WO2023124162A1 - 发热组件、雾化器及电子雾化装置 - Google Patents

发热组件、雾化器及电子雾化装置 Download PDF

Info

Publication number
WO2023124162A1
WO2023124162A1 PCT/CN2022/115306 CN2022115306W WO2023124162A1 WO 2023124162 A1 WO2023124162 A1 WO 2023124162A1 CN 2022115306 W CN2022115306 W CN 2022115306W WO 2023124162 A1 WO2023124162 A1 WO 2023124162A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
micropores
heating component
base
micropore
Prior art date
Application number
PCT/CN2022/115306
Other languages
English (en)
French (fr)
Inventor
樊文远
赵月阳
龚博学
吕铭
Original Assignee
深圳麦克韦尔科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202111656304.XA external-priority patent/CN114794577A/zh
Priority claimed from CN202111681913.0A external-priority patent/CN114794579A/zh
Priority claimed from CN202111656422.0A external-priority patent/CN114794578A/zh
Priority claimed from CN202210524878.XA external-priority patent/CN114916708A/zh
Application filed by 深圳麦克韦尔科技有限公司 filed Critical 深圳麦克韦尔科技有限公司
Publication of WO2023124162A1 publication Critical patent/WO2023124162A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/10Devices using liquid inhalable precursors
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • A24F40/42Cartridges or containers for inhalable precursors
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • A24F40/46Shape or structure of electric heating means
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • A24F40/48Fluid transfer means, e.g. pumps
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F47/00Smokers' requisites not otherwise provided for
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M11/00Sprayers or atomisers specially adapted for therapeutic purposes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M15/00Inhalators
    • A61M15/06Inhaling appliances shaped like cigars, cigarettes or pipes

