WO2021217292A1 - 发热组件、雾化器和电子雾化装置 - Google Patents

发热组件、雾化器和电子雾化装置 Download PDF

Info

Publication number
WO2021217292A1
WO2021217292A1 PCT/CN2020/086971 CN2020086971W WO2021217292A1 WO 2021217292 A1 WO2021217292 A1 WO 2021217292A1 CN 2020086971 W CN2020086971 W CN 2020086971W WO 2021217292 A1 WO2021217292 A1 WO 2021217292A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid
preheating part
preheating
atomizing
heat
Prior art date
Application number
PCT/CN2020/086971
Other languages
English (en)
French (fr)
Inventor
蒋振龙
吕红霞
李沛
Original Assignee
深圳麦克韦尔科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳麦克韦尔科技有限公司 filed Critical 深圳麦克韦尔科技有限公司
Priority to EP20933090.1A priority Critical patent/EP4136992A4/en
Priority to PCT/CN2020/086971 priority patent/WO2021217292A1/zh
Publication of WO2021217292A1 publication Critical patent/WO2021217292A1/zh
Priority to US18/046,086 priority patent/US20230057645A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • A24F40/46Shape or structure of electric heating means
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • A24F40/42Cartridges or containers for inhalable precursors
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/10Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor
    • H05B3/12Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material
    • H05B3/14Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material the material being non-metallic
    • H05B3/141Conductive ceramics, e.g. metal oxides, metal carbides, barium titanate, ferrites, zirconia, vitrous compounds
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/02Induction heating
    • H05B6/10Induction heating apparatus, other than furnaces, for specific applications
    • H05B6/105Induction heating apparatus, other than furnaces, for specific applications using a susceptor
    • H05B6/108Induction heating apparatus, other than furnaces, for specific applications using a susceptor for heating a fluid
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/10Devices using liquid inhalable precursors
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • A24F40/44Wicks
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/021Heaters specially adapted for heating liquids

