 расхода потока, кроме того, оказывает влияние на технические условия срабатывания датчика в начале вдоха, каковое влияние позднее будет разъяснено подробнее. Если набивка 61 содержит табак или/и ароматические вещества, то компонент 2 ингалятора до его применения необходимо хранить в воздухонепроницаемой упаковке, чтобы предотвратить улетучивание ароматических веществ. Даже после объединения компонента 2 ингалятора с частью 1 ингалятора существует возможность практически исключить улетучивание ароматических веществ, а также испарение и улетучивание фракций запасенного в фитиле жидкого материала 16 герметизацией мундштучного канала 66, например, с помощью крышки или пробочки (не показаны).
Фигуры 21-22 показывают второй примерный вариант исполнения соответствующего изобретению ингалятора и Фиг.23 показывает сменный компонент ингалятора для этого ингалятора. В конкретном примере ингалятор исполнен как классический ингалятор и по существу основан на компоновке согласно Фигурам 9-10, но отличается от нее тем, что может пропускать значительно большее количество воздуха, обеспечивая возможность прямой ингаляции легких в одной отдельной стадии. Более конкретно, ингалятор с компоновкой согласно Фигурам 9-10 отличается тем, что исключены как дроссельный регулятор 28 расхода потока, так и второй открытопористый материал 61, и мундштучный канал 66 имеет значительно увеличенное поперечное сечение. Тем самым аэродинамическое сопротивление в значительной степени снижается. Дополнительное существенное отличие состоит в том, что основная часть воздуха совсем не проходит мимо композита 22, 39, но скорее поступает в ингалятор лишь ниже по потоку относительно него. Для этой цели ниже по потоку относительно композита 22, 39 на противоположных сторонах корпуса размещены два байпасных отверстия 68, совокупное поперечное сечение которых является значительно большим, чем поперечное сечение воздухозаборного отверстия 26. К обоим байпасным отверстиям 68 присоединены две направляющие лопасти 69, сформированные в корпусе 3, которые ориентированы в направлении мундштучного канала 66 и сближаются друг с другом, и их свободные концы, или соответственно вершины 70, образуют соплообразное горловинное отверстие 71, через которое образовавшиеся паровоздушная смесь или/и конденсационный аэрозоль вытекают из камеры 21 и затем смешиваются с воздухом, поступающим из байпасных отверстий 68. Назначение направляющих лопастей 69 уже было разъяснено ранее.
Для лучшего смешения паровоздушной смеси или/и конденсационного аэрозоля с байпасным воздухом, поступающим через байпасные отверстия 68, в мундштучном канале 66 необязательно может быть размещен гомогенизатор 72 потока - см. Фиг.22. Гомогенизатор 72 потока может быть изготовлен, например, из материала на основе синтетического волокна типа нетканого материала. Фирма Freudenberg Vliesstoffe KG, www.freudenberg-filter.com, предлагает такой материал в виде холстов/пластин под наименованием Viledon®-Filtermatten. Материал может быть изготовлен по техническим спецификациям заказчика. В частности, характеристики материала могут быть согласованы так, чтобы конечный продукт был по существу проницаемым для мелких частиц образованного конденсационного аэрозоля, и аэродинамическое сопротивление находилось в пределах уже указанного ранее контрольного диапазона. Холсты/пластины получаются из полиолефиновых волокон (полиэтилена (PE), полипропилена (PP)) или из полисложноэфирных волокон и могут быть дополнительно переработаны с использованием штамповочного пресса.
Фигуры 24-25 показывают сменный компонент 2 ингалятора соответствующего изобретению ингалятора с альтернативной системой жидкостного контейнера. Несмотря на то, что сменный компонент 2 ингалятора в конкретном примере представляет компонент ингалятора для использования в классическом ингаляторе, представленная альтернативная система жидкостного контейнера точно так же может найти применение в компоненте ингалятора с активацией вдохом, как описанной выше. Как показано в Фигурах, жидкостный контейнер 4 в корпусе 3 размещают вдоль оси Y сдвига между двумя упорными положениями с возможностью сдвига вручную.
Фиг.24b показывает жидкостный контейнер 4 в первом упорном положении, которое одновременно определяет его исходное положение. Первое упорное положение определяется выступом 73, образованным на мундштуке 5, во взаимодействии с цапфой 74, сформированной на жидкостном контейнере 4. Выступ 73 при известных условиях делает невозможным извлечение из компонента 2 ингалятора жидкостного контейнера 4, содержащего лекарственное средство или/и токсичные вещества. Цапфа 74 одновременно действует как стопор вращения жидкостного контейнера 4, для чего цапфа 74 входит в зацепление с соответствующим желобком 75 в корпусе 3. Жидкостный контейнер 4 в исходном положении выступает наружу своим концевым участком из корпуса 3 сбоку от мундштука 5. Сдвижной жидкостный контейнер 4 может быть простым путем сдвинут в свое второе упорное положение, для чего пользователь нажимает на выступающий наружу конец жидкостного контейнера 4. Жидкостный контейнер 4 при этом смещается на дистанцию "s". Второй упор образован накладкой 42 и связанным с нею пластинчатым контактом 23. Вентиляционное отверстие 76 и вентиляционный канал 77 препятствуют тому, чтобы во время процесса сдвига образовывалась мешающая воздушная подушка. Жидкостный контейнер 4 на торцевой стороне, обращенной ко второму упору, имеет два отверстия 78, 79, которые с внутренней стороны контейнера закрыты с помощью пленочного уплотнения 80. Капиллярная щель 41 по существу идентична ранее уже описанной компоновке. Пластины 43 опять же образуют выступ в виде первого пробойника 81. Первый пробойник 81 позиционирован так, что он находится на одной прямой с первым отверстием 78 и проникает в него, будучи во втором упорном положении. Наискось заостренный конец первого пробойника 81 одновременно прорезает пленочное уплотнение 80 и приходит в контакт с жидким материалом 16, в результате чего в конечном итоге создается капиллярное сопряжение с капиллярной щелью 41.
Аналогичное происходит с вентиляционным каналом 52: в конкретном примерном варианте исполнения, в отличие от ранее описанной компоновки, он встроен в накладку 42 и, как и капиллярная щель 41, на конце, обращенном к жидкостному контейнеру 4, образует выступ или второй пробойник 82, который позиционирован так, что он расположен на одной прямой со вторым отверстием 79 в жидкостном контейнере, и, будучи во втором упорном положении, проникает в него. Второй конец вентиляционного канала опять же сообщается с камерой 21 (не показано). Снабжение композита 22, 39 жидким материалом 16 происходит точно так же, как было описано ранее. В состоянии поставки компонента 2 ингалятора жидкостный контейнер 4 находится в своем исходном положении, то есть в первом упорном положении. Жидкостный контейнер 4 сдвигают во второе упорное положение и соединяют с капиллярной щелью 41 предпочтительно лишь незадолго перед применением компонента 2 ингалятора. Чтобы исключить преждевременное непреднамеренное соединение, жидкостный контейнер 4 зафиксирован в своем исходном положении. Фиксирование, как показывает Фиг.24b, может быть выполнено, например, с помощью полукруглой стопорной пластинки 109, которая через микроперемычки 83 соединена, с одной стороны, с жидкостным контейнером 4, и, с другой стороны, с корпусом 3. Таким образом, стопорная пластинка 109 создает жесткое соединение между жидкостным контейнером 4 и корпусом 3. Ручным силовым воздействием на стопорную пластинку 109 - например, многократным отгибанием ее - можно сломать микроперемычки 83 и устранить фиксирование жидкостного контейнера 4. Альтернативно, жидкостный контейнер 4 можно простым путем зафиксировать с помощью липкой ленты (не показано). В отношении выбора материала для жидкостного контейнера 4 ранее уже были приведены указания, которые в равной степени действительны для конкретного примерного варианта исполнения.
Фигуры 26-27 показывают сменный компонент 2 ингалятора соответствующего изобретению ингалятора с дополнительной альтернативной системой жидкостного накопителя. Несмотря на то, что сменный компонент 2 ингалятора в конкретном примере представляет компонент ингалятора для использования в классическом ингаляторе, представленная альтернативная система жидкостного накопителя точно так же может найти применение в компоненте ингалятора с активацией вдохом, как описанной выше. В конкретном примерном варианте исполнения жидкостный накопитель содержит открытопористый вспененный материал 84, пропитанный жидким материалом 16. Композит 22, 39 сэндвичеобразно зажат между вспененным материалом 84 и одним из двух пластинчатых контактов 23, в результате чего фитиль находится в капиллярном сопряжении с жидким материалом 16. Вспененный материал 84 содержится в цилиндрическом корпусе 85, совместно с которым он образует сменный патрон 86. Патрон 86 вставляют в соответствующую выемку 87 в корпусе 3. Выемка 87 снаружи непроницаемо для воздуха закрыта крышкой 88. Крышку 88 фиксируют на корпусе 3 с помощью защелкивающегося соединения 89. Кроме того, это фиксирование действует так, что крышка 88 прилагает к патрону 86 прижимающее усилие в направлении композита 22, 39. Как подробнее показывает Фиг.28, композит 22, 39 уложен на возвышение 90 пластинчатого контакта 23. Возвышение 90 совместно с действующим на патрон прижимающим усилием создает сжатие вспененного материала 84 - см. ход сжатия "h". Сжатие оказывает такое действие, что из вспененного материала 84 в области контакта с композитом выдавливается маленькое количество жидкого материала 16, какового количества достаточно, чтобы обеспечить капиллярное сопряжение между новым вставленным патроном 86 и фитилем. Цилиндрический корпус 85 перфорирован на стороне, обращенной к крышке 88. Вентиляционные отверстия 91 через выемку 92 в крышке 88 сообщаются с камерой 21 и тем самым обеспечивают выравнивание давления между жидким материалом 16, связанным в порах вспененного материала 84, и камерой 21.
Вспененный материал 84 предпочтительно состоит из мелкопористого поропласта на основе простого полиэфир-полиуретана, который может быть дополнительно уплотнен. В прототипах с успехом использовали двух-трехкратно уплотненный вспененный материал с наименованием "Jet 6" фирмы-изготовителя Fritz Nauer AG, www.foampartner.com. Только что представленная система жидкостного накопителя имеет тот недостаток, что патрон 86 можно извлечь из компонента 2 ингалятора. С этим, естественно, связаны опасности, например, опасность того, что относительно маленький патрон 86 может быть проглочен маленькими детьми. Система жидкостного накопителя поэтому непригодна для снабжения лекарственными препаратами или/и токсичными веществами, например, такими как никотин.
Далее должны быть более подробно описаны еще дополнительные, общие составные части соответствующего изобретению ингалятора, каковые составные части имеются во всех примерных вариантах исполнения: как показывают Фиг.6, Фиг.9 и Фиг.19, пластинчатые контакты 23 сменного компонента 2 ингалятора выступают из наружной поверхности корпуса 3 в виде двух штекерных контактов 93. Штекерные контакты 93 в процессе объединения компонента 2 ингалятора с частью 1 ингалятора создают с соответствующими прижимными контактами 94 электрические соединения, через которые к нагревательному элементу подводится электрическая энергия для испарения жидкого материала 16. Прижимные контакты 94 составляют часть контактных элементов 20 и предпочтительно связаны с ними сварным соединением - см. также Фигуры 4-5. Контактные элементы 20 предпочтительно состоят из металлического контактного материала и могут быть изготовлены, например, фирмой Ami Doduco GmbH, www.amidoduco.com. Для того случая, когда для пластинчатых контактов 23 из уже названных соображений применяют тот же или подобный материал, как для нагревательного элемента - например, нержавеющую сталь, вследствие недостаточной электропроводности этого материала необходимо наносить на пластинчатые контакты 23, по меньшей мере в области штекерных контактов 93, например, гальваническое покрытие электропроводного слоя из золота, серебра, палладия или/и никеля, благодаря чему электрическое контактное сопротивление значительно снижается.
Контактные элементы 20 получают электрическую энергию по двум проводам 95, которые соединяют контактные элементы 20 с платой 11 - см. Фигуры 4-5. Оба конца проводов 95 предпочтительно закрепляют припаиванием. В обобщение следует еще раз указать на то, что контактные элементы 20 решают до трех различных задач: во-первых, как было только что описано выше, они передают электрическую энергию от платы 11 на пластинчатые контакты 23. Во-вторых, они формируют боковые стопорные выступы 9, которые взаимодействуют с крючками-защелками 8 на корпусе 3, в результате чего осуществляется защелкивающееся соединение между компонентом 2 ингалятора и частью 1 ингалятора. И в-третьих, один из двух контактных элементов 20 формирует упор для штифта 46, благодаря чему создается функциональная связь в виде толкателя для вскрывания жидкостного контейнера 4. Правда, последнюю задачу рассматривали только в одном варианте исполнения ингалятора и его системы жидкостного контейнера.
Для точного по положению объединения компонента 2 ингалятора с частью 1 ингалятора предусматривается позиционирующее устройство, которое состоит из центрирующего выступа 96, размещенного на несущем корпусе 10, и соответствующей ему и расположенной на корпусе 3 центрирующей выемки 97 - см. Фиг.3, Фиг.6, Фиг.10 и Фиг.12. Центрирующий выступ 96 имеет два вентиляционных отверстия 98, через которые из центрирующей выемки 97 в процессе объединения выходит воздух.
Фиг.29 показывает сменный компонент 2 ингалятора соответствующего изобретению ингалятора, который отличается от ранее представленных компонентов ингалятора тем, что он имеет два размещенных параллельно друг другу листообразных композита 22a и 22b. Например, листообразные композиты 22a и 22b могут иметь конструкцию, которая уже была подробно описана в Фигурах 14-15. Листообразные композиты 22a и 22b и, соответственно, их резистивные нагреватели подключены друг к другу последовательно. Последовательным соединением обеспечивается то, что при неизменной ширине пролета композита результирующее сопротивление в цепи нагревания удваивается, когда за основу берут композиты 22a и 22b с одинаковым собственным электрическим сопротивлением. Преимущественные эффекты этого повышения сопротивления уже были представлены ранее. В принципе, сопротивление в цепи нагревания композита можно повысить также увеличением ширины пролета композита. Однако это оказывало бы очень вредное воздействие на продолжительность впитывания, то есть такой период времени, который требуется для того, чтобы жидкий материал 16 вновь полностью пропитал фитиль после испарения. Продолжительность впитывания резко возросла бы. Например, если исходить из технических характеристик композитов согласно Таблице 1 и последовательно подключать два композита 22a и 22b с шириной композита в каждом случае 4 мм и степенью травления 25%, то в результате этого получается сопротивление нагревательного элемента около 275 мОм. При таком значении сопротивления представляется возможным еще больше сократить ширину пролета композита из соображений короткой продолжительности впитывания, например до 12 мм, благодаря чему сопротивление нагревательного элемента снижалось бы до величины около 235 мОм. Оба композита 22a и 22b необязательно могут также иметь различные значения сопротивления, что в простейшем случае может быть реализовано тем, что оба композита размещают с различной шириной пролета композита. Этим путем можно регулировать процесс испарения в пространственном отношении. Кроме того, оба композита 22a и 22b необязательно могут снабжаться из различных источников жидкого материала. С помощью обоих последних вариантов компоновки можно оказывать целенаправленное влияние на процесс образования аэрозоля и в конечном итоге на характеристики образуемого конденсационного аэрозоля. Например, этим путем можно почти точно смоделировать процесс испарения в зоне дистилляции сигареты как в пространственном, так и во временном плане.
Композиты 22a и 22b опять же своими концевыми участками уложены на электропроводные пластинчатые контакты, и их нагревательные элементы находятся в электрическом соединении с контактами. В отличие от ранее описанных примерных вариантов исполнения, пластинчатые контакты на одной стороне разделены на две контактных детали 23a и 23b, которые электрически изолированы друг от друга. Первый листообразный композит 22a размещают на концевом участке контактной детали 23a, и второй листообразный композит 22b устанавливают на концевом участке контактной детали 23b. На противоположной стороне оба композита 22a и 22b своими концевыми участками уложены на общий пластинчатый контакт 23c. Пластинчатый контакт 23c электрически соединяет друг с другом оба композита 22a и 22b. Пластинчатый контакт 23 с по сути дела действует как электрическое последовательное соединение, тогда как подведение электрической энергии к композитам 22a и 22b производится через контактные детали 23a и 23b. Электрическое соединение с частью 1 ингалятора многократного применения опять же производится через штекерные контакты 93, компоновка которых идентична схеме подключения представленных выше примерных вариантов исполнения, сравни Фиг.6, Фиг.9 и Фиг.19. Чтобы иметь возможность сохранить эту схему подключения, в конкретном примерном варианте исполнения контактную деталь 23a компонуют таким образом, что она через соединительный перемычка 110 проходит поперек через корпус 3 на противоположную сторону компонента 2 ингалятора. Как показано в Фиг.29, соединительный перемычка 110 проложен под щелевидным каналом 26. Альтернативно, вместо соединительного перемычки 110 электрическое соединение может быть также создано посредством провода. Кроме того, альтернативно можно было бы также вывести оба штекерных контакта 93 из корпуса на одну и ту же сторону корпуса, причем здесь по само собой понятным причинам подходила бы та сторона, на которой также размещены контактные детали 23a и 23b. Наконец, следовало бы также еще упомянуть, что пластинчатые контакты и, соответственно, контактные детали 23a, 23b и 23c также могут быть сформированы на печатных платах или одной отдельной совместной печатной плате. Предпочтительными являются печатные платы с толстым слоем меди, с толщинами медного слоя в диапазоне 100-500 мкм, ввиду лучших условий отведения теплоты. Хорошие условия отведения теплоты необходимо обеспечивать в особенности в области капиллярной щели 41, чтобы исключить закипание жидкого материала 16 в капиллярной щели 41.
Существенную конструкционную деталь соответствующего изобретению ингалятора составляет сенсор 99, 100 - см. Фиг.8, Фиг.18, а также Фигуры 21-22. Назначение сенсора 99, 100 состоит в детектировании начала вдоха или, соответственно, ингаляции, после чего электрическая управляющая схема 11 активирует подачу электрической энергии на нагревательный элемент композита 22, 39, и начинается испарение жидкого материала 16. Могут быть использованы по меньшей мере два различных типа сенсоров: в примерном варианте исполнения согласно Фиг.8 сенсор состоит из датчика 99 давления. Датчик 99 давления приклеен к несущему корпусу 10, и его электрические выводы или штырьки 101 припаяны непосредственно к плате 11. Датчик 99 давления через отверстие 102 сообщается с нагнетательной камерой 27 и регистрирует или отслеживает пониженное давление в нагнетательной камере 27 - см. Фиг.18. В качестве датчика давления пригоден, например, датчик типа CPCL04GC фирмы-изготовителя Honeywell Inc., www.honeywell.com, с диапазоном измерения +/-10 мбар (1,0 кПа).
Названный сенсор в основном состоит из калиброванного на нулевое значение и температурно-компенсированного измерительного моста и может быть подключен к плате 11 следующим образом: отрицательный вывод сенсора через высокоомный резистор с определенным значением сопротивления - например, 2,2 МОм - замыкают на массу, в результате чего выходной и измерительный сигнал датчика 99 давления незначительно искажаются, или, другими словами, напряжение смещения измерительного моста калибруют на определенное значение. Искажением или, соответственно, напряжением смещения задают порог чувствительности, который соответствует определенному пороговому значению давления. Приготовленный таким образом измерительный сигнал подают на вход подключенного в качестве компаратора прецизионного операционного усилителя 103 - например, типа LTC1049CS8 фирмы-изготовителя Linear Technology Inc., www.linear.com. При таком монтаже получается выходной сигнал, который чрезвычайно быстро и точно воспроизводит начало вдоха в цифровой форме. Датчик 99 давления пригоден прежде всего для применения в ингаляторах с активацией вдохом, если выше по потоку относительно нагнетательной камеры 27 расположен дроссельный регулятор 28 расхода потока. В этом случае в нагнетательной камере 27 во время вдоха возникает пониженное по сравнению с окружающей средой давление, которое типично имеет значение в диапазоне 0-50 мбар (0-5 кПа). Профиль давления имеет приблизительно колоколообразную форму. Начало вдоха может быть зарегистрировано простым путем, для чего задают пороговое значение давления, как описано выше, которое постоянно сравнивается с фактическим измеренным давлением. Начало вдоха может быть определено как первое превышение порогового значения давления. Для порогового значения давления целесообразно выбирать величину в диапазоне 0,2-5 мбар (20-500 Па). Чем ниже выбранное пороговое значение давления, тем быстрее срабатывает распознавание вдоха. Нижний предел задается техническими характеристиками данного используемого датчика давления и операционного усилителя.
Если в ингаляторе не предусмотрен дроссельный регулятор 28 расхода потока, то в нагнетательной камере 27 практически доминирует давление окружающей среды. Эти условия приведены в примерном варианте исполнения согласно Фигурам 21-22. Представленный классический ингалятор действует приблизительно в условиях атмосферного давления и позволяет проводить прямую ингаляцию легких в единичной стадии. В этом случае целесообразно регистрировать начало ингаляции с помощью датчика 100 течения. В примерном варианте исполнения согласно Фигурам 21-22 датчик 100 течения размещают в поперечном канале 29 и его выводы или штырьки 101 опять же припаяны непосредственно к плате 11.
В качестве датчика 100 течения предпочтительно пригоден термистор 100, например, типа GR015 фирмы-изготовителя Betatherm Corporation, www.betatherm.com. Термистор 100 подключают на плате 11 к измерительному мосту (не показан). Измерительный мост для температурной компенсации содержит второй однотипный термистор и калибруется с помощью прецизионных резисторов на определенную пороговую величину напряжения смещения. Выходной сигнал измерительного моста затем выводится опять на вход операционного усилителя 103, подключенного в качестве компаратора. В равновесном состоянии оба термистора находятся на одинаковом уровне температуры - типично в диапазоне 80-200°C, в зависимости от рассеянной мощности. Теперь, как только пользователь начинает ингаляцию, воздух протекает через поперечный канал 29. Воздух охлаждает термистор 100, в результате чего его сопротивление возрастает. Изменение сопротивления регистрируется измерительным мостом. В тот момент, когда выходной сигнал измерительного моста проходит через нулевое значение, компаратор 103 релаксирует и выдает цифровой сигнал, обозначающий начало ингаляции.
Дополнительная обработка сигналов, выдаваемых сенсорами 99, 100 и их монтажными схемами, предпочтительно происходит во встроенной управляющей схеме 104 - см. Фиг.8 и Фиг.21. Встроенная управляющая схема 104 также может представлять собой микропроцессор. Встроенная управляющая схема 104 обрабатывает большую часть всех электрических сигналов ингалятора и исполняет управляющие действия, существенные для работы ингалятора. Эти управляющие действия далее будут описаны более подробно: центральная управляющая операция представляет собой подачу электрической энергии на нагревательный элемент композита 22, 39. Электрическая энергия подводится от аккумулятора 12 энергии. На современном уровне техники в качестве аккумулятора 12 энергии являются в особенности подходящими литий-полимерные и литиево-ионные элементы благодаря их высокой плотности энергии и мощности. В случае металлических нагревательных элементов можно обойтись уже одним единичным литий-полимерным и литиево-ионным элементом с безнагрузочным или номинальным напряжением около 3,7 В.
Регулирование подачи энергии и мощности на нагревательный элемент композита 22, 39 может быть в простейшем случае выполнено тем, что напряжение батареи на протяжении подачи энергии модулируют с переменным коэффициентом модуляции и полученное при этом номинальное напряжение подводят к нагревательному элементу. Результирующее номинальное напряжение представляет собой сигнал прямоугольной формы с переменной скважностью импульсов (режим "Duty Cycle" ("рабочий цикл»)). Амплитуда прямоугольного сигнала соответствует напряжению батареи, когда предполагаются лишь незначительные падения напряжения. Собственно модулирование предпочтительно выполняют с помощью мощного металлоксидного полупроводникового полевого транзистора (MOSFET, МОП-транзистора) 105, например, типа IRF6635 фирмы-изготовителя International Rectifier, www.irf.com, который пригоден для того, чтобы переключать очень большие токи при минимальном сопротивлении участка «сток-исток». При этом встроенная управляющая схема 104 регулирует затвор мощного МОП-транзистора 105.
Очень простая стратегия регулирования, которая, впрочем, зарекомендовала себя и в соответствующих изобретению прототипах, состоит в том, что продолжительность подачи энергии подразделяют на два периода - на период разогревания и последующий за ним период испарения. В периодическом, синхронном с ингаляцией или вдохом режиме работы ингалятора продолжительность подачи энергии ориентируется на продолжительность вдоха или ингаляции. В случае ингаляторов с активацией вдохом можно исходить, например, из средней продолжительности вдоха около 2,1 секунды (+/-0,4 сек). Примерно такое же значение действительно также для сигарет. Принимая во внимание то, что и после отключения подачи энергии, вследствие еще накопленной в композите 22, 39 теплоты, еще происходит в известной степени дополнительное испарение, представляется целесообразным выбирать продолжительность подачи энергии слегка более короткой, например, значение в диапазоне 1,5-1,8 секунд.
В случае классических ингаляторов, имея в виду высокую степень абсорбции лекарственных средств в альвеолах, продолжительность подачи энергии сокращают в еще большей мере. По сравнению с классическими ингаляторами ингаляторы с активацией вдохом имеют именно то преимущество, что лекарственное средство находится, так сказать, на самом переднем фронте вдыхаемого в легкие столба воздуха, благодаря чему лекарственное средство может легче продвигаться до альвеол. Напротив, в классических ингаляторах лекарственное средство переносится непосредственно вдыхаемым воздухом. При этом следует учитывать то, что концевой участок вдыхаемого воздушного столба служит только для того, чтобы заполнять так называемое «функциональное мертвое пространство» (около 150-200 мл) дыхательной системы. Лекарственные средства, содержащиеся в этом мертвом пространстве, в каждом случае уже больше не достигают альвеол и в этом отношении утрачиваются для быстрого системного действия. Кроме того, принимая во внимание, что индивидуальная продолжительность ингаляции значительно колеблется, а именно, примерно между 1,5-3 секундами, представляется целесообразным выбирать для продолжительности подачи энергии в классических ингаляторах значение <1,5 секунд. Во время первого из вышеназванных двух периодов - периода разогревания - композит 22, 39 вместе с запасенным в фитиле жидким материалом 16 разогревается нагревательным элементом. Испарение жидкого материала 16 начинается только тогда, когда температура композита 22, 39 достигает примерно интервала кипения низкокипящих фракций жидкого материала 16. Поэтому период разогревания должен быть по возможности коротким. В этом отношении понятно, что напряжение батареи в этом периоде не модулируют, или, соответственно, подводят на нагревательный элемент со 100%-ным коэффициентом модуляции или в режиме "Duty Cycle".
Продолжительность периода разогревания прежде всего зависит от технических характеристик композита 22, 39 и от количества и состава испаряемого жидкого материала 16 и должна составлять по возможности <0,5 секунды. В последующем втором периоде - периоде испарения - коэффициент модуляции по существу сводят на нет и происходит собственно испарение жидкого материала 16. Подводимая энергия в этом втором периоде расходуется, во-первых, на испарение жидкого материала 16, и, во-вторых, на компенсацию потерь энергии. Соответствующим выбором коэффициента модуляции можно в известных пределах регулировать испарительную способность и тем самым также количество жидкого материала 16, испаряемого в расчете на один вдох или ингаляцию. Верхний предел устанавливают по наступлению кризиса кипения, а также по локальному высыханию и перегреву фитиля. Отменой или, соответственно, сокращением коэффициента модуляции можно тем самым противодействовать термическому разложению жидкого материала 16.
Только что описанная стратегия регулирования может быть произвольно расширена и усовершенствована: например, может быть целесообразным учитывать в стратегии регулирования также состояние батареи, так как напряжение батареи с увеличением разряда и по мере старения батареи явственно снижается, в особенности под нагрузкой. Этот эффект можно компенсировать повышением коэффициента модуляции. Для возможности проведения этой корректировки также в периоде разогревания целесообразно модулировать напряжение батареи для новой заряженной батареи не на 100%, как предлагалось ранее, а, например, только на 80%, чтобы еще оставалась достаточная свобода действий для согласования.
Кроме того, регулирование подачи энергии на нагревательный элемент композита 22, 39 требует проведения различных вспомогательных операций: например, нужно предусматривать, что нельзя активировать подведение энергии вновь сразу же после окончания цикла испарения. Скорее напротив, необходимо выдержать период ожидания, который оставляет жидкому материалу достаточно времени, чтобы вновь полностью пропитать фитиль. Минимально необходимый период ожидания зависит от конкретных технических характеристик композита, а также от вязкости жидкого материала. В прототипах удалось показать и подтвердить расчетами, что при соответствующей компоновке полное пропитывание фитиля может быть достигнуто менее чем за 10 секунд. Обязательный период ожидания в этом порядке величин должен быть вполне переносимым для большинства пользователей, прежде всего если принимать во внимание, что в случае сигареты интервал между двумя затяжками составляет в среднем 25 секунд. Такой период ожидания точно так же должен выдерживаться после объединения нового компонента 2 ингалятора с частью 1 ингалятора. Другая вспомогательная операция состоит в том, что подача энергии на нагревательный элемент немедленно прекращается, когда пользователь преждевременно прерывает вдох или, соответственно, ингаляцию. Тем самым предотвращается образование в камере 21 бесполезного пара.
Дополнительное регулировочное действие встроенной управляющей схемы 104 относится к пользовательскому интерфейсу, то есть к коммуникации с пользователем. Сенсор 99, 100 для распознавания начала вдоха или, соответственно, ингаляции представляет собой интерфейс ввода и как таковой является обязательным. В очень простой компоновке пользовательский интерфейс, кроме этого, не предусматривает дополнительных интерфейсов ввода, даже никакого однопозиционного выключателя, так что пользование ингалятором сделано исключительно несложным. Конечно, отказ от однопозиционного выключателя предполагает соответственно малое собственное потребление тока в электрической управляющей схеме 11, на что нужно обращать внимание при проектировании электрической схемы. Так, например, может быть предусмотрено, что управляющая схема 11, пока компонент 2 ингалятора не присоединен к части 1 ингалятора, переключается в особенно энергосберегающий спящий режим. Например, в качестве интерфейсов вывода могут быть использованы два светодиода 106, из которых первый показывает степень заряженности батареи 12 и второй из которых сигнализирует о периодичности предстоящей замены компонента 2 ингалятора. Контроль периодичности замены компонента 2 ингалятора можно производить с помощью счетчика, который отсчитывает число вдохов или ингаляций. В процессе замены компонента 2 ингалятора показания счетчика сбрасываются на нуль (общий сброс), причем может быть использовано то обстоятельство, что сопротивление нагревательного элемента в этот момент становится бесконечно высоким. В несколько более дорогостоящем варианте исполнения вместо светодиодов 106 в крышку 7 электрической управляющей схемы может быть вмонтирован дисплей (не показан).
Дисплей, наряду со степенью заряженности батареи и сроком предстоящей замены компонента 2 ингалятора, может выводить дополнительные сведения об эксплуатационном состоянии и информации, например дозу лекарственного средства, в целом введенную в течение определенного периода времени. В случае никотина этим путем можно очень объективно устанавливать степень никотиновой зависимости пользователя и в процессе постепенного искоренения привычки регистрировать фактически достигнутый успех. Наконец, дисплей может действовать в виде инструкции по применению, помогая пользователю применять ингалятор. Кроме того, в качестве интерфейса вывода может быть предусмотрен звуковой, вибрационный или/и оптический предупредительный сигнал, который при этом напоминает пользователю, что наступает время приема данного лекарственного препарата и в необходимой дозе. Наконец, могут быть предусмотрены разъемы для передачи данных, например, в виде портов USB или Bluetooth, через которые, в частности, можно вводить исправленные версии фирменного («зашитого») программного обеспечения и управляющих программ, исполнять диагностические функции и считывать информацию, в частности, о введенных дозах лекарственного средства. С помощью последней функции лечащий врач может на протяжении длительного периода времени точно и объективно регистрировать введенные дозы лекарственного препарата и их распределение во времени, оценивать результаты и вносить коррективы в свои действия в рамках применяемой терапии.
Дополнительная регулировочная операция, которая необязательно может быть предусмотрена, касается идентификации используемого компонента 2 ингалятора, идентификации пользователя и тем самым связанного с этим выявления неправильного применения ингалятора. Идентификация компонента 2 ингалятора вместе с типом содержащихся в нем композита и жидкого материала 16 может быть простым путем выполнена измерением сопротивления нагревательного элемента. Однако эти методы имеют определенные пределы, поскольку каждому препарату лекарственного средства должен быть предназначен композит определенного типа с конкретным сопротивлением нагревательного элемента. Несколько более дорогостоящий способ состоит в том, что в компоненте 2 ингалятора размещают идентификационный чип (не показан), который однозначно идентифицирует компонент 2 ингалятора. С помощью такого чипа можно четко идентифицировать каждый отдельный изготовленный и продаваемый компонент 2 ингалятора. Чип предпочтительно размещают на одном из двух пластинчатых контактов 23, причем в особенности предпочтительно, когда пластинчатый контакт 23 сформирован печатной платой. Сохраняемую в чипе информацию считывают со встроенной управляющей схемы 104, которая в этом случае предпочтительно составлена микропроцессором. На основе считанной информации микропроцессор 104 выбирает рабочие параметры, пригодные для применяемого компонента 2 ингалятора. Кроме того, микропроцессор 104 может по достижении срока замены данного компонента 2 ингалятора заблокировать его или посредством подходящего средства сделать непригодным к использованию, так что с этим компонентом 2 ингалятора уже будет невозможно проводить дальнейшие вдохи или ингаляции. Эта мера прежде всего призвана во избежание неправильного применения компонента 2 ингалятора. Такое неправильное применение, например, имеет место, когда пользователь пытается продолжать использовать компонент 2 ингалятора по истечении срока замены, для чего он, например, насильственно вскрывает жидкостный контейнер 4 и самостоятельно заполняет его жидким материалом 16. В случае никотина летальная доза (LD50) составляет приблизительно 0,5-1,0 мг на кг массы тела. Можно представить себе, насколько опасно такое неправильное использование для пользователя и его окружающей среды. Опасность такого неправильного применения, а также угрозу для окружающей среды от выброшенных компонентов 2 ингалятора можно дополнительно снизить, если продавать компоненты 2 ингалятора по системе денежного залога. Идентификация пользователя предназначена для того, чтобы исключить использование ингалятора не имеющими на это права третьими лицами, и, кроме того, тем самым делает бессмысленной кражу. Идентификация пользователя, например, может быть выполнена, например, с помощью сенсорного дисплея введением кода или биометрическим путем с помощью отпечатка пальца.
Дополнительная регулировочная операция, которая может быть исполнена встроенной управляющей схемой 104, относится к контролю элементов и управлению зарядкой батареи 12. Поскольку на рынке для этой цели уже имеются встроенные управляющие схемы, эта регулировочная операция альтернативно может быть выполнена в отдельной встроенной управляющей схеме. Подведение зарядного тока производится через зарядный штекер 107, который размещен на торцевой стороне части 1 ингалятора, противолежащей мундштуку 5 - см. Фиг.3 и Фиг.8. Зарядный штекер 107 одновременно может представлять собой диагностический разъем, через который с помощью внешнего диагностического устройства можно проверять электрическую управляющую схему 11, а также сопротивление нагревательного элемента композита 22, 39 и выявлять возможные дефекты.
Проведение вышеописанных регулировочных операций в электрической схеме может быть совершено любым квалифицированным в этой области специалистом с использованием известных методов, и поэтому в настоящем изложении уже не будет дополнительно описано.
В заключение следует еще раз обобщенно разъяснить функциональные и эксплуатационные характеристики соответствующего изобретению ингалятора: пользователь приводит новый компонент 2 ингалятора в полную готовность, для чего он с помощью защелкивающегося соединения 8, 9 присоединяет его к части 1 ингалятора многократного применения. Вскрытие жидкостного контейнера 4 в примерном варианте исполнения согласно Фиг.6 происходит синхронно с объединением с частью 1 ингалятора с помощью штифта 46 во взаимодействии с контактным элементом 20 (см. Фиг.19). Напротив, вскрытие жидкостного контейнера 4 в примерном варианте исполнения согласно Фиг.24a и Фиг.24b происходит таким образом, что пользователь вдвигает жидкостный контейнер 4 в корпус 3 (см. направление по стрелке). В обоих случаях конец капиллярной щели 41, выполненный как выступ 44 (Фиг.19) или как первый пробойник 81 (Фиг.25), смачивается жидким материалом 16. Капиллярная щель 41 обеспечивает воздействие на смачивающий жидкий материал 16 капиллярных сил, которые действуют таким образом, что капиллярная щель 41 быстро заполняется. Жидкий материал 16 достигает композита 22, 39 (см. Фиг.11). Композит 22, 39 состоит из фитиля и электрического нагревательного элемента. Капиллярные силы в фитиле действуют так, что он тоже быстро пропитывается жидким материалом 16. Одновременно заполняется жидким материалом 16 также резервный накопитель 53, состоящий из капилляров 54. Резервный накопитель 53 позволяет эксплуатировать ингалятор независимо от положения. Продолжительность времени от вскрытия жидкостного контейнера 4 до полного пропитывания фитиля соответствует обязательному периоду ожидания для пользователя и составляет при соответствующей компоновке в каждом случае менее 10 секунд. Теперь ингалятор готов к действию.
Пользователь в случае соответствующего изобретению ингалятора с активацией вдохом (Фигуры 9-10) через мундштук 5 производит вдох подобно затяжке сигареты, и в случае соответствующего изобретению классического ингалятора (Фигуры 21-22) выполняет прямую ингаляцию легких. Сенсор 99, 100 (Фиг.8 и Фиг.21) детектирует начало вдоха или, соответственно, ингаляции и обусловливает срабатывание встроенной управляющей схемы 104 для подачи электрической энергии на нагревательный элемент композита 22, 39 согласно предварительно заданному режиму. Это ведет к тому, что композит 22, 39 мгновенно разогревается и жидкий материал 16 в фитиле испаряется. Образовавшийся пар покидает композит 22, 39 через открытую поверхность фитиля на обширной области композита и смешивается в камере 21 с воздухом, поступающим в камеру 21 через воздухозаборное отверстие 26. При смешении с воздухом пар охлаждается и образует конденсационный аэрозоль (Фигуры 9-10 и Фигуры 21-22). Избыточный конденсат, который не участвует в образовании конденсационного аэрозоля или паровоздушной смеси, всасывается и связывается расположенными в камере 21 губками 57. В примерном варианте исполнения согласно Фигурам 9-10 (ингалятор с активацией вдохом) образовавшиеся паровоздушная смесь или/и конденсационный аэрозоль для улучшения их органолептических характеристик протекает еще и через набивку 61 до того, как в конечном итоге попасть в полость рта пользователя через мундштучный канал 66.
В примерном варианте исполнения согласно Фигурам 21-22 (классический ингалятор) образовавшиеся паровоздушная смесь или/и конденсационный аэрозоль выходят из камеры 21 через соплообразное горловинное отверстие 71, сформированное направляющими лопастями 69, и объединяются с байпасным воздухом, поступающим через байпасные отверстия 68, чтобы в конечном итоге после протекания через гомогенизатор 72 потока, необязательно размещенный в мундштучном канале 66, тоже попасть в ротовую полость пользователя. После периода ожидания в течение нескольких секунд жидкий материал 16 вновь полностью пропитывает фитиль композита 22, 39, и ингалятор готов к следующей ингаляции. Если жидкостный контейнер 4 содержит, например, 2,5 мл эффективно используемого жидкого материала 16, и жидкий материал включает никотин в качестве лекарственного средства в концентрации типично 1,5 объемных процентов, то с таким компонентом ингалятора можно выполнить до 380 вдохов или ингаляций, когда на ингаляцию испаряются 100 мкг никотина. 380 вдохов соответствуют почти 38 сигаретам. Если на ингаляцию испаряются только 50 мкг никотина, то запас действия возрастает до 760 ингаляций, каковое значение соответствует почти четырем пачкам сигарет.
Наконец, с помощью никотина в качестве лекарственного средства обнаруживается еще одна примерная композиция жидкого материала 16, которая испарялась в соответствующих изобретению прототипных устройствах, выполненных как ингаляторы с активацией вдохом. При этом образующийся и вдыхаемый конденсационный аэрозоль в отношении фармакологических, фармакокинетических, а также органолептических действий очень близок к курению традиционной сигареты. Все приведенные составные части находятся и в сигаретном дыме.
Таблица 2
Примерный состав лекарственного средства на основе никотина
Вещество Регистрационный CAS-номер Массовых процентов
Этанол 64-17-5 68,80
Вода 7732-18-5 16,50
Глицерин 56-18-5 9,10
Никотин 54-11-5 1,80
Молочная кислота 50-21-5 0,23
Янтарная кислота 110-15-6 0,28
Левулиновая кислота 123-76-2 0,46
Бензойная кислота 65-85-0 0,08
Фенилуксусная кислота 103-82-2 0,08
Уксусная кислота 64-19-7 1,67
Муравьиная кислота 64-18-6 0,53
Пропионовая кислота 79-09-4 0,27
Соланон 1937-54-8 0,05
Масло с ароматом табака *) 0,15
Амброксид 6790-58-5 Необязательно
Ментол 2216-51-5 Необязательно
Сумма 100,00
*) Масло с ароматом табака, получаемое экстракцией сверхкритическим диоксидом углерода (CO2); например, экстракт табака фирмы Pro-Chem Specialty Limited, Гонконг, www.pro-chem-specialty.com, например, продукт № SF8010, SF8011 или SF208118; или масла с ароматом табака, приготовленные согласно патентным публикациям №№ DE 19654945 A1, DE 19630619 A1, DE 3218760 A1, DE 3148335 A1 (на имя Adam Müller и др.); предпосылкой применения таких масел с ароматом табака в растворе никотина является то, что они по возможности не содержат специфических табачных нитрозаминов (TSNA).
Полноты ради следует также еще отметить, что в соответствующий изобретению ингалятор могут быть встроены дополнительные функции, которые выходят за пределы собственно назначения ингалятора и придают ингалятору свойства монофункционального устройства или гибридного прибора. Такие функции могут представлять собой, например: часы, мобильное устройство для хранения информации, работу в качестве плеера (со встроенным диктофоном), персонального цифрового секретаря (PDA), навигатора (GPS), мобильного телефона и фотокамеры.
Список ссылочных позиций
1 Часть ингалятора
2 Компонент ингалятора
3 Корпус
4 Жидкостный контейнер
5 Мундштук
6 Батарейная крышка
7 Крышка электрической управляющей схемы
8 Защелкивающийся крючок
9 Стопорный выступ
10 Несущий корпус
11 Электрическая управляющая схема, плата
12 Аккумулятор энергии; батарея
13 Разделительная стенка
14 Плоский контакт
15 Окошко
16 Жидкий материал; препарат лекарственного средства
17 Заправочное отверстие
18 Вскрываемая заглушка
19 Запорная крышка
20 Контактный элемент
21 Камера
22 Листообразный композит
23 Пластинчатый контакт
24 Первая сторона листообразного композита
25 Вторая сторона листообразного композита
26 Воздухозаборное отверстие; щелевидный канал
27 Нагнетательная камера
28 Дроссельный регулятор расхода потока
29 Поперечный канал
30 Питающее отверстие
31 Фольга; металлическая фольга
32 Ткань; сетка из металлической проволоки
33 Открытопористая волокнистая структура; нетканый материал
34 Открытопористая спеченная структура; зернистый, волокнистый или хлопьевидный спеченный композит
35 Канал; артерия
36 Отверстие
37 Открытопористая пена
38 Несущий слой
39 Линейный композит
40 Пуансон
41 Капиллярная щель
42 Накладка
43 Пластина
44 Выступ
45 Резервуар
46 Штифт
47 Первый конец
48 Второй конец
49 Утончение материала
50 Шарнир
51 Утолщение поперечника
52 Вентиляционный канал
53 Резервный накопитель
54 Капилляр; прорезь
55 Отверстие
56 Вентиляционная щель
57 Открытопористый, способный впитывать жидкость материал; губка
58 Проточный канал
59 Участок стенки
60 Щель
61 Охладитель; набивка; табачная набивка
62 Загрузочная камера
63 Перфорированная стенка
64 Первая металлическая сетка
65 Вторая металлическая сетка
66 Мундштучный канал
67 Коллектор
68 Байпасное отверстие
69 Направляющая лопасть
70 Вершина направляющей лопасти
71 Горловинное отверстие
72 Гомогенизатор потока
73 Неразмыкаемое блокировочное устройство; выступ
74 Цапфа
75 Желобок
76 Вентиляционное отверстие
77 Вентиляционный канал
78 Первое отверстие
79 Второе отверстие
80 Пленочное уплотнение
81 Первый пробойник
82 Второй пробойник
83 Микроперемычка
84 Жидкостный накопитель; открытопористый вспененный материал
85 Цилиндрический корпус
86 Патрон
87 Выемка
88 Крышка
89 Защелкивающееся соединение
90 Возвышение
91 Вентиляционное отверстие
92 Выемка
93 Штекерный контакт
94 Прижимной контакт
95 Провод
96 Центрирующий выступ
97 Центрирующая выемка
98 Вентиляционное отверстие
99 Датчик давления
100 Датчик течения, термистор
101 Электрический вывод; штырек
102 Отверстие
103 Операционный усилитель; компаратор
104 Встроенная электрическая управляющая схема; микропроцессор
105 Мощный МОП-транзистор
106 Светодиод
107 Зарядный штекер
108 Выемка
109 Стопорная пластинка
110 Соединительная перемычка

