WO2023216263A1 - 发热体、雾化组件及电子雾化装置 - Google Patents

发热体、雾化组件及电子雾化装置 Download PDF

Info

Publication number
WO2023216263A1
WO2023216263A1 PCT/CN2022/092859 CN2022092859W WO2023216263A1 WO 2023216263 A1 WO2023216263 A1 WO 2023216263A1 CN 2022092859 W CN2022092859 W CN 2022092859W WO 2023216263 A1 WO2023216263 A1 WO 2023216263A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid
heating
protective film
heating element
material layer
Prior art date
Application number
PCT/CN2022/092859
Other languages
English (en)
French (fr)
Inventor
吕铭
汪唯
朱明达
黄容基
冯建明
Original Assignee
深圳麦克韦尔科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳麦克韦尔科技有限公司 filed Critical 深圳麦克韦尔科技有限公司
Priority to EP22826786.0A priority Critical patent/EP4298932A4/en
Priority to PCT/CN2022/092859 priority patent/WO2023216263A1/zh
Priority to US18/091,175 priority patent/US20230371132A1/en
Publication of WO2023216263A1 publication Critical patent/WO2023216263A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/10Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor
    • H05B3/16Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor the conductor being mounted on an insulating base
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M11/00Sprayers or atomisers specially adapted for therapeutic purposes
    • A61M11/04Sprayers or atomisers specially adapted for therapeutic purposes operated by the vapour pressure of the liquid to be sprayed or atomised
    • A61M11/041Sprayers or atomisers specially adapted for therapeutic purposes operated by the vapour pressure of the liquid to be sprayed or atomised using heaters
    • A61M11/042Sprayers or atomisers specially adapted for therapeutic purposes operated by the vapour pressure of the liquid to be sprayed or atomised using heaters electrical
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • A24F40/44Wicks
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • A24F40/46Shape or structure of electric heating means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M15/00Inhalators
    • A61M15/06Inhaling appliances shaped like cigars, cigarettes or pipes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/02Details
    • H05B3/04Waterproof or air-tight seals for heaters
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/20Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater
    • H05B3/22Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater non-flexible
    • H05B3/26Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater non-flexible heating conductor mounted on insulating base
    • H05B3/265Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater non-flexible heating conductor mounted on insulating base the insulating base being an inorganic material, e.g. ceramic
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/40Heating elements having the shape of rods or tubes
    • H05B3/42Heating elements having the shape of rods or tubes non-flexible
    • H05B3/44Heating elements having the shape of rods or tubes non-flexible heating conductor arranged within rods or tubes of insulating material
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/10Devices using liquid inhalable precursors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M11/00Sprayers or atomisers specially adapted for therapeutic purposes
    • A61M11/04Sprayers or atomisers specially adapted for therapeutic purposes operated by the vapour pressure of the liquid to be sprayed or atomised
    • A61M11/041Sprayers or atomisers specially adapted for therapeutic purposes operated by the vapour pressure of the liquid to be sprayed or atomised using heaters
    • A61M11/042Sprayers or atomisers specially adapted for therapeutic purposes operated by the vapour pressure of the liquid to be sprayed or atomised using heaters electrical
    • A61M11/044Sprayers or atomisers specially adapted for therapeutic purposes operated by the vapour pressure of the liquid to be sprayed or atomised using heaters electrical with electrodes immersed in the liquid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M15/00Inhalators
    • A61M15/0001Details of inhalators; Constructional features thereof
    • A61M15/0021Mouthpieces therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/0003Accessories therefor, e.g. sensors, vibrators, negative pressure
    • A61M2016/003Accessories therefor, e.g. sensors, vibrators, negative pressure with a flowmeter
    • A61M2016/0033Accessories therefor, e.g. sensors, vibrators, negative pressure with a flowmeter electrical
    • A61M2016/0039Accessories therefor, e.g. sensors, vibrators, negative pressure with a flowmeter electrical in the inspiratory circuit
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/02General characteristics of the apparatus characterised by a particular materials
    • A61M2205/0211Ceramics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/02General characteristics of the apparatus characterised by a particular materials
    • A61M2205/0238General characteristics of the apparatus characterised by a particular materials the material being a coating or protective layer
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/02General characteristics of the apparatus characterised by a particular materials
    • A61M2205/025Materials providing resistance against corrosion
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/33Controlling, regulating or measuring
    • A61M2205/3331Pressure; Flow
    • A61M2205/3334Measuring or controlling the flow rate
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/36General characteristics of the apparatus related to heating or cooling
    • A61M2205/3653General characteristics of the apparatus related to heating or cooling by Joule effect, i.e. electric resistance
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/50General characteristics of the apparatus with microprocessors or computers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/82Internal energy supply devices
    • A61M2205/8206Internal energy supply devices battery-operated
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2207/00Methods of manufacture, assembly or production
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/002Heaters using a particular layout for the resistive material or resistive elements
    • H05B2203/003Heaters using a particular layout for the resistive material or resistive elements using serpentine layout
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/013Heaters using resistive films or coatings
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/017Manufacturing methods or apparatus for heaters
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/021Heaters specially adapted for heating liquids