Definitions

  • the invention relates to the technical field of electronic cigarettes, in particular to a heating component, an atomizer and an electronic atomization device.
  • Electronic cigarettes generally include an oil storage cavity for storing e-liquid, an atomizer for atomizing e-liquid, and a battery assembly for powering the atomizer.
  • the atomizer has a heating element, and the e-liquid in the oil storage cavity is atomized by penetrating or conducting to the heating element.
  • the atomizer is the core device for generating atomized gas for electronic cigarettes, and its atomization effect determines the quality and taste of the smoke.
  • a heat generating component comprising a preheating part and an atomizing part located on the preheating part, the preheating part is made of porous ceramics, and the preheating part is a positive temperature coefficient thermal material, the preheating part
  • the circuit where the atomization part is located is connected in parallel with the circuit where the atomization part is located.
  • an atomizer and an electronic atomization device including the heating component capable of preheating the e-liquid.
  • An atomizer including:
  • a liquid storage container the liquid storage container has a liquid storage cavity for storing the liquid to be atomized, and the liquid storage cavity is provided with a liquid outlet;
  • the heating component is used for atomizing the liquid to be atomized, the heating component is the above heating component, and the preheating part is close to the liquid outlet.
  • An electronic atomization device including:
  • An atomizer the atomizer includes:
  • a liquid storage container the liquid storage container has a liquid storage cavity for storing the liquid to be atomized, and the liquid storage cavity is provided with a liquid outlet;
  • a heating component for atomizing the liquid to be atomized is the above heating component, and the preheating part is close to the liquid outlet;
  • the power supply is used to supply power to the atomizer.
  • FIG. 1 is a cross-sectional view of an electronic atomization device according to an embodiment
  • Fig. 2 is a partial view of the heating component of the electronic atomization device shown in Fig. 1;
  • Fig. 3 is a circuit diagram of the heating component of an embodiment in the initial stage of energization and the latter stage of energization;
  • Fig. 4 is a circuit diagram of a heating component of another embodiment in the initial stage of energization and the latter stage of energization;
  • FIG. 5 is a cross-sectional view of an electronic atomization device according to another embodiment
  • Fig. 6 is a partial view of the heat generating component of the electronic atomization device of the embodiment shown in Fig. 5.
  • an electronic atomization device 10 of an embodiment includes a housing 101 and an atomizer 100.
  • the atomizer 100 is housed in the housing 101, and the atomizer 100 is used to atomize liquid .
  • the shape of the housing is not particularly limited, and can be designed according to actual conditions, for example, it can be columnar, stripe, or square.
  • the housing 101 may be omitted.
  • the electronic atomization device 10 is an electronic cigarette, and the atomizer 100 is used to atomize e-liquid.
  • the electronic atomization device 10 is not limited to electronic cigarettes, and may also be other devices including the above-mentioned atomizer 100, and the electronic atomization device 10 can atomize liquids with higher viscosity.
  • the atomizer 100 includes a liquid storage container 110, a heating component 130, a sealing member 140, a connection line, and a power source.
  • the liquid storage container 110 has a liquid storage cavity 120 for storing a liquid to be atomized (such as e-liquid).
  • a liquid to be atomized such as e-liquid
  • the liquid storage cavity 120 has a liquid outlet 121, and the liquid outlet 121 is used for the inflow and/or outflow of the liquid to be atomized.
  • the heating component 130 is close to the liquid outlet 121, and the heating component 130 is used for sucking the liquid to be atomized in the liquid storage cavity 120, and preheating and atomizing the liquid to be atomized.
  • the heating element 130 includes a preheating part 131 and an atomizing part 133 on the preheating part 131.
  • the preheating part 131 is made of porous ceramics, and the preheating part 131 is made of a positive temperature coefficient thermal material (PTC). ).
  • PTC positive temperature coefficient thermal material
  • the preheating part 131 has a liquid inlet surface 131 a and a liquid outlet surface 131 b opposite to the liquid inlet surface 131 a, and the liquid inlet surface 131 a is close to the liquid outlet 121.
  • the preheating part 131 is used to suck the liquid to be atomized in the liquid storage cavity 120 and preheat the liquid to be atomized sucked from the liquid storage cavity 120, so as to improve the fluidity of the liquid to be atomized in the preheating part 131, In turn, the liquid to be atomized in the liquid storage cavity 120 can reach the atomizing part 133 more quickly and be atomized into smoke for the user to inhale.
  • the preheating part 131 is porous ceramics, the porous ceramics enables the preheating part 131 to absorb the liquid to be atomized in the liquid storage cavity 120 and play a role of diversion; at the same time, the preheating part 131 is also a positive temperature coefficient heat.
  • the sensitive material that is, the preheating part 131 is a thermistor, and its resistance will increase as the temperature rises. This enables the preheating part 131 to use electrical energy to preheat the liquid to be atomized during the initial period of power-on.
  • the electric energy can be mainly used for atomizing the liquid to be atomized, thereby realizing the preheating of the liquid to be atomized, and avoiding that only a small amount of the liquid to be atomized is atomized due to the poor fluidity of the liquid to be atomized; at the same time, Since the preheating circuit is not always in working condition (not always a large amount of current is passed through), when the electric energy is mainly used for atomizing the liquid to be atomized, the preheating part 131 preheats the liquid to be atomized by the residual temperature, which also realizes energy saving.
  • the Curie temperature of the preheating part 131 does not exceed 200°C. Furthermore, the Curie temperature of the preheating part 131 is 100 degreeC-200 degreeC.
  • the Curie temperature refers to the temperature at which the resistance value of the PTC starts to increase steeply.
  • the Curie temperature of the preheating part 131 is set according to the above so that the liquid to be atomized is quickly preheated; at the same time, the Curie temperature of the preheating part 131 is set according to the above, and also controls the distribution of electric energy, by controlling the electric energy on the preheating part 131 Therefore, it is avoided that excessive electric energy on the preheating part 131 is converted into heat energy, which causes waste, and the utilization rate of electric energy is improved.