Definitions

  • the present application relates to the technical field of atomization, in particular to a heating component, an atomizer and an electronic atomization device.
  • the electronic atomization device is composed of a heating element, a battery, and a control circuit.
  • the heating element is the core component of the electronic atomization device, and its characteristics determine the atomization effect and user experience of the electronic atomization device.
  • a kind of existing heating element is a cotton core heating element.
  • Most of the cotton core heating elements are spring-shaped metal heating wires wound around cotton rope or fiber rope.
  • the liquid aerosol generating substrate to be atomized is absorbed by the two ends of the cotton rope or fiber rope, and then transported to the central metal heating wire for heating and atomization. Due to the limited end area of the cotton rope or fiber rope, the aerosol-generating matrix is adsorbed and transported less efficiently.
  • the cotton rope or fiber rope has poor structural stability, and it is prone to dry burning, carbon deposition and burnt smell after multiple thermal cycles.
  • Ceramic heating element Another kind of existing heating element is ceramic heating element.
  • Most ceramic heating elements form a metal heating film on the surface of the porous ceramic body; the porous ceramic body plays the role of guiding and storing liquid, and the metal heating film realizes the heating and atomization of the liquid aerosol-generating substrate.
  • it is difficult to precisely control the positional distribution and dimensional accuracy of micropores in porous ceramics prepared by high-temperature sintering.
  • it is necessary to reduce the pore size and porosity but in order to achieve sufficient liquid supply, it is necessary to increase the pore size and porosity, which are contradictory.
  • the liquid conduction ability of the porous ceramic matrix is limited, and burnt smell will appear under high power conditions.
  • the new heating element usually includes two thin substrates, and each layer of the substrate is provided with openings, but the overlapping ratio of the openings on the two substrates may deviate greatly from the design value, which affects the consistency of the product.
  • the heating component, atomizer and electronic atomization device provided by this application solve the problems in the prior art that there is a large deviation between the overlapping ratio of the openings on the two-layer substrate and the design value and that air bubbles are easy to adhere to the liquid-absorbing surface.
  • the first technical solution provided by this application is: to provide a heating component, which is applied to an electronic atomization device, and is used to atomize an aerosol generating substrate, including a first substrate and a second substrate;
  • the first substrate has a first surface and a second surface opposite to each other, and the first surface is an atomized surface; the first substrate is provided with a plurality of holes penetrating through the first surface and the second surface. a first microhole; a plurality of the first microholes are arranged in an array for guiding the aerosol-generating substrate from the second surface to the first surface;
  • the second substrate has a third surface and a fourth surface opposite to each other, and the fourth surface is a liquid-absorbing surface; the third surface is opposite to the second surface and at least partly spaced; the second The substrate is provided with a plurality of second micropores penetrating through the third surface and the fourth surface; the plurality of second micropores are arranged in an array for separating the aerosol-generating substrate from the first four surfaces lead to the third surface;
  • the pore diameter of the first micropore is 1 ⁇ m-100 ⁇ m
  • the pore diameter of the second micropore is 1 ⁇ m-200 ⁇ m
  • the center-to-center distance between the adjacent first micropores is the same as that of the first micropores.
  • the ratio of the aperture is 3:1-1.5:1; and the ratio of the center-to-center distance between the adjacent second microholes to the center-to-center distance between the adjacent first microholes is 1:1-3 :1, and the ratio is not equal to integers and half-integers.
  • the ratio of the hole center distance between adjacent second microholes to the hole center distance between adjacent first microholes is 1:1 ⁇ 2:1, and the ratio Not equal to integers and half integers.
  • the ratio of the hole center distance between adjacent second microholes to the hole center distance between adjacent first microholes is 1.1:1-1.45:1 and 1.55:1- 1.95:1.
  • the first matrix is a dense matrix, and the first micropores are straight through holes penetrating the first surface and the second surface;
  • the pore diameters of the first micropores are the same; or along the thickness direction of the first substrate, the pore diameters of the first micropores gradually become larger, and the first micropores
  • the constriction opening of the hole is located on the second surface, and the expansion opening of the first micropore is located on the first surface; or along the thickness direction of the first substrate, the aperture of the first micropore first gradually decreases Small and gradually increase.
  • the second matrix is a dense matrix, and the second micropores are through holes penetrating the third surface and the fourth surface;
  • the pore diameters of the second micropores are the same; or along the thickness direction of the second substrate, the pore diameters of the second micropores gradually become larger, and the second micropores
  • the shrinkage opening of the hole is located on the fourth surface, and the expansion opening of the second micropore is located on the third surface; or along the thickness direction of the second substrate, the aperture of the second micropore first gradually decreases Small and gradually increase.
  • it further includes a heating element, the heating element is arranged on the first surface, and is used for heating and atomizing the aerosol generating substrate; or the first substrate is made of a conductive material, and is used for heating by electricity.
  • the ratio of the thickness of the first matrix to the diameter of the first micropores is 20:1 ⁇ 3:1.
  • the second surface of the first substrate is provided with a plurality of first grooves, and the first grooves connect the ports of the plurality of first micropores away from the first surface. .
  • the ratio of the width of the first groove to the diameter of the first micropore is 0.5:1-1.2:1; and/or, the depth of the first groove is proportional to the diameter of the first groove
  • the ratio of the groove width is 0-20.
  • the third surface of the second substrate is provided with a plurality of second grooves, and the second grooves connect the ports of the plurality of second micropores away from the fourth surface. .
  • the ratio of the width of the second groove to the diameter of the second micropore is 0.5:1 to 1.2:1; and/or, the depth of the second groove and the diameter of the second groove The ratio of the groove width is 0-20.
  • the second surface of the first base body is arranged in close contact with the third surface of the second base body.
  • a gap is formed between the second surface of the first base and the third surface of the second base, and the gap communicates with the first micropore and the second micropore. hole.
  • the height of the gap is less than or equal to 200 ⁇ m.
  • the heights of the gaps are the same or the heights of the gaps change in a gradient.
  • the heating component further includes a spacer; the spacer is disposed between the second surface and the third surface, and is located on the first base and/or the second base edge, so that the first base and the second base are spaced apart to form the gap.
  • the heating component further includes a fixing piece, and the fixing piece has a lower liquid hole; a fixing structure is arranged on the hole wall of the lower liquid hole to fix the first base and/or the Second substrate.
  • the heating component further includes a third base body, the third base body is disposed on a side of the second base body away from the first base body; the third base body has a fifth surface oppositely disposed and the sixth surface, the third substrate is provided with a plurality of third micropores passing through the fifth surface and the sixth surface, and the third micropores are in fluid communication with the second micropores.
  • the fifth surface of the third base is attached to the fourth surface of the second base; and/or, the fifth surface is provided with a plurality of third grooves , the third groove communicates with ports of the plurality of third micropores away from the sixth surface.
  • the atomized surface includes an atomized area and a non-atomized area, and the atomized area includes a high-temperature atomized area and a low-temperature atomized area; the second base body corresponds to the high-temperature atomized area 1. At least one of the cross-sectional shape, pore diameter and hole center distance of the second micropores in the low-temperature atomization zone and the non-atomization zone is different.
  • the edge of the second base has a liquid inlet or cooperates with other elements to form a liquid inlet.
  • the diameter of the second micropore is larger than the diameter of the first micropore.
  • the second technical solution provided by this application is: provide an atomizer, including a liquid storage cavity and a heating component; the liquid storage cavity is used to store a liquid aerosol generating substrate; the heating component It is the heating component described in any one of the above, the heating component is in fluid communication with the liquid storage cavity, and the heating component is used to atomize the aerosol generating substrate.
  • the third technical solution provided by this application is to provide an electronic atomization device, including an atomizer and a host, the atomizer is the above-mentioned atomizer, and the host uses It is used to provide electric energy for the heating component to work and control the heating component to atomize the aerosol-generating substrate.
  • the heating component includes a first base body and a second base body; the first base body has a first surface and a second surface, the first substrate is provided with a plurality of first micropores penetrating the first surface and the second surface; the second substrate has a third surface and a fourth surface oppositely arranged, and the third surface and the second surface set oppositely and at least partly at intervals; the second substrate is provided with a plurality of second micropores penetrating the third surface and the fourth surface; wherein, the pore diameter of the first micropore is 1 ⁇ m-100 ⁇ m, and the pore diameter of the second micropore is 1 ⁇ m-200 ⁇ m, the ratio of the hole center distance between adjacent first microholes to the aperture of the first microhole is 3:1-1.5:1; and the hole center distance between adjacent second microholes is the same as that of adjacent The ratio of the hole-to
  • the second substrate prevents the growth of the bubbles and prevents the bubbles from blocking the first micropore and/or the second micropore, which is beneficial to reduce the influence of the bubbles on the liquid supply, ensures sufficient liquid supply, and avoids dry burning; on the other hand
  • the overlapping ratio between the first microhole and the second microhole can be made insensitive to the assembly tolerance, so as to ensure the consistency of the performance of the heating element in mass production.
  • Fig. 1 is a schematic structural diagram of an electronic atomization device provided in an embodiment of the present application
  • Fig. 2 is a schematic structural diagram of the atomizer of the electronic atomization device provided in Fig. 1;
  • Fig. 3a is a structural schematic view of the first embodiment of the heat-generating component providing the nebulizer in Fig. 2 viewed from the side of the liquid-absorbing surface;
  • Fig. 3b is a schematic cross-sectional structure diagram along line B-B of Fig. 3a;
  • Figure 4a is a diagram of the alignment relationship between the first micropore and the second micropore design
  • Figure 4b is a diagram of the alignment relationship between the first microhole and the second microhole in the actual assembly process
  • Fig. 4c is another alignment relationship diagram between the first microhole and the second microhole in the actual assembly process
  • Fig. 4d is another alignment relationship diagram between the first microhole and the second microhole in the actual assembly process
  • Fig. 5 is a relationship diagram of the overlap ratio and the ratio of the overlap ratio of the first microhole and the second microhole in the actual assembly process
  • Fig. 6 is the relationship diagram of the aperture of the second microhole and the hole center distance between the adjacent second microholes
  • Fig. 7a is an alignment relationship diagram of the minimum overlap ratio of all first microholes and all second microholes in one embodiment
  • Fig. 7b is an alignment relationship diagram of the maximum overlap ratio of all first microholes and all second microholes in one embodiment
  • Fig. 7c is an alignment relationship diagram of the minimum overlap ratio of all first microholes and all second microholes in another embodiment
  • Fig. 7d is an alignment relationship diagram of the maximum overlap ratio of all first microholes and all second microholes in another embodiment
  • Fig. 8 is a structural schematic view of the first base of the heating component shown in Fig. 3a viewed from the side of the atomizing surface;
  • Fig. 9 is a schematic diagram of another structure when the second surface of the first base is bonded to the third surface of the second base;
  • Fig. 10a is a partial structural schematic view of the first base of the heating component shown in Fig. 3a viewed from the side of the second surface;
  • Fig. 10b is a partial structural schematic view of the second base of the heating component shown in Fig. 3a viewed from the side of the third surface;
  • Fig. 11a is a schematic structural diagram of the second embodiment of the heating component of the atomizer provided in Fig. 2;
  • Fig. 11b is another structural schematic diagram of a gap formed between the first base and the second base;
  • Fig. 12 is a schematic structural diagram of a third embodiment of the heating element of the atomizer provided in Fig. 2;
  • Fig. 13a is a structural schematic diagram of the first base viewed from the side of the atomizing surface in the fourth embodiment of the heat generating component of the atomizer provided in Fig. 2;
  • Fig. 13b is a schematic structural view of the first base viewed from the side of the liquid-absorbing surface in the fourth embodiment of the heat-generating component of the nebulizer provided in Fig. 2;
  • Fig. 14 is a schematic structural diagram of a fifth embodiment of the heating component of the atomizer provided in Fig. 2 .
  • first”, “second”, and “third” in this application are used for descriptive purposes only, and cannot be understood as indicating or implying relative importance or implicitly specifying the number of indicated technical features. Thus, features defined as “first”, “second” and “third” may explicitly or implicitly include at least one of said features.
  • “plurality” means at least two, such as two, three, etc., unless otherwise specifically defined. All directional indications (such as up, down, left, right, front, back%) in the embodiments of the present application are only used to explain the relative positional relationship between the various components in a certain posture (as shown in the drawings) , sports conditions, etc., if the specific posture changes, the directional indication also changes accordingly.
  • FIG. 1 is a schematic structural diagram of an electronic atomization device provided in an embodiment of the present application.
  • an electronic atomization device 100 is provided.
  • the electronic atomization device 100 can be used for atomization of aerosol-generating substrates.
  • the electronic atomization device 100 includes an atomizer 1 and a host 2 electrically connected to each other.
  • the atomizer 1 is used for storing the aerosol-generating substrate and atomizing the aerosol-generating substrate to form an aerosol that can be inhaled by a user.
  • the atomizer 1 can be used in different fields, such as medical treatment, beauty treatment, recreational smoking and the like.
  • the nebulizer 1 can be used in an electronic aerosolization device for atomizing an aerosol-generating substrate and generating an aerosol for the smoker to inhale.
  • the following examples are all based on leisure smoking example.
  • the host 2 includes a battery (not shown) and a controller (not shown).
  • the battery is used to provide electric energy for the operation of the atomizer 1 so that the atomizer 1 can atomize the aerosol generating substrate to form an aerosol; the controller is used to control the operation of the atomizer 1 .
  • the host 2 also includes other components such as a battery holder and an airflow sensor.
  • the atomizer 1 and the host 2 can be integrated or detachably connected, and can be designed according to specific needs.
  • FIG. 2 is a schematic structural diagram of the atomizer of the electronic atomization device provided in FIG. 1 .
  • the atomizer 1 includes a housing 10 , a heating component 11 , and an atomizing seat 12 .
  • the atomizing seat 12 has an installation cavity (not shown in the figure), and the heating component 11 is arranged in the installation cavity;
  • the housing 10 is formed with a mist outlet channel 13, the inner surface of the housing 10, the outer surface of the mist outlet channel 13 cooperate with the top surface of the atomization seat 12 to form a liquid storage chamber 14, and the liquid storage chamber 14 is used to store liquid aerosol generated matrix.
  • the heating component 11 is electrically connected with the host 2, and generates an aerosol by atomizing the aerosol generating substrate.
  • the atomizing seat 12 includes an upper seat 121 and a lower seat 122 , the upper seat 121 cooperates with the lower seat 122 to form an installation cavity;
  • the upper seat 121 is provided with a lower liquid channel 1211 ; the aerosol generating substrate in the liquid storage chamber 14 flows into the heating element 11 through the lower liquid channel 1211 , that is, the heating element 11 is in fluid communication with the liquid storage chamber 14 .
  • the lower seat 122 is provided with an air intake passage 15, through which the outside air enters the atomization chamber 120, carries the aerosol atomized by the heating element 11 and flows to the mist outlet channel 13, and the user inhales through the port of the mist outlet channel 13 aerosol.
  • Fig. 3a is a structural schematic view of the first embodiment of the heat-generating component providing the atomizer in Fig. 2 viewed from the side of the liquid-absorbing surface
  • Fig. 3b is a schematic cross-sectional structural schematic view of Fig. 3a along line B-B.
  • the heating component 11 includes a first base 111 and a second base 112 .
  • the first base 111 includes a first surface 1111 and a second surface 1112 oppositely disposed, and the first surface 1111 is an atomized surface.
  • the first substrate 111 is provided with a plurality of first micropores 1113 penetrating through the first surface 1111 and the second surface 1112, and the plurality of first microholes 1113 are arranged in an array; the first microholes 1113 are used to generate the aerosol matrix From the second surface 1112 to the first surface 1111, that is, the first micropores 1113 are used to guide the aerosol-generating substrate from the second surface 1112 to the atomizing surface.
  • the second base 112 includes a third surface 1121 and a fourth surface 1122 oppositely disposed, and the fourth surface 1122 is a liquid-absorbing surface.
  • the second substrate 112 is provided with a plurality of second micropores 1123 penetrating through the third surface 1121 and the fourth surface 1122, and the plurality of second micropores 1123 are arranged in an array; the second micropores 1123 are used to generate the aerosol matrix Guided from the fourth surface 1122 to the third surface 1121 , that is, the second micropores 1123 are used to guide the aerosol-generating substrate from the liquid-absorbing surface to the third surface 1121 .
  • the third surface 1121 of the second base 112 is opposite to the second surface 1112 of the first base 111 and at least partially spaced apart from each other. It can be understood that the aerosol-generating substrate in the liquid storage chamber 14 flows to the fourth surface 1122 of the second substrate 112 through the lower liquid channel 1211, and is guided to the third surface of the second substrate 112 by the capillary force of the second micropore 1123.
  • the surface 1121 is guided from the second surface 1112 of the first substrate 111 to the first surface 1111 through the capillary force of the first micropore 1113; Flow down from the suction side to the atomization side.
  • the aerosol-generating substrate is heated and atomized on the atomizing surface of the heating component 11 to generate an aerosol. Wherein, the capillary force of the first micropore 1113 is greater than that of the second micropore 1123, so that the aerosol-generating substrate can flow from the liquid-absorbing surface to the atomizing surface.
  • the first base body 111 By setting the first base body 111 on the side of the second base body 112 close to the liquid storage chamber 14, the first base body 111 can be insulated to a certain extent to prevent the heat on the second base body 112 from being transferred to the liquid storage chamber 14, which is beneficial to ensure the taste consistency.
  • the air bubbles entering through the first micropores 1113 of the first substrate 111 adhere to the second surface 1112 of the first substrate 111, and a second substrate 112 is arranged on one side of the first substrate 111.
  • the second substrate 112 It can prevent the bubbles from growing up, and avoid the second surface 1112 of the first substrate 111 from being covered by bubbles in a large area, so as to avoid the bubbles from blocking the first micropores 1113 and/or the second micropores 1123, which is beneficial to reduce the impact of the bubbles on the supply.
  • the air bubbles are prevented from adhering to the liquid-absorbing surface (that is, the fourth surface 1122 of the second substrate 112), which effectively prevents the air bubbles from entering the liquid storage chamber 14, and the liquid in the liquid storage chamber 14
  • the aerosol-generating substrate can still enter the heating element 11 through the second micropore 1123 of the second base body 112, and flow from the second micropore 1123 to the first micropore 1113 to ensure sufficient liquid supply.
  • Figure 4a is a diagram of the alignment relationship between the first microhole and the second microhole design
  • Figure 4b is a diagram of the alignment relationship between the first microhole and the second microhole in the actual assembly process
  • FIG. 4c is another alignment relationship diagram between the first microhole and the second microhole in the actual assembly process
  • FIG. 4d is another alignment relationship diagram between the first microhole and the second microhole in the actual assembly process.
  • the present application further studies the size setting of the first microhole 1113 and the second microhole 1123 .
  • the diameter of the first micropores 1113 of the first substrate 111 is 40 ⁇ m
