WO2023124409A1 - 发热组件、雾化器及电子雾化装置 - Google Patents

发热组件、雾化器及电子雾化装置 Download PDF

Info

Publication number
WO2023124409A1
WO2023124409A1 PCT/CN2022/125701 CN2022125701W WO2023124409A1 WO 2023124409 A1 WO2023124409 A1 WO 2023124409A1 CN 2022125701 W CN2022125701 W CN 2022125701W WO 2023124409 A1 WO2023124409 A1 WO 2023124409A1
Authority
WO
WIPO (PCT)
Prior art keywords
microhole
substrate
heating component
component according
micropore
Prior art date
Application number
PCT/CN2022/125701
Other languages
English (en)
French (fr)
Inventor
赵月阳
吕铭
樊文远
张彪
汪唯
龚博学
Original Assignee
深圳麦克韦尔科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳麦克韦尔科技有限公司 filed Critical 深圳麦克韦尔科技有限公司
Priority to CN202290000130.3U priority Critical patent/CN220756580U/zh
Publication of WO2023124409A1 publication Critical patent/WO2023124409A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • A24F40/46Shape or structure of electric heating means
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • A24F40/44Wicks
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/10Devices using liquid inhalable precursors

Definitions

  • the present application relates to the technical field of atomization, in particular to a heating component, an atomizer and an electronic atomization device.
  • the electronic atomization device is composed of a heating element, a battery, and a control circuit.
  • the heating element is the core component of the electronic atomization device, and its characteristics determine the atomization effect and user experience of the electronic atomization device.
  • a kind of existing heating element is a cotton core heating element.
  • Most of the cotton core heating elements are spring-shaped metal heating wires wound around cotton rope or fiber rope.
  • the liquid aerosol generating substrate to be atomized is absorbed by the two ends of the cotton rope or fiber rope, and then transported to the central metal heating wire for heating and atomization. Due to the limited area at the end of the cotton rope or fiber rope, the aerosol-generating matrix is adsorbed and the transmission efficiency is low, and there is a risk of dry burning caused by insufficient liquid supply.
  • Ceramic heating element Another kind of existing heating element is ceramic heating element.
  • Most ceramic heating elements form a metal heating film on the surface of the porous ceramic body; the porous ceramic body plays the role of guiding and storing liquid, and the metal heating film realizes the heating and atomization of the liquid aerosol-generating substrate.
  • it is difficult to precisely control the positional distribution and dimensional accuracy of micropores in porous ceramics prepared by high-temperature sintering.
  • it is necessary to reduce the pore size and porosity but in order to achieve sufficient liquid supply, it is necessary to increase the pore size and porosity, which are contradictory.
  • the liquid conduction ability of the porous ceramic matrix is limited, and burnt smell will appear under high power conditions.
  • the heating component, atomizer and electronic atomization device provided by the present application solve the problem that the heating element is prone to insufficient liquid supply in the prior art.
  • the first technical solution provided by this application is to provide a heating component, which is applied to an electronic atomization device, and is used to atomize an aerosol generating substrate, including a first substrate; the first substrate has The first surface and the second surface are oppositely arranged, the first surface is an atomized surface; the first substrate is provided with a plurality of first micropores penetrating the first surface and the second surface; The first micropore is used to guide the aerosol-generating substrate from the second surface to the first surface; the cross-sectional shape of the first micropore is long strip.
  • the first matrix is a dense matrix, and the axes of the first micropores are parallel to the thickness direction of the first matrix; a plurality of the first micropores are arranged in an array.
  • the width of the first micropore is less than or equal to 100 ⁇ m, and/or the aspect ratio of the first micropore is greater than 1.5.
  • the width of the first micropore is 20 ⁇ m-45 ⁇ m, and/or the aspect ratio of the first micropore is greater than 1.5.
  • the heating component further includes a heating element, the heating element is arranged on the first surface of the first substrate, and is used to atomize the aerosol-generating substrate;
  • the first substrate is at least partially conductive, and is used for heating and atomizing the aerosol-generating substrate.
  • the first surface is provided with a groove structure, and the groove structure communicates with a plurality of the first micropores.
  • the groove structure includes a plurality of first grooves extending along a first direction and a plurality of second grooves extending along a second direction; the first grooves and the second grooves slot cross;
  • the length direction of the first microhole is parallel to the first direction; at least part of the first microhole is located at the intersection of the first groove and the second groove.
  • the first micropore spans two of the second grooves.
  • the second technical solution provided by this application is: to provide a heating component, which is applied to an electronic atomization device, and is used to atomize an aerosol generating substrate, including a first substrate and a second substrate;
  • the first substrate has a first surface and a second surface opposite to each other, and the first surface is an atomized surface; the first substrate is provided with a plurality of first holes penetrating the first surface and the second surface.
  • the second substrate has a third surface and a fourth surface oppositely arranged, and the fourth surface is a liquid-absorbing surface; the third surface is arranged opposite to the second surface; on the second substrate There are a plurality of second micropores penetrating through the third surface and the fourth surface; wherein, the cross-sectional shape of the first micropore and/or the second micropore is elongated; the The aerosol-generating substrate reaches the first surface of the first substrate from the fourth surface of the second substrate through the second micropore and the first micropore.
  • the cross-sectional shape of the first micropore is circular, and the cross-sectional shape of the second micropore is elongated.
  • the width of the second micropore is not smaller than the diameter of the first micropore.
  • the diameter of the first micropore is 5 ⁇ m-120 ⁇ m, and the width of the second micropore is 10 ⁇ m-160 ⁇ m.
  • the length of the second micropore is not less than 100 ⁇ m.
  • the distance between adjacent second microholes is not equal to an integer multiple of the diameter of the first microholes.
  • the second base body is rectangular, and the length direction of the second micropores is parallel to the length direction of the second base body.
  • the thickness of the second base body is 0.2mm-1mm.
  • the cross-sectional shape of the first micropore is elongated, and the cross-sectional shape of the second micropore is circular.
  • the cross-sectional shape of the first micropore is elongated, and the cross-sectional shape of the second micropore is elongated.
  • the width of the first micropore is less than or equal to 100 ⁇ m, and/or the aspect ratio of the first micropore is greater than 1.5.
  • the width of the second micropore is 10 ⁇ m-160 ⁇ m, and/or the length of the second micropore is not less than 100 ⁇ m.
  • the projection of one second microhole on the first substrate covers at least part of each of the plurality of first microholes; and/or, the The length direction of the first microhole intersects the length direction of the second microhole.
  • the first surface of the first substrate is provided with a groove structure, and the groove structure communicates with a plurality of the first micropores.
  • the first substrate includes an atomization area
  • the aerosol-generating substrate is atomized in the atomization area to generate an aerosol; at least the atomization area is provided with a plurality of the first micropores ;
  • the area where the second micropores are provided on the second base covers at least the atomization area of the first base.
  • the heating component further includes a heating element, the heating element is arranged on the first surface of the first substrate, and is used to atomize the aerosol-generating substrate;
  • the first substrate is at least partially conductive, and is used for heating and atomizing the aerosol-generating substrate.
  • the first base and the second base are stacked, and a gap is formed between the second surface of the first base and the third surface of the second base;
  • the second surface of the first base and the third surface of the second base are disposed in close contact with or spaced from each other;
  • the second surface of the first base is arranged parallel or non-parallel to the third surface of the second base.
  • the first matrix is a dense matrix, the axes of the first micropores are parallel to the thickness direction of the first matrix; a plurality of the first micropores are arranged in an array;
  • the second matrix is a dense matrix, the axes of the second micropores are parallel to the thickness direction of the second matrix; a plurality of the second micropores are arranged in an array.
  • the third technical solution provided by this application is: provide an atomizer, including a liquid storage cavity and a heating component; the liquid storage cavity is used to store a liquid aerosol generating substrate; the heating component It is the heating component described in any one of the above, the heating component is in fluid communication with the liquid storage cavity, and the heating component is used to atomize the aerosol generating substrate.
  • the fourth technical solution provided by this application is to provide an electronic atomization device, including an atomizer and a host, the atomizer is the above-mentioned atomizer, and the host uses It is used to provide electric energy for the heating component to work and control the heating component to atomize the aerosol-generating substrate.
  • the present application discloses a heating component, an atomizer, and an electronic atomization device.
  • the heating component includes a first base, and the first base has a first surface and a second surface, the first surface is an atomizing surface; the first substrate is provided with a plurality of first micropores passing through the first surface and the second surface; the first micropores are used to guide the aerosol generating substrate from the second surface to the The first surface; the cross-sectional shape of the first microhole is strip-shaped.
  • Fig. 1 is a schematic structural diagram of an electronic atomization device provided in an embodiment of the present application
  • Fig. 2 is a schematic structural diagram of the atomizer of the electronic atomization device provided in Fig. 1;
  • Fig. 3 is a schematic structural view of the first embodiment of the heating component provided by the present application.
  • Fig. 4 is a structural schematic view of the first substrate of the heating component shown in Fig. 3 viewed from the side of the second surface;
  • Fig. 5 is a schematic diagram of the contact with the aerosol generating substrate when the surface of the first micropore is relatively rough;
  • Fig. 6 is a schematic diagram of the contact with the aerosol-generating substrate when the surface of the second micropore is smooth
  • Fig. 7 is a schematic structural diagram of the second embodiment of the heating component provided by the present application.
  • Fig. 8 is a partial enlarged structural schematic view of the first base of the heating component shown in Fig. 7 viewed from the side of the second surface thereof;
  • Fig. 9 is a structural schematic view of the first base of the heating component shown in Fig. 7 viewed from the side of its first surface;
  • Fig. 10 is a partial enlarged structural schematic diagram of Fig. 9;
  • Fig. 11 is a schematic structural view of the third embodiment of the heating component provided by the present application.
  • Fig. 12 is a schematic cross-sectional view of the heating component shown in Fig. 11;
  • Fig. 13 is a structural schematic view of the heating component shown in Fig. 11 viewed from the side of the liquid-absorbing surface;
  • Fig. 14 is a structural schematic diagram of another positional relationship between the first base and the second base of the heating component shown in Fig. 11;
  • Fig. 15 is a structural schematic diagram of another positional relationship between the first base and the second base of the heating component shown in Fig. 11;
  • Fig. 16 is a schematic structural view of the fourth embodiment of the heating component provided by the present application.