  • the lift-to-drag ratio of the preheating part 131 is greater than 1 ⁇ 10 2 . Furthermore, the lift-to-drag ratio of the preheating part 131 is 1 ⁇ 10 2 to 1 ⁇ 10 5 . Furthermore, the lift-to-drag ratio of the preheating part 131 is 10 3 --10 5 .
  • the lift-to-resistance ratio of the preheating part 131 is set as described above, so that the resistance value of the preheating part 131 can be increased quickly after reaching a temperature range suitable for preheating, so that the resistance of the preheating part 131 rises rapidly, so that the preheating part 131
  • the circuit where it is located is turned into an open circuit more quickly, so that the current mainly flows to the circuit where the atomization part 133 is located, realizing a rapid transition between electrical energy mainly used for preheating and mainly used for atomization.
  • the resistivity of the preheating part 131 under normal temperature conditions is 0.25 ⁇ /cm to 28 ⁇ /cm. Furthermore, the resistivity of the preheating part 131 under normal temperature conditions is 1 ⁇ /cm to 20 ⁇ /cm.
  • the electrical resistivity of the preheating part 131 can be set as described above to quickly generate heat in the preheating part 131 and heat the liquid to be atomized in the pores of the preheating part 131.
  • the preheating part 131 is selected from BaTiO 3 -based PTC ceramics with a porous structure, SrTiO 3 -based PTC ceramics with a porous structure, PbTiO 3 -based PTC ceramics with a porous structure, and V 2 O with a porous structure One of 3 base PTC ceramics.
  • PTC ceramics are made of barium titanate (or strontium titanate, lead titanate) as the main component, adding a small amount of rare earth (Y, Nb, Bi, Sb), acceptor (Mn, Fe) elements, and glass (silicon oxide, oxide Aluminum) and other additives, after sintering semiconductor ceramics.
  • Ceramic PTC has a small resistance below the Curie temperature, and the resistance above the Curie temperature increases stepwise by 1,000 to one million times.
  • Commonly used doping methods are donor doping with La, Y, Nb, and Sb plasma, while acceptor doping with 3d group metal elements such as Mn, Cu, Fe. Through doping, the resistivity of PTC ceramics under normal temperature conditions is reduced, and the lift-to-resistance ratio is improved.
  • a porous structure having a BaTiO 3 ceramic is a barium titanate-based PTC-based, porous ceramic made of doped polycrystalline ceramic material other.
  • the PTC effect of BaTiO 3 is related to its ferroelectricity, and its sudden change in resistivity corresponds to the Curie temperature.
  • the BaTiO 3 single crystal without grain boundaries does not have the PTC effect. Only when the crystal grains are fully semiconducting and the BaTiO 3 ceramics with proper insulation at the grain boundary can have the PTC effect.
  • the preheating part 131 is doped with at least one of La, Y, Nb, and Sb.
  • the resistance of BaTiO 3 based PTC ceramics is lower at room temperature, and the lift-to-resistance ratio is also improved.
  • the preheating part 131 is doped with La, and the doping amount of La is 0.1% to 1%. Doping with La can make the resistivity of the preheating part 131 reach 28 ⁇ /cm, and the lift-to-drag ratio can reach 1 ⁇ 10 3.7 .
  • the preheating part 131 is not limited to the above-mentioned BaTiO 3 -based PTC ceramic with a porous structure, and may be other PTC ceramics with a porous structure.
  • the preheating part 131 is provided with terminal electrodes, and the terminal electrodes of the preheating part 131 are electrically connected to the power source. It can be understood that the shape of the preheating part 131 is not particularly limited, for example, it may be a strip shape, a cylindrical shape, a step shape, or the like.
  • the atomizing part 133 is located between the preheating part 131 and the liquid outlet 121 and is used for atomizing the liquid to be atomized conducted by the preheating part 131. More specifically, the atomizing part 133 is located on the liquid outlet surface 131b, and the atomizing part 133 is used to atomize the liquid to be atomized. In a static state, the circuit where the preheating part 131 is located and the circuit where the atomizing part 133 is located form a parallel circuit. In the illustrated embodiment, the atomizing part 133 is provided on the liquid outlet surface 131b in a contacting manner.
  • the ratio of the resistance of the atomizing part 133 to the resistance of the preheating part 131 is 1:0.1-2. Under normal temperature conditions, the ratio of the resistance of the atomizing part 133 to the resistance of the preheating part 131 is 1:0.1-1. Furthermore, under normal temperature conditions, the ratio of the resistance of the atomizing part 133 to the resistance of the preheating part 131 is 1:0.1-0.5. According to the above arrangement, the electric energy can be mainly used for the heating of the preheating part 131 and preheating the liquid to be atomized in the initial stage of energization.
  • the material of the atomization part 133 is selected from at least one of a single metal, alloy, NTC ceramic, carbon fiber, and graphite.
  • the single metal can be a metal commonly used in the field for heat generation, such as nickel, aluminum, and the like.
  • the alloy can be selected from alloys commonly used in the field for heat generation, such as nickel alloys, silver alloys, aluminum alloys, and the like.
  • the material of the atomization part 133 is NTC ceramic.
  • the resistance value of NTC ceramics will gradually decrease as the temperature increases.
  • NTC ceramics are mostly spinel-type oxides, mainly manganese-containing binary and manganese-containing ternary oxides.
  • manganese-containing binary oxides include MnO-CuO-O 2 series oxides, MnO-CoO-O 2 series oxides, MnO-NiO-O 2 series oxides, etc.
  • manganese-containing ternary oxides include Mn- Co-Ni-based oxides, Mn-Cu-N-based oxides, Mn-Cu-Co-based oxides, etc.
  • MnO-CoO-O 2 series oxide ceramics contain 23%-60% manganese (mass fraction), the main crystal phases are cubic spinel MnCo 2 O 4 and tetragonal spinel CoMn 2 O 4 , and the main conductive phase is MnCo 2 O 4 .
  • the preheating part 131 continuously heats up, the liquid to be atomized is preheated, and part of the heat is also transferred to the atomizing part 133 to reduce the resistance value of the atomizing part 133, thereby starting the atomizing function of the atomizing part 133. Therefore, when the material of the atomizing part 133 is NTC ceramic, the heating element 130 can be preheated more quickly and atomized more quickly.
  • the resistivity of the atomizing part 133 under normal temperature conditions is 1 ⁇ 10 1 ⁇ /cm to 1 ⁇ 10 6 ⁇ /cm.
  • the resistivity of the atomizing part 133 at 60°C to 300°C is 1 ⁇ 10 -1 ⁇ /cm to 1 ⁇ 10 2 ⁇ /cm.