Definitions

  • the present application relates to the field of atomization technology, and in particular to a heating element, an atomization component and an electronic atomization device.
  • a typical electronic atomization device consists of a heating element, a battery and a control circuit.
  • the heating element determines the atomization effect and user experience of the electronic atomization device.
  • the existing heating element has the risk of corrosion in the highly corrosive aerosol-generating matrix and has a short service life.
  • the present application provides a heating element, an atomization component and an electronic atomization device to solve the technical problem of low heating element life in the prior art.
  • the first technical solution provided by this application is to provide a heating element, which is used in an electronic atomization device and is used to atomize aerosol to generate a matrix, including: a liquid-conducting matrix, a heating material layer, and a third A protective film and a second protective film;
  • the liquid-conducting base body includes a heating area and an electrode area;
  • the heating material layer is provided on the first surface of the liquid-conducting base body;
  • the heating material layer is a resistance heating material, including The heating part of the heating area and the connection part located in the electrode area;
  • the first protective film is at least partially provided on the surface of the heating part away from the liquid conductive base;
  • the material of the first protective film is resistant to
  • the aerosol-generating matrix is a non-conductive material that corrodes;
  • the second protective film is at least partially disposed on the surface of the connecting portion away from the liquid-conducting substrate;
  • the material of the second protective film is resistant to the aerosol generation Matrix corrosion of
  • the first protective film is made of ceramic or glass.
  • the material of the first protective film is ceramic; the material of the ceramic is one or more of aluminum nitride, silicon nitride, aluminum oxide, silicon oxide, silicon carbide, and zirconium oxide.
  • the thickness of the first protective film is 10 nm-1000 nm.
  • the material of the second protective film is conductive ceramic or metal.
  • the material of the second protective film is conductive ceramic
  • the material of the conductive ceramic is one or more of titanium nitride and titanium diboride.
  • the thickness of the second protective film is 10 nm-2000 nm.
  • the liquid-conducting matrix is a dense liquid-conducting matrix; the liquid-conducting matrix further includes a second surface opposite to the first surface, and the liquid-conducting matrix has a plurality of first micropores, The first micropores are ordered through holes penetrating the first surface and the second surface.
  • the liquid-conducting substrate is made of quartz, glass, or dense ceramics, and the first micropores are through holes.
  • the material of the liquid-conducting matrix is porous ceramic, and the liquid-conducting matrix has a plurality of disordered through holes;
  • the liquid-conducting matrix includes a stacked porous ceramic layer and a dense ceramic layer, the dense ceramic layer having a plurality of ordered through holes perpendicular to the thickness direction of the liquid-conducting matrix; the heating material layer is provided on the surface of the dense ceramic layer away from the porous ceramic layer.
  • the heating material layer is a heating film, and the thickness of the heating film is 200 nm-5 ⁇ m.
  • the resistivity of the heating material layer is less than 0.06*10 -6 ⁇ m.
  • the heating material layer is made of aluminum, copper, silver, gold, nickel, chromium, platinum, titanium, zirconium, palladium, iron or alloys thereof.
  • the thickness of the heat-generating material layer is 5 ⁇ m-100 ⁇ m, and the heat-generating material layer is a printed metal paste layer.
  • the liquid-conducting base body is flat, arc-shaped or cylindrical.
  • the first protective film covers the entire heating part, and the second protective film covers the entire connecting part.
  • the liquid-conducting base body is cylindrical, the liquid-conducting base body includes an inner surface and an outer surface, and the heat-generating material layer is disposed on the inner surface or the outer surface.
  • the heating material layer, the first protective film and the second protective film are formed on the first surface of the liquid-conducting substrate by physical vapor deposition or chemical vapor deposition.
  • connection portion of the heat-generating material layer and the second protective film constitute an electrode.
  • the first micropore is a through hole, and the heating material layer and the first protective film extend into the wall of the first micropore.
  • the second technical solution provided by this application is to provide an atomization assembly, including: a liquid storage chamber and a heating element; the liquid storage chamber is used to store a liquid aerosol-generating substrate; the heating element The body is the heating element described in any one of the above; the heating element is in fluid communication with the liquid storage chamber.
  • the third technical solution provided by this application is to provide an electronic atomization device, including an atomization component and a power supply component.
  • the atomization component is the atomization component described above, and the power supply component The component is electrically connected to the heating element.
  • this application discloses a heating element, an atomization component and an electronic atomization device.
  • the heating element includes a liquid-conducting base body, a heating material layer, a first protective film and a second protective film.
  • the liquid-conducting base body includes a heating area and an electrode area; the heating material layer is provided on the first surface of the liquid-conducting base body, and includes a heating portion located in the heating area and a connecting portion located in the electrode area; the first protective film is located on the heating portion The surface away from the liquid-conducting substrate; the material of the first protective film is a non-conductive material that is resistant to corrosion of the aerosol-generating matrix; the second protective film is disposed on the surface of the connection part away from the liquid-conducting substrate; the material of the second protective film is gas-resistant The sol generates a matrix that corrodes the conductive material. By using different protective films to protect the heating area and electrode area of the heating material layer, the heating material layer is prevented from being corroded by the aerosol-generating matrix, which is beneficial to extending the service life of the heating material layer.
  • Figure 1 is a schematic structural diagram of an electronic atomization device provided by an embodiment of the present application.
  • Figure 2 is a schematic structural diagram of the atomization component of the electronic atomization device provided by the embodiment of the present application;
  • Figure 3a is a schematic structural diagram of the first embodiment of the heating element provided by this application.
  • Figure 3b is a schematic top structural view of the heating element provided in Figure 3a;
  • Figure 4 is a schematic structural diagram of the liquid-conducting matrix of the heating element provided in Figure 3a;
  • FIG. 5 is a schematic structural diagram of the second embodiment of the heating element provided by this application.
  • Figure 6 is a schematic structural diagram of a third embodiment of the heating element provided by this application.
  • Figure 7 is a schematic structural diagram of the fourth embodiment of the heating element provided by this application.
  • Figure 8 is a schematic structural diagram of the fifth embodiment of the heating element provided by this application.
  • Figure 9 is a schematic structural diagram of the sixth embodiment of the heating element provided by this application.
  • Figure 10 is a schematic diagram of the wet burning experiment of the heating element provided by this application.
  • first”, “second” and “third” in this application are only used for descriptive purposes and cannot be understood as indicating or implying relative importance or implicitly indicating the quantity of indicated technical features. Thus, features defined as “first”, “second”, and “third” may explicitly or implicitly include at least one of said features.
  • “plurality” means at least two, such as two, three, etc., unless otherwise clearly and specifically limited. All directional indications (such as up, down, left, right, front, back%) in the embodiments of this application are only used to explain the relative positional relationship between components in a specific posture (as shown in the drawings). , sports conditions, etc., if the specific posture changes, the directional indication will also change accordingly.
  • an embodiment means that a particular feature, structure or characteristic described in connection with the embodiment can be included in at least one embodiment of the present application.
  • the appearances of recited phrases in various places in the specification are not necessarily all referring to the same embodiment, nor are separate or alternative embodiments mutually exclusive of other embodiments. Those skilled in the art understand, both explicitly and implicitly, that the embodiments described herein may be combined with other embodiments.
  • FIG. 1 is a schematic structural diagram of an electronic atomization device provided by an embodiment of the present application.
  • an electronic atomization device 100 is provided.
  • the electronic atomization device 100 can be used to atomize an aerosol-generating substrate.
  • the electronic atomization device 100 includes an atomization component 1 and a power supply component 2 that are electrically connected to each other.
  • the atomization component 1 is used to store the aerosol-generating substrate and atomize the aerosol-generating substrate to form an aerosol that can be inhaled by the user.
  • the atomization component 1 can be used in different fields, such as medical treatment, beauty, leisure smoking, etc.
  • the atomization component 1 can be used in an electronic aerosolization device to atomize an aerosol-generating matrix and generate aerosol for smokers to inhale.
  • the following embodiments are all based on recreational smoking. example.
  • the power component 2 includes a battery (not shown) and a controller (not shown).
  • the battery is used to provide electrical energy for the operation of the atomization component 1, so that the atomization component 1 can atomize the aerosol-generating matrix to form an aerosol; the controller is used to control the operation of the atomization component 1.
  • the power supply component 2 also includes other components such as a battery holder and an air flow sensor.
  • the atomization component 1 and the power supply component 2 can be integrated or detachably connected, and can be designed according to specific needs.
  • the power of electronic atomization devices generally does not exceed 10 watts, and the power is usually 6 watts-8.5 watts.
  • the battery voltage used in electronic atomization devices ranges from 2.5 volts to 4.4 volts.
  • the voltage range of the battery used is 3V-4.4V.
  • the electronic atomization device of the present invention is not limited to these parameters.
  • Figure 2 is a schematic structural diagram of an atomization component of an electronic atomization device provided by an embodiment of the present application.
  • the atomizing assembly 1 includes a housing 10 , a heating element 11 , and an atomizing seat 12 .
  • the atomizing seat 12 has an installation cavity (not labeled in the figure), and the heating element 11 is located in the installation cavity; the heating element 11 and the atomizing seat 12 are located in the housing 10 together.
  • the housing 10 is formed with a mist outlet channel 13.
  • the inner surface of the housing 10, the outer surface of the mist outlet channel 13 and the top surface of the atomization seat 12 cooperate to form a liquid storage chamber 14.
  • the liquid storage chamber 14 is used to store the liquid aerosol generated. matrix.
  • the heating element 11 is electrically connected to the power supply component 2, and uses an atomized aerosol-generating matrix to generate aerosol.
  • the atomization seat 12 includes an upper seat 121 and a lower seat 122.
  • the upper seat 121 and the lower seat 122 cooperate to form an installation cavity; the atomization surface of the heating element 11 cooperates with the cavity wall of the installation cavity to form an atomization cavity 120.
  • the upper seat 121 is provided with a lower liquid channel 1211.
  • the lower liquid channel 1211 is in fluid communication with the installation cavity.
  • the aerosol-generating matrix channel in the liquid storage cavity 14 flows into the heating body 11 through the lower liquid channel 1211. That is, the heating body 11 and the liquid storage cavity 14 fluid connection.
  • the lower seat 122 is provided with an air inlet channel 15.
  • the external air enters the atomization chamber 120 through the air inlet channel 15, and the atomized aerosol carried by the heating element 11 flows to the mist outlet channel 13.
  • the user inhales through the port of the mist outlet channel 13. Aerosol.
  • Figure 3a is a schematic structural view of the heating element provided in the first embodiment of the present application.
  • Figure 3b is a top structural schematic view of the heating element provided in Figure 3a.
  • Figure 4 is a conductor diagram of the heating element provided in Figure 3a. Schematic diagram of the structure of a liquid matrix.
  • the heating element 11 includes a liquid conductive base 111, a heating material layer 112, a first protective film 113 and a second protective film 114.
  • the liquid-conducting matrix 111 plays a structural supporting role.
  • the heating material layer 112 is a resistance heating material.
  • the liquid-conducting base 111 includes a first surface 1111 and a second surface 1112 arranged oppositely.
  • the first surface 1111 of the liquid-conducting base 111 includes a heating area a and an electrode area b.
  • the heat-generating material layer 112 is provided on the first surface 1111 of the liquid-conducting substrate 111.
  • the heat-generating material layer 112 includes a heat-generating part 1121 located in the heat-generating area a and a connecting part 1122 located in the electrode area b, where the connecting part 1122 serves as an electrode. 1122 is used for electrical connection with the power component 2.
  • the first protective film 113 is at least partially disposed on the surface of the heating part 1121 away from the liquid-conducting substrate 111 .
  • the material of the first protective film 113 is a non-conductive material that is resistant to corrosion of the aerosol-generating matrix.
  • the second protective film 114 is at least partially disposed on the surface of the connecting portion 1122 away from the liquid-conducting substrate 111 .
  • the material of the second protective film 114 is a conductive material that is resistant to corrosion by the aerosol-generating matrix.
  • different protective films are selected to protect different areas of the heating material layer 112, which effectively prevents the corrosion of the heating part 1121 and the connecting part 1122 by the aerosol-generating matrix, which is beneficial to extending the service life of the heating material layer 112.
  • the first protective film 113 covers the entire heating part 1121 to prevent the aerosol-generating matrix from corroding the entire heating part 1121, thereby protecting the entire heating part 1121 and conducive to increasing the service life of the heating element 11.
  • the second protective film 114 covers the entire connection part 1122 to prevent the aerosol-generating matrix from corroding the entire connection part 1122, thereby protecting the entire connection part 1122 and conducive to increasing the service life of the heating element 11.
  • the second protective film 114 has an opening (not shown) to expose part of the connecting portion 1122, and the exposed connecting portion 1122 is used to contact the conductive member (not shown).
  • This arrangement helps reduce the contact resistance between the conductive member and the connecting portion 1122 .
  • the connecting portion 1122 is electrically connected to the power component 2 through a conductive member (not labeled); the conductive member may be an ejection pin or a spring pin.
  • the material of the first protective film 113 is ceramic or glass. Since the material of the heating material layer 112 is metal, the thermal expansion coefficient of ceramic or glass matches that of the metal heating material layer 112 , and the adhesion of the ceramic or glass matches that of the metal heating material layer 112 , ceramic or glass is used as the first protective film 113 , the first protective film 113 is not easy to fall off from the heating part 1121, and can play a good protective role.
  • the ceramic material may be one or more of aluminum nitride, silicon nitride, aluminum oxide, silicon oxide, silicon carbide, and zirconium oxide, which can be selected according to needs.