Claims (33)

1. Компонент ингалятора для периодического, синхронного с ингаляцией или вдохом образования паровоздушной смеси или/и конденсационного аэрозоля, включающий в себя:
корпус (3);
размещенную в корпусе (3) камеру (21);
воздухозаборное отверстие (26) для подведения воздуха из окружающей среды в камеру (21);
электрический нагревательный элемент для испарения порции жидкого материала (16), причем образующийся пар смешивается в камере (21) с воздухом, поступающим через воздухозаборное отверстие (26), и образуется паровоздушная смесь или/и конденсационный аэрозоль;
и фитиль с капиллярной структурой, который составляет с нагревательным элементом композит (22) и автоматически вновь снабжает нагревательный элемент после испарения жидким материалом (16),
отличающийся тем, что композит (22) выполнен листообразным, причем по меньшей мере один нагреваемый участок композита (22) бесконтактно размещен в камере (21), и капиллярная структура фитиля в указанном участке по меньшей мере на одной стороне (24) листообразного композита является по большей части открытой.
2. Компонент ингалятора по п.1, отличающийся тем, что капиллярная структура фитиля в указанном участке является по большей части открытой на обеих сторонах (24, 25) листообразного композита (22).
3. Компонент ингалятора по п.1, отличающийся тем, что композит (22) имеет толщину менее 0,6 мм.
4. Компонент ингалятора по п.1, отличающийся тем, что композит (22) имеет толщину менее 0,3 мм.
5. Компонент ингалятора по п.1, отличающийся тем, что композит (22) выполнен пластинчатым, пленкообразным, полосовидным или лентообразным.
6. Компонент ингалятора по одному из пп.1-5, отличающийся тем, что композит (22) содержит одну из следующих структур: ткань, открытопористую волокнистую структуру, открытопористую спеченную структуру, открытопористую пену, открытопористую осадительную структуру.
7. Компонент ингалятора по одному из пп.1-5, отличающийся тем, что композит (22) имеет по меньшей мере два слоя.
8. Компонент ингалятора по п.7, отличающийся тем, что слои содержат по меньшей мере одну из следующих структур: пластину, пленку (31), бумагу, ткань (32), открытопористую волокнистую структуру (33), открытопористую спеченную структуру (34), открытопористую пену (37), открытопористую осадительную структуру.
9. Компонент ингалятора по п.8, отличающийся тем, что слои соединены друг с другом с помощью термической обработки.
10. Компонент ингалятора для периодического, синхронного с ингаляцией или вдохом образования паровоздушной смеси или/и конденсационного аэрозоля, включающий в себя:
корпус (3);
размещенную в корпусе (3) камеру (21);
воздухозаборное отверстие (26) для подведения воздуха из окружающей среды в камеру (21);
электрический нагревательный элемент для испарения порции жидкого материала (16), причем образующийся пар смешивается в камере (21) с воздухом, поступающим через воздухозаборное отверстие (26), и образуется паровоздушная смесь или/и конденсационный аэрозоль;
и фитиль с капиллярной структурой, который составляет с нагревательным элементом композит (39) и автоматически вновь снабжает нагревательный элемент после испарения жидким материалом (16),
отличающийся тем, что композит (39) выполнен линейным, причем по меньшей мере один нагреваемый участок композита бесконтактно размещен в камере (21), и капиллярная структура фитиля в указанном участке является по большей части открытой.
11. Компонент ингалятора по п.10, отличающийся тем, что композит имеет толщину менее 1,0 мм.
12. Компонент ингалятора по п.10 или 11, отличающийся тем, что композит содержит по меньшей мере одну из следующих структур: проволоку, нить, открытопористую спеченную структуру (34), открытопористую пену, открытопористую осадительную структуру.
13. Компонент ингалятора по п.1 или 10, отличающийся тем, что нагревательный элемент, по меньшей мере частично, встроен в фитиль.
14. Компонент ингалятора по п.13, отличающийся тем, что фитиль, по меньшей мере частично, состоит из электрически резистивного материала.
15. Компонент ингалятора по п.14, отличающийся тем, что электрически резистивный материал является металлическим.
16. Компонент ингалятора по п.1 или 10, отличающийся тем, что соединение между нагревательным элементом и фитилем проходит по всему размеру фитиля.
17. Компонент ингалятора по п.1 или 10, отличающийся тем, что поверхность композита (22, 39) активирована.
18. Компонент ингалятора по одному из пп.1-5, отличающийся тем, что листообразный композит (22) выполнен по большей части плоским, при этом воздухозаборное отверстие выполнено в виде щелевидного канала (26), причем щелевидный канал (26) ориентирован параллельно плоской поверхности композита.
19. Компонент ингалятора по п.1 или 10, отличающийся тем, что композит (22, 39) пересекает камеру (21) в виде перемычки и двумя концевыми участками расположен на двух электропроводных, пластинчатых контактах (23), при этом нагревательный элемент электрически контактирует с контактами (23).
20. Компонент ингалятора по п.19, отличающийся тем, что электрическое контактирование нагревательного элемента образовано сварным соединением или спеканием.
21. Компонент ингалятора по п.19, отличающийся тем, что электрическое контактирование нагревательного элемента образовано клеевым соединением с помощью электропроводного клеевого средства.
22. Компонент ингалятора по п.19, отличающийся тем, что пластинчатые контакты (23) выступают из наружной поверхности корпуса (3) в виде двух штекерных контактов (93).
23. Компонент ингалятора по п.1 или 10, отличающийся тем, что композит (22, 39) одним концом выдается в капиллярную щель (41), аэрогидродинамическое сопротивление которой является меньшим, чем аэрогидродинамическое сопротивление фитиля.
24. Компонент ингалятора по п.23, отличающийся тем, что поперечное сечение капиллярной щели (41) является большим, чем поперечное сечение композита (22, 39).
25. Компонент ингалятора по п.23, отличающийся тем, что нагревательный элемент композита (22, 39) имеет электрический контакт в капиллярной щели (41).
26. Компонент ингалятора по п.23, отличающийся тем, что он содержит размещенный в корпусе (3) или соединенный с корпусом (3), содержащий жидкий материал (16) жидкостный контейнер (4) вместе со вскрываемой заглушкой (18), при этом жидкостный контейнер (4) является как неизвлекаемым из корпуса (3), так и неотделимым от корпуса (3), при этом жидкий материал (16) в жидкостном контейнере (4) путем вскрытия вручную вскрываемой заглушки (18) имеет возможность капиллярного сопряжения с капиллярной щелью (41).
27. Компонент ингалятора по п.19, отличающийся тем, что он содержит жидкостной накопитель (84), состоящий из эластичного, открытопористого материала и пропитанный жидким материалом (16), при этом композит (22, 39) сэндвичеобразно зажат между одним из двух пластинчатых контактов (23), с одной стороны, и жидкостным накопителем (84), с другой стороны, в результате чего фитиль имеет капиллярное сопряжение с жидким материалом (16) в жидкостном накопителе (84).
28. Компонент ингалятора по п.1 или 10, отличающийся множеством размещенных параллельно друг другу композитов (39a, 39b, 39c) с различными значениями теплоемкости.
29. Компонент ингалятора по п.1 или 10, отличающийся множеством размещенных параллельно друг другу композитов (39a, 39b, 39c) с различными характеристиками нагревательных элементов.
30. Компонент ингалятора по п.1 или 10, отличающийся множеством размещенных параллельно друг другу композитов с различным образом регулируемыми электрическими нагревательными элементами.
31. Компонент ингалятора по п.1 или 10, отличающийся тем, что предусмотрено множество размещенных параллельно друг другу композитов, причем к композитам подают для испарения жидкие материалы с различным составом.
32. Компонент ингалятора по п.1 или 10, отличающийся тем, что он содержит множество размещенных параллельно друг другу композитов (22a, 22b), нагревательные элементы которых состоят из электрических резистивных нагревателей, при этом резистивные нагреватели подключены друг к другу последовательно.
33. Ингалятор, включающий в себя компонент (2) ингалятора по одному из пп.1-32.
RU2011120430/14A 2008-10-23 2009-10-21 Ингалятор RU2527351C2 (ru)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
AT0166008A AT507187B1 (de) 2008-10-23 2008-10-23 Inhalator
ATA1660/2008 2008-10-23
ATA597/2009 2009-04-17
AT0059709A AT507188B1 (de) 2008-10-23 2009-04-17 Inhalator
PCT/AT2009/000414 WO2010045671A1 (de) 2008-10-23 2009-10-21 Inhalator