  • the resistivity of the atomizing part 133 at room temperature is 1 ⁇ 10 1 ⁇ /cm to 1 ⁇ 10 5 ⁇ /cm; and/or, the resistivity of the atomizing part 133 at 60°C to 300°C It is 1 ⁇ 10 -1 ⁇ /cm ⁇ 1 ⁇ 10 1.5 ⁇ /cm.
  • the material of the atomization part 133 is a normal temperature NTC thermistor ceramic. Further, the atomization part 133 is doped with at least one of La, Nd, and Ce. Doping at least one of La, Nd, and Ce is used to reduce the thermal constant and resistivity under normal temperature conditions. In one of the embodiments, the atomization part 133 is doped with La. Further, the doping amount of La is 0.2%.
  • the atomizing part 133 is also provided with terminal electrodes, and the terminal electrodes of the atomizing part 133 are electrically connected to the power source.
  • the end electrode of the atomizing part 133 also forms an ohmic contact with the preheating part 131.
  • the formation of ohmic contact between metal and semiconductor means that the contact is a pure resistance, and the smaller the resistance, the better, so that when the component is operating, most of the voltage drop is in the active region and not on the contact surface. Therefore, its I-V characteristic is a linear relationship, the larger the slope, the smaller the contact resistance, and the size of the contact resistance directly affects the performance indicators of the device.
  • Ohmic contact is widely used in metal processing, and the main measure to achieve it is high doping in the semiconductor surface layer or the introduction of a large number of recombination centers.
  • the shape of the atomization part 133 is not particularly limited, and a common shape in the art can be adopted.
  • it may be sheet-shaped, grid-shaped, strip-shaped, or the like.
  • the sealing member 140 is located between the heating component 130 and the liquid storage container 110, and is used to seal the gap between the heating component 130 and the liquid storage container 110, so that the liquid to be atomized can reach the atomization part 133 and be atomized. It does not flow out from the side wall of the liquid guiding part and/or the preheating part 131.
  • connection line is used to electrically connect the preheating part 131 and the atomizing part 133 to the power source.
  • the preheating part 131 and the atomizing part 133 are connected in parallel with the power supply through a connection line. It can be understood that in some other embodiments, the connection line may also be omitted.
  • the connection line is omitted, when the atomizer 100 is in use, a connection line is provided from the outside so that the power supply supplies power to the preheating part 131 and the atomizing part 133 in parallel.
  • the power supply is used to power the atomizer 100. Further, the power supply is used to supply power to the heating component 130.
  • the power supply is housed in the housing 101.
  • the power source may not be contained in the housing 101.
  • the power supply may be separately housed in a housing, or the power supply may also be housed in a space formed by the extension direction of the liquid storage container 110. It can be understood that in some other embodiments, the power supply may be omitted. When the power supply is omitted, the atomizer 100 supplies power to the heating component 130 through an external power supply.
  • the above electronic atomizer 10 has the following advantages:
  • the preheating part 131 is made of porous ceramics, and the preheating part 131 is a positive temperature coefficient heat-sensitive material, so that the preheating part 131 has the characteristics of a thermistor while having the function of conducting liquid.
  • Fig. 3 A in Fig. 3 is the circuit diagram at the initial stage of power-on, B in Fig.
  • R 3 is the circuit diagram at the later stage of energization, R 1 is the atomizing part 133, R 2 is the preheating part 131), at the initial stage of energizing, the atomizing part
  • the resistance of 133 is small, and the current flows through the preheating part 131 to make the preheating part 131 heat and preheat the liquid to be atomized; as the temperature of the preheating part 131 gradually rises, the resistance gradually increases, and the fluidity of the liquid to be atomized increases. , So that there is enough liquid to be atomized for atomization of the atomizing part 133.
  • the above-mentioned electronic atomization device 10 is not prone to the problems of insufficient supply and low smoke due to the high viscosity of the liquid to be atomized.
  • the pre-heating part 131 does not have to have current flowing all the time.
  • the pre-heating part 131 can further preheat the liquid to be atomized through the residual temperature.
  • the electric circuit causes the preheating part 131 to generate heat. This working mode can make the electronic atomization device 10 consume less energy.
  • the preheating part 131 continuously heats up, the liquid to be atomized is preheated, and part of the heat is also transferred to the atomizing part 133 to reduce the resistance value of the atomizing part 133, thereby starting the atomizing function of the atomizing part 133. Therefore, when the material of the atomizing part 133 is NTC ceramic, the heating element 130 can be preheated more quickly and atomized more quickly.
  • the heating component 230 of the electronic atomization device 20 also includes a liquid guiding part 235.
  • the liquid guiding portion 235 is located on the side of the preheating portion 231 away from the atomizing portion 233, and the liquid guiding portion 235 is made of porous ceramic. Specifically, the liquid guiding part 235 is located between the liquid outlet 221 and the preheating part 231, so that the liquid to be atomized flows out of the liquid outlet 221 and then reaches the preheating part 231 through the liquid guiding part 235.
  • the liquid guiding portion 235 is located on the liquid inlet surface 231a of the preheating portion 231, the liquid guiding portion 235 has a liquid absorption surface 235a, and the liquid absorption surface 235a is away from the liquid inlet surface 231a.
  • the above-mentioned electronic atomization device 20 has a structure similar to that of the electronic atomization device 10, and therefore has similar advantages as the electronic atomization device 10.
  • the electronic atomization device 20 is also provided with the liquid guiding part 235, so that the preheating part 231
  • the generated heat intensively heats the liquid to be atomized in the pores of the preheating part 231, which reduces the dissipation of heat generated by the preheating part 231 and improves the preheating efficiency of the preheating part 231.
  • the atomizer has certain requirements on the thickness of the element that plays a role of guiding the flow, and the liquid guiding part 235 and the preheating part 231 both have the role of guiding flow, therefore, the arrangement of the liquid guiding part 235 is also economical. Cost.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Resistance Heating (AREA)

