WO2023123250A1 - 发热组件、雾化器及电子雾化装置 - Google Patents

发热组件、雾化器及电子雾化装置 Download PDF

Info

Publication number
WO2023123250A1
WO2023123250A1 PCT/CN2021/143260 CN2021143260W WO2023123250A1 WO 2023123250 A1 WO2023123250 A1 WO 2023123250A1 CN 2021143260 W CN2021143260 W CN 2021143260W WO 2023123250 A1 WO2023123250 A1 WO 2023123250A1
Authority
WO
WIPO (PCT)
Prior art keywords
vertical
heating component
holes
transverse
heating
Prior art date
Application number
PCT/CN2021/143260
Other languages
English (en)
French (fr)
Inventor
赵月阳
吕铭
张彪
Original Assignee
深圳麦克韦尔科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳麦克韦尔科技有限公司 filed Critical 深圳麦克韦尔科技有限公司
Priority to PCT/CN2021/143260 priority Critical patent/WO2023123250A1/zh
Priority to EP21946245.4A priority patent/EP4226783A4/en
Priority to CN202211387650.7A priority patent/CN116406861A/zh
Priority to CN202222963660.2U priority patent/CN218921698U/zh
Priority to PCT/CN2022/143581 priority patent/WO2023125850A1/zh
Priority to US18/092,017 priority patent/US20230210182A1/en
Publication of WO2023123250A1 publication Critical patent/WO2023123250A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • A24F40/46Shape or structure of electric heating means
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/10Devices using liquid inhalable precursors
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • A24F40/44Wicks
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • A24F40/48Fluid transfer means, e.g. pumps
    • A24F40/485Valves; Apertures