Publications (2)

Publication Number Publication Date
RU2011120430A RU2011120430A (ru) 2012-11-27
RU2527351C2 true RU2527351C2 (ru) 2014-08-27

Family

ID=41809014

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2011120430/14A RU2527351C2 (ru) 2008-10-23 2009-10-21 Ингалятор

Country Status (11)

Country Link
US (8) US8833364B2 (ru)
EP (9) EP3527086B1 (ru)
JP (6) JP5612585B2 (ru)
CN (4) CN102264420B (ru)
AT (2) AT507187B1 (ru)
ES (6) ES2936139T3 (ru)
HK (1) HK1231420A1 (ru)
HU (4) HUE058124T2 (ru)
PL (6) PL3738632T3 (ru)
RU (1) RU2527351C2 (ru)
WO (2) WO2010045671A1 (ru)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2678437C1 (ru) * 2015-09-28 2019-01-29 Никовенчерс Холдингз Лимитед Система и способ оповещения о политике в области курения электронных сигарет
CN109906042A (zh) * 2016-11-04 2019-06-18 英美烟草(投资)有限公司 可用于模拟烟草香味的组合物
RU2732449C2 (ru) * 2015-12-02 2020-09-17 Конинклейке Филипс Н.В. Способ измерения количества со2 при неинвазивной искусственной вентиляции легких
RU2734867C2 (ru) * 2016-08-25 2020-10-23 Никовенчерс Холдингз Лимитед Электронное устройство предоставления пара с впитывающим элементом
US10856584B2 (en) 2016-05-31 2020-12-08 Altria Client Services Llc Cartridge for an aerosol-generating system
RU2738994C2 (ru) * 2016-06-20 2020-12-21 Филип Моррис Продактс С.А. Испарительный узел для генерирующей аэрозоль системы
RU2739174C2 (ru) * 2016-05-31 2020-12-21 Филип Моррис Продактс С.А. Картридж для системы, генерирующей аэрозоль
RU2743647C2 (ru) * 2018-06-05 2021-02-20 Кейтиэндджи Корпорейшн Устройство для генерирования аэрозоля
RU2744608C1 (ru) * 2015-12-28 2021-03-11 Раи Стретеджик Холдингс, Инк. Устройство доставки аэрозоля, включающее в себя кожух и соединитель
RU2746461C1 (ru) * 2017-10-12 2021-04-14 Никовенчерс Трейдинг Лимитед Системы предоставления аэрозоля
RU2749067C2 (ru) * 2016-07-21 2021-06-03 Раи Стретеджик Холдингс, Инк. Устройство доставки аэрозоля с единым компонентом резервуара и транспортирующего жидкость элемента, содержащим пористый монолит, и относящийся к нему способ
RU2756637C1 (ru) * 2017-10-24 2021-10-04 Никовенчерс Трейдинг Лимитед Система предоставления аэрозоля и съемный элемент
US11399566B2 (en) 2018-06-05 2022-08-02 Kt&G Corporation Aerosol generating device
RU2795421C1 (ru) * 2019-10-10 2023-05-03 Джапан Тобакко Инк. Табачная маточная смесь для ароматического ингалятора, эксплуатируемого без горения, и содержащий ее табачный материал
US11878113B2 (en) 2017-10-12 2024-01-23 Nicoventures Trading Limited Vapour provision systems
US11911557B2 (en) 2018-10-15 2024-02-27 Juul Labs, Inc. Heating element
US11944122B2 (en) 2017-03-01 2024-04-02 Nicoventures Trading Limited Vapor provision device with liquid capture