  • the ceramic material compared with using stainless steel that is resistant to corrosion of the aerosol-generating matrix as a protective film to protect the heating part 1121, ceramics are used as the first protective film 113 to protect the heating part 1121.
  • the first protective film 113 has higher thermal conductivity and Lower aerosol-generating matrix contact angle.
  • the higher thermal conductivity of the first protective film 113 enables the heat generated by the heating part 1121 to be conducted to the aerosol generating matrix more efficiently, which is beneficial to improving the atomization efficiency of the heating part 1121; the lower contact angle of the first protective film 113 makes The surface of the aerosol-generating matrix has stronger wettability, and the transmission efficiency of the aerosol-generating matrix is higher, which further helps to improve the atomization efficiency of the heating part 1121.
  • the experiment was conducted using the first protective film 113 (the first protective film 113 is made of aluminum nitride) as the protective film of the heating part 1121 and the heating element in the prior art (stainless steel is used as the protective film).
  • the experimental conditions are 6.5 W constant power, pumping for 3 seconds and stopping for 27 seconds, the atomization amount of the heating element 11 provided in this application is 7.2mg/puff, and the atomization amount of the heating element in the prior art is 6.2mg/puff, which proves the use of ceramics as the first protection Membrane 113 can significantly increase the amount of atomization.
  • the thermal conductivity of some materials is shown in Table 1; the contact angle of some materials is shown in Table 2.
  • the thickness of the first protective film 113 is 10 nm-1000 nm.
  • the thickness of the first protective film 113 is less than 10 nm and it is difficult to achieve a protective effect because the density of the film is not that good.
  • the aerosol-generating matrix will penetrate the first protective film 113 and corrode the heating part 1121.
  • the thickness of the first protective film 113 exceeds 1000nm, there is excessive stress, which causes the first protective film 113 to easily crack due to thermal shock and lose the protective effect.
  • the thickness of the second protective film 114 is 10 nm-2000 nm.
  • the thickness of the second protective film 114 is less than 10 nm and it is difficult to achieve a protective effect because the density of the film is not that good.
  • the aerosol-generating matrix will penetrate the second protective film 114 and corrode the connection portion 1122.
  • the thickness of the second protective film 114 exceeds 2000nm, there is excessive stress, which causes the second protective film 114 to easily crack due to thermal shock and lose the protective effect.
  • the material of the second protective film 114 is conductive ceramic or metal. While the first protective film 113 is made of non-conductive material, the second protective film 114 is made of conductive material, so that the second protective film 114 protects the connecting part 1122 from being corroded by the aerosol-generating matrix and does not affect the connecting part 1122 and the power component 2 electrical connection. Since the material of the heating material layer 112 is metal, the thermal expansion coefficient of the conductive ceramic or metal matches that of the metal heating material layer 112, and the adhesion of the conductive ceramic or metal matches that of the metal heating material layer 112, using conductive ceramic or metal as the second The protective film 114 and the second protective film 114 are not easy to fall off from the connecting portion 1122 and can provide good protection. By using conductive ceramic or metal as the second protective film 114, contact resistance is reduced.
  • the material of the second protective film 114 is conductive ceramic
  • the material of the conductive ceramic is one or more of titanium nitride and titanium diboride. It is understood that conductive ceramics are more resistant to aerosol-generating matrix corrosion than metals.
  • the connecting portion 1122 of the heating material layer 112 and the second protective film 114 constitute an electrode; disposing the second protective film 114 on the connecting portion 1122 reduces the resistance and can be used as an electrode.
  • the thicknesses of the heating part 1121 and the connecting part 1122 may be the same or different. In order to reduce the resistance value of the connection part 1122, the thickness of the connection part 1122 may also be larger than the heating part 1121.
  • the liquid-conducting matrix 111 is a dense liquid-conducting matrix; the liquid-conducting matrix 111 has a plurality of first micropores 1113, and the first micropores 1113 are formed through the first surface 1111 and the second micropore. Two surfaces 1112 have ordered vias.
  • the aerosol-generating matrix in the liquid storage chamber 14 reaches the liquid-conducting matrix 111 of the heating element 11 through the lower liquid channel 1211.
  • the capillary force of the first micropores 1113 on the liquid-conducting matrix 111 is used to remove the aerosol-generating matrix from the liquid-conducting matrix 111.
  • the second surface 1112 is guided to the first surface 1111 of the liquid-guiding substrate 111, so that the aerosol-generating matrix is atomized by the heat-generating material layer 112 located on the first surface 1111; that is, the first micropores 1113 pass through the lower liquid channel 1211 is connected with the liquid storage chamber 14.
  • the material of the liquid-conducting substrate 111 can be quartz, glass or dense ceramics, in which case the first micropore 1113 is a through hole; when the liquid-conducting substrate 111 is made of glass, it can be ordinary glass, quartz glass, borosilicate glass or photosensitive aluminosilicon.
  • the lithium acid glasses is one of the lithium acid glasses.
  • the first micropores 1113 are only provided in the heat-generating area a of the liquid-conducting substrate 111, and the first micropores 1113 are not provided in the electrode area b.
  • the heating part 1121 is not only disposed on the first surface 1111 , but is further disposed on the inner surface of the first micropore 1113 .
  • the second protective film 114 is also disposed in the first micropore 1113 and completely covers the heating portion 1121 located on the inner surface of the first micropore 1113 .
  • the heating material layer 112 of the heating element 11 needs to be The resistance range is 0.5 ohm-2 ohm. In this embodiment, the heating material layer 112 covers the entire heating area a.
  • the porosity of the heating element 11 can be accurately controlled and the consistency of the product can be improved. That is to say, in mass production, the porosity of the liquid-conducting matrix 111 in the heating element 11 is basically the same, and the thickness of the heating material layer 112 formed on the liquid-conducting matrix 111 is uniform, so that the electronic atomization devices shipped from the same batch are atomized. The effect is consistent.
  • the heating element 11 with the first micropores 1113 in the sheet structure provided by the present application has a shorter liquid supply channel and a faster liquid supply speed, but has the risk of leakage.
  • the liquid is larger. Therefore, the inventor of the present application studied the influence of the ratio of the thickness of the liquid-conducting base 111 to the aperture of the first micropores 1113 on the liquid supply of the heating element 11. The results found that increasing the thickness of the liquid-conducting base 111 and reducing the first micropores 1113 The pore diameter can reduce the risk of liquid leakage but will also reduce the liquid supply rate.
  • this application designs the thickness of the liquid-conducting substrate 111, the aperture of the first micropores 1113, and the ratio of the thickness of the liquid-conducting substrate 111 to the aperture of the first micropores 1113, so that the heating element 11 can operate at a power of 6 watts to 8.5 watts. , When the voltage is 2.5V-4.4V, it can not only achieve sufficient liquid supply, but also prevent liquid leakage.
  • the thickness of the liquid-conducting base 111 is the distance between the first surface 1111 and the second surface 1112 .
  • the inventor of the present application also studied the ratio of the hole center distance of the adjacent first micropores 1113 to the aperture of the first microhole 1113, and found that if the hole center distance of the adjacent first micropores 1113 is equal to the aperture of the first microhole 1113, If the ratio is too large, the liquid-conducting matrix 111 is stronger and easier to process, but the porosity is too small, which can easily lead to insufficient liquid supply; The ratio is too small, the porosity is large, and the liquid supply volume is sufficient, but the strength of the liquid-conducting matrix 111 is small and it is not easy to process; for this reason, this application also designs the hole center distance between the adjacent first micropores 1113 and the first micropore 1113. The ratio of the apertures of the micropores 1113 maximizes the strength of the liquid-conducting matrix 111 on the premise of meeting the liquid supply capacity.
  • the material of the liquid-conducting substrate 111 is glass.
  • both the first surface 1111 and the second surface 1112 include smooth surfaces, and the first surface 1111 is a plane. That is to say, the first surface 1111 of the liquid-conducting substrate 111 is a smooth plane; the first surface 1111 is a smooth plane, which is conducive to the deposition of metal materials into films when the thickness is small, that is, it is conducive to forming a film on the liquid-conducting substrate 111
  • the first surface 1111 forms the heat-generating material layer 112.
  • the first surface 1111 and the second surface 1112 of the liquid-conducting base 111 are both smooth planes, and the first surface 1111 and the second surface 1112 of the liquid-conducting base 111 are arranged in parallel; the axis of the first micropore 1113 is with The first surface 1111 and the second surface 1112 are perpendicular.
  • the thickness of the liquid-conducting matrix 111 is equal to the length of the first micropore 1113 .
  • the second surface 1112 is parallel to the first surface 1111, and the first micropores 1113 penetrate from the first surface 1111 to the second surface 1112, which simplifies the production process of the liquid-conducting matrix 111 and reduces the cost.
  • the distance between the first surface 1111 and the second surface 1112 is the thickness of the liquid-conducting base 111 .
  • the first surface 1111 of the liquid-conducting base 111 is a smooth plane;
  • the second surface 1112 of the liquid-conducting base 111 is a smooth non-planar surface, such as an inclined surface, a curved surface, a sawtooth surface, etc., and the second surface 1112 can be according to If specific design is required, it is only necessary to make the first micropores 1113 penetrate the first surface 1111 and the second surface 1112.
  • the cross section of the first microhole 1113 is circular.
  • the first micropore 1113 can be a straight through hole with uniform pore diameter, or a straight through hole with uneven pore diameter, as long as the variation range of the pore diameter is within 50%.
  • the first micropores 1113 opened on the glass through laser induction and etching usually have large apertures at both ends and a small aperture in the middle. Therefore, it is sufficient to ensure that the aperture of the middle part of the first microhole 1113 is not less than half of the aperture of the two end ports.
  • the thickness of the liquid-conducting base 111 and the size of the first micropores 1113 The pore diameter, the ratio of the thickness of the liquid-conducting matrix 111 to the pore diameter of the first microhole 1113, and the ratio of the hole center distance between two adjacent first micropores 1113 to the pore diameter of the first microhole 1113 are introduced.
  • the thickness of the liquid-conducting substrate 111 is 0.1 mm-1 mm. When the thickness of the liquid-conducting matrix 111 is greater than 1 mm, it cannot meet the liquid supply demand, resulting in a decrease in aerosol volume and high heat loss. The cost of setting the first micropores 1113 is high; when the thickness of the liquid-conducting matrix 111 is less than 0.1 mm , the strength of the liquid-conducting matrix 111 cannot be guaranteed, which is not conducive to improving the performance of the electronic atomization device.
  • the thickness of the liquid-conducting substrate 111 is 0.2 mm-0.5 mm. It can be understood that the thickness of the liquid-conducting matrix 111 is selected according to actual needs.
  • the pore diameter of the first micropores 1113 on the liquid-conducting substrate 111 is 1 ⁇ m-100 ⁇ m.
  • the pore diameter of the first micropore 1113 is less than 1 ⁇ m, it cannot meet the liquid supply demand, resulting in a decrease in the amount of aerosol; when the pore diameter of the first micropore 1113 is greater than 100 ⁇ m, the aerosol-generating matrix easily flows out from the first micropore 1113 to the first Surface 1111 causes liquid leakage, resulting in a decrease in atomization efficiency.
  • the pore diameter of the first micropore 1113 is 20 ⁇ m-50 ⁇ m. It can be understood that the diameter of the first micropore 1113 is selected according to actual needs.
  • the ratio of the thickness of the liquid-conducting matrix 111 to the aperture of the first micropores 1113 is 20:1-3:1; optionally, the ratio of the thickness of the liquid-conducting matrix 111 to the aperture of the first micropores 1113 is 15:1-5:1.
  • the ratio of the thickness of the liquid-conducting matrix 111 to the aperture of the first micropores 1113 is greater than 20:1, the aerosol generation matrix supplied by the capillary force of the first micropores 1113 is difficult to meet the atomization demand of the heating element 11.
  • the amount of aerosol generated in a single atomization is reduced; when the ratio of the thickness of the liquid-conducting matrix 111 to the pore diameter of the first micropore 1113 is less than 3:1, the aerosol-generating matrix is easy to be evaporated from the first micropore. The holes 1113 flow out to the first surface 1111, and the aerosol generation matrix is wasted, resulting in a decrease in atomization efficiency, thereby reducing the total aerosol amount.
  • the ratio of the hole center distance between two adjacent first microholes 1113 to the aperture diameter of the first microhole 1113 is 3:1-1.5:1, so that the first micropores 1113 on the liquid-conducting matrix 111 can satisfy the supply requirements.
  • the strength of the liquid-conducting matrix 111 should be improved as much as possible; optionally, the ratio of the hole center distance between two adjacent first micropores 1113 to the aperture of the first micropore 1113 is 3:1- 2:1; optionally, the ratio of the hole center distance between two adjacent first microholes 1113 to the hole diameter of the first microhole 1113 is 3:1-2.5:1.
  • the ratio of the thickness of the liquid-conducting matrix 111 to the aperture of the first micropores 1113 is 15:1-5:1, and the hole center distance between two adjacent first micropores 1113 is The ratio of the pore diameters of the micropores 1113 is 3:1-2.5:1.
  • the liquid-conducting base 111 is in the shape of a flat plate.
  • the liquid-conducting base 111 is in the shape of a rectangular plate, a circular plate, etc., and can be specifically designed according to needs.
  • the liquid-conducting base 111 is arc-shaped or cylindrical.
  • the plurality of first micropores 1113 are arranged in an array in the heating area a; that is, the plurality of first micropores 1113 provided on the liquid-conducting substrate 111 are regularly arranged, and the plurality of first micropores 1113 are adjacent to each other.
  • the hole center distance between the first microholes 1113 is the same.
  • the diameters of the plurality of first micropores 1113 may be the same or different, and may be designed as required.
  • the heating material layer 112 can be Metal materials with low resistivity, such as gold and aluminum.
  • the heating material layer 112 formed on the first surface 1111 of the liquid conductive substrate 111 is a heating film, and the thickness of the heating material layer 112 ranges from 200 nm to 5 ⁇ m, that is, the thickness of the heating material layer 112 is relatively thin.
  • the thickness of the heating material layer 112 ranges from 200 nm to 1 ⁇ m.
  • the thickness of the heating material layer 112 ranges from 200nm to 500nm.
  • the heating material layer 112 is a heating film
  • the heating material layer 112 is provided with a plurality of second micropores 1123 corresponding to the plurality of first micropores 1113 .
  • the heating material layer 112 is also formed on the inner surface of the first micropore 1113; optionally, the heating material layer 112 is also formed on the entire inner surface of the first micropore 1113.
  • a heating material layer 112 is provided on the inner surface of the first micropore 1113, so that the aerosol-generating substrate can be atomized in the first micropore 1113, which is beneficial to improving the atomization effect.
  • the heating material layer 112 when the thickness of the heating material layer 112 is greater than 5 ⁇ m, the heating material layer 112 is usually formed by printing or other methods. If the thickness of the heating material layer 112 is too large, it will block the first micropores 1113; the thickness of the heating material layer 112 may range from 5 ⁇ m to 100 ⁇ m. Since in this embodiment, the heating material layer 112 covers the entire heating area a to prevent affecting the liquid supply, the thickness of the heating material layer 112 is not greater than 5 ⁇ m.