Definitions

  • the present application relates to the technical field of electronic atomization, in particular to a heating component, an atomizer and an electronic atomization device.
  • the electronic atomization device is composed of a heating element, a battery, and a control circuit.
  • the heating element is the core component of the electronic atomization device, and its characteristics determine the atomization effect and user experience of the electronic atomization device.
  • a kind of existing heating element is a cotton core heating element.
  • Most of the cotton core heating elements are spring-shaped metal heating wires wound around cotton rope or fiber rope.
  • the liquid aerosol generating substrate to be atomized is absorbed by the two ends of the cotton rope or fiber rope, and then transported to the central metal heating wire for heating and atomization. Due to the limited end area of the cotton rope or fiber rope, the aerosol-generating matrix is adsorbed and transported less efficiently.
  • the cotton rope or fiber rope has poor structural stability, and it is prone to dry burning, carbon deposition and burnt smell after multiple thermal cycles.
  • Ceramic heating element Another kind of existing heating element is ceramic heating element.
  • Most ceramic heating elements form a metal heating film on the surface of the porous ceramic body; the porous ceramic body plays the role of guiding and storing liquid, and the metal heating film realizes the heating and atomization of the liquid aerosol-generating substrate.
  • it is difficult to precisely control the positional distribution and dimensional accuracy of micropores in porous ceramics prepared by high-temperature sintering.
  • it is necessary to reduce the pore size and porosity but in order to achieve sufficient liquid supply, it is necessary to increase the pore size and porosity, which are contradictory.
  • the liquid conduction ability of the porous ceramic matrix is limited, and burnt smell will appear under high power conditions.
  • a thin heating element is provided to improve the liquid supply capacity, but this thin heating element is easy to Bubbles are formed on the liquid-absorbing surface, blocking the liquid inlet, and causing the heating element to dry.
  • the heating component, atomizer and electronic atomization device provided by the present application solve the technical problem in the prior art that thin heating elements tend to form air bubbles on the liquid-absorbing surface.
  • the first technical solution provided by this application is to provide a heating component, including a dense base, the dense base includes a liquid absorbing surface and an atomizing surface oppositely arranged, and the dense base has a plurality of A vertical hole and a plurality of horizontal holes, the plurality of vertical holes run through the liquid absorption surface and the atomization surface, and the plurality of horizontal holes connect the plurality of vertical holes.
  • the plurality of transverse holes include a plurality of first transverse holes extending along a first direction and a plurality of second transverse holes extending along a second direction, the second direction crossing the first direction, the The first transverse hole and the second transverse hole are arranged in the same layer in the thickness direction of the dense matrix.
  • the plurality of transverse holes include a plurality of first transverse holes extending along a first direction and a plurality of second transverse holes extending along a second direction, the second direction crossing the first direction, the The first transverse holes and the second transverse holes are arranged in different layers in the thickness direction of the dense matrix.
  • the vertical holes include a first vertical hole section close to the liquid-absorbing surface and a second vertical hole section close to the atomizing surface, and the diameter of the first vertical hole section is the same as that of the second vertical hole section.
  • the apertures of the two vertical hole segments are different.
  • the aperture of the port of the first vertical hole section located on the liquid-absorbing surface is a first value
  • the aperture of the second vertical hole section located at the port of the atomizing surface is a second value
  • the The first value is greater than the second value
  • the diameter of the vertical hole gradually increases.
  • the diameters of the vertical holes are consistent.
  • the thickness of the dense matrix is 0.1mm-1mm.
  • the diameter of the vertical hole is 1 ⁇ m-100 ⁇ m.
  • the diameter of the transverse hole is 1 ⁇ m-100 ⁇ m.
  • the ratio of the thickness of the dense matrix to the diameter of the vertical hole is 20:1-3:1.
  • the ratio of the center-to-center distance of the adjacent vertical holes to the diameter of the vertical holes is 3:1-5:1.
  • the heating component further includes a heating element, and the heating element is arranged on the atomizing surface.
  • the second technical solution provided by this application is: provide an atomizer, including a liquid storage cavity and a heating component; the liquid storage cavity is used to store an aerosol generating substrate; the heating component and The liquid storage chamber is in fluid communication, and the heating component is used to atomize the aerosol-generating substrate; the heating component is the heating component described in any one of the above.
  • the third technical solution provided by this application is: provide an electronic atomization device, including an atomizer and a host; the atomizer is the above-mentioned atomizer; It is used to provide electric energy for the operation of the atomizer and control the heating component to atomize the aerosol-generating substrate.
  • the heating component includes a dense substrate, and the dense substrate includes a liquid-absorbing surface and an atomizing surface oppositely arranged; the dense substrate has a plurality of vertical holes and a plurality of transverse holes, Multiple vertical holes run through the liquid-absorbing surface and the atomizing surface, and multiple horizontal holes connect multiple vertical holes. Through multiple horizontal holes, air bubbles are prevented from blocking the liquid supply, thereby avoiding dry burning.
  • Fig. 1 is a schematic structural diagram of an embodiment of an electronic atomization device provided by the present application
  • Fig. 2 is a schematic structural diagram of an atomizer provided by an embodiment of the present application.
  • Fig. 3 is a schematic structural diagram of a heating component provided by an embodiment of the present application.
  • Fig. 4 is a structural schematic view of the heating component provided in Fig. 3 viewed from the side of the liquid-absorbing surface;
  • Fig. 5 is a top perspective structural schematic diagram of the heating component provided in Fig. 3;
  • Fig. 6 is a structural schematic view of the heating component provided in Fig. 3 viewed from the side of the atomizing surface;
  • Fig. 7 is a structural schematic diagram of an embodiment of the internal horizontal hole and vertical hole of the heating component provided in Fig. 3;
  • Fig. 8 is a structural schematic diagram of another embodiment of the internal horizontal hole and vertical hole of the heating component provided in Fig. 3;
  • Fig. 9 is a structural schematic diagram of another embodiment of the internal horizontal hole and vertical hole of the heating component provided in Fig. 3;
  • Fig. 10 is a structural schematic diagram of another embodiment of the internal horizontal hole and the vertical hole in the heating component provided in Fig. 3 .
  • first”, “second”, and “third” in this application are used for descriptive purposes only, and cannot be understood as indicating or implying relative importance or implicitly specifying the quantity of indicated technical features. Thus, features defined as “first”, “second” and “third” may explicitly or implicitly include at least one of said features.
  • “plurality” means at least two, such as two, three, etc., unless otherwise specifically defined. All directional indications (such as up, down, left, right, front, back%) in the embodiments of the present application are only used to explain the relative positional relationship between the various components in a certain posture (as shown in the drawings) , sports conditions, etc., if the specific posture changes, the directional indication also changes accordingly.
  • FIG. 1 is a schematic structural diagram of an embodiment of an electronic atomization device provided by the present application.
  • an electronic atomization device 100 is provided.
  • the electronic atomization device 100 can be used for atomization of aerosol-generating substrates.
  • the electronic atomization device 100 includes an atomizer 1 and a host 2 electrically connected to each other.
  • the atomizer 1 is used for storing the aerosol-generating substrate and atomizing the aerosol-generating substrate to form an aerosol that can be inhaled by a user.
  • the atomizer 1 can be used in different fields, such as medical treatment, beauty care, leisure smoking, etc.; in a specific embodiment, the atomizer 1 can be used in an electronic aerosolization device for atomizing an aerosol-generating substrate And generate aerosol, for sucking by the smoker, the following embodiments are all taking leisure smoking as an example; of course, in other embodiments, the atomizer 1 can also be applied to hairspray equipment, to atomize for Hairspray for hair styling; or equipment for the treatment of upper and lower respiratory diseases to atomize medical drugs.
  • the host 2 includes a battery (not shown) and a controller (not shown).
  • the battery is used to provide electric energy for the operation of the atomizer 1 so that the atomizer 1 can atomize the aerosol generating substrate to form an aerosol; the controller is used to control the operation of the atomizer 1 .
