WO2024093477A1 - 发热体、雾化器及电子雾化装置 - Google Patents

发热体、雾化器及电子雾化装置 Download PDF

Info

Publication number
WO2024093477A1
WO2024093477A1 PCT/CN2023/115568 CN2023115568W WO2024093477A1 WO 2024093477 A1 WO2024093477 A1 WO 2024093477A1 CN 2023115568 W CN2023115568 W CN 2023115568W WO 2024093477 A1 WO2024093477 A1 WO 2024093477A1
Authority
WO
WIPO (PCT)
Prior art keywords
flow channel
heating element
equivalent diameter
micropores
liquid
Prior art date
Application number
PCT/CN2023/115568
Other languages
English (en)
French (fr)
Inventor
赵月阳
吕铭
林家新
Original Assignee
思摩尔国际控股有限公司
深圳麦克韦尔科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 思摩尔国际控股有限公司, 深圳麦克韦尔科技有限公司 filed Critical 思摩尔国际控股有限公司
Publication of WO2024093477A1 publication Critical patent/WO2024093477A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/10Devices using liquid inhalable precursors
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • A24F40/46Shape or structure of electric heating means
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • A24F40/48Fluid transfer means, e.g. pumps
    • A24F40/485Valves; Apertures
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H99/00Subject matter not provided for in other groups of this subclass
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M15/00Inhalators
    • A61M15/06Inhaling appliances shaped like cigars, cigarettes or pipes