  • the center-to-center distance between adjacent first microholes 1113 is 80 ⁇ m
  • the diameter of the second micropores 1123 of the second substrate 112 is 90 ⁇ m.
  • Experiments were carried out on the heat-generating component whose center-to-center distance between adjacent second microholes 1123 was 160 ⁇ m.
  • the overlap rate of the designed first microhole 1113 and the second microhole 1123 is 25%, and the designed alignment diagram is shown in Figure 4a.
  • the first microhole 1113 and the second microhole The alignment relationship of the two microholes 1123 may be different from that in FIG. 4a.
  • the possible alignment diagrams of the first microhole 1113 and the second microhole 1123 are shown in Figure 4b- Figure 4d
  • the overlap of the alignment relationship shown in Figure 4b is 23.32%
  • the alignment relationship shown in Figure 4c The overlap rate of 14.25% and the overlap rate of the alignment relationship shown in Fig. 4d is 13.19%.
  • FIGS. 4b-4d only show some alignment diagrams in the actual assembly process, not all alignment diagrams.
  • FIG. 5 is a graph showing the relationship between the overlapping ratio and the ratio of the overlapping ratio of the first microhole and the second microhole in the actual assembly process.
  • first base body 111 and second base body 112 (the aperture of the first micropore 1113 is 40 ⁇ m, the hole center distance between adjacent first microholes 1113 is 80 ⁇ m, the second micropore 1123 of the second base body 112 The hole diameter is 90 ⁇ m, and the hole center distance between adjacent second microholes 1123 is 160 ⁇ m), and a large number of assembly experiments are carried out to obtain the overlapping ratio and overlapping ratio of the first microhole and the second microhole in the actual assembly process shown in Figure 5
  • the abscissa represents the overlap rate of the first micropore and the second micropore
  • the ordinate represents the proportion of a certain overlap rate in a large number of assembly experiments. It can be seen from FIG.
  • the overlapping ratio between the first microholes 1113 and the second microholes 1123 refers to the ratio of the overlapping area between all the first microholes 1113 and all the second microholes 1123 to the area of all the first microholes 1113 .
  • the overlapping ratio between the first microhole 1113 and the second microhole 1123 directly affects the liquid supply capacity of the heating element 11, and the first microhole 1113 can be pre-designed according to the different requirements of the liquid supply capacity of the heating element 11.
  • the overlapping ratio between the second microhole 1123 if the overlapping ratio between the first microhole 1113 and the second microhole 1123 obtained by the assembled heating element 11 deviates too much from the design value, it may make the heating element 11 If the atomization ability is too strong or too weak, the performance of the heating component 11 and the consistency of mass-produced products will be affected.
  • FIG. 6 is a graph showing the relationship between the diameter of the second microhole and the center-to-center distance between adjacent second microholes.
  • the fixed first microhole 1113 aperture, the hole center distance between the adjacent first microholes 1113, the aperture of the second microhole 1123 and the distance between the adjacent second microholes 1123 can be obtained.
  • the diameter of the first microhole 1113 is 40 ⁇ m and the distance between the centers of the holes between the adjacent first microholes 1113 is 80 ⁇ m
  • the diameter of the second microhole 1123 and the distance between the centers of the holes between the adjacent second microholes 1123 are changed.
  • the experimental results are shown in Figure 6.
  • the hole center distance between adjacent second microholes 1123 is an integer multiple or half of the hole center distance between adjacent first microholes 1113 Integer multiples, when the pore diameter of the second micropore 1123 is small, a higher overlap rate may be achieved, or zero overlap rate (that is, the second matrix 112 blocks a plurality of first micropores 1113 ), hindering liquid supply. Therefore, the ratio of the hole center distance between adjacent second microholes 1123 to the hole center distance between adjacent first microholes 1113 is not equal to an integer or a half integer, for example, not equal to 2 or 1.5.
  • Figure 7a is an alignment relationship diagram of the minimum overlap ratio of all first microholes and all second microholes in an embodiment
  • Figure 7b is a diagram of the alignment relationship between all first microholes and all second microholes in an embodiment
  • Fig. 7c is the alignment relationship diagram of the minimum overlap ratio of all the first microholes and all the second microholes in another embodiment
  • Fig. 7d is the alignment relationship diagram of all the first microholes in another embodiment Map of the alignment relationship between microwells and the maximum overlap ratio of all second microwells.
  • the diameter of the first micropores 1113 of the first substrate 111 is 40 ⁇ m
  • the center-to-center distance between adjacent first micropores 1113 is 80 ⁇ m
  • the diameter of the second micropores 1123 of the second substrate 112 is 110 ⁇ m
  • the center-to-center distance between adjacent second microholes 1123 is 130 ⁇ m
  • the minimum overlap ratio between all first microholes 1113 and all second microholes 1123 is 56.21%
  • the corresponding alignment diagram is shown in Figure 7a
  • the maximum overlapping ratio of one microhole 1113 and all second microholes 1123 is 56.29%
  • the corresponding alignment diagram is shown in FIG. 7b. From FIG. 7 a and FIG. 7 b , the overlapping ratio distribution of all the first microholes 1113 and all the second microholes 1123 is relatively concentrated, and the mass production of the heating element 11 has a good consistency.
  • the diameter of the first micropores 1113 of the first substrate 111 is 40 ⁇ m
  • the center-to-center distance between adjacent first micropores 1113 is 80 ⁇ m
  • the diameter of the second micropores 1123 of the second substrate 112 is 120 ⁇ m.
  • the center-to-center distance between adjacent second microholes 1123 is 140 ⁇ m
  • the minimum overlap rate of all first microholes 1113 and all second microholes 1123 is 57.58%
  • the corresponding alignment diagram is shown in Figure 7c
  • all The maximum overlapping ratio of the first microhole 1113 and all the second microholes 1123 is 58.03%
  • the corresponding alignment diagram is shown in FIG. 7d. From FIG. 7c and FIG. 7d , the overlapping ratio distribution of all the first microholes 1113 and all the second microholes 1123 is relatively concentrated, and the mass production of the heating element 11 has a good consistency.
  • the ratio of the hole center distance between adjacent second microholes 1123 to the hole center distance between adjacent first microholes 1113 is set as above, which can ensure that the heating element 11 has better consistency.
  • the present application makes the aperture of the first microhole 1113 1 ⁇ m-100 ⁇ m, the aperture of the second microhole 1123 is 1 ⁇ m-200 ⁇ m, and the hole center distance between adjacent first microholes 1113 is the same as that of the first microhole 1113
  • the ratio of the hole diameter is 3:1-1.5:1
  • the ratio of the hole center distance between adjacent second microholes 1123 to the hole center distance between adjacent first microholes 1113 is 1:1 ⁇ 3: 1
  • the ratio is not equal to an integer or a half-integer
  • the diameter of the first micropore 1113 on the first substrate 111 is 1 ⁇ m-100 ⁇ m.
  • the pore diameter of the first micropore 1113 is less than 1 ⁇ m, the demand for liquid supply cannot be met, resulting in a decrease in the amount of aerosol; when the pore diameter of the first micropore 1113 is greater than 100 ⁇ m, the aerosol-generating substrate is easy to flow out from the first micropore 1113, resulting in liquid leakage , leading to a decrease in atomization efficiency.
  • the diameter of the first micropore 1113 is 20 ⁇ m-50 ⁇ m. It can be understood that the pore diameter of the first base body 111 is selected according to actual needs.
  • the diameter of the second micropores 1123 on the second substrate 112 is 1 ⁇ m-200 ⁇ m.
  • the pore diameter of the second micropore 1123 is less than 1 ⁇ m, the liquid supply requirement cannot be met, resulting in a decrease in the amount of aerosol; when the pore diameter of the second micropore 1123 is greater than 200 ⁇ m, the function of preventing bubble growth will be lost. It can be understood that the diameter of the second micropore 1123 is selected according to actual needs.
  • the pore diameter of the second micropore 1123 is larger than that of the first micropore 1113, so that the capillary force of the first micropore 1113 is greater than that of the second micropore 1123, and the aerosol-generating substrate can be released from the first micropore 1113.
  • the liquid absorbing surface of the substrate 111 flows to the atomizing surface of the second substrate 112 . Since the second micropore 1123 also has a capillary force, when the port of the mist outlet channel 13 is used downward, it can prevent the liquid from flowing back and insufficient liquid supply.
  • the ratio of the hole center distance between adjacent first microholes 1113 to the diameter of the first microholes 1113 is 3:1-1.5:1, so that the first microholes 1113 on the first substrate 111 can satisfy the liquid supply capacity.
  • the ratio of the hole center distance between adjacent first microholes 1113 to the diameter of the first microholes 1113 is 3:1-2:1; Further optionally, the ratio of the hole center distance between adjacent first microholes 1113 to the diameter of the first microholes 1113 is 3:1-2.5:1.
  • the ratio of the hole center distance between adjacent second microholes 1123 to the hole center distance between adjacent first microholes 1113 is 1:1 to 3:1. When the ratio is less than 1:1, the liquid supply capacity will be affected. , if the ratio is greater than 3:1, there will be problems of stuck air bubbles.
  • the ratio of the aperture of the first microhole 1113, the aperture of the second microhole 1123, the hole center distance between adjacent first microholes 1113 and the aperture of the first microhole 1113 is set as above, so that Ensure adequate fluid supply.
  • the aperture of the first microhole 1113 is constant and the hole center distance between the adjacent first microholes 1113 is constant, by adjusting the aperture of the second microhole 1123 and/or the distance between the adjacent second microholes 1123
  • the distance between the centers of the holes realizes the adjustment of the overlapping ratio of the first microhole 1113 and the second microhole 1123 .
  • the overlapping rate distribution is very concentrated, that is, when the fluctuation range of the overlapping rate within the assembly tolerance range is narrow, the consistency of the heating component 11 is better.
  • the size of the first microhole 1113 of the first base body 111 and the second microhole 1123 of the second base body 112 are set as above, so that the distribution of the overlapping ratio is relatively concentrated and close to the design value, ensuring the performance and assembly of the heating element 11 consistency.
  • the design value of the overlap rate of all the first microholes 1113 and all the second microholes 1123 can be 20% to 80%, which is specifically designed according to the liquid supply requirement; optionally, the design value of the overlap rate is 30% to 50%.
  • the fluctuation range of the overlap rate within the assembly tolerance range is within 10%, which can ensure that the heating component 11 has good consistency; optionally, the fluctuation range of the overlap rate within the assembly tolerance range is within 5%.
  • the ratio of the hole center distance between adjacent second microholes 1123 to the hole center distance between adjacent first microholes 1113 is 1:1 to 2:1, which further concentrates the overlap ratio. distribution, the overlap rate is insensitive to assembly tolerances, thus facilitating assembly consistency.
  • the ratio of the hole center distance between adjacent second microholes 1123 to the hole center distance between adjacent first microholes 1113 is 1.1:1 ⁇ 1.45:1 and 1.55:1 ⁇ 1.95: 1.
  • the distribution of overlap rate is further concentrated, and the overlap rate is not sensitive to assembly tolerance, which is beneficial to the consistency of assembly.
  • the first substrate 111 can be a porous substrate, for example, porous ceramics, cotton, quartz sand core, foam structure material; the first substrate 111 itself has a plurality of micropores are the first micropores 1113, the second A microhole 1113 is a random via.
  • the first substrate 111 can also be a dense substrate, for example, quartz, glass, dense ceramics or silicon; hole.
  • the material of the first substrate 111 is glass, it may be one of ordinary glass, quartz glass, borosilicate glass, and photosensitive lithium aluminosilicate glass.
  • Second matrix 112 can be porous matrix, for example, the material of porous ceramics, cotton, quartz sand core, foam structure; sequence vias.
  • the second matrix 112 can also be a dense matrix, for example, quartz, glass, dense ceramics or silicon; the second micropore 1123 is a through hole that runs through the third surface 1121 and the fourth surface 1122, and the second micropore 1123 is an ordered through hole. hole.
  • the material of the second base body 112 is glass, it may be one of ordinary glass, quartz glass, borosilicate glass, and photosensitive lithium aluminosilicate glass.
  • the materials of the first base body 111 and the second base body 112 may be the same or different. Any combination can be made between the first matrix 111 and the second matrix 112.
  • the first matrix 111 is a porous matrix
  • the second matrix 112 is a dense matrix
  • Ceramics for another example, the first base 111 is a dense base, and the second base 112 is a porous base; for another example, the first base 111 is a dense base, and the second base 112 is a dense base.
  • Both the first base body 111 and the second base body 112 are in the shape of a sheet. It can be understood that the sheet shape is relative to the block body, and the ratio of the length to thickness of the sheet shape is larger than that of the block body. .
  • the first base 111 and the second base 112 can be flat, arc-shaped, cylindrical, etc., and can be designed according to the needs. Other structures of the atomizer 1 are matched with the shapes of the first base 111 and the second base 112 .
  • the thickness of the first base body 111 is 0.1mm-1mm.
  • the thickness of the first base body 111 is the distance between the first surface 1111 and the second surface 1112 .
  • the thickness of the first substrate 111 is greater than 1mm, it cannot meet the demand for liquid supply, resulting in a decrease in the amount of aerosol and a large amount of heat loss, and the cost of setting the first micropore 1113 is high; when the thickness of the first substrate 111 is less than 0.1mm, The strength of the first base body 111 cannot be guaranteed, which is not conducive to improving the performance of the electronic atomization device.
  • the thickness of the first base body 111 is 0.2mm-0.5mm. It can be understood that the thickness of the first base body 111 is selected according to actual needs.
  • the ratio of the thickness of the first matrix 111 to the diameter of the first micropores 1113 is 20:1-3:1, so as to improve the liquid supply capacity.
  • the ratio of the thickness of the first substrate 111 to the aperture of the first micropore 1113 is greater than 20:1, the aerosol generating substrate supplied by the capillary force of the first micropore 1113 is difficult to meet the atomization requirement, which not only easily leads to dry burning , and the amount of aerosol produced by a single atomization decreases; when the ratio of the thickness of the first substrate 111 to the aperture of the first micropore 1113 is less than 3:1, the aerosol-generating substrate easily flows out from the first micropore 1113 to cause Waste, resulting in a decrease in atomization efficiency, which in turn reduces the total aerosol volume.
  • the ratio of the thickness of the first matrix 111 to the diameter of the first micropores 1113 is 15:1-5:1.
  • the thickness of the second base body 112 is 0.1mm-1mm.
  • the thickness of the second base body 112 is the distance between the third surface 1121 and the fourth surface 1122 .
  • the thickness of the second substrate 112 is greater than 1mm, it cannot meet the demand for liquid supply, resulting in a decrease in the amount of aerosol and a large amount of heat loss, and the cost of setting the second micropore 1123 is high; when the thickness of the second substrate 112 is less than 0.1mm, The strength of the second base body 112 cannot be guaranteed, which is not conducive to improving the performance of the electronic atomization device.
  • the thickness of the second base body 112 is 0.2mm-0.5mm. It can be understood that the thickness of the second base body 112 is selected according to actual needs.
  • the ratio of the thickness of the second matrix 112 to the diameter of the second micropores 1123 is 20:1-3:1, so as to improve the liquid supply capacity.
  • the ratio of the thickness of the second substrate 112 to the aperture of the second micropore 1123 is greater than 20:1, the aerosol generating substrate supplied by the capillary force of the second micropore 1123 is difficult to meet the atomization requirement, which not only easily leads to dry burning , and the amount of aerosol produced by a single atomization decreases; when the ratio of the thickness of the second substrate 112 to the aperture of the second micropore 1123 is less than 3:1, the aerosol-generating substrate easily flows out from the second micropore 1123 to cause Waste, resulting in a decrease in atomization efficiency, which in turn reduces the total aerosol volume.
  • the ratio of the thickness of the second matrix 112 to the diameter of the second micropores 1123 is 15:1-5:1.
  • the ratio of the hole center distance between adjacent second microholes 1123 to the diameter of the second microholes 1123 is 3:1-1:1, so that the second microholes 1123 on the second substrate 112 can satisfy the liquid supply capacity.
  • the ratio of the hole center distance between adjacent second microholes 1123 to the diameter of the second microholes 1123 is 2:1-1.5:1; Further optionally, the ratio of the hole center distance between adjacent second microholes 1123 to the diameter of the second microholes 1123 is 1.5:1-1:1.
  • a plurality of first microholes 1113 are arranged in a two-dimensional array. That is, the first substrate 111 is provided with multiple rows of first microholes 1113 and multiple columns of first microholes 1113; each row is provided with a plurality of first microholes 1113, and the distance between adjacent first microholes 1113 is equal Each column is provided with a plurality of first microholes 1113, and the distance between adjacent first microholes 1113 is equal.
  • the diameters of the first microholes 1113 are the same (as shown in FIG. 3 b ).
  • the diameter of the first micropore 1113 gradually becomes larger, the constriction opening of the first microhole 1113 is located on the second surface 1112, and the expansion opening of the first microhole 1113 is located on the second surface 1112.
  • the first surface 1111 ie, the atomizing surface
  • the aforementioned diameter of the first micropore 1113 refers to the diameter of the constricted opening of the first micropore 1113 .
  • the first microhole 1113 is a tapered hole.
  • the diameter of the first micropore 1113 gradually decreases first and then gradually increases, that is, the first micropore 1113 is wider at both ends and narrower at the middle.
  • the shape of the first microhole 1113 is a waist drum.
  • the plurality of second microholes 1123 are arranged in a two-dimensional array. That is, the second substrate 112 is provided with multiple rows of second microholes 1123 and multiple columns of second microholes 1123; each row is provided with a plurality of second microholes 1123, and the distance between adjacent second microholes 1123 is equal Each column is provided with a plurality of second microholes 1123, and the distance between adjacent second microholes 1123 is equal.
  • the diameters of the second micropores 1123 are the same (as shown in FIG. 3 b ).
  • the diameter of the second micropore 1123 gradually becomes larger, and the constriction opening of the second micropore 1123 is located on the fourth surface 1122 (ie, the liquid-absorbing surface).
  • the expansion opening of the hole 1123 is located on the third surface 1121, which can ensure the stability of the liquid in the second microhole 1123; at the same time, the aerosol-generating substrate can form a liquid surface protruding toward the first substrate 111 at the expansion opening of the second microhole 1123, In turn, the aerosol-generating substrate can be more easily contacted with the surface of the first substrate 111, thereby speeding up the liquid conduction speed; and it can prevent the aerosol-generating substrate from flowing back into the liquid storage chamber 14, ensuring that the gas will not enter the liquid storage chamber 14 after the suction is completed.
  • the aforementioned diameter of the second micropore 1123 refers to the diameter of the constricted opening of the second micropore 1123 .
  • the second microhole 1123 is a
  • the diameter of the second micropore 1123 gradually decreases first and then gradually increases, that is, the two ends of the second micropore 1123 are wider and the middle is narrower.
  • the shape of the second microhole 1123 is a waist drum.
  • FIG. 8 is a schematic view of the structure of the first substrate of the heating component shown in FIG. 3 a viewed from the side of the atomizing surface.
  • the heating component 11 further includes a heating element 114 , a positive electrode 115 and a negative electrode 116 , and the two ends of the heating element 114 are electrically connected to the positive electrode 115 and the negative electrode 116 respectively.
  • the heating element 114 is disposed on the first surface 1111 of the first substrate 111 to generate an aerosol by atomizing the aerosol generating substrate.
  • Both the positive electrode 115 and the negative electrode 116 are disposed on the first surface 1111 of the first substrate 111 so as to be electrically connected to the host 2 .
  • the heating element 114 can be a heating sheet, a heating film, a heating net, etc., and it only needs to be able to heat the atomized aerosol generating substrate.
  • the heating element 114 can be buried inside the first base body 111 .
  • the first base 111 is made of a conductive material, which is used to generate heat when energized, that is, the first base 111 is atomized while conducting liquid.
  • the heating element 114 is strip-shaped; specifically, the heating element 114 is bent multiple times to form a plurality of parallel extensions 1141, and the heating element 114 also includes a connecting portion 1142 connecting two adjacent extensions 1141, extending The portion 1141 extends along the direction in which the positive electrode 115 approaches the negative electrode 116 (as shown in FIG. 8 ).
  • the projection of the second base body 112 on the first base body 111 completely covers the heating element 114 to ensure that the liquid supply speed can meet the atomization speed of the heating element 114 and achieve better atomization effect.