  • Fig. 17 is a structural schematic view of the heating component shown in Fig. 16 viewed from the side of the liquid-absorbing surface;
  • Fig. 18 is a structural schematic view of the heating assembly shown in Fig. 16 viewed from the side of the atomizing surface.
  • first”, “second”, and “third” in this application are used for descriptive purposes only, and cannot be understood as indicating or implying relative importance or implicitly specifying the quantity of indicated technical features. Thus, features defined as “first”, “second” and “third” may explicitly or implicitly include at least one of said features.
  • “plurality” means at least two, such as two, three, etc., unless otherwise specifically defined. All directional indications (such as up, down, left, right, front, back%) in the embodiments of the present application are only used to explain the relative positional relationship between the various components in a certain posture (as shown in the drawings) , sports conditions, etc., if the specific posture changes, the directional indication also changes accordingly.
  • FIG. 1 is a schematic structural diagram of an electronic atomization device provided in an embodiment of the present application.
  • an electronic atomization device 100 is provided.
  • the electronic atomization device 100 can be used for atomization of aerosol-generating substrates.
  • the electronic atomization device 100 includes an atomizer 1 and a host 2 electrically connected to each other.
  • the atomizer 1 is used for storing the aerosol-generating substrate and atomizing the aerosol-generating substrate to form an aerosol that can be inhaled by a user.
  • the atomizer 1 can be used in different fields, such as medical treatment, beauty treatment, recreational smoking and the like.
  • the nebulizer 1 can be used in an electronic aerosolization device for atomizing an aerosol-generating substrate and generating an aerosol for the smoker to inhale.
  • the following examples are all based on leisure smoking example.
  • the host 2 includes a battery (not shown) and a controller (not shown).
  • the battery is used to provide electric energy for the operation of the atomizer 1 so that the atomizer 1 can atomize the aerosol generating substrate to form an aerosol; the controller is used to control the operation of the atomizer 1 .
  • the host 2 also includes other components such as a battery holder and an airflow sensor.
  • the atomizer 1 and the host 2 can be integrated or detachably connected, and can be designed according to specific needs.
  • FIG. 2 is a schematic structural diagram of the atomizer of the electronic atomization device provided in FIG. 1 .
  • the atomizer 1 includes a housing 10 , a heating component 11 , and an atomizing seat 12 .
  • the atomizing seat 12 has an installation cavity (not shown in the figure), and the heating component 11 is arranged in the installation cavity;
  • the housing 10 is formed with a mist outlet channel 13, the inner surface of the housing 10, the outer surface of the mist outlet channel 13 cooperate with the top surface of the atomization seat 12 to form a liquid storage chamber 14, and the liquid storage chamber 14 is used to store liquid aerosol generated matrix.
  • the heating component 11 is electrically connected with the host 2, and generates an aerosol by atomizing the aerosol generating substrate.
  • the atomizing seat 12 includes an upper seat 121 and a lower seat 122 , the upper seat 121 cooperates with the lower seat 122 to form an installation cavity;
  • the upper seat 121 is provided with a lower liquid channel 1211 ; the aerosol generating substrate in the liquid storage chamber 14 flows into the heating element 11 through the lower liquid channel 1211 , that is, the heating element 11 is in fluid communication with the liquid storage chamber 14 .
  • the lower seat 122 is provided with an air intake passage 15, through which the outside air enters the atomization chamber 120, carries the aerosol atomized by the heating element 11 and flows to the mist outlet channel 13, and the user inhales through the port of the mist outlet channel 13 aerosol.
  • Figure 3 is a schematic structural view of the first embodiment of the heating component provided by the present application
  • Figure 4 is a schematic structural view of the first base of the heating component shown in Figure 3 viewed from the second surface side.
  • the heating component 11 includes a first base 111 .
  • the first base 111 has a first surface 1111 and a second surface 1112 oppositely disposed, and the first surface 1111 is an atomized surface.
  • the first substrate 111 is provided with a plurality of first micropores 1113 penetrating the first surface 1111 and the second surface 1112; the first micropores 1113 are used to guide the aerosol-generating substrate from the second surface 1112 to the first surface 1111 .
  • the cross-sectional shape of the first microhole 1113 is a strip shape. Wherein, the cross section of the first microhole 1113 refers to a section perpendicular to its axis direction, and the axis direction of the first microhole 1113 is parallel to the thickness direction of the first substrate 111 .
  • the first base body 111 is a sheet base body, and the sheet shape is relative to the block body, and the ratio of the length of the sheet shape to the thickness is larger than the ratio of the length to the thickness of the block body; for example, the first base body 111 is Plate shape (as shown in Figure 4), arc shape, cylinder shape, etc.
  • the first base body 111 is arc-shaped or cylindrical, other structures in the atomizer 1 are arranged in cooperation with the specific structure of the first base body 111 .
  • the length refers to its arc length; when the first base body 111 is cylindrical, the length refers to its circumference.
  • the liquid supply channel of the sheet-type heating element 11 with the first micropore 1113 provided by the application is shorter, and the liquid supply speed is faster, which is beneficial to ensure Sufficient liquid supply, avoid dry burning.
  • replacing the first micropores 1113 from circular holes with elongated holes can increase the porosity of the first matrix 111 and avoid the existence of circular holes on the premise of ensuring sufficient liquid supply. of the above problems.
  • the air bubbles entering the first micropore 1113 during the atomization process will grow longitudinally along the hole wall of the circular hole, and are very easy to attach to the second surface 1112, and then rush into Liquid storage chamber 14; the circular hole is replaced by a long hole, the air bubbles will grow laterally along the hole wall of the long hole, and rarely rush out of the first micropore 1113, so that the second surface of the first substrate 111 1112 The phenomenon of returning air bubbles is significantly reduced.
  • the first matrix 111 is a porous matrix, for example, porous ceramics, cotton, quartz sand core, foam structure material; the multiple micropores of the first matrix 111 itself are the first micropores 1113, the first Microholes 1113 are random vias.
  • the first substrate 111 is a dense substrate, for example, quartz, glass, dense ceramics or silicon; the first micropore 1113 is a through hole penetrating the first surface 1111 and the second surface 1112, and the first micropore 1113 for ordered vias.
  • the material of the first substrate 111 is glass, it may be one of ordinary glass, quartz glass, borosilicate glass, and photosensitive lithium aluminosilicate glass.
  • the dense base body is relatively easy to perform micromachining, and the sizes of the plurality of first micropores 1113 formed on the first base body 111 are basically the same.
  • the porosity of the heating element 11 can be precisely controlled to improve the consistency of the product. That is to say, in mass production, the porosity of the first matrix 111 in the heating element 11 is basically the same, so that the atomization effect of the same batch of electronic atomization devices leaving the factory is consistent.
  • Fig. 5 is a schematic diagram of contacting the aerosol-generating substrate when the surface of the first micropore is rough
  • Fig. 6 is a schematic diagram of contacting the aerosol-generating substrate when the surface of the second micropore is smooth.
  • the surface of the first micropore 1113 formed on the first substrate 111 is rough, that is, the surface of the first micropore 1113 is relatively rough, and the inside of the first micropore 1113
  • the aerosol-generating matrix easily climbs outside through the rough surface, and forms a convex liquid film (as shown in FIG. 5 ) at the port of the first micropore 1113, which is prone to liquid leakage.
  • the surface of the first micropore 1113 formed on the first substrate 111 is smooth, and the contact angle between the aerosol generating substrate and the surface of the first micropore 1113 is less than 90 degrees, and the aerosol is generated
  • the liquid surface formed by the matrix in the first micropore 1113 is a concave liquid surface (as shown in FIG. 6 ), which can prevent liquid leakage.
  • the first matrix 111 is a dense matrix, and the first micropores 1113 are replaced by elongated holes, which have a larger liquid flow area and no leakage.
  • the first microhole 1113 is a through hole, specifically, the axis of the first microhole 1113 is parallel to the thickness direction of the first substrate 111 .
  • a plurality of first microholes 1113 are arranged in an array; specifically, a plurality of first microholes 1113 are arranged in a two-dimensional array, and a plurality of first microholes 1113 are distributed in multiple rows and columns, and between two adjacent rows The spacing is the same, and the spacing between two adjacent columns is the same. It can be understood that the arrangement of the plurality of first microholes 1113 can be designed according to needs, which is not limited in this application.
  • the width of the first microhole 1113 is less than or equal to 100 ⁇ m, and/or the aspect ratio of the first microhole 1113 is greater than 1.5.
  • the width of the first micropore 1113 is greater than 100 ⁇ m, and the aerosol-generating substrate is likely to flow out of the first micropore 1113 to cause liquid leakage, which brings bad experience.
  • the aspect ratio of the first micropores 1113 is less than 1.5, and the boundaries of the first micropores 1113 are not sufficiently restricted to allow bubbles to grow laterally along the walls of the first micropores 1113 .
  • the width of the first microhole 1113 is 20 ⁇ m-45 ⁇ m, and/or the aspect ratio of the first microhole 1113 is greater than 1.5.
  • Bubbles can grow laterally along the walls of the first micropores 1113 in the holes, so as not to enter the liquid storage chamber 14 in reverse, which can improve the atomization efficiency and reduce air return (that is, the air bubbles enter the liquid storage chamber 14 ) brings the risk of dry burning or broken film.
  • the broken film refers to the phenomenon that the heating element 112 described later is broken.
  • the aspect ratio of the first microhole 1113 is greater than 3.
  • the heating component 11 further includes a heating element 112 , a positive electrode 113 and a negative electrode 114 of the heating element 112 , and the two ends of the heating element 112 are electrically connected to the positive electrode 113 and the negative electrode 114 respectively.
  • the heating element 112 is disposed on the first surface 1111 of the first substrate 111 to generate an aerosol by atomizing the aerosol generating substrate.
  • Both the positive electrode 113 and the negative electrode 114 are disposed on the first surface 1111 of the first substrate 111 so as to be electrically connected to the host 2 .
  • the heating element 112 can be a heating sheet, a heating film, a heating net, etc., and it only needs to be able to heat the atomized aerosol generating substrate.
  • the heating element 112 may be buried inside the first base body 111 .
  • the first substrate 111 is at least partially conductive, and is used to heat the atomized aerosol-generating substrate with electricity, that is, the first substrate 111 is atomized while guiding the liquid.
  • the material of the heating element 112 is not limited, and the heat flux distribution of the heating element 112 can be controlled according to the shape and size of the first micropore 1113 , and can be designed according to needs.
  • the elongated hole itself is anisotropic, and different resistances of the heating element 112 can be realized by adjusting the current direction (the shape of the heating element 112 ) and the arrangement of the elongated holes. In other words, a reasonable combination of the elongated hole and the heating element 112 can increase the optional range of materials for the heating element 112 .
  • the applicant also made an experimental comparison between the circular hole and the strip-shaped hole.
  • the fog consumption (atomization amount/power consumption) of the strip-shaped hole is relatively large, the energy utilization rate is high, and the atomization surface is facing downward.