Definitions

  • the present application relates to the technical field of electronic atomization, and in particular to a heating element, an atomizer and an electronic atomization device.
  • the electronic atomization device is composed of a heating element, a battery, a control circuit and other parts.
  • the heating element is the core component of the electronic atomization device, and its characteristics determine the atomization effect and user experience of the electronic atomization device.
  • One of the existing heating elements is the cotton core heating element.
  • Most cotton core heating elements are spring-shaped metal heating wires wrapped around cotton ropes or fiber ropes.
  • the liquid aerosol generating matrix to be atomized is absorbed by both ends of the cotton rope or fiber rope, and then transmitted to the central metal heating wire for heating and atomization. Due to the limited end area of the cotton rope or fiber rope, the adsorption and transmission efficiency of the aerosol generating matrix is low.
  • the cotton rope or fiber rope has poor structural stability, and is prone to dry burning, carbon deposition, and burnt smell after multiple thermal cycles.
  • Another type of existing heating element is the ceramic heating element.
  • Most ceramic heating elements form a metal heating film on the surface of a porous ceramic body; the porous ceramic body plays the role of conducting and storing liquid, and the metal heating film realizes the heating and atomization of the liquid aerosol generating matrix.
  • it is difficult to accurately control the position distribution and dimensional accuracy of the micropores in porous ceramics prepared by high-temperature sintering.
  • the pore size and porosity need to be reduced, but in order to achieve sufficient liquid supply, the pore size and porosity need to be increased, and the two are contradictory.
  • the liquid conducting capacity of the porous ceramic matrix is limited, and a burnt smell will appear under high power conditions.
  • a thin heating element is provided to improve the liquid supply capacity, but this thin heating element is easy to form bubbles on the liquid absorption surface, blocking the liquid inlet and causing the heating element to dry burn.
  • the heating element, atomizer and electronic atomization device provided in the present application solve the technical problem in the prior art that thin heating elements are prone to form bubbles on the liquid absorption surface.
  • a heating element including a substrate, the substrate having a liquid absorption surface and an atomization surface arranged opposite to each other; the substrate has a plurality of micropores, and the micropores penetrate the liquid absorption surface and the atomization surface; the substrate has a flow channel inside, the extension direction of the flow channel intersects with the extension direction of the micropores, and the flow channel connects the plurality of micropores; the flow channel separates the micropores into a first hole segment and a second hole segment, the first hole segment is located on a side of the flow channel close to the liquid absorption surface, and the second hole segment is located on a side of the flow channel close to the atomization surface; and the equivalent diameter of the port of the first hole segment close to the flow channel is smaller than the equivalent diameter of the port of the second hole segment close to the flow channel.
  • the cross-sectional shape of the micropore is circular or polygonal, and the equivalent diameter of the micropore is 1 ⁇ m-150 ⁇ m;
  • the cross-sectional shape of the micropore is a long strip
  • the equivalent diameter of the micropore is the width of the micropore
  • the width of the micropore is 1 ⁇ m-150 ⁇ m.
  • the axis of the micropore is parallel to the thickness direction of the substrate; and/or, a plurality of the micropores are arranged in an array.
  • the height of the flow channel is 10 ⁇ m-150 ⁇ m.
  • the height of the flow channel is greater than an equivalent diameter of a port of the first hole section close to the flow channel.
  • the flow channel is a full-layer gap
  • the flow channel includes a plurality of first sub-flow channels arranged at intervals and extending along the first direction;
  • the flow channel includes a plurality of second sub-flow channels which are arranged at intervals and extend along the second direction;
  • the flow channel includes a plurality of first sub-flow channels that are spaced apart and extend along a first direction and a plurality of second sub-flow channels that are spaced apart and extend along a second direction, and the plurality of first sub-flow channels and the plurality of second sub-flow channels are cross-arranged and interconnected.
  • the width of the first sub-channel is not less than the equivalent diameter of the port of the first hole segment close to the channel and is not greater than the equivalent diameter of the port of the second hole segment close to the channel; and/or, the width of the second sub-channel is not less than the equivalent diameter of the port of the first hole segment close to the channel and is not greater than the equivalent diameter of the port of the second hole segment close to the channel.
  • the equivalent diameter of the micropore first decreases and then increases, and the flow channel is located on the side of the atomization surface where the equivalent diameter of the micropore is the smallest along the center line perpendicular to the thickness direction of the substrate.
  • the flow channel is parallel to or forms an angle with the atomization surface; and/or the atomization surface is parallel to the liquid absorption surface.
  • a liquid guiding member is further included, and the liquid guiding member is spaced apart from the liquid absorbing surface of the substrate to form a gap; or the liquid guiding member is in contact with the liquid absorbing surface of the substrate.
  • the liquid-conducting member is porous ceramic or liquid-conducting cotton; or, the material of the liquid-conducting member is dense, and a plurality of through holes are provided on the liquid-conducting member.
  • the material of the substrate is one of glass, dense ceramic, silicon-based, and porous ceramic.
  • the thickness of the substrate is 0.1 mm-5 mm.
  • a heating element is further included, which is disposed on the atomizing surface; or at least the portion of the substrate where the second hole segment is disposed has a conductive function.
  • the second technical solution provided in the present application is: to provide a nebulizer, comprising a liquid storage chamber and a heating element; the liquid storage chamber is used to store an aerosol generating matrix; the heating element is fluidly connected to the liquid storage chamber, and the heating element is used to atomize the aerosol generating matrix; the heating element is the heating element described in any one of the above items.
  • the third technical solution provided in this application is: to provide an electronic atomization device, including an atomizer and a host; the atomizer is the atomizer described above; the host is used to provide electrical energy for the atomizer and control the heating body to atomize the aerosol generating matrix.
  • the present application discloses a heating element, an atomizer and an electronic atomization device, wherein the heating element comprises a substrate, the substrate having a liquid absorption surface and an atomization surface arranged opposite to each other; the substrate has a plurality of micropores, the micropores passing through the liquid absorption surface and the atomization surface;
  • the part has a flow channel, the extension direction of the flow channel intersects with the extension direction of the micropores, and the flow channel connects multiple micropores;
  • the flow channel divides the micropores into a first hole segment and a second hole segment, the first hole segment is located on the side of the flow channel close to the liquid absorption surface, and the second hole segment is located on the side of the flow channel close to the atomization surface; and the equivalent diameter of the port of the first hole segment close to the flow channel is smaller than the equivalent diameter of the port of the second hole segment close to the flow channel, the movement of bubbles toward the liquid absorption surface is resisted, which
  • FIG1 is a schematic structural diagram of an embodiment of an electronic atomization device provided by the present application.
  • FIG2 is a schematic diagram of the structure of an atomizer provided in one embodiment of the present application.
  • FIG3 is a schematic structural diagram of the first embodiment of the heating element provided by the present application as viewed from the liquid absorption surface side;
  • FIG4 is a schematic structural diagram of the heating element shown in FIG3 as viewed from the atomizing surface side;
  • Fig. 5 is a schematic diagram of the cross-sectional structure of the heating element shown in Fig. 3 along the A-A direction;
  • FIG6 is a schematic diagram of a top perspective structure of the heating element shown in FIG3 ;
  • FIG7 is a cross-sectional schematic diagram of a second embodiment of a heating element provided by the present application.
  • FIG8 is a cross-sectional schematic diagram of another embodiment of the micropores of the heating element shown in FIG7 ;
  • FIG. 9 is a cross-sectional schematic diagram of a third embodiment of a heating element provided in the present application.
  • first”, “second”, and “third” in this application are only used for descriptive purposes, and cannot be understood as indicating or implying relative importance or implicitly indicating the number of indicated technical features.
  • the features defined as “first”, “second”, and “third” can explicitly or implicitly include at least one of the features.
  • the meaning of “multiple” is at least two, such as two, three, etc., unless otherwise clearly and specifically defined. All directional indications in the embodiments of this application (such as up, down, left, right, front, back%) are only used to explain the relative position relationship, movement, etc. between the components under a certain specific posture (as shown in the accompanying drawings). If the specific posture changes, the directional indication also changes accordingly.
  • FIG. 1 is a schematic structural diagram of an embodiment of an electronic atomization device provided in the present application.
  • an electronic atomization device 100 is provided.
  • the electronic atomization device 100 can be used for atomization of an aerosol-generating substrate.
  • the electronic atomization device 100 includes an atomizer 1 and a host 2 that are electrically connected to each other.
  • the atomizer 1 is used to store the aerosol-generating substrate and atomize the aerosol-generating substrate to form an aerosol that can be inhaled by the user.
  • the atomizer 1 can be used in different fields, such as medical treatment, beauty, leisure inhalation, etc.
  • the atomizer 1 can be used in an electronic aerosolization device to atomize the aerosol-generating substrate and generate an aerosol. For smokers to smoke, the following embodiments are all based on this leisure smoking as an example.
  • the specific structure and function of the atomizer 1 may refer to the specific structure and function of the atomizer 1 involved in the following embodiments, and the same or similar technical effects can be achieved, which will not be repeated here.
  • the host 2 includes a battery (not shown) and a controller (not shown).
  • the battery is used to provide electrical energy for the operation of the atomizer 1, so that the atomizer 1 can atomize the aerosol-generating matrix to form an aerosol; the controller is used to control the operation of the atomizer 1.
  • the host 2 also includes other components such as a battery holder and an airflow sensor.