  • the host 2 also includes other components such as a battery holder and an airflow sensor.
  • the atomizer 1 and the host 2 can be integrated or detachably connected, and can be designed according to specific needs.
  • FIG. 2 is a schematic structural diagram of an atomizer provided by an embodiment of the present application.
  • the atomizer 1 includes a casing 10 , an atomizing seat 11 and a heating component 12 .
  • the casing 10 has a liquid storage chamber 13 and an air outlet channel 14 , the liquid storage chamber 13 is used to store a liquid aerosol-generating substrate, and the liquid storage chamber 13 is arranged around the air outlet channel 14 .
  • the end of the housing 10 also has a suction port 15 , which communicates with the air outlet channel 14 ; specifically, a port of the air outlet channel 14 may form the suction port 15 .
  • the casing 10 has an accommodating chamber 16 on a side of the liquid storage chamber 13 facing away from the suction port 15 , and the atomizing seat 11 is disposed in the accommodating chamber 16 .
  • the atomization seat 11 includes an atomization top seat 111 and an atomization base 112 .
  • the atomizing top seat 111 and the atomizing base 112 cooperate to form a receiving chamber 113 ; that is, the atomizing seat 11 has a receiving chamber 113 .
  • the heating element 12 is arranged in the receiving chamber 113 , and is arranged in the receiving chamber 16 together with the atomizing seat 11 .
  • Two fluid channels 114 are provided on the atomizing top seat 111 , specifically, two fluid channels 114 are provided on the top wall of the atomizing top seat 111 , and the two fluid channels 114 are provided on both sides of the air outlet channel 14 .
  • One end of the fluid channel 114 communicates with the liquid storage cavity 13, and the other end communicates with the receiving cavity 113, that is, the fluid channel 114 communicates the liquid storing cavity 13 with the receiving cavity 113, so that the aerosol in the liquid storage cavity 13 generates a matrix channel fluid Passage 114 enters heat generating component 12 . That is to say, the heating element 12 is in fluid communication with the liquid storage cavity 13, and the heating element 12 is used for absorbing and heating the atomized aerosol generating substrate.
  • the controller of the host 2 controls the heating component 12 to atomize the aerosol generating substrate.
  • the surface of the heating component 12 away from the liquid storage chamber 13 is an atomizing surface, and an atomizing cavity 115 is formed between the atomizing surface of the heating component 12 and the inner wall surface of the receiving cavity 113, and the atomizing cavity 115 and the air outlet channel 14 connected.
  • An air inlet 116 is provided on the atomization base 112 to communicate with the outside world and the atomization chamber 115 . The outside air enters the atomizing chamber 115 through the air inlet 116, carries the aerosol atomized by the heating element 12 into the air outlet channel 14, and finally reaches the suction port 15, where it is sucked by the user.
  • the atomizer 1 also includes a conducting member 17 , and the conducting member 17 is fixed on the atomizing base 112 .
  • One end of the conducting member 17 is electrically connected to the heating component 12 , and the other end is used to electrically connect to the host 2 so that the heating component 12 can work.
  • the atomizer 1 also includes a sealing cap 18 .
  • the sealing top cover 18 is arranged on the surface of the atomizing top seat 111 close to the liquid storage chamber 13, and is used for sealing the liquid storage chamber 13, the atomizing top seat 111, and the air outlet channel 14 to prevent liquid leakage.
  • the material of the sealing top cover 18 is silicone or fluorine rubber.
  • Figure 3 is a schematic structural view of the heating component provided by an embodiment of the present application
  • Figure 4 is a structural schematic view of the heating component provided in Figure 3 viewed from the liquid-absorbing surface side
  • Figure 5 is a schematic view of Figure 3 Schematic diagram of the top perspective structure of the heating component provided.
  • the heating component 12 includes a dense base 121 , and the dense base 121 includes a liquid-absorbing surface 1211 and an atomizing surface 1212 oppositely arranged.
  • the dense matrix 121 has a plurality of vertical holes 1213 and a plurality of transverse holes 1214, the plurality of vertical holes 1213 are through holes that run through the liquid absorption surface 1211 and the atomization surface 1212, and the plurality of transverse holes 1214 connect the plurality of vertical holes 1213 connected.
  • a plurality of horizontal holes 1214 and a plurality of vertical holes 1213 cooperate to form a grid-like microfluidic channel.
  • the vertical holes 1213 have capillary force, and the aerosol-generating substrate is guided from the liquid-absorbing surface 1211 to the atomizing surface 1212 through the vertical holes 1213; the grid-shaped micro-flow channels can prevent air bubbles from entering the liquid-absorbing surface 1211 from the atomizing surface 1212 , to prevent the air bubbles that enter through the adjacent vertical holes 1213 from being connected together, that is, to prevent the air bubbles from growing up.
  • the vertical hole 1213 is blocked by the upper growth, and the horizontal hole 1214 can supplement the aerosol generating matrix to the blocked vertical hole 1213, so that the atomizing surface 1212 can ensure timely liquid supply and avoid dry burning.
  • the horizontal hole 1214 also has a certain liquid storage function, which can ensure that at least two ports of back pumping will not be blown.
  • the material of the dense matrix 121 is glass, dense ceramics or silicon.
  • the material of the dense matrix 121 may be one of ordinary glass, quartz glass, borosilicate glass, and photosensitive lithium aluminosilicate glass.
  • the dense matrix 121 is borosilicate glass.
  • the dense matrix 121 is photosensitive lithium aluminosilicate glass.
  • the dense matrix 121 can be in the shape of a flat plate, a cylinder, an arc, etc., and can be designed according to specific needs; for example, the dense matrix 121 of the heating element 12 provided in FIG. 4 is in the shape of a flat plate.
  • the dense matrix 121 can be arranged in a regular shape, such as a rectangular plate shape, a circular plate shape, and the like.
  • the plurality of vertical holes 1213 arranged on the dense substrate 121 are arranged in an array; that is, the plurality of vertical holes 1213 arranged on the dense substrate 121 are regularly arranged, and among the plurality of vertical holes 1213 adjacent The hole center distances between the vertical holes 1213 are the same.
  • FIG. 6 is a structural schematic diagram of the heating component provided in FIG. 3 viewed from the side of the atomizing surface.
  • the heating component 12 further includes a heating element 122 , a positive electrode 123 and a negative electrode 124 , and the two ends of the heating element 122 are electrically connected to the positive electrode 123 and the negative electrode 124 respectively.
  • Both the positive electrode 123 and the negative electrode 124 are disposed on the atomizing surface of the dense substrate 121 so as to be electrically connected to the host 2 .
  • the heating element 122 can be a heating sheet, a heating film, a heating net, etc., and it only needs to be able to heat the atomized aerosol generating substrate.
  • the heating element 122 can be arranged on the atomizing surface of the dense matrix 121 , or can be embedded in the interior of the dense matrix 121 , and can be specifically designed according to needs.
  • the dense matrix 121 has a conductive function and can generate heat by itself, for example, a self-heating conductive ceramic or glass with a conductive function, and no additional heating element 122 is required at this time. That is to say, the heating element 122 is an optional structure.
  • a plurality of vertical holes 1213 are arranged in an array only on a part of the surface of the dense matrix 121 .
  • the dense substrate 121 is provided with a microhole array area 1215 and a blank area 1216 arranged around the microhole array area 1215, the microhole array area 1215 has a plurality of vertical holes 1213;
  • the heating element 122 is arranged in the microhole array area 1215 , to heat the atomized aerosol generating substrate;
  • the positive electrode 123 and the negative electrode 124 are arranged in the blank area 1216 of the atomizing surface 1212 to ensure the stability of the electrical connection between the positive electrode 123 and the negative electrode 124 .
  • microhole array area 1215 and the blank area 1216 By setting the microhole array area 1215 and the blank area 1216 around the microhole array area 1215 on the dense substrate 121, it can be understood that the vertical hole 1213 is not set on the blank area 1216, which is beneficial to improve the density of the dense substrate 121. strength and reduce production costs.
  • the micropore array area 1215 in the dense matrix 121 serves as an atomization area, covering the heating element 122 and the surrounding area of the heating element 122, that is, the area that basically reaches the temperature of the atomized aerosol-generating substrate, making full use of the thermal efficiency.
  • the size of the area around the microhole array area 1215 of the dense matrix 121 in the present application is larger than the aperture of the vertical hole 1213, so it can be called the blank area 1216; that is, the blank area 1216 in the present application can be