  • the bar hole can reach 1.56, and the round hole can reach 1.3.
  • the heating element 112 is a 316 stainless steel heating film, the power of 6.5W is used, the aerosol generating substrate is cola ice, and the first microhole 1113 is a long strip hole for the experiment, and the atomization amount measured three times is 8.4mg respectively , 8.3mg, 8.1mg; double 2x1 membranes are used, the aerosol generating matrix is cola ice, and the atomization amount of the circular hole is about 7.7mg.
  • the shape of the heating element 112 corresponding to the elongated hole is the same as the shape of the heating film corresponding to the circular hole, and the material of the substrate corresponding to the elongated hole is the same as that of the substrate corresponding to the circular hole. of the same material.
  • Figure 7 is a schematic structural view of the second embodiment of the heating component provided by the present application
  • Figure 8 is a partially enlarged view of the first base of the heating component shown in Figure 7 viewed from the second surface side Structural schematic diagram
  • FIG. 9 is a structural schematic diagram of the first base of the heating component shown in FIG. 7 viewed from its first surface side
  • FIG. 10 is a partially enlarged structural schematic diagram of FIG. 9 .
  • the structure of the second embodiment of the heating component 11 is basically the same as that of the first embodiment of the heating component 11, except that the first surface 1111 of the first substrate 111 is provided with a groove structure 1114, and the groove structure 1114 communicates with multiple The first microhole 1113, the same parts will not be repeated.
  • the groove structure 1114 includes a plurality of first grooves 1114a extending along a first direction and a plurality of second grooves 1114b extending along a second direction, the first grooves 1114a intersect with the second grooves 1114b.
  • the transverse direction refers to a direction not parallel to the extending direction of the first microhole 1113 , for example, a direction perpendicular to the axis of the first microhole 1113 .
  • the length direction of the first microhole 1113 is parallel to the first direction, and at least part of the first microhole 1113 is located at the intersection of the first groove 1114a and the second groove 1114b.
  • the first microhole 1113 straddles the two second grooves 1114b.
  • first grooves 1114a extending along the first direction or only a plurality of second grooves 1114b extending along the second direction may be provided, that is, only communicating in one direction Adjacent to the first microhole 1113 .
  • the first grooves 1114a extending along the first direction and/or the second grooves 1114b extending along the second direction have a capillary effect and can guide the aerosol-generating matrix in a lateral direction, so as to achieve a lateral replenishment effect.
  • the applicant also carried out experimental comparisons between circular holes and strip-shaped holes, wherein the heating element 112 is a 316 stainless steel heating film, the shape is a double 2x1 film, the power of 6.5W is used, and the aerosol generating substrate is cola ice.
  • the first micropore 1113 is a strip-shaped hole (the width of the strip-shaped hole is 28 ⁇ m, and the length is 150 ⁇ m) for experiments.
  • the atomization amounts measured three times are 9.9 mg, 9.7 mg, and 9.6 mg respectively; double 2 ⁇ 1 membranes are used , the aerosol generating matrix is cola ice, and the atomization amount of the circular hole is about 7.7mg.
  • the material of the substrate 111 corresponding to the elongated hole is the same as that of the substrate corresponding to the circular hole; the first surface 1111 of the substrate 111 corresponding to the elongated hole is provided with a groove structure 1114, the first surface of the substrate corresponding to the circular hole is also provided with a groove structure.
  • the groove structure 1114 By setting the groove structure 1114 on the first surface 1111 (the atomization amounts measured three times are 9.9 mg, 9.7 mg, and 9.6 mg respectively) and the first surface 1111 without the groove structure 1114 (the atomization amounts measured three times are respectively Comparing the data of 8.4mg, 8.3mg, and 8.1mg), it is found that by setting the groove structure 1114 on the first surface 1111, it is beneficial to increase the amount of atomization.
  • Figure 11 is a schematic structural view of the third embodiment of the heating component provided by the present application
  • Figure 12 is a schematic cross-sectional view of the heating component shown in Figure 11
  • Figure 13 is a schematic view of the heating component shown in Figure 11 from Schematic diagram of the structure viewed from the side of the liquid-absorbing surface.
  • the difference between the third embodiment of the heating component 11 and the first embodiment of the heating component 11 is that it further includes a second base body 115 disposed on the side of the first base body 111 close to the liquid storage chamber 14 .
  • the second base 115 includes a third surface 1151 and a fourth surface 1152 oppositely disposed, and the fourth surface 1152 is a liquid-absorbing surface.
  • the second substrate 115 is provided with a plurality of second micropores 1153 penetrating the third surface 1151 and the fourth surface 1152; the second micropores 1153 are used to guide the aerosol-generating substrate from the fourth surface 1152 to the third surface 1151 , that is, the second micropores 1153 are used to guide the aerosol-generating substrate from the absorbent surface to the third surface 1151 .
  • the second micropore 1153 is in fluid communication with the first micropore 1113 .
  • the third surface 1151 of the second base 115 is opposite to the second surface 1112 of the first base 111 . It can be understood that the aerosol-generating substrate in the liquid storage chamber 14 flows to the fourth surface 1152 of the second substrate 115 through the lower liquid channel 1211, and is guided to the third surface of the second substrate 115 by the capillary force of the second micropore 1153.
  • the surface 1151 is guided from the second surface 1112 of the first substrate 111 to the first surface 1111 through the capillary force of the first micropore 1113;
  • the first surface 1111 of the first substrate 111 is reached through the second microhole 1153 and the first microhole 1113 .
  • the aerosol-generating substrate flows from the absorbent side to the atomizing side under the action of gravity and/or capillary forces.
  • the aerosol-generating substrate is heated and atomized on the atomizing surface of the heating component 11 to generate an aerosol.
  • the capillary force of the first micropore 1113 is greater than that of the second micropore 1153, so that the aerosol-generating substrate can flow from the liquid-absorbing surface to the atomizing surface.
  • the projection of the second base body 115 on the first base body 111 completely covers the heating element 112 .
  • the temperature of the area where the heating element 112 is set on the first base 111 and the surrounding area can atomize the aerosol generating substrate to generate an aerosol. Therefore, the first base 111 is set The region of the heating element 112 and its vicinity are defined as an atomization region. That is to say, the first substrate 111 includes an atomization area (not shown in the figure), and the aerosol-generating substrate is atomized in the atomization area to generate an aerosol.
  • the atomization area is provided with a plurality of first micropores 1113; on the second substrate 115, the area where the second microholes 1153 are provided at least covers the atomization area of the first substrate 111, so as to ensure that the liquid supply speed can Satisfy the atomization speed of the heating element 112 to achieve a better atomization effect.
  • the second base body 115 By setting the second base body 115 on the side of the first base body 111 close to the liquid storage chamber 14, the second base body 115 can be insulated to a certain extent to prevent the heat on the first base body 111 from being transferred to the liquid storage chamber 14, which is beneficial to ensure the taste consistency.
  • the air bubbles entering through the first micropore 1113 of the first substrate 111 adhere to the second surface 1112 of the first substrate 111, and a second substrate 115 is arranged on one side of the first substrate 111.
  • the second substrate 115 It can prevent the bubbles from growing up and prevent the bubbles from clogging the first micropore 1113 and/or the second micropore 1153, which is beneficial to reduce the influence of the bubbles on the liquid supply and ensure sufficient liquid supply. Because the second micropore 1153 also has capillary force, when the port of the mist outlet channel 13 is used downward, it can prevent the liquid from flowing back and insufficient liquid supply.
  • the second matrix 115 is a sheet matrix, and the sheet is relative to the block, and the ratio of the length to the thickness of the sheet is larger than the length to the thickness of the block; for example, the second matrix 115 It is flat (as shown in Figure 12), arc-shaped, cylindrical, etc.
  • the shape of the second base body 115 is matched with the shape of the first base body 111 . It should be noted that, when the first base body 111 is arc-shaped, the length refers to its arc length; when the first base body 111 is cylindrical, the length refers to its circumference.
  • the second matrix 115 is a porous matrix, for example, porous ceramics, cotton, quartz sand core, foam structure material; the multiple micropores of the second matrix 115 itself are the first micropores 1113, the first Microholes 1113 are random vias.
  • the second substrate 115 is a dense substrate, such as quartz, glass, dense ceramics or silicon; the second micropore 1153 is a through hole penetrating the first surface 1111 and the second surface 1112, and the second micropore 1153 for ordered vias.
  • the material of the second base body 115 is glass, it may be one of ordinary glass, quartz glass, borosilicate glass, and photosensitive lithium aluminosilicate glass.
  • the materials of the first base body 111 and the second base body 115 may be the same or different. Any combination can be made between the first matrix 111 and the second matrix 115.
  • the first matrix 111 is a porous matrix, and the second matrix 115 is a dense matrix; Matrix; for another example, the first matrix 111 is a dense matrix, and the second matrix 115 is a porous matrix; for another example, the first matrix 111 is a dense matrix, and the second matrix 115 is a dense matrix.
  • the first matrix 111 is a dense matrix
  • the second matrix 115 is a dense matrix.
  • the second microhole 1153 is a through hole, specifically, the axis of the second microhole 1153 is parallel to the thickness direction of the second base body 115 .
  • a plurality of second microholes 1153 are arranged in an array; specifically, a plurality of second microholes 1153 are distributed in multiple columns, the distance between two adjacent columns is the same, and the second microholes 1153 in two adjacent columns are arranged in a staggered position. The distance between two adjacent second microholes 1153 in each column is the same. It can be understood that the arrangement of the plurality of second microholes 1153 can be designed according to needs, which is not limited in this application.
  • the thickness of the second base body 115 is 0.2mm-1mm.
  • the thickness of the second base body 115 is less than 0.2mm, it cannot play a good barrier effect on air bubbles, and it is easy to return air (bubbles enter the liquid storage chamber 14), and the noise caused by the return air is large; the thickness of the second base body 115 When it is larger than 1mm, air bubbles are easily stuck in the second micropore 1153, resulting in insufficient liquid supply and serious fouling.
  • the cross-sectional shape of the second microhole 1153 is circular.
  • the cross-section of the second microhole 1153 refers to a cross-section perpendicular to its axis direction.
  • the cross-sectional shape of the second microhole 1153 is an elongated shape (as shown in FIG. 11 and FIG. 13 ).
  • the width of the second microhole 1153 is 10 ⁇ m-160 ⁇ m, and/or the length of the second microhole 1153 is not less than 100 ⁇ m.
  • the width of the second microhole 1153 is less than 10 ⁇ m, which will affect the liquid, and it is easy to cause dry burning due to insufficient liquid supply; the width of the second microhole 1153 is greater than 160 ⁇ m, which can not play a good role in restricting the growth of air bubbles, and is prone to Bubbles grow up and block the second micropore 1153, which affects the liquid supply and causes insufficient liquid supply; the length of the second micropore 1153 is less than 100 ⁇ m. In one embodiment, the length of the second micropore 1153 is not less than 300 ⁇ m.