  • the atomizer 1 and the host 2 can be integrally arranged or detachably connected, and can be designed according to specific needs.
  • FIG. 2 is a schematic diagram of the structure of an atomizer provided in an embodiment of the present application.
  • the atomizer 1 includes a housing 10, a heating element 12, and an atomizer seat 11.
  • the atomizer seat 11 has an installation cavity (not shown), and the heating element 12 is arranged in the installation cavity; the heating element 12 and the atomizer seat 11 are arranged in the housing 10 together.
  • the housing 10 is formed with a mist outlet channel 13, and the inner surface of the housing 10, the outer surface of the mist outlet channel 13 and the top surface of the atomizer seat 11 cooperate to form a liquid storage cavity 14, which is used to store liquid aerosol generating matrix.
  • the heating element 12 is electrically connected to the host 2 to generate aerosol by atomizing the aerosol generating matrix.
  • the atomizing seat 11 includes an upper seat 111 and a lower seat 112.
  • the upper seat 111 and the lower seat 112 cooperate to form an installation cavity; the surface of the heating element 12 facing away from the liquid storage cavity 14 cooperates with the cavity wall of the installation cavity to form an atomizing cavity 120.
  • a lower liquid channel 1111 is provided on the upper seat 111; the aerosol generating matrix channel in the liquid storage cavity 14 flows into the heating element 12 through the lower liquid channel 1111, that is, the heating element 12 is fluidically connected with the liquid storage cavity 14.
  • An air inlet channel 15 is provided on the lower seat 112, and external gas enters the atomizing cavity 120 through the air inlet channel 15, carrying the aerosol atomized by the heating element 12 to the mist outlet channel 13, and the user inhales the aerosol through the port of the mist outlet channel 13.
  • Figure 3 is a structural schematic diagram of the first embodiment of the heating element provided in the present application as viewed from the liquid absorption surface side
  • Figure 4 is a structural schematic diagram of the heating element shown in Figure 3 as viewed from the atomization surface side
  • Figure 5 is a cross-sectional structural schematic diagram of the heating element shown in Figure 3 along the A-A direction
  • Figure 6 is a top perspective structural schematic diagram of the heating element shown in Figure 3.
  • the heating element 12 includes a substrate 121, which includes a liquid absorption surface 1211 and an atomization surface 1212 that are arranged opposite to each other.
  • the substrate 121 has a plurality of micropores 1213, and the micropores 1213 penetrate the liquid absorption surface 1211 and the atomization surface 1212.
  • the substrate 121 has a flow channel 1214 inside, and the extension of the flow channel 1214 is The extension direction intersects with the extension direction of the micropores 1213, and the flow channel 1214 connects the multiple micropores 1213. Since the flow channel 1214 is located inside the substrate 121, the flow channel 1214 divides the micropores 1213 into a first hole segment 1213a and a second hole segment 1213b.
  • the first hole segment 1213a is located on the side of the flow channel 1214 close to the liquid suction surface 1211, and the second hole segment 1213b is located on the side of the flow channel 1214 close to the atomization surface 1212.
  • the equivalent diameter of the port of the first hole segment 1213a close to the flow channel 1214 is smaller than the equivalent diameter of the port of the second hole segment 1213b close to the flow channel 1214.
  • the micropores 1213 have a capillary force, and the aerosol generating matrix is guided from the liquid absorption surface 1211 to the atomization surface 1212 through the micropores 1213.
  • the aerosol generating matrix is heated and atomized on the atomization surface 1212. During the atomization process, air easily enters the second hole segment 1213b from one side of the atomization surface 1212 to form bubbles.
  • the equivalent diameter of the port of the first hole segment 1213a close to the flow channel 1214 is smaller than the equivalent diameter of the port of the second hole segment 1213b close to the flow channel 1214, the resistance of the bubble entering the first hole segment 1213a from the second hole segment 1213b is increased, and the bubble is prompted to disperse into the flow channel 1214, thereby reducing the size of the amount of bubbles moving to the liquid absorption surface 1211. It is not easy to form large bubbles on the liquid absorption surface 1211, avoiding bubbles blocking the liquid supply, and ensuring sufficient liquid supply. In addition, the bubbles dispersed into the flow channel 1214 are restricted by the flow channel 1214 and are not easy to grow up to form large bubbles.
  • the flow channel 1214 can supply liquid to the second hole segment 1213b corresponding to the blocked first hole segment 1213a, ensuring sufficient liquid supply and avoiding dry burning.
  • the flow channel 1214 also has a certain liquid storage function, which can ensure that at least two puffs will not burn out.
  • the material of the substrate 121 is one of glass, dense ceramic, porous ceramic, and silicon-based.
  • the material of the substrate 121 can be one of ordinary glass, quartz glass, borosilicate glass, and photosensitive lithium aluminosilicate glass.
  • the substrate 121 can be in the shape of a flat plate, a cylinder, an arc, etc., and can be designed specifically as needed.
  • the substrate 121 of the heating element 12 is in the shape of a flat plate (as shown in FIGS. 3-5 ); at this time, the liquid absorption surface 1211 is parallel to the atomization surface 1212.
  • the substrate 121 can be set to a regular shape, such as a rectangular plate, a circular plate, etc.
  • the thickness of the substrate 121 is 0.1mm-5mm. When the thickness of the substrate 121 is greater than 5mm, the liquid supply demand cannot be met, resulting in a decrease in the amount of aerosol, and more heat loss is caused, and the cost of setting the micropores 1213 and the flow channel 1214 is high; when the thickness of the substrate 121 is less than 0.1mm, the strength of the substrate 121 cannot be guaranteed, which is not conducive to improving the performance of the electronic atomization device.
  • the thickness of the substrate 121 is 0.3 mm to 2 mm. It is understandable that the thickness of the substrate 121 is selected according to actual needs.
  • the plurality of micropores 1213 on the substrate 121 are arranged in an array; that is, the plurality of micropores 1213 are arranged in at least one row and/or at least one column, and the hole center distances between adjacent micropores 1213 in each row or column are the same.
  • the cross-sectional shape of the micropore 1213 is circular or polygonal, and the equivalent diameter of the micropore 1213 is 1 ⁇ m-150 ⁇ m. It is understood that when the equivalent diameter of the micropore 1213 is less than 1 ⁇ m, it cannot meet the liquid supply demand, resulting in a decrease in the amount of aerosol; when the equivalent diameter of the micropore 1213 is greater than 150 ⁇ m, the aerosol-generating matrix is easy to flow out of the micropore 1213 to cause leakage, resulting in a decrease in atomization efficiency. It is understandable that the equivalent diameter of the micropore 1213 is selected according to actual needs. Optionally, the equivalent diameter of the micropore 1213 is 20 ⁇ m-100 ⁇ m. Exemplarily, the cross-sectional shape of the micropore 1213 is circular (as shown in Figures 3-5).
  • the cross-sectional shape of the micropore 1213 is an elongated strip
  • the equivalent diameter of the micropore 1213 is the width of the micropore 1213
  • the width of the micropore 1213 is 1 ⁇ m-150 ⁇ m. It is understood that when the width of the micropore 1213 is less than 1 ⁇ m, it cannot meet the liquid supply demand, resulting in a decrease in the amount of aerosol; when the width of the micropore 1213 is greater than 150 ⁇ m, the aerosol-generating matrix is easy to flow out of the micropore 1213 to cause liquid leakage, resulting in a decrease in atomization efficiency.
  • the width of the micropore 1213 is 20 ⁇ m-100 ⁇ m.
  • the width of the micropore 1213 is selected according to actual needs.
  • the first hole segment 1213a and the second hole segment 1213b are both long strips, and the bubbles entering from the atomization surface 1212 grow laterally along the hole wall of the second hole segment 1213b, and the bubbles are not easy to detach from the second hole segment 1213b.
  • the bubbles are discharged from the atomization surface 1212; even if the bubbles enter the first hole segment 1213a, the bubbles will grow laterally along the hole wall of the first hole segment 1213a, and will not easily detach from the first hole segment 1213a, thereby reducing the number and size of the bubbles attached to the liquid suction surface 1211.
  • the cross-sectional shapes of the first hole segment 1213 a and the second hole segment 1213 b are the same, which is convenient for processing.
  • the cross-sectional shape refers to the direction perpendicular to the axis of the microhole 1213 .
  • the axis of the micropore 1213 is parallel to the thickness direction of the substrate 121.
  • the micropore 1213 is a straight through hole parallel to the thickness direction of the substrate 121.
  • the axis is perpendicular to the liquid absorption surface 1211 (as shown in Figures 3 to 5).
  • the axis of the micropore 1213 forms an angle with the thickness direction of the substrate 121 , and the angle ranges from 80 degrees to 90 degrees.
  • the equivalent diameter of the first hole segment 1213a is the same, or the equivalent diameter gradually decreases, or the equivalent diameter gradually increases, and/or the equivalent diameter of the second hole segment 1213b is the same, or the equivalent diameter gradually decreases, or the equivalent diameter gradually increases.
  • the equivalent diameters of the first hole segment 1213a are the same, the equivalent diameters of the second hole segment 1213b are the same, and the equivalent diameter of the first hole segment 1213a is smaller than the equivalent diameter of the second hole segment 1213b (as shown in Figures 3 to 5).
  • the height of the flow channel 1214 is greater than the equivalent diameter of the port of the first hole section 1213a close to the flow channel 1214.
  • the equivalent diameter of the port of the first hole section 1213a close to the flow channel 1214 is smaller than the equivalent diameter of the port of the second hole section 1213b close to the flow channel 1214, so that bubbles are not easy to enter the first hole section 1213a;
  • the height of the flow channel 1214 is greater than the equivalent diameter of the port of the first hole section 1213a close to the flow channel 1214, so that bubbles that have not entered the first hole section 1213a are easily dispersed into the flow channel 1214.
  • the height of the flow channel 1214 is 10 ⁇ m-150 ⁇ m.
  • the height of the flow channel 1214 is less than 10 ⁇ m, it is not possible to prevent bubbles from entering the liquid absorption surface 1211, and it is difficult to process; when the height of the flow channel 1214 is greater than 150 ⁇ m, bubbles tend to merge and grow laterally to form large bubbles, affecting the liquid supply.
  • the height of the flow channel 1214 is 20 ⁇ m-100 ⁇ m.
  • the height of the flow channel 1214 refers to the distance between the wall of the flow channel 1214 close to the atomization surface 1212 and the wall of the flow channel 1214 away from the atomization surface 1212.
  • the heights of the flow channels 1214 are the same (as shown in FIG. 5 ).
  • the height of the flow channel 1214 gradually increases or decreases along a direction parallel to the atomization surface 1212. It can be understood that the gradual increase includes continuous increase and step-wise increase.