Families Citing this family (751)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10244793B2 (en) 2005-07-19 2019-04-02 Juul Labs, Inc. Devices for vaporization of a substance
US11647783B2 (en) 2005-07-19 2023-05-16 Juul Labs, Inc. Devices for vaporization of a substance
US9675109B2 (en) 2005-07-19 2017-06-13 J. T. International Sa Method and system for vaporization of a substance
US7726320B2 (en) 2006-10-18 2010-06-01 R. J. Reynolds Tobacco Company Tobacco-containing smoking article
US8991402B2 (en) 2007-12-18 2015-03-31 Pax Labs, Inc. Aerosol devices and methods for inhaling a substance and uses thereof
EP2113178A1 (en) 2008-04-30 2009-11-04 Philip Morris Products S.A. An electrically heated smoking system having a liquid storage portion
AT507187B1 (de) 2008-10-23 2010-03-15 Helmut Dr Buchberger Inhalator
US20100300433A1 (en) * 2009-05-28 2010-12-02 Alexza Pharmaceuticals, Inc. Substrates for Enhancing Purity or Yield of Compounds Forming a Condensation Aerosol
US9072321B2 (en) 2009-09-18 2015-07-07 Minilogic Device Corporation Ltd. Electronic smoke
US10420374B2 (en) 2009-09-18 2019-09-24 Altria Client Services Llc Electronic smoke apparatus
CN106267289B (zh) 2009-10-13 2020-07-31 菲利普莫里斯生产公司 气雾发生器
EP2319334A1 (en) 2009-10-27 2011-05-11 Philip Morris Products S.A. A smoking system having a liquid storage portion
AT508244B1 (de) 2010-03-10 2010-12-15 Helmut Dr Buchberger Inhalatorkomponente
AT509046B1 (de) * 2010-03-10 2011-06-15 Helmut Dr Buchberger Flächiger verdampfer
AU2013237685B2 (en) * 2010-04-30 2017-02-02 Fontem Holdings 4 B.V. Electronic smoking device
CA2797975C (en) 2010-04-30 2017-06-06 Blec, Llc Electronic smoking device
US9999250B2 (en) 2010-05-15 2018-06-19 Rai Strategic Holdings, Inc. Vaporizer related systems, methods, and apparatus
US9861772B2 (en) 2010-05-15 2018-01-09 Rai Strategic Holdings, Inc. Personal vaporizing inhaler cartridge
US9095175B2 (en) * 2010-05-15 2015-08-04 R. J. Reynolds Tobacco Company Data logging personal vaporizing inhaler
US9743691B2 (en) * 2010-05-15 2017-08-29 Rai Strategic Holdings, Inc. Vaporizer configuration, control, and reporting
US10136672B2 (en) 2010-05-15 2018-11-27 Rai Strategic Holdings, Inc. Solderless directly written heating elements
US8757147B2 (en) 2010-05-15 2014-06-24 Minusa Holdings Llc Personal vaporizing inhaler with internal light source
US11344683B2 (en) * 2010-05-15 2022-05-31 Rai Strategic Holdings, Inc. Vaporizer related systems, methods, and apparatus
US9259035B2 (en) 2010-05-15 2016-02-16 R. J. Reynolds Tobacco Company Solderless personal vaporizing inhaler
US10159278B2 (en) 2010-05-15 2018-12-25 Rai Strategic Holdings, Inc. Assembly directed airflow
CN201830900U (zh) * 2010-06-09 2011-05-18 李永海 电子香烟的烟液雾化装置
EP3108966B1 (en) 2010-06-18 2019-10-09 Boehringer Ingelheim International GmbH Inhaler
US11247003B2 (en) 2010-08-23 2022-02-15 Darren Rubin Systems and methods of aerosol delivery with airflow regulation
EP4397344A3 (en) 2010-08-24 2024-10-02 JT International SA Inhalation device including substance usage controls
CN102160906B (zh) * 2010-11-01 2012-08-08 常州市富艾发进出口有限公司 口吸式便携雾化器
EP2460424A1 (en) 2010-12-03 2012-06-06 Philip Morris Products S.A. An aerosol generating system with leakage prevention
WO2012079975A1 (en) * 2010-12-14 2012-06-21 Unilever Plc Liquid dispensing device with refill unit
EP2468118A1 (en) 2010-12-24 2012-06-27 Philip Morris Products S.A. An aerosol generating system with means for disabling a consumable
EP2468117A1 (en) 2010-12-24 2012-06-27 Philip Morris Products S.A. An aerosol generating system having means for determining depletion of a liquid substrate
AT510837B1 (de) 2011-07-27 2012-07-15 Helmut Dr Buchberger Inhalatorkomponente
CA2824970C (en) * 2011-02-11 2016-05-03 Batmark Limited Inhaler component
AT510405B1 (de) * 2011-02-11 2012-04-15 Helmut Dr Buchberger Inhalatorkomponente
US8528569B1 (en) 2011-06-28 2013-09-10 Kyle D. Newton Electronic cigarette with liquid reservoir
US9078473B2 (en) 2011-08-09 2015-07-14 R.J. Reynolds Tobacco Company Smoking articles and use thereof for yielding inhalation materials
EA037480B1 (ru) * 2011-08-16 2021-04-01 Джуул Лэбз, Инк. Низкотемпературное электронное устройство испарения
JP2014518095A (ja) 2011-09-06 2014-07-28 ブリティッシュ アメリカン タバコ (インヴェストメンツ) リミテッド 喫煙材の加熱
RU2606326C2 (ru) 2011-09-06 2017-01-10 Бритиш Америкэн Тобэкко (Инвестментс) Лимитед Нагревание курительного материала
RU2595971C2 (ru) 2011-09-06 2016-08-27 Бритиш Америкэн Тобэкко (Инвестментс) Лимитед Нагревание курительного материала
EP3892125A3 (en) 2011-09-06 2022-01-05 Nicoventures Trading Limited Heating smokable material
GB201207054D0 (en) 2011-09-06 2012-06-06 British American Tobacco Co Heating smokeable material
AT511344B1 (de) * 2011-10-21 2012-11-15 Helmut Dr Buchberger Inhalatorkomponente
TWM432471U (en) * 2011-11-18 2012-07-01 Microbase Technology Corp Atomizing device with negative pressure structure
CN202385728U (zh) * 2011-11-25 2012-08-22 周学武 内置雾化器电子香烟
UA112883C2 (uk) * 2011-12-08 2016-11-10 Філіп Морріс Продактс С.А. Пристрій для утворення аерозолю з капілярним примежовим шаром
US9498588B2 (en) * 2011-12-14 2016-11-22 Atmos Nation, LLC Portable pen sized electric herb vaporizer with ceramic heating chamber
CN103379836A (zh) * 2012-01-25 2013-10-30 中汇远东实业有限公司 一种电子仿真烟及其雾化器
US9854839B2 (en) 2012-01-31 2018-01-02 Altria Client Services Llc Electronic vaping device and method
DE102012002044A1 (de) * 2012-02-02 2013-08-08 Marco Pfeffer Edelstahldocht als Glasfaserersatz in E-Zigaretten (elektronischen Zigaretten)
US9532597B2 (en) * 2012-02-22 2017-01-03 Altria Client Services Llc Electronic smoking article
US20130255702A1 (en) 2012-03-28 2013-10-03 R.J. Reynolds Tobacco Company Smoking article incorporating a conductive substrate
GB201207039D0 (en) 2012-04-23 2012-06-06 British American Tobacco Co Heating smokeable material
GB2502053B (en) * 2012-05-14 2014-09-24 Nicoventures Holdings Ltd Electronic smoking device
GB2502055A (en) 2012-05-14 2013-11-20 Nicoventures Holdings Ltd Modular electronic smoking device
US9360379B2 (en) * 2012-06-16 2016-06-07 Huizhou Kimree Technology Co., Ltd., Shenzhen Branch Electronic cigarette case and electronic cigarette device
US10004259B2 (en) 2012-06-28 2018-06-26 Rai Strategic Holdings, Inc. Reservoir and heater system for controllable delivery of multiple aerosolizable materials in an electronic smoking article
GB2504075A (en) 2012-07-16 2014-01-22 Nicoventures Holdings Ltd Electronic smoking device
GB2504074A (en) 2012-07-16 2014-01-22 Nicoventures Holdings Ltd Electronic cigarette
GB2504076A (en) * 2012-07-16 2014-01-22 Nicoventures Holdings Ltd Electronic smoking device
US10517530B2 (en) 2012-08-28 2019-12-31 Juul Labs, Inc. Methods and devices for delivering and monitoring of tobacco, nicotine, or other substances
US20140060552A1 (en) * 2012-08-28 2014-03-06 Ploom, Inc. Methods and devices for delivery and monitoring of tobacco, nicotine, or other substances
US8881737B2 (en) 2012-09-04 2014-11-11 R.J. Reynolds Tobacco Company Electronic smoking article comprising one or more microheaters
US8910639B2 (en) 2012-09-05 2014-12-16 R. J. Reynolds Tobacco Company Single-use connector and cartridge for a smoking article and related method
WO2014047953A1 (zh) * 2012-09-29 2014-04-03 Wu Changming 一种电子吸烟装置
US10258753B2 (en) 2012-10-04 2019-04-16 Boehringer Ingelheim International Gmbh System, method, use and information storage medium for practicing of an inhalation process
US9854841B2 (en) 2012-10-08 2018-01-02 Rai Strategic Holdings, Inc. Electronic smoking article and associated method
US10117460B2 (en) 2012-10-08 2018-11-06 Rai Strategic Holdings, Inc. Electronic smoking article and associated method
GB2507103A (en) 2012-10-19 2014-04-23 Nicoventures Holdings Ltd Electronic inhalation device
GB2507102B (en) * 2012-10-19 2015-12-30 Nicoventures Holdings Ltd Electronic inhalation device
GB2507104A (en) 2012-10-19 2014-04-23 Nicoventures Holdings Ltd Electronic inhalation device
US20140123989A1 (en) * 2012-11-05 2014-05-08 The Safe Cig, Llc Device and method for vaporizing a fluid
US20150351455A1 (en) * 2012-12-11 2015-12-10 Kimree Hi-Tech Inc. Electronic cigarette and electronic cigarette device thereof
US20140174459A1 (en) * 2012-12-21 2014-06-26 Vapor Innovations, LLC Smart Electronic Cigarette
CN112353001A (zh) * 2013-01-24 2021-02-12 富特姆4有限公司 用于非易燃吸烟制品的气雾剂的功能化的方法、组分和装置
US8910640B2 (en) 2013-01-30 2014-12-16 R.J. Reynolds Tobacco Company Wick suitable for use in an electronic smoking article
WO2014130692A1 (en) 2013-02-22 2014-08-28 Altria Client Services Inc. Electronic smoking article
RU2662212C2 (ru) 2013-02-22 2018-07-24 Олтриа Клайент Сервисиз Ллк Электронное курительное изделие
US9993023B2 (en) * 2013-02-22 2018-06-12 Altria Client Services Llc Electronic smoking article
GB2511305A (en) * 2013-02-27 2014-09-03 British American Tobacco Co A smoking device and a component for a smoking device
US10031183B2 (en) 2013-03-07 2018-07-24 Rai Strategic Holdings, Inc. Spent cartridge detection method and system for an electronic smoking article
US9277770B2 (en) 2013-03-14 2016-03-08 R. J. Reynolds Tobacco Company Atomizer for an aerosol delivery device formed from a continuously extending wire and related input, cartridge, and method
US9918495B2 (en) 2014-02-28 2018-03-20 Rai Strategic Holdings, Inc. Atomizer for an aerosol delivery device and related input, aerosol production assembly, cartridge, and method
US10279934B2 (en) 2013-03-15 2019-05-07 Juul Labs, Inc. Fillable vaporizer cartridge and method of filling
US9609893B2 (en) 2013-03-15 2017-04-04 Rai Strategic Holdings, Inc. Cartridge and control body of an aerosol delivery device including anti-rotation mechanism and related method
US9220302B2 (en) 2013-03-15 2015-12-29 R.J. Reynolds Tobacco Company Cartridge for an aerosol delivery device and method for assembling a cartridge for a smoking article
US9491974B2 (en) 2013-03-15 2016-11-15 Rai Strategic Holdings, Inc. Heating elements formed from a sheet of a material and inputs and methods for the production of atomizers
US9423152B2 (en) 2013-03-15 2016-08-23 R. J. Reynolds Tobacco Company Heating control arrangement for an electronic smoking article and associated system and method
US10390563B2 (en) * 2013-03-22 2019-08-27 Altria Client Services Llc Electronic smoking article
GB2513639A (en) 2013-05-02 2014-11-05 Nicoventures Holdings Ltd Electronic cigarette
GB2513638A (en) 2013-05-02 2014-11-05 Nicoventures Holdings Ltd Electronic cigarette
GB2513637A (en) 2013-05-02 2014-11-05 Nicoventures Holdings Ltd Electronic cigarette
CA3208137A1 (en) 2013-05-06 2014-11-13 Juul Labs, Inc. Nicotine salt formulations for aerosol devices and methods thereof
ITMO20130127A1 (it) * 2013-05-14 2014-11-15 Biodue S P A Metodo per somministrare integratori alimentari o curativi e simili.
US11202470B2 (en) 2013-05-22 2021-12-21 Njoy, Inc. Compositions, devices, and methods for nicotine aerosol delivery
GB2514893B (en) 2013-06-04 2017-12-06 Nicoventures Holdings Ltd Container
ES2799434T3 (es) 2013-06-04 2020-12-17 Nicoventures Holdings Ltd Recipiente
CN105473012B (zh) 2013-06-14 2020-06-19 尤尔实验室有限公司 电子汽化设备中的具有单独的可汽化材料的多个加热元件
US20140376895A1 (en) * 2013-06-19 2014-12-25 Sihui Han Dual-tube electronic cigarette atomizer
KR102321843B1 (ko) * 2013-06-19 2021-11-08 폰템 홀딩스 4 비.브이. 질량 공기 흐름을 감지하기 위한 장치를 포함하는 전자 담배
UA117370C2 (uk) * 2013-07-03 2018-07-25 Філіп Морріс Продактс С.А. Система, що генерує аерозоль, багаторазового застосування
CN103315404A (zh) * 2013-07-17 2013-09-25 中国烟草总公司郑州烟草研究院 基于微波加热的非燃烧型烟草抽吸装置
US11229239B2 (en) 2013-07-19 2022-01-25 Rai Strategic Holdings, Inc. Electronic smoking article with haptic feedback
MY179801A (en) 2013-07-19 2020-11-16 Altria Client Services Llc Liquid aerosol formulation of an electronic smoking article
US10251422B2 (en) 2013-07-22 2019-04-09 Altria Client Services Llc Electronic smoking article
US9848645B2 (en) 2013-07-24 2017-12-26 Sis Resources Ltd. Cartomizer structure for automated assembly
US9918496B2 (en) * 2013-07-24 2018-03-20 Altria Client Services Llc Electronic smoking article
US10905159B2 (en) * 2013-07-25 2021-02-02 Altria Client Services Llc Electronic smoking article
EP3536179A1 (en) 2013-08-06 2019-09-11 Fontem Holdings 1 B.V. Electronic smoking device and process of manufacturing thereof
CN103549664A (zh) * 2013-08-07 2014-02-05 林光榕 一种电子烟中的发热丝组件及焊接方法
FI125544B (en) 2013-08-14 2015-11-30 Pixan Oy Apparatus and method for controlling an electric vaporizer
CN203398241U (zh) * 2013-08-16 2014-01-15 刘秋明 电池组件及由该电池组件制成的电子烟
US10172387B2 (en) 2013-08-28 2019-01-08 Rai Strategic Holdings, Inc. Carbon conductive substrate for electronic smoking article
EP3038686B1 (en) * 2013-08-29 2019-02-27 Fontem Holdings 4 B.V. Electronic smoking device configured for automated assembly
CN203986093U (zh) * 2013-09-13 2014-12-10 惠州市吉瑞科技有限公司 一种电子烟的电池组件、雾化组件以及电子烟
CN103960782B (zh) * 2013-09-29 2016-09-21 深圳麦克韦尔股份有限公司 电子烟
CN103948172B (zh) * 2013-09-29 2017-08-01 深圳麦克韦尔股份有限公司 电子烟
EP3039973B1 (en) 2013-09-30 2019-09-18 Japan Tobacco Inc. Non-burning type flavor inhaler
GB2519101A (en) 2013-10-09 2015-04-15 Nicoventures Holdings Ltd Electronic vapour provision system
US9820509B2 (en) 2013-10-10 2017-11-21 Kyle D. Newton Electronic cigarette with encoded cartridge
EP4147596B1 (en) 2013-10-29 2024-04-24 Nicoventures Trading Limited Apparatus for heating smokable material
US10292424B2 (en) 2013-10-31 2019-05-21 Rai Strategic Holdings, Inc. Aerosol delivery device including a pressure-based aerosol delivery mechanism
US20160278436A1 (en) * 2013-11-12 2016-09-29 VMR Products, LLC Vaporizer
US10039321B2 (en) 2013-11-12 2018-08-07 Vmr Products Llc Vaporizer
CN111466616A (zh) 2013-11-21 2020-07-31 方特慕控股第四私人有限公司 电子香烟和记录吸烟数据的方法
US9839237B2 (en) 2013-11-22 2017-12-12 Rai Strategic Holdings, Inc. Reservoir housing for an electronic smoking article
KR102665932B1 (ko) 2013-12-05 2024-05-13 쥴 랩스, 인크. 에어로졸 장치를 위한 니코틴 액제 및 그 방법
CN103977489B (zh) * 2013-12-18 2016-09-07 捷锐企业(上海)有限公司 一种管路用雾化器
USD825102S1 (en) 2016-07-28 2018-08-07 Juul Labs, Inc. Vaporizer device with cartridge
US10076139B2 (en) 2013-12-23 2018-09-18 Juul Labs, Inc. Vaporizer apparatus
US10159282B2 (en) 2013-12-23 2018-12-25 Juul Labs, Inc. Cartridge for use with a vaporizer device
US9549573B2 (en) 2013-12-23 2017-01-24 Pax Labs, Inc. Vaporization device systems and methods
USD842536S1 (en) 2016-07-28 2019-03-05 Juul Labs, Inc. Vaporizer cartridge
US20160366947A1 (en) 2013-12-23 2016-12-22 James Monsees Vaporizer apparatus
CN110664012A (zh) 2013-12-23 2020-01-10 尤尔实验室有限公司 蒸发装置系统和方法
US10058129B2 (en) 2013-12-23 2018-08-28 Juul Labs, Inc. Vaporization device systems and methods
AT16039U3 (de) * 2013-12-23 2019-02-15 Juul Labs Uk Holdco Ltd Systeme für eine verdampfungsvorrichtung
CN103720049B (zh) * 2013-12-31 2016-05-04 广东中烟工业有限责任公司 一种盒状烟料加热装置
US20150196057A1 (en) * 2014-01-14 2015-07-16 Shenzhen Jieshibo Technology Co., Ltd. Electronic atomization device
US9974334B2 (en) 2014-01-17 2018-05-22 Rai Strategic Holdings, Inc. Electronic smoking article with improved storage of aerosol precursor compositions
GB201401520D0 (en) * 2014-01-29 2014-03-12 Batmark Ltd Aerosol-forming member
GB201401519D0 (en) * 2014-01-29 2014-03-12 Batmark Ltd Aerosol-forming member
GB201401524D0 (en) * 2014-01-29 2014-03-12 Batmark Ltd Aerosol-forming member
ES2718075T3 (es) * 2014-01-29 2019-06-27 Japan Tobacco Inc Inhalador de aromas de tipo sin combustión
US10575558B2 (en) 2014-02-03 2020-03-03 Rai Strategic Holdings, Inc. Aerosol delivery device comprising multiple outer bodies and related assembly method
US10238764B2 (en) 2014-08-19 2019-03-26 Vapium Inc. Aromatherapy vaporization device
US11065402B2 (en) * 2014-02-04 2021-07-20 Gseh Holistic, Inc. Aromatherapy vaporization device
US9451791B2 (en) 2014-02-05 2016-09-27 Rai Strategic Holdings, Inc. Aerosol delivery device with an illuminated outer surface and related method
TW202425830A (zh) 2014-02-06 2024-07-01 美商尤爾實驗室有限公司 用於產生可吸入蒸汽之電子裝置
US10709173B2 (en) 2014-02-06 2020-07-14 Juul Labs, Inc. Vaporizer apparatus
US20150224268A1 (en) 2014-02-07 2015-08-13 R.J. Reynolds Tobacco Company Charging Accessory Device for an Aerosol Delivery Device and Related System, Method, Apparatus, and Computer Program Product for Providing Interactive Services for Aerosol Delivery Devices
US10874142B2 (en) * 2014-02-10 2020-12-29 Philip Morris Products S.A. Aerosol-generating system having a heater assembly and a cartridge for an aerosol-generating system having a fluid permeable heater assembly
BR112016015685A8 (pt) 2014-02-10 2020-06-09 Philip Morris Products Sa conjunto de aquecedor permeável a fluido para um sistema gerador de aerossol e método para montagem de um aquecedor permeável a fluido para um sistema gerador de aerossol, e sistema gerador de aerossol
EP3104723B1 (en) * 2014-02-10 2021-08-18 Philip Morris Products S.A. Cartridge for an aerosol-generating system
EP3104721B1 (en) * 2014-02-10 2020-10-14 Philip Morris Products S.a.s. An aerosol-generating system having a fluid-permeable heater assembly
NZ722807A (en) 2014-02-10 2019-05-31 Philip Morris Products Sa Cartridge with a heater assembly for an aerosol-generating system
US9833019B2 (en) 2014-02-13 2017-12-05 Rai Strategic Holdings, Inc. Method for assembling a cartridge for a smoking article
EP2910268A1 (en) 2014-02-25 2015-08-26 PARI Pharma GmbH Inhalator and inhalator set
US11085550B2 (en) 2014-02-28 2021-08-10 Ayr Ltd. Electronic vaporiser system
US10136674B2 (en) 2014-02-28 2018-11-27 Beyond Twenty Ltd. Electronic vaporiser system
US9839238B2 (en) * 2014-02-28 2017-12-12 Rai Strategic Holdings, Inc. Control body for an electronic smoking article
GB201413032D0 (en) 2014-02-28 2014-09-03 Beyond Twenty Ltd Beyond 7
US20160366946A1 (en) 2014-02-28 2016-12-22 Beyond Twenty Ltd. Electronic vaporiser system
US10588176B2 (en) 2014-02-28 2020-03-10 Ayr Ltd. Electronic vaporiser system
US10131532B2 (en) 2014-02-28 2018-11-20 Beyond Twenty Ltd. Electronic vaporiser system
US10091839B2 (en) 2014-02-28 2018-10-02 Beyond Twenty Ltd. Electronic vaporiser system
US20150257447A1 (en) * 2014-03-11 2015-09-17 Voodoo Science Llc Electronic Cigarette Assembly
US9597466B2 (en) 2014-03-12 2017-03-21 R. J. Reynolds Tobacco Company Aerosol delivery system and related method, apparatus, and computer program product for providing control information to an aerosol delivery device via a cartridge
US11696604B2 (en) 2014-03-13 2023-07-11 Rai Strategic Holdings, Inc. Aerosol delivery device and related method and computer program product for controlling an aerosol delivery device based on input characteristics
CN114209106B (zh) * 2014-03-19 2024-09-13 菲利普莫里斯生产公司 具有电触头的单片平面及其制造方法
BR112016021596B1 (pt) 2014-03-21 2022-08-23 Nicoventures Trading Limited Aparelho para possibilitar que material fumável seja aquecido e artigo de material fumável
US10052449B2 (en) 2014-03-21 2018-08-21 Fisher & Paykel Healthcare Limited Heating arrangements for humidification systems
GB201407056D0 (en) 2014-04-22 2014-06-04 Essentra Filter Products Dev Co Pte Ltd Smoking article
USD753336S1 (en) * 2014-03-31 2016-04-05 Smiss Technology Co., Ltd Electronic smoke device
US9642397B2 (en) 2014-03-31 2017-05-09 Westfield Limited (Ltd.) Personal vaporizer with liquid supply by suction
USD775762S1 (en) * 2014-03-31 2017-01-03 Smiss Technology Co., Ltd Electronic smoke device
CN203986095U (zh) * 2014-04-03 2014-12-10 惠州市吉瑞科技有限公司 一种雾化器以及电子烟
US9877510B2 (en) 2014-04-04 2018-01-30 Rai Strategic Holdings, Inc. Sensor for an aerosol delivery device
EA033261B1 (ru) 2014-04-07 2019-09-30 Бёрингер Ингельхайм Интернациональ Гмбх Ингаляционный тренажер и система для тренировки процесса ингаляции
EP3129087B1 (en) 2014-04-07 2020-02-26 Boehringer Ingelheim International GmbH Method, electronic device, inhalation training system for practicing and/or controlling an inhalation process of a patient
DE102014207154A1 (de) * 2014-04-14 2015-10-15 Hauni Maschinenbau Ag Rauchprodukt mit einer elektrischen Energiequelle und mindestens einer elektrischen Funktionseinheit
CN103948177A (zh) * 2014-04-16 2014-07-30 深圳市合元科技有限公司 具有指纹识别功能的电子吸烟装置及使用方法
US10932493B2 (en) * 2014-04-23 2021-03-02 Fontem Holdings 1 B.V. Electronic cigarette with coil-less atomizer
GB201407426D0 (en) * 2014-04-28 2014-06-11 Batmark Ltd Aerosol forming component
GB201407642D0 (en) 2014-04-30 2014-06-11 British American Tobacco Co Aerosol-cooling element and arrangements for apparatus for heating a smokable material
MY189739A (en) 2014-05-02 2022-02-28 Japan Tobacco Inc Non-burning-type flavor inhaler
US9924741B2 (en) 2014-05-05 2018-03-27 Rai Strategic Holdings, Inc. Method of preparing an aerosol delivery device
WO2015175568A1 (en) * 2014-05-12 2015-11-19 Loto Labs, Inc. Improved vaporizer device
US11478021B2 (en) 2014-05-16 2022-10-25 Juul Labs, Inc. Systems and methods for aerosolizing a vaporizable material
US20150335070A1 (en) 2014-05-20 2015-11-26 R.J. Reynolds Tobacco Company Electrically-powered aerosol delivery system
TWI666992B (zh) 2014-05-21 2019-08-01 瑞士商菲利浦莫里斯製品股份有限公司 氣溶膠產生系統及用在氣溶膠產生系統中之料匣
TWI660685B (zh) 2014-05-21 2019-06-01 瑞士商菲利浦莫里斯製品股份有限公司 電熱式氣溶膠產生系統及用於此系統中之匣筒
TWI669072B (zh) 2014-05-21 2019-08-21 瑞士商菲利浦莫里斯製品股份有限公司 電熱式霧劑產生系統及用於此系統中之匣筒
TWI661782B (zh) 2014-05-21 2019-06-11 瑞士商菲利浦莫里斯製品股份有限公司 電熱式氣溶膠產生系統、電熱式氣溶膠產生裝置及產生氣溶膠之方法
US9955726B2 (en) 2014-05-23 2018-05-01 Rai Strategic Holdings, Inc. Sealed cartridge for an aerosol delivery device and related assembly method
WO2015184250A1 (en) * 2014-05-30 2015-12-03 Carolina Vapordom, LLC E-liquid vaporizing apparatus
GB201410171D0 (en) 2014-06-09 2014-07-23 Nicoventures Holdings Ltd Electronic vapour provision system
GB201410562D0 (en) * 2014-06-13 2014-07-30 Nicoventures Holdings Ltd Aerosol provision system
ES2958716T3 (es) * 2014-06-27 2024-02-13 Fontem Ventures Bv Dispositivo electrónico para fumar y sistema de cápsula
GB201411483D0 (en) * 2014-06-27 2014-08-13 Batmark Ltd Vaporizer Assembly
PT3160552T (pt) * 2014-06-30 2019-08-26 Syqe Medical Ltd Cartucho de dose de fármaco para um dispositivo de inalação
US10888119B2 (en) 2014-07-10 2021-01-12 Rai Strategic Holdings, Inc. System and related methods, apparatuses, and computer program products for controlling operation of a device based on a read request
KR20230141896A (ko) 2014-07-11 2023-10-10 필립모리스 프로덕츠 에스.에이. 제거 가능한 히터를 포함한 에어로졸 발생 시스템
US10058123B2 (en) 2014-07-11 2018-08-28 R. J. Reynolds Tobacco Company Heater for an aerosol delivery device and methods of formation thereof
RU2674853C2 (ru) 2014-07-11 2018-12-13 Филип Моррис Продактс С.А. Образующая аэрозоль система, содержащая средства обнаружения картриджа
GB2528673B (en) 2014-07-25 2020-07-01 Nicoventures Holdings Ltd Aerosol provision system
GB2528712B (en) 2014-07-29 2019-03-27 Nicoventures Holdings Ltd E-cigarette and re-charging pack
GB2528711B (en) 2014-07-29 2019-02-20 Nicoventures Holdings Ltd E-cigarette and re-charging pack
GB201413835D0 (en) 2014-08-05 2014-09-17 Nicoventures Holdings Ltd Electronic vapour provision system
GB2529201A (en) 2014-08-13 2016-02-17 Batmark Ltd Device and method
CN104126877A (zh) * 2014-08-14 2014-11-05 刘团芳 一种雾化器装置
US9609895B2 (en) 2014-08-21 2017-04-04 Rai Strategic Holdings, Inc. System and related methods, apparatuses, and computer program products for testing components of an aerosol delivery device
US9913493B2 (en) 2014-08-21 2018-03-13 Rai Strategic Holdings, Inc. Aerosol delivery device including a moveable cartridge and related assembly method
US10765144B2 (en) 2014-08-21 2020-09-08 Rai Strategic Holdings, Inc. Aerosol delivery device including a moveable cartridge and related assembly method
GB2529629B (en) 2014-08-26 2021-05-12 Nicoventures Trading Ltd Electronic aerosol provision system
US9986762B2 (en) * 2014-09-17 2018-06-05 Fontem Holdings 4 B.V. Device for storing and vaporizing liquid media
GB2534336A (en) * 2014-09-26 2016-07-27 Kind Consumer Ltd A method of assembling and testing a simulated cigarette
UA31653S (uk) 2014-09-29 2016-03-10 Алтріа Клаент Се Курильне приладдя
JP6533582B2 (ja) * 2014-10-02 2019-06-19 ディジレッツ, インコーポレイテッド 使い捨てタンク式電子たばこ、製造方法及び使用方法
WO2016061166A1 (en) 2014-10-15 2016-04-21 Altria Client Services Llc Electronic vaping device and components thereof
GB201418817D0 (en) * 2014-10-22 2014-12-03 British American Tobacco Co Apparatus and method for generating an inhalable medium, and a cartridge for use therewith
GB2535427A (en) * 2014-11-07 2016-08-24 Nicoventures Holdings Ltd Solution
EA032720B1 (ru) 2014-11-10 2019-07-31 Джапан Тобакко Инк. Картридж и ингалятор ароматизирующего вещества без горения
US11051554B2 (en) 2014-11-12 2021-07-06 Rai Strategic Holdings, Inc. MEMS-based sensor for an aerosol delivery device
CN106686993A (zh) * 2014-11-14 2017-05-17 惠州市吉瑞科技有限公司深圳分公司 一种电子烟以及电子烟雾化控制方法
JP6625127B2 (ja) * 2014-11-14 2019-12-25 ジェイティー インターナショナル エス.エイ. エアロゾル発生装置用の容器
CN204317492U (zh) 2014-11-14 2015-05-13 深圳市合元科技有限公司 适用于液体基质的雾化装置及电子烟
WO2016090037A1 (en) * 2014-12-02 2016-06-09 Goldstein Gabriel Marc Vaporizing reservoir
KR102574658B1 (ko) 2014-12-05 2023-09-05 쥴 랩스, 인크. 교정된 투여량 제어
US10500600B2 (en) 2014-12-09 2019-12-10 Rai Strategic Holdings, Inc. Gesture recognition user interface for an aerosol delivery device
GB2533135B (en) * 2014-12-11 2020-11-11 Nicoventures Holdings Ltd Aerosol provision systems
PT3232834T (pt) 2014-12-15 2019-07-26 Philip Morris Products Sa Sis~ gerador de aerossol usando 0 efeito venturi para distribuir substrato a um elemento de aquecimento
WO2016096733A1 (en) * 2014-12-15 2016-06-23 Philip Morris Products S.A. Continuous mode heater assembly for aerosol-generating system
TWI674071B (zh) 2014-12-15 2019-10-11 瑞士商菲利浦莫里斯製品股份有限公司 氣溶膠產生系統及用於在電熱式氣溶膠產生系統內導引氣流的方法
AR103016A1 (es) 2014-12-15 2017-04-12 Philip Morris Products Sa Sistemas generadores de aerosol y métodos para dirigir un flujo de aire hacia dentro de un sistema generador de aerosol calentado eléctricamente
KR101696363B1 (ko) * 2014-12-16 2017-01-13 신종수 전자 담배
JP6719470B2 (ja) * 2014-12-18 2020-07-08 ジェイティー インターナショナル エス.エイ. エアロゾル発生装置用の容器
EP3236787B1 (en) 2014-12-25 2023-04-26 Fontem Ventures B.V. Dynamic output power management for electronic smoking device
US11291082B2 (en) * 2014-12-26 2022-03-29 Tuanfang Liu Electronic cigarette
GB201423312D0 (en) 2014-12-29 2015-02-11 British American Tobacco Co Heating device for apparatus for heating smokable material and method of manufacture
GB201423317D0 (en) 2014-12-29 2015-02-11 British American Tobacco Co Apparatus for heating smokable material
GB201423316D0 (en) * 2014-12-29 2015-02-11 British American Tobacco Co Cartridge for use with apparatus for heating smokable material
GB201423318D0 (en) 2014-12-29 2015-02-11 British American Tobacco Co Cartridge for use with apparatus for heating smokable material
USD775413S1 (en) * 2015-01-14 2016-12-27 Huizhou Kimree Technology Co., Ltd Atomizer for electronic cigarette
US10321711B2 (en) 2015-01-29 2019-06-18 Rai Strategic Holdings, Inc. Proximity detection for an aerosol delivery device
GB201501951D0 (en) * 2015-02-05 2015-03-25 Jt Int Sa Aerosol guiding device and aerosol generating system comprising said aerosol guiding device
PL229757B1 (pl) * 2015-02-06 2018-08-31 Esmoking Inst Spolka Z Ograniczona Odpowiedzialnoscia Elektroniczne urządzenie do wytwarzania aerozolu, moduł parownika oraz sposób wytwarzania aerozolu
CN105077594A (zh) * 2015-02-15 2015-11-25 卓尔悦(常州)电子科技有限公司 一种电子烟
ES2913872T3 (es) * 2015-02-27 2022-06-06 Nicoventures Trading Ltd Cartucho, componentes y métodos para generar un medio inhalable
GB201503411D0 (en) 2015-02-27 2015-04-15 British American Tobacco Co Apparatus and method for generating an inhalable medium, and a cartridge for use therewith
US10027016B2 (en) 2015-03-04 2018-07-17 Rai Strategic Holdings Inc. Antenna for an aerosol delivery device
US10010111B2 (en) 2015-03-04 2018-07-03 Altria Client Services Llc E-vaping device
US9980516B2 (en) 2015-03-09 2018-05-29 Rai Strategic Holdings, Inc. Aerosol delivery device including a wave guide and related method
US10172388B2 (en) 2015-03-10 2019-01-08 Rai Strategic Holdings, Inc. Aerosol delivery device with microfluidic delivery component
US10765821B2 (en) 2015-03-19 2020-09-08 Altria Client Services Llc Vaporizer for vaporizing a constituent of a plant material
US10179215B2 (en) 2015-03-19 2019-01-15 Altria Client Services Llc Vaporizer for vaporizing a constituent of a plant material
GB201505597D0 (en) 2015-03-31 2015-05-13 British American Tobacco Co Article for use with apparatus for heating smokable material
GB201505595D0 (en) 2015-03-31 2015-05-13 British American Tobacco Co Cartridge for use with apparatus for heating smokeable material
GB201505593D0 (en) 2015-03-31 2015-05-13 British American Tobacco Co Article for use with apparatus for heating smokable material
AU2016240554B2 (en) * 2015-04-02 2019-09-19 Japan Tobacco Inc. Flavor inhaler
US10278382B2 (en) 2015-04-23 2019-05-07 Wyndscent, Llc Device for creating and distributing vaporized scent
TR201904387T4 (tr) 2015-04-30 2019-04-22 Philip Morris Products Sa Elektrikle çalışan sigara içim cihazları için arıza tanısı aparatı.
PL3288403T3 (pl) 2015-04-30 2023-04-24 Philip Morris Products S.A. Wkład do układu wytwarzania aerozolu
CA2984454C (en) * 2015-05-01 2021-05-25 Japan Tobacco Inc. Non-burning type flavor inhaler, flavor source unit, and atomizing unit
US10136679B1 (en) * 2015-05-04 2018-11-27 Skapa Holdings, LLC Electronic cigarette
WO2016176800A1 (en) 2015-05-04 2016-11-10 Fontem Holdings 2 B.V. Liquid guiding structure, coil-less heating element and power management unit for electronic cigarettes
UA122409C2 (uk) 2015-05-06 2020-11-10 Олтріа Клайєнт Сервісиз Ллк Пристрій для паління без горіння і його елементи
USD782108S1 (en) 2015-05-15 2017-03-21 Altria Client Services Llc Mouthpiece for electronic vaping device
USD767820S1 (en) 2015-05-15 2016-09-27 Altria Client Services Llc Mouthpiece for electronic vaping device
US11000069B2 (en) 2015-05-15 2021-05-11 Rai Strategic Holdings, Inc. Aerosol delivery device and methods of formation thereof
CA165365S (en) 2015-05-15 2016-11-22 Altria Client Services Llc Mouthpiece for electronic vaping device
US10238145B2 (en) 2015-05-19 2019-03-26 Rai Strategic Holdings, Inc. Assembly substation for assembling a cartridge for a smoking article
CN110353312A (zh) 2015-05-29 2019-10-22 日本烟草产业株式会社 非燃烧式香味吸引器
US11589427B2 (en) * 2015-06-01 2023-02-21 Altria Client Services Llc E-vapor device including a compound heater structure
US20160353800A1 (en) * 2015-06-08 2016-12-08 Fernando Di Carlo Dual-source vaporizer
CN106307614A (zh) * 2015-06-17 2017-01-11 深圳市新宜康科技有限公司 电子烟雾化温度控制方法、控制电路及可控温电子烟雾化芯
CA166053S (en) 2015-06-25 2016-11-22 Altria Client Services Llc Electronic vaping device
US10314338B2 (en) 2015-06-25 2019-06-11 Altria Client Services Llc Electronic vaping device
USD767822S1 (en) 2015-06-25 2016-09-27 Altria Client Services Llc Cartomizer for an electronic vaping device
GB201511349D0 (en) * 2015-06-29 2015-08-12 Nicoventures Holdings Ltd Electronic aerosol provision systems
GB201511361D0 (en) 2015-06-29 2015-08-12 Nicoventures Holdings Ltd Electronic vapour provision system
GB201511359D0 (en) 2015-06-29 2015-08-12 Nicoventures Holdings Ltd Electronic vapour provision system
GB201511358D0 (en) 2015-06-29 2015-08-12 Nicoventures Holdings Ltd Electronic aerosol provision systems
GB2540135B (en) 2015-07-01 2021-03-03 Nicoventures Holdings Ltd Electronic aerosol provision system
US10251425B2 (en) 2015-07-06 2019-04-09 Njoy, Llc Vaporizing device with power component
CN110710717B (zh) 2015-07-14 2023-04-25 戴纳威普有限责任公司 放热汽化器
US10039323B2 (en) * 2015-07-16 2018-08-07 Njoy, Llc Vaporizer tank with atomizer
US11504489B2 (en) 2015-07-17 2022-11-22 Rai Strategic Holdings, Inc. Contained liquid system for refilling aerosol delivery devices
US10966460B2 (en) 2015-07-17 2021-04-06 Rai Strategic Holdings, Inc. Load-based detection of an aerosol delivery device in an assembled arrangement
AU2016297679B2 (en) * 2015-07-20 2020-10-15 Medical Developments International Limited Inhaler device for inhalable liquids
US10015987B2 (en) 2015-07-24 2018-07-10 Rai Strategic Holdings Inc. Trigger-based wireless broadcasting for aerosol delivery devices
US10206429B2 (en) 2015-07-24 2019-02-19 Rai Strategic Holdings, Inc. Aerosol delivery device with radiant heating
US11033054B2 (en) 2015-07-24 2021-06-15 Rai Strategic Holdings, Inc. Radio-frequency identification (RFID) authentication system for aerosol delivery devices
US11134544B2 (en) 2015-07-24 2021-09-28 Rai Strategic Holdings, Inc. Aerosol delivery device with radiant heating
CN108024573A (zh) * 2015-07-24 2018-05-11 富特姆控股第有限公司 电子吸烟装置的液体容器
US10721965B2 (en) 2015-07-29 2020-07-28 Altria Client Services Llc E-vapor device including heater structure with recessed shell layer
US10869502B2 (en) * 2015-07-31 2020-12-22 14Th Round Inc. Disposable assembly for vaporizing e-liquid and a method of using the same
EP3127441B1 (en) 2015-08-06 2018-12-05 Fontem Holdings 1 B.V. Electronic smoking device with a glass capillary tube
MX2018001418A (es) 2015-08-07 2018-04-13 Philip Morris Products Sa Sistema generador de aerosol con manejo de flujo de aire mejorado.
RU2710636C2 (ru) 2015-08-07 2019-12-30 Филип Моррис Продактс С.А. Система, генерирующая аэрозоль, с усовершенствованным управлением потоком воздуха
WO2017027524A2 (en) * 2015-08-09 2017-02-16 Microsemi Corporation High voltage relay systems and methods
DE102015113124A1 (de) 2015-08-10 2017-02-16 Schott Ag Offenporige Sintergläser zur Verwendung in elektronischen Zigaretten
WO2017028295A1 (en) 2015-08-20 2017-02-23 Fontem Holdings 1 B.V. Electronic smoking device with capillary buffer
US11924930B2 (en) 2015-08-31 2024-03-05 Nicoventures Trading Limited Article for use with apparatus for heating smokable material
US20170055584A1 (en) 2015-08-31 2017-03-02 British American Tobacco (Investments) Limited Article for use with apparatus for heating smokable material
KR102699575B1 (ko) 2015-09-01 2024-08-29 에이와이알 리미티드 전자 기화기 시스템
GB2542006A (en) * 2015-09-01 2017-03-08 Beyond Twenty Ltd Electronic vaporiser system
GB2542007B (en) * 2015-09-01 2020-04-22 Ayr Ltd Electronic vaporiser system
CN205143486U (zh) * 2015-09-02 2016-04-13 深圳市合元科技有限公司 雾化头、雾化器及电子烟
GB201516673D0 (en) 2015-09-21 2015-11-04 Nicoventures Holdings Ltd Topology
GB201516674D0 (en) * 2015-09-21 2015-11-04 Nicoventures Holdings Ltd Topology
GB2542838B (en) * 2015-10-01 2022-01-12 Nicoventures Trading Ltd Aerosol provision system
GB201517471D0 (en) 2015-10-02 2015-11-18 British American Tobacco Co Apparatus for generating an inhalable medium
US10058125B2 (en) 2015-10-13 2018-08-28 Rai Strategic Holdings, Inc. Method for assembling an aerosol delivery device
US20170112194A1 (en) 2015-10-21 2017-04-27 Rai Strategic Holdings, Inc. Rechargeable lithium-ion capacitor for an aerosol delivery device
US10582726B2 (en) 2015-10-21 2020-03-10 Rai Strategic Holdings, Inc. Induction charging for an aerosol delivery device
US10918134B2 (en) 2015-10-21 2021-02-16 Rai Strategic Holdings, Inc. Power supply for an aerosol delivery device
CN205337599U (zh) * 2015-10-22 2016-06-29 深圳麦克韦尔股份有限公司 电子烟及其雾化组件和雾化元件
US20170117654A1 (en) * 2015-10-27 2017-04-27 Dennis Cruz Electronic cigarette connector
US20170119046A1 (en) 2015-10-30 2017-05-04 British American Tobacco (Investments) Limited Apparatus for Heating Smokable Material
US10201187B2 (en) 2015-11-02 2019-02-12 Rai Strategic Holdings, Inc. User interface for an aerosol delivery device
US12042809B2 (en) 2015-11-02 2024-07-23 Altria Client Services Llc Aerosol-generating system comprising a vibratable element
EP3370551B1 (en) * 2015-11-02 2020-12-30 Philip Morris Products S.a.s. An aerosol-generating system comprising a vibratable element
US10820630B2 (en) 2015-11-06 2020-11-03 Rai Strategic Holdings, Inc. Aerosol delivery device including a wirelessly-heated atomizer and related method
USD790122S1 (en) 2015-11-13 2017-06-20 Altria Client Services Llc Electronic vaping device
USD847419S1 (en) 2015-11-13 2019-04-30 Altria Client Services, Llc Electronic vaping device
USD797990S1 (en) 2015-11-13 2017-09-19 Altria Client Services Llc Electronic vaporizer
GB201520056D0 (en) * 2015-11-13 2015-12-30 British American Tobacco Co Tobacco blend
MX2018006234A (es) 2015-11-20 2018-08-14 Forsight Vision4 Inc Estructuras porosas para dispositivos de suministro de medicamentos de liberacion prolongada.
KR102471453B1 (ko) * 2015-11-24 2022-11-28 아아르. 제이. 레날드즈 토바코 캄파니 전기적으로-급전되는 에어로졸 송달 시스템
KR102661609B1 (ko) * 2015-11-30 2024-04-29 필립모리스 프로덕츠 에스.에이. 불연성 흡연 장치 및 그의 요소들
US10412995B2 (en) * 2015-12-01 2019-09-17 Altria Client Services Llc E-vapor device including puncture device and sealed packet of pre-vapor formulation
US10440992B2 (en) 2015-12-07 2019-10-15 Rai Strategic Holdings, Inc. Motion sensing for an aerosol delivery device
US9955733B2 (en) 2015-12-07 2018-05-01 Rai Strategic Holdings, Inc. Camera for an aerosol delivery device
US9844233B2 (en) * 2015-12-15 2017-12-19 Smiss Technology Co., Ltd. Airflow preheating device
HUE053803T2 (hu) 2015-12-18 2021-07-28 Jt Int Sa Személyi páraképzõ eszköz
US11291252B2 (en) 2015-12-18 2022-04-05 Rai Strategic Holdings, Inc. Proximity sensing for an aerosol delivery device
WO2017109737A1 (en) * 2015-12-23 2017-06-29 Fisher & Paykel Healthcare Limited Heating arrangements for humidification systems
CN105433443A (zh) * 2015-12-25 2016-03-30 深圳市合元科技有限公司 雾化器和电子吸烟装置
US10051891B2 (en) 2016-01-05 2018-08-21 Rai Strategic Holdings, Inc. Capacitive sensing input device for an aerosol delivery device
US10194694B2 (en) 2016-01-05 2019-02-05 Rai Strategic Holdings, Inc. Aerosol delivery device with improved fluid transport
EP3402347B1 (en) * 2016-01-11 2022-06-29 Arizona Board of Regents on behalf of Arizona State University Ereptiospiration device for medicinal waxes, solids, biopolymers, or highly viscous oils, and cannabinoids
US10258086B2 (en) 2016-01-12 2019-04-16 Rai Strategic Holdings, Inc. Hall effect current sensor for an aerosol delivery device
US10104912B2 (en) 2016-01-20 2018-10-23 Rai Strategic Holdings, Inc. Control for an induction-based aerosol delivery device
US10015989B2 (en) 2016-01-27 2018-07-10 Rai Strategic Holdings, Inc. One-way valve for refilling an aerosol delivery device
WO2017155635A1 (en) * 2016-02-01 2017-09-14 Brandon Nedelman Plurality of product concepts
USD858868S1 (en) 2016-02-08 2019-09-03 Juul Labs, Inc. Vaporizer cartridge
USD861975S1 (en) 2016-02-08 2019-10-01 Juul Labs, Inc. Vaporizer device with cartridges
CA173518S (en) 2016-02-08 2017-09-01 Nicoventures Holdings Ltd Cartridge for an electronic cigarette
UA125687C2 (uk) 2016-02-11 2022-05-18 Джуул Лебз, Інк. Заповнювальний картридж випарного пристрою та способи його заповнення
SG10202108578XA (en) 2016-02-11 2021-09-29 Juul Labs Inc Securely attaching cartridges for vaporizer devices
US11412781B2 (en) 2016-02-12 2022-08-16 Rai Strategic Holdings, Inc. Adapters for refilling an aerosol delivery device
US10912333B2 (en) 2016-02-25 2021-02-09 Juul Labs, Inc. Vaporization device control systems and methods
US20170251722A1 (en) * 2016-03-03 2017-09-07 Altria Client Services Llc Flavor assembly for electronic vaping device
US10433580B2 (en) * 2016-03-03 2019-10-08 Altria Client Services Llc Methods to add menthol, botanic materials, and/or non-botanic materials to a cartridge, and/or an electronic vaping device including the cartridge
US10455863B2 (en) 2016-03-03 2019-10-29 Altria Client Services Llc Cartridge for electronic vaping device
US10368580B2 (en) 2016-03-08 2019-08-06 Altria Client Services Llc Combined cartridge for electronic vaping device
US9936733B2 (en) 2016-03-09 2018-04-10 Rai Strategic Holdings, Inc. Accessory configured to charge an aerosol delivery device and related method
US10258087B2 (en) 2016-03-10 2019-04-16 Altria Client Services Llc E-vaping cartridge and device
