WO2022056865A1 - 一种电子雾化装置及其加热件、雾化芯、雾化器 - Google Patents

一种电子雾化装置及其加热件、雾化芯、雾化器 Download PDF

Info

Publication number
WO2022056865A1
WO2022056865A1 PCT/CN2020/116295 CN2020116295W WO2022056865A1 WO 2022056865 A1 WO2022056865 A1 WO 2022056865A1 CN 2020116295 W CN2020116295 W CN 2020116295W WO 2022056865 A1 WO2022056865 A1 WO 2022056865A1
Authority
WO
WIPO (PCT)
Prior art keywords
micro
heating element
grooves
atomization
liquid
Prior art date
Application number
PCT/CN2020/116295
Other languages
English (en)
French (fr)
Inventor
柯志勇
吕铭
熊玉明
Original Assignee
深圳麦克韦尔科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳麦克韦尔科技有限公司 filed Critical 深圳麦克韦尔科技有限公司
Priority to PCT/CN2020/116295 priority Critical patent/WO2022056865A1/zh
Publication of WO2022056865A1 publication Critical patent/WO2022056865A1/zh
Priority to US18/183,357 priority patent/US20230218002A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • A24F40/46Shape or structure of electric heating means
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/10Devices using liquid inhalable precursors
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • A24F40/42Cartridges or containers for inhalable precursors
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • A24F40/44Wicks
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • A24F40/48Fluid transfer means, e.g. pumps
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/50Control or monitoring
    • A24F40/51Arrangement of sensors
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/70Manufacture

Definitions

  • the application belongs to the technical field of electronic atomization devices, and in particular relates to an electronic atomization device and its heating element, atomization core, and atomizer.
  • the electronic atomization device can heat the atomized liquid by using a heating wire, so that the atomized liquid is released after atomization, which has been widely used in daily life.
  • the main technical problem to be solved by this application is to provide a portable base station and a portable vehicle, which can meet the needs of different application scenarios such as base station transportation, carrying, and station construction.
  • the present application provides an electronic atomization device and its heating element, atomization core, and atomizer to solve the above-mentioned technical problems.
  • a technical solution adopted in the present application is to provide a heating element for atomization, and the heating element is used for connecting with a preset suction liquid, so that the mist provided by the suction liquid is provided.
  • the liquid is heated and atomized;
  • the surface of the heating element is provided with a micro-groove portion, and the micro-groove portion is arranged at least on the side of the heating element away from the liquid suction, the micro-groove portion includes a micro-groove, and the opening of the micro-groove is Connected to the suction liquid.
  • the micro groove is a groove opened on the surface of the heating element.
  • the micro-grooves are at least two protrusions disposed on the surface of the heating element, and the micro-grooves are formed between two adjacent protrusions.
  • the heating element is a metal wire
  • micro-grooves are arc-shaped grooves opened on the surface of the metal wire;
  • micro-grooves are linear grooves opened on the surface of the metal wire.
  • the micro-grooves are arc-shaped grooves opened on the surface of the metal wire;
  • the arc-shaped groove is an annular groove arranged on the surface of the metal wire;
  • the arc-shaped groove is a spiral-shaped groove arranged on the surface of the metal wire.
  • the micro groove is a linear groove opened on the surface of the metal wire
  • the extending direction of the linear groove is perpendicular to the length direction of the wire;
  • the extending direction of the linear groove is parallel to the length direction of the metal wire, and the metal wire is bent at the end of the linear groove.
  • the number of the micro-grooves is plural, and the plurality of the micro-grooves are arranged at intervals along the length direction of the metal wire.
  • each of the micro-grooves is provided with a plurality of parallel and spaced micro-grooves, and the width of the micro-grooves is 3-5 times the width of the micro-grooves.
  • the distance between two adjacent micro-grooves is 5-8 times the width of the micro-grooves.
  • the depth of the micro groove is 5um-15um, and the width is 5um-30um.
  • the cross-section of the microgrooves is triangular, rectangular, trapezoidal, semicircular or oval.
  • a technical solution adopted in the present application is to provide an atomizing core, characterized in that, the atomizing core comprises a liquid absorbing element and the heating element according to any one of claims 1-10.
  • the suction liquid includes an atomization surface and a liquid suction surface, and the suction liquid is used for the atomization liquid to enter from the liquid suction surface and to reach the atomization surface after passing through the suction liquid;
  • the heating element is connected with the liquid suction, and the heating element is arranged on one side of the atomizing surface for heating and atomizing the atomizing liquid passing through the atomizing surface;
  • the micro-grooves are disposed at least on the side of the heating element away from the atomizing surface, the micro-grooves include micro-grooves, and the openings of the micro-grooves are connected to the atomizing surface.
  • an atomization hole is opened on the suction liquid, and the atomization surface is arranged on the inner wall of the atomization hole;
  • the heating element is a metal wire coiled in a spiral shape, and is fixedly connected with the inner wall of the atomization hole.