  • the flow channel 1214 is a full-layer gap.
  • the flow channel 1214 includes a plurality of first sub-flow channels 1214a arranged at intervals and extending along the first direction X and a plurality of second sub-flow channels 1214a arranged at intervals and extending along the second direction Y.
  • Second sub-channel 1214b, multiple first sub-channels 1214a and multiple second sub-channels 1214b are cross-arranged and interconnected.
  • the first direction is perpendicular to the second direction.
  • the first sub-channel 1214a and the second sub-channel 1214b are arranged in the same layer in the thickness direction of the substrate 121; for example, the central axis of the first sub-channel 1214a and the central axis of the second sub-channel 1214b are approximately located in the same plane.
  • the width of the first sub-channel 1214a is not less than the equivalent diameter of the port of the first hole section 1213a close to the channel 1214 and is not greater than the equivalent diameter of the port of the second hole section 1213b close to the channel 1214; and/or, the width of the second sub-channel 1214b is not less than the equivalent diameter of the port of the first hole section 1213a close to the channel 1214 and is not greater than the equivalent diameter of the port of the second hole section 1213b close to the channel 1214.
  • the flow channel 1214 includes a plurality of first sub-flow channels 1214a arranged at intervals and extending along the first direction X, and one first sub-flow channel 1214a connects a plurality of micropores 1213 in the first direction X.
  • the plurality of first sub-flow channels 1214a are arranged in the same layer in the thickness direction of the substrate 121; for example, the central axes of the plurality of first sub-flow channels 1214a are approximately located in the same plane.
  • the width of the first sub-flow channel 1214a is not less than the equivalent diameter of the port of the first hole section 1213a close to the flow channel 1214 and is not greater than the equivalent diameter of the port of the second hole section 1213b close to the flow channel 1214.
  • the flow channel 1214 includes a plurality of second sub-flow channels 1214b arranged at intervals and extending along the second direction Y, and one second sub-flow channel 1214b connects a plurality of micropores 1213 in the second direction Y.
  • the plurality of second sub-flow channels 1214b are arranged in the same layer in the thickness direction of the substrate 121; for example, the central axes of the plurality of second sub-flow channels 1214b are approximately located in the same plane.
  • the width of the second sub-flow channel 1214b is not less than the equivalent diameter of the port of the first hole section 1213a close to the flow channel 1214 and is not greater than the equivalent diameter of the port of the second hole section 1213b close to the flow channel 1214.
  • the flow channel 1214 is parallel to the atomization surface 1212 (as shown in FIG. 5 ).
  • the flow channel 1214 forms an angle with the atomizing surface 1212 .
  • the heating element 12 further includes a heating element 122, a positive electrode 123 and a negative electrode 124, and the two ends of the heating element 122 are electrically connected to the positive electrode 123 and the negative electrode 124 respectively.
  • the positive electrode 123 and the negative electrode 124 are both arranged on the atomizing surface of the substrate 121 to facilitate electrical connection with the host 2.
  • the heating element 122 can be a heating film, etc., which can heat the atomized aerosol to generate the matrix.
  • the heating element 122 is arranged on the atomizing surface of the substrate 121.
  • At least the portion of the substrate 121 provided with the second hole segment 1213b has a conductive function and can generate heat itself, for example, a self-heating conductive ceramic or a glass having a conductive function, and in this case, no additional heating element 122 is required.
  • a plurality of micropores 1213 are arranged in an array only on a portion of the surface of the substrate 121.
  • the substrate 121 is provided with a micropore array area 1215 and a blank area 1216 arranged around the micropore array area 1215, and the micropore array area 1215 has a plurality of micropores 1213;
  • the heating element 122 is arranged in the micropore array area 1215 to heat the atomized aerosol to generate the matrix;
  • the positive electrode 123 and the negative electrode 124 are arranged in the blank area 1216 of the atomization surface 1212 to ensure the stability of the electrical connection between the positive electrode 123 and the negative electrode 124.
  • micropore array area 1215 and the blank area 1216 By providing the micropore array area 1215 and the blank area 1216 around the micropore array area 1215 on the substrate 121, it can be understood that the micropores 1213 are not provided on the blank area 1216, which is conducive to improving the strength of the substrate 121 and reducing the production cost.
  • the micropore array area 1215 in the substrate 121 serves as an atomization area, covering the heating element 122 and the surrounding area of the heating element 122, that is, basically covering the area that reaches the temperature of the atomized aerosol generation substrate, making full use of the thermal efficiency.
  • the size of the area around the micropore array area 1215 of the substrate 121 in the present application is larger than the equivalent diameter of the micropore 1213, so it can be called the blank area 1216; that is, the blank area 1216 in the present application is the area where the micropore 1213 can be formed but the micropore 1213 is not formed, rather than the area around the micropore array area 1215 where the micropore 1213 cannot be formed.
  • FIG. 7 is a cross-sectional schematic diagram of a second embodiment of a heating element provided in the present application
  • FIG. 8 is a cross-sectional schematic diagram of another embodiment of micropores of the heating element shown in FIG. 7 .
  • the structure of the second embodiment of the heating element 12 is substantially the same as that of the first embodiment of the heating element 12 , except that the structure of the micropores 1213 is different.
  • the equivalent diameters of the first hole segment 1213a and the second hole segment 1213b are the same, and the equivalent diameter of the first hole segment 1213a is smaller than the equivalent diameter of the second hole segment 1213b.
  • the equivalent diameter of the first hole segment 1213a gradually decreases, and the equivalent diameter of the second hole segment 1213b gradually decreases.
  • the equivalent diameter of the first hole section 1213a gradually increases, and the equivalent diameter of the port close to the flow channel 1214 is smaller than the equivalent diameter of the port close to the flow channel 1214 of the second hole section 1213b.
  • the equivalent diameter of the micropore 1213 first decreases and then increases, and the flow channel 1214 is located at the side of the atomization surface 1212 where the equivalent diameter of the micropore 1213 is the smallest along the center line L perpendicular to the thickness direction of the substrate 121.
  • the longitudinal section of the side wall of the micropore 1213 can be a broken line (as shown in Figure 7) or an arc (as shown in Figure 8).
  • the micropore 1213 is waist-shaped and axially symmetrical in the thickness direction of the substrate 121.
  • the equivalent diameter of the micropore 1213 at the symmetry axis position (i.e., waist point A) is the smallest, and the flow channel 1214 is located at the side of the symmetry axis (i.e., waist point A) of the micropore 1213 near the atomization surface 1212 along the center line L perpendicular to the thickness direction of the substrate 121.
  • the wall surface of the first hole segment 1213a and/or the second hole segment 1213b is a plane.
  • the wall surface of the first hole segment 1213a and/or the second hole segment 1213b is a curved surface.
  • the equivalent diameter of the first hole segment 1213a gradually decreases, and the equivalent diameter of the second hole segment 1213b gradually decreases; or, along the direction from the liquid suction surface 1211 to the atomization surface 1212, the equivalent diameter of the first hole segment 1213a gradually decreases, and the equivalent diameter of the second hole segment 1213b is the same; or, along the direction from the liquid suction surface 1211 to the atomization surface 1212, the equivalent diameter of the first hole segment 1213a gradually increases, and the equivalent diameter of the second hole segment 1213b gradually decreases; or, along the direction from the liquid suction surface 1211 to the atomization surface 1212, the equivalent diameter of the first hole segment 1213a gradually increases, and the equivalent diameter of the second hole segment 1213b gradually decreases.
  • the equivalent diameter of the first hole segment 1213a gradually increases, and the equivalent diameter of the second hole segment 1213b gradually increases; or, along the direction from the liquid suction surface 1211 to the atomization surface 1212, the equivalent diameter of the first hole segment 1213a gradually increases, and the equivalent diameter of the second hole segment 1213b is the same; or, along the direction from the liquid suction surface 1211 to the atomization surface 1212, the equivalent diameters of the first hole segment 1213a are the same, and the equivalent diameters of the second hole segment 1213b gradually increase; or, along the direction from the liquid suction surface 1211 to the atomization surface 1212, the equivalent diameters of the first hole segment 1213a are the same, and the equivalent diameters of the second hole segment 1213b gradually decrease.
  • first hole segment 1213a and the second hole segment 1213b are designed according to needs, and it is only necessary to make the equivalent diameter of the port of the first hole segment 1213a close to the flow channel 1214 smaller than the equivalent diameter of the port of the second hole segment 1213b close to the flow channel 1214.
  • FIG. 9 is a cross-sectional schematic diagram of a third embodiment of a heating element provided in the present application.
  • the third embodiment of the heating element 12 has a substantially similar structure to the first embodiment of the heating element 12, except that it further includes a liquid guide 125.
  • the liquid supply speed is further controlled by providing the liquid guide 125 on one side of the liquid absorption surface 1211 of the base 121. It should be noted that the liquid guide 125 is an optional structure, and whether to provide the liquid guide 125 is determined according to actual needs.
  • the liquid guiding member 125 and the liquid absorbing surface 1211 of the base 121 are spaced apart to form a gap.
  • the liquid guiding member 125 is in contact with the liquid absorbing surface 1211 of the substrate 121 .
  • the liquid guiding member 125 is porous ceramic or liquid guiding cotton, and the aerosol generating matrix is guided to the liquid absorbing surface 1211 of the base 121 through the capillary force of the disordered pores of the liquid guiding member 125 itself.
  • the material of the liquid guide 125 is dense, and a plurality of through holes are provided on the liquid guide 125 .
  • the through holes have capillary force, and the aerosol generating matrix is guided to the liquid absorption surface 1211 of the base 121 through the orderly through holes on the liquid guide 125 .
  • the micropores 1213 on the heating element 12 provided in the present application can be obtained by laser drilling, or by first laser induction and then corrosion in a corrosive solution; the flow channel 1214 is obtained by first laser induction and then corrosion in a corrosive solution. It can be understood that the flow channel 1214 is not formed in the blank area 1216 by this method.