  • the second surface 1112 of the first base 111 is attached to the third surface 1121 of the second base 112; the second surface 1112 of the first base 111 is provided with a plurality of first grooves 1114, the first concave The groove 1114 communicates with the ports of the plurality of first microholes 1113 away from the first surface 1111; the third surface 1121 of the second substrate 112 is provided with a plurality of second grooves 1124, and the second groove 1124 connects the plurality of second microholes 1123 communicates with the port away from the fourth surface 1122 ; the first groove 1114 and the second groove 1124 make the second surface 1112 and the third surface 1121 at least partially spaced apart.
  • only the second surface 1112 of the first base 111 may be provided with a plurality of first grooves 1114, while the third surface 1121 of the second base 112 is not provided with second grooves 1124.
  • the three surfaces 1121 are planes, and the first groove 1114 makes at least part of the second surface 1112 and the third surface 1121 spaced apart (as shown in Figure 9, Figure 9 is the second surface of the first base and the second base of the second base) Another structural schematic diagram when the three surfaces are bonded); it is also possible to only have a plurality of second grooves 1124 on the third surface 1121 of the second base body 112, while the second surface 1112 of the first base body 111 is not provided with first grooves 1114 , the second surface 1112 is a plane, and the second groove 1124 makes at least part of the second surface 1112 and the third surface 1121 spaced apart.
  • FIG. 10a is a partial structural schematic view of the first substrate of the heating component shown in FIG. 3a viewed from the side of the second surface.
  • the plurality of first grooves 1114 includes a plurality of first sub-grooves 1114a extending along a first direction and a plurality of second sub-grooves 1114b extending along a second direction.
  • the first sub-grooves 1114a and the second sub-grooves 1114b are intersected.
  • the first direction is perpendicular to the second direction.
  • a first sub-groove 1114a is a first groove 1114
  • a second sub-groove 1114b is a first groove 1114
  • the names of the first sub-groove 1114a and the second sub-groove 1114b are only for convenience describe.
  • the second surface 1112 of the first base 111 is attached to the third surface 1121 of the second base 112 .
  • the first sub-grooves 1114a and the second sub-grooves 1114b intersecting each other on the second surface 1112 it is possible to prevent the second substrate 112 from covering the first micropores 1113 on the first substrate 111, which is beneficial to improve the overlap rate and ensure that the aerosol The generated matrix can flow to the atomization surface to avoid dry burning.
  • the aerosol-generating matrix can flow laterally
  • the first micropores 1113 corresponding to the blocked second micropores 1123 can continue to supply liquid to the corresponding atomizing surface area through the laterally flowing aerosol generating matrix, further avoiding dry burning.
  • the transverse direction refers to a direction not parallel to the extension direction of the first microhole 1113 , for example, a direction perpendicular to the central axis of the first microhole 1113 .
  • each first sub-groove 1114a corresponds to one or more rows of first microholes 1113
  • each second sub-groove 1114b corresponds to one or more columns of first microholes 1113, according to specific needs design.
  • each first sub-groove 1114a corresponds to a row of first microholes 1113
  • each second sub-groove 1114b corresponds to a row of first microholes 1113 (as shown in FIG. 10a).
  • first grooves 1114 extending along the first direction or only a plurality of first grooves 1114 extending along the second direction may be provided, that is, only communicated in one direction Adjacent to the first microhole 1113 .
  • the first grooves 1114 extending along the first direction and/or the first grooves 1114 extending along the second direction have a capillary effect, and can guide the aerosol-generating substrate in the lateral direction, so that the aerosol-generating substrate evenly enters the plurality of first grooves.
  • the micropores 1113 play the role of horizontal fluid replenishment.
  • the ratio of the width of the first groove 1114 to the diameter of the first microhole 1113 is 0.5:1 ⁇ 1.2:1. In a specific embodiment, the ratio of the width of the first groove 1114 to the diameter of the first microhole 1113 is 0.9:1 ⁇ 1.1:1.
  • the ratio of the depth to the width of the first groove 1114 is 0-20; Good lateral rehydration effect. In a specific embodiment, the ratio of the depth to the width of the first groove 1114 is 1-5.
  • FIG. 10b is a schematic view of the partial structure of the second base body of the heating component shown in FIG. 3a viewed from the side of the third surface.
  • the plurality of second grooves 1124 includes a plurality of third sub-grooves 1124a extending along the third direction and a plurality of fourth sub-grooves 1124b extending along the fourth direction.
  • the third sub-slots 1124a and the fourth sub-slots 1124b are intersected.
  • the third direction is perpendicular to the fourth direction.
  • a third sub-groove 1124a is a second groove 1124
  • a fourth sub-groove 1124b is a second groove 1124
  • naming the third sub-groove 1124a and the fourth sub-groove 1124b is only for convenience describe.
  • the second surface 1112 of the first base 111 is attached to the third surface 1121 of the second base 112 .
  • the third sub-groove 1124 a and the fourth sub-groove 1124 b intersecting each other on the third surface 1121 .
  • the aerosol-generating matrix can flow laterally , the blocked second micropore 1123 can still supply liquid to its corresponding first micropore 1113 through the laterally flowing aerosol generating matrix, further avoiding dry burning.
  • the transverse direction refers to a direction not parallel to the extending direction of the second microhole 1123 , for example, a direction perpendicular to the central axis of the second microhole 1123 .
  • each third sub-groove 1124a corresponds to one or more rows of second microholes 1123
  • each fourth sub-groove 1124b corresponds to one or more columns of second microholes 1123, specifically according to needs design.
  • each third sub-slot 1124a corresponds to a row of fourth sub-slots 1124b
  • each fourth sub-slot 1124b corresponds to a column of fourth sub-slots 1124b (as shown in FIG. 10b ).
  • only a plurality of second grooves 1124 extending in the third direction or only a plurality of second grooves 1124 extending in the fourth direction may be provided, that is, only communicated in one direction Adjacent to the second microhole 1123 .
  • the second groove 1124 extending along the third direction and/or the second groove 1124 extending along the fourth direction has a capillary effect, and can guide the aerosol-generating substrate in the lateral direction, so that the aerosol-generating substrate evenly enters the plurality of first grooves.
  • the micropores 1113 play the role of horizontal fluid replenishment.
  • the ratio of the width of the second groove 1124 to the diameter of the second microhole 1123 is 0.5:1 ⁇ 1.2:1. In a specific embodiment, the ratio of the width of the second groove 1124 to the diameter of the second microhole 1123 is 0.9:1 ⁇ 1.1:1.
  • the ratio of the depth to the width of the second groove 1124 is 0-20; Good lateral rehydration effect. In a specific embodiment, the ratio of the depth to the width of the second groove 1124 is 1-5.
  • the heating component 11 further includes a fixing part 117 , and the fixing part 117 has a liquid inlet hole 1171 .
  • the liquid inlet hole 1171 is in fluid communication with the liquid storage cavity 14 through the lower liquid channel 1211 .
  • the first base body 111 and/or the second base body 112 are embedded in the liquid inlet hole 1171 , that is, the fixing member 117 is used to fix the edge of the first base body 111 and/or the second base body 112 .
  • the fixing part 117 covers the periphery of the first base body 111 , the fixing part 117 does not cover the heating element 114 , and the liquid inlet hole 1171 can completely expose the heating element 114 .
  • the hole wall of the liquid inlet hole 1171 has a fixed structure (not shown), and the edges of the first base body 111 and/or the second base body 112 are embedded in the fixed structure.
  • the fixing part 117 has a sealing function, and the material of the fixing part 117 is silicone or fluororubber.
  • the edge of the second base 112 has a liquid inlet 1125 or cooperates with other elements to form the liquid inlet 1125 .
  • through holes (not shown) or notches (not shown) are provided on the edge of the second base body 112 to form the liquid inlet 1125 , and the first base body 111 spans the entire liquid inlet hole 1171 . That is to say, the edge of the second base 112 has a liquid inlet 1125 .
  • the edge of the second base body 112 is spaced from the hole wall of the liquid inlet hole 1171 to form a liquid inlet port 1125, and the first base body 111 spans the entire liquid inlet hole 1171;
  • the sides are spaced apart from the walls of the liquid inlet 1171 to form two symmetrically arranged liquid inlets 1125 (as shown in FIG. 3 a ). That is to say, the edge of the second base 112 cooperates with the fixing part 117 to form the liquid inlet 1125 .
  • the projection of the liquid inlet 1125 on the atomizing surface of the first substrate 111 is misaligned with the heating element 114 .
  • FIG. 11a is a schematic structural diagram of a second embodiment of the heating component of the atomizer provided in FIG. 2 .
  • the structure of the second embodiment of the heating component 11 is basically the same as that of the first embodiment of the heating component 11, except that a gap is formed between the second surface 1112 of the first base 111 and the third surface 1121 of the second base 112 113 , the gap 113 communicates with the first microhole 1113 and the second microhole 1123 .
  • the gap 113 makes the second surface 1112 and the third surface 1121 at least partially spaced apart.
  • the heights of the gaps 113 are the same. That is to say, the first base body 111 and the second base body 112 are arranged in parallel.
  • the height of the gap 113 is less than or equal to 200 ⁇ m.
  • the height of the gap 113 is the distance between the second surface 1112 and the third surface 1121 .
  • the height of the gap 113 is greater than 200 ⁇ m, there is a risk of liquid leakage from the first micropore 1113 and/or the second micropore 1123 , and there is a risk of air bubbles merging and growing laterally.
  • the height of the gap 113 is too small, the gap 113 cannot well eliminate air bubbles entering through the first micropore 1113 .
  • the height of the gap 113 is less than or equal to 50 ⁇ m.
  • the gap 113 By setting the gap 113, lateral liquid replenishment can be realized, even if air bubbles adhere to the fourth surface 1122 (i.e., the liquid-absorbing surface) of the second substrate 112 and cover part of the second micropores 1123, the flow to the first substrate 111 will not be affected. supply liquid. Further, the height of the gap 113 is set to the above range to limit the range of bubble growth, it is difficult to form bubbles that escape from the first micropore 1113, and when the bubbles collapse, they are discharged from the atomizing surface, thereby preventing large bubbles from adhering to the second substrate The liquid suction surface of 112 affects the liquid supply, effectively avoiding dry burning.
  • a fixing structure is provided on the hole wall of the liquid inlet hole 1171 of the fixing member 117, and the first base body 111 and/or the second base body 112 are fixed by the fixing structure, and the first base body 111 A gap 113 is formed between the second substrate 112 and the second substrate 112 .
  • the heating component 11 further includes a spacer 118, the spacer 118 is disposed between the second surface 1112 and the third surface 1121, and is located on the edge of the first base 111 and/or the second base 112, so that the second A base body 111 and a second base body 112 form a gap 113 (as shown in FIG. 11 a ).
  • the spacer 118 can be arranged along the circumference of the first base 111 and/or the second base 112 , that is, the spacer 118 is a ring structure, so as to prevent the aerosol-generating substrate in the gap 113 from leaking out.
  • the spacer 118 is an independently provided gasket, which is detachably connected to the first base body 111 and the second base body 112, and the gasket is a ring structure.
  • the specific operation is: forming the first microhole 1113 on the first base 111 , forming the second microhole 1123 on the second base 112 , and then disposing the gasket between the first base 111 and the second base 112 .
  • the spacer 118 can be a silicone frame or a plastic frame.
  • the spacer 118 is a support column or a support frame fixed on the second surface 1112 of the first base 111 and/or the third surface 1121 of the second base 112, and the support column or support frame is fixed or welded. It is fixed on the second surface 1112 of the first base 111 and/or the third surface 1121 of the second base 112 .
  • the specific operation is as follows: form the first microhole 1113 on the first base body 111, form the second microhole 1123 on the second base body 112, and then make the support column or the support frame and the first base body through welding or fastening. 111.
  • the second base body 112 is integrated.
  • the first base body 111 and the second base body 112 are glass plates, glass powder is coated on the edge of the first base body 111, and then the glass powder is sintered into glass with laser after the second base body 112 is covered so that the support column or support The frame is fixed to the first base body 111 and the second base body 112 .
  • the spacer 118 is a protrusion integrally formed with the first base 111 and/or the second base 112 . If the spacer 118 is a protrusion integrally formed with the first base body 111, the first microhole 1113 is formed on the first base body 111, the second microhole 1123 is formed on the second base body 112, and then the second base body 112 is overlapped. A gap 113 is formed on the protrusion. If the spacer 118 is a protrusion integrally formed with the second base body 112, the first microhole 1113 is formed on the first base body 111, the second microhole 1123 is formed on the second base body 112, and then the first base body 111 is overlapped. A gap 113 is formed on the protrusion.
  • the second surface 1112 of the first substrate 111 is etched to form a groove, the sidewall of the groove is used as a spacer 118, and the first microhole 1113 is formed on the bottom wall of the groove;
  • the third surface 1121 of the second substrate 112 is plane, the third surface 1121 of the second base 112 overlaps the side wall end surface of the groove of the second surface 1112, that is, the third surface 1121 of the second base 112 is bonded to the second surface 1112 of the first base 111,
  • the third surface 1121 cooperates with the groove to form the gap 113 . If the bottom surface of the groove is interpreted as the second surface 1112 , the sidewall of the groove can be interpreted as the protrusion of the second surface 1112 .
  • first grooves 1114 are not provided on the second surface 1112 of the first base 111 , and the third surface 1121 of the second base 112 There are also no multiple second grooves 1124 (as shown in FIG. 11 a ).
  • a plurality of first grooves 1114 are provided on the second surface 1112 of the first base 111, and/or a plurality of second grooves 1124 are provided on the third surface 1121 of the second base 112.
  • a first groove 1114, a plurality of second grooves 1124 and gaps 113 cooperate to realize lateral liquid conduction and anti-bubble (as shown in Figure 11b, Figure 11b is another gap formed between the first substrate and the second substrate Schematic).
  • FIG. 12 is a schematic structural diagram of a third embodiment of the heating component of the atomizer provided in FIG. 2 .
  • the structure of the third embodiment of the heating component is basically the same as that of the first embodiment of the heating component, except that a gap 113 is formed between the second surface 1112 of the first base 111 and the third surface 1121 of the second base 112, The gap 113 communicates with the first microhole 1113 and the second microhole 1123 .
  • the gap 113 makes the second surface 1112 and the third surface 1121 at least partially spaced apart.
  • the height of the gap 113 changes gradually; specifically, the height of the gap 123 gradually increases, or the height of the gap 123 gradually decreases and then gradually increases.
  • a gap 113 is formed between the first base body 111 and the second base body 112, which can realize lateral liquid replenishment, even if the air bubbles adhere to the fourth surface 1122 (liquid-absorbing surface) of the second base body 112, covering part of the second micropores 1123, It also does not affect the liquid supply of the first substrate 111, ensuring sufficient liquid supply and avoiding dry burning.
  • the heating element 11 is atomized, when the aerosol-generating substrate in the first micropore 1113 is consumed and needs to be replenished, gas will enter the gap 113 through the first micropore 1113 to form bubbles. If the bubble grows and blocks the first micropore The hole 1113 is close to the port of the second base body 112, and there will be a problem of insufficient liquid supply, resulting in dry burning.
  • the capillary force formed by the gap 113 is also a gradient change, so as to drive the fluid flow in the gap 113, that is, to make the air bubbles in the gap 113 flow, so that the gap
  • the air bubbles in 113 cannot be in a stable state and are stuck, thereby promoting the discharge of air bubbles from the second micropore 1123 and/or the liquid inlet 1125, and preventing the air bubbles from staying in the gap 113 to block the first micropore 1113 close to the second substrate 112. Port, to ensure sufficient liquid supply, thereby avoiding dry burning.
  • the height of the gap 113 is less than 30 ⁇ m.
  • the height of the gap 113 is greater than 30 ⁇ m, the growth of the bubbles in the vertical direction cannot be well prevented, which is not conducive to the discharge of the bubbles and hinders the liquid.
  • an included angle (as shown in FIG. 12 ) is formed between the first base body 111 and the second base body 112 , and the included angle is an acute angle, for example, the included angle is 15°-30°.
  • the gap 113 is formed between the first base body 111 and the second base body 112 through the fixing structure on the hole wall of the liquid inlet hole 1171 of the fixing member 117 .
  • a gap 113 is formed between the first base body 111 and the second base body 112 through a spacer 118 .
  • the spacer 118 is located on the edge of one end of the first base 111 and the second base 112, and the edge of the other end of the first base 111 and the second base 112 directly abuts; it may also be that the two spacers 118 are located on the first base 111 The edges and heights of the two ends of the second base body 112 are different.
  • the specific setting manner of the spacer 118 refer to the specific introduction in the second embodiment of the heating component 11 , and will not be repeated here.
  • first grooves 1114 may not be provided on the second surface 1112 of the first base 111, and/or the third groove 1114 on the second base 112
  • a plurality of second grooves 1124 may not be provided on the surface 1121 , and it is specifically designed according to requirements.
  • Fig. 13a is a structural schematic diagram of the first base viewed from the side of the atomizing surface in the fourth embodiment of the heat generating component of the atomizer provided in Fig. 2
  • Fig. 13b is the atomizer provided in Fig. 2 Schematic diagram of the structure of the first base viewed from the side of the liquid-absorbing surface in the fourth embodiment of the heat-generating component.
  • the structure of the fourth embodiment of the heating component 11 is basically the same as that of the first embodiment of the heating component 11 , the difference lies in the regularity of arrangement of the plurality of second microholes 1123 on the second substrate 112 .
  • the first surface 1111 of the first substrate 111 includes an atomization area A and a non-atomization area B, and the atomization area A includes a high temperature atomization area AA and a low temperature atomization area AB.
  • the area on the first substrate 111 capable of atomizing the aerosol-generating substrate to generate an aerosol is the atomizing area A, otherwise it is the non-atomizing area B.
  • the area on the first substrate 111 that is closer to the heating element 114 has a higher temperature, which is defined as the high-temperature atomization area AA; the area on the first substrate 111 that is relatively far from the heating element 114 has a lower temperature but is sufficient to generate aerosol Substrate atomization generates aerosol, which is defined as the low-temperature atomization area AB.
  • At least one of the second micropores 1123 corresponding to the high-temperature atomization area, the second atomization area, and the non-atomization area of the second substrate 112 is different in cross-sectional shape, pore diameter, and hole center distance, that is, the distribution density is different.
  • the dotted line pattern represents the projection of the heating element 114 on the second substrate 112, and the aperture of the second micropore 1123 corresponding to the high-temperature atomization area AA of the second substrate 112 is relative to the second substrate 112 corresponding to the low-temperature fog.
  • the second micropore 1123 in the atomization area AB has a larger aperture and/or a smaller hole center distance to ensure that the liquid supply can meet the atomization requirements; the non-atomization area (that is, the blank area in Figure 13b) does not need to set the second micropore 1123.
  • the arrangement of the second microholes 1123 of the second matrix 112 is arranged as above, which can reduce the drilling cost and increase the strength of the second matrix 112 at the same time.
  • FIG. 14 is a schematic structural diagram of a fifth embodiment of the heating component of the atomizer provided in FIG. 2 .
  • the structure of the fifth embodiment of the heating component 11 is basically the same as that of the first embodiment of the heating component 11 , except that it further includes a third base 119 .
  • the third base body 119 is disposed on a side of the second base body 112 away from the first base body 111 .
  • the third substrate 119 has a fifth surface 1191 and a sixth surface 1192 oppositely arranged, and the third substrate 119 is provided with a plurality of third micropores 1193 penetrating the fifth surface 1191 and the sixth surface 1192, the third micropores 1193 and the sixth surface 1192
  • the second micropore 1123 is in fluid communication.
  • the fifth surface 1191 of the third base 119 is attached to the fourth surface 1122 of the second base 112;
  • the ports of the three micropores 1193 away from the sixth surface 1192 communicate.
  • the exposed diameter of the second microhole 1123 corresponds to the different sizes of the high temperature atomization area, the second atomization area and the non-atomization area of the first substrate 111 .
  • the third base body 119 does not completely cover the second base body 112 , and the third base body 119 covers the area on the second base body 112 where the second microholes 1123 are provided.
  • the third base body 119 can also be applied to the second embodiment, the third embodiment, and the fourth embodiment of the heating component 11, and similar technical effects can be achieved.