  • a projection of a second microhole 1153 on the first substrate 111 covers at least part of each first microhole 1113 in a plurality of first microholes 1113;
  • the length direction of 1153 intersects (as shown in FIG. 13 ).
  • the second base body 115 is rectangular, and the length direction of the second microholes 1153 is perpendicular to the length direction of the second base body 115 .
  • the lengthwise direction of the first microhole 1113 intersects with the lengthwise direction of the second microhole 1153, it is convenient to improve the overlapping ratio between the first microhole 1113 and the second microhole 1153, and also improve the direct contact between the first microhole 1113 and the second microhole 1153.
  • the probability that the two micropores 1153 are connected Referring to FIG. 13 , for example, the length direction of the first microhole 1113 is perpendicular to the length direction of the second microhole 1153 , and one second microhole 1153 exposes five or six first microholes 1113 .
  • the second surface 1112 of the first base 111 is attached to the third surface 1151 of the second base 115 (as shown in FIG. 12 ).
  • the projection of the second microhole 1153 on the first substrate 111 covers at least part of the plurality of first microholes 1113 (as shown in FIG. 13 ), so that the aerosol generating matrix passes through the second microhole 1153 from the second microhole 1153 The portion overlapping with the first microhole 1113 enters the first microhole 1113 .
  • the second surface 1112 is arranged parallel to the third surface 1151 .
  • a plurality of microgrooves are provided on the second surface 1112 of the first substrate 111, and these microgrooves communicate with a plurality of first micropores 1113, so that the fluid can be drained from the area with sufficient fluid supply. insufficient area.
  • the width of the microgrooves ranges from 5 ⁇ m to 500 ⁇ m; in one embodiment, the width of the microgrooves ranges from 10 ⁇ m to 100 ⁇ m.
  • the second surface 1112 of the first base 111 is attached to the third surface 1151 of the second base 115, by setting a plurality of microgrooves on the second surface 1112, a gap is formed between the second surface 1112 and the third surface 1151 (not shown); That is to say, the first base 111 and the second base 115 are laminated, the second surface 1112 and the third surface 1151 are attached to each other, and the second surface 1112 and the third surface 1151 form a gap.
  • FIG. 14 is a structural schematic diagram of another positional relationship between the first base and the second base of the heating component shown in FIG. 11 .
  • a gap 116 is formed between the second surface 1112 of the first base 111 and the third surface 1151 of the second base 115 , and the gap 116 communicates with the first micropore 1113 and the second micropore 1153 .
  • the gaps 116 have the same height. That is to say, the first base body 111 and the second base body 115 are stacked, and the first base body 111 and the second base body 115 are arranged in parallel and at intervals, and the second surface 1112 is arranged in parallel with the third surface 1151, so that the second surface 1112 and the third surface 1151 are arranged in parallel.
  • a gap 116 is formed between the third surfaces 1151 .
  • the heating component 11 also includes a spacer 117, which is arranged between the second surface 1112 and the third surface 1151, and is located on the edge of the first base 111 and/or the second base 115, so that the first base 111 and the second The base body 115 forms a gap 116 .
  • the gap 116 By arranging the gap 116, lateral liquid replenishment can be realized, even if air bubbles adhere to the fourth surface 1152 (i.e., the liquid-absorbing surface) of the second substrate 115 and cover part of the second micropores 1153, the flow to the first substrate 111 will not be affected. supply liquid. Further, the setting of the gap 116 limits the range of bubble growth, and it is difficult to form bubbles that escape from the first micropore 1113. When the bubbles collapse, they are discharged from the atomizing surface, thereby preventing large bubbles from adhering to the second substrate 115. The surface affects the liquid supply, effectively avoiding dry burning.
  • FIG. 15 is a structural schematic diagram of another positional relationship between the first base body and the second base body of the heating component shown in FIG. 11 .
  • a gap 116 is formed between the second surface 1112 of the first base 111 and the third surface 1151 of the second base 115 , and the gap 116 communicates with the first micropore 1113 and the second micropore 1153 .
  • the first base body 111 and the second base body 115 are stacked, and the second surface 1112 and the third surface 1151 are not parallel to each other.
  • the height of the gap 116 changes gradually; specifically, the height of the gap 116 increases gradually, or the height of the gap 116 decreases gradually and then increases gradually.
  • the capillary force formed by the gap 116 is also a gradient change to drive the fluid flow in the gap 116, that is, to make the air bubbles in the gap 116 flow, so that the air bubbles in the gap 116 Can not be stuck in a stable state, so as to promote the discharge of air bubbles from the second micropore 1153, avoid air bubbles staying in the gap 116 to block the port of the second micropore 1153 close to the first substrate 111, ensure sufficient liquid supply, and avoid dry burning .
  • the spacer 117 is located on the edge of one end of the first base 111 and the second base 115, and the edge of the other end of the first base 111 and the second base 115 directly abuts; optional , the two spacers 117 are respectively located at the edges of the two ends of the first base body 111 and the second base body 115 and have different heights.
  • the groove structure 1114 provided on the first surface 1111 of the first substrate 111 in the second embodiment of the heating component 11 can also be applied to the third embodiment of the heating component 11 to achieve similar technical effects.
  • Figure 16 is a schematic structural view of the fourth embodiment of the heating component provided by the present application
  • Figure 17 is a schematic structural view of the heating component shown in Figure 16 viewed from the side of the liquid absorption surface
  • Figure 18 is a diagram 16 is a schematic structural view of the heating component viewed from the side of the atomizing surface.
  • the difference between the fourth embodiment of the heating component 11 and the third embodiment of the heating component 11 is that in the third embodiment of the heating component 11, the cross-sectional shape of the first microhole 1113 is elongated, and the shape of the second microhole 1153 is The cross-sectional shape is circular or strip-shaped; while in the fourth embodiment of the heating element 11, the cross-sectional shape of the first microhole 1113 is circular, and the cross-sectional shape of the second microhole 1153 is strip-shaped.
  • the fourth embodiment of the heating component 11 is basically the same as the third embodiment of the heating component 11, and the same parts will not be repeated.
  • the second micropores 1153 of the second substrate 115 as elongated holes, air return (that is, air bubbles entering the liquid storage chamber 14 ) can be prevented while satisfying the liquid supply speed.
  • the resistance of the air bubbles growing horizontally is relatively large, and it is difficult to fill the entire elongated hole, which prevents the air bubbles from blocking the second micropore 1153 and is beneficial to ensure sufficient liquid supply.
  • Bubbles can grow laterally along the wall of the second micropore 1153 in the hole, so that they will not enter the liquid storage chamber 14 in the opposite direction, which can improve the atomization efficiency and reduce the dry burning or membrane breakage caused by the return air. risk.
  • the width of the second microhole 1153 is not smaller than the diameter of the first microhole 1113 , so that the aerosol-generating substrate can flow from the second microhole 1153 to the first microhole 1113 , and then be atomized by the heating element 112 .
  • the projection of a second microhole 1153 on the first substrate 111 covers at least part of each first microhole 1113 in the plurality of first microholes 1113 (as shown in FIG. 17 ), ensuring sufficient liquid supply and avoiding dry roast.
  • the diameter of the first microhole 1113 is 5 ⁇ m-120 ⁇ m.
  • the diameter of the first micropore 1113 is less than 5 ⁇ m, its liquid supply rate cannot meet the atomization demand of the heating element 112, resulting in a decrease in the amount of aerosol; Outflow in the micropore 1113 causes liquid leakage. It can be understood that the diameter of the first microhole 1113 is selected according to actual needs.
  • the width of the second microhole 1153 is 10 ⁇ m-160 ⁇ m.
  • the width of the second microhole 1153 is less than 10 ⁇ m, which will affect the liquid, and it is easy to cause dry burning due to insufficient liquid supply; the width of the second microhole 1153 is greater than 160 ⁇ m, which can not play a good role in restricting the growth of air bubbles, and is prone to Bubbles grow up and block the second micropore 1153, which affects the liquid supply and causes insufficient liquid supply.
  • the length of the second micropore 1153 is not less than 100 ⁇ m.
  • the length of the second micropore 1153 is less than 100 ⁇ m, and the air bubbles are likely to block the second micropore 1153 , hindering the liquid, resulting in insufficient liquid supply.
  • the length of the second micropore 1153 is not less than 300 ⁇ m.
  • the distance between adjacent second microholes 1153 is not equal to the integer multiple of the diameter of the first microhole 1113, which is beneficial to improve the distance between the second microhole 1153 and the first microhole 1153.
  • the alignment rate of the microholes 1113 reduces as much as possible the impact of assembly tolerances on the alignment rate fluctuations between all the first microholes 1113 and all the second microholes 1153, reducing the number of first microholes 1113 after assembly.
  • the deviation between the alignment rate between the second microhole 1153 and the design value ensures the performance of the heating component 11 and improves the consistency of the heating component 11 in mass production.
  • the second base body 115 is rectangular, the length direction of the second microhole 1153 is parallel to the length direction of the second base body 115, and is perpendicular to the length direction of the second base body 115 relative to the length direction of the second microhole 1153.
  • the di-matrix 115 has higher strength.
  • the thickness of the second base body 115 is 0.2mm-1mm.
  • the thickness of the second base body 115 is less than 0.2mm, it cannot play a good barrier effect on air bubbles, and it is easy to return air (bubbles enter the liquid storage chamber 14), and the noise caused by the return air is large; the thickness of the second base body 115 When it is larger than 1mm, air bubbles are easily stuck in the second micropore 1153, resulting in insufficient liquid supply and serious fouling.
  • the second surface 1112 of the first substrate 111 is provided with a plurality of microgrooves (not shown in the figure), and these microgrooves communicate with the first micropores 1113, so that the fluid can be drained from the area with sufficient fluid supply.
  • the width of the microgrooves ranges from 5 ⁇ m to 500 ⁇ m; in one embodiment, the width of the microgrooves ranges from 10 ⁇ m to 100 ⁇ m.
  • the first base body 111 and the second base body 115 are stacked.
  • the second surface 1112 of the first base body 111 is arranged opposite to the third surface 1151 of the second base body 115. Specifically, it can be attached or spaced apart, and can be arranged parallel to or non-parallel to each other; the second surface 1112 of the first base body 111 and A gap 116 is formed between the third surface 1151 of the second substrate 115 to communicate with the first micropore 1113 and the second micropore 1153 .
  • first base body 111 and the second base body 115 are stacked, and the second surface 1112 and the third surface 1151 are attached to each other, and the second surface 1112 and the third surface 1151 are arranged in parallel.
  • the microgrooves (refer to the above introduction for details) form a gap (not shown) between the second surface 1112 and the third surface 1151 .
  • first base 111 and the second base 115 are stacked, and the second surface 1112 and the third surface 1151 are spaced apart and arranged in parallel, so that a gap 116 is formed between the second surface 1112 and the third surface 1151 (refer to FIG. 14 related introduction).
  • first base body 111 and the second base body 115 are stacked, and the gap 116 is non-parallel between the second surface 1112 and the third surface 1151 (refer to the related introduction of FIG. 15 ).