Landscapes

  • Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Engineering & Computer Science (AREA)
  • Pulmonology (AREA)
  • Hematology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Anesthesiology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Epidemiology (AREA)
  • Pain & Pain Management (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Rehabilitation Therapy (AREA)
  • Biomedical Technology (AREA)
  • Special Spraying Apparatus (AREA)
  • Fuel-Injection Apparatus (AREA)

Abstract

本申请公开了一种发热体、雾化器和电子雾化装置,发热体包括基体,基体具有相对设置的吸液面和雾化面;基体具有多个微孔,微孔贯穿吸液面和雾化面;基体内部具有流道,流道的延伸方向与微孔的延伸方向交叉,流道将多个微孔连通;流道将微孔分隔为第一孔段和第二孔段,第一孔段位于流道靠近吸液面的一侧,第二孔段位于流道靠近雾化面的一侧;且,第一孔段靠近流道的端口的当量直径小于第二孔段靠近流道的端口的当量直径,气泡向吸液面的运动受到阻力,利于将气泡分散至流道内,减少了向吸液面运动的气泡的量和尺寸,吸液面上不容易形成大气泡,避免气泡阻塞供液,保证供液充足。

Description

发热体、雾化器及电子雾化装置
相关申请的交叉引用
本申请基于2022年11月2日提交的中国专利申请202211373032.7主张其优先权,此处通过参照引入其全部的记载内容。
技术领域
本申请涉及电子雾化技术领域,尤其涉及一种发热体、雾化器及电子雾化装置。
背景技术
电子雾化装置由发热体、电池和控制电路等部分组成,发热体作为电子雾化装置的核心元件,其特性决定了电子雾化装置的雾化效果和使用体验。
现有的发热体一种是棉芯发热体。棉芯发热体大多为弹簧状的金属发热丝缠绕棉绳或纤维绳的结构。待雾化的液态气溶胶生成基质被棉绳或纤维绳的两端吸取,然后传输至中心金属发热丝处加热雾化。由于棉绳或纤维绳的端部面积有限,导致气溶胶生成基质吸附、传输效率较低。另外,棉绳或纤维绳结构稳定性差,多次热循环后易出现干烧、积碳和焦糊味等现象。
现有的发热体另一种是陶瓷发热体。陶瓷发热体大多为在多孔陶瓷体表面形成金属发热膜;多孔陶瓷体起到导液、储液的作用,金属发热膜实现液态气溶胶生成基质的加热雾化。然而,由高温烧结制备的多孔陶瓷难以精确控制微孔的位置分布和尺寸精度。为了降低漏液风险,需要减小孔径、孔隙率,但为了实现充足的供液,需要增大孔径、孔隙率,二者相互矛盾。目前,在满足低漏液风险的孔径、孔隙率条件下,多孔陶瓷基体导液能力受限,在高功率条件下会出现焦糊味。
随着技术的进步,用户对电子雾化装置的雾化效果的要求越来越 高,为了满足用户的需求,提供一种薄的发热体以提高供液能力,但这种薄的发热体易在吸液面形成气泡,阻塞进液,导致发热体干烧。
发明内容
本申请提供的发热体、雾化器及电子雾化装置,解决现有技术中薄的发热体易在吸液面形成气泡的技术问题。
为了解决上述技术问题,本申请提供的第一个技术方案为:提供一种发热体,包括基体,所述基体具有相对设置的吸液面和雾化面;所述基体具有多个微孔,所述微孔贯穿所述吸液面和所述雾化面;所述基体内部具有流道,所述流道的延伸方向与所述微孔的延伸方向交叉,所述流道将多个所述微孔连通;所述流道将所述微孔分隔为第一孔段和第二孔段,所述第一孔段位于所述流道靠近所述吸液面的一侧,所述第二孔段位于所述流道靠近所述雾化面的一侧;且,所述第一孔段靠近所述流道的端口的当量直径小于所述第二孔段靠近所述流道的端口的当量直径。
在一实施方式中,所述微孔的横截面形状为圆形或多边形,所述微孔的当量直径为1μm-150μm;
或,所述微孔的横截面形状为长条形,所述微孔的当量直径为所述微孔的宽度,所述微孔的宽度为1μm-150μm。
在一实施方式中,所述微孔的轴线与所述基体的厚度方向平行;和/或,多个所述微孔呈阵列排布。
在一实施方式中,所述流道的高度为10μm-150μm。
在一实施方式中,所述流道的高度大于所述第一孔段靠近所述流道的端口的当量直径。
在一实施方式中,所述流道为一整层间隙;
或,所述流道包括多个间隔设置且沿第一方向延伸的第一子流道;
或,所述流道包括多个间隔设置且沿第二方向延伸的第二子流道;
或,所述流道包括多个间隔设置且沿第一方向延伸的第一子流道和多个间隔设置且沿第二方向延伸的第二子流道,多个所述第一子流道和多个所述第二子流道交叉设置且相互连通。
在一实施方式中,所述第一子流道的宽度不小于所述第一孔段靠近所述流道的端口的当量直径且不大于所述第二孔段靠近所述流道的端口的当量直径;和/或,所述第二子流道的宽度不小于所述第一孔段靠近所述流道的端口的当量直径且不大于所述第二孔段靠近所述流道的端口的当量直径。
在一实施方式中,沿着所述吸液面指向所述雾化面的方向,所述微孔的当量直径先减小后增大,所述流道沿垂直于所述基体的厚度方向的中心线位于所述微孔的当量直径最小处靠近所述雾化面的一侧。
在一实施方式中,所述流道与所述雾化面平行或形成夹角;和/或,所述雾化面与所述吸液面平行。
在一实施方式中,还包括导液件,所述导液件与所述基体的吸液面间隔设置形成间隙;或,所述导液件与所述基体的吸液面接触。
在一实施方式中,所述导液件为多孔陶瓷或导液棉;或,所述导液件的材质为致密的,所述导液件上设有多个贯穿孔。
在一实施方式中,所述基体的材料为玻璃、致密陶瓷、硅基、多孔陶瓷中的一种。
在一实施方式中,所述基体的厚度为0.1mm-5mm。
在一实施方式中,还包括发热元件,设于所述雾化面;或,至少所述基体设有所述第二孔段的部分具有导电功能。
为了解决上述技术问题,本申请提供的第二个技术方案为:提供一种雾化器,包括储液腔和发热体;所述储液腔用于储存气溶胶生成基质;所述发热体与所述储液腔流体连通,所述发热体用于雾化所述气溶胶生成基质;所述发热体为上述任意一项所述的发热体。
为了解决上述技术问题,本申请提供的第三个技术方案为:提供一种电子雾化装置,包括雾化器和主机;所述雾化器为上述所述的雾化器;所述主机用于为所述雾化器工作提供电能和控制所述发热体雾化所述气溶胶生成基质。
本申请的有益效果:区别于现有技术,本申请公开了一种发热体、雾化器和电子雾化装置,发热体包括基体,基体具有相对设置的吸液面和雾化面;基体具有多个微孔,微孔贯穿吸液面和雾化面;基体内 部具有流道,流道的延伸方向与微孔的延伸方向交叉,流道将多个微孔连通;流道将微孔分隔为第一孔段和第二孔段,第一孔段位于流道靠近吸液面的一侧,第二孔段位于流道靠近雾化面的一侧;且,第一孔段靠近流道的端口的当量直径小于第二孔段靠近流道的端口的当量直径,气泡向吸液面的运动受到阻力,利于将气泡分散至流道内,减少了向吸液面运动的气泡的量和尺寸,吸液面上不容易形成大气泡,避免气泡阻塞供液,保证供液充足。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图。
图1是本申请提供的电子雾化装置的一实施例的结构示意图;
图2是本申请一实施例提供的雾化器的结构示意图;
图3是本申请提供的发热体第一实施例从吸液面一侧观看的结构示意图;
图4是图3所示的发热体从雾化面一侧观看的结构示意图;
图5是图3所示的发热体沿A-A方向的截面结构示意图;
图6是图3所示的发热体的俯视透视结构示意图;
图7是本申请提供的发热体第二实施例的截面示意图;
图8是图7所示的发热体的微孔另一实施方式的截面示意图;
图9是本申请提供的发热体第三实施例的截面示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本申请的一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
以下描述中,为了说明而不是为了限定,提出了诸如特定系统结构、接口、技术之类的具体细节,以便透彻理解本申请。