  • a technical solution adopted in this application is to provide an atomizer, the atomizer includes an atomization sleeve, a mounting seat and an atomization core, wherein the atomization core is as described above The atomizing core.
  • a technical solution adopted in the present application is to provide an electronic atomization device, and the electronic atomization device includes:
  • an atomizer which is used to store the atomized liquid and atomize the atomized liquid to form smoke that can be inhaled by the user, wherein the atomizer is the atomizer as described above;
  • a body assembly for powering the atomizer.
  • micro-grooves are provided on the heating element, so that the atomized liquid can be more easily formed into a vaporization core during the heating and atomization process of the atomized liquid by the heating element, and the boiling during the atomization process can be increased.
  • the vaporization core reduces the heat flux density in the atomization process, so that the bubbles formed by the vaporization core can grow out of the micro-groove structure and separate from the liquid film surface of the atomizing liquid.
  • the boiling characteristics in the process control the mechanism of aerosol formation (ie, control the location of aerosol formation and the size of the aerosol), so that the mouthfeel in the atomization process can be effectively realized.
  • Fig. 1 is the structural representation of an embodiment of a kind of atomizing core provided by the application;
  • Fig. 2 is the exploded view of the atomizing core shown in Fig. 1;
  • Fig. 3 is the sectional view of the atomizing core shown in Fig. 1;
  • FIG. 4 is a schematic structural diagram of an embodiment of a heating wire forming the heating element shown in FIG. 2;
  • FIG. 5 is a cross-sectional view of an embodiment of the heating wire shown in FIG. 4;
  • FIG. 6 is a cross-sectional view of another embodiment of the heating wire shown in FIG. 4;
  • FIG. 7 is a schematic structural diagram of another embodiment of a straight section of the heating wire forming the heating element shown in FIG. 2;
  • FIG. 8 is a cross-sectional view of the heating wire of the heating element shown in FIG. 7;
  • FIG. 9 is a schematic structural diagram of another embodiment of the atomizing core provided by the present application.
  • FIG. 10 is a partial enlarged view of an embodiment of the heating wire for forming the heating element shown in FIG. 9 in region II;
  • FIG. 11 is a partial enlarged view of another embodiment of the heating wire forming the heating element shown in FIG. 9 in the II region;
  • FIG. 12 is a schematic structural diagram of an embodiment of the heating element in the atomizing core shown in FIG. 9;
  • FIG. 13 is a schematic structural diagram of another embodiment of the heating element in the atomizing core shown in FIG. 9;
  • Fig. 15 is the schematic diagram when the heating element in the prior art is used for heating atomization
  • Fig. 16a-Fig. 16c are schematic diagrams showing the change of atomization effect when the heating element in the prior art is used for heating atomization
  • 17 is a schematic structural diagram of a part of the heating wire of the heating element provided by the present application.
  • Figure 18 is a partial enlarged view of the heating wire provided in Figure 17;
  • Fig. 19 is a schematic diagram when the heating element provided by the present application is used for heating atomization
  • 20a-20c are schematic diagrams of changes in atomization effect when a heating element provided by the present application is used for heating atomization;
  • 21a-21c are schematic diagrams of changes in atomization effect when another heating element provided by the present application is used for heating atomization;
  • 22 is a schematic structural diagram of an embodiment of an atomizer provided by the present application.
  • FIG. 23 is a schematic structural diagram of an embodiment of an electronic atomization device provided by the present application.
  • Figure 1 is a schematic structural diagram of an embodiment of an atomizing core provided by the application;
  • Figure 2 is an exploded view of the atomizing core shown in Figure 1;
  • Figure 3 is the atomizing core shown in Figure 1 sectional view.
  • the atomizing core 10 includes a liquid absorbing liquid 100 and a heating element 200 .
  • the atomizing core 10 can be used to heat the atomizing liquid so as to atomize the atomizing liquid.
  • a plurality of micropores are formed in the absorbent liquid 100, and the atomized liquid can enter the absorbent liquid 100 through the micropores, or the atomized liquid can also penetrate from one side of the absorbent liquid 100 to the other side through the micropores. Wherein, the plurality of micropores in the suction liquid 100 can also store the atomized liquid.
  • the heating element 200 is partially embedded in the liquid absorbing liquid 100 .
  • the liquid absorbent 100 may be a sintered porous body, specifically, the sintered porous body may be a ceramic porous body. It can be understood that in other embodiments, the sintered porous body may not be limited to a ceramic porous body, for example, it may be a glass porous body or a glass ceramic porous body, and its material may be alumina, silicon oxide, nitride Any one or more of silicon, silicate and silicon carbide. Alternatively, the absorbent body 100 may be formed of fiber cotton.
  • the heating element 200 can be made of any one of iron-chromium alloys, iron-chromium-aluminum alloys, iron-chromium-nickel alloys, chromium-nickel alloys, titanium alloys, stainless steel alloys, and Karma alloys, or at least one of them. The two are mixed together.
  • the heating element 200 can be set to have a certain resistance value. By connecting the heating element 200 with a power source, the heating element 200 can generate heat to heat and atomize the atomized liquid.