Landscapes

  • Resistance Heating (AREA)
  • Special Spraying Apparatus (AREA)
  • Nozzles (AREA)
  • Fuel-Injection Apparatus (AREA)

Abstract

一种发热组件(11)、雾化器(1)及电子雾化装置(100),发热组件(11)包括第一基体(111),第一基体(111)具有相对设置的第一表面(1111)和第二表面(1112),第一表面(1111)为雾化面;第一基体(111)上设有多个贯穿第一表面(1111)和第二表面(1112)的第一微孔(1113);第一微孔(1113)用于将气溶胶生成基质从第二表面(1112)导引至第一表面(1111);第一微孔(1113)的横截面形状为长条形。通过将第一微孔(1113)的形状设为长条形,一方面提高其下液量,从而保证供液充足;另一方面解决返气卡泡现象。

Description

发热组件、雾化器及电子雾化装置 技术领域
本申请涉及雾化技术领域,尤其涉及一种发热组件、雾化器及电子雾化装置。
背景技术
电子雾化装置由发热体、电池和控制电路等部分组成,发热体作为电子雾化装置的核心元件,其特性决定了电子雾化装置的雾化效果和使用体验。
现有的发热体一种是棉芯发热体。棉芯发热体大多为弹簧状的金属发热丝缠绕棉绳或纤维绳的结构。待雾化的液态气溶胶生成基质被棉绳或纤维绳的两端吸取,然后传输至中心金属发热丝处加热雾化。由于棉绳或纤维绳的端部面积有限,导致气溶胶生成基质吸附、传输效率较低,存在供液不足造成干烧的风险。
现有的发热体另一种是陶瓷发热体。陶瓷发热体大多为在多孔陶瓷体表面形成金属发热膜;多孔陶瓷体起到导液、储液的作用,金属发热膜实现液态气溶胶生成基质的加热雾化。然而,由高温烧结制备的多孔陶瓷难以精确控制微孔的位置分布和尺寸精度。为了降低漏液风险,需要减小孔径、孔隙率,但为了实现充足的供液,需要增大孔径、孔隙率,二者相互矛盾。目前,在满足低漏液风险的孔径、孔隙率条件下,多孔陶瓷基体导液能力受限,在高功率条件下会出现焦糊味。
发明内容
本申请提供的发热组件、雾化器及电子雾化装置,解决现有技术中发热体易出现供液不足的问题。
为了解决上述技术问题,本申请提供的第一个技术方案为:提供一种发热组件,应用于电子雾化装置,用于雾化气溶胶生成基质,包括第一基体;所述第一基体具有相对设置的第一表面和第二表面,所述第一表面为雾化面;所述第一基体上设有多个贯穿所述第一表面和所述第二表面的第一微孔;所述第一微孔用于将气溶胶生成基质从所述第二表面导引至所述第一表面;所述第一微孔的横截面形状为长条形。
在一实施方式中,所述第一基体为致密基体,所述第一微孔的轴线与所述第一基体的厚度方向平行;多个所述第一微孔呈阵列排布。
在一实施方式中,所述第一微孔的宽度小于等于100μm,和/或所述第一微孔的长宽比大于1.5。
在一实施方式中,所述第一微孔的宽度为20μm-45μm,和/或所述第一微孔的长宽比大于1.5。
在一实施方式中,所述发热组件还包括发热元件,所述发热元件设于所述第一基体的所述第一表面,用于雾化所述气溶胶生成基质;
或所述第一基体至少部分导电,以用于通电加热雾化所述气溶胶生成基质。
在一实施方式中,所述第一表面设有凹槽结构,所述凹槽结构连通多个所述第一微孔。
在一实施方式中,所述凹槽结构包括多个沿第一方向延伸的第一凹槽和多个沿第二方向延伸的第二凹槽;所述第一凹槽与所述第二凹槽交叉;
所述第一微孔的长度方向与所述第一方向平行;所述第一微孔的至少部分位于所述第一凹槽与所述第二凹槽的交叉处。
在一实施方式中,所述第一微孔横跨两个所述第二凹槽。
为了解决上述技术问题,本申请提供的第二个技术方案为:提供一种发热组件,应用于电子雾化装置,用于雾化气溶胶生成基质,包括第一基体和第二基体;所述第一基体具有相对设置的第一表面和第二表面,所述第一表面为雾化面;所述第一基体上设有多个贯穿所述第一表面和所述第二表面的第一微孔;所述第二基体具有相对设置的第三表面和第四表面,所述第四表面为吸液面;所述第三表面与所述第二表面相对设置;所述第二基体上设有多个贯穿所述第三表面和所述第四表面的第二微孔;其中,所述第一微孔和/或所述第二微孔的 横截面形状为长条形;所述气溶胶生成基质由所述第二基体的所述第四表面通过所述第二微孔、第一微孔到达所述第一基体的所述第一表面。
在一实施方式中,所述第一微孔的横截面形状为圆形,所述第二微孔的横截面形状为长条形。
在一实施方式中,所述第二微孔的宽度不小于所述第一微孔的直径。
在一实施方式中,所述第一微孔的直径为5μm-120μm,所述第二微孔的宽度为10μm-160μm。
在一实施方式中,所述第二微孔的长度不小于100μm。
在一实施方式中,沿着所述第二微孔的宽度方向,相邻的所述第二微孔之间的间距不等于所述第一微孔的直径的整数倍。
在一实施方式中,所述第二基体为矩形,所述第二微孔的长度方向与所述第二基体的长度方向平行。
在一实施方式中,所述第二基体的厚度为0.2mm-1mm。
在一实施方式中,所述第一微孔的横截面形状为长条形,所述第二微孔的横截面形状为圆形。
在一实施方式中,所述第一微孔的横截面形状为长条形,所述第二微孔的横截面形状为长条形。
在一实施方式中,所述第一微孔的宽度小于等于100μm,和/或所述第一微孔的长宽比大于1.5。
在一实施方式中,所述第二微孔的宽度为10μm-160μm,和/或所述第二微孔的长度不小于100μm。
在一实施方式中,一个所述第二微孔在所述第一基体上的投影覆盖多个所述第一微孔中每个所述第一微孔的至少部分;和/或,所述第一微孔的长度方向与所述第二微孔的长度方向交叉。
在一实施方式中,所述第一基体的所述第一表面设有凹槽结构,所述凹槽结构连通多个所述第一微孔。
在一实施方式中,所述第一基体包括雾化区,所述气溶胶生成基质在所述雾化区雾化产生气溶胶;至少所述雾化区设有多个所述第一微孔;
所述第二基体上设有所述第二微孔的区域至少覆盖所述第一基体的所述雾化区。
在一实施方式中,所述发热组件还包括发热元件,所述发热元件设于所述第一基体的所述第一表面,用于雾化所述气溶胶生成基质;
或所述第一基体至少部分导电,以用于通电加热雾化所述气溶胶生成基质。
在一实施方式中,所述第一基体与所述第二基体层叠设置,且所述第一基体的所述第二表面与所述第二基体的所述第三表面之间形成间隙;
所述第一基体的所述第二表面与所述第二基体的所述第三表面贴合设置或间隔设置;
所述第一基体的所述第二表面与所述第二基体的所述第三表面平行设置或非平行设置。
在一实施方式中,所述第一基体为致密基体,所述第一微孔的轴线与所述第一基体的厚度方向平行;多个所述第一微孔呈阵列排布;
和/或,所述第二基体为致密基体,所述第二微孔的轴线与所述第二基体的厚度方向平行;多个所述第二微孔呈阵列排布。
为了解决上述技术问题,本申请提供的第三个技术方案为:提供一种雾化器,包括储液腔和发热组件;所述储液腔用于存储液态气溶胶生成基质;所述发热组件为上述任意一项所述的发热组件,所述发热组件与所述储液腔流体连通,所述发热组件用于雾化所述气溶胶生成基质。
为了解决上述技术问题,本申请提供的第四个技术方案为:提供一种电子雾化装置,包括雾化器和主机,所述雾化器为上述所述的雾化器,所述主机用于为所述发热组件工作提供电能和控制所述发热组件雾化所述气溶胶生成基质。
本申请的有益效果:区别于现有技术,本申请公开了一种发热组件、雾化器及电子雾化装置,发热组件包括第一基体,第一基体具有相对设置的第一表面和第二表面,第一表面为雾化面;第一基体上设有多个贯穿第一表面和第二表面的第一微孔;第一微孔用于将气溶胶 生成基质从第二表面导引至第一表面;第一微孔的横截面形状为长条形。通过将第一微孔的形状设为长条形,一方面提高其下液量,从而保证供液充足;另一方面,解决返气卡泡现象。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图。
图1是本申请实施例提供的电子雾化装置的结构示意图;
图2是图1提供的电子雾化装置的雾化器的结构示意图;
图3是本申请提供的发热组件第一实施例的结构示意图;
图4是图3所示的发热组件的第一基体从第二表面一侧观看的结构示意图;
图5是第一微孔的表面较粗糙时与气溶胶生成基质接触示意图;
图6是第二微孔的表面光滑时与气溶胶生成基质接触示意图;
图7是本申请提供的发热组件第二实施例的结构示意图;
图8是图7所示的发热组件的第一基体从其第二表面一侧观看的局部放大结构示意图;
图9是图7所示的发热组件的第一基体从其第一表面一侧观看的结构示意图;
图10是图9的局部放大结构示意图;
图11是本申请提供的发热组件第三实施例的结构示意图;
图12是图11所示的发热组件的截面示意图;
图13是图11所示的发热组件从吸液面一侧观看的结构示意图;
图14是图11所示的发热组件的第一基体与第二基体另一位置关系的结构示意图;
图15是图11所示的发热组件的第一基体与第二基体又一位置关系的结构示意图;
图16是本申请提供的发热组件第四实施例的结构示意图;
图17是图16所示的发热组件从吸液面一侧观看的结构示意图;
图18是图16所示的发热组件从雾化面一侧观看的结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本申请的一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
以下描述中,为了说明而不是为了限定,提出了诸如特定系统结构、接口、技术之类的具体细节,以便透彻理解本申请。
本申请中的术语“第一”、“第二”、“第三”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”、“第三”的特征可以明示或者隐含地包括至少一个所述特征。本申请的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。本申请实施例中所有方向性指示(诸如上、下、左、右、前、后……)仅用于解释在某一特定姿态(如附图所示)下各部件之间的相对位置关系、运动情况等,如果所述特定姿态发生改变时,则所述方向性指示也相应地随之改变。本申请实施例中的术语“包括”和“具有”以及它们任何变形,意图在于覆盖不排他的包含。例如包含了一系列步骤或单元的过程、方法、系统、产品或设备没有限定于已列出的步骤或单元,而是可选地还包括没有列出的步骤或单元,或可选地还包括对于这些过程、方法、产品或设备固有的其它步骤或组件。
在本文中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现所述短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。
下面结合附图和实施例对本申请进行详细的说明。
请参阅图1,图1是本申请实施例提供的电子雾化装置的结构示意图。
在本实施例中,提供一种电子雾化装置100。该电子雾化装置100可用于气溶胶生成基质的雾化。电子雾化装置100包括相互电连接的雾化器1和主机2。
其中,雾化器1用于存储气溶胶生成基质并雾化气溶胶生成基质以形成可供用户吸食的气溶胶。该雾化器1具体可用于不同的领域,比如,医疗、美容、休闲吸食等。在一具体实施例中,该雾化器1可用于电子气溶胶化装置,用于雾化气溶胶生成基质并产生气溶胶,以供抽吸者抽吸,以下实施例均以此休闲吸食为例。
雾化器1的具体结构与功能可参见以下实施例所涉及的雾化器1的具体结构与功能,且可实现相同或相似的技术效果,在此不再赘述。
主机2包括电池(图未示)和控制器(图未示)。电池用于为雾化器1的工作提供电能,以使得雾化器1能够雾化气溶胶生成基质形成气溶胶;控制器用于控制雾化器1工作。主机2还包括电池支架、气流传感器等其他元件。
雾化器1与主机2可以是一体设置,也可以是可拆卸连接,可以根据具体需要进行设计。
请参阅图2,图2是图1提供的电子雾化装置的雾化器的结构示意图。
雾化器1包括壳体10、发热组件11、雾化座12。雾化座12具有安装腔(图未标),发热组件11设于该安装腔内;发热组件11同雾化座12一起设于壳体10内。壳体10形成有出雾通道13,壳体10的内表面、出雾通道13的外表面与雾化座12的顶面配合形成储液腔14,储液腔14用于存储液态气溶胶生成基质。其中,发热组件11与主机2电连接,以雾化气溶胶生成基质生成气溶胶。