本申请中的术语“第一”、“第二”、“第三”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”、“第三”的特征可以明示或者隐含地包括至少一个所述特征。本申请的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。本申请实施例中所有方向性指示(诸如上、下、左、右、前、后……)仅用于解释在某一特定姿态(如附图所示)下各部件之间的相对位置关系、运动情况等,如果所述特定姿态发生改变时,则所述方向性指示也相应地随之改变。本申请实施例中的术语“包括”和“具有”以及它们任何变形,意图在于覆盖不排他的包含。例如包含了一系列步骤或单元的过程、方法、系统、产品或设备没有限定于已列出的步骤或单元,而是可选地还包括没有列出的步骤或单元,或可选地还包括对于这些过程、方法、产品或设备固有的其它步骤或组件。
在本文中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现所述短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。
下面结合附图和实施例对本申请进行详细的说明。
请参阅图1,图1是本申请提供的电子雾化装置的一实施例的结构示意图。
在本实施例中,提供一种电子雾化装置100。该电子雾化装置100可用于气溶胶生成基质的雾化。电子雾化装置100包括相互电连接的雾化器1和主机2。
其中,雾化器1用于存储气溶胶生成基质并雾化气溶胶生成基质以形成可供用户吸食的气溶胶。该雾化器1具体可用于不同的领域,比如,医疗、美容、休闲吸食等。在一具体实施例中,该雾化器1可用于电子气溶胶化装置,用于雾化气溶胶生成基质并产生气溶胶,以 供抽吸者抽吸,以下实施例均以此休闲吸食为例。
雾化器1的具体结构与功能可参见以下实施例所涉及的雾化器1的具体结构与功能,且可实现相同或相似的技术效果,在此不再赘述。
主机2包括电池(图未示)和控制器(图未示)。电池用于为雾化器1的工作提供电能,以使得雾化器1能够雾化气溶胶生成基质形成气溶胶;控制器用于控制雾化器1工作。主机2还包括电池支架、气流传感器等其他元件。
雾化器1与主机2可以是一体设置,也可以是可拆卸连接,可以根据具体需要进行设计。
请参阅图2,图2是本申请一实施例提供的雾化器的结构示意图。
雾化器1包括壳体10、发热体12、雾化座11。雾化座11具有安装腔(图未标),发热体12设于该安装腔内;发热体12同雾化座11一起设于壳体10内。壳体10形成有出雾通道13,壳体10的内表面、出雾通道13的外表面与雾化座11的顶面配合形成储液腔14,储液腔14用于存储液态气溶胶生成基质。其中,发热体12与主机2电连接,以雾化气溶胶生成基质生成气溶胶。
雾化座11包括上座111和下座112,上座111与下座112配合形成安装腔;发热体12背离储液腔14的表面与安装腔的腔壁配合形成雾化腔120。上座111上设有下液通道1111;储液腔14内的气溶胶生成基质通道下液通道1111流入发热体12,即,发热体12与储液腔14流体连通。下座112上设有进气通道15,外界气体经进气通道15进入雾化腔120,携带发热体12雾化好的气溶胶流至出雾通道13,用户通过出雾通道13的端口吸食气溶胶。
请参阅图3-图6,图3是本申请提供的发热体第一实施例从吸液面一侧观看的结构示意图,图4是图3所示的发热体从雾化面一侧观看的结构示意图,图5是图3所示的发热体沿A-A方向的截面结构示意图,图6是图3所示的发热体的俯视透视结构示意图。
发热体12包括基体121,基体121包括相对设置的吸液面1211和雾化面1212。基体121具有多个微孔1213,微孔1213贯穿吸液面1211和雾化面1212。基体121内部具有流道1214,流道1214的延 伸方向与微孔1213的延伸方向交叉,流道1214将多个微孔1213连通。由于流道1214位于基体121的内部,流道1214将微孔1213分隔为第一孔段1213a和第二孔段1213b,第一孔段1213a位于流道1214靠近吸液面1211的一侧,第二孔段1213b位于流道1214靠近雾化面1212的一侧。第一孔段1213a靠近流道1214的端口的当量直径小于第二孔段1213b靠近流道1214的端口的当量直径。
微孔1213具有毛细作用力,气溶胶生成基质通过微孔1213从吸液面1211导引至雾化面1212。气溶胶生成基质在雾化面1212被加热雾化,雾化过程中,空气容易从雾化面1212一侧进入第二孔段1213b形成气泡。通过将第一孔段1213a靠近流道1214的端口的当量直径配置为小于第二孔段1213b靠近流道1214的端口的当量直径,增大了气泡从第二孔段1213b进入第一孔段1213a的阻力,促使气泡向流道1214内分散,从而减少了向吸液面1211运动气泡的量的尺寸,吸液面1211上不容易形成大气泡,避免气泡阻塞供液,保证供液充足。另外,分散至流道1214内的气泡受到流道1214的限制,不容易长大形成大气泡。即使气泡附着在吸液面1211堵塞部分第一孔段1213a远离流道1214的端口,流道1214可以给被堵塞的第一孔段1213a对应的第二孔段1213b供液,保证供液充足,避免干烧。流道1214还具有一定的储液作用,可以保证倒抽至少两口不会烧断。
基体121的材质为玻璃、致密陶瓷、多孔陶瓷、硅基中的一种。当基体121的材质为玻璃时,可以为普通玻璃、石英玻璃、硼硅玻璃、光敏铝硅酸锂玻璃中的一种。
基体121可以为平板状、圆筒状、弧状等,具体根据需要进行设计。在一实施方式中,发热体12的基体121为平板状(如图3-图5所示);此时,吸液面1211与雾化面1212平行。示例性的,基体121可以设置为规则的形状,如矩形板状、圆形板状等。
基体121的厚度为0.1mm-5mm。基体121的厚度大于5mm时,无法满足供液需求,导致气溶胶量下降,且造成的热损失多,设置微孔1213和流道1214的成本高;基体121的厚度小于0.1mm时,无法保证基体121的强度,不利于提高电子雾化装置的性能。可选的, 基体121的厚度为0.3mm-2mm。可以理解的是,基体121的厚度根据实际需要进行选择。
在一实施方式中,基体121上的多个微孔1213呈阵列排布;即,多个微孔1213排列成至少一行和/或至少一列,每行或每列中相邻的微孔1213之间的孔中心距相同。
在一实施方式中,微孔1213的横截面形状为圆形或多边形,微孔1213的当量直径为1μm-150μm。可以理解,微孔1213的当量直径小于1μm,无法满足供液需求,导致气溶胶量下降;微孔1213的当量直径大于150μm时,气溶胶生成基质容易从微孔1213内流出造成漏液,导致雾化效率下降。可以理解的是,微孔1213的当量直径根据实际需要进行选择。可选的,微孔1213的当量直径为20μm-100μm。示例性的,微孔1213的横截面形状为圆形(如图3-图5所示)。
在一实施方式中,微孔1213的横截面形状为长条形,微孔1213的当量直径为微孔1213的宽度,微孔1213的宽度为1μm-150μm。可以理解,微孔1213的宽度小于1μm,无法满足供液需求,导致气溶胶量下降;微孔1213的宽度大于150μm时,气溶胶生成基质容易从微孔1213内流出造成漏液,导致雾化效率下降。可选的,微孔1213的宽度为20μm-100μm。可以理解的是,微孔1213的宽度根据实际需要进行选择。通过将微孔1213设为长条形孔,第一孔段1213a和第二孔段1213b均为长条形,从雾化面1212进入的气泡沿着第二孔段1213b的孔壁横向生长,气泡不易从第二孔段1213b脱离,在后续雾化过程中,将气泡从雾化面1212排出;即使气泡进入第一孔段1213a,气泡会沿着第一孔段1213a的孔壁横向生长,不易从第一孔段1213a脱离,减少了气泡附着在吸液面1211的数量和尺寸。
在一实施方式中,沿着微孔1213的轴向的方向,第一孔段1213a的横截面形状相同,第二孔段1213b的横截面形状相同,便于加工。其中,横截面指的是垂直于微孔1213轴线的方向。
在一实施方式中,微孔1213的轴线与基体121的厚度方向平行。也就是说,微孔1213为平行于基体121厚度方向的直通孔,微孔1213 的轴线垂直于吸液面1211(如图3-图5所示)。
在一实施方式中,微孔1213的轴线与基体121的厚度方向形成夹角,夹角的范围为80度-90度。
在一实施方式中,沿着吸液面1211指向雾化面1212的方向,第一孔段1213a的当量直径相同或当量直径逐渐减小或当量直径逐渐增大,和/或第二孔段1213b的当量直径相同或当量直径逐渐减小或当量直径逐渐增大。示例性的,第一孔段1213a的当量直径相同,第二孔段1213b的当量直径相同,第一孔段1213a的当量直径小于第二孔段1213b的当量直径(如图3-图5所示)。
在一实施方式中,流道1214的高度大于第一孔段1213a靠近流道1214的端口的当量直径。第一孔段1213a靠近流道1214的端口的当量直径小于第二孔段1213b靠近流道1214的端口的当量直径,气泡不易进入第一孔段1213a;流道1214的高度大于第一孔段1213a靠近流道1214的端口的当量直径,未进入第一孔段1213a的气泡才容易分散至流道1214内。