  • the vertical holes 1213 are formed but no vertical holes 1213 are formed, and the area around the non-microwell array area 1215 where no vertical holes 1213 can be formed is formed. In one embodiment, only when the distance between the vertical hole 1213 nearest to the edge of the dense matrix 121 and the edge of the dense matrix 121 is greater than the diameter of the vertical hole 1213, it is considered that there are no holes in the circumferential direction of the microhole array region 1215.
  • White Zone 1216 only when the distance between the vertical hole 1213 nearest to the edge of the dense matrix 121 and the edge of the dense matrix 121 is greater than the diameter of the vertical hole 1213, it is considered that there are no holes in the circumferential direction of the microhole array region 1215.
  • the extending direction of the vertical hole 1213 may be parallel to the thickness direction of the dense matrix 121 , or may form an included angle with the thickness direction of the dense matrix 121 , and the included angle ranges from 80° to 90°.
  • the cross-section of the vertical hole 1213 can be circular, and the shape of the longitudinal section of the vertical hole 1213 and its extension direction can be designed according to requirements.
  • the vertical hole 1213 is a through hole parallel to the thickness direction of the dense matrix 121 ; that is, the central axis of the vertical hole 1213 is perpendicular to the liquid-absorbing surface 1211 .
  • the diameter of the vertical holes 1213 on the dense substrate 121 is 1 ⁇ m-100 ⁇ m.
  • the pore diameter of the vertical hole 1213 is less than 1 ⁇ m, the demand for liquid supply cannot be met, resulting in a decrease in the amount of aerosol; when the pore diameter of the vertical hole 1213 is greater than 100 ⁇ m, the aerosol-generating substrate is easy to flow out from the vertical hole 1213, resulting in liquid leakage and fogging. The chemical efficiency drops. It can be understood that the pore size of the dense matrix 121 is selected according to actual needs.
  • the diameter of the transverse hole 1214 is 1 ⁇ m-100 ⁇ m.
  • the diameter of the lateral hole 1214 is less than 1 ⁇ m, the effect of preventing air bubbles from entering the liquid-absorbing surface 1211 cannot be well achieved; when the diameter of the lateral hole 1214 is greater than 100 ⁇ m, the aerosol-generating matrix is likely to cause liquid leakage, and there is a problem of lateral merging and growth of air bubbles. risk.
  • the diameter of the lateral hole 1214 is 20 ⁇ m-50 ⁇ m. It can be understood that the diameter of the transverse hole 1214 is selected according to actual needs.
  • the thickness of the dense matrix 121 is 0.1mm-1mm.
  • the thickness of the dense matrix 121 is greater than 1 mm, the demand for liquid supply cannot be met, resulting in a decrease in the amount of aerosol and a large amount of heat loss, and the cost of setting the vertical holes 1213 and the horizontal holes 1214 is high; , the strength of the dense matrix 121 cannot be guaranteed, which is not conducive to improving the performance of the electronic atomization device.
  • the thickness of the dense matrix 121 is 0.3mm-0.7mm. It can be understood that the thickness of the dense matrix 121 is selected according to actual needs.
  • the ratio of the thickness of the dense matrix 121 to the diameter of the vertical holes 1213 is 20:1-3:1 to improve the liquid supply capacity.
  • the ratio of the thickness of the dense matrix 121 to the diameter of the vertical hole 1213 is greater than 20:1, the aerosol generating matrix supplied by the capillary force of the vertical hole 1213 is difficult to meet the atomization demand of the heating element 122, which not only easily leads to dry burning , and the amount of aerosol generated by a single atomization decreases;
  • the ratio of the thickness of the dense substrate 121 to the aperture of the vertical hole 1213 is less than 3:1, the aerosol-generating substrate is easy to flow out from the vertical hole 1213 to cause waste, resulting in atomization Efficiency drops, which in turn reduces total aerosol volume.
  • the ratio of the thickness of the dense matrix 121 to the diameter of the vertical holes 1213 is 15:1-5:1.
  • the ratio of the hole center distance between two adjacent vertical holes 1213 to the diameter of the vertical holes 1213 is 3:1-1.5:1, so that the vertical holes 1213 on the dense matrix 121 can meet the premise of liquid supply capacity Next, increase the strength of the dense matrix 121 as much as possible; optionally, the ratio of the hole center distance between two adjacent vertical holes 1213 to the diameter of the vertical holes 1213 is 3:1-2:1; further optional The ratio of the hole center distance between two adjacent vertical holes 1213 to the diameter of the vertical holes 1213 is 3:1-2.5:1.
  • FIG. 7 is a structural schematic diagram of an embodiment of the internal horizontal hole and the vertical hole of the heating component provided in FIG. 3 .
  • the plurality of transverse holes 1214 includes a plurality of first transverse holes 1214a extending along a first direction and a plurality of second transverse holes 1214b extending along a second direction. Intersecting with the second direction, the first transverse hole 1214a and the second transverse hole 1214b are arranged in the same layer in the thickness direction of the dense matrix 121, for example, the central axis of the first transverse hole 1214a and the central axis of the second transverse hole 1214b are approximately on the same plane .
  • the first direction is perpendicular to the second direction.
  • FIG. 8 is a structural schematic diagram of another embodiment of the internal horizontal hole and the vertical hole of the heating component provided in FIG. 3 .
  • first transverse hole 1214a and the second transverse hole 1214b are arranged in different layers in the thickness direction of the dense matrix 121, for example, the first transverse hole 1214a and the second transverse hole 1214b are arranged at intervals in the thickness direction of the dense matrix 121 .
  • the first transverse hole 1214 a and the second transverse hole 1214 b are arranged in a staggered manner in the thickness direction of the dense matrix 121 , which is beneficial to improve the strength of the dense matrix 121 .
  • the diameters of the vertical holes 1213 are consistent; along the extending direction of the horizontal holes 1214 , the diameters of the horizontal holes 1214 are consistent.
  • the included angle between the central axis of the transverse hole 1214 and the central axis of the vertical hole 1213 is greater than or equal to 70 degrees and less than or equal to 90 degrees; optionally, it is 90 degrees. It can be understood that the diameters of the plurality of vertical holes 1213 can be the same or different, and can be designed according to needs.
  • the diameters of the plurality of transverse holes 1213 can be the same or different, and can be designed according to needs.
  • Figure 9 is a structural schematic diagram of another embodiment of the internal horizontal hole and vertical hole of the heating component provided in Figure 3
  • Figure 10 is another embodiment of the internal horizontal hole and vertical hole of the heating component provided in Figure 3 Schematic diagram of the embodiment.
  • the vertical hole 1213 includes a first vertical hole section 1213a close to the liquid absorbing surface 1211 and a second vertical hole section 1213b close to the atomizing surface 1212, the diameter of the first vertical hole section 1213a is the same as that of the second vertical hole section 1213a. The diameters of the two vertical hole sections 1213b are different.
  • the diameter of the port of the vertical hole 1213 located on the liquid-absorbing surface 1211 is a first value
  • the diameter of the port of the vertical hole 1213 located on the atomizing surface 1212 is a second value
  • the first value is greater than the second value. That is, the aperture diameter of the port of the first vertical hole section 1213 a located on the liquid-absorbing surface 1211 is greater than the aperture diameter of the port of the second vertical hole section 1213 b located on the atomizing surface 1212 .
  • the diameter of the vertical hole 1213 increases gradually.
  • the diameter of the vertical hole 1213 increases continuously; for example, the longitudinal section of the vertical hole 1213 is trapezoidal, that is, the vertical hole 1213 is a tapered hole.
  • the aperture step of the vertical hole 1213 increases, as shown in FIG.
  • the aperture diameter of the second vertical hole section 1213b is set to be smaller than the aperture diameter of the first vertical hole section 1213a, so as to reduce the contact between the air bubbles and the wall of the hole and facilitate the escape of the air bubbles.
  • the first vertical hole section 1213a can be funnel-shaped, the port close to the second vertical hole section 1213b has the same hole diameter as the second vertical hole section 1213b, and the hole diameter of other parts is larger than the second vertical hole section 1213b.
  • the hole diameter of the hole section 1213b is used to reduce the contact between the air bubbles and the hole wall, which is conducive to the escape of the air bubbles; for example, the first vertical hole section 1213a is in the shape of a truncated cone, and the second vertical hole section 1213b is in the shape of a cylinder, as shown in Figure 10 .
  • transverse hole 1214 can be an equal-diameter hole or a tapered hole, as long as it can achieve horizontal liquid replenishment and facilitate the discharge of air bubbles, and it can be specifically designed according to needs.
  • the vertical hole 1213 on the heating component 12 provided by the present application can be obtained by laser drilling, or can be obtained by first laser induction and then immersion in the corrosion solution; the horizontal hole 1214 is first induced by laser and then immersed in the corrosion solution. It can be understood that the transverse hole 1214 is not formed in the blank area 1216 by this method.