  • the resistivity of the heating material layer 112 is not greater than 0.06*10 -6 ⁇ m.
  • the resistance of the heating material layer 112 at normal temperature is 0.5 ohm to 2 ohm
  • this application uses a metal material with low conductivity to form a thin metal film and reduce the impact on the aperture of the first micropore 1113 as much as possible. Influence.
  • the metal materials of the heating material layer 112 include silver and its alloys, copper and its alloys, aluminum and its alloys, gold and its alloys, nickel and its alloys, chromium and its alloys, platinum and its alloys, titanium and its alloys. Alloys, zirconium and its alloys, palladium and its alloys, iron and its alloys.
  • the material of the heating material layer 112 may include aluminum and its alloys, gold and its alloys; since the liquid aerosol generation matrix contains various flavors, fragrances and additives, including sulfur, phosphorus, chlorine and other elements, gold has It is very chemically inert, and a dense oxide film will be formed on the aluminum surface. These two materials are very stable in the liquid aerosol generation matrix, and are preferred as the heating material layer 112 material.
  • the heating material layer 112, the first protective film 113 and the second protective film 114 can be deposited by physical vapor deposition (such as magnetron sputtering, vacuum evaporation, ion plating) or chemical vapor deposition (ion-assisted chemical deposition,
  • the liquid-conducting substrate 111 is formed on the first surface 1111 by laser-assisted chemical deposition, metal-organic compound deposition).
  • the formation process of the heat-generating material layer 112 and the first protective film 113 prevents them from covering the first micropores 1113 .
  • the heating material layer 112 and the first protective film 113 extend into the wall surface of the first micropore 1113 .
  • the heat-generating material layer 112 and the first protective film 113 are formed on the first surface 1111 of the liquid-conducting substrate 111 through physical vapor deposition or chemical vapor deposition, the heat-generating material layer 112 and the first protective film 113 are also formed on the inner surface of the first micropore 1113.
  • a protective film 113 is also formed on the inner surface of the first micropore 1113.
  • the metal atoms are perpendicular to the first surface 1111 during magnetron sputtering and are perpendicular to the first micropores.
  • the inner surface of 1113 is parallel, and metal atoms are more likely to be deposited on the first surface 1111; assuming that the thickness of the heating material layer 112 and the first protective film 113 formed by metal atoms deposited on the first surface 1111 is 1 ⁇ m, at this time, the metal atoms are deposited on the first surface 1111.
  • the thickness of the inner surface of a micropore 1113 is much less than 1 ⁇ m, or even less than 0.5 ⁇ m; the thinner the heating material layer 112 and the first protective film 113 deposited on the first surface 1111 are, the thinner they are formed on the inner surface of the first micropore 1113 The thinner the thickness of the heat-generating material layer 112 and the first protective film 113, the smaller the influence on the pore diameter of the first micropore 1113.
  • the thickness of the first surface 1111 of the liquid-conducting substrate 111 means that the heating material layer 112 and the first protective film 113 deposited in the first micropores 1113 have a negligible influence on the pore size of the first micropores 1113 .
  • the material of the liquid-conducting matrix 111 is porous ceramic, and the interior of the porous ceramic has a plurality of interconnected and disorderly distributed capillary pores, and the capillary pores of the porous ceramic itself are used for liquid conduction; that is, the liquid-conducting matrix 111 has multiple unordered vias.
  • the first protective film 113 is provided on the heat-generating part 1121 of the heat-generating material layer 112, and the second protective film 114 is provided on the connection part 1122 of the heat-generating material layer 112 to protect the heat-generating material layer 112. That is, the first protective film 113 and the second protective film 114 provided in this application can be applied to the surface of a traditional porous ceramic heating element to protect its heating material layer.
  • the liquid-conducting substrate 111 can also be composite ceramics.
  • the liquid-conducting substrate 111 includes a stacked porous ceramic layer and a dense ceramic layer.
  • the dense ceramic layer has a plurality of ordered through holes perpendicular to the thickness direction of the liquid-conducting substrate 111; the heating material layer 112 is provided on the dense ceramic layer away from the porous ceramic. layer surface.
  • the liquid-conducting substrate 111 includes a first sub-liquid-conducting substrate 111a and a second sub-liquid-conducting substrate 111b that are in contact with each other.
  • the first sub-liquid-conducting substrate 111a is a porous ceramic layer
  • the second sub-liquid-conducting substrate 111b is a dense ceramic layer. ceramic layer.
  • the surface of the first sub-liquid-conducting base 111a away from the second sub-liquid-conducting base 111b is the second surface 1112 of the liquid-conducting base 111
  • the surface of the second sub-liquid-conducting base 111b away from the first sub-liquid-conducting base 111a is the first surface 1111. .
  • the material of the first sub-liquid-conducting base 111a is porous ceramic, and the first sub-liquid-conducting base 111a has a plurality of disordered through holes; the material of the second sub-liquid-conducting base 111b is dense ceramic, and the second sub-liquid-conducting base 111b has A plurality of first micropores 1113, the first micropores 1113 are through holes, the axis of the first micropores 1113 is parallel to the thickness direction of the second sub-liquid conductive base 111b; the heating material layer 112 is provided on the second sub-liquid conductive base 111b away from the surface of the first sub-liquid-conducting substrate 111a.
  • the first protective film 113 is provided on the heat-generating part 1121 of the heat-generating material layer 112, and the second protective film 114 is provided on the connection part 1122 of the heat-generating material layer 112 to protect the heat-generating material layer 112.
  • FIG. 6 is a schematic structural diagram of a third embodiment of the heating element provided by the present application.
  • the difference between the heating element 11 shown in Figure 6 and the heating element 11 shown in Figure 3a is that the heating material layer 112 in Figure 3a covers or spans the entire heating area a, and the heating material layer 112 in Figure 6 Covering part of the heating area a, that is, the shape of the heating material layer 112 is different, and other identical structures will not be described again.
  • the heating portion 1121 of the heating material layer 112 is an S-shaped curved strip to form a temperature field with a temperature gradient on the first surface 1111 of the liquid-conducting base 111 , that is, on the first surface 1111 of the liquid-conducting base 111
  • the first surface 1111 forms a high-temperature zone and a low-temperature zone to atomize various components in the aerosol-generating matrix to the maximum extent.
  • Both ends of the heating part 1121 are connected to a connecting part 1122 respectively.
  • the size of the connecting part 1122 is larger than the size of the heating part 1121 so that the connecting part 1122 can achieve better electrical connection with the power supply component 2 .
  • the resistivity of the heating material layer 112 is not greater than 0.06*10 -6 ⁇ m.
  • the heating part 1121 and the connecting part 1122 are integrally formed.
  • the surface of the heating part 1121 away from the liquid conductive base 111 is provided with a first protective film 113, and the surface of the connecting part 1122 away from the liquid conductive base 111 is provided with a second protective film 114.
  • first protective film 113 and the second protective film 114 see introduced above.
  • the heating material layer 112 formed on the first surface 1111 of the liquid conductive substrate 111 is a heating film, and the thickness of the heating material layer 112 ranges from 200 nm to 5 ⁇ m, that is, the thickness of the heating material layer 112 is relatively thin.
  • the thickness of the heating material layer 112 ranges from 200 nm to 1 ⁇ m.
  • the thickness of the heating material layer 112 ranges from 200nm to 500nm.
  • the heating material layer 112 is formed by physical vapor deposition (such as magnetron sputtering, vacuum evaporation, ion plating) or chemical vapor deposition (ion-assisted chemical deposition, laser-assisted chemical deposition, metal-organic compound deposition). .
  • physical vapor deposition such as magnetron sputtering, vacuum evaporation, ion plating
  • chemical vapor deposition ion-assisted chemical deposition, laser-assisted chemical deposition, metal-organic compound deposition.
  • the thickness of the heat-generating material layer 112 formed on the first surface 1111 of the liquid-conducting substrate 111 ranges from 5 ⁇ m to 100 ⁇ m, that is, the thickness of the heat-generating material layer 112 is relatively thick.
  • the thickness of the heating material layer 112 ranges from 5 ⁇ m to 50 ⁇ m.
  • the heating material layer 112 is formed on the first surface 1111 of the liquid-conducting substrate 111 by printing, that is, the heating material layer 112 is a printed metal paste layer; due to the roughness of the first surface 1111 of the liquid-conducting substrate 111
  • the heat-generating material layer 112 can be formed into a continuous film if the thickness is less than 100 ⁇ m.
  • the thickness of the heating material layer 112 can be set to 5 ⁇ m-100 ⁇ m. Even if the area where the heating material layer 112 is located blocks part of the first micropores 1113, there is also Other first micropores 1113 can supply liquid.
  • the liquid-conducting matrix 111 of the heating element 11 shown in FIG. 6 may be a dense liquid-conducting matrix, a porous ceramic, or a composite ceramic (the liquid-conducting matrix 111 shown in FIG. 5 ).
  • FIG. 7 is a schematic structural diagram of a fourth embodiment of a heating element provided by the present application.
  • the difference between the heating element 11 shown in Figure 7 and the heating element 11 shown in Figure 3a is that the shape of the heating material layer 112 is different, and other identical structures will not be described again.
  • the liquid-conducting base 111 is flat, and the heating part 1121 of the heating material layer 112 includes a plurality of first heating sub-parts 1121a extending in the first direction and a plurality of second heating sub-parts 1121a extending in the second direction. part 1121b, and the second sub-heating part 1121b connects the two adjacent first sub-heating parts 1121a.
  • the two connecting parts 1122 are located on the same side of the heating part 1121.
  • the width of the connecting portion 1122 is larger than the width of the heating portion 1121 .
  • the surface of the heating part 1121 away from the liquid conductive base 111 is provided with a first protective film 113, and the surface of the connecting part 1122 away from the liquid conductive base 111 is provided with a second protective film 114.
  • first protective film 113 and the second protective film 114 see introduced above.
  • FIG. 8 is a schematic structural diagram of a fifth embodiment of the heating element provided by the present application.
  • the difference between the heating element 11 shown in Figure 8 and the heating element 11 shown in Figure 3a is that the shape of the heating element 11 is different, and other identical structures will not be described again.
  • the liquid-conducting base 111 is cylindrical, and the liquid-conducting base 111 is a dense liquid-conducting base.
  • the liquid-conducting base 111 has a plurality of first micropores 1113 , and the first micropores 1113 are formed through the first surface 1111 and the second surface. Two through holes on surface 1112.
  • the first surface 1111 is the inner surface of the cylindrical liquid-conducting base 111
  • the second surface 1112 is the outer surface of the cylindrical liquid-conducting base 111 .
  • the heat-generating material layer 112 is provided on the first surface 1111 of the liquid-conducting base 111 .
  • a first protective film 113 and a second protective film 114 are provided on the surface of the heating material layer 112 away from the liquid conductive base 111 . It should be noted that the first protective film 113 and the second protective film 114 are not marked in FIG. 8 .
  • FIG. 9 is a schematic structural diagram of a sixth embodiment of the heating element provided by the present application.
  • the difference between the heating element 11 shown in Figure 9 and the heating element 11 shown in Figure 3a is that the shape of the heating element 11 is different, and other similar structures will not be described again.
  • the liquid-conducting base 111 is cylindrical, and the liquid-conducting base 111 is a dense liquid-conducting base.
  • the liquid-conducting base 111 has a plurality of first micropores 1113 , and the first micropores 1113 are formed through the first surface 1111 and the second surface. Two through holes on surface 1112.
  • the first surface 1111 is the inner surface of the cylindrical liquid-conducting base 111
  • the second surface 1112 is the outer surface of the cylindrical liquid-conducting base 111 .
  • the heat-generating material layer 112 is provided on the second surface 1112 of the liquid-conducting base 111 .
  • a first protective film 113 and a second protective film 114 are provided on the surface of the heating material layer 112 away from the liquid conductive base 111 . It should be noted that the first protective film 113 and the second protective film 114 are not marked in FIG. 9 .
  • Experiment 1 Evaluate the life of the heating element 11 by loading the heating element 11 with wet combustion. Experimental conditions: 6.5 watt constant power supply, 3 seconds of puffing and 27 seconds of stopping mode, the aerosol generation matrix is 30 mg of Coke Ice. Among them, the heating element 11 provided with the first protective film 113 was compared with that without the protective film, and the selection of different materials for the first protective film 113 was compared, and the experiment was conducted by simulating the normal use environment of the electronic atomization device (see Figure 10 ), the comparison results are shown in Table 3, and the relationship between the materials of the heating material layer 112 and the first protective film 113 and the life of the heating element 11 is obtained. In FIG.
  • connection portions 1122 of the heating material layer 112 are respectively connected through the ejector pins 20 of the power supply assembly 2 (the ejector pins 20 are electrically connected to the battery) to control the power supply and power-on time.
  • the first protective film 113 When the first protective film 113 is not provided, silver and copper as the heating material layer 112 are easily corroded by flavors and additives containing sulfur, phosphorus, chlorine and other elements in the aerosol generation matrix, and are difficult to meet the life requirements; aluminum When used as a material for the heat-generating material layer 112, it can withstand more than 600 thermal cycles and meets the use conditions of a closed electronic atomizer device, but it is difficult to meet the requirements of an open electronic atomizer device with more than 1,500 ports.
  • the material of the first protective film 113 is a ceramic material that is resistant to corrosion of the aerosol-generating matrix, such as aluminum nitride, silicon nitride, aluminum oxide, silicon oxide, silicon carbide, zirconium oxide, etc. Regardless of whether the material of the heating material layer 112 is silver, copper or aluminum, the use of the first protective film 113 can greatly extend the life of the heating element 11 .
  • Experiment 2 Evaluate the life of the heating element 11 by loading the heating element 11 with wet combustion. Experimental conditions: 6.5 watt constant power supply, 3 seconds of puffing and 27 seconds of stopping mode, the aerosol generation matrix is 30 mg of Coke Ice. Among them, the smoke amount of the heating element 11 provided with the first protective film 113 of different materials was compared, and the experiment was conducted by simulating the normal use environment of the electronic atomization device (see Figure 10). The comparison results are shown in Table 4, and the first The relationship between the material of the protective film 113 and the amount of atomization. In FIG.
  • connection portions 1122 of the heating material layer 112 are respectively connected through the ejector pins 20 of the power supply assembly 2 (the ejector pins 20 are electrically connected to the battery) to control the power supply and power-on time.
  • the amount of atomization is significantly increased when the first protective film 113 is made of ceramic materials (for example, aluminum nitride, silicon nitride) than metal materials (for example, 316L stainless steel).