在一实施方式中,流道1214的高度为10μm-150μm。流道1214的高度小于10μm时,无法很好的实现防止气泡进入吸液面1211的效果,且不好加工;流道1214的高度大于150μm时,气泡容易横向合并长大形成大气泡,影响供液。可选的,流道1214的高度为20μm-100μm。其中,流道1214的高度指的是流道1214靠近雾化面1212一侧的壁面与流道1214远离雾化面1212一侧的壁面之间的距离。
在一实施方式中,沿着平行于雾化面1212的方向,流道1214的高度相同(如图5所示)。
在一实施方式中,沿着平行于雾化面1212的方向,流道1214的高度逐渐增大或逐渐减小。可以理解,逐渐增大包括连续增大和阶梯式增大。
在一实施方式中,流道1214为一整层间隙。
在一实施方式中,流道1214包括多个间隔设置且沿第一方向X延伸的第一子流道1214a和多个间隔设置且沿第二方向Y延伸的第 二子流道1214b,多个第一子流道1214a和多个第二子流道1214b交叉设置且相互连通。可选的,第一方向与第二方向垂直。可选的,第一子流道1214a与第二子流道1214b在基体121厚度方向同层设置;例如,第一子流道1214a的中轴线与第二子流道1214b的中轴线近似位于同一平面。为了保证顺畅下液,第一子流道1214a的宽度不小于第一孔段1213a靠近流道1214的端口的当量直径且不大于第二孔段1213b靠近流道1214的端口的当量直径;和/或,第二子流道1214b的宽度不小于第一孔段1213a靠近流道1214的端口的当量直径且不大于第二孔段1213b靠近流道1214的端口的当量直径。
在一实施方式中,流道1214包括多个间隔设置且沿第一方向X延伸的第一子流道1214a,一个第一子流道1214a将第一方向X上的多个微孔1213连通。可选的,多个第一子流道1214a在基体121厚度方向同层设置;例如,多个第一子流道1214a的中轴线近似位于同一平面。为了保证顺畅下液,第一子流道1214a的宽度不小于第一孔段1213a靠近流道1214的端口的当量直径且不大于第二孔段1213b靠近流道1214的端口的当量直径。
在一实施方式中,流道1214包括多个间隔设置且沿第二方向Y延伸的第二子流道1214b,一个第二子流道1214b将第二方向Y上的多个微孔1213连通。可选的,多个第二子流道1214b在基体121厚度方向同层设置;例如,多个第二子流道1214b的中轴线近似位于同一平面。为了保证顺畅下液,第二子流道1214b的宽度不小于第一孔段1213a靠近流道1214的端口的当量直径且不大于第二孔段1213b靠近流道1214的端口的当量直径。
在一实施方式中,流道1214与雾化面1212平行(如图5所示)。
在一实施方式中,流道1214与雾化面1212形成夹角。
在一实施方式中,如图4所示,发热体12还包括发热元件122、正电极123和负电极124,发热元件122的两端分别与正电极123、负电极124电连接。正电极123和负电极124均设置于基体121的雾化面上,以便于与主机2电连接。发热元件122可以是发热膜等,能够加热雾化气溶胶生成基质即可。发热元件122设置在基体121的雾 化面上。在另一实施方式中,至少基体121设有第二孔段1213b的部分具有导电功能,其本身可以发热,例如,自身发热的导电陶瓷或具有导电功能的玻璃,此时无需另设发热元件122。
在一实施方式中,如图3-图5所示,仅在基体121的部分表面以阵列排布的方式设置多个微孔1213。具体地,基体121设有微孔阵列区1215和围绕微孔阵列区1215一周设置的留白区1216,微孔阵列区1215具有多个微孔1213;发热元件122设置于微孔阵列区1215,以加热雾化气溶胶生成基质;正电极123和负电极124设置于雾化面1212的留白区1216,以保证正电极123和负电极124电连接的稳定性。
通过在基体121上设有微孔阵列区1215和围绕微孔阵列区1215一周设置的留白区1216,可以理解,留白区1216上并未设置微孔1213,利于提高基体121的强度,降低生产成本。基体121中的微孔阵列区1215作为雾化区,覆盖发热元件122及发热元件122周边区域,也就是基本覆盖达到雾化气溶胶生成基质温度的区域,充分利用了热效率。
可以理解,本申请中的基体121的微孔阵列区1215周边的区域的尺寸大于微孔1213的当量直径,才能称之为留白区1216;即,本申请中的留白区1216是可以形成微孔1213而没有形成微孔1213的区域,而非微孔阵列区1215周边的无法形成微孔1213的区域。
请参阅图7和图8,图7是本申请提供的发热体第二实施例的截面示意图,图8是图7所示的发热体的微孔另一实施方式的截面示意图。
发热体12第二实施例与发热体12第一实施例的结构基本相同,不同之处在于:微孔1213的结构不同。
具体地,在发热体12第一实施例中,沿着吸液面1211指向雾化面1212的方向,第一孔段1213a的当量直径相同,第二孔段1213b的当量直径相同,第一孔段1213a的当量直径小于第二孔段1213b的当量直径。而在发热体12第二实施例中,沿着吸液面1211指向雾化面1212的方向,第一孔段1213a的当量直径逐渐减小,第二孔段1213b 的当量直径逐渐增大,第一孔段1213a靠近流道1214的端口的当量直径小于第二孔段1213b靠近流道1214的端口的当量直径。
在一实施方式中,沿着吸液面1211指向雾化面1212的方向,微孔1213的当量直径先减小后增大,且流道1214沿垂直于基体121的厚度方向的中心线L位于微孔1213的当量直径最小处靠近雾化面1212的一侧。微孔1213的侧壁的纵截面可以为折线(如图7所示)或弧线(如图8所示)。例如,微孔1213呈腰形,且在基体121的厚度方向轴对称,微孔1213在对称轴位置(即腰点A)的当量直径最小,流道1214沿垂直于基体121的厚度方向的中心线L位于微孔1213的对称轴(即腰点A)靠近雾化面1212的一侧。
在一实施方式中,第一孔段1213a和/或第二孔段1213b的壁面为平面。
在一实施方式中,第一孔段1213a和/或第二孔段1213b的壁面为弧面。
在其他实施方式中,沿着吸液面1211指向雾化面1212的方向,第一孔段1213a的当量直径逐渐减小,第二孔段1213b的当量直径逐渐减小;或,沿着吸液面1211指向雾化面1212的方向,第一孔段1213a的当量直径逐渐减小,第二孔段1213b的当量直径相同;或,沿着吸液面1211指向雾化面1212的方向,第一孔段1213a的当量直径逐渐增大,第二孔段1213b的当量直径逐渐减小;或,沿着吸液面1211指向雾化面1212的方向,第一孔段1213a的当量直径逐渐增大,第二孔段1213b的当量直径逐渐增大;或,沿着吸液面1211指向雾化面1212的方向,第一孔段1213a的当量直径逐渐增大,第二孔段1213b的当量直径相同;或,沿着吸液面1211指向雾化面1212的方向,第一孔段1213a的当量直径相同,第二孔段1213b的当量直径逐渐增大;或,沿着吸液面1211指向雾化面1212的方向,第一孔段1213a的当量直径相同,第二孔段1213b的当量直径逐渐减小。需要说明的是,第一孔段1213a和第二孔段1213b的结构根据需要进行设计,只需使第一孔段1213a靠近流道1214的端口的当量直径小于第二孔段1213b靠近流道1214的端口的当量直径即可。
请参阅图9,图9是本申请提供的发热体第三实施例的截面示意图。
发热体12第三实施例与发热体12第一实施例的结构基本相同,不同之处在于:还包括导液件125。通过在基体121的吸液面1211一侧设置导液件125,进一步对供液速度进行控制。需要说明的是,导液件125为可选结构,根据实际需要选择是否设置导液件125。
在一实施方式中,导液件125与基体121的吸液面1211间隔设置形成间隙。
在一实施方式中,导液件125与基体121的吸液面1211接触。
在一实施方式中,导液件125为多孔陶瓷或导液棉,气溶胶生成基质通过导液件125自身的无序孔具有的毛细力导引至基体121的吸液面1211。
在一实施方式中,导液件125的材质为致密的,导液件125上设有多个贯穿孔,该贯穿孔具有毛细力,气溶胶生成基质通过导液件125上有序的贯穿孔导引至基体121的吸液面1211。
本申请提供的发热体12上的微孔1213可以通过激光打孔的方式来得到,也可以通过先激光诱导然后浸入腐蚀液中腐蚀的方式得到;流道1214通过先激光诱导然后浸入腐蚀液中腐蚀的方式得到,可以理解,通过该方式并未在留白区1216形成有流道1214。
以上仅为本申请的实施方式,并非因此限制本申请的专利范围,凡是利用本申请说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本申请的专利保护范围内。