Abstract

一种发热组件(130),雾化器(100)和电子雾化装置(10)。发热组件(130)包括预热部(131)和位于预热部(131)上的雾化部(133),预热部(131)为多空陶瓷,且预热部(131)为正温度系数热敏材料,预热部(131)所在的电路与雾化部(133)所在的电路并联。

Description

发热组件、雾化器和电子雾化装置 技术领域
本发明涉及电子烟技术领域,特别是涉及一种发热组件、雾化器和电子雾化装置。
背景技术
电子烟一般包括储存烟油的储油腔、雾化烟油的雾化器和为雾化器供电的电池组件。雾化器具有发热体,储油腔的烟油通过渗透或传导至发热体而被雾化。雾化器作为电子烟产生雾化气体的核心装置,其雾化效果决定了烟雾的质量与口感。
目前,电子烟对烟油的浓度要求较高,然而较高浓度烟油的粘度也较高,其渗透性或流动性就较差,不容易从储油腔渗透或传导至发热体上,进而也容易出现供油不足而被雾化的烟油较少的情况;并且目前的烟油容易受低温影响,在低温条件下,烟油更不容易渗透或传导至发热体上。因此,目前的电子烟在每次抽吸第一口时,往往容易出现烟量少或不出烟的情况,用户的体验感较差。
发明内容
基于此,针对抽吸开始时容易出烟量少或者不出烟的问题,有必要提供一种可预热烟油的发热组件。
一种发热组件,包括预热部和位于所述预热部上的雾化部,所述预热部为多孔陶瓷,且所述预热部为正温度系数热敏材料,所述预热部所在的电路与所述雾化部所在的电路并联。
此外,还提供一种包括上述可预热烟油的发热组件的雾化器及电子雾化装置。
一种雾化器,包括:
储液容器,所述储液容器具有用于储存待雾化液体的储液腔,所述储液腔开设有出液口;
发热组件,用于雾化所述待雾化液体,所述发热组件为上述的发热组件,所述预热部靠近所述出液口。
一种电子雾化装置,包括:
雾化器,所述雾化器包括:
储液容器,所述储液容器具有用于储存待雾化液体的储液腔,所述储液腔开设有出液口;
发热组件,用于雾化所述待雾化液体,所述发热组件为上述的发热组件,所述预热部靠近所述出液口;
电源,用于为所述雾化器供电。
附图说明
图1为一实施方式的电子雾化装置的剖面图;
图2为图1所示的电子雾化装置的发热组件的局部图;
图3为一实施方式的发热组件的通电初始和通电后期的电路图;
图4为另一实施方式的发热组件的通电初始和通电后期的电路图;
图5为另一实施方式的电子雾化装置的剖面图;
图6为图5所示的实施方式的电子雾化装置的发热组件的局部图。
具体实施方式
为了便于理解本发明,下面将参照相关附图对本发明进行更全面的描述。附图中给出了本发明的部分实施例。但是,本发明可以以许多不同的形式来实现,并不限于本文所描述的实施例。相反地,提供这些实施例的目的是使本发明公开内容更加透彻全面。
需要说明的是,当元件被称为“固定于”另一个元件,它可以直接在另一个元件上或者也可以存在居中的元件。当一个元件被认为是“连接”另一个元件,它可以是直接连接到另一个元件或者可能同时存在居中元件。除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本发明。本文所使用的术语“及/或”包括一个或多个相关的所列项目的任意的和所有的组合。
请参阅图1,一实施方式的电子雾化装置10,该电子雾化装置10包括外壳101和雾化器100,雾化器100收容于外壳101内,雾化器100用于将液体雾化。当然,外壳的形状没有特别限制,可以根据 实际情况而设计,例如可以是柱状,条状或方块状等。当然,可以理解的是,在一些实施方式中,外壳101可以省略。
在其中一个实施例中,电子雾化装置10为电子烟,雾化器100用于雾化烟油。当然,在其他实施方式中,电子雾化装置10不限于电子烟,还可以为其他包括上述雾化器100的器件,该电子雾化装置10能够雾化粘度较高的液体。
具体地,雾化器100包括储液容器110、发热组件130、密封件140、连接线路和电源。
具体地,储液容器110具有用于储存待雾化液体(例如烟油)的储液腔120。当然,储液腔120具有出液口121,出液口121用于待雾化液体的流入及/或流出。
具体地,发热组件130靠近出液口121,发热组件130用于吸取储液腔120的待雾化液体,并将待雾化液体预热和雾化。请一并参阅图2,发热组件130包括预热部131和位于预热部131上的雾化部133,预热部131为多孔陶瓷,且预热部131为正温度系数热敏材料(PTC)。具体地,预热部131具有入液面131a和与入液面131a相对的出液面131b,入液面131a靠近出液口121。
预热部131用于吸取储液腔120中的待雾化液体,并将从储液腔120中吸取的待雾化液体预热,从而提高预热部131中待雾化液体的流动性,进而使得储液腔120中的待雾化液体能够更快速地到达雾化部133而被雾化成烟雾,供使用者吸食。具体地,由于预热部131为多孔陶瓷,多孔陶瓷使得预热部131能够吸取储液腔120中的待雾化 液体,起导流的作用;同时,预热部131也为正温度系数热敏材料,也即是预热部131为热敏电阻,其电阻会随着温度的升高而升高,这使得预热部131在通电初期能够将电能主要用于预热待雾化液体,在预热结束后可以将电能主要用于待雾化液体雾化,从而实现了待雾化液体预热,避免了待雾化液体因流动性差而只有少量待雾化液体被雾化;同时,由于预热电路不是一直处于工作状态(不是一直有大量电流通过),在电能主要用于待雾化液体雾化时,预热部131通过余温预热待雾化液体,也实现了节能。
在其中一个实施例中,预热部131的居里温度不超过200℃。进一步地,预热部131的居里温度为100℃~200℃。居里温度是指PTC的电阻值开始陡峭地增高时的温度。预热部131的居里温度按照上述设置使得待雾化液体被快速预热;同时预热部131的居里温度按照上述设置,也控制了电能的分配,通过控制预热部131上的电能,避免预热部131上过多的电能转换成热能而造成浪费,提高了电能的利用率。
在其中一个实施例中,预热部131的升阻比大于1×10 2。进一步地,预热部131的升阻比为1×10 2~1×10 5。更进一步地,预热部131的升阻比为10 3-~10 5。预热部131的升阻比按照上述设置,可以使得预热部131在达到适合预热的温度范围之后能够快速提高电阻值,使得预热部131的电阻迅速升高,从而使得预热部131所在的电路更快速地转为断路,进而让电流主要流向雾化部133所在的电路,实现电能主要用于预热与主要用于雾化之间的快速转变。
在其中一个实施例中,预热部131在常温条件下的电阻率为0.25Ω/cm~28Ω/cm。进一步地,预热部131在常温条件下的电阻率为1Ω/cm~20Ω/cm。预热部131的电阻率按照上述设置可以使得在预热部131快速发热,加热预热部131的孔隙中的待雾化液体。
在其中一个实施例中,预热部131选自具有多孔结构的BaTiO 3基PTC陶瓷、具有多孔结构的SrTiO 3基PTC陶瓷、具有多孔结构的PbTiO 3基PTC陶瓷和具有多孔结构的V 2O 3基PTC陶瓷中的一种。
PTC陶瓷是由钛酸钡(或钛酸锶、钛酸铅)为主成分,添加少量稀土(Y、Nb、Bi、Sb)、受主(Mn、Fe)元素,以及玻璃(氧化硅、氧化铝)等添加剂,经过烧结而成的半导体陶瓷。陶瓷PTC在居里温度以下具有小电阻,居里温度以上电阻阶跃性增加1000倍~百万倍。常用的掺杂方式为施主掺杂La、Y、Nb及Sb等离子,同时受主掺杂Mn、Cu、Fe等3d族金属元素。通过掺杂,降低PTC陶瓷在常温条件下的电阻率,提高升阻比。
在本实施方式中,具有多孔结构的BaTiO 3基PTC陶瓷是以钛酸钡为基,掺杂其他的多晶陶瓷材料制成的多孔陶瓷。BaTiO 3的PTC效应与其铁电性相关,其电阻率突变同居里温度相对应。但是,没有晶界的BaTiO 3单晶不具有PTC效应。只有晶粒充分半导化,晶界具有适当绝缘性的BaTiO 3陶瓷才具有PTC效应。制备的BaTiO 3基PTC陶瓷时,采用施主掺杂使晶粒充分半导化,采用氧气氛烧结使晶界及其附近氧化,具有适当的绝缘性,缓慢冷却也使晶界氧化充分,PTC效应增强。