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Anesthesiology (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Hematology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Pulmonology (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Resistance Heating (AREA)
  • Surface Heating Bodies (AREA)

Abstract

一种发热体(11)、雾化组件(1)及电子雾化装置(100)。发热体(11)包括导液基体(111)、发热材料层(112)、第一保护膜(113)和第二保护膜(114);导液基体(111)包括发热区域(a)和电极区域(b);发热材料层(112)设于导液基体(111)的第一表面(1111),发热材料层(112)为电阻发热材料,包括位于发热区域(a)的发热部(1121)和位于电极区域(b)的连接部(1122);第一保护膜(113)至少部分设于发热部(1121)远离导液基体(111)的表面;第一保护膜(113)的材料为耐气溶胶生成基质腐蚀的非导电材料;第二保护膜(114)至少部分设于连接部(1122)远离导液基体(111)的表面;第二保护膜(114)的材料为耐气溶胶生成基质腐蚀的导电材料。通过对发热材料层(112)的发热区域(a)和电极区域(b)采用不同的保护膜进行保护,防止发热材料层(112)被气溶胶生成基质腐蚀,利于提升发热材料层(112)的使用寿命。

Description

发热体、雾化组件及电子雾化装置 技术领域
本申请涉及雾化技术领域,尤其涉及一种发热体、雾化组件及电子雾化装置。
背景技术
典型的电子雾化装置由发热体、电池和控制电路等部分组成,发热体作为电子雾化装置的核心元件,其特性决定了电子雾化装置的雾化效果和使用体验。
现有的发热体在强腐蚀性的气溶胶生成基质中存在腐蚀风险,使用寿命较低。
发明内容
有鉴于此,本申请提供一种发热体、雾化组件及电子雾化装置,以解决现有技术中发热体寿命较低的技术问题。
为了解决上述技术问题,本申请提供的第一个技术方案为:提供一种发热体,应用于电子雾化装置,用于雾化气溶胶生成基质,包括:导液基体、发热材料层、第一保护膜和第二保护膜;所述导液基体包括发热区域和电极区域;所述发热材料层设于所述导液基体的第一表面;所述发热材料层为电阻发热材料,包括位于所述发热区域的发热部和位于所述电极区域的连接部;所述第一保护膜至少部分设于所述发热部远离所述导液基体的表面;所述第一保护膜的材料为耐所述气溶胶生成基质腐蚀的非导电材料;所述第二保护膜至少部分设于所述连接部远离所述导液基体的表面;所述第二保护膜的材料为耐所述气溶胶生成基质腐蚀的导电材料。
在一实施方式中,所述第一保护膜的材料为陶瓷或玻璃。
在一实施方式中,所述第一保护膜的材料为陶瓷;所述陶瓷的材料为氮化铝、氮化硅、氧化铝、氧化硅、碳化硅、氧化锆中的一种或多种。
在一实施方式中,所述第一保护膜的厚度为10nm-1000nm。
在一实施方式中,所述第二保护膜的材料为导电陶瓷或金属。
在一实施方式中,所述第二保护膜的材料为导电陶瓷,所述导电陶瓷的材料为氮化钛、二硼化钛中的一种或多种。
在一实施方式中,所述第二保护膜的厚度为10nm-2000nm。
在一实施方式中,所述导液基体为致密导液基体;所述导液基体还包括与所述第一表面相对设置的第二表面,所述导液基体具有多个第一微孔,所述第一微孔为贯穿所述第一表面和所述第二表面的有序通孔。
在一实施方式中,所述导液基体的材料为石英或玻璃或致密陶瓷,所述第一微孔为直通孔。
在一实施方式中,所述导液基体的材料为多孔陶瓷,所述导液基体具有多个无序的通孔;
或,所述导液基体包括层叠设置的多孔陶瓷层和致密陶瓷层,所述致密陶瓷层具有多个与所述导液基体的厚度方向垂直的有序的直通孔;所述发热材料层设于所述致密陶瓷层远离所述多孔陶瓷层的表面。
在一实施方式中,所述发热材料层为发热膜,所述发热膜的厚度为200nm-5μm。
在一实施方式中,所述发热材料层的电阻率小于0.06*10 -6Ω·m。
在一实施方式中,所述发热材料层的材料为铝、铜、银、金、镍、铬、铂、钛、锆、钯、铁或其合金。
在一实施方式中,所述发热材料层的厚度为5μm-100μm,所述发热材料层为印刷的金属浆料层。
在一实施方式中,所述导液基体为平板状、弧形状或筒状。
在一实施方式中,所述第一保护膜覆盖整个所述发热部,所述第二保护膜覆盖整个所述连接部。
在一实施方式中,所述导液基体为圆筒状,所述导液基体包括内表面和外表面,所述发热材料层设置在所述内表面或所述外表面。
在一实施方式中,所述发热材料层、所述第一保护膜和所述第二保护膜通过物理气相沉积或化学气相沉积的方式形成于所述导液基体的所述第一表面。
在一实施方式中,所述发热材料层的所述连接部与所述第二保护膜构成电极。
在一实施方式中,所述第一微孔为直通孔,所述发热材料层、所述第一保护膜延伸进所述第一微孔的壁面。
为了解决上述技术问题,本申请提供的第二个技术方案为:提供一种雾化组件,包括:储液腔和发热体;所述储液腔用于存储液态气溶胶生成基质;所述发热体为上述任意一项所述的发热体;所述发热体与所述储液腔流体连通。
为了解决上述技术问题,本申请提供的第三个技术方案为:提供一种电子雾化装置,包 括雾化组件和电源组件,所述雾化组件为上述所述的雾化组件,所述电源组件与所述发热体电连接。
本申请的有益效果:区别于现有技术,本申请公开了一种发热体、雾化组件及电子雾化装置,发热体包括导液基体、发热材料层、第一保护膜和第二保护膜;导液基体包括发热区域和电极区域;发热材料层设于所述导液基体的第一表面,且包括位于发热区域的发热部和位于电极区域的连接部;第一保护膜设于发热部远离导液基体的表面;第一保护膜的材料为耐气溶胶生成基质腐蚀的非导电材料;第二保护膜,设于连接部远离导液基体的表面;第二保护膜的材料为耐气溶胶生成基质腐蚀的导电材料。通过对发热材料层的发热区域和电极区域采用不同的保护膜进行保护,防止发热材料层被气溶胶生成基质腐蚀,利于提升发热材料层的使用寿命。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图。
图1是本申请实施例提供的电子雾化装置的结构示意图;
图2是本申请实施例提供的电子雾化装置的雾化组件的结构示意图;
图3a是本申请提供的发热体的第一实施方式结构示意图;
图3b是图3a提供的发热体的俯视结构示意图;
图4是图3a提供的发热体的导液基体的结构示意图;
图5是本申请提供的发热体的第二实施方式结构示意图;
图6是本申请提供的发热体的第三实施方式结构示意图;
图7是本申请提供的发热体第四实施方式的结构示意图;
图8是本申请提供的发热体第五实施方式的结构示意图;
图9是本申请提供的发热体第六实施方式的结构示意图;
图10是本申请提供的发热体湿烧实验示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本申请的一部分实施例,而不是全部的实施例。基于本申请 中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
以下描述中,为了说明而不是为了限定,提出了诸如特定系统结构、接口、技术之类的具体细节,以便透彻理解本申请。
本申请中的术语“第一”、“第二”、“第三”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”、“第三”的特征可以明示或者隐含地包括至少一个所述特征。本申请的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。本申请实施例中所有方向性指示(诸如上、下、左、右、前、后……)仅用于解释在某一特定姿态(如附图所示)下各部件之间的相对位置关系、运动情况等,如果所述特定姿态发生改变时,则所述方向性指示也相应地随之改变。本申请实施例中的术语“包括”和“具有”以及它们任何变形,意图在于覆盖不排他的包含。例如包含了一系列步骤或单元的过程、方法、系统、产品或设备没有限定于已列出的步骤或单元,而是可选地还包括没有列出的步骤或单元,或可选地还包括对于这些过程、方法、产品或设备固有的其它步骤或组件。
在本文中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现所述短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。
下面结合附图和实施例对本申请进行详细的说明。
请参阅图1,图1是本申请实施例提供的电子雾化装置的结构示意图。
在本实施例中,提供一种电子雾化装置100。该电子雾化装置100可用于气溶胶生成基质的雾化。电子雾化装置100包括相互电连接的雾化组件1和电源组件2。
其中,雾化组件1用于存储气溶胶生成基质并雾化气溶胶生成基质以形成可供用户吸食的气溶胶。该雾化组件1具体可用于不同的领域,比如,医疗、美容、休闲吸食等。在一具体实施例中,该雾化组件1可用于电子气溶胶化装置,用于雾化气溶胶生成基质并产生气溶胶,以供抽吸者抽吸,以下实施例均以此休闲吸食为例。
雾化组件1的具体结构与功能可参见以下实施例所涉及的雾化组件1的具体结构与功能,且可实现相同或相似的技术效果,在此不再赘述。
电源组件2包括电池(图未示)和控制器(图未示)。电池用于为雾化组件1的工作提供电能,以使得雾化组件1能够雾化气溶胶生成基质形成气溶胶;控制器用于控制雾化组件 1工作。电源组件2还包括电池支架、气流传感器等其他元件。
雾化组件1与电源组件2可以是一体设置,也可以是可拆卸连接,可以根据具体需要进行设计。
电子雾化装置的功率一般不超过10瓦,功率通常为6瓦-8.5瓦。电子雾化装置采用的电池的电压范围为2.5伏-4.4伏。对于封闭式电子雾化装置(无需用户自行注入气溶胶生成基质的电子雾化装置),采用的电池的电压范围为3伏-4.4伏。但本发明的电子雾化装置并不限于这些参数。
请参阅图2,图2是本申请实施例提供的电子雾化装置的雾化组件的结构示意图。
雾化组件1包括壳体10、发热体11、雾化座12。雾化座12具有安装腔(图未标),发热体11设于该安装腔内;发热体11同雾化座12一起设于壳体10内。壳体10形成有出雾通道13,壳体10的内表面、出雾通道13的外表面与雾化座12的顶面配合形成储液腔14,储液腔14用于存储液态气溶胶生成基质。其中,发热体11与电源组件2电连接,以雾化气溶胶生成基质生成气溶胶。
雾化座12包括上座121和下座122,上座121与下座122配合形成安装腔;发热体11的雾化面与安装腔的腔壁配合形成雾化腔120。上座121上设有下液通道1211,下液通道1211与安装腔流体连通,储液腔14内的气溶胶生成基质通道下液通道1211流入发热体11,即,发热体11与储液腔14流体连通。下座122上设有进气通道15,外界气体经进气通道15进入雾化腔120,携带发热体11雾化好的气溶胶流至出雾通道13,用户通过出雾通道13的端口吸食气溶胶。
请参阅图3a-图4,图3a是本申请提供的发热体的第一实施方式结构示意图,图3b是图3a提供的发热体的俯视结构示意图,图4是图3a提供的发热体的导液基体的结构示意图。
发热体11包括导液基体111、发热材料层112、第一保护膜113和第二保护膜114。导液基体111起结构支撑作用。发热材料层112为电阻发热材料。导液基体111包括相对设置的第一表面1111和第二表面1112。导液基体111的第一表面1111包括发热区域a和电极区域b。发热材料层112设于导液基体111的第一表面1111,发热材料层112包括位于发热区域a的发热部1121和位于电极区域b的连接部1122,其中,连接部1122用作电极,连接部1122用于与电源组件2电连接。第一保护膜113至少部分设于发热部1121远离导液基体111的表面,第一保护膜113的材料为耐气溶胶生成基质腐蚀的非导电材料。第二保护膜114至少部分设于连接部1122远离导液基体111的表面,第二保护膜114的材料为耐气溶胶生成基质腐蚀的导电材料。
通过上述设置,对发热材料层112的不同区域选用不同的保护膜分别进行保护,有效防止气溶胶生成基质对发热部1121和连接部1122的腐蚀,利于提升发热材料层112的使用寿命。
可选的,第一保护膜113覆盖整个发热部1121,以防止气溶胶生成基质对整个发热部1121的腐蚀,实现对整个发热部1121的保护,利于提高发热体11的使用寿命。