Landscapes

  • Fuel-Injection Apparatus (AREA)
  • Special Spraying Apparatus (AREA)
  • Disinfection, Sterilisation Or Deodorisation Of Air (AREA)

Abstract

本申请公开了一种发热组件、雾化器及电子雾化装置,发热组件包括致密基体,致密基体包括相对设置的吸液面和雾化面;致密基体具有多个竖向孔和多个横向孔,多个竖向孔贯穿吸液面和雾化面,多个横向孔将多个竖向孔连通,通过多个横向孔避免气泡阻塞供液,进而避免了干烧。

Description

发热组件、雾化器及电子雾化装置 技术领域
本申请涉及电子雾化技术领域,尤其涉及一种发热组件、雾化器及电子雾化装置。
背景技术
电子雾化装置由发热体、电池和控制电路等部分组成,发热体作为电子雾化装置的核心元件,其特性决定了电子雾化装置的雾化效果和使用体验。
现有的发热体一种是棉芯发热体。棉芯发热体大多为弹簧状的金属发热丝缠绕棉绳或纤维绳的结构。待雾化的液态气溶胶生成基质被棉绳或纤维绳的两端吸取,然后传输至中心金属发热丝处加热雾化。由于棉绳或纤维绳的端部面积有限,导致气溶胶生成基质吸附、传输效率较低。另外,棉绳或纤维绳结构稳定性差,多次热循环后易出现干烧、积碳和焦糊味等现象。
现有的发热体另一种是陶瓷发热体。陶瓷发热体大多为在多孔陶瓷体表面形成金属发热膜;多孔陶瓷体起到导液、储液的作用,金属发热膜实现液态气溶胶生成基质的加热雾化。然而,由高温烧结制备的多孔陶瓷难以精确控制微孔的位置分布和尺寸精度。为了降低漏液风险,需要减小孔径、孔隙率,但为了实现充足的供液,需要增大孔径、孔隙率,二者相互矛盾。目前,在满足低漏液风险的孔径、孔隙率条件下,多孔陶瓷基体导液能力受限,在高功率条件下会出现焦糊味。
随着技术的进步,用户对电子雾化装置的雾化效果的要求越来越高,为了满足用户的需求,提供一种薄的发热体以提高供液能力,但这种薄的发热体易在吸液面形成气泡,阻塞进液,导致发热体干烧。
发明内容
本申请提供的发热组件、雾化器及电子雾化装置,解决现有技术中薄的发热体易在吸液面形成气泡的技术问题。
为了解决上述技术问题,本申请提供的第一个技术方案为:提供一种发热组件,包括致密基体,所述致密基体包括相对设置的吸液面和雾化面,所述致密基体具有多个竖向孔和多个横向孔,多个所述竖向孔贯穿所述吸液面和所述雾化面,多个所述横向孔将多个所述竖向孔连通。
其中,多个所述横向孔包括多个沿第一方向延伸的第一横向孔和多个沿第二方向延伸的第二横向孔,所述第二方向与所述第一方向交叉,所述第一横向孔与所述第二横向孔在所述致密基体的厚度方向同层设置。
其中,多个所述横向孔包括多个沿第一方向延伸的第一横向孔和多个沿第二方向延伸的第二横向孔,所述第二方向与所述第一方向交叉,所述第一横向孔与所述第二横向孔在所述致密基体的厚度方向不同层设置。
其中,所述竖向孔包括靠近所述吸液面的第一竖向孔段和靠近所述雾化面的第二竖向孔段,所述第一竖向孔段的孔径与所述第二竖向孔段的孔径不同。
其中,所述第一竖向孔段位于所述吸液面的端口的孔径为第一值,所述第二竖向孔段位于所述雾化面的端口的孔径为第二值,所述第一值大于第二值。
其中,沿着从所述雾化面至所述吸液面的方向,所述竖向孔的孔径逐渐增大。
其中,沿着从所述雾化面至所述吸液面的方向,所述竖向孔的孔径一致。
其中,所述致密基体的厚度为0.1mm-1mm。
其中,所述竖向孔的孔径为1μm-100μm。
其中,所述横向孔的孔径为1μm-100μm。
其中,所述致密基体的厚度与所述竖向孔的孔径的比值为 20:1-3:1。
其中,相邻的所述竖向孔的孔中心距与所述竖向孔的孔径的比值为3:1-5:1。
其中,所述发热组件还包括发热元件,所述发热元件设置于所述雾化面上。
为了解决上述技术问题,本申请提供的第二个技术方案为:提供一种雾化器,包括储液腔和发热组件;所述储液腔用于储存气溶胶生成基质;所述发热组件与所述储液腔流体连通,所述发热组件用于雾化所述气溶胶生成基质;所述发热组件为上述任意一项所述的发热组件。
为了解决上述技术问题,本申请提供的第三个技术方案为:提供一种电子雾化装置,包括雾化器和主机;所述雾化器为上述所述的雾化器;所述主机用于为所述雾化器工作提供电能和控制所述发热组件雾化所述气溶胶生成基质。
本申请提供的发热组件、雾化器及电子雾化装置,发热组件包括致密基体,致密基体包括相对设置的吸液面和雾化面;致密基体具有多个竖向孔和多个横向孔,多个竖向孔贯穿吸液面和雾化面,多个横向孔将多个竖向孔连通,通过多个横向孔避免气泡阻塞供液,进而避免了干烧。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图。
图1是本申请提供的电子雾化装置的一实施例的结构示意图;
图2是本申请一实施例提供的雾化器的结构示意图;
图3是本申请一实施例提供的发热组件的结构示意图;
图4是图3提供的发热组件的从吸液面一侧观看的结构示意图;
图5是图3提供的发热组件的俯视透视结构示意图;
图6是图3提供的发热组件从雾化面一侧观看的结构示意图;
图7是图3提供的发热组件内部横向孔和竖向孔一实施方式的结构示意图;
图8是图3提供的发热组件内部横向孔和竖向孔另一实施方式的结构示意图;
图9是图3提供的发热组件内部横向孔和竖向孔又一实施方式的结构示意图;
图10是图3提供的发热组件内部横向孔和竖向孔又一实施方式的结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本申请的一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
以下描述中,为了说明而不是为了限定,提出了诸如特定系统结构、接口、技术之类的具体细节,以便透彻理解本申请。
本申请中的术语“第一”、“第二”、“第三”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”、“第三”的特征可以明示或者隐含地包括至少一个所述特征。本申请的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。本申请实施例中所有方向性指示(诸如上、下、左、右、前、后……)仅用于解释在某一特定姿态(如附图所示)下各部件之间的相对位置关系、运动情况等,如果所述特定姿态发生改变时,则所述方向性指示也相应地随之改变。本申请实施例中的术语“包括”和“具有”以及它们任何变形,意图在于覆盖不排他的包含。例如包含了一系列步骤或单元的过程、方法、系统、产品或设备没有限定于已列出的步骤或单元,而是可选地还包括没有列出的步骤或单元,或可选地还包括对于这些过程、方 法、产品或设备固有的其它步骤或组件。
在本文中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现所述短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。