Abstract

本申请公开了一种发热组件、雾化器及电子雾化装置,发热组件包括第一基体和第二基体;第一基体具有相对设置的第一表面和第二表面,第一基体上设有多个贯穿第一表面和第二表面的第一微孔;第二基体具有相对设置的第三表面和第四表面,第三表面与第二表面相对设置且至少部分间隔设置;第二基体上设有多个贯穿第三表面和第四表面的第二微孔;其中,第一微孔的孔径为1μm-100μm,第二微孔的孔径为1μm-200μm,相邻第一微孔之间的孔中心距与第一微孔的孔径的比例为3:1-1.5:1;且相邻第二微孔之间的孔中心距与相邻第一微孔之间的孔中心距的比例为1:1~3:1,且该比例不等于整数和半整数。通过上述设置,避免气泡堵塞第一微孔和/或第二微孔,保证供液充足,避免干烧。

Description

发热组件、雾化器及电子雾化装置 技术领域
本申请涉及雾化技术领域,尤其涉及一种发热组件、雾化器及电子雾化装置。
背景技术
电子雾化装置由发热体、电池和控制电路等部分组成,发热体作为电子雾化装置的核心元件,其特性决定了电子雾化装置的雾化效果和使用体验。
现有的发热体一种是棉芯发热体。棉芯发热体大多为弹簧状的金属发热丝缠绕棉绳或纤维绳的结构。待雾化的液态气溶胶生成基质被棉绳或纤维绳的两端吸取,然后传输至中心金属发热丝处加热雾化。由于棉绳或纤维绳的端部面积有限,导致气溶胶生成基质吸附、传输效率较低。另外,棉绳或纤维绳结构稳定性差,多次热循环后易出现干烧、积碳和焦糊味等现象。
现有的发热体另一种是陶瓷发热体。陶瓷发热体大多为在多孔陶瓷体表面形成金属发热膜;多孔陶瓷体起到导液、储液的作用,金属发热膜实现液态气溶胶生成基质的加热雾化。然而,由高温烧结制备的多孔陶瓷难以精确控制微孔的位置分布和尺寸精度。为了降低漏液风险,需要减小孔径、孔隙率,但为了实现充足的供液,需要增大孔径、孔隙率,二者相互矛盾。目前,在满足低漏液风险的孔径、孔隙率条件下,多孔陶瓷基体导液能力受限,在高功率条件下会出现焦糊味。
随着技术的进步,用户对电子雾化装置的雾化效果的要求越来越高,为了满足用户的需求,提供一种薄的发热体以提高供液能力。该新的发热体通常包括两层薄的基体,每层基体上均设有开孔,但是两层基体上开孔的重叠率可能与设计值存在较大的偏差,影响产品的一致性。
发明内容
本申请提供的发热组件、雾化器及电子雾化装置,解决现有技术中两层基体上开孔的重叠率与设计值存在较大的偏差以及易在吸液面粘附气泡的问题。
为了解决上述技术问题,本申请提供的第一个技术方案为:提供一种发热组件,应用于电子雾化装置,用于雾化气溶胶生成基质,包括第一基体和第二基体;
所述第一基体具有相对设置的第一表面和第二表面,所述第一表面为雾化面;所述第一基体上设有多个贯穿所述第一表面和所述第二表面的第一微孔;多个所述第一微孔呈阵列排布,用于将气溶胶生成基质从所述第二表面导引至所述第一表面;
所述第二基体具有相对设置的第三表面和第四表面,所述第四表面为吸液面;所述第三表面与所述第二表面相对设置且至少部分间隔设置;所述第二基体上设有多个贯穿所述第三表面和所述第四表面的第二微孔;多个所述第二微孔呈阵列排布,用于将所述气溶胶生成基质从所述第四表面导引至所述第三表面;
其中,所述第一微孔的孔径为1μm-100μm,所述第二微孔的孔径为1μm-200μm,相邻所述第一微孔之间的孔中心距与所述第一微孔的孔径的比例为3:1-1.5:1;且相邻所述第二微孔之间的孔中心距与相邻所述第一微孔之间的孔中心距的比例为1:1~3:1,且所述比例不等于整数和半整数。
在一实施方式中,相邻所述第二微孔之间的孔中心距与相邻所述第一微孔之间的孔中心距的比例为1:1~2:1,且所述比例不等于整数和半整数。
在一实施方式中,相邻所述第二微孔之间的孔中心距与相邻所述第一微孔之间的孔中心距的比例为1.1:1~1.45:1及1.55:1~1.95:1。
在一实施方式中,所述第一基体为致密基体,所述第一微孔为贯穿所述第一表面和所述第二表面的直通孔;
沿着所述第一基体的厚度方向,所述第一微孔的孔径相同;或沿着所述第一基体的厚度方向,所述第一微孔的孔径逐渐变大,所述第一微孔的收缩口位于所述第二表面,所述第一 微孔的扩张口位于所述第一表面;或沿着所述第一基体的厚度方向,所述第一微孔的孔径先逐渐减小再逐渐增大。
在一实施方式中,所述第二基体为致密基体,所述第二微孔为贯穿所述第三表面和所述第四表面的直通孔;
沿着所述第二基体的厚度方向,所述第二微孔的孔径相同;或沿着所述第二基体的厚度方向,所述第二微孔的孔径逐渐变大,所述第二微孔的收缩口位于所述第四表面,所述第二微孔的扩张口位于所述第三表面;或沿着所述第二基体的厚度方向,所述第二微孔的孔径先逐渐减小再逐渐增大。
在一实施方式中,还包括发热元件,所述发热元件设于所述第一表面,用于加热雾化所述气溶胶生成基质;或所述第一基体采用导电材料,用于通电发热。
在一实施方式中,所述第一基体的厚度与所述第一微孔孔径的比例为20:1~3:1。
在一实施方式中,所述第一基体的所述第二表面设有多个第一凹槽,所述第一凹槽将多个所述第一微孔远离所述第一表面的端口连通。
在一实施方式中,所述第一凹槽宽度与所述第一微孔的孔径的比例为0.5:1~1.2:1;和/或,所述第一凹槽深度与所述第一凹槽的宽度的比例为0~20。
在一实施方式中,所述第二基体的所述第三表面设有多个第二凹槽,所述第二凹槽将多个所述第二微孔远离所述第四表面的端口连通。
在一实施方式中,所述第二凹槽宽度与所述第二微孔的孔径的比例为0.5:1~1.2:1;和/或,所述第二凹槽深度与所述第二凹槽的宽度的比例为0~20。
在一实施方式中,所述第一基体的所述第二表面与所述第二基体的所述第三表面贴合设置。
在一实施方式中,所述第一基体的所述第二表面与所述第二基体的所述第三表面之间形成间隙,所述间隙连通所述第一微孔和所述第二微孔。
在一实施方式中,所述间隙的高度小于等于200μm。
在一实施方式中,沿着平行于所述第一基体的方向,所述间隙的高度相同或所述间隙的高度呈梯度变化。
在一实施方式中,所述发热组件还包括间隔件;所述间隔件设置于所述第二表面和所述第三表面之间,且位于所述第一基体和/或所述第二基体边缘,以使所述第一基体与所述第二基体间隔设置形成所述间隙。
在一实施方式中,所述发热组件还包括固定件,所述固定件具有下液孔;所述下液孔的孔壁上设置有固定结构,以固定所述第一基体和/或所述第二基体。
在一实施方式中,所述发热组件还包括第三基体,所述第三基体设于所述第二基体远离所述第一基体的一侧;所述第三基体具有相对设置的第五表面和第六表面,所述第三基体上设有多个贯穿所述第五表面和所述第六表面的第三微孔,所述第三微孔与所述第二微孔流体连通。
在一实施方式中,所述第三基体的所述第五表面与所述第二基体的所述第四表面贴合设置;和/或,所述第五表面设有多个第三凹槽,所述第三凹槽将多个所述第三微孔远离所述第六表面的端口连通。
在一实施方式中,所述雾化面包括雾化区和非雾化区,所述雾化区包括高温雾化区和低温雾化区;所述第二基体对应于所述高温雾化区、所述低温雾化区和所述非雾化区的所述第二微孔的截面形状、孔径以及孔中心距中的至少一项不同。
在一实施方式中,所述第二基体的边缘具有进液口或与其他元件配合形成进液口。
在一实施方式中,所述第二微孔的孔径大于所述第一微孔的孔径。
为了解决上述技术问题,本申请提供的第二个技术方案为:提供一种雾化器,包括储液腔和发热组件;所述储液腔用于存储液态气溶胶生成基质;所述发热组件为上述任意一项所述的发热组件,所述发热组件与所述储液腔流体连通,所述发热组件用于雾化所述气溶胶生成基质。
为了解决上述技术问题,本申请提供的第三个技术方案为:提供一种电子雾化装置,包括雾化器和主机,所述雾化器为上述所述的雾化器,所述主机用于为所述发热组件工作提供电能和控制所述发热组件雾化所述气溶胶生成基质。
本申请的有益效果:区别于现有技术,本申请公开了一种发热组件、雾化器及电子雾化装置,发热组件包括第一基体和第二基体;第一基体具有相对设置的第一表面和第二表面,第一基体上设有多个贯穿第一表面和第二表面的第一微孔;第二基体具有相对设置的第三表面和第四表面,第三表面与第二表面相对设置且至少部分间隔设置;第二基体上设有多个贯穿第三表面和第四表面的第二微孔;其中,第一微孔的孔径为1μm-100μm,第二微孔的孔径为1μm-200μm,相邻第一微孔之间的孔中心距与第一微孔的孔径的比例为3:1-1.5:1;且相邻第二微孔之间的孔中心距与相邻第一微孔之间的孔中心距的比例为1:1~3:1,且所述比例不等于整数和半整数。通过上述设置,一方面第二基体起到防止气泡长大,避免气泡堵塞第一微孔和/或第二微孔,利于降低气泡对供液的影响,保证供液充足,避免干烧;另一方面可以使第一微孔与第二微孔之间的重叠率对装配公差不敏感,保证发热组件性能在量产中的一致性。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图。
图1是本申请实施例提供的电子雾化装置的结构示意图;
图2是图1提供的电子雾化装置的雾化器的结构示意图;
图3a是图2提供雾化器的发热组件第一实施例从吸液面一侧观看的结构示意图;
图3b是图3a沿B-B线的截面结构示意图;
图4a是第一微孔与第二微孔设计的对位关系图;
图4b是实际装配过程中第一微孔与第二微孔的一种对位关系图;
图4c是实际装配过程中第一微孔与第二微孔另一种对位关系图;
图4d是实际装配过程中第一微孔与第二微孔又一种对位关系图;
图5是实际装配过程中第一微孔与第二微孔的重叠率与重叠率占比的关系图;
图6是第二微孔的孔径与相邻的第二微孔之间的孔中心距的关系图;
图7a是一实施例中所有第一微孔与所有第二微孔最小重叠率的对位关系图;
图7b是一实施例中所有第一微孔与所有第二微孔最大重叠率的对位关系图;
图7c是另一实施例中所有第一微孔与所有第二微孔最小重叠率的对位关系图;
图7d是另一实施例中所有第一微孔与所有第二微孔最大重叠率的对位关系图;
图8是图3a所示的发热组件的第一基体从雾化面一侧观看的结构示意图;
图9是第一基体的第二表面与第二基体的第三表面贴合时另一结构示意图;
图10a是图3a所示的发热组件的第一基体从第二表面一侧观看的局部结构示意图;
图10b是图3a所示的发热组件的第二基体从第三表面一侧观看的局部结构示意图;
图11a是图2提供的雾化器的发热组件第二实施例的结构示意图;
图11b是第一基体与第二基体之间形成间隙的另一结构示意图;
图12是图2提供的雾化器的发热组件第三实施例的结构示意图;
图13a是图2提供的雾化器的发热组件第四实施例中第一基体从雾化面一侧观看的结构示意图;
图13b是图2提供的雾化器的发热组件第四实施例中第一基体从吸液面一侧观看的结构示意图;
图14是图2提供的雾化器的发热组件第五实施例的结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本申请的一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
以下描述中,为了说明而不是为了限定,提出了诸如特定系统结构、接口、技术之类的具体细节,以便透彻理解本申请。
本申请中的术语“第一”、“第二”、“第三”仅用于描述目的,而不能理解为指示或暗示相 对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”、“第三”的特征可以明示或者隐含地包括至少一个所述特征。本申请的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。本申请实施例中所有方向性指示(诸如上、下、左、右、前、后……)仅用于解释在某一特定姿态(如附图所示)下各部件之间的相对位置关系、运动情况等,如果所述特定姿态发生改变时,则所述方向性指示也相应地随之改变。本申请实施例中的术语“包括”和“具有”以及它们任何变形,意图在于覆盖不排他的包含。例如包含了一系列步骤或单元的过程、方法、系统、产品或设备没有限定于已列出的步骤或单元,而是可选地还包括没有列出的步骤或单元,或可选地还包括对于这些过程、方法、产品或设备固有的其它步骤或组件。
在本文中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现所述短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。
下面结合附图和实施例对本申请进行详细的说明。
请参阅图1,图1是本申请实施例提供的电子雾化装置的结构示意图。
在本实施例中,提供一种电子雾化装置100。该电子雾化装置100可用于气溶胶生成基质的雾化。电子雾化装置100包括相互电连接的雾化器1和主机2。
其中,雾化器1用于存储气溶胶生成基质并雾化气溶胶生成基质以形成可供用户吸食的气溶胶。该雾化器1具体可用于不同的领域,比如,医疗、美容、休闲吸食等。在一具体实施例中,该雾化器1可用于电子气溶胶化装置,用于雾化气溶胶生成基质并产生气溶胶,以供抽吸者抽吸,以下实施例均以此休闲吸食为例。
雾化器1的具体结构与功能可参见以下实施例所涉及的雾化器1的具体结构与功能,且可实现相同或相似的技术效果,在此不再赘述。
主机2包括电池(图未示)和控制器(图未示)。电池用于为雾化器1的工作提供电能,以使得雾化器1能够雾化气溶胶生成基质形成气溶胶;控制器用于控制雾化器1工作。主机2还包括电池支架、气流传感器等其他元件。
雾化器1与主机2可以是一体设置,也可以是可拆卸连接,可以根据具体需要进行设计。
请参阅图2,图2是图1提供的电子雾化装置的雾化器的结构示意图。
雾化器1包括壳体10、发热组件11、雾化座12。雾化座12具有安装腔(图未标),发热组件11设于该安装腔内;发热组件11同雾化座12一起设于壳体10内。壳体10形成有出雾通道13,壳体10的内表面、出雾通道13的外表面与雾化座12的顶面配合形成储液腔14,储液腔14用于存储液态气溶胶生成基质。其中,发热组件11与主机2电连接,以雾化气溶胶生成基质生成气溶胶。
雾化座12包括上座121和下座122,上座121与下座122配合形成安装腔;发热组件11背离储液腔14的表面与安装腔的腔壁配合形成雾化腔120。上座121上设有下液通道1211;储液腔14内的气溶胶生成基质通道下液通道1211流入发热组件11,即,发热组件11与储液腔14流体连通。下座122上设有进气通道15,外界气体经进气通道15进入雾化腔120,携带发热组件11雾化好的气溶胶流至出雾通道13,用户通过出雾通道13的端口吸食气溶胶。
请参阅图3a和图3b,图3a是图2提供雾化器的发热组件第一实施例从吸液面一侧观看的结构示意图,图3b是图3a沿B-B线的截面结构示意图。
发热组件11包括第一基体111和第二基体112。
第一基体111包括相对设置的第一表面1111和第二表面1112,第一表面1111为雾化面。第一基体111上设有多个贯穿第一表面1111和第二表面1112的第一微孔1113,多个第一微孔1113呈阵列排布;第一微孔1113用于将气溶胶生成基质从第二表面1112导引至第一表面1111,即,第一微孔1113用于将气溶胶生成基质从第二表面1112导引至雾化面。
第二基体112包括相对设置的第三表面1121和第四表面1122,第四表面1122为吸液面。第二基体112上设有多个贯穿第三表面1121和第四表面1122的第二微孔1123,多个第二微孔1123呈阵列排布;第二微孔1123用于将气溶胶生成基质从第四表面1122导引至第三表面1121,即,第二微孔1123用于将气溶胶生成基质从吸液面导引至第三表面1121。
第二基体112的第三表面1121与第一基体111的第二表面1112相对设置且至少部分间 隔设置。可以理解,储液腔14内的气溶胶生成基质通过下液通道1211流至第二基体112的第四表面1122,通过第二微孔1123的毛细作用力导引至第二基体112的第三表面1121,再经第一微孔1113的毛细作用力从第一基体111的第二表面1112导引至第一表面1111;也就是说,气溶胶生成基质在重力和/或毛细作用力的作用下从吸液面流至雾化面。气溶胶生成基质在发热组件11的雾化面加热雾化生成气溶胶。其中,第一微孔1113的毛细作用力大于第二微孔1123的毛细作用力,以使气溶胶生成基质能够从吸液面流至雾化面。
通过在第二基体112靠近储液腔14的一侧设置第一基体111,第一基体111可以在一定程度上隔热,防止第二基体112上的热量传导至储液腔14,利于保证口感的一致性。雾化过程中气泡经第一基体111的第一微孔1113进入的气泡粘附在第一基体111的第二表面1112,在第一基体111的一侧设第二基体112,第二基体112起到可以防止气泡长大,避免第一基体111的第二表面1112上大面积的被气泡覆盖,即可以避免气泡堵塞第一微孔1113和/或第二微孔1123,利于降低气泡对供液的影响;同时,通过设置第二基体112,避免气泡粘附于吸液面(即第二基体112的第四表面1122),即有效防止气泡进入储液腔14,储液腔14内的气溶胶生成基质仍可以通过第二基体112的第二微孔1123进入发热组件11,从第二微孔1123流向第一微孔1113,保证供液充足。
请参阅图4a-图4d,图4a是第一微孔与第二微孔设计的对位关系图,图4b是实际装配过程中第一微孔与第二微孔的一种对位关系图,图4c是实际装配过程中第一微孔与第二微孔另一种对位关系图,图4d是实际装配过程中第一微孔与第二微孔又一种对位关系图。