  • the shape and size of the liquid absorbent 100 are not limited, and can be selected according to needs.
  • the atomizing surface 1001 and the liquid absorbing surface 1002 of the liquid absorbing liquid 100 may be arranged on different surfaces of the liquid absorbing liquid 100 ;
  • the liquid suction 100 may be cylindrical as a whole, and the liquid suction 100 is provided with an atomization hole 110 , and the heating element 200 is spirally arranged in the atomization hole 110 and can be connected to the atomization hole 110 .
  • the inner wall of the atomization hole 110 can form the atomization surface 1001, and the outer surface of the liquid absorbing liquid 100 can form the liquid absorbing surface 1002, wherein the atomizing liquid can self-absorb the liquid absorbing surface 1002 of the liquid 100.
  • the side penetrates into the suction liquid 100 and can penetrate out from the atomizing surface 1001 , and the heating element 200 can be arranged at the position of the atomizing surface 1001 to heat and atomize the atomizing liquid that penetrates from the atomizing surface 1001 .
  • the heating element 200 may also be disposed on the outer surface of the liquid absorbing liquid 100 , and the outer surface of the liquid absorbing liquid 100 may constitute the atomization surface 1001 .
  • the inner wall can constitute the liquid absorbing surface 1002, and the installation position of the heating element 200, the positions of the atomizing surface 1001 and the liquid absorbing surface 1002 on the liquid absorbing liquid 100 can be set according to specific requirements, which are not further limited here.
  • the heating element 200 may be a cotton wick, and the heating element 200 may be wound around the outer surface of the heating element 200 .
  • the heating element 200 may be provided with a micro-groove portion 210, and the micro-groove portion 210 may include at least one micro-groove 2101, wherein the opening of the micro-groove 2101 may be connected to the atomizing surface 1001, that is, the The opening can be butted on the atomizing surface 1001 , so that the atomizing liquid permeating from the atomizing surface 1001 can enter the micro groove 2101 .
  • the atomized liquid can be more easily formed into a vaporization core during the heating and atomization process of the atomized liquid by the heating element, which increases the boiling and vaporization core during the atomization process, and reduces the The heat flow density in the atomization process, so that the bubbles formed by the vaporization core can grow out of the micro-groove structure and separate from the liquid film surface of the atomized liquid, so that the boiling characteristics during the atomization process can be controlled by setting the micro-groove, By controlling the mechanism of aerosol formation (ie, controlling the location of aerosol formation and the size of the aerosol), the mouthfeel during atomization can be effectively achieved.
  • the heating element 200 may be a heating wire, and the heating element 200 may be formed by spirally winding a long heating wire.
  • FIG. 4 is a schematic structural diagram of an embodiment of a straight portion of the heating wire of the heating element shown in FIG. 2 ;
  • FIG. 5 is a cross-sectional view of an embodiment of the heating wire shown in FIG. 4 .
  • the heating wire 201 is provided with a plurality of micro-grooves 210 , and the plurality of micro-grooves 210 may be arranged at intervals along the length direction of the heating wire 201 .
  • a plurality of micro-grooves 2101 may be formed in each micro-groove portion 210 .
  • the micro-grooves 2101 may be arc-shaped grooves opened on the surface of the heating wire 201, wherein the arc-shaped grooves refer to the grooves extending along the arc at the bottom of the grooves, for example, the arc-shaped grooves may be It is opened along the arc-shaped side of the cylindrical heating wire.
  • the micro-grooves 2101 may also surround the surface of the heating wire 201 to form annular grooves.
  • FIG. 6 is a cross-sectional view of another embodiment of the heating wire shown in FIG. 4 .
  • the micro-grooves 2101 can be opened on part of the surface of the micro-grooves 2101 to form non-annular grooves.
  • the micro-grooves 2101 can extend from the middle to both ends so that the depth of the micro-grooves 2101 is gradually increased. decrease, and the two ends of the micro-groove 2101 are not connected.
  • the extending direction of the micro-grooves 2101 can be set along the length direction perpendicular to the heating element 200; or the extending direction of the micro-grooves 2101 can also be set parallel to the length direction of the heating element 200; The length direction of the heating element 200 is set at a preset angle.
  • the number of the micro-grooves 2101 is multiple and spaced apart, and the adjacent micro-grooves 2101 are not connected.
  • the number of micro-grooves 2101 may be one, and the micro-grooves 2101 may be continuous micro-grooves, and the micro-grooves 2101 may be opened spirally along the length direction of the heating element 200; During winding, the number of the micro-grooves 2101 may also be two or more. In this case, two or more micro-grooves 2101 may be spirally wound on the heating wire 201 at intervals and in a staggered manner.
  • the micro-grooves 2101 when the micro-grooves 2101 are spirally wound, the micro-grooves 2101 may not be continuous, that is, a spiral-wound micro-groove 2101 can be provided in each of the micro-grooves 210 arranged at intervals, and two adjacent micro-grooves 2101 The micro-grooves 2101 in the groove portion 210 are not connected.