可选的,第二保护膜114覆盖整个连接部1122,以防止气溶胶生成基质对整个连接部1122的腐蚀,实现对整个连接部1122的保护,利于提高发热体11的使用寿命。
可选的,第二保护膜114上具有开孔(图未示),使部分连接部1122暴露,暴露的连接部1122用于与导通件(图未标)接触。通过该设置,利于降低导通件与连接部1122的接触电阻。可以理解,连接部1122通过导通件(图未标)与电源组件2实现电连接;导通件可以是顶针或弹针。
可选的,第一保护膜113的材料为陶瓷或玻璃。由于发热材料层112的材料为金属,陶瓷或玻璃的热膨胀系数与金属发热材料层112相匹配,陶瓷或玻璃的附着力与金属发热材料层112相匹配,使用陶瓷或玻璃作为第一保护膜113,第一保护膜113不易从发热部1121上脱落,能够起到很好的保护作用。
当第一保护膜113的材料为陶瓷时,陶瓷的材料可以为氮化铝、氮化硅、氧化铝、氧化硅、碳化硅、氧化锆中的一种或多种,具体根据需要进行选择。参见表1和表2,相对于使用耐气溶胶生成基质腐蚀的不锈钢作为保护膜保护发热部1121,陶瓷作为第一保护膜113保护发热部1121,第一保护膜113具有更高的导热性能和更低的气溶胶生成基质接触角。第一保护膜113的更高的导热性能使得发热部1121产生的热量更高效的传导至气溶胶生成基质,利于提高发热部1121的雾化效率;第一保护膜113的更低的接触角使气溶胶生成基质在其表面的润湿性更强,气溶胶生成基质的传输效率更高,进一步利于提高发热部1121的雾化效率。使用第一保护膜113(第一保护膜113选用氮化铝)作为发热部1121的保护膜的发热体11和现有技术中的发热体(选用不锈钢作为保护膜)进行实验,实验条件为6.5W恒功率、抽3s停27s,本申请提供的发热体11的雾化量为7.2mg/puff,现有技术的发热体的雾化量为6.2mg/puff,证明了使用陶瓷作为第一保护膜113可以明显提升雾化量。其中,部分材料的热导率如表1所示;部分材料的接触角如表2所示。
表1 材料的热导率
Figure PCTCN2022092859-appb-000001
表2 材料的接触角
材料 不锈钢 氮化铝 氮化硅 氧化铝 碳化硅
接触角 45° 20° 20° 23° 22°
可选的,第一保护膜113的厚度为10nm-1000nm。第一保护膜113的厚度低于10nm难以起到保护效果,因为薄膜的致密性没有那么好,气溶胶生成基质会穿过第一保护膜113腐蚀发热部1121,第一保护膜113的厚度超过1000nm,存在应力过大导致第一保护膜113容易热震开裂,失去保护效果。
可选的,第二保护膜114的厚度为10nm-2000nm。第二保护膜114的厚度低于10nm难以起到保护效果,因为薄膜的致密性没有那么好,气溶胶生成基质会穿过第二保护膜114腐蚀连接部1122,第二保护膜114的厚度超过2000nm,存在应力过大导致第二保护膜114容易热震开裂,失去保护效果。
可选的,第二保护膜114的材料为导电陶瓷或金属。相对于第一保护膜113为非导电材料,第二保护膜114为导电材料,使得第二保护膜114在保护连接部1122不受气溶胶生成基质腐蚀的同时,不影响连接部1122与电源组件2的电连接。由于发热材料层112的材料为金属,导电陶瓷或金属的热膨胀系数与金属发热材料层112相匹配,导电陶瓷或金属的附着力与金属发热材料层112相匹配,使用导电陶瓷或金属作为第二保护膜114,第二保护膜114不易从连接部1122上脱落,能够起到很好的保护作用。通过使用导电陶瓷或金属作为第二保护膜114,利于降低接触电阻。
当第二保护膜114的材料为导电陶瓷时,导电陶瓷的材料为氮化钛、二硼化钛中的一种或多种。可以理解,导电陶瓷相对于金属更耐气溶胶生成基质腐蚀。
需要说明的是,发热材料层112的连接部1122与第二保护膜114构成电极;其中,在连接部1122上设置第二保护膜114,降低了电阻,可以用作电极。发热部1121和连接部1122的厚度可以相同也可以不同。为了减少连接部1122的电阻值,连接部1122的厚度也可以大于发热部1121。
继续参见图3a和图4,在本实施例中,导液基体111为致密导液基体;导液基体111具有多个第一微孔1113,第一微孔1113为贯穿第一表面1111和第二表面1112的有序通孔。储液腔14中的气溶胶生成基质经过下液通道1211到达发热体11的导液基体111,利用导液基体111上第一微孔1113的毛细作用力将气溶胶生成基质从导液基体111的第二表面1112导引至导液基体111的第一表面1111,使气溶胶生成基质被位于第一表面1111的发热材料层112雾化;也就是说,第一微孔1113通过下液通道1211与储液腔14连通。其中, 导液基体111的材料可以为石英或玻璃或致密陶瓷,此时第一微孔1113为直通孔;导液基体111为玻璃时,可以普通玻璃、石英玻璃、硼硅玻璃或光敏铝硅酸锂玻璃中的一种。
可选的,仅在导液基体111的发热区域a设有第一微孔1113,在电极区域b并未设第一微孔1113。在一个实施例中,发热部1121不仅设置于第一表面1111,还进一步设置于第一微孔1113内表面。第二保护膜114也设置于第一微孔1113内,并将位于第一微孔1113内表面的发热部1121也全部覆盖。
可以理解的是,在电子雾化装置的功率为6瓦-8.5瓦,电池的电压范围为2.5伏-4.4伏时,为了达到电池的工作电阻,发热体11的发热材料层112在常温下的电阻范围为0.5欧姆-2欧姆。在本实施例中,发热材料层112覆盖整个发热区域a。
本申请通过在导液基体111上设置多个具有毛细作用力的第一微孔1113,使得发热体11的孔隙率的大小可精确控制,提升产品的一致性。也就是说,在批量生产中,发热体11中导液基体111的孔隙率基本一致,形成于导液基体111上的发热材料层112的厚度均匀,使得同一批出厂的电子雾化装置雾化效果一致。
相对现有的棉芯发热体和多孔陶瓷发热体,本申请提供的这种带第一微孔1113的薄片式结构的发热体11供液通道更短,供液速度更快,但漏液风险液更大。因此,本申请发明人研究了导液基体111厚度与第一微孔1113的孔径的比例对发热体11供液的影响,结果发现,增大导液基体111厚度、减小第一微孔1113的孔径可以降低漏液风险但也会减小供液速率,减小导液基体111的厚度、增大第一微孔1113的孔径可以增大供液速率但又会提高漏液风险,二者相互矛盾。为此,本申请设计了导液基体111的厚度、第一微孔1113的孔径,以及导液基体111厚度与第一微孔1113孔径的比例,使发热体11在功率为6瓦-8.5瓦、电压为2.5伏-4.4伏工作时,既能实现充足的供液,也能防止漏液。其中,导液基体111的厚度为第一表面1111与第二表面1112之间的距离。
另外,本申请发明人还研究了相邻第一微孔1113的孔中心距与第一微孔1113孔径的比值,发现如果相邻第一微孔1113的孔中心距与第一微孔1113孔径的比值过大,导液基体111的强度较大也容易加工,但是孔隙率太小,容易导致供液量不足;如果相邻第一微孔1113的孔中心距与第一微孔1113孔径的比值过小,孔隙率较大,供液量充足,但是导液基体111的强度较小而且不容易加工;为此,本申请还设计了相邻第一微孔1113的孔中心距与第一微孔1113孔径的比值,在满足供液能力的前提下,尽可能提升了导液基体111的强度。
下面以导液基体111的材料为玻璃进行介绍。
具体地,第一表面1111和第二表面1112均包括光滑表面,第一表面1111为平面。也 就是说,导液基体111的第一表面1111为光滑的平面;第一表面1111为光滑的平面,有利于金属材料在厚度较小的情况下沉积成膜,即,利于在导液基体111的第一表面1111形成发热材料层112。
可选的,导液基体111的第一表面1111和第二表面1112均为光滑的平面,且导液基体111的第一表面1111和第二表面1112平行设置;第一微孔1113的轴线与第一表面1111和第二表面1112垂直,此时,导液基体111的厚度与第一微孔1113的长度相等。可以理解,第二表面1112与第一表面1111平行,第一微孔1113由第一表面1111贯穿至第二表面1112,使得导液基体111的生产工艺简单,降低成本。第一表面1111与第二表面1112之间的距离为导液基体111的厚度。
可选的,导液基体111的第一表面1111为光滑的平面;导液基体111的第二表面1112为光滑的非平面,例如,斜面、弧面、锯齿面等,第二表面1112可以根据具体需要进行设计,只需使第一微孔1113贯穿第一表面1111和第二表面1112即可。
可选的,第一微孔1113的横截面为圆形。第一微孔1113可以为孔径均匀的直通孔,也可以为孔径不均匀的直通孔,只要孔径的变化范围在50%之内即可。例如,由于制备工艺所限,通过激光诱导和腐蚀在玻璃上开设的第一微孔1113通常为两端孔径大中间孔径小。因此,只要确保第一微孔1113的中间部分的孔径不小于两端端口的孔径的一半即可。
下面以导液基体111的材料为玻璃,且导液基体111的第一表面1111和第二表面1112均为光滑的平面且平行设置时,对导液基体111的厚度、第一微孔1113的孔径、导液基体111厚度与第一微孔1113孔径的比例、相邻两个第一微孔1113之间的孔中心距与第一微孔1113的孔径的比例进行介绍。
导液基体111的厚度为0.1毫米-1毫米。导液基体111的厚度大于1毫米时,无法满足供液需求,导致气溶胶量下降,且造成的热损失多,设置第一微孔1113的成本高;导液基体111的厚度小于0.1毫米时,无法保证导液基体111的强度,不利于提高电子雾化装置的性能。可选的,导液基体111的厚度为0.2毫米-0.5毫米。可以理解的是,导液基体111的厚度根据实际需要进行选择。
导液基体111上第一微孔1113的孔径为1μm-100μm。第一微孔1113的孔径小于1μm时,无法满足供液需求,导致气溶胶量下降;第一微孔1113的孔径大于100μm时,气溶胶生成基质容易从第一微孔1113内流出至第一表面1111造成漏液,导致雾化效率下降。可选的,第一微孔1113的孔径为20μm-50μm。可以理解的是,第一微孔1113的孔径根据实际需要进行选择。
导液基体111厚度与第一微孔1113孔径的比例为20:1-3:1;可选的,导液基体111厚度与第一微孔1113孔径的比例为15:1-5:1。当导液基体111的厚度与第一微孔1113的孔径的比例大于20:1时,通过第一微孔1113的毛细作用力供给的气溶胶生成基质难以满足发热体11的雾化需求量,不仅容易导致干烧,且单次雾化产生的气溶胶量下降;当导液基体111的厚度与第一微孔1113的孔径的比例小于3:1时,气溶胶生成基质容易从第一微孔1113内流出至第一表面1111,气溶胶生成基质浪费,导致雾化效率下降,进而使得总气溶胶量降低。
相邻两个第一微孔1113之间的孔中心距与第一微孔1113的孔径的比例为3:1-1.5:1,以使导液基体111上的第一微孔1113在满足供液能力的前提下,尽可能提升导液基体111的强度;可选的,相邻两个第一微孔1113之间的孔中心距与第一微孔1113的孔径的比例为3:1-2:1;可选的,相邻两个第一微孔1113之间的孔中心距与第一微孔1113的孔径的比例为3:1-2.5:1。
在一个具体实施例中,导液基体111的厚度与第一微孔1113的孔径的比例为15:1-5:1,相邻两个第一微孔1113之间的孔中心距与第一微孔1113的孔径的比例为3:1-2.5:1。
在本实施例中,导液基体111为平板状。示例性的,导液基体111矩形板状、圆形板状等,具体根据需要进行设计。在其他实施方式中,导液基体111为弧形状或筒状。多个第一微孔1113在发热区域a呈阵列排布;即,设置于导液基体111上的多个第一微孔1113之间呈规则排布,多个第一微孔1113中相邻的第一微孔1113之间的孔中心距相同。其中,多个第一微孔1113的孔径可以相同,也可以不同,根据需要进行设计。
由于发热体11中的导液基体111为致密材料,能够起到结构支撑的作用。相对于现有的棉芯发热体的弹簧状的金属发热丝和多孔陶瓷发热体的金属厚膜导线,对发热体11中的发热材料层112的强度和厚度无要求,发热材料层112可以采用低电阻率的金属材料,例如,金、铝。
在一实施方式中,形成于导液基体111的第一表面1111上的发热材料层112为发热膜,发热材料层112的厚度范围为200nm-5μm,即发热材料层112的厚度较薄。可选的,发热材料层112的厚度范围为200nm-1μm。可选的,发热材料层112的厚度范围为200nm-500nm。当发热材料层112为发热膜时,发热材料层112对应于多个第一微孔1113设有多个第二微孔1123。进一步,发热材料层112还形成于第一微孔1113的内表面;可选的,发热材料层112还形成于第一微孔1113的整个内表面。在第一微孔1113的内表面设置有发热材料层112,使得气溶胶生成基质在第一微孔1113内就可以被雾化,有利于提高雾化效果。