本申请进一步还对第一微孔1113与第二微孔1123的尺寸大小设置进行了研究。具体地,使用第一基体111的第一微孔1113的孔径为40μm,相邻第一微孔1113之间的孔中心距为80μm,第二基体112的第二微孔1123的孔径为90μm,相邻第二微孔1123之间的孔中心距为160μm的发热组件进行实验。设计的第一微孔1113与第二微孔1123的重叠率为25%,设计的对位关系图如图4a所示,然而在实际装配过程中,由于装配公差,第一微孔1113与第二微孔1123的对位关系可能与图4a不同。例如,第一微孔1113与第二微孔1123可能的对位关系图如图4b-图4d所示,图4b所示的对位关系的重叠为23.32%,图4c所示的对位关系的重叠率为14.25%,图4d所示的对位关系的重叠率为13.19%。可以理解,图4b-图4d仅示出了实际装配过程中的部分对位关系图,并未示出所有的对位关系图。
请参阅图5,图5是实际装配过程中第一微孔与第二微孔的重叠率与重叠率占比的关系图。
对上述的第一基体111和第二基体112(第一微孔1113的孔径为40μm,相邻第一微孔1113之间的孔中心距为80μm,第二基体112的第二微孔1123的孔径为90μm,相邻第二微孔1123之间的孔中心距为160μm)进行大量装配实验,得到图5所示的实际装配过程中第一微孔与第二微孔的重叠率与重叠率占比的关系图,横坐标表示的是第一微孔与第二微孔的重叠率,纵坐标表示的是在大量装配实验中某一重叠率的占比。由图5可知,装配公差对第一微孔1113与第二微孔1123之间的重叠率的波动影响较大,即发热组件11应用于量产时的一致性较差。本申请中,第一微孔1113与第二微孔1123的重叠率指的是所有第一微孔1113与所有第二微孔1123之间的重叠面积与所有第一微孔1113的面积之比。
可以理解,第一微孔1113与第二微孔1123之间的重叠率大小直接影响着发热组件11的供液能力,根据发热组件11的供液能力需求不同,可以预先设计第一微孔1113与第二微孔1123之间的重叠率,若装配后的发热组件11得到的第一微孔1113与第二微孔1123之间的重叠率与设计值偏差太大,可能使发热组件11的雾化能力过强或过若,影响发热组件11的性能,以及量产产品的一致性。
请参阅图6,图6是第二微孔的孔径与相邻的第二微孔之间的孔中心距的关系图。
以得到图5数据结果的方式,可以得到固定的第一微孔1113孔径、相邻第一微孔1113之间的孔中心距、第二微孔1123的孔径及相邻第二微孔1123之间的孔中心距在大量装配中的重叠率的最大值、最小值和中位值。当第一微孔1113孔径为40μm、相邻第一微孔1113之间的孔中心距为80μm时,改变第二微孔1123的孔径及相邻第二微孔1123之间的孔中心距进行实验,实验结果如图6所示。
有图6可知,当相邻第二微孔1123之间的孔中心距一定时,随着第二微孔1123孔径的增大,第一微孔1113与第二微孔1123的重叠率增大。当第二微孔1123孔径一定时,随着相邻第二微孔1123之间的孔中心距增大,第一微孔1113与第二微孔1123的重叠率减小。
当相邻第一微孔1113之间的孔中心距一定的前提下,相邻第二微孔1123之间的孔中心距是相邻第一微孔1113之间孔中心距的整数倍或半整数倍时,第二微孔1123的孔径较小时,可能实现较高的重叠率,也有可能重叠率为零(即第二基体112将多个第一微孔1113堵塞),阻碍供液。因此,相邻第二微孔1123之间的孔中心距与相邻第一微孔1113之间的孔中心距的比例不等于整数和半整数,例如,不等于2或1.5。
请参阅图7a-7d,图7a是一实施例中所有第一微孔与所有第二微孔最小重叠率的对位关系图,图7b是一实施例中所有第一微孔与所有第二微孔最大重叠率的对位关系图,图7c是另一实施例中所有第一微孔与所有第二微孔最小重叠率的对位关系图,图7d是另一实施例中所有第一微孔与所有第二微孔最大重叠率的对位关系图。
示例性的,第一基体111的第一微孔1113的孔径为40μm,相邻第一微孔1113之间的孔中心距为80μm,第二基体112的第二微孔1123的孔径为110μm,相邻第二微孔1123之间的孔中心距为130μm,所有第一微孔1113与所有第二微孔1123的最小重叠率为56.21%,对应的对位图如图7a所示;所有第一微孔1113与所有第二微孔1123的最大重叠率为56.29%,对应的对位图如图7b所示。由图7a和图7b,所有第一微孔1113与所有第二微孔1123的重叠率分布比较集中,发热组件11量产具有较好的一致性。
再示例性的,第一基体111的第一微孔1113的孔径为40μm,相邻第一微孔1113之间的孔中心距为80μm,第二基体112的第二微孔1123的孔径为120μm,相邻第二微孔1123之间的孔中心距为140μm,所有第一微孔1113与所有第二微孔1123的最小重叠率为57.58%,对应的对位图如图7c所示;所有第一微孔1113与所有第二微孔1123的最大重叠率为58.03%,对应的对位图如图7d所示。由图7c和图7d,所有第一微孔1113与所有第二微孔1123的重叠率分布比较集中,发热组件11量产具有较好的一致性。
综上,相邻第二微孔1123之间的孔中心距与相邻第一微孔1113之间的孔中心距的比例做如上设置,可以保证发热组件11具有较好的一致性。
鉴于此,本申请通过使第一微孔1113的孔径为1μm-100μm,第二微孔1123的孔径为1μm-200μm,相邻第一微孔1113之间的孔中心距与第一微孔1113的孔径的比例为3:1-1.5:1,且相邻第二微孔1123之间的孔中心距与相邻第一微孔1113之间的孔中心距的比例为1:1~3:1,且该比例不等于整数和半整数,在保证供液量的前提下,尽可能的减小了装配公差对所有第一微孔1113与所有第二微孔1123之间的重叠率的波动影响,减小了装配后第一微孔1113与第二微孔1123之间的重叠率与设计值之间的偏差,保证发热组件11的性能,提高发热组件11在量产中的一致性。
第一基体111上第一微孔1113的孔径为1μm-100μm。第一微孔1113的孔径小于1μm时,无法满足供液需求,导致气溶胶量下降;第一微孔1113的孔径大于100μm时,气溶胶生成基质容易从第一微孔1113内流出造成漏液,导致雾化效率下降。可选的,第一微孔1113的孔径为20μm-50μm。可以理解的是,第一基体111的孔径根据实际需要进行选择。
第二基体112上第二微孔1123的孔径为1μm-200μm。第二微孔1123的孔径小于1μm时,无法满足供液需求,导致气溶胶量下降;第二微孔1123的孔径大于200μm时,将失去防止气泡长大的功能。可以理解的是,第二微孔1123的孔径根据实际需要进行选择。
可选的,第二微孔1123的孔径大于第一微孔1113的孔径,以使第一微孔1113的毛细作用力大于第二微孔1123的毛细作用力,气溶胶生成基质能够从第一基体111的吸液面流至第二基体112的雾化面。由于第二微孔1123也具有毛细作用力,出雾通道13的端口朝下使用时,可以防止液体回流,防止供液不足。
相邻第一微孔1113之间的孔中心距与第一微孔1113的孔径的比例为3:1-1.5:1,以使第一基体111上的第一微孔1113在满足供液能力的前提下,尽可能提升第一基体111的强度;可选的,相邻第一微孔1113之间的孔中心距与第一微孔1113的孔径的比例为3:1-2:1;进一步可选的,相邻第一微孔1113之间的孔中心距与第一微孔1113的孔径的比例为3:1-2.5:1。
相邻第二微孔1123之间的孔中心距与相邻第一微孔1113之间的孔中心距的比例为1:1~3:1,该比例小于1:1时,影响供液能力,该比例大于3:1,会存在卡气泡的问题。
需要说明的是,将第一微孔1113的孔径、第二微孔1123的孔径、相邻第一微孔1113之间的孔中心距与第一微孔1113的孔径的比例做如上设置,以保证供液充足。当第一微孔1113的孔径一定、相邻第一微孔1113之间的孔中心距一定的前提下,通过调整第二微孔1123 的孔径和/或相邻第二微孔1123之间的孔中心距,实现对第一微孔1113与第二微孔1123的重叠率的调节。重叠率分布非常集中,即在装配公差范围内重叠率的波动范围较窄时,发热组件11的一致性较好。第一基体111的第一微孔1113和第二基体112的第二微孔1123的尺寸做如上设置,使得重叠率的分布比较集中,且接近于设计值,保证了发热组件11的性能和装配的一致性。
所有第一微孔1113与所有第二微孔1123的重叠率设计值可以为20%至80%,具体根据供液需求进行设计;可选的,重叠率设计值为30%至50%。在装配公差范围内重叠率的波动范围在10%以内,可以保证发热组件11具有较好的一致性;可选的,在装配公差范围内重叠率的波动范围在5%以内。
在一实施方式中,相邻第二微孔1123之间的孔中心距与相邻第一微孔1113之间的孔中心距的比例为1:1~2:1,进一步集中了重叠率的分布,重叠率对装配公差不敏感,从而利于装配的一致性。
在一实施方式中,相邻第二微孔1123之间的孔中心距与相邻第一微孔1113之间的孔中心距的比例为1.1:1~1.45:1及1.55:1~1.95:1,进一步集中了重叠率的分布,重叠率对装配公差不敏感,从而利于装配的一致性。
在本实施例中,第一基体111可以是多孔基体,例如,多孔陶瓷、棉、石英砂芯、泡沫结构的材料;第一基体111本身具有的多个微孔为第一微孔1113,第一微孔1113为无序通孔。第一基体111也可以是致密基体,例如,石英、玻璃、致密陶瓷或硅;第一微孔1113为贯穿第一表面1111和第二表面1112的直通孔,第一微孔1113为有序通孔。当第一基体111的材质为玻璃时,可以为普通玻璃、石英玻璃、硼硅玻璃、光敏铝硅酸锂玻璃中的一种。
第二基体112可以是多孔基体,例如,多孔陶瓷、棉、石英砂芯、泡沫结构的材料;第二基体112本身具有的多个微孔为第二微孔1123,第二微孔1123为无序通孔。第二基体112也可以是致密基体,例如,石英、玻璃、致密陶瓷或硅;第二微孔1123为贯穿第三表面1121和第四表面1122的直通孔,第二微孔1123为有序通孔。当第二基体112的材质为玻璃时,可以为普通玻璃、石英玻璃、硼硅玻璃、光敏铝硅酸锂玻璃中的一种。
第一基体111和第二基体112的材料可以相同,也可以不同。第一基体111和第二基体112之间可以任意组合,例如,第一基体111为多孔基体,第二基体112为致密基体;再例如,第一基体111为多孔基体,第二基体112为多孔陶瓷;再例如,第一基体111为致密基体,第二基体112为多孔基体;再例如,第一基体111为致密基体,第二基体112为致密基体。
第一基体111和第二基体112均为片状,可以理解,片状是相对于块状体来说的,片状的长度与厚度的比值相对于块状体的长度与厚度的比值要大。第一基体111、第二基体112可以为平板状、弧状、筒状等,具体根据需要进行设计,雾化器1的其他结构与第一基体111、第二基体112的形状配合设置。
第一基体111的厚度为0.1mm-1mm。其中,第一基体111的厚度为第一表面1111与第二表面1112之间的距离。第一基体111的厚度大于1mm时,无法满足供液需求,导致气溶胶量下降,且造成的热损失多,设置第一微孔1113的成本高;第一基体111的厚度小于0.1mm时,无法保证第一基体111的强度,不利于提高电子雾化装置的性能。可选的,第一基体111的厚度为0.2mm-0.5mm。可以理解的是,第一基体111的厚度根据实际需要进行选择。
第一基体111的厚度与第一微孔1113的孔径的比例为20:1-3:1,以提升供液能力。当第一基体111的厚度与第一微孔1113的孔径的比例大于20:1时,通过第一微孔1113的毛细作用力供给的气溶胶生成基质难以满足雾化需求,不仅容易导致干烧,且单次雾化产生的气溶胶量下降;当第一基体111的厚度与第一微孔1113的孔径的比例小于3:1时,气溶胶生成基质容易从第一微孔1113内流出造成浪费,导致雾化效率下降,进而使得总气溶胶量降低。可选的,第一基体111的厚度与第一微孔1113的孔径的比例为15:1-5:1。
第二基体112的厚度为0.1mm-1mm。其中,第二基体112的厚度为第三表面1121与第四表面1122之间的距离。第二基体112的厚度大于1mm时,无法满足供液需求,导致气溶胶量下降,且造成的热损失多,设置第二微孔1123的成本高;第二基体112的厚度小于0.1mm时,无法保证第二基体112的强度,不利于提高电子雾化装置的性能。可选的,第二基体112的厚度为0.2mm-0.5mm。可以理解的是,第二基体112的厚度根据实际需要进行选择。
第二基体112的厚度与第二微孔1123孔径的比例为20:1-3:1,以提升供液能力。当第 二基体112的厚度与第二微孔1123的孔径的比例大于20:1时,通过第二微孔1123的毛细作用力供给的气溶胶生成基质难以满足雾化需求,不仅容易导致干烧,且单次雾化产生的气溶胶量下降;当第二基体112的厚度与第二微孔1123的孔径的比例小于3:1时,气溶胶生成基质容易从第二微孔1123内流出造成浪费,导致雾化效率下降,进而使得总气溶胶量降低。可选的,第二基体112厚度与第二微孔1123孔径的比例为15:1-5:1。
相邻第二微孔1123之间的孔中心距与第二微孔1123的孔径的比例为3:1-1:1,以使第二基体112上的第二微孔1123在满足供液能力的前提下,尽可能提升第二基体112的强度;可选的,相邻第二微孔1123之间的孔中心距与第二微孔1123的孔径的比例为2:1-1.5:1;进一步可选的,相邻第二微孔1123之间的孔中心距与第二微孔1123的孔径的比例为1.5:1-1:1。
在一实施方式中,多个第一微孔1113呈二维阵列排布。即,第一基体111上设有多行第一微孔1113和多列第一微孔1113;每行设有多个第一微孔1113,相邻的第一微孔1113之间的距离相等;每列设有多个第一微孔1113,相邻的第一微孔1113之间的距离相等。
在一实施方式中,沿着第一基体111的厚度方向,第一微孔1113的孔径相同(如图3b所示)。
在一实施方式中,沿着第一基体111的厚度方向,第一微孔1113的孔径逐渐变大,第一微孔1113的收缩口位于第二表面1112,第一微孔1113的扩张口位于第一表面1111(即雾化面),利于从第二微孔1123流出的气溶胶生成基质经第一微孔1113流至雾化面。此时,上述的第一微孔1113的孔径指的是第一微孔1113收缩口的孔径。示例性的,第一微孔1113为锥形孔。
在一实施方式中,沿着第一基体111的厚度方向,第一微孔1113的孔径先逐渐减小再逐渐增大,即,第一微孔1113的两端宽中间窄。示例性的,第一微孔1113的形状为腰鼓型。
在一实施方式中,多个第二微孔1123呈二维阵列排布。即,第二基体112上设有多行第二微孔1123和多列第二微孔1123;每行设有多个第二微孔1123,相邻的第二微孔1123之间的距离相等;每列设有多个第二微孔1123,相邻的第二微孔1123之间的距离相等。
在一实施方式中,沿着第二基体112的厚度方向,第二微孔1123的孔径相同(如图3b所示)。
在一实施方式中,沿着第二基体112的厚度方向,第二微孔1123的孔径逐渐变大,第二微孔1123的收缩口位于第四表面1122(即吸液面),第二微孔1123的扩张口位于第三表面1121,可以保证第二微孔1123下液稳定;同时可以使气溶胶生成基质在第二微孔1123的扩张口形成向第一基体111凸出的液面,进而使得气溶胶生成基质更易接触到第一基体111的表面,从而加快导液速度;且可以防止气溶胶生成基质回流至储液腔14,保证抽吸结束后,气体不会进入储液腔14。此时,上述的第二微孔1123的孔径指的是第二微孔1123收缩口的孔径。示例性的,第二微孔1123为锥形孔。
在一实施方式中,沿着第二基体112的厚度方向,第二微孔1123的孔径先逐渐减小再逐渐增大,即,第二微孔1123的两端宽中间窄。示例性的,第二微孔1123的形状为腰鼓型。
请参阅图8,图8是图3a所示的发热组件的第一基体从雾化面一侧观看的结构示意图。
在本实施例中,发热组件11还包括发热元件114、正电极115和负电极116,发热元件114的两端分别与正电极115、负电极116电连接。发热元件114设于第一基体111的第一表面1111,以雾化气溶胶生成基质生成气溶胶。正电极115和负电极116均设置于第一基体111的第一表面1111上,以便于与主机2电连接。发热元件114可以是发热片、发热膜、发热网等,能够加热雾化气溶胶生成基质即可。在另一实施方式中,发热元件114可以埋设于第一基体111的内部。在又一实施例中,第一基体111采用导电材料,用于通电发热,即,第一基体111在导液的同时雾化。
具体地,发热元件114为条状;具体地,发热元件114多次弯折形成多个相互平行的延伸部1141,发热元件114还包括连接相邻的两个延伸部1141的连接部1142,延伸部1141沿着正电极115向负电极116靠近的方向延伸(如图8所示)。
第二基体112在第一基体111上的投影完全覆盖发热元件114,以保证供液速度能够满足发热元件114的雾化速度,实现较好的雾化效果。
继续参阅图3a,第一基体111的第二表面1112与第二基体112的第三表面1121贴合设置;第一基体111的第二表面1112设有多个第一凹槽1114,第一凹槽1114将多个第一微孔1113远离第一表面1111的端口连通;第二基体112的第三表面1121设有多个第二凹槽1124, 第二凹槽1124将多个第二微孔1123远离第四表面1122的端口连通;第一凹槽1114和第二凹槽1124使得第二表面1112与第三表面1121之间至少部分间隔设置。可以理解,在其他实施例中,可以仅在第一基体111的第二表面1112设有多个第一凹槽1114,而第二基体112的第三表面1121未设第二凹槽1124,第三表面1121为平面,第一凹槽1114使得第二表面1112与第三表面1121之间至少部分间隔设置(如图9所示,图9是第一基体的第二表面与第二基体的第三表面贴合时另一结构示意图);也可以仅在第二基体112的第三表面1121设有多个第二凹槽1124,而第一基体111的第二表面1112未设第一凹槽1114,第二表面1112为平面,第二凹槽1124使得第二表面1112与第三表面1121之间至少部分间隔设置。