US10405582B2 (en) 2016-03-10 2019-09-10 Pax Labs, Inc. Vaporization device with lip sensing
US10357060B2 (en) 2016-03-11 2019-07-23 Altria Client Services Llc E-vaping device cartridge holder
US10368581B2 (en) 2016-03-11 2019-08-06 Altria Client Services Llc Multiple dispersion generator e-vaping device
GB201605102D0 (en) 2016-03-24 2016-05-11 Nicoventures Holdings Ltd Mechanical connector for electronic vapour provision system
GB201605100D0 (en) 2016-03-24 2016-05-11 Nicoventures Holdings Ltd Vapour provision system
GB201605101D0 (en) 2016-03-24 2016-05-11 Nicoventures Holdings Ltd Electronic vapour provision system
GB201605105D0 (en) 2016-03-24 2016-05-11 Nicoventures Holdings Ltd Vapour provision apparatus
US11207478B2 (en) 2016-03-25 2021-12-28 Rai Strategic Holdings, Inc. Aerosol production assembly including surface with micro-pattern
US10334880B2 (en) 2016-03-25 2019-07-02 Rai Strategic Holdings, Inc. Aerosol delivery device including connector comprising extension and receptacle
US10717313B2 (en) * 2016-03-28 2020-07-21 Nucoat, Inc. Heated writing device for use with thermochromatic ink
US10333339B2 (en) 2016-04-12 2019-06-25 Rai Strategic Holdings, Inc. Charger for an aerosol delivery device
US10945462B2 (en) 2016-04-12 2021-03-16 Rai Strategic Holdings, Inc. Detachable power source for an aerosol delivery device
KR102471331B1 (ko) 2016-04-20 2022-11-28 필립모리스 프로덕츠 에스.에이. 하이브리드 에어로졸 발생 요소 및 하이브리드 에어로졸 발생 요소를 제조하기 위한 방법
US10028534B2 (en) 2016-04-20 2018-07-24 Rai Strategic Holdings, Inc. Aerosol delivery device, and associated apparatus and method of formation thereof
EP3445189A4 (en) * 2016-04-22 2020-03-11 Resolve Digital Health Inc. INHALATION METHOD, SYSTEM AND DEVICE
WO2017184834A1 (en) * 2016-04-22 2017-10-26 Intrepid Brands Llc Oven assembly with a shaft element
WO2017182975A1 (en) * 2016-04-22 2017-10-26 Resolve Digital Health Inc. An inhalation device, system and method
KR20210009450A (ko) * 2016-04-27 2021-01-26 니코벤처스 트레이딩 리미티드 전자 에어로졸 제공 시스템 및 전자 에어로졸 제공 시스템을 위한 증기화기
US10405579B2 (en) 2016-04-29 2019-09-10 Rai Strategic Holdings, Inc. Methods for assembling a cartridge for an aerosol delivery device, and associated systems and apparatuses
CN205624490U (zh) * 2016-05-16 2016-10-12 湖南中烟工业有限责任公司 一种超声波雾化器及电子烟
CN105852222B (zh) * 2016-06-08 2019-06-14 卓尔悦欧洲控股有限公司 一种电子烟
US10111468B2 (en) 2016-06-13 2018-10-30 Db Innovation Inc. Vaporization device
GB201610220D0 (en) 2016-06-13 2016-07-27 Nicoventures Holdings Ltd Aerosol delivery device
USD849996S1 (en) 2016-06-16 2019-05-28 Pax Labs, Inc. Vaporizer cartridge
US10959458B2 (en) 2016-06-20 2021-03-30 Rai Strategic Holdings, Inc. Aerosol delivery device including an electrical generator assembly
CN113397221A (zh) * 2016-06-20 2021-09-17 菲利普莫里斯生产公司 用于气溶胶生成系统的蒸发器组件
USD851830S1 (en) 2016-06-23 2019-06-18 Pax Labs, Inc. Combined vaporizer tamp and pick tool
USD836541S1 (en) 2016-06-23 2018-12-25 Pax Labs, Inc. Charging device
USD848057S1 (en) 2016-06-23 2019-05-07 Pax Labs, Inc. Lid for a vaporizer
US10292426B2 (en) * 2016-06-24 2019-05-21 Altria Client Services, Llc E-vaping device cartridge with superabsorbent polymer
EP3469926A4 (en) * 2016-06-27 2020-02-19 Japan Tobacco, Inc. AROMA INHALER CARTRIDGE AND AROMA INHALER HAVING AROMA INHALER CARTRIDGE
EA039062B1 (ru) * 2016-06-27 2021-11-29 Джапан Тобакко Инк. Картридж для аэрозольного ингалятора, аэрозольный ингалятор, оснащенный таковым, а также теплогенерирующий лист для аэрозольного ингалятора
US10085485B2 (en) 2016-07-06 2018-10-02 Rai Strategic Holdings, Inc. Aerosol delivery device with a reservoir housing and a vaporizer assembly
US10212964B2 (en) * 2016-07-07 2019-02-26 Altria Client Services Additive assembly for electronic vaping device
US10463078B2 (en) 2016-07-08 2019-11-05 Rai Strategic Holdings, Inc. Aerosol delivery device with condensing and non-condensing vaporization
US10231485B2 (en) 2016-07-08 2019-03-19 Rai Strategic Holdings, Inc. Radio frequency to direct current converter for an aerosol delivery device
US10405581B2 (en) 2016-07-08 2019-09-10 Rai Strategic Holdings, Inc. Gas sensing for an aerosol delivery device
US10617151B2 (en) 2016-07-21 2020-04-14 Rai Strategic Holdings, Inc. Aerosol delivery device with a liquid transport element comprising a porous monolith and related method
EP3487776A1 (en) 2016-07-22 2019-05-29 Nicoventures Holdings Limited Case for a vapour provision device
US20180020724A1 (en) 2016-07-25 2018-01-25 Fontem Holdings 1 B.V. Data Connection for an Electronic Smoking Device
US10485267B2 (en) 2016-07-25 2019-11-26 Altria Client Services Llc Fluid permeable heater assembly with cap
US10383367B2 (en) 2016-07-25 2019-08-20 Fontem Holdings 1 B.V. Electronic cigarette power supply portion
US9974338B2 (en) * 2016-07-25 2018-05-22 Fontem Holdings 1 B.V. Electronic cigarette with illuminated tip
GB201612945D0 (en) 2016-07-26 2016-09-07 British American Tobacco Investments Ltd Method of generating aerosol
US11019847B2 (en) 2016-07-28 2021-06-01 Rai Strategic Holdings, Inc. Aerosol delivery devices including a selector and related methods
US10306927B2 (en) 2016-07-28 2019-06-04 Altria Client Services Llc Venturi effect-driven formulation delivery in e-vaping devices
US10729177B2 (en) * 2016-07-31 2020-08-04 Altria Client Services Llc Electronic vaping device, battery section, and charger
CN113662278B (zh) * 2016-08-05 2024-08-27 尤尔实验室有限公司 蒸发器的风速辅助控制
US10765146B2 (en) 2016-08-08 2020-09-08 Rai Strategic Holdings, Inc. Boost converter for an aerosol delivery device
MX2019001616A (es) 2016-08-09 2019-05-15 British American Tobacco Investments Ltd Receptaculo, cartucho, aparatos y metodos para generar un medio inhalable.
CN107752129B (zh) * 2016-08-19 2024-04-23 湖南中烟工业有限责任公司 一种超声雾化片及其制作方法、超声雾化器、电子烟
GB2598492B (en) * 2016-08-25 2022-07-06 Nicoventures Trading Ltd Electronic vapour provision device with absorbent element
GB2553136B (en) * 2016-08-25 2020-09-16 Nerudia Ltd Device and system
US11937647B2 (en) 2016-09-09 2024-03-26 Rai Strategic Holdings, Inc. Fluidic control for an aerosol delivery device
GB201615603D0 (en) 2016-09-14 2016-10-26 British American Tobacco Investments Ltd Receptacle section
GB201615601D0 (en) 2016-09-14 2016-10-26 British American Tobacco Investments Ltd Receptacle section
GB201615602D0 (en) 2016-09-14 2016-10-26 British American Tobacco Investments Ltd Receptacle Section
WO2018053689A1 (zh) * 2016-09-20 2018-03-29 惠州市吉瑞科技有限公司深圳分公司 一种电子烟以及识别方法
GB201616036D0 (en) 2016-09-21 2016-11-02 Nicoventures Holdings Ltd Device with liquid flow restriction
US11660403B2 (en) 2016-09-22 2023-05-30 Juul Labs, Inc. Leak-resistant vaporizer device
GB201616135D0 (ru) * 2016-09-22 2016-11-09 Nicoventures Holdings Limited
US10080387B2 (en) 2016-09-23 2018-09-25 Rai Strategic Holdings, Inc. Aerosol delivery device with replaceable wick and heater assembly
US10842193B2 (en) 2016-10-04 2020-11-24 Altria Client Services Llc Non-combustible smoking device and elements thereof
USD805248S1 (en) * 2016-10-11 2017-12-12 Smiss Technology Co., Ltd Electronic cigarette atomizer
US10477896B2 (en) 2016-10-12 2019-11-19 Rai Strategic Holdings, Inc. Photodetector for measuring aerosol precursor composition in an aerosol delivery device
US10986873B2 (en) 2016-10-12 2021-04-27 Changzhou Patent Electronic Technology Co., LTD Electronic cigarette
GB201618481D0 (en) 2016-11-02 2016-12-14 British American Tobacco Investments Ltd Aerosol provision article
CN106343615B (zh) * 2016-11-09 2023-06-09 云南中烟工业有限责任公司 一种光子加热的低温烟具
BR112019009137A2 (pt) 2016-11-10 2019-07-16 British American Tobacco Investments Ltd composição, dispositivo, cartucho e método para gerar um meio inalável
US10524508B2 (en) 2016-11-15 2020-01-07 Rai Strategic Holdings, Inc. Induction-based aerosol delivery device
CN106404619B (zh) * 2016-11-15 2023-12-22 重庆科技学院 一种烧结混合料原始粒度测定系统
US9864947B1 (en) 2016-11-15 2018-01-09 Rai Strategic Holdings, Inc. Near field communication for a tobacco-based article or package therefor
US10492530B2 (en) 2016-11-15 2019-12-03 Rai Strategic Holdings, Inc. Two-wire authentication system for an aerosol delivery device
US11103012B2 (en) 2016-11-17 2021-08-31 Rai Strategic Holdings, Inc. Satellite navigation for an aerosol delivery device
US10172392B2 (en) 2016-11-18 2019-01-08 Rai Strategic Holdings, Inc. Humidity sensing for an aerosol delivery device
US10206431B2 (en) 2016-11-18 2019-02-19 Rai Strategic Holdings, Inc. Charger for an aerosol delivery device
US10524509B2 (en) 2016-11-18 2020-01-07 Rai Strategic Holdings, Inc. Pressure sensing for an aerosol delivery device
US10653183B2 (en) 2016-11-18 2020-05-19 Rai Strategic Holdings, Inc. Power source for an aerosol delivery device
US10537137B2 (en) 2016-11-22 2020-01-21 Rai Strategic Holdings, Inc. Rechargeable lithium-ion battery for an aerosol delivery device
CN106490686B (zh) * 2016-11-23 2024-06-18 深圳市合元科技有限公司 烟雾生成器、电子烟及可拆卸安装的雾化装置
CN206403199U (zh) * 2016-11-24 2017-08-15 深圳市合元科技有限公司 雾化器和分体式电子烟
US9993027B1 (en) * 2016-12-06 2018-06-12 Funai Electric Co., Ltd. Heater element for a vaporization device
US11013266B2 (en) 2016-12-09 2021-05-25 Rai Strategic Holdings, Inc. Aerosol delivery device sensory system including an infrared sensor and related method
KR102327122B1 (ko) 2016-12-12 2021-11-16 브이엠알 프로덕츠 엘엘씨 기화기 카트리지
WO2018111879A1 (en) * 2016-12-12 2018-06-21 Vmr Products Llc Vaporizer
CN206250251U (zh) * 2016-12-16 2017-06-13 常州市派腾电子技术服务有限公司 一种电池组件及其电子烟
UA128566C2 (uk) 2016-12-16 2024-08-14 Кт & Г Корпорейшон Сигарета
US11045615B2 (en) 2016-12-19 2021-06-29 Altria Client Services Llc Vapor-generating systems
WO2018125934A1 (en) * 2016-12-27 2018-07-05 Juul Labs, Inc. Thermal wick for electronic vaporizers
US10433585B2 (en) * 2016-12-28 2019-10-08 Altria Client Services Llc Non-combustible smoking systems, devices and elements thereof
GB201700136D0 (en) 2017-01-05 2017-02-22 British American Tobacco Investments Ltd Aerosol generating device and article
CN108294360A (zh) * 2017-01-13 2018-07-20 田悦丰 一种改进吸烟者体验的烟斗
GB201700620D0 (en) 2017-01-13 2017-03-01 British American Tobacco Investments Ltd Aerosol generating device and article
CN206603240U (zh) * 2017-01-19 2017-11-03 深圳市合元科技有限公司 一种雾化器
US10517326B2 (en) 2017-01-27 2019-12-31 Rai Strategic Holdings, Inc. Secondary battery for an aerosol delivery device
JP6826798B2 (ja) * 2017-02-09 2021-02-10 ナチュラン・インターナショナル有限会社 吸引具
SG11201907694XA (en) 2017-02-24 2019-09-27 Philip Morris Products Sa Moulded mounting for an aerosol-generating element in an aerosol-generating system
US10827783B2 (en) 2017-02-27 2020-11-10 Rai Strategic Holdings, Inc. Digital compass for an aerosol delivery device
EA201992105A1 (ru) 2017-03-06 2020-02-03 Джапан Тобакко Инк. Аккумуляторный блок, ингалятор для вкусоароматического вещества, способ управления аккумуляторным блоком и программа
EP3603426A4 (en) 2017-03-30 2021-01-20 KT & G Coporation AEROSOL GENERATION APPARATUS AND SUPPORT SUITABLE TO RECEIVE IT
US11622582B2 (en) 2017-04-11 2023-04-11 Kt&G Corporation Aerosol generating device and method for providing adaptive feedback through puff recognition
US20200154772A1 (en) 2017-04-11 2020-05-21 Kt&G Corporation Aerosol generation system of preheating heater
JP7180947B2 (ja) 2017-04-11 2022-11-30 ケーティー アンド ジー コーポレイション エアロゾル生成装置、及びエアロゾル生成装置で喫煙制限機能を提供する方法
WO2018188231A1 (zh) * 2017-04-14 2018-10-18 常州市派腾电子技术服务有限公司 加热装置、雾化器及电子烟
AT519470B1 (de) * 2017-04-20 2018-07-15 Von Erl Gmbh Mundstück für einen Inhalator
KR102534696B1 (ko) * 2017-04-21 2023-05-22 요트. 바그너 게엠베하 액체용 정전기 분무기 및 정전기 분무기의 동작 방법
US10314340B2 (en) 2017-04-21 2019-06-11 Rai Strategic Holdings, Inc. Refillable aerosol delivery device and related method
GB201707050D0 (en) 2017-05-03 2017-06-14 British American Tobacco Investments Ltd Data communication
GB201707194D0 (en) 2017-05-05 2017-06-21 Nicoventures Holdings Ltd Electronic aerosol provision system
KR20180124739A (ko) * 2017-05-11 2018-11-21 주식회사 케이티앤지 궐련의 종류별로 에어로졸 생성장치에 포함된 히터의 온도를 제어하는 방법 및 궐련의 종류별로 히터의 온도를 제어하는 에어로졸 생성장치
JP6813697B2 (ja) 2017-05-11 2021-01-13 ケーティー・アンド・ジー・コーポレーション 蒸気化器、及びそれを具備するエアロゾル生成装置
US11297876B2 (en) 2017-05-17 2022-04-12 Rai Strategic Holdings, Inc. Aerosol delivery device
US10517330B2 (en) * 2017-05-23 2019-12-31 RAI Stategic Holdings, Inc. Heart rate monitor for an aerosol delivery device
US11589621B2 (en) 2017-05-23 2023-02-28 Rai Strategic Holdings, Inc. Heart rate monitor for an aerosol delivery device
DE102017111435B4 (de) * 2017-05-24 2018-12-06 Hauni Maschinenbau Gmbh Verdampfereinheit für einen Inhalator und Verfahren zum Steuern einer Verdampfereinheit
US10779576B2 (en) 2017-05-24 2020-09-22 VMR Products, LLC Flavor disk
KR102035313B1 (ko) 2017-05-26 2019-10-22 주식회사 케이티앤지 히터 조립체 및 이를 구비한 에어로졸 생성 장치
EP3629784A1 (en) * 2017-06-02 2020-04-08 Fontem Holdings 1 B.V. Electronic cigarette wick
GB201709201D0 (en) 2017-06-09 2017-07-26 Nicoventures Holdings Ltd Electronic aerosol provision system
CN107252138B (zh) * 2017-06-16 2020-05-12 深圳麦克韦尔科技有限公司 加热式吸入器及其加热组件
WO2018227593A1 (zh) * 2017-06-16 2018-12-20 深圳麦克韦尔股份有限公司 加热式吸入器及其加热组件
CN107280072A (zh) 2017-06-19 2017-10-24 深圳市合元科技有限公司 电子烟及其控制方法
GB201709982D0 (en) 2017-06-22 2017-08-09 Nicoventures Holdings Ltd Electronic vapour provision system
US10842197B2 (en) 2017-07-12 2020-11-24 Rai Strategic Holdings, Inc. Detachable container for aerosol delivery having pierceable membrane
US10349674B2 (en) 2017-07-17 2019-07-16 Rai Strategic Holdings, Inc. No-heat, no-burn smoking article
US11337456B2 (en) 2017-07-17 2022-05-24 Rai Strategic Holdings, Inc. Video analytics camera system for an aerosol delivery device
EP3437496A1 (en) * 2017-08-02 2019-02-06 BSMW Limited Rapid replace hygienic coil system
KR20190049391A (ko) 2017-10-30 2019-05-09 주식회사 케이티앤지 히터를 구비한 에어로졸 생성 장치
US11849762B2 (en) 2017-08-09 2023-12-26 Kt&G Corporation Electronic cigarette control method and device
US11707090B2 (en) * 2017-08-09 2023-07-25 Vuber Technologies, Llc Permeable element based vaporization process and device
US10701977B2 (en) * 2017-08-09 2020-07-07 Vuber Technologies, Inc. Permeable element based vaporization process and device
WO2019031877A2 (ko) 2017-08-09 2019-02-14 주식회사 케이티앤지 에어로졸 생성 장치 및 에어로졸 생성 장치 제어 방법
CN107350617B (zh) * 2017-08-14 2023-10-20 上海华瑞气雾剂有限公司 一种用于吸入器的钢丝网焊接工艺及其装置
KR102344996B1 (ko) 2017-08-18 2021-12-30 삼성전자주식회사 전구체 공급 유닛, 기판 처리 장치 및 그를 이용한 반도체 소자의 제조방법
EP3679813A4 (en) 2017-09-06 2021-07-14 KT&G Corporation AEROSOL PRODUCTION DEVICE
RU2765173C2 (ru) 2017-09-07 2022-01-26 Филип Моррис Продактс С.А. Генерирующие аэрозоль устройства для использования с разными субстратами и соответствующие пользовательские интерфейсы и способы
US10786633B2 (en) * 2017-09-08 2020-09-29 Hcmed Innovations Co., Ltd. Nebulizer and nozzle assembly thereof
CN107692317B (zh) * 2017-09-11 2019-07-16 云南中烟工业有限责任公司 一种能自动点燃或加热卷烟的装置
USD887632S1 (en) 2017-09-14 2020-06-16 Pax Labs, Inc. Vaporizer cartridge
KR102140799B1 (ko) * 2017-09-18 2020-08-03 주식회사 케이티앤지 사용자에게 향상된 흡연 경험을 제공하는 흡연물품용 보조장치
US11039645B2 (en) 2017-09-19 2021-06-22 Rai Strategic Holdings, Inc. Differential pressure sensor for an aerosol delivery device
US10505383B2 (en) 2017-09-19 2019-12-10 Rai Strategic Holdings, Inc. Intelligent charger for an aerosol delivery device
DE102017121664A1 (de) * 2017-09-19 2019-03-21 Hauni Maschinenbau Gmbh Komponententeil und Basisteil für einen Inhalator, sowie Verfahren zur Fertigung derselben
US10157265B1 (en) * 2017-09-21 2018-12-18 Rai Strategic Holdings, Inc. Clinical study product dispensing device
GB2604314A (en) * 2017-09-22 2022-09-07 Nerudia Ltd Device, system and method
US10506830B2 (en) 2017-09-22 2019-12-17 Altria Client Services Llc Air flow design for an e-vaping cartridge, method of making the e-vaping cartridge, and e-vaping device including the cartridge
EP3687323B1 (en) * 2017-09-27 2021-12-01 Philip Morris Products S.A. Support element for aerosol generating article
DE102017123000B4 (de) 2017-10-04 2021-05-12 Schott Ag Sinterkörper mit leitfähiger Beschichtung, Verfahren zur Herstellung eines Sinterkörpers mit leitfähiger Beschichtung und dessen Verwendung
CN107495482B (zh) * 2017-10-09 2019-12-24 深圳市你我网络科技有限公司 一种电子烟
US10772356B2 (en) 2017-10-11 2020-09-15 Altria Client Services Llc Electronic vaping device including transfer pad with oriented fibers
USD870375S1 (en) 2017-10-11 2019-12-17 Altria Client Services Llc Battery for an electronic vaping device
US10660370B2 (en) 2017-10-12 2020-05-26 Rai Strategic Holdings, Inc. Aerosol delivery device including a control body, an atomizer body, and a cartridge and related methods
DE102017123869B4 (de) * 2017-10-13 2019-05-23 Hauni Maschinenbau Gmbh Flüssigkeitsspeicher für einen Inhalator, insbesondere für ein elektronisches Zigarettenprodukt
DE102017123868B4 (de) * 2017-10-13 2019-05-09 Hauni Maschinenbau Gmbh Verdampfereinheit für einen Inhalator, insbesondere für ein elektronisches Zigarettenprodukt
DE102017123870B4 (de) 2017-10-13 2019-05-09 Hauni Maschinenbau Gmbh Verdampfereinheit für einen Inhalator, insbesondere für ein elektronisches Zigarettenprodukt
CA3020746C (en) 2017-10-13 2023-10-17 Wyndscent, Llc Electronic vapor dispenser for hunting
CN111246760B (zh) * 2017-10-24 2023-06-20 日本烟草产业株式会社 气溶胶生成装置
KR102012851B1 (ko) * 2017-10-30 2019-08-21 주식회사 케이티앤지 에어로졸 생성 장치 및 제어 방법
JP6884264B2 (ja) * 2017-10-30 2021-06-09 ケイティー アンド ジー コーポレイション エアロゾル生成装置
KR102138245B1 (ko) 2017-10-30 2020-07-28 주식회사 케이티앤지 에어로졸 생성 장치
KR102180421B1 (ko) * 2017-10-30 2020-11-18 주식회사 케이티앤지 에어로졸 생성 장치
US20200329772A1 (en) * 2017-10-30 2020-10-22 Kt&G Corporation Aerosol generating device
KR102138246B1 (ko) 2017-10-30 2020-07-28 주식회사 케이티앤지 증기화기 및 이를 구비하는 에어로졸 생성 장치
WO2019088577A2 (ko) 2017-10-30 2019-05-09 주식회사 케이티앤지 광학 모듈 및 이를 포함하는 에어로졸 생성 장치
KR102057216B1 (ko) 2017-10-30 2019-12-18 주식회사 케이티앤지 에어로졸 생성 장치 및 에어로졸 생성 장치용 히터 조립체
EP3704964A4 (en) * 2017-10-30 2021-09-15 KT&G Corporation AEROSOL GENERATING DEVICE
KR102141648B1 (ko) * 2017-10-30 2020-08-05 주식회사 케이티앤지 에어로졸 생성 장치 및 그 제어 방법
KR102057215B1 (ko) * 2017-10-30 2019-12-18 주식회사 케이티앤지 에어로졸 생성 장치 및 생성 방법
WO2019088587A2 (ko) 2017-10-30 2019-05-09 주식회사 케이티앤지 에어로졸 생성 장치 및 에어로졸 생성 장치용 히터
UA126599C2 (uk) 2017-10-30 2022-11-02 Кт&Г Корпорейшон Пристрій для генерування аерозолю і спосіб управління таким пристроєм
US10517332B2 (en) 2017-10-31 2019-12-31 Rai Strategic Holdings, Inc. Induction heated aerosol delivery device
GB201718462D0 (en) 2017-11-08 2017-12-20 British American Tobacco Investments Ltd Vapour provision systems
WO2019092889A1 (ja) 2017-11-13 2019-05-16 日本たばこ産業株式会社 非燃焼型香味吸引器用の回路基板、及び非燃焼型香味吸引器
IL263217B (en) 2017-11-24 2022-06-01 Juul Labs Inc Emission sensing and power circuit for vaporizers
US10537139B2 (en) * 2017-11-26 2020-01-21 Romo LLC Disposable electronic nicotine delivery device
GB201720338D0 (en) 2017-12-06 2018-01-17 British American Tobacco Investments Ltd Component for an aerosol-generating apparatus
US10806181B2 (en) 2017-12-08 2020-10-20 Rai Strategic Holdings, Inc. Quasi-resonant flyback converter for an induction-based aerosol delivery device
GB201721821D0 (en) 2017-12-22 2018-02-07 Nicoventures Holdings Ltd Electronic aerosol provision system
GB201722278D0 (en) 2017-12-29 2018-02-14 British American Tobacco Investments Ltd Device identification and method
GB201722241D0 (en) 2017-12-29 2018-02-14 British American Tobacco Investments Ltd Data capture across devices
US10555558B2 (en) 2017-12-29 2020-02-11 Rai Strategic Holdings, Inc. Aerosol delivery device providing flavor control
US10687557B2 (en) 2017-12-29 2020-06-23 Altria Client Services Llc Electronic vaping device with outlet-end illumination
CN108272136B (zh) * 2018-01-13 2024-01-12 深圳市新宜康科技股份有限公司 自调式智能雾化芯及其制作方法
BR112020012677A2 (pt) 2018-01-30 2020-11-24 Philip Morris Products S.A. dispositivo gerador de aerossol com vazamento reduzido
US11019850B2 (en) 2018-02-26 2021-06-01 Rai Strategic Holdings, Inc. Heat conducting substrate for electrically heated aerosol delivery device
GB201803648D0 (en) 2018-03-07 2018-04-25 Nicoventures Trading Ltd Electronic aerosol provision system
KR102167020B1 (ko) * 2018-04-10 2020-10-16 주식회사 케이티앤지 에어로졸 발생원 지지 조립체 및 이를 구비한 에어로졸 생성 장치
CN112203538B (zh) * 2018-05-25 2024-06-11 Jt国际公司 具有用于测量由蒸气产生材料产生的应变的传感器的蒸气产生装置
TW202011840A (zh) 2018-05-29 2020-04-01 美商派克斯實驗公司 具有卡匣之蒸發器裝置
KR102074934B1 (ko) 2018-06-04 2020-02-07 주식회사 케이티앤지 에어로졸 생성 장치
KR102135804B1 (ko) * 2018-06-05 2020-07-20 주식회사 이엠텍 전기가열식 에어로졸 발생기용 카토마이저
KR102227135B1 (ko) * 2018-06-05 2021-03-15 주식회사 이엠텍 전기가열식 에어로졸 발생기용 카토마이저
KR102135791B1 (ko) * 2018-06-05 2020-07-20 주식회사 이엠텍 전기가열식 에어로졸 발생기
US11730199B2 (en) 2018-06-07 2023-08-22 Juul Labs, Inc. Cartridges for vaporizer devices
CN108557495A (zh) * 2018-06-11 2018-09-21 东莞市泰利锐航机械科技有限公司 一种pcb板上板机及其上板工艺
KR102055749B1 (ko) * 2018-06-15 2019-12-13 주식회사 이엠텍 전기가열식 에어로졸 발생기용 드립팁
KR102059415B1 (ko) * 2018-06-20 2019-12-27 주식회사 이엠텍 미세 입자 발생 장치용 액상 카트리지 어셈블리
WO2019244324A1 (ja) 2018-06-22 2019-12-26 日本たばこ産業株式会社 エアロゾル生成装置並びにこれを動作させる方法及びプログラム
EP3813914B1 (en) 2018-06-26 2023-10-25 Juul Labs, Inc. Vaporizer wicking elements
WO2020003305A1 (en) * 2018-06-26 2020-01-02 Omega Life Science Ltd. Aerosol generation devices
US10888125B2 (en) 2018-06-27 2021-01-12 Juul Labs, Inc. Vaporizer device with subassemblies
CN108851240B (zh) 2018-07-04 2021-05-11 江门摩尔科技有限公司 加热式吸入器及其控制方法
DE102018127926A1 (de) 2018-07-09 2020-01-09 Hauni Maschinenbau Gmbh Verdampferkopf für einen Inhalator, insbesondere für ein elektronisches Zigarettenprodukt
KR102116118B1 (ko) * 2018-07-18 2020-05-27 주식회사 케이티앤지 에어로졸 생성장치의 히터의 온도를 구간별로 제어하는 방법 및 그 방법을 구현하기 위한 에어로졸 생성장치
KR102146055B1 (ko) * 2018-07-19 2020-08-19 주식회사 케이티앤지 에어로졸 생성장치의 히터의 오버슛을 방지하는 방법 및 그 방법을 구현하기 위한 에어로졸 생성장치
CN211794315U (zh) 2018-07-23 2020-10-30 尤尔实验室有限公司 用于蒸发器装置的料盒
WO2020020748A1 (en) * 2018-07-26 2020-01-30 Philip Morris Products S.A. Article for forming an aerosol
BR112021001164A2 (pt) * 2018-08-21 2021-04-27 Philip Morris Products S.A. produto consumível para um dispositivo gerador de aerossol e métodos de enchimento e fabricação de um produto consumível para um dispositivo gerador de aerossol
US11103013B2 (en) 2018-09-07 2021-08-31 Fontem Holdings 1 B.V. Pivotable charging case for electronic smoking device
US11413409B2 (en) 2018-09-12 2022-08-16 Juul Labs, Inc. Vaporizer including positive temperature coefficient of resistivity (PTCR) heating element
KR102629493B1 (ko) * 2018-09-27 2024-01-25 필립모리스 프로덕츠 에스.에이. 직조 섬유 라이너를 갖는 에어로졸 발생 장치용 마우스피스
KR20210072038A (ko) 2018-10-08 2021-06-16 쥴 랩스, 인크. 가열 요소
US11424633B2 (en) 2018-10-08 2022-08-23 Juul Labs, Inc. Vaporizer charging adapter assembly
US11974603B2 (en) 2018-10-12 2024-05-07 Rai Strategic Holdings, Inc. Aerosol delivery device with visible indicator
US10939702B2 (en) 2018-10-12 2021-03-09 Rai Strategic Holdings, Inc. Connectors for forming electrical and mechanical connections between interchangeable units in an aerosol delivery system
US11678700B2 (en) 2018-10-12 2023-06-20 Rai Strategic Holdings, Inc. Aerosol delivery device with visible indicator
US11291249B2 (en) 2018-10-12 2022-04-05 Rai Strategic Holdings, Inc. Aerosol delivery device with visible indicator
US10791767B2 (en) 2018-10-12 2020-10-06 Rai Strategic Holdings, Inc. Connectors for forming electrical and mechanical connections between interchangeable units in an aerosol delivery system
US11502466B2 (en) 2018-10-12 2022-11-15 Rai Strategic Holdings, Inc. Aerosol delivery device with improved connectivity, airflow, and aerosol paths
US20200113243A1 (en) * 2018-10-12 2020-04-16 Rai Strategic Holdings, Inc. Heater and liquid transport for an aerosol delivery system
US20200128874A1 (en) * 2018-10-17 2020-04-30 Juul Labs, Inc. Cartridge for a vaporizer device
ES2913163T3 (es) * 2018-10-17 2022-05-31 Juul Labs Inc Cartucho para un dispositivo vaporizador
MX2021004359A (es) 2018-10-19 2021-05-31 Juul Labs Inc Sistema de alimentacion de vaporizador.
WO2020086617A1 (en) 2018-10-22 2020-04-30 Juul Labs, Inc. Vaporizer heater and temperature sensing element
KR102195129B1 (ko) * 2018-10-29 2020-12-24 주식회사 이엠텍 미세 입자 발생 장치
GB201817554D0 (en) * 2018-10-29 2018-12-12 Nerudia Ltd Smoking substitute consumable
KR102124911B1 (ko) * 2018-10-29 2020-06-19 주식회사 이엠텍 단자 구조를 개선한 액상 카트리지 어셈블리
US11838997B2 (en) 2018-11-05 2023-12-05 Juul Labs, Inc. Cartridges for vaporizer devices
US11564287B2 (en) 2018-11-05 2023-01-24 Juul Labs, Inc. Cartridges with vaporizable material including at least one ionic component
WO2020097078A1 (en) 2018-11-05 2020-05-14 Juul Labs, Inc. Cartridges for vaporizer devices
CN113365518A (zh) 2018-11-05 2021-09-07 尤尔实验室有限公司 用于蒸发器装置的料筒
WO2020097341A1 (en) 2018-11-08 2020-05-14 Juul Labs, Inc. Cartridges for vaporizer devices
CA3118504A1 (en) 2018-11-08 2020-05-14 Juul Labs, Inc. Vaporizer device with more than one heating element
KR102203851B1 (ko) * 2018-11-12 2021-01-15 주식회사 케이티앤지 에어로졸 생성 장치 및 이를 제어하는 방법
KR102203852B1 (ko) 2018-11-16 2021-01-15 주식회사 케이티앤지 에어로졸 생성 장치 및 시스템
KR102317838B1 (ko) * 2018-11-16 2021-10-26 주식회사 케이티앤지 에어로졸 생성장치의 히터의 전력을 제어하는 방법 및 그 에어로졸 생성장치
US11372153B2 (en) 2018-11-19 2022-06-28 Rai Strategic Holdings, Inc. Cartridge orientation for selection of a control function in a vaporization system
KR102199795B1 (ko) * 2018-11-19 2021-01-07 주식회사 케이티앤지 일정주파수 이하의 신호로 에어로졸 생성장치의 히터의 전력을 제어하는 방법 및 그 에어로졸 생성장치
US12066654B2 (en) 2018-11-19 2024-08-20 Rai Strategic Holdings, Inc. Charging control for an aerosol delivery device
US11592793B2 (en) 2018-11-19 2023-02-28 Rai Strategic Holdings, Inc. Power control for an aerosol delivery device
US11156766B2 (en) 2018-11-19 2021-10-26 Rai Strategic Holdings, Inc. Aerosol delivery device
US11614720B2 (en) 2018-11-19 2023-03-28 Rai Strategic Holdings, Inc. Temperature control in an aerosol delivery device
EP3906074A1 (en) 2018-12-31 2021-11-10 Juul Labs, Inc. Cartridges for vaporizer devices
US10813843B2 (en) * 2019-01-07 2020-10-27 Lester Fowler Personalized medication dispenser
KR102211820B1 (ko) * 2019-01-15 2021-02-03 (주)아이피아이테크 열전달 효율이 우수한 궐련형 전자담배용 히터 및 그 제조 방법
KR102219853B1 (ko) * 2019-01-16 2021-02-24 주식회사 케이티앤지 복수의 지자기센서로 에어로졸 생성장치를 제어하는 방법 및 그 에어로졸 생성장치
US11154086B2 (en) 2019-01-21 2021-10-26 Altria Client Services Llc Capsules, heat-not-burn (HNB) aerosol-generating devices, and methods of generating an aerosol
CN109619698B (zh) * 2019-01-29 2022-02-15 常州市派腾电子技术服务有限公司 电池装置及电子烟
CN111493361B (zh) * 2019-01-29 2023-04-07 常州市派腾电子技术服务有限公司 电压输出电路、电子设备以及电子烟
GB201901201D0 (en) * 2019-01-29 2019-03-20 British American Tobacco Investments Ltd Equipment and methods for there automated assembly of inhalation devices and components thereof
USD870370S1 (en) 2019-02-14 2019-12-17 Glas, Inc. Vaporization device
USD870373S1 (en) 2019-02-14 2019-12-17 Glas, Inc. Cartridge for use with a vaporization device
USD870374S1 (en) 2019-02-14 2019-12-17 Glas, Inc. Mouthpiece of a cartridge for use with a vaporization device
USD870369S1 (en) 2019-02-14 2019-12-17 Glas, Inc. Vaporization device
US10531693B1 (en) 2019-02-14 2020-01-14 Glas, Inc. Vaporization device having remotely controllable operational modes
DE102019103987A1 (de) * 2019-02-18 2020-08-20 Hauni Maschinenbau Gmbh Verdampfervorrichtung für einen Inhalator, Verbrauchseinheit, Inhalator und Herstellungsverfahren
US11253001B2 (en) 2019-02-28 2022-02-22 Juul Labs, Inc. Vaporizer device with vaporizer cartridge
GB201903250D0 (en) * 2019-03-11 2019-04-24 Nicoventures Trading Ltd Aerosol provision device
CA3132440A1 (en) * 2019-03-11 2020-09-17 Nicoventures Trading Limited Aerosol provision device
US11602164B2 (en) * 2019-03-14 2023-03-14 Rai Strategic Holdings, Inc. Aerosol delivery device with graded porosity from inner to outer wall surfaces
EP3711511A1 (en) * 2019-03-22 2020-09-23 Nerudia Limited Smoking substitute system
WO2020194286A1 (en) * 2019-03-24 2020-10-01 Omega Life Science Ltd. Aerosol generation devices
CN109875127A (zh) * 2019-03-26 2019-06-14 索图电子(惠州)有限公司 一种颗粒型低温不燃烧烟具
US11666089B2 (en) * 2019-04-04 2023-06-06 Altria Client Services Llc Heat-not-burn device and flavor carrier
KR102216140B1 (ko) 2019-04-30 2021-02-16 주식회사 케이티앤지 에어로졸 생성 장치 및 그의 동작 방법
CN110132339B (zh) * 2019-05-06 2021-04-13 深圳雷炎科技有限公司 一种电子烟气流感应器的检测装置
US11181199B2 (en) * 2019-06-04 2021-11-23 14Th Round Inc. Assembly for preventing leakage in a vaporization device
DE102019116450A1 (de) * 2019-06-18 2020-12-24 Hauni Maschinenbau Gmbh Verfahren und Montageskelett zur Herstellung einer Verdampferbaugruppe für einen Inhalator
DE102019116729A1 (de) * 2019-06-20 2020-12-24 Hauni Maschinenbau Gmbh Verfahren zur Herstellung eines Dochtorgans für eine Verdampferkartusche als Bestandteil eines Inhalators
DE102019116726A1 (de) * 2019-06-20 2020-12-24 Hauni Maschinenbau Gmbh Verdampferkartusche sowie Inhalator mit einer solchen Verdampferkartusche
DE102019116728A1 (de) * 2019-06-20 2020-12-24 Hauni Maschinenbau Gmbh Verdampferkartusche sowie Inhalator mit einer solchen Verdampferkartusche
DE102019116727A1 (de) * 2019-06-20 2020-12-24 Hauni Maschinenbau Gmbh Verdampferkartusche sowie Inhalator mit einer solchen Verdampferkartusche
DE102019116725A1 (de) * 2019-06-20 2020-12-24 Hauni Maschinenbau Gmbh Verdampferkartusche sowie Inhalator mit einer solchen Verdampferkartusche
EP3753595A1 (en) * 2019-06-21 2020-12-23 Nerudia Limited Aerosol delivery device
BR112021023581A2 (pt) * 2019-06-25 2022-01-04 Philip Morris Products Sa Sistema gerador de aerossol e um cartucho para um sistema gerador de aerossol com um conjunto de aquecimento melhorado
US10690553B1 (en) * 2019-06-28 2020-06-23 All Zack Everything Llc Vaporizable substance application tool having an integrated ideal temperature indicator
CN110302454A (zh) * 2019-07-05 2019-10-08 上海市第一人民医院 一种便携组合式哮喘药物内置式吸入装置
CN113811208A (zh) * 2019-07-05 2021-12-17 尹利民 电连接器、供电电源、雾化器及电子烟
CN112274737B (zh) * 2019-07-12 2023-05-05 深圳市卓力能技术有限公司 一种医用鼻吸设备
JP6683866B1 (ja) * 2019-07-17 2020-04-22 日本たばこ産業株式会社 エアロゾル吸引器用の電源ユニット、エアロゾル吸引器の電源診断方法、及びエアロゾル吸引器の電源診断プログラム
EP3999152B1 (en) * 2019-07-19 2024-01-24 Juul Labs, Inc. Concentrate adaptor for vaporizer device
US12082603B2 (en) 2019-08-14 2024-09-10 Altria Client Services Llc Nicotine e-vaping section, and nicotine e-vaping device including nicotine e-vaping section
CN110547503B (zh) * 2019-08-27 2022-04-29 宁波帅特龙集团有限公司 一种车用烟灰盒
EP3794989A1 (en) * 2019-09-20 2021-03-24 Nerudia Limited Smoking substitute apparatus
EP3794979A1 (en) * 2019-09-20 2021-03-24 Nerudia Limited Smoking substitute apparatus
CN110638101B (zh) * 2019-09-30 2024-07-05 深圳麦克韦尔科技有限公司 一种雾化器及电子雾化装置
US10721973B1 (en) 2019-10-09 2020-07-28 Cegnum LLC Electronic smoking device with an indicator assembly for providing visual output based on operation of plural atomizers
US10842189B1 (en) 2019-10-09 2020-11-24 Cegnum LLC Electronic smoking device including terminals arranged to provide for selective energizing of heating elements
US20210113783A1 (en) 2019-10-20 2021-04-22 Respira Technologies, Inc. Electronic devices and liquids for aerosolizing and inhaling therewith
CN211558820U (zh) * 2019-10-31 2020-09-25 刘敏娟 雾化器组件及包括该雾化器组件的雾化器设备
USD943160S1 (en) 2019-11-14 2022-02-08 Juul Labs, Inc. Vaporizer device
USD943158S1 (en) 2019-11-14 2022-02-08 Juul Labs, Inc. Vaporizer cartridge
USD943161S1 (en) 2019-11-14 2022-02-08 Juul Labs, Inc. Vaporizer device
USD943159S1 (en) 2019-11-14 2022-02-08 Juul Labs, Inc. Component for a vaporizer cartridge
US11684090B2 (en) 2019-11-15 2023-06-27 Juul Labs, Inc. Machine for laser etching and tag writing a vaporizer cartridge
US11484062B2 (en) 2019-11-26 2022-11-01 Altria Client Services Llc Nicotine pod assemblies and nicotine e-vaping devices
US11490656B2 (en) 2019-11-26 2022-11-08 Altria Client Services Llc Nicotine pod assemblies and nicotine e-vaping devices
US11528938B2 (en) 2019-11-26 2022-12-20 Altria Client Services Llc Non-nicotine pod assemblies and non-nicotine e-vaping devices
US11564416B2 (en) 2019-11-26 2023-01-31 Altria Client Services Llc Non-nicotine pod assemblies and non-nicotine e-vaping devices
US11576432B2 (en) * 2019-11-26 2023-02-14 Altria Client Services Llc Nicotine pod assemblies and nicotine e-vaping devices
US11528939B2 (en) 2019-11-26 2022-12-20 Altria Client Services Llc Non-nicotine pod assemblies and non-nicotine e-vaping devices
US11596172B2 (en) 2019-11-26 2023-03-07 Altria Client Services Llc Non-nicotine pod assemblies and non-nicotine e-vaping devices
US11528937B2 (en) 2019-11-26 2022-12-20 Altria Client Services Llc Nicotine pod assemblies and nicotine e-vaping devices
PL3831221T3 (pl) * 2019-12-02 2024-01-22 Jt International S.A. Urządzenie generujące aerozol z porowatym podgrzewaczem konwekcyjnym
CN114828671A (zh) * 2019-12-19 2022-07-29 日本烟草国际股份有限公司 气溶胶产生装置
KR102095226B1 (ko) * 2019-12-26 2020-04-01 한국항공촬영 주식회사 촬영된 지형지물 영상 이미지의 정밀도를 향상시켜 처리하는 영상처리시스템
US11751606B2 (en) 2020-02-10 2023-09-12 Altria Client Services Llc Heating engine control algorithm for non-nicotine e-vapor device
US11793237B2 (en) 2020-02-10 2023-10-24 Altria Client Services Llc Heating engine control algorithm for nicotine e-vapor device
US11278688B2 (en) * 2020-03-12 2022-03-22 Max Azevedo Inhaling device for heavy metal salts and a method of use thereof for medical treatment
GB202004731D0 (en) 2020-03-31 2020-05-13 Nicoventures Trading Ltd Delivery system
GB202004705D0 (en) 2020-03-31 2020-05-13 Nicoventures Trading Ltd Delivery system
GB202004704D0 (en) 2020-03-31 2020-05-13 Nicoventures Trading Ltd Delivery system
GB202004702D0 (en) 2020-03-31 2020-05-13 Nicoventures Trading Ltd Delivery system
GB202004730D0 (en) 2020-03-31 2020-05-13 Nicoventures Trading Ltd Delivery system
GB202004707D0 (en) 2020-03-31 2020-05-13 Nicoventures Holdings Ltd Delivery system
GB202004701D0 (en) 2020-03-31 2020-05-13 Nicoventures Holdings Ltd Delivery system
JP6785391B1 (ja) * 2020-04-02 2020-11-18 日本たばこ産業株式会社 エアロゾル吸引器及びエアロゾル吸引器の電源ユニット
WO2021217292A1 (zh) * 2020-04-26 2021-11-04 深圳麦克韦尔科技有限公司 发热组件、雾化器和电子雾化装置
US11535435B2 (en) * 2020-05-15 2022-12-27 Catherine Netter Locking beverage container
CN113693285A (zh) * 2020-05-21 2021-11-26 云南中烟工业有限责任公司 具有递进式密封结构的加热烟具、加热组件及其使用方法
KR102472655B1 (ko) 2020-06-12 2022-11-30 주식회사 케이티앤지 증기화기 및 이를 포함하는 에어로졸 발생 장치
KR102525021B1 (ko) 2020-06-12 2023-04-21 주식회사 케이티앤지 증기화기 및 이를 포함하는 에어로졸 발생 장치
KR102167030B1 (ko) * 2020-08-21 2020-10-16 주식회사 케이티앤지 에어로졸 발생원 지지 조립체 및 이를 구비한 에어로졸 생성 장치
WO2022043432A1 (en) * 2020-08-28 2022-03-03 Jt International S.A. An aerosolization module for an aerosol generating system having an optimized configuration
JP7324360B2 (ja) * 2020-09-07 2023-08-09 ケーティー アンド ジー コーポレイション エアロゾル生成装置
US11653703B2 (en) * 2020-10-01 2023-05-23 Made It LLC Vaporizer system
US11856986B2 (en) 2020-10-19 2024-01-02 Rai Strategic Holdings, Inc. Customizable panel for aerosol delivery device
JP1715888S (ja) 2020-10-30 2022-05-25 喫煙用エアロゾル発生器
JP1714442S (ja) 2020-10-30 2022-05-10 喫煙用エアロゾル発生器
USD990765S1 (en) 2020-10-30 2023-06-27 Nicoventures Trading Limited Aerosol generator
JP1714440S (ja) 2020-10-30 2022-05-10 喫煙用エアロゾル発生器
JP1714443S (ja) 2020-10-30 2022-05-10 喫煙用エアロゾル発生器
JP1714441S (ja) 2020-10-30 2022-05-10 喫煙用エアロゾル発生器
CN214386076U (zh) * 2020-11-16 2021-10-15 深圳市合元科技有限公司 电子雾化装置
DE102020130560A1 (de) 2020-11-19 2022-05-19 Schott Ag Elektrisch leitfähiger, poröser Sinterkörper mit zumindest zwei elektrisch leitfähigen Materialien und Verfahren zu dessen Herstellung
DE102020130559A1 (de) 2020-11-19 2022-05-19 Schott Ag Elektrisch leitfähiger poröser Sinterkörper
KR102523579B1 (ko) * 2020-12-04 2023-04-20 주식회사 케이티앤지 에어로졸 생성 장치
US11832651B2 (en) * 2020-12-16 2023-12-05 Flume Sarl Hookah bowl thermal vaporizer
WO2022140292A1 (en) * 2020-12-21 2022-06-30 Breatheasy Co. Aerosol generating device and method
CN112675389A (zh) * 2020-12-29 2021-04-20 褚艳红 一种医用儿科药液雾化装置及其使用方法
CN117615663A (zh) * 2021-02-24 2024-02-27 莱战略控股公司 气溶胶前体制剂
WO2022200855A1 (en) * 2021-03-23 2022-09-29 Cme Fz Llc Devices, systems, and methods for monitoring fluid intake, healthcare gamification, and health prediction
KR20230151543A (ko) 2021-03-31 2023-11-01 니코벤처스 트레이딩 리미티드 전달 시스템
EP4312624A1 (en) 2021-03-31 2024-02-07 Nicoventures Trading Limited Delivery system
EP4315515A1 (en) 2021-03-31 2024-02-07 Nicoventures Trading Limited Electrical electrode pin and non-combustible aerosol provision system comprising said electrode pin
US20240180246A1 (en) 2021-03-31 2024-06-06 Nicoventures Trading Limited Delivery system
DE102021108387A1 (de) 2021-04-01 2022-10-06 Schott Ag Elektrisch leitend beschichteter poröser Sinterkörper mit homogener Schichtdicke
KR102545831B1 (ko) * 2021-04-28 2023-06-20 주식회사 케이티앤지 에어로졸 생성장치
USD989384S1 (en) 2021-04-30 2023-06-13 Nicoventures Trading Limited Aerosol generator
WO2022239386A1 (ja) * 2021-05-10 2022-11-17 日本たばこ産業株式会社 エアロゾル生成装置の電源ユニット
WO2022239381A1 (ja) 2021-05-10 2022-11-17 日本たばこ産業株式会社 エアロゾル生成装置の電源ユニット
WO2022239387A1 (ja) * 2021-05-10 2022-11-17 日本たばこ産業株式会社 エアロゾル生成装置の電源ユニット
JP7201862B2 (ja) * 2021-05-10 2023-01-10 日本たばこ産業株式会社 エアロゾル生成装置
JP7201861B2 (ja) * 2021-05-10 2023-01-10 日本たばこ産業株式会社 エアロゾル生成装置
GB202110546D0 (en) 2021-07-22 2021-09-08 Nicoventures Trading Ltd Delivery system
GB202110543D0 (en) 2021-07-22 2021-09-08 Nicoventures Trading Ltd Delivery system
GB202110541D0 (en) 2021-07-22 2021-09-08 Nicoventures Trading Ltd Delivery system
CN113424993A (zh) * 2021-08-18 2021-09-24 深圳中创雾联科技有限公司 一种可智能识别的多功能电子烟
CN113876042A (zh) * 2021-09-26 2022-01-04 深圳市克莱鹏科技有限公司 一种烟弹及电子烟
WO2023056610A1 (zh) * 2021-10-08 2023-04-13 深圳麦克韦尔科技有限公司 雾化器及电子雾化装置
JP2024536370A (ja) * 2021-10-20 2024-10-04 ケーティー アンド ジー コーポレイション エアロゾル生成装置
WO2023068636A1 (en) * 2021-10-20 2023-04-27 Kt&G Corporation Device for generating aerosol
DE102021127532B4 (de) 2021-10-22 2023-11-09 Körber Technologies Gmbh Verdampfervorrichtung, Verdampfer-Tank-Einheit, Inhalator und Verfahren zur Herstellung einer Verdampfervorrichtung
EP4440356A1 (en) * 2021-12-01 2024-10-09 KT & G Corporation Aerosol generating device
EP4445765A1 (en) * 2021-12-10 2024-10-16 Japan Tobacco Inc. Power supply unit for aerosol generating device
IL313380A (en) 2021-12-22 2024-08-01 Nicoventures Trading Ltd supply system
KR20240101948A (ko) 2021-12-22 2024-07-02 니코벤처스 트레이딩 리미티드 전달 시스템
IL313379A (en) 2021-12-22 2024-08-01 Nicoventures Trading Ltd Aerosol delivery system
IL313378A (en) 2021-12-22 2024-08-01 Nicoventures Trading Ltd Aerosol delivery system
KR20240101962A (ko) 2021-12-22 2024-07-02 니코벤처스 트레이딩 리미티드 전달 시스템
CN118488794A (zh) 2021-12-22 2024-08-13 尼科创业贸易有限公司 气溶胶供应系统
MX2024007310A (es) 2021-12-22 2024-06-26 Nicoventures Trading Ltd Sistema de suministro.
MX2024007488A (es) 2021-12-22 2024-07-09 Nicoventures Trading Ltd Sistemas de suministro de aerosol.
CN118524794A (zh) 2021-12-22 2024-08-20 尼科创业贸易有限公司 供应系统
CA3240935A1 (en) * 2021-12-22 2023-06-29 Howard ROTHWELL Cartomiser
KR20240096866A (ko) 2021-12-22 2024-06-26 니코벤처스 트레이딩 리미티드 에어로졸 전달 시스템을 위한 가열 요소들
WO2023201543A1 (zh) * 2022-04-19 2023-10-26 深圳市华诚达精密工业有限公司 电子雾化器及其雾化装置
US20230337735A1 (en) 2022-04-22 2023-10-26 Qnovia, Inc. Electronic devices for aerosolizing and inhaling liquid
DE102022110722A1 (de) * 2022-05-02 2023-11-02 Innovative Sensor Technology Ist Ag Vorrichtung zum Transferieren von einem Wirkstoff in eine Gasphase
GB202208019D0 (en) * 2022-05-31 2022-07-13 Nicoventures Trading Ltd Delivery device
CN115039920A (zh) * 2022-07-04 2022-09-13 深圳市吉迩科技有限公司 一种金属毡雾化器及金属毡雾化装置
CN117770510A (zh) * 2022-09-21 2024-03-29 上海琨纬科技有限公司 电子雾化器及雾化器防自启动装置
GB202217022D0 (en) * 2022-11-15 2022-12-28 Nicoventures Trading Ltd Heater assembly and method
GB202218991D0 (en) 2022-12-15 2023-02-01 Nicoventures Holdings Ltd Aerosol provision system
GB202218992D0 (en) 2022-12-15 2023-02-01 Nicoventures Holdings Ltd Aerosol provision system
GB202218990D0 (en) 2022-12-15 2023-02-01 Nicoventures Holdings Ltd Aerosol provision system
WO2024146917A1 (en) * 2023-01-04 2024-07-11 Gh Research Ireland Ltd Drug pad
WO2024194632A2 (en) 2023-03-21 2024-09-26 Nicoventures Trading Limited Article
WO2024194633A1 (en) 2023-03-21 2024-09-26 Nicoventures Trading Limited Article