  • the micro-grooves 2101 are grooves formed on the surface of the heating wire 201 , wherein the micro-grooves 2101 can be formed by processing the surface of the heating wire 201 by means of laser processing or the like. In other embodiments, the micro-grooves 2101 may also be formed by arranging protrusions on the micro-grooves 210 .
  • FIG. 7 is a schematic structural diagram of another embodiment of a straight section of the heating wire forming the heating element shown in FIG. 2 ;
  • FIG. 8 is the heating wire of the heating element shown in FIG. 7 . sectional view.
  • At least two protruding portions 211 may be provided in the micro-groove portion 210 of the heating element 200 , and a micro-groove 2101 may be formed between two adjacent protruding portions 211 .
  • the extending direction of the micro-grooves 2101 can be the same as that in the previous implementation, which is not repeated here.
  • the microgrooves 2101 can be arc-shaped grooves opened on the surface of the heating wire 201, and the microgrooves 2101 form annular grooves.
  • the micro-grooves 2101 may also be formed on a part of the surface of the micro-grooves 2101 to form non-annular grooves, which will not be repeated here.
  • the heating element 200 may be a metal heating wire, and the cross section of the heating element 200 may be circular, semicircular, or elliptical. In other embodiments, the heating element 200 may also be a metal heating sheet.
  • the micro grooves 2101 are all annular grooves formed on the heating element 200 .
  • the micro-grooves 2101 can be arc-shaped grooves, and the depths of both ends of the micro-grooves 2101 can be gradually reduced, that is, the micro-grooves 2101 can be formed on a partial area of the heating element 200 .
  • the microgrooves 2101 may be linear grooves, wherein the linear grooves refer to grooves whose bottoms extend along a straight line.
  • FIG. 9 is a schematic structural diagram of another embodiment of the atomizing core provided by the present application.
  • the liquid absorbing liquid 100 can be roughly formed into a cuboid as a whole, one surface of the liquid absorbing liquid 100 can form the atomizing surface 1001 thereof, and the other side surface of the liquid absorbing liquid 100 can form the liquid absorbing surface 1002 thereof.
  • the heating element 200 can be attached to at least the atomizing surface 1001 of the liquid absorbing liquid 100 . Specifically, the heating element 200 may be entirely attached to the atomizing surface 1001 of the liquid absorbing liquid 100, or the heating element 200 may be partially embedded in the liquid absorbing liquid 100 and located between the atomizing surface 1001 and the liquid absorbing surface 1002, and heated Another part of the component 200 is attached to the atomizing surface 1001 of the liquid absorbing liquid 100 .
  • the heating element 200 may be formed by a heating sheet or a heating bar.
  • the outer surface of the heating element 200 may include multiple planes, wherein the cross section of the heating element 200 may be a square, a rectangle, a trapezoid or other polygons. Therefore, the linear micro-grooves 2101 may be formed on at least one plane on the outer surface of the heating element 200 .
  • the heating element 200 as an example of a linear heating wire.
  • FIG. 10 is a partial enlarged view of an embodiment of the heating wire for forming the heating element shown in FIG. 9 in region II.
  • the heating wire 201 is a straight heating wire, which can be used to form the heating element 200 as shown in FIG. 9 .
  • the micro-grooves 2101 may be grooves formed on the surface of the heating wire 201; or the micro-groove portion 210 may also include at least two protrusions disposed on the surface of the heating wire 201, and adjacent to each other. The micro-grooves 2101 are formed between the two protrusions.
  • the micro-grooves 2101 are taken as grooves formed on the surface of the heating wire 201 as an example.
  • the micro-grooves 2101 may be annular grooves. That is, the micro-grooves 2101 can extend in a direction perpendicular to the length of the heating wire 201, and the linear micro-grooves 2101 on two adjacent planes on the outer surface of the heating wire 201 can be connected to form an annular groove.
  • the micro-grooves 2101 may have a "mouth" shape.
  • microgrooves 2101 may be non-annular grooves.
  • FIG. 11 is a partial enlarged view of the region II of another embodiment of the heating wire forming the heating element shown in FIG. 9 .
  • the linear microgrooves 2101 are provided on a part of the plane on the outer surface of the heating wire 201 .
  • the microgrooves 2101 may be disposed on a flat surface on the outer surface of the heating wire 201 .
  • the heating element 200 formed by using the heating wire 201, the micro groove 2101 on the heating element 200 can be opened on the side of the heating element 200 outside the liquid absorbing liquid 100 and away from the liquid absorbing liquid 100, and the micro groove 2101 can be in the shape of "one".
  • the micro-grooves 2101 can be arranged on multiple planes on the outer surface of the heating element 200, and the micro-grooves 2101 on two adjacent planes are connected, so that the micro-grooves 2101 can be formed in an "n" shape or an "L” shape shape.
  • the openings of the micro grooves 2101 may be opposite to the atomizing surface 1001 .
  • the extending direction of the micro-grooves 2101 may be set along the length direction perpendicular to the heating element 200 (or the heating wire 201 ).