请参阅图10a,图10a是图3a所示的发热组件的第一基体从第二表面一侧观看的局部结构示意图。
在本实施例中,多个第一凹槽1114包括多个沿第一方向延伸的第一子槽1114a和多个沿第二方向延伸的第二子槽1114b。第一子槽1114a与第二子槽1114b交叉设置。可选的,第一方向与第二方向垂直。需要说明的是,一个第一子槽1114a即是一个第一凹槽1114,一个第二子槽1114b即是一个第一凹槽1114,命名第一子槽1114a和第二子槽1114b只是为了便于描述。
第一基体111的第二表面1112与第二基体112的第三表面1121贴合设置。通过在第二表面1112设置相互交叉的第一子槽1114a和第二子槽1114b,能够避免第二基体112将第一基体111上的第一微孔1113覆盖,利于提高重叠率,保证气溶胶生成基质能够流至雾化面,避免干烧。当第二基体112上部分第二微孔1123靠近储液腔14的端口堵塞,由于第一子槽1114a和第二子槽1114b将多个第一微孔1113连通,气溶胶生成基质可以横向流动,被堵塞的第二微孔1123对应的第一微孔1113可以通过横向流动的气溶胶生成基质继续向其对应的雾化面区域进行供液,进一步避免了干烧。其中,横向是指与第一微孔1113的延伸方向不平行的方向,例如垂直于第一微孔1113中轴线的方向。
多个第一微孔1113呈阵列分布,每个第一子槽1114a对应一行或多行第一微孔1113,每个第二子槽1114b对应一列或多列第一微孔1113,具体根据需要进行设计。在本实施例中,每个第一子槽1114a对应一行第一微孔1113,每个第二子槽1114b对应一列第一微孔1113(如图10a所示)。
可以理解,在其他实施例中,也可以仅设置沿第一方向延伸的多个第一凹槽1114或仅设置沿第二方向延伸的多个第一凹槽1114,即,仅在一个方向连通相邻的第一微孔1113。沿第一方向延伸的第一凹槽1114和/或沿第二方向延伸的第一凹槽1114具有毛细作用,可以在横向导流气溶胶生成基质,使得气溶胶生成基质均匀进入多个第一微孔1113,从而起到横向补液作用。
可选的,第一凹槽1114的宽度与第一微孔1113的孔径的比例为0.5:1~1.2:1。在一具体实施方式中,第一凹槽1114的宽度与第一微孔1113的孔径的比例为0.9:1~1.1:1。
可选的,第一凹槽1114的深度与宽度的比值为0~20;当第一凹槽1114的深度与宽度的比值大于20时,第一凹槽1114所具有的毛细作用力无法实现较好的横向补液效果。在一具体实施方式中,第一凹槽1114的深度与宽度的比值为1~5。
请参阅图10b,图10b是图3a所示的发热组件的第二基体从第三表面一侧观看的局部结构示意图。
在本实施例中,多个第二凹槽1124包括多个沿第三方向延伸的第三子槽1124a和多个沿第四方向延伸的第四子槽1124b。第三子槽1124a与第四子槽1124b交叉设置。可选的,第三方向与第四方向垂直。需要说明的是,一个第三子槽1124a即是一个第二凹槽1124,一个第四子槽1124b即是一个第二凹槽1124,命名第三子槽1124a和第四子槽1124b只是为了便于描述。
第一基体111的第二表面1112与第二基体112的第三表面1121贴合设置。通过在第三表面1121设置相互交叉的第三子槽1124a和第四子槽1124b。当第二基体112上部分第二微孔1123靠近储液腔14的端口堵塞,由于第三子槽1124a和第四子槽1124b将多个第二微孔1123连通,气溶胶生成基质可以横向流动,被堵塞的第二微孔1123通过横向流动的气溶胶生成基质仍然可以向其对应第一微孔1113进行供液,进一步避免了干烧。其中,横向是指与第二微孔1123的延伸方向不平行的方向,例如垂直于第二微孔1123中轴线的方向。
多个第二微孔1123呈阵列分布,每个第三子槽1124a对应一行或多行第二微孔1123, 每个第四子槽1124b对应一列或多列第二微孔1123,具体根据需要进行设计。在本实施例中,每个第三子槽1124a对应一行第四子槽1124b,每个第四子槽1124b对应一列第四子槽1124b(如图10b所示)。
可以理解,在其他实施例中,也可以仅设置沿第三方向延伸的多个第二凹槽1124或仅设置沿第四方向延伸的多个第二凹槽1124,即,仅在一个方向连通相邻的第二微孔1123。沿第三方向延伸的第二凹槽1124和/或沿第四方向延伸的第二凹槽1124具有毛细作用,可以在横向导流气溶胶生成基质,使得气溶胶生成基质均匀进入多个第一微孔1113,从而起到横向补液作用。
可选的,第二凹槽1124的宽度与第二微孔1123的孔径的比例为0.5:1~1.2:1。在一具体实施方式中,第二凹槽1124的宽度与第二微孔1123的孔径的比例为0.9:1~1.1:1。
可选的,第二凹槽1124的深度与宽度的比值为0~20;当第二凹槽1124的深度与宽度的比值大于20时,第二凹槽1124所具有的毛细作用力无法实现较好的横向补液效果。在一具体实施方式中,第二凹槽1124的深度与宽度的比值为1~5。
继续参阅图3a和图3b,在本实施例中,发热组件11还包括固定件117,固定件117具有进液孔1171。
进液孔1171通过下液通道1211与储液腔14流体连通。第一基体111和/或第二基体112嵌设于进液孔1171中,即,固定件117用于固定第一基体111和/或第二基体112的边缘。当固定件117包覆第一基体111的周边时,固定件117并未遮挡发热元件114,进液孔1171能够使发热元件114完全暴露。可选的,进液孔1171的孔壁具有固定结构(未图示),第一基体111和/或第二基体112的边缘嵌设于固定结构中。可选的,固定件117具有密封功能,固定件117的材料为硅胶或氟橡胶。
第二基体112的边缘具有进液口1125或与其他元件配合形成进液口1125。
可选的,第二基体112的边缘设置有通孔(图未示)或缺口(图未示)形成进液口1125,第一基体111横跨整个进液孔1171。也就是说,第二基体112的边缘具有进液口1125。
可选的,第二基体112至少部分边缘与进液孔1171的孔壁间隔设置形成进液口1125,第一基体111横跨整个进液孔1171;例如,第二基体112相对的两条长边分别与进液孔1171的孔壁间隔设置形成两个对称设置的进液口1125(如图3a所示)。也就是说,第二基体112的边缘与固定件117配合形成进液口1125。
进液口1125在第一基体111的雾化面上的投影与发热元件114错位设置。通过在第二基体112上设置进液口1125,不仅可以通过进液口1125进行补液,还可以通过进液口1125排除气泡,避免气泡进入储液腔14对供液的影响,进而避免干烧现象。
请参阅图11a,图11a是图2提供的雾化器的发热组件第二实施例的结构示意图。
发热组件11第二实施例的结构与发热组件11第一实施例的结构基本相同,不同之处在于:第一基体111的第二表面1112与第二基体112的第三表面1121之间形成间隙113,间隙113连通第一微孔1113和第二微孔1123。间隙113使第二表面1112与第三表面1121至少部分间隔设置。
在本实施例中,沿着平行于第一基体111的方向,间隙113的高度相同。也就是说,第一基体111与第二基体112平行设置。
间隙113的高度小于等于200μm。间隙113的高度为第二表面1112与第三表面1121之间的距离。当间隙113的高度大于200μm,存在从第一微孔1113和/或第二微孔1123漏液的风险,且存在气泡横向合并长大的风险。当间隙113的高度过小,间隙113无法很好的实现排除经第一微孔1113进入的气泡。在一具体实施方式中,间隙113的高度小于等于50μm。
通过设置间隙113,可以实现横向补液,即使气泡粘附在第二基体112的第四表面1122(即吸液面)上,覆盖了部分第二微孔1123,也不影响向第一基体111的供液。进一步,间隙113的高度设置为上述范围限缩了气泡长大的范围,比较难形成脱离第一微孔1113的气泡,气泡塌缩时从雾化面排出,从而防止大气泡附着在第二基体112的吸液面上影响供液,有效避免干烧。
在一实施方式中,发热组件11中通过在固定件117的进液孔1171的孔壁上设固定结构,通过固定结构固定第一基体111和/或第二基体112,且使第一基体111和第二基体112之间形成间隙113。
在一实施方式中,发热组件11还包括间隔件118,间隔件118设于第二表面1112和第三表面1121之间,且位于第一基体111和/或第二基体112边缘,以使第一基体111与第二基体112形成间隙113(如图11a所示)。间隔件118可以沿着第一基体111和/或第二基体112的周向设置,即间隔件118为环状结构,以避免间隙113中的气溶胶生成基质漏出。间隔件118也可以为多个且沿着第一基体111和第二基体112的周向间隔设置,通过具有密封作用的固定件117密封第一基体111和第二基体112的周向。
可选的,间隔件118为独立设置的垫片,垫片与第一基体111、第二基体112为可拆卸连接,垫片为环状结构。具体操作为:在第一基体111上形成第一微孔1113,在第二基体112上形成第二微孔1123,然后将垫片设置于第一基体111与第二基体112之间。例如,间隔件118可以为硅胶框或塑胶框。
可选的,间隔件118为固定在第一基体111的第二表面1112和/或第二基体112的第三表面1121的支撑柱或支撑框,支撑柱或支撑框通过卡固或焊接的方式固定于第一基体111的第二表面1112和/或第二基体112第三表面1121。具体操作为:在第一基体111上形成第一微孔1113,在第二基体112上形成第二微孔1123,然后将通过焊接或卡固的方式,使支撑柱或支撑框与第一基体111、第二基体112成一体。例如,第一基体111和第二基体112为玻璃板,在第一基体111边缘涂敷玻璃粉,其后在盖上第二基体112后用激光将玻璃粉烧结为玻璃以将支撑柱或支撑框与第一基体111、第二基体112固定。
可选的,间隔件118为与第一基体111和/或第二基体112一体成型的凸起。若间隔件118为与第一基体111一体成型的凸起,在第一基体111上形成第一微孔1113,在第二基体112上形成第二微孔1123,然后将第二基体112搭接于凸起上以形成间隙113。若间隔件118为与第二基体112一体成型的凸起,在第一基体111上形成第一微孔1113,在第二基体112上形成第二微孔1123,然后将第一基体111搭接于凸起上以形成间隙113。例如,在第一基体111的第二表面1112蚀刻形成凹槽,凹槽的侧壁作为间隔件118,第一微孔1113形成于凹槽的底壁;第二基体112的第三表面1121为平面,第二基体112的第三表面1121搭接于第二表面1112的凹槽的侧壁端面上,即第二基体112的第三表面1121与第一基体111的第二表面1112贴合,第三表面1121与凹槽配合形成间隙113。如果将凹槽的底面解释为第二表面1112,则凹槽的侧壁可以解释为第二表面1112的凸起。
在本实施例中,由于间隙113可以起到横向导液的作用,在第一基体111的第二表面1112上并未设置多个第一凹槽1114,在第二基体112的第三表面1121上也并未设置多个第二凹槽1124(如图11a所示)。在其他实施例中,在第一基体111的第二表面1112上设置多个第一凹槽1114,和/或在第二基体112的第三表面1121上设置多个第二凹槽1124,多个第一凹槽1114、多个第二凹槽1124和间隙113配合实现横向导液,防卡泡(如图11b所示,图11b是第一基体与第二基体之间形成间隙的另一结构示意图)。
请参阅图12,图12是图2提供的雾化器的发热组件第三实施例的结构示意图。
发热组件第三实施例的结构与发热组件第一实施例的结构基本相同,不同之处在于:第一基体111的第二表面1112与第二基体112的第三表面1121之间形成间隙113,间隙113连通第一微孔1113和第二微孔1123。间隙113使第二表面1112与第三表面1121至少部分间隔设置。
在本实施例中,沿着平行于第一基体111的方向,间隙113的高度呈梯度变化;具体地,间隙123的高度逐渐增大,或间隙123的高度逐渐减小后逐渐增大。
第一基体111与第二基体112之间形成间隙113,可以实现横向补液,即使气泡粘附在第二基体112的第四表面1122(吸液面)上,覆盖了部分第二微孔1123,也不影响第一基体111的供液,保证供液充足,避免了干烧。发热组件11在雾化时,第一微孔1113内的气溶胶生成基质消耗完待补充的过程中,会有气体通过第一微孔1113进入间隙113形成气泡,若气泡长大堵塞第一微孔1113靠近第二基体112的端口,会出现供液不足的问题,从而造成干烧。本申请实施例通过将间隙113的高度设置为梯度变化的,使得间隙113形成的毛细作用力也呈梯度变化,以带动间隙113内的流体流动,即,使间隙113内的气泡流动起来,使得间隙113内的气泡不能处于稳定状态而被卡住,从而促进气泡从第二微孔1123和/或进液口1125排出,避免气泡滞留在间隙113中堵塞第一微孔1113靠近第二基体112的端口,保证供液充足,进而避免干烧。
在一实施方式中,间隙113的高度小于30μm。当间隙113的高度大于30μm,不能很 好的防止气泡在垂直方向上的长大,不利于排出气泡,阻碍下液。
在一实施方式中,第一基体111与第二基体112之间形成夹角(如图12所示),夹角为锐角,例如夹角为15度-30度。
可选的,第一基体111和第二基体112通过固定件117的进液孔1171的孔壁上的固定结构形成间隙113。
可选的,第一基体111和第二基体112之间通过间隔件118形成间隙113。可以是间隔件118位于第一基体111和第二基体112一端的边缘,第一基体111和第二基体112另一端的边缘直接抵接;也可以是两个间隔件118分别位于第一基体111和第二基体112的两端的边缘且高度不同。间隔件118的具体设置方式可参见发热组件11第二实施例中的具体介绍,不再赘述。
需要说明的是,由于间隙113可以起到横向导液的作用,在第一基体111的第二表面1112上可以不设置多个第一凹槽1114,和/或在第二基体112的第三表面1121上可以不设置多个第二凹槽1124,具体根据需要进行设计。
请参阅图13a和图13b,图13a是图2提供的雾化器的发热组件第四实施例中第一基体从雾化面一侧观看的结构示意图,图13b是图2提供的雾化器的发热组件第四实施例中第一基体从吸液面一侧观看的结构示意图。
发热组件11第四实施例的结构与发热组件11第一实施例的结构基本相同,不同之处在于:第二基体112上多个第二微孔1123的排布规律。
在本实施例中,第一基体111的第一表面1111,即雾化面,包括雾化区A和非雾化区B,雾化区A包括高温雾化区AA和低温雾化区AB。第一基体111上能够雾化气溶胶生成基质生成气溶胶的区域为雾化区A,否则为非雾化区B。第一基体111上距发热元件114较近的区域,温度较高,定义为高温雾化区AA;第一基体111上距发热元件114相对较远的区域,温度较低但足以将气溶胶生成基质雾化生成气溶胶,定义为低温雾化区AB。
第二基体112对应于高温雾化区、第二雾化区和非雾化区的第二微孔1123的截面形状、孔径以及孔中心距中的至少一项不同,即,分布密度不同。如图13b所示,虚线图案表示的是发热元件114在第二基体112上的投影,第二基体112对应高温雾化区AA的第二微孔1123的孔径相对于第二基体112对应低温雾化区AB的第二微孔1123的孔径较大和/或孔中心距较小,保证供液能够满足雾化需求;非雾化区(即图13b中的留白区)无需设置第二微孔1123。
第二基体112的第二微孔1123的排布做如上设置,可以降低打孔成本,同时可以提高第二基体112的强度。
请参阅图14,图14是图2提供的雾化器的发热组件第五实施例的结构示意图。
发热组件11第五实施例的结构与发热组件11第一实施例的结构基本相同,不同之处在于:还包括第三基体119。
第三基体119设于第二基体112远离第一基体111的一侧。第三基体119具有相对设置的第五表面1191和第六表面1192,第三基体上119设有多个贯穿第五表面1191和第六表面1192的第三微孔1193,第三微孔1193与第二微孔1123流体连通。
第三基体119的第五表面1191与第二基体112的第四表面1122贴合设置;和/或,第五表面1191设有多个第三凹槽1194,第三凹槽1194将多个第三微孔1193远离第六表面1192的端口连通。第三凹槽1194的具体设置方式及其可以实现的技术效果可参见第二基体112上的第二凹槽1124,不再赘述。
通过对第三基体119的形状、第三微孔1193的孔径、相邻第三微孔1193之间的孔中心距进行设计,以使第三基体119设于第二基体112的表面时,第三微孔1193与第二微孔1123的重叠后使第二微孔1123露出的孔径对应于第一基体111的高温雾化区、第二雾化区和非雾化区的尺寸不同。
可选的,第三基体119并未将第二基体112完全覆盖,且第三基体119覆盖第二基体112上设有第二微孔1123的区域。
通过对第一微孔1113、第二微孔1123、第三微孔1193的重叠率的设计,对于第一基体111,不同区域的供液能力和防气泡堵塞的能力不同。
可以理解,第三基体119可以也应用于发热组件11的第二实施例、第三实施例、第四实施例,可以实现类似的技术效果。
以上仅为本申请的实施方式,并非因此限制本申请的专利范围,凡是利用本申请说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本申请的专利保护范围内。