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6155268A (en) * 1997-07-23 2000-12-05 Japan Tobacco Inc. Flavor-generating device
DE202006013439U1 (de) * 2006-09-01 2006-10-26 W + S Wagner + Söhne Mess- und Informationstechnik GmbH & Co.KG Vorrichtung zur Abgabe eines nikotinhaltigen Aerosols
WO2007042941A2 (en) * 2005-09-30 2007-04-19 Philip Morris Products S.A. Electrical smoking system
RU2336001C2 (ru) * 2003-04-29 2008-10-20 Бест Партнерз Ворлдвайд Лимитед Беспламенная электронная сигарета с распылением

Family Cites Families (269)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR960469A (ru) 1950-04-20
US2057353A (en) 1936-10-13 Vaporizing unit fob therapeutic
GB190903566A (en) 1909-02-13 1909-06-24 Adolf Speck Tobacco Pipe.
GB191125575A (en) 1911-11-16 1912-03-28 Elwin Kendal Hill Improvements in Inhalers, Respirators and the like.
GB191125763A (en) 1911-11-18 1912-08-08 Neville Ivens Spriggs Improvements in or relating to Apparatus for Repairing Indiarubber Goods.
GB191325575A (en) 1913-11-08 1914-06-18 Arthur William Rammage Trough Flooring or Decking for Bridges, Piers, Subways, Culverts, Buildings, and the like.
BE405610A (ru) 1933-10-15
US2809634A (en) 1956-08-07 1957-10-15 Murai Hirotada Inhaling and sniffing pipe
US3111396A (en) 1960-12-14 1963-11-19 Gen Electric Method of making a porous material
US3221752A (en) 1962-07-02 1965-12-07 Allen D Strahm Smoking pipe trap and filter chamber
US3431393A (en) * 1965-09-07 1969-03-04 Dainippon Jochugiku Kk Apparatus for vaporizing chemicals and perfumes by heating
US3402724A (en) * 1965-10-21 1968-09-24 Lester L. Blount Apparatus for withdrawal from tobacco habit
US3433632A (en) * 1967-06-30 1969-03-18 Union Carbide Corp Process for producing porous metal bodies
US3521643A (en) 1968-02-26 1970-07-28 Ernest Toth Cigarette-simulating inhaler
US3604428A (en) 1969-06-09 1971-09-14 A K Moukaddem Cigarette filter
DE1950439A1 (de) 1969-10-07 1971-04-15 Bbc Brown Boveri & Cie Verfahren zur Herstellung einer Kapillarstruktur fuer Waermerohre
US3804100A (en) * 1971-11-22 1974-04-16 L Fariello Smoking pipe
AU6393173A (en) 1972-10-23 1975-06-26 Broken Hill Pty Co Ltd Steel compacting and sintering ferrous metal flake powders to produce extruded wire particularly iron and stainless
US3964902A (en) * 1974-02-27 1976-06-22 The United States Of America As Represented By The United States National Aeronautics And Space Administration Method of forming a wick for a heat pipe
US4031906A (en) * 1974-11-29 1977-06-28 Lawrence Robert Knapp Water pipe
US4009713A (en) * 1976-04-23 1977-03-01 Rama Corporation Nebulizer
US4094119A (en) 1977-03-18 1978-06-13 The Risdon Manufacturing Company Method of making a product for dispensing a volatile substance
US4193513A (en) 1977-04-19 1980-03-18 Bull Glen C Jr Non-aerosol type dispenser
US4161283A (en) 1977-06-03 1979-07-17 Sy Hyman Article for the dispensing of volatiles
US4145001A (en) 1977-09-15 1979-03-20 American Can Company Packaging for controlled release of volatile substances
JPS5752456A (en) 1980-09-11 1982-03-27 Matsushita Electric Ind Co Ltd Evaporating unit for liquid
DE3148335C2 (de) 1981-12-07 1984-03-29 Adam Dr. 8630 Coburg Müller Verfahren zur Gewinnung von Aromastoffen aus Tabak und deren Verwendung
DE3218760A1 (de) 1982-05-18 1983-12-01 Adam Dr. 8630 Coburg Müller Klares tabak-aromaoel, sowie verfahren zu seiner gewinnung aus einem tabakextrakt und dessen verwendung
JPS59106340A (ja) 1982-12-13 1984-06-20 Nissan Motor Co Ltd フロアコンソ−ル
US4503851A (en) 1983-08-05 1985-03-12 Klaus Braunroth Disposable face mask with odor masking attachment
JPS6196763A (ja) 1984-10-17 1986-05-15 Fuji Electric Co Ltd 半導体素子の制御回路
JPS6196765A (ja) 1984-10-17 1986-05-15 Toshiba Corp 金属パタ−ン形成方法
US4588976A (en) 1984-11-19 1986-05-13 Microelettrica Scientifica S.P.S. Resistors obtained from sheet material
US4676237A (en) * 1985-01-29 1987-06-30 Boutade Worldwide Investments Nv Inhaler device
US4677992A (en) 1986-02-10 1987-07-07 Bliznak Bedrich V Smoking apparatus having convoluted filtering/heat-reduction passageway
US4735217A (en) 1986-08-21 1988-04-05 The Procter & Gamble Company Dosing device to provide vaporized medicament to the lungs as a fine aerosol
US4858630A (en) * 1986-12-08 1989-08-22 R. J. Reynolds Tobacco Company Smoking article with improved aerosol forming substrate
US4830028A (en) 1987-02-10 1989-05-16 R. J. Reynolds Tobacco Company Salts provided from nicotine and organic acid as cigarette additives
US5052413A (en) 1987-02-27 1991-10-01 R. J. Reynolds Tobacco Company Method for making a smoking article and components for use therein
EP0286256A3 (en) 1987-03-23 1990-03-07 Imperial Tobacco Limited Smoking material and process for making same
GB8713645D0 (en) 1987-06-11 1987-07-15 Imp Tobacco Ltd Smoking device
US5497792A (en) 1987-11-19 1996-03-12 Philip Morris Incorporated Process and apparatus for the semicontinuous extraction of nicotine from tobacco
GB8803519D0 (en) * 1988-02-16 1988-03-16 Emi Plc Thorn Electrical connectors
US4966171A (en) * 1988-07-22 1990-10-30 Philip Morris Incorporated Smoking article
US4922901A (en) 1988-09-08 1990-05-08 R. J. Reynolds Tobacco Company Drug delivery articles utilizing electrical energy
US4947874A (en) 1988-09-08 1990-08-14 R. J. Reynolds Tobacco Company Smoking articles utilizing electrical energy
EP0358114A3 (en) 1988-09-08 1990-11-14 R.J. Reynolds Tobacco Company Aerosol delivery articles utilizing electrical energy
US4947875A (en) 1988-09-08 1990-08-14 R. J. Reynolds Tobacco Company Flavor delivery articles utilizing electrical energy
US4885129A (en) * 1988-10-24 1989-12-05 The United States Of America As Represented By The Secretary Of The Air Force Method of manufacturing heat pipe wicks
US4951659A (en) 1988-11-04 1990-08-28 Automatic Liquid Packaging, Inc. Nebulizer with cooperating disengageable on-line heater
US4917301A (en) 1988-11-15 1990-04-17 International Flavors & Fragrances, Inc. Container with microporous membrane for dispensing vapor from volatile liquid
IT1231085B (it) 1989-09-29 1991-11-12 Zobele Ind Chim Apparecchio per tenere lontano dalle persone insetti volatili, in particolare zanzare e procedimento di fabbricazione.
US5060671A (en) 1989-12-01 1991-10-29 Philip Morris Incorporated Flavor generating article
US5234008A (en) * 1990-02-23 1993-08-10 R. J. Reynolds Tobacco Company Tobacco processing
US5099861A (en) * 1990-02-27 1992-03-31 R. J. Reynolds Tobacco Company Aerosol delivery article
US5027837A (en) 1990-02-27 1991-07-02 R. J. Reynolds Tobacco Company Cigarette
EP0444553A3 (en) 1990-02-27 1993-04-14 R.J. Reynolds Tobacco Company Cigarette
US5247947A (en) 1990-02-27 1993-09-28 R. J. Reynolds Tobacco Company Cigarette
US5390864A (en) 1990-03-13 1995-02-21 The Board Of Regents Of The University Of Nebraska Apparatus for forming fine particles
US5167242A (en) 1990-06-08 1992-12-01 Kabi Pharmacia Aktiebolaq Nicotine-impermeable container and method of fabricating the same
US5095921A (en) 1990-11-19 1992-03-17 Philip Morris Incorporated Flavor generating article
US5179966A (en) 1990-11-19 1993-01-19 Philip Morris Incorporated Flavor generating article
US5121881A (en) 1991-01-04 1992-06-16 Reckitt & Colman Inc. Air-freshening liquid container
US5479948A (en) * 1993-08-10 1996-01-02 Philip Morris Incorporated Electrical smoking article having continuous tobacco flavor web and flavor cassette therefor
US5505214A (en) 1991-03-11 1996-04-09 Philip Morris Incorporated Electrical smoking article and method for making same
US5665262A (en) 1991-03-11 1997-09-09 Philip Morris Incorporated Tubular heater for use in an electrical smoking article
CN2092880U (zh) * 1991-05-22 1992-01-15 巫启源 多功能吸烟器
JPH05309136A (ja) 1992-05-08 1993-11-22 Nippon Carbureter Co Ltd 呼吸ガス用加湿器
US5322075A (en) 1992-09-10 1994-06-21 Philip Morris Incorporated Heater for an electric flavor-generating article
US5666977A (en) 1993-06-10 1997-09-16 Philip Morris Incorporated Electrical smoking article using liquid tobacco flavor medium delivery system
DE69430196T2 (de) * 1993-06-29 2002-10-31 Ponwell Enterprises Ltd., Hongkong Spender
US5540241A (en) * 1993-07-22 1996-07-30 Kim; Yong-Sik Cigarette holder with filter
US5388574A (en) 1993-07-29 1995-02-14 Ingebrethsen; Bradley J. Aerosol delivery article
DE4422710C1 (de) * 1994-06-29 1995-09-14 Boehringer Ingelheim Kg Inhalationsgerät mit einem Elektronikmodul zur Funktionsüberwachung
AR002035A1 (es) 1995-04-20 1998-01-07 Philip Morris Prod Un cigarrillo, un cigarrillo y encendedor adaptados para cooperar entre si, un metodo para mejorar la entrega de aerosol de un cigarrillo, un material continuo de tabaco, un cigarrillo operativo, un metodo para manufacturar un material continuo, el material asi obtenido, un calentador, un metodo para formar un calentador y un sistema electrico para fumar
CN2220168Y (zh) * 1995-05-11 1996-02-21 王敬树 一种过滤烟斗
JPH08299862A (ja) 1995-05-11 1996-11-19 Matsushita Seiko Co Ltd 蒸気発生装置
US5636787A (en) 1995-05-26 1997-06-10 Gowhari; Jacob F. Eyeglasses-attached aromatic dispensing device
US5649554A (en) * 1995-10-16 1997-07-22 Philip Morris Incorporated Electrical lighter with a rotatable tobacco supply
US5743251A (en) 1996-05-15 1998-04-28 Philip Morris Incorporated Aerosol and a method and apparatus for generating an aerosol
CN1106812C (zh) * 1996-06-17 2003-04-30 日本烟业产业株式会社 香味生成物品
DE19630619C2 (de) 1996-07-29 1998-07-09 Mueller Extract Co Gmbh Im wesentlichen nikotinfreies Tabakaromaöl sowie Verfahren zu dessen Herstellung
DE19654945C2 (de) 1996-07-29 1998-05-20 Mueller Extract Co Gmbh Im wesentlichen nikotinfreies Tabakaromaöl sowie Verfahren zu dessen Herstellung
FR2752291B1 (fr) * 1996-08-12 1998-09-25 Centre Nat Etd Spatiales Evaporateur capillaire pour boucle diphasique de transfert d'energie entre une source chaude et une source froide
US6040560A (en) * 1996-10-22 2000-03-21 Philip Morris Incorporated Power controller and method of operating an electrical smoking system
SE510741E (sv) * 1997-04-07 2008-07-08 Gibeck Ab Louis Anordning och förfarande för tillförsel av behandlingsgas till människa eller djur genom förgasning av behandlingsvätska
JP2984657B2 (ja) * 1997-07-23 1999-11-29 日本たばこ産業株式会社 香味発生装置
DE29719509U1 (de) 1997-11-04 1998-01-29 Dehn, Walter, 21524 Brunstorf Tabakrauchfilter
ATE212681T1 (de) 1998-04-17 2002-02-15 Gkn Sinter Metals Gmbh Verfahren zur herstellung einer gesinterten metallschicht mit offener porosität
US6095505A (en) 1998-07-15 2000-08-01 Pegasus Research Corporation Patient-end humidifier
US6234169B1 (en) 1998-08-14 2001-05-22 Arthur Slutsky Inhaler
US6234167B1 (en) 1998-10-14 2001-05-22 Chrysalis Technologies, Incorporated Aerosol generator and methods of making and using an aerosol generator
EP1139743B1 (en) 1998-12-16 2006-03-22 University Of South Florida Exo-s-mecamylamine formulation and use in treatment
SE9900215D0 (sv) 1999-01-26 1999-01-26 Pharmacia & Upjohn Ab New use
US6196218B1 (en) 1999-02-24 2001-03-06 Ponwell Enterprises Ltd Piezo inhaler
DE60015847T2 (de) 1999-05-25 2005-10-27 Use Techno Corp., Fukuchiyama Flüssige Zubereitung zum Verdampfen gegen Erhöhung des Blutzuckerspiegels und Verdampfer für dieselbe
ITPI990039A1 (it) 1999-06-30 2001-01-02 Maico Polzella Dispositivo a forma di sigaretta per la traspirazione dei vapori disostanze liquide.
GB2356145B (en) * 1999-11-10 2004-07-28 Mas Mfg Ltd Dressing
DE10001035A1 (de) 2000-01-13 2001-07-26 Bayer Ag Wirkstoffchip mit integriertem Heizelement
WO2001070054A1 (en) 2000-03-23 2001-09-27 Philip Morris Products Inc. Electrical smoking system and method
JP2001299916A (ja) 2000-04-18 2001-10-30 Kao Corp マスク型吸入器
CA2351183C (en) 2000-06-21 2008-07-29 Fisher And Paykel Limited Conduit with heated wick
IT1318093B1 (it) 2000-06-30 2003-07-23 Chemitronic S R L Apparato ad acqua per il trattamento di prodotti industriali di scarto
DE50115743D1 (de) * 2000-09-29 2011-01-27 Tormaxx Gmbh Gas- oder hitzemelder, gaserzeuger oder hitzeerzeuger, rauchgaserzeuger sowie verfahren zum prüfen eines gasmelders oder eines hitzemelders und verfahren zum prüfen eines rauchgasmelders
US6681998B2 (en) * 2000-12-22 2004-01-27 Chrysalis Technologies Incorporated Aerosol generator having inductive heater and method of use thereof
US6501052B2 (en) 2000-12-22 2002-12-31 Chrysalis Technologies Incorporated Aerosol generator having multiple heating zones and methods of use thereof
US6799572B2 (en) * 2000-12-22 2004-10-05 Chrysalis Technologies Incorporated Disposable aerosol generator system and methods for administering the aerosol
US6701921B2 (en) * 2000-12-22 2004-03-09 Chrysalis Technologies Incorporated Aerosol generator having heater in multilayered composite and method of use thereof
US7674429B2 (en) * 2001-01-22 2010-03-09 Johnsondiversey, Inc. Electrostatic disinfectant delivery
US7024723B2 (en) 2001-06-15 2006-04-11 Headwaters R&D, Inc. Duster cleaning member for a vacuum cleaner
US20030005620A1 (en) * 2001-07-06 2003-01-09 Ananth Gopal P. Wick based liquid emanation system
JP4680498B2 (ja) * 2001-07-31 2011-05-11 フィリップ・モーリス・プロダクツ・ソシエテ・アノニム 蒸発した液体を発生するための方法及び装置
US6640050B2 (en) 2001-09-21 2003-10-28 Chrysalis Technologies Incorporated Fluid vaporizing device having controlled temperature profile heater/capillary tube
GB0126150D0 (en) 2001-10-31 2002-01-02 Gw Pharma Ltd A device method and resistive element for vaporising a substance
US6681769B2 (en) 2001-12-06 2004-01-27 Crysalis Technologies Incorporated Aerosol generator having a multiple path heater arrangement and method of use thereof
US6804458B2 (en) * 2001-12-06 2004-10-12 Chrysalis Technologies Incorporated Aerosol generator having heater arranged to vaporize fluid in fluid passage between bonded layers of laminate
US20030106551A1 (en) * 2001-12-06 2003-06-12 Sprinkel F. Murphy Resistive heater formed inside a fluid passage of a fluid vaporizing device
US20030168057A1 (en) * 2001-12-14 2003-09-11 Inhale Therapeutic Systems, Inc. Electronically controllable aerosol delivery
US6701922B2 (en) * 2001-12-20 2004-03-09 Chrysalis Technologies Incorporated Mouthpiece entrainment airflow control for aerosol generators
EP1468618B1 (en) 2001-12-28 2008-07-09 Japan Tobacco Inc. Smoking implement
ES2603067T3 (es) 2002-01-15 2017-02-23 Novartis Ag Métodos y sistemas para hacer funcionar un generador de aerosol
US6871792B2 (en) 2002-03-22 2005-03-29 Chrysalis Technologies Incorporated Apparatus and method for preparing and delivering fuel
US6829044B2 (en) * 2002-04-24 2004-12-07 Msp Corporation Compact, high-efficiency condensation nucleus counter
US6830046B2 (en) 2002-04-29 2004-12-14 Hewlett-Packard Development Company, L.P. Metered dose inhaler
WO2003095005A1 (en) * 2002-05-10 2003-11-20 Chrysalis Technologies Incorporated Aerosol generator for drug formulation and methods of generating aerosol
RU2311859C2 (ru) 2002-05-13 2007-12-10 Тинк! Глобал Б.В. Ингалятор
SE0201669D0 (sv) 2002-06-03 2002-06-03 Pharmacia Ab New formulation and use thereof
US7767698B2 (en) 2002-06-03 2010-08-03 Mcneil Ab Formulation and use thereof
GB0215145D0 (en) 2002-07-01 2002-08-07 Reckitt Benckiser Uk Ltd Electrical heated vapour dispensing apparatus
US7267120B2 (en) * 2002-08-19 2007-09-11 Allegiance Corporation Small volume nebulizer
EP1535524B1 (en) 2002-09-04 2012-10-17 Japan Tobacco Inc. Filter for smoking
EP1549440B1 (en) 2002-09-06 2012-12-12 Philip Morris USA Inc. Aerosol generating device and method of use thereof
WO2004022128A2 (en) 2002-09-06 2004-03-18 Chrysalis Technologies Incorporated Liquid aerosol formulations and aerosol generating devices and methods for generating aerosols
JP4387948B2 (ja) 2002-09-06 2009-12-24 フィリップ モーリス ユーエスエー インコーポレイテッド エアロゾルを発生させる方法
JP4261851B2 (ja) 2002-09-11 2009-04-30 キヤノン株式会社 吸入装置および該吸入装置の制御方法
US7719054B2 (en) 2006-05-31 2010-05-18 Advanced Analogic Technologies, Inc. High-voltage lateral DMOS device
CN100381082C (zh) * 2003-03-14 2008-04-16 韩力 一种非可燃性电子雾化香烟
DE10330681B3 (de) 2003-03-26 2004-06-24 Ionto-Comed Gmbh Gerät zur Kräuterbedampfung
US7101341B2 (en) 2003-04-15 2006-09-05 Ross Tsukashima Respiratory monitoring, diagnostic and therapeutic system
US7100618B2 (en) 2003-05-05 2006-09-05 Armando Dominguez Sensory smoking simulator
US7683029B2 (en) * 2003-05-07 2010-03-23 Philip Morris Usa Inc. Liquid aerosol formulations containing insulin and aerosol generating devices and methods for generating aerosolized insulin
JP4300871B2 (ja) 2003-05-09 2009-07-22 三菱マテリアル株式会社 シート状多孔質金属体の製造方法
US7318659B2 (en) * 2004-03-03 2008-01-15 S. C. Johnson & Son, Inc. Combination white light and colored LED light device with active ingredient emission
JP2005034021A (ja) 2003-07-17 2005-02-10 Seiko Epson Corp 電子タバコ
KR20050037919A (ko) 2003-10-20 2005-04-25 (주)지엔씨 액체 증기 흡입 기구
DE10356925B4 (de) 2003-12-05 2006-05-11 Lts Lohmann Therapie-Systeme Ag Inhalator für basische pharmazeutische Wirkstoffe sowie Verfahren für dessen Herstellung
US20050194013A1 (en) 2004-03-02 2005-09-08 Wright Milton F. Hydrated lime tobacco smoke filter
CN2719043Y (zh) * 2004-04-14 2005-08-24 韩力 雾化电子烟
US6997243B2 (en) * 2004-04-23 2006-02-14 Hul-Chun Hsu Wick structure of heat pipe
EP1745247B1 (en) 2004-04-23 2015-11-11 Philip Morris Products S.a.s. Aerosol generators and methods for producing aerosols
CA2854037C (en) 2004-06-03 2020-06-23 Alexza Pharmaceuticals, Inc. Multiple dose condensation aerosol devices and uses thereof
US7540286B2 (en) 2004-06-03 2009-06-02 Alexza Pharmaceuticals, Inc. Multiple dose condensation aerosol devices and methods of forming condensation aerosols
WO2006004646A1 (en) * 2004-06-28 2006-01-12 Nektar Therapeutics Aerosol formulation comprising nicotine salt
MX2007002744A (es) * 2004-09-08 2007-05-16 Dial Corp Metodos y aparatos para un dispositivo de dispersion de vapor a bajo costo.
CN2754386Y (zh) * 2004-11-09 2006-02-01 周毅 新型液体吸收过滤香烟滤嘴
US20060137681A1 (en) 2004-12-28 2006-06-29 Ric Investments, Llc. Actuator for a metered dose inhaler
US8322350B2 (en) * 2004-12-30 2012-12-04 Philip Morris Usa Inc. Aerosol generator
CA2595831C (en) 2005-02-02 2013-08-06 Oglesby & Butler Research & Development Limited A device for vaporising vaporisable matter
JP4861033B2 (ja) 2005-03-30 2012-01-25 キヤノン株式会社 薬剤吐出装置
CH698603B1 (de) 2005-04-29 2009-09-15 Burger Soehne Man Ag Inhalator.
US7363828B2 (en) 2005-08-25 2008-04-29 Msp Corporation Aerosol measurement by dilution and particle counting
US7186958B1 (en) 2005-09-01 2007-03-06 Zhao Wei, Llc Inhaler
WO2007035913A2 (en) * 2005-09-21 2007-03-29 Kurve Technology, Inc. Medicament delivery control, monitoring, and reporting system and method
WO2007035940A2 (en) * 2005-09-23 2007-03-29 Alza Corporation Transdermal norelgestromin delivery system
JP4789567B2 (ja) 2005-10-04 2011-10-12 キヤノン株式会社 液体吐出装置
DE102005054344B3 (de) * 2005-11-15 2007-06-28 Dräger Medical AG & Co. KG Flüssigkeitsverdampfer
WO2007079118A1 (en) 2005-12-29 2007-07-12 Molex Incorporated Heating element connector assembly with press-fit terminals
DE102006004484A1 (de) * 2006-01-29 2007-08-09 Karsten Schmidt Technische Lösung zum Betreiben von rauchfreien Zigaretten
CN201067079Y (zh) 2006-05-16 2008-06-04 韩力 仿真气溶胶吸入器
WO2007141668A2 (en) * 2006-06-09 2007-12-13 Philip Morris Products S.A. Indirectly heated capillary aerosol generator
EP2043720A2 (en) 2006-07-20 2009-04-08 CNR Consiglio Nazionale Delle Ricerche Apparatus for controlled and automatic medical gas dispensing
PL2047880T3 (pl) 2006-08-01 2018-02-28 Japan Tobacco Inc. Urządzenie do zasysania aerozolu oraz sposób zasysania aerozolu
JP2008035742A (ja) 2006-08-03 2008-02-21 British American Tobacco Pacific Corporation 揮発装置
US7518123B2 (en) 2006-09-25 2009-04-14 Philip Morris Usa Inc. Heat capacitor for capillary aerosol generator
CA2660362C (en) 2006-09-27 2018-03-20 Niconovum Ab Use of a device or spray apparatus for oral administration of a liquid containing an active substance for improved absorption
DE102007026979A1 (de) * 2006-10-06 2008-04-10 Friedrich Siller Inhalationsvorrichtung
US7726320B2 (en) * 2006-10-18 2010-06-01 R. J. Reynolds Tobacco Company Tobacco-containing smoking article
CN200966824Y (zh) 2006-11-10 2007-10-31 韩力 吸入雾化装置
US9061300B2 (en) * 2006-12-29 2015-06-23 Philip Morris Usa Inc. Bent capillary tube aerosol generator
ES2594867T3 (es) 2007-03-09 2016-12-23 Alexza Pharmaceuticals, Inc. Unidad de calentamiento para usar en un dispositivo de administración de fármaco
EP1972215A1 (de) * 2007-03-20 2008-09-24 Wedegree GmbH Rauchfreies Zigarettenersatzprodukt
CN103418062B (zh) * 2007-03-30 2017-04-12 菲利普莫里斯生产公司 用于输送药剂的装置和方法
EP1989946A1 (en) 2007-05-11 2008-11-12 Rauchless Inc. Smoking device, charging means and method of using it
NZ609725A (en) 2007-07-31 2014-10-31 Resmed Ltd Heating element, humidifier for respiratory apparatus including heating element and respiratory apparatus
DE102007047415B3 (de) 2007-10-04 2009-04-02 Dräger Medical AG & Co. KG Flüssigkeitsverdampfer
CN101883596B (zh) 2007-11-29 2012-12-12 日本烟草产业株式会社 气溶胶吸引系统
EP2110033A1 (en) 2008-03-25 2009-10-21 Philip Morris Products S.A. Method for controlling the formation of smoke constituents in an electrical aerosol generating system
RU2360583C1 (ru) 2008-04-28 2009-07-10 Владимир Николаевич Урцев Трубка для бездымного курения
EP2113178A1 (en) 2008-04-30 2009-11-04 Philip Morris Products S.A. An electrically heated smoking system having a liquid storage portion
US20090293892A1 (en) 2008-05-30 2009-12-03 Vapor For Life Portable vaporizer for plant material
CN201238609Y (zh) 2008-07-21 2009-05-20 北京格林世界科技发展有限公司 电子烟用电子雾化器
WO2010014996A2 (en) * 2008-08-01 2010-02-04 Porex Corporation Wicks for dispensers of vaporizable materials
AT507187B1 (de) 2008-10-23 2010-03-15 Helmut Dr Buchberger Inhalator
US8480010B2 (en) 2008-10-24 2013-07-09 Panasonic Corporation Surface acoustic wave atomizer
CN201379072Y (zh) 2009-02-11 2010-01-13 韩力 一种改进的雾化电子烟
WO2010095659A1 (ja) 2009-02-23 2010-08-26 日本たばこ産業株式会社 非加熱型たばこ香味吸引器
JP5388241B2 (ja) 2009-02-23 2014-01-15 日本たばこ産業株式会社 非加熱型香味吸引器
CN101518361B (zh) 2009-03-24 2010-10-06 北京格林世界科技发展有限公司 高仿真电子烟
CN201375023Y (zh) 2009-04-15 2010-01-06 中国科学院理化技术研究所 一种采用电容供电的加热雾化电子烟
CN101878958B (zh) 2009-07-14 2012-07-18 方晓林 电子烟的雾化器
CN101606758B (zh) 2009-07-14 2011-04-13 方晓林 电子烟
RU89927U1 (ru) 2009-07-22 2009-12-27 Владимир Николаевич Урцев Трубка для бездымного курения
CN101648041A (zh) 2009-09-02 2010-02-17 王成 一种医疗微孔雾化吸药器
EP2319334A1 (en) 2009-10-27 2011-05-11 Philip Morris Products S.A. A smoking system having a liquid storage portion
EP2327318A1 (en) 2009-11-27 2011-06-01 Philip Morris Products S.A. An electrically heated smoking system with internal or external heater
EP2340729A1 (en) 2009-12-30 2011-07-06 Philip Morris Products S.A. An improved heater for an electrically heated aerosol generating system
AT508244B1 (de) 2010-03-10 2010-12-15 Helmut Dr Buchberger Inhalatorkomponente
AT509046B1 (de) 2010-03-10 2011-06-15 Helmut Dr Buchberger Flächiger verdampfer
RU94815U1 (ru) 2010-03-18 2010-06-10 Евгений Иванович Евсюков Электронная сигарета
US8550068B2 (en) 2010-05-15 2013-10-08 Nathan Andrew Terry Atomizer-vaporizer for a personal vaporizing inhaler
CN201830900U (zh) 2010-06-09 2011-05-18 李永海 电子香烟的烟液雾化装置
CA2805602A1 (en) 2010-08-23 2012-03-01 Takeda Gmbh Humidified particles comprising a therapeutically active substance
AT510504B1 (de) 2010-09-30 2014-03-15 Schriebl Franz Verfahren und vorrichtung zum entfernen von an gefässen oder behältern anhaftenden teilen
US9301547B2 (en) 2010-11-19 2016-04-05 Huizhou Kimree Technology Co., Ltd. Shenzhen Branch Electronic cigarette, electronic cigarette smoke capsule and atomization device thereof
CN201860753U (zh) 2010-12-09 2011-06-15 深圳市施美乐科技有限公司 一种电子香烟一次性雾化装置
RU103281U1 (ru) 2010-12-27 2011-04-10 Общество с ограниченной ответственностью "ПромКапитал" Электронная сигарета
AT510405B1 (de) 2011-02-11 2012-04-15 Helmut Dr Buchberger Inhalatorkomponente
CA2824970C (en) 2011-02-11 2016-05-03 Batmark Limited Inhaler component
AT510837B1 (de) 2011-07-27 2012-07-15 Helmut Dr Buchberger Inhalatorkomponente
JP5598991B2 (ja) 2011-06-03 2014-10-01 日本たばこ産業株式会社 香味発生装置
CN202172846U (zh) 2011-06-17 2012-03-28 北京正美华信生物科技有限公司 一种带吸气自动感应的电子烟
RU2595971C2 (ru) 2011-09-06 2016-08-27 Бритиш Америкэн Тобэкко (Инвестментс) Лимитед Нагревание курительного материала
GB201207054D0 (en) 2011-09-06 2012-06-06 British American Tobacco Co Heating smokeable material
EP3892125A3 (en) 2011-09-06 2022-01-05 Nicoventures Trading Limited Heating smokable material
WO2013034453A1 (en) 2011-09-06 2013-03-14 British American Tobacco (Investments) Limited Heating smokeable material
CN103608619B (zh) 2011-09-06 2015-12-02 英美烟草(投资)有限公司 绝热构件
RU2606326C2 (ru) 2011-09-06 2017-01-10 Бритиш Америкэн Тобэкко (Инвестментс) Лимитед Нагревание курительного материала
US20130087160A1 (en) 2011-10-06 2013-04-11 Alexandru Gherghe Electronic pipe personal vaporizer with concealed removable atomizer/ cartomizer
RU115629U1 (ru) 2011-10-10 2012-05-10 Сергей Павлович Кузьмин Электронная сигарета
AT511344B1 (de) 2011-10-21 2012-11-15 Helmut Dr Buchberger Inhalatorkomponente
EP3251532B1 (en) 2011-11-28 2019-03-27 Roka Sports Inc. A swimsuit
BR112014012258B1 (pt) 2011-12-30 2021-01-12 Philip Morris Products S.A. dispositivo gerador de aerossol e método de aquecimento de um substrato formador de aerossol
US9854839B2 (en) 2012-01-31 2018-01-02 Altria Client Services Llc Electronic vaping device and method
MX2014010189A (es) 2012-02-22 2014-11-14 Altria Client Services Inc Articulo electronico para fumar y elemento calentador mejorado.
KR101684756B1 (ko) 2012-04-01 2016-12-08 킴르 하이테크 인코퍼레이티드 무화장치 및 그 전자담배
CN104254258B (zh) 2012-04-12 2018-11-30 Jt国际公司 浮质发生装置
US20130284192A1 (en) 2012-04-25 2013-10-31 Eyal Peleg Electronic cigarette with communication enhancements
CN203776160U (zh) 2012-06-20 2014-08-20 惠州市吉瑞科技有限公司 电子烟及电子烟装置
US10004259B2 (en) 2012-06-28 2018-06-26 Rai Strategic Holdings, Inc. Reservoir and heater system for controllable delivery of multiple aerosolizable materials in an electronic smoking article
CN202722498U (zh) 2012-06-29 2013-02-13 陈超 电子烟雾化器
GB2504074A (en) 2012-07-16 2014-01-22 Nicoventures Holdings Ltd Electronic cigarette
GB2504076A (en) 2012-07-16 2014-01-22 Nicoventures Holdings Ltd Electronic smoking device
GB2504075A (en) 2012-07-16 2014-01-22 Nicoventures Holdings Ltd Electronic smoking device
RU122000U1 (ru) 2012-07-18 2012-11-20 Общество с ограниченной ответственностью "САМАРИН" Электронная сигарета с изменяемым вкусом
KR20150012253A (ko) 2012-07-23 2015-02-03 킴르 하이테크 인코퍼레이티드 전자담배
CN202750708U (zh) 2012-08-17 2013-02-27 深圳市愉康科技有限公司 电子烟的改良结构
RU124120U1 (ru) 2012-09-03 2013-01-20 Андрей Олегович Козулин Неперезаряжаемая (одноразовая) электронная сигарета
US8881737B2 (en) 2012-09-04 2014-11-11 R.J. Reynolds Tobacco Company Electronic smoking article comprising one or more microheaters
US8910639B2 (en) 2012-09-05 2014-12-16 R. J. Reynolds Tobacco Company Single-use connector and cartridge for a smoking article and related method
JP5895062B2 (ja) 2012-10-18 2016-03-30 日本たばこ産業株式会社 非燃焼型香味吸引器
US8910640B2 (en) 2013-01-30 2014-12-16 R.J. Reynolds Tobacco Company Wick suitable for use in an electronic smoking article
CN203072896U (zh) 2013-01-31 2013-07-24 深圳市合元科技有限公司 电子烟用雾化器及电子烟
DE202013100606U1 (de) 2013-02-11 2013-02-27 Ewwk Ug Elektronische Zigarette oder Pfeife
WO2014130692A1 (en) 2013-02-22 2014-08-28 Altria Client Services Inc. Electronic smoking article
US9993023B2 (en) 2013-02-22 2018-06-12 Altria Client Services Llc Electronic smoking article
RU2662212C2 (ru) 2013-02-22 2018-07-24 Олтриа Клайент Сервисиз Ллк Электронное курительное изделие
US9277770B2 (en) 2013-03-14 2016-03-08 R. J. Reynolds Tobacco Company Atomizer for an aerosol delivery device formed from a continuously extending wire and related input, cartridge, and method
US20140261488A1 (en) 2013-03-15 2014-09-18 Altria Client Services Inc. Electronic smoking article
US9877508B2 (en) 2013-03-15 2018-01-30 Altria Client Services Llc Electronic cigarette
CN104994757B (zh) 2013-03-15 2018-05-18 菲利普莫里斯生产公司 利用差温加热的气雾生成系统
RU132318U1 (ru) 2013-04-29 2013-09-20 Андрей Олегович Козулин Вэйпор (электронный ингалятор)
GB2513639A (en) 2013-05-02 2014-11-05 Nicoventures Holdings Ltd Electronic cigarette
GB2513638A (en) 2013-05-02 2014-11-05 Nicoventures Holdings Ltd Electronic cigarette
GB2513637A (en) 2013-05-02 2014-11-05 Nicoventures Holdings Ltd Electronic cigarette
GB201401520D0 (en) 2014-01-29 2014-03-12 Batmark Ltd Aerosol-forming member
CN203986095U (zh) 2014-04-03 2014-12-10 惠州市吉瑞科技有限公司 一种雾化器以及电子烟
GB201407426D0 (en) 2014-04-28 2014-06-11 Batmark Ltd Aerosol forming component
KR102468024B1 (ko) 2014-04-30 2022-11-17 필립모리스 프로덕츠 에스.에이. 에어로졸 발생 장치용 히터를 구비한 용기, 및 에어로졸 발생 장치
US10201198B2 (en) 2014-12-23 2019-02-12 Profit Royal Pharmaceutical Limited Protective masks with coating comprising different electrospun fibers interweaved with each other, formulations forming the same, and method of producing thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6155268A (en) * 1997-07-23 2000-12-05 Japan Tobacco Inc. Flavor-generating device
RU2336001C2 (ru) * 2003-04-29 2008-10-20 Бест Партнерз Ворлдвайд Лимитед Беспламенная электронная сигарета с распылением
WO2007042941A2 (en) * 2005-09-30 2007-04-19 Philip Morris Products S.A. Electrical smoking system
DE202006013439U1 (de) * 2006-09-01 2006-10-26 W + S Wagner + Söhne Mess- und Informationstechnik GmbH & Co.KG Vorrichtung zur Abgabe eines nikotinhaltigen Aerosols