下面结合附图和实施例对本申请进行详细的说明。
请参阅图1,图1是本申请提供的电子雾化装置的一实施例的结构示意图。在本实施例中,提供一种电子雾化装置100。该电子雾化装置100可用于气溶胶生成基质的雾化。电子雾化装置100包括相互电连接的雾化器1和主机2。
其中,雾化器1用于存储气溶胶生成基质并雾化气溶胶生成基质以形成可供用户吸食的气溶胶。该雾化器1具体可用于不同的领域,比如,医疗、美容、休闲吸食等;在一具体实施例中,该雾化器1可用于电子气溶胶化装置,用于雾化气溶胶生成基质并产生气溶胶,以供抽吸者抽吸,以下实施例均以此休闲吸食为例;当然,在其他实施例中,该雾化器1也可应用于喷发胶设备,以雾化用于头发定型的喷发胶;或者应用于治疗上下呼吸系统疾病的设备,以雾化医用药品。
雾化器1的具体结构与功能可参见以下任一实施例所涉及的雾化器1的具体结构与功能,且可实现相同或相似的技术效果,在此不再赘述。
主机2包括电池(图未示)和控制器(图未示)。电池用于为雾化器1的工作提供电能,以使得雾化器1能够雾化气溶胶生成基质形成气溶胶;控制器用于控制雾化器1工作。主机2还包括电池支架、气流传感器等其他元件。
雾化器1与主机2可以是一体设置,也可以是可拆卸连接,可以根据具体需要进行设计。
请参阅图2,图2是本申请一实施例提供的雾化器的结构示意图。
雾化器1包括壳体10、雾化座11和发热组件12。壳体10具有储液腔13、出气通道14,储液腔13用于储存液态的气溶胶生成基质, 储液腔13环绕出气通道14设置。壳体10的端部还具有抽吸口15,抽吸口15与出气通道14连通;具体地,可以是出气通道14的一端口形成抽吸口15。壳体10在储液腔13背离抽吸口15的一侧具有容置腔16,雾化座11设置于容置腔16中。雾化座11包括雾化顶座111和雾化底座112。雾化顶座111和雾化底座112配合形成收容腔113;即,雾化座11具有收容腔113。发热组件12设置于收容腔113中,同雾化座11一起设置于容置腔16中。
雾化顶座111上设置有两个流体通道114,具体的,雾化顶座111的顶壁上设置有两个流体通道114,两个流体通道114设置于出气通道14的两侧。流体通道114的一端与储液腔13连通,另一端与收容腔113连通,即,流体通道114使储液腔13与收容腔113连通,以使储液腔13中的气溶胶生成基质通道流体通道114进入发热组件12。也就是说,发热组件12与储液腔13流体相通,发热组件12用于吸收并加热雾化气溶胶生成基质。主机2的控制器控制发热组件12雾化气溶胶生成基质。
在本实施例中,发热组件12远离储液腔13的表面为雾化面,发热组件12的雾化面与收容腔113的内壁面之间形成雾化腔115,雾化腔115与出气通道14连通。雾化底座112上设置有进气口116,以使外界与雾化腔115连通。外界气体通过进气口116进入雾化腔115,携带发热组件12雾化好的气溶胶进入出气通道14,最终到达抽吸口15,被用户吸食。
雾化器1还包括导通件17,导通件17固定于雾化底座112。导通件17的一端于发热组件12电连接,另一端用于与主机2电连接,以使发热组件12能够工作。
雾化器1还包括密封顶盖18。密封顶盖18设置于雾化顶座111靠近储液腔13的表面,用于实现对储液腔13与雾化顶座111、出气通道14之间的密封,防止漏液。可选的,密封顶盖18的材料为硅胶或氟橡胶。
请参阅图3-图5,图3是本申请一实施例提供的发热组件的结构示意图,图4是图3提供的发热组件的从吸液面一侧观看的结构示意 图,图5是图3提供的发热组件的俯视透视结构示意图。
发热组件12包括致密基体121,致密基体121包括相对设置的吸液面1211和雾化面1212。致密基体121具有多个竖向孔1213和多个横向孔1214,多个竖向孔1213为贯穿吸液面1211和雾化面1212的通孔,多个横向孔1214将多个竖向孔1213连通。多个横向孔1214和多个竖向孔1213配合形成网格状微流通道。竖向孔1213具有毛细作用力,气溶胶生成基质通过竖向孔1213从吸液面1211导引至雾化面1212;网格状微流通道可以阻碍气泡从雾化面1212进入吸液面1211,防止通过邻近的竖向孔1213进入的气泡连成一片,即能够防止气泡长大,同时,即使气泡通过竖向孔1213从雾化面1212进入吸液面1211,并附着在吸液面1211上长大,堵塞部分竖向孔1213,横向孔1214可以给被堵塞的竖向孔1213补充气溶胶生成基质,使雾化面1212保证及时供液,避免干烧。横向孔1214还具有一定的储液作用,可以保证倒抽至少两口不会烧断。
致密基体121的材质为玻璃、致密陶瓷或硅。当致密基体121的材质为玻璃时,可以为普通玻璃、石英玻璃、硼硅玻璃、光敏铝硅酸锂玻璃中的一种。在一具体实施方式中,致密基体121为硼硅玻璃。在另一具体实施方式中,致密基体121为光敏铝硅酸锂玻璃。
致密基体121可以为平板状、圆筒状、弧状等,具体根据需要进行设计;例如,图4提供的发热组件12的致密基体121为平板状。致密基体121可以设置为规则的形状,如矩形板状、圆形板状等。设置于致密基体121上的多个竖向孔1213呈阵列排布;即,设置于致密基体121上的多个竖向孔1213之间呈规则排布,多个竖向孔1213中相邻的竖向孔1213之间的孔中心距相同。
请参阅图6,图6是图3提供的发热组件从雾化面一侧观看的结构示意图。
在本实施例中,如图6所示,发热组件12还包括发热元件122、正电极123和负电极124,发热元件122的两端分别与正电极123、负电极124电连接。正电极123和负电极124均设置于致密基体121的雾化面上,以便于与主机2电连接。发热元件122可以是发热片、 发热膜、发热网等,能够加热雾化气溶胶生成基质即可。其中,发热元件122可以设置在致密基体121的雾化面上,也可以埋设于致密基体121的内部,具体根据需要进行设计。
在另一实施方式中,致密基体121具有导电功能,其本身可以发热,例如,自身发热的导电陶瓷或具有导电功能的玻璃,此时无需另设发热元件122。也就是说,发热元件122为可选结构。
本实施方式中,仅在致密基体121的部分表面以阵列排布的方式设置多个竖向孔1213。具体地,致密基体121设有微孔阵列区1215和围绕微孔阵列区1215一周设置的留白区1216,微孔阵列区1215具有多个竖向孔1213;发热元件122设置于微孔阵列区1215,以加热雾化气溶胶生成基质;正电极123和负电极124设置于雾化面1212的留白区1216,以保证正电极123和负电极124电连接的稳定性。
通过在致密基体121上设有微孔阵列区1215和围绕微孔阵列区1215一周设置的留白区1216,可以理解,留白区1216上并未设置竖向孔1213,利于提高致密基体121的强度,降低生产成本。致密基体121中的微孔阵列区1215作为雾化区,覆盖发热元件122及发热元件122周边区域,也就是基本覆盖达到雾化气溶胶生成基质温度的区域,充分利用了热效率。