Claims (16)

  1. 一种发热体,应用于电子雾化装置,用于雾化气溶胶生成基质,其中,包括:
    基体,具有相对设置的吸液面和雾化面;所述基体具有多个微孔,所述微孔贯穿所述吸液面和所述雾化面;所述基体内部具有流道,所述流道的延伸方向与所述微孔的延伸方向交叉,所述流道将多个所述微孔连通;所述流道将所述微孔分隔为第一孔段和第二孔段,所述第一孔段位于所述流道靠近所述吸液面的一侧,所述第二孔段位于所述流道靠近所述雾化面的一侧;且,所述第一孔段靠近所述流道的端口的当量直径小于所述第二孔段靠近所述流道的端口的当量直径。
  2. 根据权利要求1所述的发热体,其中,所述微孔的横截面形状为圆形或多边形,所述微孔的当量直径为1μm-150μm;
    或,所述微孔的横截面形状为长条形,所述微孔的当量直径为所述微孔的宽度,所述微孔的宽度为1μm-150μm。
  3. 根据权利要求1所述的发热体,其中,所述微孔的轴线与所述基体的厚度方向平行;和/或,多个所述微孔呈阵列排布。
  4. 根据权利要求1所述的发热体,其中,所述流道的高度为10μm-150μm。
  5. 根据权利要求1所述的发热体,其中,所述流道的高度大于所述第一孔段靠近所述流道的端口的当量直径。
  6. 根据权利要求1所述的发热体,其中,所述流道为一整层间隙;
    或,所述流道包括多个间隔设置且沿第一方向延伸的第一子流道;
    或,所述流道包括多个间隔设置且沿第二方向延伸的第二子流道;
    或,所述流道包括多个间隔设置且沿第一方向延伸的第一子流道和多个间隔设置且沿第二方向延伸的第二子流道,多个所述第一子流道和多个所述第二子流道交叉设置且相互连通。
  7. 根据权利要求6所述的发热体,其中,所述第一子流道的宽度 不小于所述第一孔段靠近所述流道的端口的当量直径且不大于所述第二孔段靠近所述流道的端口的当量直径;和/或,所述第二子流道的宽度不小于所述第一孔段靠近所述流道的端口的当量直径且不大于所述第二孔段靠近所述流道的端口的当量直径。
  8. 根据权利要求1所述的发热体,其中,沿着所述吸液面指向所述雾化面的方向,所述微孔的当量直径先减小后增大,所述流道沿垂直于所述基体的厚度方向的中心线位于所述微孔的当量直径最小处靠近所述雾化面的一侧。
  9. 根据权利要求1所述的发热体,其中,所述流道与所述雾化面平行或形成夹角;
    和/或,所述雾化面与所述吸液面平行。
  10. 根据权利要求1所述的发热体,其中,还包括导液件,所述导液件与所述基体的吸液面间隔设置形成间隙;或,所述导液件与所述基体的吸液面接触。
  11. 根据权利要求10所述的发热体,其中,所述导液件为多孔陶瓷或导液棉;或,所述导液件的材质为致密的,所述导液件上设有多个贯穿孔。
  12. 根据权利要求1所述的发热体,其中,所述基体的材料为玻璃、致密陶瓷、硅基、多孔陶瓷中的一种。
  13. 根据权利要求1所述的发热体,其中,所述基体的厚度为0.1mm-5mm。
  14. 根据权利要求1所述的发热体,其中,还包括发热元件,设于所述雾化面;或,至少所述基体设有所述第二孔段的部分具有导电功能。
  15. 一种雾化器,其中,包括:
    储液腔,用于储存气溶胶生成基质;
    发热体,所述发热体与所述储液腔流体连通,所述发热体用于雾化所述气溶胶生成基质;所述发热体为权利要求1-12任意一项所述的发热体。
  16. 一种电子雾化装置,其中,包括:
    雾化器,所述雾化器为权利要求15所述的雾化器;
    主机,用于为所述发热体工作提供电能和控制所述发热体雾化所述气溶胶生成基质。
PCT/CN2023/115568 2022-11-02 2023-08-29 发热体、雾化器及电子雾化装置 WO2024093477A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211373032.7 2022-11-02
CN202211373032.7A CN118021009A (zh) 2022-11-02 2022-11-02 发热体、雾化器及电子雾化装置

Publications (1)

Publication Number Publication Date
WO2024093477A1 true WO2024093477A1 (zh) 2024-05-10

Family

ID=90929652

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/115568 WO2024093477A1 (zh) 2022-11-02 2023-08-29 发热体、雾化器及电子雾化装置

Country Status (2)

Country Link
CN (1) CN118021009A (zh)
WO (1) WO2024093477A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130068239A1 (en) * 2011-09-21 2013-03-21 Janty Asia Co., Ltd E-cigarette with self-assembly combustion part
CN111109665A (zh) * 2020-01-17 2020-05-08 深圳麦克韦尔科技有限公司 电子雾化装置及其雾化器和发热体
CN113331484A (zh) * 2021-06-04 2021-09-03 深圳麦克韦尔科技有限公司 电子雾化装置及其雾化器和雾化组件
CN216019130U (zh) * 2021-07-23 2022-03-15 深圳麦克韦尔科技有限公司 一种雾化芯、雾化组件、雾化器及电子雾化装置
CN114794578A (zh) * 2021-12-30 2022-07-29 深圳麦克韦尔科技有限公司 发热组件、雾化器及电子雾化装置
CN115177025A (zh) * 2022-05-13 2022-10-14 深圳麦克韦尔科技有限公司 发热体、雾化器及电子雾化装置
CN218921694U (zh) * 2022-11-02 2023-04-28 思摩尔国际控股有限公司 发热体、雾化器及电子雾化装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130068239A1 (en) * 2011-09-21 2013-03-21 Janty Asia Co., Ltd E-cigarette with self-assembly combustion part
CN111109665A (zh) * 2020-01-17 2020-05-08 深圳麦克韦尔科技有限公司 电子雾化装置及其雾化器和发热体
CN113331484A (zh) * 2021-06-04 2021-09-03 深圳麦克韦尔科技有限公司 电子雾化装置及其雾化器和雾化组件
CN216019130U (zh) * 2021-07-23 2022-03-15 深圳麦克韦尔科技有限公司 一种雾化芯、雾化组件、雾化器及电子雾化装置
CN114794578A (zh) * 2021-12-30 2022-07-29 深圳麦克韦尔科技有限公司 发热组件、雾化器及电子雾化装置
CN115177025A (zh) * 2022-05-13 2022-10-14 深圳麦克韦尔科技有限公司 发热体、雾化器及电子雾化装置
CN218921694U (zh) * 2022-11-02 2023-04-28 思摩尔国际控股有限公司 发热体、雾化器及电子雾化装置

Also Published As

Publication number Publication date
CN118021009A (zh) 2024-05-14

Similar Documents

Publication Publication Date Title
CN111109665A (zh) 电子雾化装置及其雾化器和发热体
WO2023124515A1 (zh) 发热组件、雾化器及电子雾化装置
CN218164288U (zh) 发热体、雾化器及电子雾化装置
WO2022179641A2 (zh) 发热体、雾化器及电子雾化装置
WO2023124409A1 (zh) 发热组件、雾化器及电子雾化装置
CN218921694U (zh) 发热体、雾化器及电子雾化装置
CN114916708A (zh) 发热组件、雾化器及电子雾化装置
WO2024093477A1 (zh) 发热体、雾化器及电子雾化装置
WO2024012202A1 (zh) 雾化器及电子雾化装置
WO2022228590A1 (zh) 雾化组件及电子雾化装置
CN114794576A (zh) 发热体、雾化器及电子雾化装置
WO2022170726A1 (zh) 发热体、雾化组件及电子雾化装置
WO2022170728A1 (zh) 发热体、雾化组件及电子雾化装置
WO2023123250A1 (zh) 发热组件、雾化器及电子雾化装置
WO2022056865A1 (zh) 一种电子雾化装置及其加热件、雾化芯、雾化器
WO2024050719A1 (zh) 一种发热组件、雾化器及电子雾化装置
CN219939729U (zh) 发热组件、雾化器及电子雾化装置
CN219679788U (zh) 多孔陶瓷雾化芯及电子烟雾化器
CN116406850A (zh) 发热组件、雾化器及电子雾化装置
WO2022179643A2 (zh) 发热组件、雾化器及电子雾化装置
WO2023216262A1 (zh) 发热体及其制备方法、雾化组件及电子雾化装置
WO2022179642A2 (zh) 发热组件、雾化器及电子雾化装置
CN220343691U (zh) 发热组件、雾化器及电子雾化装置
CN219613043U (zh) 发热体、雾化器及电子雾化装置
WO2023125850A1 (zh) 发热体、雾化器及电子雾化装置