  • the extending direction of the micro-grooves 2101 may also be set along other directions.
  • the heating element 200 with linear micro-grooves is taken as an example.
  • the heating element 200 described in the above-mentioned embodiment can be partially embedded on the atomizing surface 1001 of the liquid absorbing liquid 100. Therefore, when the micro-groove 2101 on the heating element 200 is an annular groove, the micro-groove 2101 can partially extend into the liquid absorbing liquid 100; and when the micro-grooves 2101 on the heating element 200 are non-annular grooves, at this time, the opening of the two ends of the micro-grooves 2101 can be butted on the atomizing surface 1001 or at least partially extended to the Suction liquid 100 inside. For example, as shown in FIG. 9 , the opening of the lower end of the micro groove in the micro groove part 210 on the heating element 200 can be connected to the atomizing surface 1001 , or the micro groove in the micro groove part 210 can be partially inserted into the liquid suction 100 .
  • the heating element 200 shown in FIG. 9 only has micro-grooves 210 on the straight portion of some heating wires, and the same heating element 200 can also be provided with micro-grooves 210 on the straight portions of other heating wires.
  • FIG. 12 is a schematic structural diagram of an embodiment of the heating element in the atomizing core shown in FIG. 9 .
  • the microgrooves 2101 are linear microgrooves.
  • the extension direction of the micro-grooves 2101 can also be set parallel to the length direction of the heating element 200 , and at this time, the heating element 200 is bent at the end of the micro-grooves 2101 .
  • FIG. 13 is a schematic structural diagram of another embodiment of the heating element in the atomizing core shown in FIG. 9 .
  • microgrooves 2101 are linear microgrooves.
  • the extending direction of the micro-grooves 2101 may also be set at a predetermined angle with the length direction of the heating element 200 .
  • the cross-section of the micro-grooves 2101 is in the shape of a triangle, rectangle, trapezoid, semi-circle or ellipse, and the depth of the micro-grooves 2101 can be in the range of 5um-15um.
  • the depth is set to 5um, 10um or 15um.
  • This solution can ensure that the local resistance change of the heating element 200 is not too large, so that the uniformity of the local heat flow of the heating element 200 can be improved, so that the heating element 200 is not easily burned during the heating and atomization process.
  • the depth of the micro-grooves 2101 within the range of 5um-15um, the bubbles formed after the atomization of the atomizing liquid can be significantly detached, so as to control the boiling characteristics during the atomization process and control the formation of aerosols. effect of the mechanism.
  • the width of the micro-grooves 2101 can be in the range of 5um-30um, and a plurality of parallel and spaced micro-grooves 2101 can be opened in the micro-groove portion 210.
  • the width of each micro-groove portion 210 can be set It is 3-5 times the width of the micro-grooves 2101 , and the distance between two adjacent micro-grooves 210 can be set to be 5-8 times the width of the micro-grooves 210 .
  • the heating element 200 can be formed by bending multiple times. In other embodiments, the heating element 200 can also be formed by one or more methods such as die stamping, casting, mechanical weaving, chemical etching, etc. get.
  • the heating element 200 may be formed by one metal wire or metal sheet, or the heating element 200 may be formed by at least two metal wires or metal sheets, and the specific heating element 200 may be formed by multiple metal wires or metal sheets with smaller diameters
  • the sheet is formed by winding or bonding or welding.
  • FIG. 14 is a schematic diagram of the structure of a part of the heating wire of the heating element in the prior art
  • FIG. 15 is a schematic diagram of using the heating element in the prior art for heating and atomization.
  • the heating wire 300 has a smooth surface and no micro-groove structure. Therefore, when the heating wire 300 is used to heat and atomize the atomized liquid, the volume of the bubbles formed after the atomization of the atomized liquid varies greatly, and the distribution of the bubbles is uneven. .
  • FIGS. 16a-16c are schematic diagrams of changes in the atomization effect when heating and atomization is performed by using the heating element in the prior art.
  • 16a to 16c are schematic diagrams of changes in the atomization effect after an interval of 1 second, which can show that when the heating element in the prior art is used for heating and atomization, the position of the bubbles formed is relatively random.
  • FIG. 17 is a schematic structural diagram of a part of the heating wire of the heating element provided by the application;
  • FIG. 18 is a partial enlarged view of the heating wire provided by FIG. 17;
  • the heating element 200 when the heating element 200 provided by the present application is used for heating and atomization, the gas formed after atomization can form bubbles at the position of the micro-grooves 2101, and the bubbles gradually grow up and gradually separate from the micro-grooves 2101 to be released, which can The position of the air bubbles detached from the micro-grooves 2101 is fixed. Therefore, the heating element 200 is provided with a plurality of micro-grooves 210 arranged at intervals, so that the released air bubbles can be distributed more evenly; It is separated from the liquid film surface of the atomized liquid, so the volume of the bubbles can be controlled within a certain range, so that the taste in the atomization process can be effectively realized.