可以理解,本申请中的致密基体121的微孔阵列区1215周边的区域的尺寸大于竖向孔1213的孔径,才能称之为留白区1216;即,本申请中的留白区1216是可以形成竖向孔1213而没有形成竖向孔1213的区域,而非微孔阵列区1215周边的无法形成竖向孔1213的区域。在一个实施例中,距离致密基体121的边线最近的竖向孔1213与致密基体121的边线之间的间距大于竖向孔1213的孔径,才认为在微孔阵列区1215的周向上设有留白区1216。
竖向孔1213的延伸方向可以与致密基体121的厚度方向平行,也可以与致密基体121的厚度方向形成夹角,夹角的范围为80度-90度。竖向孔1213的横截面可以为圆形,竖向孔1213的纵截面形状及其延伸方向可以根据需要进行设计。本实施例中,竖向孔1213为平行于致密基体121厚度方向的直通孔;即,竖向孔1213的中轴线与 吸液面1211垂直。
致密基体121上竖向孔1213的孔径为1μm-100μm。竖向孔1213的孔径小于1μm时,无法满足供液需求,导致气溶胶量下降;竖向孔1213的孔径大于100μm时,气溶胶生成基质容易从竖向孔1213内流出造成漏液,导致雾化效率下降。可以理解的是,致密基体121的孔径根据实际需要进行选择。
横向孔1214的孔径为1μm-100μm。横向孔1214的孔径小于1μm时,无法很好的实现防止气泡进入吸液面1211的效果;横向孔1214的孔径大于100μm时,气溶胶生成基质容易造成漏液,且存在气泡横向合并长大的风险。可选的,横向孔1214的孔径为20μm-50μm。可以理解的是,横向孔1214的孔径根据实际需要进行选择。
致密基体121的厚度为0.1mm-1mm。致密基体121的厚度大于1mm时,无法满足供液需求,导致气溶胶量下降,且造成的热损失多,设置竖向孔1213和横向孔1214的成本高;致密基体121的厚度小于0.1mm时,无法保证致密基体121的强度,不利于提高电子雾化装置的性能。可选的,致密基体121的厚度为0.3mm-0.7mm。可以理解的是,致密基体121的厚度根据实际需要进行选择。
致密基体121厚度与竖向孔1213孔径的比例为20:1-3:1,以提升供液能力。当致密基体121厚度与竖向孔1213孔径的比例大于20:1时,通过竖向孔1213的毛细作用力供给的气溶胶生成基质难以满足发热元件122的雾化需求量,不仅容易导致干烧,且单次雾化产生的气溶胶量下降;当致密基体121厚度与竖向孔1213孔径的比例小于3:1时,气溶胶生成基质容易从竖向孔1213内流出造成浪费,导致雾化效率下降,进而使得总气溶胶量降低。可选的,致密基体121厚度与竖向孔1213孔径的比例为15:1-5:1。
相邻两个竖向孔1213之间的孔中心距与竖向孔1213的孔径的比例为3:1-1.5:1,以使致密基体121上的竖向孔1213在满足供液能力的前提下,尽可能提升致密基体121的强度;可选的,相邻两个竖向孔1213之间的孔中心距与竖向孔1213的孔径的比例为3:1-2:1;进一步可选的,相邻两个竖向孔1213之间的孔中心距与竖向孔1213的孔 径的比例为3:1-2.5:1。
请参阅图7,图7是图3提供的发热组件内部横向孔和竖向孔一实施方式的结构示意图。
在一实施方式中,参见图5和图7,多个横向孔1214包括多个沿第一方向延伸的第一横向孔1214a和多个沿第二方向延伸的第二横向孔1214b,第一方向与第二方向交叉,第一横向孔1214a与第二横向孔1214b在致密基体121厚度方向同层设置,例如,第一横向孔1214a的中轴线与第二横向孔1214b的中轴线近似位于同一平面。可选的,第一方向与第二方向垂直。
请参阅图8,图8是图3提供的发热组件内部横向孔和竖向孔另一实施方式的结构示意图。
在另一实施方式中,第一横向孔1214a与第二横向孔1214b在致密基体121厚度方向不同层设置,例如,第一横向孔1214a与第二横向孔1214b在致密基体121的厚度方向间隔设置。相对于图7的设置方式,第一横向孔1214a与第二横向孔1214b在致密基体121的厚度方向错开设置,利于提高致密基体121的强度。
参见图3,在本实施方式中,沿着从雾化面1212至吸液面1211的方向,竖向孔1213的孔径一致;沿着横向孔1214的延伸方向,横向孔1214的孔径一致。横向孔1214的中轴线与竖向孔1213的中轴线的夹角大于等于70度小于等于90度;可选的,为90度。可以理解,多个竖向孔1213的孔径可以相同,也可以不同,根据需要进行设计。多个横向孔1213的孔径可以相同,也可以不同,根据需要进行设计。
请参阅图9和图10,图9是图3提供的发热组件内部横向孔和竖向孔又一实施方式的结构示意图,图10是图3提供的发热组件内部横向孔和竖向孔又一实施方式的结构示意图。
在一实施方式中,竖向孔1213包括靠近吸液面1211的第一竖向孔段1213a和靠近雾化面1212的第二竖向孔段1213b,第一竖向孔段1213a的孔径与第二竖向孔段1213b的孔径不同。
具体地,竖向孔1213位于吸液面1211的端口的孔径为第一值, 竖向孔1213位于雾化面1212的端口的孔径为第二值,第一值大于第二值。即,第一竖向孔段1213a位于吸液面1211的端口的孔径大于第二竖向孔段1213b位于雾化面1212的端口的孔径。通过上述设置,可以减少气泡与竖向孔1213靠近吸液面1211部分的孔壁的接触,利于气泡脱离。
沿着从雾化面1212至吸液面1211的方向,竖向孔1213的孔径逐渐增大。在一实施方式中,竖向孔1213的孔径连续增大;例如,竖向孔1213的纵截面为梯形,即,竖向孔1213为锥形孔。在另一实施方式中,竖向孔1213的孔径阶梯增大,如图9所示;此时,第一竖向孔段1213a和第二竖向孔段1213b均为等径的,通过将第二竖向孔段1213b的孔径设置为小于第一竖向孔段1213a的孔径,减少气泡与孔壁的接触,利于气泡脱离。在又一实施方式中,第一竖向孔段1213a可以为漏斗形,靠近第二竖向孔段1213b的端口与第二竖向孔段1213b的孔径相同,其他部分的孔径大于第二竖向孔段1213b的孔径,以此来减少气泡与孔壁的接触,利于气泡脱离;例如,第一竖向孔段1213a为圆台形,第二竖向孔段1213b为圆柱形,如图10所示。
可以理解,横向孔1214可以为等径孔,也可以是锥形孔,只需其能够实现横向补液,利于排出气泡即可,具体根据需要进行设计。
本申请提供的发热组件12上的竖向孔1213可以通过激光打孔的方式来得到,也可以通过先激光诱导然后浸入腐蚀液中腐蚀的方式得到;横向孔1214通过先激光诱导然后浸入腐蚀液中腐蚀的方式得到,可以理解,通过该方式并未在留白区1216形成有横向孔1214。
以上仅为本申请的实施方式,并非因此限制本申请的专利范围,凡是利用本申请说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本申请的专利保护范围内。