雾化座12包括上座121和下座122,上座121与下座122配合形成安装腔;发热组件11背离储液腔14的表面与安装腔的腔壁配合形成雾化腔120。上座121上设有下液通道1211;储液腔14内的气溶胶生成基质通道下液通道1211流入发热组件11,即,发热组件11与储液腔14流体连通。下座122上设有进气通道15,外界气体经进气通道15进入雾化腔120,携带发热组件11雾化好的气溶胶流至出雾通道13,用户通过出雾通道13的端口吸食气溶胶。
请参阅图3和图4,图3是本申请提供的发热组件第一实施例的结构示意图,图4是图3所示的发热组件的第一基体从第二表面一侧观看的结构示意图。
发热组件11包括第一基体111。第一基体111具有相对设置的第一表面1111和第二表面1112,第一表面1111为雾化面。第一基体111上设有多个贯穿第一表面1111和第二表面1112的第一微孔1113;第一微孔1113用于将气溶胶生成基质从第二表面1112导引至第一表面1111。第一微孔1113的横截面形状为长条形。其中,第一微孔1113的横截面指的是垂直于其轴线方向的截面,第一微孔1113的轴线方向与第一基体111厚度方向平行。
第一基体111为片状基体,片状是相对于块状体来说的,片状的长度与厚度的比值相对于块状体的长度与厚度的比值要大;例如,第一基体111为平板状(如图4所示)、弧状、圆筒状等。当第一基体111为弧状、圆筒状时,雾化器1中的其他结构与第一基体111的具体结构配合设置。需要说明的是,第一基体111为弧状时,长度指的是其弧长;第一基体111为圆筒状时,长度指的是其周长。
相对于现有的棉芯发热体和多孔陶瓷发热体,本申请提供的这种带第一微孔1113的薄片式结构的发热组件11的供液通道更短,供液速度更快,利于保证供液充足,避免干烧。然而,申请人研究发现当第一微孔1113为圆形孔时,孔径做到约100μm以及100μm以上会产生搁置漏液的问题;而且只要孔径大于45μm,在雾化时就容易出现炸液的现象,导致雾化不充分且造成气溶胶生成基质的浪费;如果孔径小于20μm,则会出现供液不足导致积垢严重的现象。并且申请人研究还发现将第一微孔1113由圆形孔替换为长条形孔,可以提高第一基体111的孔隙率,且在保证供液充足的前提下还可以避免出现圆形孔存在的上述问题。
再者,第一微孔1113为圆形孔时,雾化过程进入第一微孔1113内的气泡会沿着圆形孔的孔壁纵向生长,极易附着在第二表面1112,进而冲进储液腔14;将圆形孔替换为长条形孔,气泡会沿着长条形孔的孔壁横向生长,极少会冲出第一微孔1113,使得第一基体111的第二表面1112返气泡现象明显减轻。
在一实施方式中,第一基体111为多孔基体,例如,多孔陶瓷、棉、石英砂芯、泡沫结构的材料;第一基体111本身具有的多个微孔为第一微孔1113,第一微孔1113为无序通孔。
在一实施方式中,第一基体111为致密基体,例如,石英、玻璃、致密陶瓷或硅;第一微孔1113为贯穿第一表面1111和第二表面1112的直通孔,第一微孔1113为有序通孔。当第一基体111的材质为玻璃时,可以为普通玻璃、石英玻璃、硼硅玻璃、光敏铝硅酸锂玻璃 中的一种。
当第一基体111为致密基体时,致密基体比较容易做微加工处理,在第一基体111上形成的多个第一微孔1113的尺寸基本一致。通过在第一基体111上设置多个具有毛细作用力的第一微孔1113,使得发热组件11的孔隙率的大小可精确控制,提升产品的一致性。也就是说,在批量生产中,发热组件11中第一基体111的孔隙率基本一致,使得同一批出厂的电子雾化装置雾化效果一致。
请参阅图5和图6,图5是第一微孔的表面较粗糙时与气溶胶生成基质接触示意图,图6是第二微孔的表面光滑时与气溶胶生成基质接触示意图。
需要说明的是,若第一基体111为多孔基体,在第一基体111上形成的第一微孔1113的表面比较毛躁,即,第一微孔1113的表面比较粗糙,第一微孔1113内的气溶胶生成基质易通过粗糙表面爬到外面,在第一微孔1113的端口处形成外凸的液膜(如图5所示),易出现漏液现象。若第一基体111为致密基体,在第一基体111上形成的第一微孔1113的表面为光滑的,气溶胶生成基质与第一微孔1113的表面的接触角小于90度,气溶胶生成基质在第一微孔1113内形成的液面为向内凹的液面(如图6所示),可以防止出现漏液现象。
通过研究实验证明,第一基体111为致密基体,第一微孔1113由圆形孔替换为长条形孔,具有更大的液体流通面积,且不会出现漏液现象。
在本实施例中,第一微孔1113为直通孔,具体地,第一微孔1113的轴线与第一基体111的厚度方向平行。多个第一微孔1113呈阵列排布;具体地,多个第一微孔1113呈二维阵列排布,多个第一微孔1113分布为多行和多列,相邻两行之间的间距相同,相邻两列之间的间距相同。可以理解,多个第一微孔1113的排布方式可以根据需要进行设计,本申请对此并不限定。
可选的,第一微孔1113的宽度小于等于100μm,和/或第一微孔1113的长宽比大于1.5。第一微孔1113的宽度大于100μm,气溶胶生成基质容易从第一微孔1113内流出造成漏液,带来不好体验。第一微孔1113的长宽比小于1.5,第一微孔1113的边界限制不足以使气泡沿着第一微孔1113的孔壁横向生长。
可选的,第一微孔1113的宽度为20μm-45μm,和/或第一微孔1113的长宽比大于1.5。气泡可以在孔内沿着第一微孔1113的孔壁横向生长,从而不会反向进入到储液腔14内,可以提升雾化效率,同时减少返气(即,气泡进入储液腔14)带来的干烧或者断膜的风险。需要说明的是,断膜指的是后续介绍的发热元件112出现断裂的现象。在一实施例中,第一微孔1113的长宽比大于3。
继续参阅图4,发热组件11还包括发热元件112,发热元件112正电极113和负电极114,发热元件112的两端分别与正电极113、负电极114电连接。发热元件112设于第一基体111的第一表面1111,以雾化气溶胶生成基质生成气溶胶。正电极113和负电极114均设置于第一基体111的第一表面1111上,以便于与主机2电连接。发热元件112可以是发热片、发热膜、发热网等,能够加热雾化气溶胶生成基质即可。在另一实施方式中,发热元件112可以埋设于第一基体111的内部。在又一实施例中,第一基体111至少部分导电,用于通电加热雾化气溶胶生成基质,即,第一基体111在导液的同时雾化。
发热元件112的材料不限,可以根据第一微孔1113的形貌及其尺寸控制发热元件112的热流密度分布,根据需要进行设计。
再者,长条形孔本身是各向异性的,通过调控电流走向(发热元件112形状)和长条形孔的排布方式,可以实现不同的发热元件112电阻。换言之,合理的长条形孔与发热元件112的组合,可以增大发热元件112材料的可选范围。
申请人还对圆形孔和长条形孔进行了实验对比,长条形孔的雾耗(雾化量/功耗)比较大,能量利用率较高,雾化面朝下方案,目前长条形孔可达到1.56,圆形孔最高为1.3。其中,采用发热元件112为316不锈钢发热膜,采用6.5W的功率,气溶胶生成基质为可乐冰,第一微孔1113为长条形孔进行实验,三次测得的雾化量分别为8.4mg、8.3mg、8.1mg;采用双2x1的膜,气溶胶生成基质为可乐冰,圆形孔的雾化量为7.7mg左右。需要说明的是,在进行实验对比中,长条形孔对应的发热元件112的形状与圆形孔对应的发热膜的形状相同,长条形孔对应的基体的材料与圆形孔对应的基体的材料相同。
请参阅图7-图10,图7是本申请提供的发热组件第二实施例的结构示意图,图8是图7所示的发热组件的第一基体从其第二表面一侧观看的局部放大结构示意图,图9是图7所 示的发热组件的第一基体从其第一表面一侧观看的结构示意图,图10是图9的局部放大结构示意图。
发热组件11第二实施例的结构与发热组件11第一实施例的结构基本相同,不同之处在于:第一基体111的第一表面1111设有凹槽结构1114,凹槽结构1114连通多个第一微孔1113,相同部分不再赘述。
凹槽结构1114包括多个沿第一方向延伸的第一凹槽1114a和多个沿第二方向延伸的第二凹槽1114b,第一凹槽1114a与第二凹槽1114b交叉。
通过在第一表面1111设置相互交叉的第一凹槽1114a和第二凹槽1114b,当第一微孔1113靠近储液腔14的端口堵塞,由于第一凹槽1114a和第二凹槽1114b将多个第一微孔1113连通,气溶胶生成基质可以横向流动,可以继续向被堵塞的第一微孔1113靠近第一表面1111的孔段供液,可以避免干烧。其中,横向是指与第一微孔1113的延伸方向不平行的方向,例如垂直于第一微孔1113轴线的方向。
通过在第一表面1111设有凹槽结构1114,雾化过程中基本无炸液现象。
在本实施例中,第一微孔1113的长度方向与第一方向平行,第一微孔1113的至少部分位于第一凹槽1114a与第二凹槽1114b的交叉处。第一微孔1113横跨两个第二凹槽1114b。
可以理解,在其他实施例中,也可以仅设置沿第一方向延伸的多个第一凹槽1114a或仅设置沿第二方向延伸的多个第二凹槽1114b,即,仅在一个方向连通相邻的第一微孔1113。沿第一方向延伸的第一凹槽1114a和/或沿第二方向延伸的第二凹槽1114b具有毛细作用,可以在横向导流气溶胶生成基质,从而起到横向补液作用。
申请人还对圆形孔和长条形孔进行了实验对比,其中,采用发热元件112为316不锈钢发热膜,形状为双2x1的膜,采用6.5W的功率,气溶胶生成基质为可乐冰,第一微孔1113为长条形孔(长条形孔的宽为28μm,长为150μm)进行实验,三次测得的雾化量分别为9.9mg、9.7mg、9.6mg;采用双2x1的膜,气溶胶生成基质为可乐冰,圆形孔的雾化量为7.7mg左右。需要说明的是,在进行实验对比中,长条形孔对应的基体111的材料与圆形孔对应的基体的材料相同;长条形孔对应的基体111的第一表面1111设有凹槽结构1114,圆形孔对应的基体的第一表面也设有凹槽结构。
通过对第一表面1111设凹槽结构1114(三次测得的雾化量分别为9.9mg、9.7mg、9.6mg)与第一表面1111未设凹槽结构1114(三次测得的雾化量分别为8.4mg、8.3mg、8.1mg)的数据进行对比发现,通过在第一表面1111设凹槽结构1114,利于提高雾化量。
请参阅图11-图13,图11是本申请提供的发热组件第三实施例的结构示意图,图12是图11所示的发热组件的截面示意图,图13是图11所示的发热组件从吸液面一侧观看的结构示意图。
发热组件11第三实施例与发热组件11第一实施例的不同之处在于:还包括第二基体115,第二基体115设于第一基体111靠近储液腔14的一侧。
第二基体115包括相对设置的第三表面1151和第四表面1152,第四表面1152为吸液面。第二基体115上设有多个贯穿第三表面1151和第四表面1152的第二微孔1153;第二微孔1153用于将气溶胶生成基质从第四表面1152导引至第三表面1151,即,第二微孔1153用于将气溶胶生成基质从吸液面导引至第三表面1151。第二微孔1153与第一微孔1113流体连通。
第二基体115的第三表面1151与第一基体111的第二表面1112相对设置。可以理解,储液腔14内的气溶胶生成基质通过下液通道1211流至第二基体115的第四表面1152,通过第二微孔1153的毛细作用力导引至第二基体115的第三表面1151,再经第一微孔1113的毛细作用力从第一基体111的第二表面1112导引至第一表面1111;也就是说,气溶胶生成基质由第二基体115的第四表面1152通过第二微孔1153、第一微孔1113到达第一基体111的第一表面1111。气溶胶生成基质在重力和/或毛细作用力的作用下从吸液面流至雾化面。气溶胶生成基质在发热组件11的雾化面加热雾化生成气溶胶。其中,第一微孔1113的毛细作用力大于第二微孔1153的毛细作用力,以使气溶胶生成基质能够从吸液面流至雾化面。
其中,第二基体115在第一基体111上的投影完全覆盖发热元件112。其中,发热元件112在发热状态下,第一基体111上设发热元件112的区域及其附近的区域具有的温度能够将气溶胶产生基质雾化产生气溶胶,因此,将第一基体111上设发热元件112的区域及其附 近的区域定义为雾化区。也就是说,第一基体111包括雾化区(图未标),气溶胶生成基质在雾化区雾化产生气溶胶。第一基体111上至少雾化区设有多个第一微孔1113;第二基体115上设有第二微孔1153的区域至少覆盖第一基体111的雾化区,以保证供液速度能够满足发热元件112的雾化速度,实现较好的雾化效果。
通过在第一基体111靠近储液腔14的一侧设置第二基体115,第二基体115可以在一定程度上隔热,防止第一基体111上的热量传导至储液腔14,利于保证口感的一致性。雾化过程中气泡经第一基体111的第一微孔1113进入的气泡粘附在第一基体111的第二表面1112,在第一基体111的一侧设第二基体115,第二基体115起到可以防止气泡长大,可以避免气泡堵塞第一微孔1113和/或第二微孔1153,利于降低气泡对供液的影响,保证供液充足。由于第二微孔1153也具有毛细作用力,出雾通道13的端口朝下使用时,可以防止液体回流,防止供液不足。