具体地,预热部131中掺杂有La、Y、Nb及Sb中的至少一种。通过掺杂稀土元素,使得BaTiO 3基PTC陶瓷在常温下阻抗更低,也提高升阻比。
进一步地,预热部131中掺杂有La,La的掺杂量为0.1%~1%。掺杂La可以使得预热部131的电阻率达到28Ω/cm,升阻比达到1×10 3.7。当然,在其他实施例中,预热部131不限于上述具有多孔结构的BaTiO 3基PTC陶瓷,可以是其他具有多孔结构的PTC陶瓷。
当然,预热部131上设有端电极,预热部131的端电极与电源电连接。可以理解的是,预热部131的形状没有特别限制,例如,可以是条状、圆柱状、台阶状等。
具体地,雾化部133位于预热部131与出液口121之间,用于雾化由预热部131传导过来的待雾化液体。更具体地,雾化部133位于出液面131b上,雾化部133用于将待雾化液体雾化。在静态下,预热部131所在的电路与雾化部133所在的电路构成并联电路。在图示的实施方式中,雾化部133以接触的方式设于出液面131b上。
在其中一个实施例中,在常温条件下,雾化部133的电阻与预热部131的电阻之比为1:0.1~2。在常温条件下,雾化部133的电阻与预热部131的电阻之比为1:0.1~1。进一步地,在常温条件下,雾化部133的电阻与预热部131的电阻之比为1:0.1~0.5。按照上述设置,可以使得在通电初期电能主要用于预热部131发热,预热待雾化液体。
在其中一个实施例中,雾化部133的材料选自单一金属、合金、 NTC陶瓷、碳纤维和石墨中的至少一种。具体地,单一金属可以选择本领域常用的用于发热的金属,例如镍、铝等。合金可以选择本领域常用的用于发热的合金,例如镍合金、银合金、铝合金等。
在其中一个实施例中,雾化部133的材料为NTC陶瓷。NTC陶瓷的电阻值随着温度的升高会逐渐降低。NTC陶瓷绝大多数是尖晶石型氧化物,主要是含锰二元系和含锰三元系氧化物。例如,含锰二元系氧化物有MnO-CuO-O 2系氧化物,MnO-CoO-O 2系氧化、MnO-NiO-O 2系氧化物等;含锰三元系氧化物有Mn-Co-Ni系氧化物,Mn-Cu-N系氧化物、Mn-Cu-Co系氧化物等。MnO-CoO-O 2系氧化物陶瓷含锰23%~60%(质量分数),主晶相是立方尖晶石MnCo 2O 4和四方尖晶石CoMn 2O 4,主要导电相是MnCo 2O 4。通电后,由于雾化部133的电阻较大,雾化功能的启动相对滞后,所以电能主要集中于预热部131上。随着预热部131不断地发热,待雾化液体被预热,同时部分热量也传递雾化部133上而使得雾化部133的电阻值降低,进而启动雾化部133的雾化功能。因此,当雾化部133的材料为NTC陶瓷时,可以使得发热组件130预热更快速,雾化更快速。
具体地,雾化部133的材料为NTC陶瓷时,雾化部133在常温条件下的电阻率为1×10 1Ω/cm~1×10 6Ω/cm。在其中一个实施例中,雾化部133在60℃~300℃条件下的电阻率为1×10 -1Ω/cm~1×10 2Ω/cm。进一步地,雾化部133在常温条件下的电阻率为1×10 1Ω/cm~1×10 5Ω/cm;及/或,雾化部133在60℃~300℃条件下的电阻率为1×10 -1Ω/cm~1×10 1.5Ω/cm。
在其中一个实施例中,雾化部133的材料为常温NTC热敏电阻陶瓷。进一步地,雾化部133掺杂有La、Nd及Ce中的至少一种。掺杂La、Nd及Ce中的至少一种利用降低热敏常数及常温条件下的电阻率。在其中一个实施例中,雾化部133掺杂有La。进一步地,La的掺杂量为0.2%。
当然,雾化部133上也设有端电极,雾化部133的端电极与电源电连接。雾化部133的端电极还与预热部131形成有欧姆接触。金属与半导体形成欧姆接触是指在接触处是一个纯电阻,而且该电阻越小越好,使得组件操作时,大部分的电压降在活动区(Active region)而不在接触面。因此,其I-V特性是线性关系,斜率越大接触电阻越小,接触电阻的大小直接影响器件的性能指标。欧姆接触在金属处理中应用广泛,实现的主要措施是在半导体表面层进行高掺杂或者引入大量复合中心。
可以理解的是,雾化部133的形状没有特别限制,可以采用本领域常见的形状。例如,可以是片状、网格状、条状等。
具体地,密封件140位于发热组件130和储液容器110之间,用于密封发热组件130与储液容器110之间的间隙,使得待雾化液体能够到达雾化部133上而被雾化而不从导液部及/或预热部131的侧壁上流出。
连接线路用于预热部131和雾化部133与电源的电连接。预热部131和雾化部133通过连接线路并联后与电源连接。可以理解的是,在其他一些实施例中,连接线路也可以省略。当连接线路省略时,雾 化器100在使用时是通过外界提供连接线路而使得电源为并联的预热部131和雾化部133供电。
电源用于为雾化器100供电。进一步地,电源用于为发热组件130供电。在本实施方式中,电源收容于外壳101内。当然,在其他实施方式中,电源也可以不收容于外壳101中。此时,电源可以单独地收容于一个壳体内,或者电源也可以收容于储液容器110在其延伸方向延伸而形成的空间内。可以理解的是,在其他一些实施方式中,电源可以省略。当电源省略时,雾化器100通过外接电源为发热组件130供电。
上述电子雾化器10具有如下优点:
(1)预热部131为多孔陶瓷,且预热部131属于正温度系数热敏材料,使得预热部131具有导液功能的同时具有热敏电阻的特性。请参阅图3(图3中A为通电初始阶段的电路图,图3中B为通电后期的电路图,R 1为雾化部133,R 2为预热部131),在通电初始,雾化部133的电阻较小,电流流经预热部131而使得预热部131发热,预热待雾化液体;随着预热部131温度逐渐上升,电阻逐渐增大,待雾化液体流动性提高,使得有足够的待雾化液体供雾化部133雾化。当温度达到居里温度后,预热部131的电阻会急剧上升,从而使预热部131所在的电路处于断路状态,电能主要用于雾化。因此,上述电子雾化装置10不容易因待雾化液体的粘度较高而出现供给不足而烟量少的问题。
(2)预热部131不必一直有电流通过,预热部131通过余温也 可以进一步地预热待雾化液体,在预热部131温度较低时其能够自动重启预热部131所在的电路而使预热部131发热,此种工作模式可以使得电子雾化装置10耗能更低。
(3)雾化部133为NTC陶瓷时,由于NTC陶瓷的电阻值会随着温度的升高而降低。请参阅图4(图4中A为通电初始阶段的电路图,图4中B为通电后期的电路图,R 1为预热部131,R 2为雾化部133),通电初期,由于雾化部133的电阻较大,其雾化功能的启动相对滞后,所以电能主要集中于预热部131上。随着预热部131不断地发热,待雾化液体被预热,同时部分热量也传递雾化部133上而使得雾化部133的电阻值降低,进而启动雾化部133的雾化功能。因此,当雾化部133的材料为NTC陶瓷时,可以使得发热组件130预热更快速,雾化更快速。
请参阅图5和图6,另一实施方式的电子雾化装置20,其结构大致与上述电子雾化装置10相同,其不同在于,该电子雾化装置20的发热组件230还包括导液部235,导液部235位于预热部231远离雾化部233的一侧,导液部235为多孔陶瓷。具体地,导液部235位于出液口221与预热部231之间,使得待雾化液体从出液口221流出后经导液部235到达预热部231。更具体地,导液部235位于预热部231的入液面231a上,导液部235具有吸液面235a,吸液面235a远离入液面231a。
上述电子雾化装置20具有与电子雾化装置10相似的结构,因此也具有电子雾化装置10相似的优点,此外,电子雾化装置20还通过 导液部235的设置,使得预热部231产生的热量集中加热预热部231孔隙中的待雾化液体,减少了预热部231所产生的热量的散发,提高预热部231的预热效率。另一方面,由于雾化器中对起导流作用的元件的厚度有一定的要求,而导液部235和预热部231均有导流的作用,因此,导液部235的设置也节约了成本。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (14)