Claims (15)

  1. 一种发热组件,其中,包括:
    致密基体,所述致密基体包括相对设置的吸液面和雾化面,所述致密基体具有多个竖向孔和多个横向孔,多个所述竖向孔贯穿所述吸液面和所述雾化面,多个所述横向孔将多个所述竖向孔连通。
  2. 根据权利要求1所述的发热组件,其中,多个所述横向孔包括多个沿第一方向延伸的第一横向孔和多个沿第二方向延伸的第二横向孔,所述第二方向与所述第一方向交叉,所述第一横向孔与所述第二横向孔在所述致密基体的厚度方向同层设置。
  3. 根据权利要求1所述的发热组件,其中,多个所述横向孔包括多个沿第一方向延伸的第一横向孔和多个沿第二方向延伸的第二横向孔,所述第二方向与所述第一方向交叉,所述第一横向孔与所述第二横向孔在所述致密基体的厚度方向不同层设置。
  4. 根据权利要求1所述的发热组件,其中,所述竖向孔包括靠近所述吸液面的第一竖向孔段和靠近所述雾化面的第二竖向孔段,所述第一竖向孔段的孔径与所述第二竖向孔段的孔径不同。
  5. 根据权利要求4所述的发热组件,其中,所述第一竖向孔段位于所述吸液面的端口的孔径为第一值,所述第二竖向孔段位于所述雾化面的端口的孔径为第二值,所述第一值大于第二值。
  6. 根据权利要求5所述的发热组件,其中,沿着从所述雾化面至所述吸液面的方向,所述竖向孔的孔径逐渐增大。
  7. 根据权利要求1所述的发热组件,其中,沿着从所述雾化面至所述吸液面的方向,所述竖向孔的孔径一致。
  8. 根据权利要求1所述的发热组件,其中,所述致密基体的厚度为0.1mm-1mm。
  9. 根据权利要求1所述的发热组件,其中,所述竖向孔的孔径为1μm-100μm。
  10. 根据权利要求1所述的发热组件,其中,所述横向孔的孔径为1μm-100μm。
  11. 根据权利要求1所述的发热组件,其中,所述致密基体的厚度与所述竖向孔的孔径的比值为20:1-3:1。
  12. 根据权利要求1所述的发热组件,其中,相邻的所述竖向孔的孔中心距与所述竖向孔的孔径的比值为3:1-5:1。
  13. 根据权利要求1所述的发热组件,其中,所述发热组件还包括发热元件,所述发热元件设置于所述雾化面上。
  14. 一种雾化器,其中,包括:
    储液腔,用于储存气溶胶生成基质;
    发热组件,所述发热组件与所述储液腔流体连通,所述发热组件用于雾化所述气溶胶生成基质;所述发热组件为权利要求1-13任意一项所述的发热组件。
  15. 一种电子雾化装置,其中,包括:
    雾化器,所述雾化器为权利要求14所述的雾化器;
    主机,用于为所述雾化器工作提供电能和控制所述发热组件雾化所述气溶胶生成基质。
PCT/CN2021/143260 2021-12-30 2021-12-30 发热组件、雾化器及电子雾化装置 WO2023123250A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
PCT/CN2021/143260 WO2023123250A1 (zh) 2021-12-30 2021-12-30 发热组件、雾化器及电子雾化装置
EP21946245.4A EP4226783A4 (en) 2021-12-30 2021-12-30 HEATING ARRANGEMENT, ATOMIZER AND ELECTRONIC ATOMIZING DEVICE
CN202211387650.7A CN116406861A (zh) 2021-12-30 2022-11-07 发热体、雾化器及电子雾化装置
CN202222963660.2U CN218921698U (zh) 2021-12-30 2022-11-07 发热体、雾化器及电子雾化装置
PCT/CN2022/143581 WO2023125850A1 (zh) 2021-12-30 2022-12-29 发热体、雾化器及电子雾化装置
US18/092,017 US20230210182A1 (en) 2021-12-30 2022-12-30 Heating assembly, vaporizer, and electronic vaporization device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/143260 WO2023123250A1 (zh) 2021-12-30 2021-12-30 发热组件、雾化器及电子雾化装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/092,017 Continuation US20230210182A1 (en) 2021-12-30 2022-12-30 Heating assembly, vaporizer, and electronic vaporization device

Publications (1)

Publication Number Publication Date
WO2023123250A1 true WO2023123250A1 (zh) 2023-07-06

Family

ID=86992746

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/143260 WO2023123250A1 (zh) 2021-12-30 2021-12-30 发热组件、雾化器及电子雾化装置

Country Status (3)

Country Link
US (1) US20230210182A1 (zh)
EP (1) EP4226783A4 (zh)
WO (1) WO2023123250A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN210782908U (zh) * 2019-07-30 2020-06-19 深圳市合元科技有限公司 雾化器及电子烟

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110934343A (zh) * 2019-11-25 2020-03-31 深圳麦克韦尔科技有限公司 发热体组件及其制作方法、电子雾化装置
CN111109665A (zh) * 2020-01-17 2020-05-08 深圳麦克韦尔科技有限公司 电子雾化装置及其雾化器和发热体
CN112089105A (zh) * 2020-08-13 2020-12-18 深圳麦克韦尔科技有限公司 雾化芯及雾化装置
CN214710349U (zh) * 2021-01-28 2021-11-16 贺庆 基于微孔的雾化器
CN215303052U (zh) * 2021-01-11 2021-12-28 深圳麦克韦尔科技有限公司 雾化芯及电子雾化装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021142786A1 (zh) * 2020-01-17 2021-07-22 深圳麦克韦尔科技有限公司 电子雾化装置及其雾化器和发热体
CN216019130U (zh) * 2021-07-23 2022-03-15 深圳麦克韦尔科技有限公司 一种雾化芯、雾化组件、雾化器及电子雾化装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110934343A (zh) * 2019-11-25 2020-03-31 深圳麦克韦尔科技有限公司 发热体组件及其制作方法、电子雾化装置
CN111109665A (zh) * 2020-01-17 2020-05-08 深圳麦克韦尔科技有限公司 电子雾化装置及其雾化器和发热体
CN112089105A (zh) * 2020-08-13 2020-12-18 深圳麦克韦尔科技有限公司 雾化芯及雾化装置
CN215303052U (zh) * 2021-01-11 2021-12-28 深圳麦克韦尔科技有限公司 雾化芯及电子雾化装置
CN214710349U (zh) * 2021-01-28 2021-11-16 贺庆 基于微孔的雾化器

Also Published As

Publication number Publication date
US20230210182A1 (en) 2023-07-06
EP4226783A1 (en) 2023-08-16
EP4226783A4 (en) 2023-09-20

Similar Documents

Publication Publication Date Title
WO2023124515A1 (zh) 发热组件、雾化器及电子雾化装置
WO2022179300A9 (zh) 发热组件、雾化器及电子雾化装置
CN114794578A (zh) 发热组件、雾化器及电子雾化装置
WO2022179301A2 (zh) 发热体、雾化器及电子雾化装置
WO2022179233A1 (zh) 发热体组件、雾化器及电子雾化装置
CN114794577A (zh) 发热组件、雾化器及电子雾化装置
WO2020248230A1 (zh) 电子雾化装置及其雾化器和发热组件
WO2023123250A1 (zh) 发热组件、雾化器及电子雾化装置
WO2022179641A2 (zh) 发热体、雾化器及电子雾化装置
CN114916708A (zh) 发热组件、雾化器及电子雾化装置
CN218921694U (zh) 发热体、雾化器及电子雾化装置
WO2021082598A1 (zh) 雾化器组件及包括该雾化器组件的雾化器设备
WO2022228590A1 (zh) 雾化组件及电子雾化装置
CN114794576A (zh) 发热体、雾化器及电子雾化装置
WO2022179299A2 (zh) 发热组件、雾化器及电子雾化装置
WO2023124162A1 (zh) 发热组件、雾化器及电子雾化装置
WO2022179643A2 (zh) 发热组件、雾化器及电子雾化装置
WO2024093477A1 (zh) 发热体、雾化器及电子雾化装置
CN116406850A (zh) 发热组件、雾化器及电子雾化装置
WO2022179642A2 (zh) 发热组件、雾化器及电子雾化装置
CN114794570A (zh) 发热体、雾化组件及电子雾化装置
CN114794569A (zh) 一种雾化芯、雾化器及其电子雾化装置
WO2024050719A1 (zh) 一种发热组件、雾化器及电子雾化装置
WO2023097618A1 (zh) 雾化组件及电子雾化装置
CN116406859A (zh) 发热组件、雾化器及电子雾化装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021946245

Country of ref document: EP

Effective date: 20230123