  • 20a-20c are schematic diagrams showing changes in atomization effect when a heating element provided by the present application is used to perform heating atomization.
  • Figures 20a-20c are schematic diagrams of changes in the atomization effect after an interval of 1 second, respectively. It can be shown that the atomized bubbles formed on the heating element 200 can all be formed at the position of the micro-grooves, so the position where the atomized bubbles are formed is stable.
  • the heating element 200 may be formed by using one heating wire.
  • Fig. 21a-Fig. 21c are schematic diagrams showing the change of atomization effect when another heating element provided by the present application is used for heating atomization.
  • Figures 21a-21c are schematic diagrams of changes in the atomization effect after an interval of 1 second, respectively. It can be shown that the atomized bubbles formed on the heating element 200 can all be formed at the position of the micro-grooves, so the position where the atomized bubbles are formed is stable.
  • the heating element 200 may be formed by using two heating wires, wherein the two heating wires may be arranged side by side.
  • FIG. 22 is a schematic structural diagram of an embodiment of an atomizer provided by the present application.
  • the atomizer 40 includes an atomizing sleeve 410, a mounting seat 420 and the atomizing core 10 as described above.
  • a liquid storage chamber 411 and an air outlet passage 412 can be arranged in the atomizing sleeve 410 , and a mounting seat 420 is covered on the opening of the atomizing sleeve 410 , and the mounting seat 420 can be used to fix and install the atomizing core 10 .
  • the liquid absorbing surface 1002 of the liquid absorbing liquid 100 in the atomizing core 10 can be communicated with the liquid storage chamber 411, so that the atomizing liquid stored in the liquid storage chamber 411 can enter the liquid absorbing liquid 100, and the mist of the atomizing core 10
  • the atomizing surface 1001 can be communicated with the air outlet passage 412 , so that the atomized vapor formed after the atomizing core 10 heats the atomizing liquid can be released from the air outlet passage 412 .
  • FIG. 23 is a schematic structural diagram of an embodiment of an electronic atomization device provided by the present application.
  • the electronic atomization device 50 may include the atomizer 40 and the main body assembly 510 as described above.
  • the atomizer 40 is used to store the atomized liquid and atomize the atomized liquid to form smoke that can be inhaled by the user