可以理解,当发热材料层112的厚度大于5μm时,通常采用印刷等方式形成发热材料层112,发热材料层112厚度太大会堵塞第一微孔1113;发热材料层112的厚度范围可以为5μm-100μm。由于本实施例中,发热材料层112覆盖整个发热区域a,以防止影响供液,发热材料层112的厚度不大于5μm。
可选的,发热材料层112的电阻率不大于0.06*10 -6Ω·m。在发热材料层112在常温下的电阻为0.5欧姆-2欧姆的基础上,本申请采用低导电率的金属材料,以形成较薄的金属膜,尽可能降低对第一微孔1113的孔径的影响。发热材料层112越薄,对第一微孔1113的孔径的影响就越小,进而实现较好的雾化效果;而且发热材料层112越薄,发热材料层112本身吸热少,电热损耗低,发热体11升温速度快。
可选的,发热材料层112的金属材料包括银及其合金、铜及其合金、铝及其合金、金及其合金、镍及其合金、铬及其合金、铂及其合金、钛及其合金、锆及其合金、钯及其合金、铁及其合金。在一实施方式中,发热材料层112的材料可以包括铝及其合金、金及其合金;由于液态气溶胶生成基质中包含各种香精香料和添加剂,含硫、磷、氯等元素,金具有非常强的化学惰性,铝表面会生成致密氧化薄膜,这两种材料在液态气溶胶生成基质非常稳定,优选作为发热材料层112材料。
可选的,发热材料层112、第一保护膜113和第二保护膜114可以通过物理气相沉积(如,磁控溅射、真空蒸发、离子镀)或化学气相沉积(离子体辅助化学沉积、激光辅助化学沉积、金属有机化合物沉积)的方式形成于导液基体111的第一表面1111。
可以理解的是,发热材料层112和第一保护膜113的形成工艺使其不会覆盖第一微孔1113。发热材料层112、第一保护膜113延伸进第一微孔1113的壁面。通过物理气相沉积或化学气相沉积在导液基体111的第一表面1111形成发热材料层112和第一保护膜113的同时也就在第一微孔1113的内表面形成了发热材料层112和第一保护膜113。在选用磁控溅射的方式在导液基体111的第一表面1111形成发热材料层112和第一保护膜113时,磁控溅射时金属原子与第一表面1111垂直,与第一微孔1113的内表面平行,金属原子更容易沉积在第一表面1111;假设金属原子沉积在第一表面1111形成的发热材料层112和第一保护膜113的厚度为1μm,此时金属原子沉积在第一微孔1113的内表面的厚度远小于1μm,甚至达不到0.5μm;发热材料层112和第一保护膜113沉积在第一表面1111的厚度越薄,形成于第一微孔1113内表面的发热材料层112和第一保护膜113的厚度越薄,对第一微孔1113的孔径影响越小。由于发热材料层112和第一保护膜113的厚度远小于第一微孔1113的孔径,且发热材料层112和第一保护膜113沉积于第一微孔1113内的部分的厚度要小于 沉积于导液基体111的第一表面1111的部分的厚度,因此,发热材料层112和第一保护膜113沉积于第一微孔1113内对第一微孔1113的孔径影响可以忽略。
在其他实施方式中,导液基体111的材料为多孔陶瓷,多孔陶瓷的内部具有多个相互连通且无序分布的毛细孔,利用多孔陶瓷本身具有的毛细孔进行导液;即,导液基体111具有多个无序的通孔。在发热材料层112的发热部1121设第一保护膜113,在发热材料层112的连接部1122设第二保护膜114,实现对发热材料层112的保护。即,本申请提供的第一保护膜113和第二保护膜114可以应用于传统的多孔陶瓷发热体表面,以实现对其发热材料层的保护。
请参阅图5,图5是本申请提供的发热体的第二实施方式结构示意图。导液基体111还可以为复合陶瓷。导液基体111包括层叠设置的多孔陶瓷层和致密陶瓷层,致密陶瓷层具有多个与导液基体111的厚度方向垂直的有序的直通孔;发热材料层112设于致密陶瓷层远离多孔陶瓷层的表面。具体地,导液基体111包括相互接触的第一子导液基体111a和第二子导液基体111b,即,第一子导液基体111a为多孔陶瓷层,第二子导液基体111b为致密陶瓷层。第一子导液基体111a远离第二子导液基体111b的表面为导液基体111的第二表面1112,第二子导液基体111b远离第一子导液基体111a的表面为第一表面1111。第一子导液基体111a的材料为多孔陶瓷,第一子导液基体111a具有多个无序的通孔;第二子导液基体111b的材料为致密陶瓷,第二子导液基体111b具有多个第一微孔1113,第一微孔1113为贯穿孔,第一微孔1113的轴线与第二子导液基体111b的厚度方向平行;发热材料层112设于第二子导液基体111b远离第一子导液基体111a的表面。在发热材料层112的发热部1121设第一保护膜113,在发热材料层112的连接部1122设第二保护膜114,实现对发热材料层112的保护。
请参阅图6,图6是本申请提供的发热体的第三实施方式结构示意图。
图6所示的发热体11与图3a所示的发热体11的区别在于:图3a中的发热材料层112覆盖整个发热区域a或横跨整个发热区域a,图6中的发热材料层112覆盖部分发热区域a,即,发热材料层112的形状不同,其他相同结构不再赘述。
如图6所示,发热材料层112的发热部1121为S型弯曲的条状,以在导液基体111的第一表面1111形成具有温度梯度的温度场,也就是说,在导液基体111的第一表面1111形成高温区和低温区,最大限度的将气溶胶生成基质中的多种组分雾化。发热部1121的两端分别连接一个连接部1122。连接部1122的尺寸比发热部1121的尺寸大,以便于连接部1122更好的与电源组件2实现电连接。发热材料层112的电阻率不大于0.06*10 -6Ω·m。可选的, 发热部1121和连接部1122一体成型。
发热部1121远离导液基体111的表面设有第一保护膜113,连接部1122远离导液基体111的表面设有第二保护膜114,关于第一保护膜113和第二保护膜114具体参见上述介绍。
在一实施方式中,形成于导液基体111的第一表面1111上的发热材料层112为发热膜,发热材料层112的厚度范围为200nm-5μm,即发热材料层112的厚度较薄。可选的,发热材料层112的厚度范围为200nm-1μm。可选的,发热材料层112的厚度范围为200nm-500nm。可选的,通过物理气相沉积(如,磁控溅射、真空蒸发、离子镀)或化学气相沉积(离子体辅助化学沉积、激光辅助化学沉积、金属有机化合物沉积)的方式形成发热材料层112。
在另一实施方式中,形成于导液基体111的第一表面1111上的发热材料层112的厚度范围为5μm-100μm,即发热材料层112的厚度较厚。可选的,发热材料层112的厚度范围为5μm-50μm。可选的,发热材料层112通过印刷的方式形成于导液基体111的第一表面1111,即,发热材料层112为印刷的金属浆料层;由于导液基体111的第一表面1111的粗糙度低,发热材料层112的厚度在100μm以下就可以形成连续的膜状。
可以理解,由于图6中的发热材料层112覆盖部分发热区域a,发热材料层112的厚度可以设为5μm-100μm,即使发热材料层112所在的区域堵塞了部分第一微孔1113,还有其他的第一微孔1113可以进行供液。图6所示的发热体11的导液基体111可以是致密导液基体,也可以是多孔陶瓷,也可以是复合陶瓷(如图5中所示的导液基体111)。
请参阅图7,图7是本申请提供的发热体第四实施方式的结构示意图。
图7所示的发热体11与图3a所示的发热体11的区别在于:发热材料层112的形状不同,其他相同结构不再赘述。
如图7所示,导液基体111为平板状,发热材料层112的发热部1121包括多个沿第一方向延伸的第一子发热部1121a和多个沿第二方向延伸的第二子发热部1121b,第二子发热部1121b将相邻的两个第一子发热部1121a连接。两个连接部1122位于发热部1121的同一侧。连接部1122的宽度大于发热部1121的宽度。
发热部1121远离导液基体111的表面设有第一保护膜113,连接部1122远离导液基体111的表面设有第二保护膜114,关于第一保护膜113和第二保护膜114具体参见上述介绍。
请参阅图8,图8是本申请提供的发热体第五实施方式的结构示意图。
图8所示的发热体11与图3a所示的发热体11的区别在于:发热体11的形状不同,其他相同结构不再赘述。
如图8所示,导液基体111为筒状,导液基体111为致密导液基体,导液基体111具有 多个第一微孔1113,第一微孔1113为贯穿第一表面1111和第二表面1112的直通孔。其中,第一表面1111为筒状导液基体111的内表面,第二表面1112为筒状导液基体111的外表面。发热材料层112设于导液基体111的第一表面1111。发热材料层112远离导液基体111的表面设有第一保护膜113和第二保护膜114。需要说明的是,图8中未标第一保护膜113和第二保护膜114。
请参阅图9,图9是本申请提供的发热体第六实施方式的结构示意图。
图9所示的发热体11与图3a所示的发热体11的区别在于:发热体11的形状不同,其他相同结构不再赘述。
如图9所示,导液基体111为筒状,导液基体111为致密导液基体,导液基体111具有多个第一微孔1113,第一微孔1113为贯穿第一表面1111和第二表面1112的直通孔。其中,第一表面1111为筒状导液基体111的内表面,第二表面1112为筒状导液基体111的外表面。发热材料层112设于导液基体111的第二表面1112。发热材料层112远离导液基体111的表面设有第一保护膜113和第二保护膜114。需要说明的是,图9中未标第一保护膜113和第二保护膜114。
下面通过实验验证,发热材料层112材料、第一保护膜113材料、第二保护膜114材料与发热体11寿命的关系,第一保护膜113材料、第二保护膜114材料与雾化量的关系。请参阅图10,图10是本申请提供的发热体湿烧实验示意图。
实验一:通过将发热体11装弹湿烧来评价发热体11的寿命。实验条件:采用6.5瓦恒功率供电,抽吸3秒停27秒的模式,气溶胶生成基质为可乐冰30mg。其中,将发热体11设置有第一保护膜113与未设置有保护膜进行比较,并对第一保护膜113选用不同材料进行比较,模拟电子雾化装置的正常使用环境进行实验(参见图10),比较结果如表3所示,得到发热材料层112材料和第一保护膜113材料与发热体11寿命的关系。其中,图10中,采用直流电源供电,通过电源组件2的顶针20(顶针20与电池电连接)分别连接发热材料层112的连接部1122,控制通电功率和通电时间。
表3.发热材料层材料、第一保护膜材料与发热体寿命的关系
Figure PCTCN2022092859-appb-000002
当未设置第一保护膜113时,银和铜作为发热材料层112材料都很容易被气溶胶生成基 质中含硫、磷、氯等元素的香精香料和添加剂腐蚀,难以满足寿命的要求;铝作为发热材料层112材料时能承受超过600次热循环,满足封闭式电子雾化装置的使用条件,但难以满足开放式电子雾化装置超过1500口的要求。
因此,通过在发热材料层112的表面设第一保护膜113,以提高其寿命。第一保护膜113的材料为耐气溶胶生成基质腐蚀的陶瓷材料,如氮化铝、氮化硅、氧化铝、氧化硅、碳化硅、氧化锆等。不论发热材料层112材料是银、铜还是铝,采用第一保护膜113后均能大幅度提升发热体11寿命。
实验二:通过将发热体11装弹湿烧来评价发热体11的寿命。实验条件:采用6.5瓦恒功率供电,抽吸3秒停27秒的模式,气溶胶生成基质为可乐冰30mg。其中,将发热体11设置有不同材料的第一保护膜113的烟雾量进行比较,模拟电子雾化装置的正常使用环境进行实验(参见图10),比较结果如表4所示,得到第一保护膜113材料与雾化量的关系。其中,图10中,采用直流电源供电,通过电源组件2的顶针20(顶针20与电池电连接)分别连接发热材料层112的连接部1122,控制通电功率和通电时间。
表4.第一保护膜材料与雾化量的关系
Figure PCTCN2022092859-appb-000003
从表4可知,第一保护膜113材料选用陶瓷类材料(例如,氮化铝、氮化硅)比金属类材料(例如,316L不锈钢)使得雾化量明显提升。
以上仅为本申请的实施方式,并非因此限制本申请的专利范围,凡是利用本申请说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本申请的专利保护范围内。