第二基体115为片状基体,片状是相对于块状体来说的,片状的长度与厚度的比值相对于块状体的长度与厚度的比值要大;例如,第第二基体115为平板状(如图12所示)、弧状、圆筒状等。第二基体115的形状与第一基体111的形状配合设置。需要说明的是,第一基体111为弧状时,长度指的是其弧长;第一基体111为圆筒状时,长度指的是其周长。
在一实施方式中,第二基体115为多孔基体,例如,多孔陶瓷、棉、石英砂芯、泡沫结构的材料;第二基体115本身具有的多个微孔为第一微孔1113,第一微孔1113为无序通孔。
在一实施方式中,第二基体115为致密基体,例如,石英、玻璃、致密陶瓷或硅;第二微孔1153为贯穿第一表面1111和第二表面1112的直通孔,第二微孔1153为有序通孔。当第二基体115的材质为玻璃时,可以为普通玻璃、石英玻璃、硼硅玻璃、光敏铝硅酸锂玻璃中的一种。
第一基体111和第二基体115的材料可以相同,也可以不同。第一基体111和第二基体115之间可以任意组合,例如,第一基体111为多孔基体,第二基体115为致密基体;再例如,第一基体111为多孔基体,第二基体115为多孔基体;再例如,第一基体111为致密基体,第二基体115为多孔基体;再例如,第一基体111为致密基体,第二基体115为致密基体。在本实施例中,第一基体111为致密基体,第二基体115为致密基体。
在本实施例中,第二微孔1153为直通孔,具体地,第二微孔1153的轴线与第二基体115为的厚度方向平行。多个第二微孔1153呈阵列排布;具体地,多个第二微孔1153分布为多列,相邻两列之间的间距相同,相邻两列的第二微孔1153错位设置,每列中相邻两个第二微孔1153之间的间距相同。可以理解,多个第二微孔1153的排布方式可以根据需要进行设计,本申请对此并不限定。
可选的,第二基体115的厚度为0.2mm-1mm。第二基体115的厚度小于0.2mm时,对气泡不能起到很好的阻隔作用,容易返气(气泡进入储液腔14内),且返气带来的噪音大;第二基体115的厚度大于1mm时,气泡容易卡在第二微孔1153内,造成供液不足,积垢严重。
可选的,第二微孔1153的横截面形状为圆形。其中,第二微孔1153的横截面指的是垂直于其轴线方向的截面。
可选的,沿平行于第二基体115的方向,第二微孔1153的横截面形状为长条形(如图11和图13所示)。此时,第二微孔1153的宽度为10μm-160μm,和/或第二微孔1153的长度不小于100μm。第二微孔1153的宽度小于10μm,会影响下液,易出现供液不充足造成干烧;第二微孔1153的宽度大于160μm,对气泡的长大不能起到很好的限制作用,易出现气泡长大堵塞第二微孔1153,影响下液,进而造成供液不足;第二微孔1153的长度小于100μm,气泡容易堵塞第二微孔1153,阻碍下液,导致供液不足。在一实施方式中,第二微孔1153的长度不小于300μm。
一个第二微孔1153在第一基体111上的投影覆盖多个第一微孔1113中每个第一微孔1113的至少部分;和/或第一微孔1113的长度方向与第二微孔1153的长度方向交叉(如图13所示)。可选的,第二基体115为矩形,第二微孔1153的长度方向与第二基体115的长 度方向垂直。
通过使一个第二微孔1153在第一基体111上的投影覆盖多个第一微孔1113中每个第一微孔1113的至少部分,以使第二基体115具有较大的供液量,保证供液充足,避免干烧。
通过使第一微孔1113的长度方向与第二微孔1153的长度方向交叉,便于提高第一微孔1113与第二微孔1153的重叠率,也就提高了第一微孔1113直接与第二微孔1153连通的概率。参见图13,示例性的,第一微孔1113的长度方向与第二微孔1153的长度方向垂直,一个第二微孔1153使得五个或六个第一微孔1113暴露。
在一实施方式中,第一基体111的第二表面1112与第二基体115的第三表面1151贴合设置(如图12所示)。第二微孔1153在第一基体111上的投影覆盖多个第一微孔1113的至少部分(如图13所示),以使气溶胶生成基质从第二微孔1153经第二微孔1153与第一微孔1113重叠的部分进入第一微孔1113。可选的,第二表面1112与第三表面1151平行设置。
可选的,在第一基体111的第二表面1112设有多条微槽(图未示),这些微槽连通多个第一微孔1113,从而可以从供液充足的区域引流到供液不足的区域。微槽的宽度范围为5μm-500μm;在一个实施例中,微槽的宽度为10μm-100μm。虽然第一基体111的第二表面1112与第二基体115的第三表面1151贴合设置,通过在第二表面1112设多条微槽,使得第二表面1112与第三表面1151之间形成间隙(图未示);也就是说,第一基体111与第二基体115层叠设置,第二表面1112与第三表面1151之间贴合设置,且第二表面1112与第三表面1151之间形成间隙。
请参阅图14,图14是图11所示的发热组件的第一基体与第二基体另一位置关系的结构示意图。
在一实施方式中,第一基体111的第二表面1112与第二基体115的第三表面1151之间形成间隙116,间隙116连通第一微孔1113和第二微孔1153。沿着平行于第一基体111的方向,间隙116的高度相同。也就是说,第一基体111与第二基体115层叠设置,且第一基体111与第二基体115平行且间隔设置,第二表面1112与第三表面1151平行设置,以使第二表面1112与第三表面1151之间形成间隙116。
发热组件11还包括间隔件117,间隔件117设于第二表面1112和第三表面1151之间,且位于第一基体111和/或第二基体115边缘,以使第一基体111与第二基体115形成间隙116。
通过设置间隙116,可以实现横向补液,即使气泡粘附在第二基体115的第四表面1152(即吸液面)上,覆盖了部分第二微孔1153,也不影响向第一基体111的供液。进一步,间隙116的设置限缩了气泡长大的范围,比较难形成脱离第一微孔1113的气泡,气泡塌缩时从雾化面排出,从而防止大气泡附着在第二基体115的吸液面上影响供液,有效避免干烧。
请参阅图15,图15是图11所示的发热组件的第一基体与第二基体又一位置关系的结构示意图。
在一实施方式中,第一基体111的第二表面1112与第二基体115的第三表面1151之间形成间隙116,间隙116连通第一微孔1113和第二微孔1153。其中,第一基体111与第二基体115层叠设置,第二表面1112与第三表面1151非平行设置。沿着平行于第一基体111的方向,间隙116的高度呈梯度变化;具体地,间隙116的高度逐渐增大,或间隙116的高度逐渐减小后逐渐增大。
通过将间隙116的高度设置为梯度变化的,使得间隙116形成的毛细作用力也呈梯度变化,以带动间隙116内的流体流动,即,使间隙116内的气泡流动起来,使得间隙116内的气泡不能处于稳定状态而被卡住,从而促进气泡从第二微孔1153排出,避免气泡滞留在间隙116中堵塞第二微孔1153靠近第一基体111的端口,保证供液充足,进而避免干烧。
当间隙116的高度逐渐增大,可选的,间隔件117位于第一基体111和第二基体115一端的边缘,第一基体111和第二基体115另一端的边缘直接抵接;可选的,两个间隔件117分别位于第一基体111和第二基体115的两端的边缘且高度不同。
可以理解,发热组件11第二实施例中在第一基体111的第一表面1111设凹槽结构1114也可以应用于发热组件11第三实施例中,可实现类似的技术效果。
请参阅图16-图18,图16是本申请提供的发热组件第四实施例的结构示意图,图17是 图16所示的发热组件从吸液面一侧观看的结构示意图,图18是图16所示的发热组件从雾化面一侧观看的结构示意图。
发热组件11第四实施例与发热组件11第三实施例的不同之处在于:发热组件11第三实施例中,第一微孔1113的横截面形状为长条形,第二微孔1153的横截面形状为圆形或长条形;而发热组件11第四实施例中,第一微孔1113的横截面形状为圆形,第二微孔1153的横截面形状为长条形。除此之外,发热组件11第四实施例与发热组件11第三实施例基本相同,相同部分不再赘述。
在本实施例中,通过将第二基体115的第二微孔1153设为长条形孔,在满足供液速度的同时可以防止返气(即,气泡进入储液腔14)。气泡横着长大的阻力较大,难以填满整个长条形孔,避免了气泡堵塞第二微孔1153,利于保证充足供液。气泡可以在孔内沿着第二微孔1153的孔壁横向生长,从而不会反向进入到储液腔14内,可以提升雾化效率,同时减少返气带来的干烧或者断膜的风险。
第二微孔1153的宽度不小于第一微孔1113的直径,以使气溶胶生成基质能够从第二微孔1153流至第一微孔1113,进而被发热元件112雾化。
可选的,一个第二微孔1153在第一基体111的投影覆盖多个第一微孔1113中每个第一微孔1113的至少部分(如图17所示),保证供液充足,避免干烧。
可选的,第一微孔1113的直径为5μm-120μm。第一微孔1113的直径小于5μm时,其供液速度无法满足发热元件112的雾化需求,导致气溶胶量下降;第一微孔1113的直径大于120μm时,气溶胶生成基质容易从第一微孔1113内流出造成漏液。可以理解的是,第一微孔1113的孔径根据实际需要进行选择。
可选的,第二微孔1153的宽度为10μm-160μm。第二微孔1153的宽度小于10μm,会影响下液,易出现供液不充足造成干烧;第二微孔1153的宽度大于160μm,对气泡的长大不能起到很好的限制作用,易出现气泡长大堵塞第二微孔1153,影响下液,进而造成供液不足。
可选的,第二微孔1153的长度不小于100μm。第二微孔1153的长度小于100μm,气泡容易堵塞第二微孔1153,阻碍下液,导致供液不足。在一实施方式中,第二微孔1153的长度不小于300μm。
可选的,沿着第二微孔1153的宽度方向,相邻的第二微孔1153之间的间距不等于第一微孔1113的直径的整数倍,利于提高第二微孔1153与第一微孔1113的对位率,尽可能的减小了装配公差对所有第一微孔1113与所有第二微孔1153之间的对位率的波动影响,减小了装配后第一微孔1113与第二微孔1153之间的对位率与设计值之间的偏差,保证发热组件11的性能,提高发热组件11在量产中的一致性。
可选的,第二基体115为矩形,第二微孔1153的长度方向与第二基体115的长度方向平行,相对于第二微孔1153的长度方向与第二基体115的长度方向垂直,第二基体115具有的强度更高。
可选的,第二基体115的厚度为0.2mm-1mm。第二基体115的厚度小于0.2mm时,对气泡不能起到很好的阻隔作用,容易返气(气泡进入储液腔14内),且返气带来的噪音大;第二基体115的厚度大于1mm时,气泡容易卡在第二微孔1153内,造成供液不足,积垢严重。
在一个实施例中,第一基体111的第二表面1112上设有多条微槽(图未示),这些微槽连通第一微孔1113,从而可以从供液充足的区域引流到供液不足的区域,微槽的宽度范围为5μm-500μm;在一个实施例中,微槽的宽度为10μm-100μm。
在一个实施例中,第一基体111与第二基体115层叠设置。第一基体111的第二表面1112与第二基体115的第三表面1151相对设置,具体可以贴合也可以间隔,可以相互平行设置也可以非平行设置;第一基体111的第二表面1112与第二基体115的第三表面1151之间形成间隙116连通第一微孔1113和第二微孔1153。
例如,第一基体111与第二基体115层叠设置,且第二表面1112与第三表面1151贴合设置,第二表面1112与第三表面1151平行设置,通过在第二表面1112上设多条微槽(具体可参见上述介绍),以使第二表面1112与第三表面1151之间形成间隙(图未示)。
再例如,第一基体111与第二基体115层叠设置,且第二表面1112与第三表面1151间隔且平行设置,以使第二表面1112与第三表面1151之间形成间隙116(可参考图14的相 关介绍)。
再例如,第一基体111与第二基体115层叠设置,且第二表面1112与第三表面1151之间非平行设置间隙116(可参考图15的相关介绍)。
以上仅为本申请的实施方式,并非因此限制本申请的专利范围,凡是利用本申请说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本申请的专利保护范围内。