  1. 一种发热组件,其特征在于,包括预热部和位于所述预热部上的雾化部,所述预热部为多孔陶瓷,且所述预热部为正温度系数热敏材料,所述预热部所在的电路与所述雾化部所在的电路并联。
  2. 根据权利要求1所述的发热组件,其特征在于,在常温条件下,所述雾化部的电阻与所述预热部的电阻之比为1:0.1~2。
  3. 根据权利要求1所述的发热组件,其特征在于,所述预热部的居里温度不超过200℃;及/或,所述预热部在常温条件下的电阻率为0.25Ω/cm~28Ω/cm;及/或,所述预热部的升阻比为1×10 2~1×10 5
  4. 根据权利要求1所述的发热组件,其特征在于,所述预热部的居里温度为100℃~200℃;及/或,所述预热部在常温条件下的电阻率为1Ω/cm~20Ω/cm;及/或,所述预热部的升阻比为1×10 3~1×10 5
  5. 根据权利要求1所述的发热组件,其特征在于,所述预热部选自具有多孔结构的BaTiO 3基PTC陶瓷、具有多孔结构的SrTiO 3基PTC陶瓷、具有多孔结构的PbTiO 3基PTC陶瓷和具有多孔结构的V 2O 3基PTC陶瓷中的一种。
  6. 根据权利要求4所述的发热组件,其特征在于,所述预热部掺杂La、Y、Nb及Sb中的至少一种。
  7. 根据权利要求1所述的发热组件,其特征在于,所述预热部具有入液面和与所述入液面相对的出液面,所述雾化部位于所述出液面上。
  8. 根据权利要求1~7任一项所述的发热组件,其特征在于,所述雾化部的材料选自单一金属、合金、NTC陶瓷、碳纤维和石墨中的至少一种。
  9. 根据权利要求8所述的发热组件,其特征在于,所述雾化部的材料为NTC陶瓷;
    所述雾化部在常温条件下的电阻率为1×10 1Ω/cm~1×10 6Ω/cm;及/或,所述雾化部在60℃~300℃条件下的电阻率为1×10 -1Ω/cm~1×10 2Ω/cm。
  10. 根据权利要求9所述的发热组件,其特征在于,所述雾化部掺杂有La、Nd及Ce中的至少一种。
  11. 根据权利要求1~7任一项所述的发热组件,其特征在于,还包括导液部,所述导液部位于所述预热部远离所述雾化部的一侧,所述导液部为多孔陶瓷。
  12. 一种雾化器,其特征在于,包括:
    储液容器,所述储液容器具有用于储存待雾化液体的储液腔,所述储液腔开设有出液口;
    发热组件,用于雾化所述待雾化液体,所述发热组件为权利要求1~11任一项所述的发热组件,所述预热部靠近所述出液口。
  13. 根据权利要求12所述的雾化器,其特征在于,所述预热部位于所述雾化部与所述出液口之间,所述雾化部用于雾化通过所述预热部传导的待雾化液体。
  14. 一种电子雾化装置,其特征在于,包括:
    雾化器,所述雾化器包括:
    储液容器,所述储液容器具有用于储存待雾化液体的储液腔,所述储液腔开设有出液口;
    发热组件,用于雾化所述待雾化液体,所述发热组件为权利要求1~11任一项所述的发热组件,所述预热部靠近所述出液口;
    电源,用于为所述雾化器供电。
PCT/CN2020/086971 2020-04-26 2020-04-26 发热组件、雾化器和电子雾化装置 WO2021217292A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP20933090.1A EP4136992A4 (en) 2020-04-26 2020-04-26 HEATING ARRANGEMENT, ATOMIZER AND ELECTRONIC ATOMIZING DEVICE
PCT/CN2020/086971 WO2021217292A1 (zh) 2020-04-26 2020-04-26 发热组件、雾化器和电子雾化装置
US18/046,086 US20230057645A1 (en) 2020-04-26 2022-10-12 Heating assembly, atomizer and electronic atomization device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/086971 WO2021217292A1 (zh) 2020-04-26 2020-04-26 发热组件、雾化器和电子雾化装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/046,086 Continuation US20230057645A1 (en) 2020-04-26 2022-10-12 Heating assembly, atomizer and electronic atomization device