Claims (22)

  1. 一种发热体,应用于电子雾化装置,用于雾化气溶胶生成基质,其中,包括:
    导液基体,包括发热区域和电极区域;
    发热材料层,设于所述导液基体的第一表面;所述发热材料层为电阻发热材料,包括位于所述发热区域的发热部和位于所述电极区域的连接部;
    第一保护膜,至少部分设于所述发热部远离所述导液基体的表面;所述第一保护膜的材料为耐所述气溶胶生成基质腐蚀的非导电材料;
    第二保护膜,至少部分设于所述连接部远离所述导液基体的表面;所述第二保护膜的材料为耐所述气溶胶生成基质腐蚀的导电材料。
  2. 根据权利要求1所述的发热体,其中,所述第一保护膜的材料为陶瓷或玻璃。
  3. 根据权利要求2所述的发热体,其中,所述第一保护膜的材料为陶瓷;所述陶瓷的材料为氮化铝、氮化硅、氧化铝、氧化硅、碳化硅、氧化锆中的一种或多种。
  4. 根据权利要求1所述的发热体,其中,所述第一保护膜的厚度为10nm-1000nm。
  5. 根据权利要求1所述的发热体,其中,所述第二保护膜的材料为导电陶瓷或金属。
  6. 根据权利要求5所述的发热体,其中,所述第二保护膜的材料为导电陶瓷,所述导电陶瓷的材料为氮化钛、二硼化钛中的一种或多种。
  7. 根据权利要求1所述的发热体,其中,所述第二保护膜的厚度为10nm-2000nm。
  8. 根据权利要求1所述的发热体,其中,所述导液基体为致密导液基体;所述导液基体还包括与所述第一表面相对设置的第二表面,所述导液基体具有多个第一微孔,所述第一微孔为贯穿所述第一表面和所述第二表面的有序通孔。
  9. 根据权利要求8所述的发热体,其中,所述导液基体的材料为石英或玻璃或致密陶瓷,所述第一微孔为直通孔。
  10. 根据权利要求1所述的发热体,其中,所述导液基体的材料为多孔陶瓷,所述导液基体具有多个无序的通孔;
    或,所述导液基体包括层叠设置的多孔陶瓷层和致密陶瓷层,所述致密陶瓷层具有多个与所述导液基体的厚度方向垂直的有序的直通孔;所述发热材料层设于所述致密陶瓷层远离所述多孔陶瓷层的表面。
  11. 根据权利要求1所述的发热体,其中,所述发热材料层为发热膜,所述发热膜的厚度为200nm-5μm。
  12. 根据权利要求11所述的发热体,其中,所述发热材料层的电阻率小于0.06*10 -6Ω·m。
  13. 根据权利要求11所述的发热体,其中,所述发热材料层的材料为铝、铜、银、金、镍、铬、铂、钛、锆、钯、铁或其合金。
  14. 根据权利要求1所述的发热体,其中,所述发热材料层的厚度为5μm-100μm,所述发热材料层为印刷的金属浆料层。
  15. 根据权利要求1所述的发热体,其中,所述导液基体为平板状、弧形状或筒状。
  16. 根据权利要求1所述的发热体,其中,所述第一保护膜覆盖整个所述发热部,所述第二保护膜覆盖整个所述连接部。
  17. 根据权利要求1所述的发热体,其中,所述导液基体为圆筒状,所述导液基体包括内表面和外表面,所述发热材料层设置在所述内表面或所述外表面。
  18. 根据权利要求1所述的发热体,其中,所述发热材料层、所述第一保护膜和所述第二保护膜通过物理气相沉积或化学气相沉积的方式形成于所述导液基体的所述第一表面。
  19. 根据权利要求1所述的发热体,其中,所述发热材料层的所述连接部与所述第二保护膜构成电极。
  20. 根据权利要求8所述的发热体,其中,所述第一微孔为直通孔,所述发热材料层、所述第一保护膜延伸进所述第一微孔的壁面。
  21. 一种雾化组件,其中,包括:
    储液腔,用于存储液态气溶胶生成基质;
    发热体,所述发热体为权利要求1-20任意一项所述的发热体;所述发热体与所述储液腔流体连通。
  22. 一种电子雾化装置,其中,包括雾化组件和电源组件,所述雾化组件为权利要求21所述的雾化组件,所述电源组件与所述发热体电连接。
PCT/CN2022/092859 2022-05-13 2022-05-13 发热体、雾化组件及电子雾化装置 WO2023216263A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP22826786.0A EP4298932A4 (en) 2022-05-13 2022-05-13 RADIATOR, ADJUSTION ARRANGEMENT AND ELECTRONIC ADJUSTION DEVICE
PCT/CN2022/092859 WO2023216263A1 (zh) 2022-05-13 2022-05-13 发热体、雾化组件及电子雾化装置
US18/091,175 US20230371132A1 (en) 2022-05-13 2022-12-29 Heating body, vaporization assembly, and electronic vaporization device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/092859 WO2023216263A1 (zh) 2022-05-13 2022-05-13 发热体、雾化组件及电子雾化装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/091,175 Continuation US20230371132A1 (en) 2022-05-13 2022-12-29 Heating body, vaporization assembly, and electronic vaporization device

Publications (1)

Publication Number Publication Date
WO2023216263A1 true WO2023216263A1 (zh) 2023-11-16

Family

ID=88698757

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/092859 WO2023216263A1 (zh) 2022-05-13 2022-05-13 发热体、雾化组件及电子雾化装置

Country Status (3)

Country Link
US (1) US20230371132A1 (zh)
EP (1) EP4298932A4 (zh)
WO (1) WO2023216263A1 (zh)

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017214879A1 (zh) * 2016-06-15 2017-12-21 孟令红 电子烟
CN109414078A (zh) * 2018-09-10 2019-03-01 深圳麦克韦尔股份有限公司 电子烟、雾化组件及其雾化元件
WO2021217292A1 (zh) * 2020-04-26 2021-11-04 深圳麦克韦尔科技有限公司 发热组件、雾化器和电子雾化装置
CN113615887A (zh) * 2021-08-13 2021-11-09 深圳麦克韦尔科技有限公司 雾化元件、雾化器和电子雾化装置
WO2021244543A1 (zh) * 2020-06-01 2021-12-09 深圳市合元科技有限公司 加热器以及气溶胶生成装置
CN113768192A (zh) * 2021-08-13 2021-12-10 深圳市劳斯韦伯科技有限公司 一种雾化芯、电子烟以及雾化芯的制作方法
CN113826962A (zh) * 2021-09-22 2021-12-24 东莞市维万特智能科技有限公司 雾化芯、雾化器、气溶胶发生装置及雾化芯制备方法
CN113951572A (zh) * 2021-10-15 2022-01-21 厦门云天半导体科技有限公司 一种雾化芯及其制作方法、雾化器和雾化装置
CN114287676A (zh) * 2022-01-17 2022-04-08 海宁新纳陶科技有限公司 具有金属镀膜层的陶瓷雾化芯及其制备方法
US20220117305A1 (en) * 2020-10-20 2022-04-21 Shenzhen Smoore Technology Limited Atomizing core, atomizer and electronic atomization device
CN114451586A (zh) * 2022-01-17 2022-05-10 惠州市新泓威科技有限公司 具有纳米金属镀膜层的雾化芯
CN216453382U (zh) * 2021-08-13 2022-05-10 深圳麦克韦尔科技有限公司 雾化元件、雾化器和电子雾化装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8881737B2 (en) * 2012-09-04 2014-11-11 R.J. Reynolds Tobacco Company Electronic smoking article comprising one or more microheaters
US10791761B2 (en) * 2017-08-17 2020-10-06 Rai Strategic Holdings, Inc. Microtextured liquid transport element for aerosol delivery device
EP4000434A4 (en) * 2019-09-24 2022-06-29 O-Net Automation Technology (Shenzhen) Limited Electronic cigarette atomization assembly and preparation method therefor
CN111053298B (zh) * 2019-12-20 2022-03-15 深圳麦克韦尔科技有限公司 柔性发热体及其制造方法和柔性发热组件及气溶胶产生器

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017214879A1 (zh) * 2016-06-15 2017-12-21 孟令红 电子烟
CN109414078A (zh) * 2018-09-10 2019-03-01 深圳麦克韦尔股份有限公司 电子烟、雾化组件及其雾化元件
WO2021217292A1 (zh) * 2020-04-26 2021-11-04 深圳麦克韦尔科技有限公司 发热组件、雾化器和电子雾化装置
WO2021244543A1 (zh) * 2020-06-01 2021-12-09 深圳市合元科技有限公司 加热器以及气溶胶生成装置
US20220117305A1 (en) * 2020-10-20 2022-04-21 Shenzhen Smoore Technology Limited Atomizing core, atomizer and electronic atomization device
CN113615887A (zh) * 2021-08-13 2021-11-09 深圳麦克韦尔科技有限公司 雾化元件、雾化器和电子雾化装置
CN113768192A (zh) * 2021-08-13 2021-12-10 深圳市劳斯韦伯科技有限公司 一种雾化芯、电子烟以及雾化芯的制作方法
CN216453382U (zh) * 2021-08-13 2022-05-10 深圳麦克韦尔科技有限公司 雾化元件、雾化器和电子雾化装置
CN113826962A (zh) * 2021-09-22 2021-12-24 东莞市维万特智能科技有限公司 雾化芯、雾化器、气溶胶发生装置及雾化芯制备方法
CN113951572A (zh) * 2021-10-15 2022-01-21 厦门云天半导体科技有限公司 一种雾化芯及其制作方法、雾化器和雾化装置
CN114287676A (zh) * 2022-01-17 2022-04-08 海宁新纳陶科技有限公司 具有金属镀膜层的陶瓷雾化芯及其制备方法
CN114451586A (zh) * 2022-01-17 2022-05-10 惠州市新泓威科技有限公司 具有纳米金属镀膜层的雾化芯

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4298932A4 *

Also Published As

Publication number Publication date
US20230371132A1 (en) 2023-11-16
EP4298932A1 (en) 2024-01-03
EP4298932A4 (en) 2024-01-03

Similar Documents

Publication Publication Date Title
US11864590B2 (en) Heater assembly for an aerosol-generating system
CN111109665A (zh) 电子雾化装置及其雾化器和发热体
CN113141678A (zh) 发热体的制造方法
WO2022179641A2 (zh) 发热体、雾化器及电子雾化装置
CN114794566A (zh) 一种导液玻璃基体以及发热体的制备方法
WO2023134196A1 (zh) 具有纳米金属镀膜层的雾化芯
CN115177025A (zh) 发热体、雾化器及电子雾化装置
CN114847536A (zh) 雾化芯、雾化器及电子雾化装置
WO2023216263A1 (zh) 发热体、雾化组件及电子雾化装置
WO2022170726A1 (zh) 发热体、雾化组件及电子雾化装置
WO2022170728A1 (zh) 发热体、雾化组件及电子雾化装置
WO2022170725A1 (zh) 一种导液玻璃基体以及发热体的制备方法
WO2022170727A1 (zh) 发热体、雾化组件及电子雾化装置
WO2023193644A1 (zh) 雾化芯、雾化器及气溶胶发生装置
WO2022228590A1 (zh) 雾化组件及电子雾化装置
WO2023179258A1 (zh) 中心通孔导液的雾化芯
CN114794568A (zh) 发热体、雾化组件及电子雾化装置
CN114794565A (zh) 发热体、雾化组件及电子雾化装置
CN114794567A (zh) 发热体、雾化组件及电子雾化装置
CN216983627U (zh) 具有纳米金属镀膜层的雾化芯
CN117084460A (zh) 发热体、雾化组件及电子雾化装置
CN114794569A (zh) 一种雾化芯、雾化器及其电子雾化装置
CN114794570A (zh) 发热体、雾化组件及电子雾化装置
WO2023216262A1 (zh) 发热体及其制备方法、雾化组件及电子雾化装置
WO2022170756A1 (zh) 发热体、雾化组件及电子雾化装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2022826786

Country of ref document: EP

Effective date: 20221230

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22826786

Country of ref document: EP

Kind code of ref document: A1