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2678437C1 (ru) * 2015-09-28 2019-01-29 Никовенчерс Холдингз Лимитед Система и способ оповещения о политике в области курения электронных сигарет
RU2732449C2 (ru) * 2015-12-02 2020-09-17 Конинклейке Филипс Н.В. Способ измерения количества со2 при неинвазивной искусственной вентиляции легких
RU2744608C1 (ru) * 2015-12-28 2021-03-11 Раи Стретеджик Холдингс, Инк. Устройство доставки аэрозоля, включающее в себя кожух и соединитель
US10856584B2 (en) 2016-05-31 2020-12-08 Altria Client Services Llc Cartridge for an aerosol-generating system
RU2739174C2 (ru) * 2016-05-31 2020-12-21 Филип Моррис Продактс С.А. Картридж для системы, генерирующей аэрозоль
RU2738994C2 (ru) * 2016-06-20 2020-12-21 Филип Моррис Продактс С.А. Испарительный узел для генерирующей аэрозоль системы
RU2749067C2 (ru) * 2016-07-21 2021-06-03 Раи Стретеджик Холдингс, Инк. Устройство доставки аэрозоля с единым компонентом резервуара и транспортирующего жидкость элемента, содержащим пористый монолит, и относящийся к нему способ
RU2734867C2 (ru) * 2016-08-25 2020-10-23 Никовенчерс Холдингз Лимитед Электронное устройство предоставления пара с впитывающим элементом
US11883585B2 (en) 2016-08-25 2024-01-30 Nicoventures Trading Limited Electronic vapor provision device with absorbent element
US11857721B2 (en) 2016-08-25 2024-01-02 Nicoventures Trading Limited Electronic vapor provision device with absorbent element
US11883586B2 (en) 2016-08-25 2024-01-30 Nicoventures Trading Limited Electronic vapor provision device with absorbent element
US11291783B2 (en) 2016-08-25 2022-04-05 Nicoventures Trading Limited Electronic vapor provision device with absorbent element
RU2728416C1 (ru) * 2016-11-04 2020-07-29 Бритиш Америкэн Тобэкко (Инвестментс) Лимитед Композиция, применимая для имитации табачного аромата
CN109906042A (zh) * 2016-11-04 2019-06-18 英美烟草(投资)有限公司 可用于模拟烟草香味的组合物
US11944122B2 (en) 2017-03-01 2024-04-02 Nicoventures Trading Limited Vapor provision device with liquid capture
US11951248B2 (en) 2017-10-12 2024-04-09 Nicoventures Trading Limited Aerosol provision systems
RU2746461C1 (ru) * 2017-10-12 2021-04-14 Никовенчерс Трейдинг Лимитед Системы предоставления аэрозоля
US11878113B2 (en) 2017-10-12 2024-01-23 Nicoventures Trading Limited Vapour provision systems
RU2756637C1 (ru) * 2017-10-24 2021-10-04 Никовенчерс Трейдинг Лимитед Система предоставления аэрозоля и съемный элемент
US11311045B2 (en) 2018-06-05 2022-04-26 Kt&G Corporation Aerosol generating device having structure for preventing disassembly
US11399566B2 (en) 2018-06-05 2022-08-02 Kt&G Corporation Aerosol generating device
RU2743647C2 (ru) * 2018-06-05 2021-02-20 Кейтиэндджи Корпорейшн Устройство для генерирования аэрозоля
US11950628B2 (en) 2018-06-05 2024-04-09 Kt&G Corporation Aerosol generating device and case therefor
US11911557B2 (en) 2018-10-15 2024-02-27 Juul Labs, Inc. Heating element
RU2816648C2 (ru) * 2018-10-17 2024-04-02 Джуул Лэбз, Инк. Картридж для испарительного устройства
RU2822031C2 (ru) * 2019-03-11 2024-06-28 Никовенчерс Трейдинг Лимитед Устройство предоставления аэрозоля
RU2813012C2 (ru) * 2019-06-25 2024-02-06 Филип Моррис Продактс С.А. Система, генерирующая аэрозоль, и картридж для системы, генерирующей аэрозоль, с улучшенным нагревательным узлом
RU2795421C1 (ru) * 2019-10-10 2023-05-03 Джапан Тобакко Инк. Табачная маточная смесь для ароматического ингалятора, эксплуатируемого без горения, и содержащий ее табачный материал