Publications (1)

Publication Number Publication Date
WO2021217292A1 true WO2021217292A1 (zh) 2021-11-04

Family

ID=78373211

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/086971 WO2021217292A1 (zh) 2020-04-26 2020-04-26 发热组件、雾化器和电子雾化装置

Country Status (3)

Country Link
US (1) US20230057645A1 (zh)
EP (1) EP4136992A4 (zh)
WO (1) WO2021217292A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023216263A1 (zh) * 2022-05-13 2023-11-16 深圳麦克韦尔科技有限公司 发热体、雾化组件及电子雾化装置
EP4289296A1 (en) * 2022-06-06 2023-12-13 BYD Precision Manufacture Co., Ltd. Vaporization core and electronic vaporization apparatus

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN217509914U (zh) * 2022-04-06 2022-09-30 海南摩尔兄弟科技有限公司 雾化芯及电子雾化装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105963833A (zh) * 2008-10-23 2016-09-28 巴特马克有限公司 吸入器
US20180338528A1 (en) * 2017-05-23 2018-11-29 Shenzhen Kanger Technology Co., Ltd. Adjustable volume e-liquid storage tank and electronic cigarettes having the same
CN110213972A (zh) * 2017-01-23 2019-09-06 尼科创业控股有限公司 电子蒸汽供给系统
CN110269280A (zh) * 2019-06-21 2019-09-24 东莞市阿尔法电子科技有限公司 电子烟及烟弹识别方法
CN110447966A (zh) * 2019-08-12 2019-11-15 深圳麦克韦尔科技有限公司 发热体、雾化器和电子雾化装置
CN110584212A (zh) * 2019-09-16 2019-12-20 深圳麦克韦尔科技有限公司 雾化芯、雾化器及电子雾化装置
US20200107582A1 (en) * 2018-10-04 2020-04-09 Japan Tobacco Inc. Inhalation component generating device, control circuit, and control method and control program of inhalation component generating device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109288140B (zh) * 2018-12-06 2021-08-27 广东国研新材料有限公司 一种电子烟用多孔陶瓷发热体及其制备方法
CN110786552B (zh) * 2019-11-21 2020-10-23 深圳市吉迩科技有限公司 一种雾化装置、雾化方法及电子烟

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105963833A (zh) * 2008-10-23 2016-09-28 巴特马克有限公司 吸入器
CN110213972A (zh) * 2017-01-23 2019-09-06 尼科创业控股有限公司 电子蒸汽供给系统
US20180338528A1 (en) * 2017-05-23 2018-11-29 Shenzhen Kanger Technology Co., Ltd. Adjustable volume e-liquid storage tank and electronic cigarettes having the same
US20200107582A1 (en) * 2018-10-04 2020-04-09 Japan Tobacco Inc. Inhalation component generating device, control circuit, and control method and control program of inhalation component generating device
CN110269280A (zh) * 2019-06-21 2019-09-24 东莞市阿尔法电子科技有限公司 电子烟及烟弹识别方法
CN110447966A (zh) * 2019-08-12 2019-11-15 深圳麦克韦尔科技有限公司 发热体、雾化器和电子雾化装置
CN110584212A (zh) * 2019-09-16 2019-12-20 深圳麦克韦尔科技有限公司 雾化芯、雾化器及电子雾化装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4136992A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023216263A1 (zh) * 2022-05-13 2023-11-16 深圳麦克韦尔科技有限公司 发热体、雾化组件及电子雾化装置
EP4289296A1 (en) * 2022-06-06 2023-12-13 BYD Precision Manufacture Co., Ltd. Vaporization core and electronic vaporization apparatus

Also Published As

Publication number Publication date
US20230057645A1 (en) 2023-02-23
EP4136992A1 (en) 2023-02-22
EP4136992A4 (en) 2024-01-10

Similar Documents

Publication Publication Date Title
WO2021217292A1 (zh) 发热组件、雾化器和电子雾化装置
JP7553434B2 (ja) 正の抵抗温度係数(ptcr)を有する加熱要素を含む気化器
CN112931952A (zh) 一种雾化芯及电子雾化装置
CN212814273U (zh) 发热组件、雾化器和电子雾化装置
CN113545529A (zh) 发热组件、雾化器和电子雾化装置
TWI726020B (zh) 用於湧流電流限制器的ntc-陶瓷電子組件、生產該電子組件的方法以及用於優化湧流電流限制之系統
CN105979614A (zh) 一种电加热器及电子烟
US5428493A (en) Motor starting relay device having PTC thermistors
WO2023179108A1 (zh) 加热组件及气溶胶生成装置
WO2023124519A1 (zh) 加热元件及电子雾化装置
CN210248380U (zh) 一种电子烟用均匀加热陶瓷发热体
JP5438961B2 (ja) セラミックヒータ及びグロープラグ
JPS59153027A (ja) グロ−プラグ
CN104207332A (zh) 可加热的烟具及感测方法
CN216255473U (zh) 加热器及加热雾化装置
JP5626204B2 (ja) 半導体磁器組成物、発熱体及び発熱モジュール
CN212678358U (zh) 一种加热器
WO2011007664A1 (ja) セラミックヒーター
JP2012046372A (ja) Ptc素子および発熱モジュール
CN214620057U (zh) 加热底座与液体加热容器
WO2023116924A1 (zh) 用于气雾生成装置的电阻加热器及气雾生成装置
JPH08198674A (ja) 負の抵抗温度特性を有する半導体セラミックとそれを用いた半導体セラミック部品
JPS5932830Y2 (ja) シガレツトライタ
CN217588575U (zh) 摄像头除雾用陶瓷ptc
CN212678357U (zh) 一种抽烟装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20933090

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020933090

Country of ref document: EP

Effective date: 20221115

NENP Non-entry into the national phase

Ref country code: DE