Claims (24)

  1. 一种发热组件,应用于电子雾化装置,用于雾化气溶胶生成基质,其中,包括:
    第一基体,具有相对设置的第一表面和第二表面,所述第一表面为雾化面;所述第一基体上设有多个贯穿所述第一表面和所述第二表面的第一微孔;多个所述第一微孔呈阵列排布,用于将气溶胶生成基质从所述第二表面导引至所述第一表面;
    第二基体,具有相对设置的第三表面和第四表面,所述第四表面为吸液面;所述第三表面与所述第二表面相对设置且至少部分间隔设置;所述第二基体上设有多个贯穿所述第三表面和所述第四表面的第二微孔;多个所述第二微孔呈阵列排布,用于将所述气溶胶生成基质从所述第四表面导引至所述第三表面;
    其中,所述第一微孔的孔径为1μm-100μm,所述第二微孔的孔径为1μm-200μm,相邻所述第一微孔之间的孔中心距与所述第一微孔的孔径的比例为3:1-1.5:1;且相邻所述第二微孔之间的孔中心距与相邻所述第一微孔之间的孔中心距的比例为1:1~3:1,且所述比例不等于整数和半整数。
  2. 根据权利要求1所述的发热组件,其中,相邻所述第二微孔之间的孔中心距与相邻所述第一微孔之间的孔中心距的比例为1:1~2:1。
  3. 根据权利要求1所述的发热组件,其中,相邻所述第二微孔之间的孔中心距与相邻所述第一微孔之间的孔中心距的比例为1.1:1~1.45:1及1.55:1~1.95:1。
  4. 根据权利要求1所述的发热组件,其中,所述第一基体为致密基体,所述第一微孔为贯穿所述第一表面和所述第二表面的直通孔;
    沿着所述第一基体的厚度方向,所述第一微孔的孔径相同;或沿着所述第一基体的厚度方向,所述第一微孔的孔径逐渐变大,所述第一微孔的收缩口位于所述第二表面,所述第一微孔的扩张口位于所述第一表面;或沿着所述第一基体的厚度方向,所述第一微孔的孔径先逐渐减小再逐渐增大。
  5. 根据权利要求1所述的发热组件,其中,所述第二基体为致密基体,所述第二微孔为贯穿所述第三表面和所述第四表面的直通孔;
    沿着所述第二基体的厚度方向,所述第二微孔的孔径相同;或沿着所述第二基体的厚度方向,所述第二微孔的孔径逐渐变大,所述第二微孔的收缩口位于所述第四表面,所述第二微孔的扩张口位于所述第三表面;或沿着所述第二基体的厚度方向,所述第二微孔的孔径先逐渐减小再逐渐增大。
  6. 根据权利要求1所述的发热组件,其中,还包括发热元件,所述发热元件设于所述第一表面,用于加热雾化所述气溶胶生成基质;或所述第一基体采用导电材料,用于通电发热。
  7. 根据权利要求1所述的发热组件,其中,所述第一基体的厚度与所述第一微孔孔径的比例为20:1~3:1。
  8. 根据权利要求1所述的发热组件,其中,所述第一基体的所述第二表面设有多个第一凹槽,所述第一凹槽将多个所述第一微孔远离所述第一表面的端口连通。
  9. 根据权利要求8所述的发热组件,其中,所述第一凹槽宽度与所述第一微孔的孔径的比例为0.5:1~1.2:1;和/或,所述第一凹槽深度与所述第一凹槽的宽度的比例为0~20。
  10. 根据权利要求1所述的发热组件,其中,所述第二基体的所述第三表面设有多个第二凹槽,所述第二凹槽将多个所述第二微孔远离所述第四表面的端口连通。
  11. 根据权利要求10所述的发热组件,其中,所述第二凹槽宽度与所述第二微孔的孔径的比例为0.5:1~1.2:1;和/或,所述第二凹槽深度与所述第二凹槽的宽度的比例为0~20。
  12. 根据权利要求8或10所述的发热组件,其中,所述第一基体的所述第二表面与所述第二基体的所述第三表面贴合设置。
  13. 根据权利要求1或8或10所述的发热组件,其中,所述第一基体的所述第二表面与所述第二基体的所述第三表面之间形成间隙,所述间隙连通所述第一微孔和所述第二微孔。
  14. 根据权利要求13所述的发热组件,其中,所述间隙的高度小于等于200μm。
  15. 根据权利要求13所述的发热组件,其中,沿着平行于所述第一基体的方向,所述间隙的高度相同或所述间隙的高度呈梯度变化。
  16. 根据权利要求13所述的发热组件,其中,所述发热组件还包括间隔件;所述间隔件设 置于所述第二表面和所述第三表面之间,且位于所述第一基体和/或所述第二基体边缘,以使所述第一基体与所述第二基体间隔设置形成所述间隙。
  17. 根据权利要求1或13所述的发热组件,其中,所述发热组件还包括固定件,所述固定件具有下液孔;所述下液孔的孔壁上设置有固定结构,以固定所述第一基体和/或所述第二基体。
  18. 根据权利要求1所述的发热组件,其中,所述发热组件还包括第三基体,所述第三基体设于所述第二基体远离所述第一基体的一侧;所述第三基体具有相对设置的第五表面和第六表面,所述第三基体上设有多个贯穿所述第五表面和所述第六表面的第三微孔,所述第三微孔与所述第二微孔流体连通。
  19. 根据权利要求18所述的发热组件,其中,所述第三基体的所述第五表面与所述第二基体的所述第四表面贴合设置;和/或,所述第五表面设有多个第三凹槽,所述第三凹槽将多个所述第三微孔远离所述第六表面的端口连通。
  20. 根据权利要求1所述的发热组件,其中,所述雾化面包括雾化区和非雾化区,所述雾化区包括高温雾化区和低温雾化区;所述第二基体对应于所述高温雾化区、所述低温雾化区和所述非雾化区的所述第二微孔的截面形状、孔径以及孔中心距中的至少一项不同。
  21. 根据权利要求1所述的发热组件,其中,所述第二基体的边缘具有进液口或与其他元件配合形成进液口。
  22. 根据权利要求1所述的发热组件,其中,所述第二微孔的孔径大于所述第一微孔的孔径。
  23. 一种雾化器,其中,包括:
    储液腔,用于储存气溶胶生成基质;
    发热组件,所述发热组件为权利要求1-22任意一项所述的发热组件;所述发热组件与所述储液腔流体连通,所述发热组件用于雾化所述气溶胶生成基质。
  24. 一种电子雾化装置,其中,包括:
    雾化器,所述雾化器为权利要求23所述的雾化器;
    主机,用于为所述发热组件工作提供电能和控制所述发热组件雾化所述气溶胶生成基质。
PCT/CN2022/115306 2021-12-30 2022-08-26 发热组件、雾化器及电子雾化装置 WO2023124162A1 (zh)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
CN202111656304.XA CN114794577A (zh) 2021-12-30 2021-12-30 发热组件、雾化器及电子雾化装置
CN202111681913.0A CN114794579A (zh) 2021-12-30 2021-12-30 发热组件、雾化器及电子雾化装置
CN202111656422.0A CN114794578A (zh) 2021-12-30 2021-12-30 发热组件、雾化器及电子雾化装置
CN202111656422.0 2021-12-30
CN202111656304.X 2021-12-30
CN202111681913.0 2021-12-30
CN202210524878.X 2022-05-13
CN202210524878.XA CN114916708A (zh) 2022-05-13 2022-05-13 发热组件、雾化器及电子雾化装置

Publications (1)

Publication Number Publication Date
WO2023124162A1 true WO2023124162A1 (zh) 2023-07-06

Family

ID=86997439

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/115306 WO2023124162A1 (zh) 2021-12-30 2022-08-26 发热组件、雾化器及电子雾化装置

Country Status (1)

Country Link
WO (1) WO2023124162A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108158040A (zh) * 2018-01-03 2018-06-15 云南中烟工业有限责任公司 一种均匀发热的mems电子烟芯片及其制造方法
CN108158039A (zh) * 2018-01-03 2018-06-15 云南中烟工业有限责任公司 一种集成多个Pt温度传感器的MEMS发热芯片及其制造方法
CN113662250A (zh) * 2021-09-02 2021-11-19 美满芯盛(杭州)微电子有限公司 一种mems硅基雾化芯及其制造方法
CN114794579A (zh) * 2021-12-30 2022-07-29 深圳麦克韦尔科技有限公司 发热组件、雾化器及电子雾化装置
CN114794577A (zh) * 2021-12-30 2022-07-29 深圳麦克韦尔科技有限公司 发热组件、雾化器及电子雾化装置
CN114794578A (zh) * 2021-12-30 2022-07-29 深圳麦克韦尔科技有限公司 发热组件、雾化器及电子雾化装置
CN114916708A (zh) * 2022-05-13 2022-08-19 深圳麦克韦尔科技有限公司 发热组件、雾化器及电子雾化装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108158040A (zh) * 2018-01-03 2018-06-15 云南中烟工业有限责任公司 一种均匀发热的mems电子烟芯片及其制造方法
CN108158039A (zh) * 2018-01-03 2018-06-15 云南中烟工业有限责任公司 一种集成多个Pt温度传感器的MEMS发热芯片及其制造方法
CN113662250A (zh) * 2021-09-02 2021-11-19 美满芯盛(杭州)微电子有限公司 一种mems硅基雾化芯及其制造方法
CN114794579A (zh) * 2021-12-30 2022-07-29 深圳麦克韦尔科技有限公司 发热组件、雾化器及电子雾化装置
CN114794577A (zh) * 2021-12-30 2022-07-29 深圳麦克韦尔科技有限公司 发热组件、雾化器及电子雾化装置
CN114794578A (zh) * 2021-12-30 2022-07-29 深圳麦克韦尔科技有限公司 发热组件、雾化器及电子雾化装置
CN114916708A (zh) * 2022-05-13 2022-08-19 深圳麦克韦尔科技有限公司 发热组件、雾化器及电子雾化装置

Similar Documents

Publication Publication Date Title
WO2023124515A1 (zh) 发热组件、雾化器及电子雾化装置
WO2022179300A9 (zh) 发热组件、雾化器及电子雾化装置
WO2021142786A1 (zh) 电子雾化装置及其雾化器和发热体
CN114794578A (zh) 发热组件、雾化器及电子雾化装置
WO2022179301A2 (zh) 发热体、雾化器及电子雾化装置
CN114794577A (zh) 发热组件、雾化器及电子雾化装置
CN114916708A (zh) 发热组件、雾化器及电子雾化装置
WO2020248230A1 (zh) 电子雾化装置及其雾化器和发热组件
WO2023124162A1 (zh) 发热组件、雾化器及电子雾化装置
CN218889286U (zh) 气溶胶发生组件及气溶胶发生装置
CN114794576A (zh) 发热体、雾化器及电子雾化装置
WO2022179644A2 (zh) 发热组件、雾化器及电子雾化装置
WO2023123250A1 (zh) 发热组件、雾化器及电子雾化装置
WO2022179642A2 (zh) 发热组件、雾化器及电子雾化装置
CN116406859A (zh) 发热组件、雾化器及电子雾化装置
WO2022179643A2 (zh) 发热组件、雾化器及电子雾化装置
WO2024050719A1 (zh) 一种发热组件、雾化器及电子雾化装置
WO2023097618A1 (zh) 雾化组件及电子雾化装置
WO2023125850A1 (zh) 发热体、雾化器及电子雾化装置
CN116406850A (zh) 发热组件、雾化器及电子雾化装置
CN218921694U (zh) 发热体、雾化器及电子雾化装置
WO2024093477A1 (zh) 发热体、雾化器及电子雾化装置
WO2023216262A1 (zh) 发热体及其制备方法、雾化组件及电子雾化装置
WO2022179231A2 (zh) 发热体组件、雾化器及电子雾化装置
WO2023207322A1 (zh) 电子雾化装置及其储液雾化组件

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22913444

Country of ref document: EP

Kind code of ref document: A1