Claims (28)

  1. 一种发热组件,应用于电子雾化装置,用于雾化气溶胶生成基质,其中,包括:
    第一基体,具有相对设置的第一表面和第二表面,所述第一表面为雾化面;所述第一基体上设有多个贯穿所述第一表面和所述第二表面的第一微孔;所述第一微孔用于将气溶胶生成基质从所述第二表面导引至所述第一表面;所述第一微孔的横截面形状为长条形。
  2. 根据权利要求1所述的发热组件,其中,所述第一基体为致密基体,所述第一微孔的轴线与所述第一基体的厚度方向平行;多个所述第一微孔呈阵列排布。
  3. 根据权利要求1所述的发热组件,其中,所述第一微孔的宽度小于等于100μm,和/或所述第一微孔的长宽比大于1.5。
  4. 根据权利要求3所述的发热组件,其中,所述第一微孔的宽度为20μm-45μm,和/或所述第一微孔的长宽比大于1.5。
  5. 根据权利要求1所述的发热组件,其中,所述发热组件还包括发热元件,所述发热元件设于所述第一基体的所述第一表面,用于雾化所述气溶胶生成基质;
    或所述第一基体至少部分导电,以用于通电加热雾化所述气溶胶生成基质。
  6. 根据权利要求1所述的发热组件,其中,所述第一表面设有凹槽结构,所述凹槽结构连通多个所述第一微孔。
  7. 根据权利要求6所述的发热组件,其中,所述凹槽结构包括多个沿第一方向延伸的第一凹槽和多个沿第二方向延伸的第二凹槽;所述第一凹槽与所述第二凹槽交叉;
    所述第一微孔的长度方向与所述第一方向平行;所述第一微孔的至少部分位于所述第一凹槽与所述第二凹槽的交叉处。
  8. 根据权利要求7所述的发热组件,其中,所述第一微孔横跨两个所述第二凹槽。
  9. 一种发热组件,应用于电子雾化装置,用于雾化气溶胶生成基质,其中,包括:
    第一基体,具有相对设置的第一表面和第二表面,所述第一表面为雾化面;所述第一基体上设有多个贯穿所述第一表面和所述第二表面的第一微孔;
    第二基体,具有相对设置的第三表面和第四表面,所述第四表面为吸液面;所述第三表面与所述第二表面相对设置;所述第二基体上设有多个贯穿所述第三表面和所述第四表面的第二微孔;
    其中,所述第一微孔和/或所述第二微孔的横截面形状为长条形;所述气溶胶生成基质由所述第二基体的所述第四表面通过所述第二微孔、第一微孔到达所述第一基体的所述第一表面。
  10. 根据权利要求9所述的发热组件,其中,所述第一微孔的横截面形状为圆形,所述第二微孔的横截面形状为长条形。
  11. 根据权利要求10所述的发热组件,其中,所述第二微孔的宽度不小于所述第一微孔的直径。
  12. 根据权利要求11所述的发热组件,其中,所述第一微孔的直径为5μm-120μm,所述第二微孔的宽度为10μm-160μm。
  13. 根据权利要求10所述的发热组件,其中,所述第二微孔的长度不小于100μm。
  14. 根据权利要求10所述的发热组件,其中,沿着所述第二微孔的宽度方向,相邻的所述第二微孔之间的间距不等于所述第一微孔的直径的整数倍。
  15. 根据权利要求10所述的发热组件,其中,所述第二基体为矩形,所述第二微孔的长度方向与所述第二基体的长度方向平行。
  16. 根据权利要求9所述的发热组件,其中,所述第二基体的厚度为0.2mm-1mm。
  17. 根据权利要求9所述的发热组件,其中,所述第一微孔的横截面形状为长条形,所述第二微孔的横截面形状为圆形。
  18. 根据权利要求9所述的发热组件,其中,所述第一微孔的横截面形状为长条形,所述第二微孔的横截面形状为长条形。
  19. 根据权利要求17或18所述的发热组件,其中,所述第一微孔的宽度小于等于100μm,和/或所述第一微孔的长宽比大于1.5。
  20. 根据权利要求18所述的发热组件,其中,所述第二微孔的宽度为10μm-160μm,和/或所述第二微孔的长度不小于100μm。
  21. 根据权利要求18所述的发热组件,其中,一个所述第二微孔在所述第一基体上的投影覆盖多个所述第一微孔中每个所述第一微孔的至少部分;和/或,所述第一微孔的长度方向与所述第二微孔的长度方向交叉。
  22. 根据权利要求9所述的发热组件,其中,所述第一基体的所述第一表面设有凹槽结构,所述凹槽结构连通多个所述第一微孔。
  23. 根据权利要求9所述的发热组件,其中,所述第一基体包括雾化区,所述气溶胶生成基质在所述雾化区雾化产生气溶胶;至少所述雾化区设有多个所述第一微孔;
    所述第二基体上设有所述第二微孔的区域至少覆盖所述第一基体的所述雾化区。
  24. 根据权利要求9所述的发热组件,其中,所述发热组件还包括发热元件,所述发热元件设于所述第一基体的所述第一表面,用于雾化所述气溶胶生成基质;
    或所述第一基体至少部分导电,以用于通电加热雾化所述气溶胶生成基质。
  25. 根据权利要求9所述的发热组件,其中,所述第一基体与所述第一基体层叠设置,且所述第一基体的所述第二表面与所述第二基体的所述第三表面之间形成间隙;
    所述第一基体的所述第二表面与所述第二基体的所述第三表面贴合设置或间隔设置;
    所述第一基体的所述第二表面与所述第二基体的所述第三表面平行设置或非平行设置。
  26. 根据权利要求9所述的发热组件,其中,所述第一基体为致密基体,所述第一微孔的轴线与所述第一基体的厚度方向平行;多个所述第一微孔呈阵列排布;
    和/或,所述第二基体为致密基体,所述第二微孔的轴线与所述第二基体的厚度方向平行;多个所述第二微孔呈阵列排布。
  27. 一种雾化器,其中,包括:
    储液腔,用于储存气溶胶生成基质;
    发热组件,所述发热组件为权利要求1-26任意一项所述的发热组件;所述发热组件与所述储液腔流体连通,所述发热组件用于雾化所述气溶胶生成基质。
  28. 一种电子雾化装置,其中,包括:
    雾化器,所述雾化器为权利要求27所述的雾化器;
    主机,用于为所述雾化器工作提供电能和控制所述发热组件雾化所述气溶胶生成基质。
PCT/CN2022/125701 2021-12-30 2022-10-17 发热组件、雾化器及电子雾化装置 WO2023124409A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202290000130.3U CN220756580U (zh) 2021-12-30 2022-10-17 发热组件、雾化器及电子雾化装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CNPCT/CN2021/143267 2021-12-30
PCT/CN2021/143267 WO2022179300A2 (zh) 2021-12-30 2021-12-30 发热组件、雾化器及电子雾化装置

Publications (1)

Publication Number Publication Date
WO2023124409A1 true WO2023124409A1 (zh) 2023-07-06

Family

ID=83050184

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/CN2021/143267 WO2022179300A2 (zh) 2021-12-30 2021-12-30 发热组件、雾化器及电子雾化装置
PCT/CN2022/125701 WO2023124409A1 (zh) 2021-12-30 2022-10-17 发热组件、雾化器及电子雾化装置

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/143267 WO2022179300A2 (zh) 2021-12-30 2021-12-30 发热组件、雾化器及电子雾化装置

Country Status (4)

Country Link
US (1) US20230210183A1 (zh)
EP (1) EP4205582A4 (zh)
CN (3) CN220800052U (zh)
WO (2) WO2022179300A2 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN218185267U (zh) * 2022-05-13 2023-01-03 深圳麦克韦尔科技有限公司 发热体、雾化器及电子雾化装置
WO2024050719A1 (zh) * 2022-09-07 2024-03-14 深圳麦克韦尔科技有限公司 一种发热组件、雾化器及电子雾化装置

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180154090A1 (en) * 2016-12-01 2018-06-07 Mark L. Anderson Sprayer Technology
CN108158040A (zh) * 2018-01-03 2018-06-15 云南中烟工业有限责任公司 一种均匀发热的mems电子烟芯片及其制造方法
CN108158039A (zh) * 2018-01-03 2018-06-15 云南中烟工业有限责任公司 一种集成多个Pt温度传感器的MEMS发热芯片及其制造方法
US20200214361A1 (en) * 2019-01-05 2020-07-09 Shenzhen First Union Technology Co., Ltd. Atomizing core
WO2021083130A1 (zh) * 2019-10-28 2021-05-06 深圳麦克韦尔科技有限公司 电子雾化装置、料筒及料筒基体
CN113662250A (zh) * 2021-09-02 2021-11-19 美满芯盛(杭州)微电子有限公司 一种mems硅基雾化芯及其制造方法
CN215303052U (zh) * 2021-01-11 2021-12-28 深圳麦克韦尔科技有限公司 雾化芯及电子雾化装置
CN114794577A (zh) * 2021-12-30 2022-07-29 深圳麦克韦尔科技有限公司 发热组件、雾化器及电子雾化装置
CN114794579A (zh) * 2021-12-30 2022-07-29 深圳麦克韦尔科技有限公司 发热组件、雾化器及电子雾化装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107006896B (zh) * 2017-05-05 2019-04-09 湖北中烟工业有限责任公司 一种复合的陶瓷雾化器及其制备方法
EP3620070B1 (en) * 2018-08-22 2024-01-24 Shenzhen Innokin Technology Co., Ltd. Three-dimensional structure heating unit and e-liquid guiding unit for atomizer of e-cigarette and manufacturing method thereof
CN110934343A (zh) * 2019-11-25 2020-03-31 深圳麦克韦尔科技有限公司 发热体组件及其制作方法、电子雾化装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180154090A1 (en) * 2016-12-01 2018-06-07 Mark L. Anderson Sprayer Technology
CN108158040A (zh) * 2018-01-03 2018-06-15 云南中烟工业有限责任公司 一种均匀发热的mems电子烟芯片及其制造方法
CN108158039A (zh) * 2018-01-03 2018-06-15 云南中烟工业有限责任公司 一种集成多个Pt温度传感器的MEMS发热芯片及其制造方法
US20200214361A1 (en) * 2019-01-05 2020-07-09 Shenzhen First Union Technology Co., Ltd. Atomizing core
WO2021083130A1 (zh) * 2019-10-28 2021-05-06 深圳麦克韦尔科技有限公司 电子雾化装置、料筒及料筒基体
CN215303052U (zh) * 2021-01-11 2021-12-28 深圳麦克韦尔科技有限公司 雾化芯及电子雾化装置
CN113662250A (zh) * 2021-09-02 2021-11-19 美满芯盛(杭州)微电子有限公司 一种mems硅基雾化芯及其制造方法
CN114794577A (zh) * 2021-12-30 2022-07-29 深圳麦克韦尔科技有限公司 发热组件、雾化器及电子雾化装置
CN114794579A (zh) * 2021-12-30 2022-07-29 深圳麦克韦尔科技有限公司 发热组件、雾化器及电子雾化装置

Also Published As

Publication number Publication date
EP4205582A2 (en) 2023-07-05
WO2022179300A8 (zh) 2023-11-02
CN220756580U (zh) 2024-04-12
WO2022179300A2 (zh) 2022-09-01
CN116406860A (zh) 2023-07-11
WO2022179300A3 (zh) 2022-10-20
EP4205582A4 (en) 2023-12-20
WO2022179300A9 (zh) 2023-08-03
US20230210183A1 (en) 2023-07-06
CN220800052U (zh) 2024-04-19

Similar Documents

Publication Publication Date Title
WO2023124409A1 (zh) 发热组件、雾化器及电子雾化装置
US9603389B2 (en) Electronic cigarette
CN111109665A (zh) 电子雾化装置及其雾化器和发热体
WO2023124515A1 (zh) 发热组件、雾化器及电子雾化装置
WO2021142786A1 (zh) 电子雾化装置及其雾化器和发热体
CN114794578A (zh) 发热组件、雾化器及电子雾化装置
WO2022179641A2 (zh) 发热体、雾化器及电子雾化装置
WO2022179301A2 (zh) 发热体、雾化器及电子雾化装置
CN114794577A (zh) 发热组件、雾化器及电子雾化装置
WO2020248230A1 (zh) 电子雾化装置及其雾化器和发热组件
CN115177025A (zh) 发热体、雾化器及电子雾化装置
CN114916708A (zh) 发热组件、雾化器及电子雾化装置
CN218921694U (zh) 发热体、雾化器及电子雾化装置
CN114794576A (zh) 发热体、雾化器及电子雾化装置
WO2023125850A1 (zh) 发热体、雾化器及电子雾化装置
WO2022170725A1 (zh) 一种导液玻璃基体以及发热体的制备方法
WO2022179644A2 (zh) 发热组件、雾化器及电子雾化装置
WO2023124162A1 (zh) 发热组件、雾化器及电子雾化装置
WO2023123250A1 (zh) 发热组件、雾化器及电子雾化装置
CN114794569A (zh) 一种雾化芯、雾化器及其电子雾化装置
WO2024050719A1 (zh) 一种发热组件、雾化器及电子雾化装置
WO2022179643A2 (zh) 发热组件、雾化器及电子雾化装置
WO2022179642A2 (zh) 发热组件、雾化器及电子雾化装置
WO2024093477A1 (zh) 发热体、雾化器及电子雾化装置
CN218605114U (zh) 一种雾化芯、雾化器及电子雾化装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 202290000130.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22913673

Country of ref document: EP

Kind code of ref document: A1