Also Published As

Publication number Publication date
EP3738632A1 (de) 2020-11-18
EP3284500B1 (de) 2020-05-20
EP4026440B1 (de) 2024-07-24
PL2358418T5 (pl) 2024-06-10
EP3527086A1 (de) 2019-08-21
AT507188B1 (de) 2010-03-15
EP4424348A2 (de) 2024-09-04
EP2358418A1 (de) 2011-08-24
PL3738632T3 (pl) 2022-05-30
PL3527086T3 (pl) 2023-03-06
JP2016190071A (ja) 2016-11-10
EP4162823A1 (de) 2023-04-12
ES2720054T3 (es) 2019-07-17
US20140283825A1 (en) 2014-09-25
US10543323B2 (en) 2020-01-28
JP2024028880A (ja) 2024-03-05
ES2805877T3 (es) 2021-02-15
US20210077752A1 (en) 2021-03-18
EP2358418B2 (de) 2023-12-27
WO2010045671A1 (de) 2010-04-29
HUE050043T2 (hu) 2020-11-30
CN102264420A (zh) 2011-11-30
PL2358418T3 (pl) 2016-12-30
US8833364B2 (en) 2014-09-16
WO2010045670A1 (de) 2010-04-29
HUE028517T2 (en) 2016-12-28
AT507187A4 (de) 2010-03-15
EP3738632B1 (de) 2022-02-16
HK1231420A1 (zh) 2017-12-22
EP2358223B1 (de) 2017-10-11
JP7446936B2 (ja) 2024-03-11
ES2649363T3 (es) 2018-01-11
JP5969559B2 (ja) 2016-08-17
JP2018153650A (ja) 2018-10-04
CN102264420B (zh) 2014-03-12
HUE058124T2 (hu) 2022-07-28
CN105919162A (zh) 2016-09-07
CN105963833A (zh) 2016-09-28
JP5612585B2 (ja) 2014-10-22
US20170197044A1 (en) 2017-07-13
JP2012506263A (ja) 2012-03-15
JP2020179211A (ja) 2020-11-05
EP2358223A1 (de) 2011-08-24
EP2358418B1 (de) 2016-06-01
US20110226236A1 (en) 2011-09-22
RU2011120430A (ru) 2012-11-27
EP3527086B1 (de) 2022-11-30
ES2588985T3 (es) 2016-11-08
ES2911514T3 (es) 2022-05-19
AT507188A4 (de) 2010-03-15
US20170197043A1 (en) 2017-07-13
PL3284500T3 (pl) 2020-11-16
PL2358223T3 (pl) 2018-03-30
JP2015013192A (ja) 2015-01-22
EP3117860B1 (de) 2019-01-30
HUE043017T2 (hu) 2019-07-29
PL3117860T3 (pl) 2019-08-30
ES2936139T3 (es) 2023-03-14
AT507187B1 (de) 2010-03-15
US20140299125A1 (en) 2014-10-09
EP3284500A1 (de) 2018-02-21
ES2588985T5 (es) 2024-06-25
CN102264249A (zh) 2011-11-30
CN105919162B (zh) 2023-04-07
EP4026440A1 (de) 2022-07-13
US20210146067A1 (en) 2021-05-20
US20170197046A1 (en) 2017-07-13
JP6359053B2 (ja) 2018-07-18
EP3117860A1 (de) 2017-01-18
JP6736605B2 (ja) 2020-08-05

Similar Documents

Publication Publication Date Title
RU2527351C2 (ru) Ингалятор
CN107920587B (zh) 用于气溶胶生成系统的筒和装置
JP7568622B2 (ja) アトマイザーおよびアトマイザーを備えるエアロゾル発生システム
JP7394124B2 (ja) ニコチンの優先的な蒸発を提供するエアロゾル発生システム

Legal Events

Date Code Title Description
PC41 Official registration of the transfer of exclusive right

Effective date: 20210208