  • the body assembly 510 may include a power supply assembly, and the power supply assembly may be connected with the heating element in the atomizer 40 200 is electrically connected for powering the heating element 200 .
  • the present application provides a micro-groove on the heating element, so that the atomizing liquid can be heated and atomized by the heating element, making the atomizing liquid easier Form a vaporization core, increase the boiling and vaporization core during the atomization process, and reduce the heat flow density during the atomization process, so that the bubbles formed by the vaporization core can grow out of the micro-groove structure and separate from the liquid film surface of the atomizing liquid.

Abstract

一种电子雾化装置(50)及其加热件(200)、雾化芯(10)、雾化器(40)。其中,雾化芯(10)包括:吸液体(100)和加热件(200),吸液体(100)包括雾化面(1001)和吸液面(1002),吸液体(100)用于供雾化液自吸液面(1002)进入且穿过吸液体(100)后到达雾化面(1001);加热件(200)与吸液体(100)相连接,加热件(200)设置在雾化面(1001)一侧以用于对穿过雾化面(1001)的雾化液进行加热雾化,其中,加热件(200)背离雾化面(1001)的一侧开设有微槽部(210),微槽部(210)内开设有微槽(2101),微槽(2101)的开口与雾化面(1001)相连接。由此可以使得雾化液更容易形成汽化核心,增加雾化过程中沸腾气化核心,降低雾化过程中热流密度。

Description

一种电子雾化装置及其加热件、雾化芯、雾化器 【技术领域】
本申请属于电子雾化装置技术领域,尤其涉及一种电子雾化装置及其加热件、雾化芯、雾化器。
【背景技术】
电子雾化装置可以通过采用加热丝对雾化液进行加热,使得雾化液雾化后释放出,在日常生活中已经得到广泛的运用。
在现有技术中,电子雾化装置的加热丝对雾化液进行加热时,通常会出现雾化液沸腾过程中不稳定性高,气泡产生位置的随机性高,导致温度场波动性大等问题。
【发明内容】
本申请主要解决的技术问题是提供一种便携式基站及便携车,能够满足基站运输、携带以及建站等不同应用场景的需求。
本申请提供一种电子雾化装置及其加热件、雾化芯、雾化器,以解决上述的技术问题。
为解决上述技术问题,本申请采用的一个技术方案是:提供一种用于雾化的加热件,所述加热件用于与预设的吸液体相连接,以对所述吸液体提供的雾化液进行加热雾化;
所述加热件的表面开设有微槽部,且所述微槽部至少设置于所述加热件背离所述吸液体的一侧,所述微槽部包括微槽,且所述微槽的开口与所述吸液体相连接。
可选地,所述微槽为开设于所述加热件表面上的凹槽;或者
所述微槽部为设置于所述加热件表面上的至少两个凸起,且相邻的两个所述凸起之间形成所述微槽。
可选地,所述加热件为金属丝;
所述微槽为开设于所述金属丝表面的弧形凹槽;或者
所述微槽为开设于所述金属丝表面的直线形凹槽。
可选地,所述微槽为开设于所述金属丝表面的弧形凹槽;
所述弧形凹槽为设置于所述金属丝表面的环形凹槽;或者
所述弧形凹槽为设置于所述金属丝表面的螺旋形凹槽。
可选地,所述微槽为开设于所述金属丝表面的直线形凹槽;
所述直线形凹槽的延伸方向垂直于所述金属丝的长度方向;或者
所述直线形凹槽的延伸方向平行于所述金属丝的长度方向,且所述金属丝在所述直线形凹槽的端部弯折。
可选地,所述微槽部的数量为多个,多个所述微槽部沿所述金属丝的长度方向依次间隔设置。
可选地,每一所述微槽部内开设有多个平行间隔设置的微槽,所述微槽部的宽度为所述微槽的宽度的3-5倍。
可选地,相邻的两个所述微槽部之间的间距为所述微槽部的宽度的5-8倍。
可选地,所述微槽的深度为5um-15um,宽度为5um-30um。
可选地,所述微槽的截面呈三角形、矩形、梯形、半圆形或者椭圆形。
为解决上述技术问题,本申请采用的一个技术方案是:提供一种雾化芯,其特征在于,所述雾化芯包括吸液体及如权利要求1-10任一项所述的加热件。
所述吸液体包括雾化面和吸液面,所述吸液体用于供雾化液自所述吸液面进入且穿过所述吸液体后到达所述雾化面;
所述加热件与所述吸液体相连接,所述加热件设置在所述雾化面一侧以用于对穿过所述雾化面的雾化液进行加热雾化;
其中,所述微槽部至少设置于所述加热件背离所述雾化面的一侧,所述微槽部包括微槽,且所述微槽的开口与所述雾化面相连接。
可选地,所述吸液体上开设有雾化孔,所述雾化面设置于所述雾化孔的内壁上;
所述加热件为呈螺旋状盘绕设置的金属丝,且与所述雾化孔的内壁固定连接。
为解决上述技术问题,本申请采用的一个技术方案是:提供一种雾化器,所述雾化器包括雾化套筒、安装座以及雾化芯,其中,所述雾化芯为如前文所述的雾化芯。
为解决上述技术问题,本申请采用的一个技术方案是:提供一种电子雾化装置,所述电子雾化装置包括:
雾化器,所述雾化器用于存储雾化液并雾化所述雾化液以形成可供用户吸食的烟雾,其中,所述雾化器为如前文所述的雾化器;以及
本体组件,所述本体组件用于为所述雾化器供电。
本申请的有益效果是:本申请通过在加热件上开设微槽,从而可以在加热件对雾化液进行加热雾化过程中,使得雾化液更容易形成汽化核心,增加雾化 过程中沸腾气化核心,降低雾化过程中的热流密度,从而使得汽化核心形成的气泡可以在微槽结构中脱离长大,并脱离雾化液的液膜表面,这样通过设置微槽可以控制在雾化过程中沸腾特性,控制气溶胶形成的机制(即,控制气溶胶形成的位置和气溶胶的尺寸),从而可以有效的实现雾化过程中的口感。
【附图说明】
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图,其中:
图1是本申请提供的一种雾化芯一实施例的结构示意图;
图2是图1所示雾化芯的爆炸图;
图3是图1所示雾化芯的剖视图;
图4是形成图2所示的加热件的加热丝一实施例的结构示意图;
图5是图4所示加热丝一实施方式的剖视图;
图6是图4所示加热丝另一实施方式的剖视图;
图7是形成图2所示的加热件的加热丝一段直线部另一实施例的结构示意图;
图8是图7的所示的加热件的加热丝的剖视图;
图9是本申请提供的雾化芯另一实施例的结构示意图;
图10是形成图9所示的加热件的加热丝一实施例在II区域的局部放大图;
图11是形成图9所示的加热件的加热丝另一实施例在II区域的局部放大图;
图12是图9所示的雾化芯中的加热件一实施例的结构示意图;
图13是图9所示的雾化芯中的加热件另一实施例的结构示意图;
图14是现有技术中的加热件的部分加热丝的结构示意图;
图15是采用现有技术中的加热件进行加热雾化时的示意图;
图16a-图16c是采用现有技术中的加热件进行加热雾化时雾化效果变化示意图
图17是本申请提供的加热件的部分加热丝的结构示意图;
图18是图17提供的加热丝的局部放大图;
图19是采用本申请提供的加热件进行加热雾化时的示意图;
图20a-图20c是采用本申请提供的一种加热件进行加热雾化时雾化效果变化示意图;
图21a-图21c是采用本申请提供的另一种加热件进行加热雾化时雾化效果变化示意图;
图22是本申请提供的一种雾化器一实施例的结构示意图;
图23是本申请提供的一种电子雾化装置一实施例的结构示意图。
【具体实施方式】
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性的劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
需要说明,若本申请实施例中有涉及方向性指示(诸如上、下、左、右、前、后……),则该方向性指示仅用于解释在某一特定姿态(如附图所示)下各部件之间的相对位置关系、运动情况等,如果该特定姿态发生改变时,则该方向性指示也相应地随之改变。
另外,若本申请实施例中有涉及“第一”、“第二”等的描述,则该“第一”、“第二”等的描述仅用于描述目的,而不能理解为指示或暗示其相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。另外,各个实施例之间的技术方案可以相互结合,但是必须是以本领域普通技术人员能够实现为基础,当技术方案的结合出现相互矛盾或无法实现时应当认为这种技术方案的结合不存在,也不在本申请要求的保护范围之内。
请参阅图1-3,图1是本申请提供的一种雾化芯一实施例的结构示意图;图2是图1所示雾化芯的爆炸图;图3是图1所示雾化芯的剖视图。
雾化芯10包括吸液体100和加热件200。雾化芯10可以用于对雾化液进行加热,从而使得雾化液雾化。
吸液体100内形成多个微孔,雾化液可以通过该微孔进入吸液体100中,或者雾化液也可以通过该微孔从吸液体100的一侧渗透至另一侧。其中,吸液体100中的多个微孔还可以对雾化液起到存储作用。加热件200则部分埋设于吸液体100内。
该吸液体100可以为烧结式多孔体,具体地,该烧结式多孔体可以为陶瓷多孔体。可以理解地,在其他一些实施例中,该烧结式多孔体,可以不限于陶瓷多孔体,例如,其可以为玻璃多孔体或者玻璃陶瓷多孔体,其材料可以为氧化铝、氧化硅、氮化硅、硅酸盐和碳化硅中的任意一种或者多种。或者,吸液 体100也可以采用纤维棉形成。
加热件200可以采用铁铬合金、铁铬铝合金、铁铬镍合金、铬镍合金、钛合金、不锈钢合金以及卡玛合金等金属合金中的任意一种制成,或者也可以采用其中的至少两种混合后制成。加热件200可以设置为具有一定的电阻值,通过将加热件200与电源相连通,从而可以使得加热件200能够发热以对雾化液加热雾化。
吸液体100的形状尺寸不限,可以根据需要选择。其中,吸液体100的雾化面1001和吸液面1002可以设置在吸液体100的不同表面上;或者雾化面1001和吸液面1002也可以设置在吸液体100的同一表面的不同区域。
本实施例中,具体地,吸液体100可以整体呈圆柱形,且吸液体100内开设有雾化孔110,加热件200则螺旋设置在雾化孔110内且可以连接于雾化孔110的内壁上,其中,雾化孔110的内壁则可以形成雾化面1001,而吸液体100的外表面则可以构成吸液面1002,其中,雾化液可以自吸液体100的吸液面1002一侧渗透进入吸液体100内,且可以自雾化面1001渗透出,而加热件200则可以设置在雾化面1001的位置以将自雾化面1001渗透出的雾化液加热雾化。
或者,在其他的实施方式中,加热件200也可以设置在吸液体100的外表面上,且吸液体100的外表面则可以构成雾化面1001,吸液体100内开设的雾化孔110的内壁则可以构成吸液面1002,加热件200的安装位置、吸液体100上雾化面1001和吸液面1002的位置可以根据具体要求进行设置,在此不做进一步限定。
或者,在其他的实施方式中,加热件200可以为棉芯,加热件200则可以绕设于加热件200的外表面上。
本实施例中,在加热件200上可以设有微槽部210,微槽部210可以包括至少一个微槽2101,其中微槽2101的开口可以与雾化面1001相连接,即微槽2101的开口可以对接于雾化面1001上,从而可以使得自雾化面1001渗透出的雾化液进入到微槽2101中。
因此,本申请通过在加热件上开设微槽,从而可以在加热件对雾化液进行加热雾化过程中,使得雾化液更容易形成汽化核心,增加雾化过程中沸腾气化核心,降低雾化过程中的热流密度,从而使得汽化核心形成的气泡可以在微槽结构中脱离长大,并脱离雾化液的液膜表面,这样通过设置微槽可以控制在雾化过程中沸腾特性,控制气溶胶形成的机制(即,控制气溶胶形成的位置和气溶胶的尺寸),从而可以有效的实现雾化过程中的口感。
在本实施例中,加热件200可以是加热丝,加热件200可以采用长条形的 加热丝通过螺旋绕设后形成。
请参阅图4-图5,其中图4是图2所示的加热件的加热丝的一段直线部的一实施例的结构示意图;图5是图4所示加热丝一实施方式的剖视图。
加热丝201上设置有多个微槽部210,多个微槽部210可以沿加热丝201的长度方向依次间隔设置。其中,每个微槽部210中均可以开设多个微槽2101。
其中,如图5所示,微槽2101可以是开设在加热丝201表面的弧形凹槽,其中,弧形凹槽指凹槽底部沿弧线延伸的凹槽,例如,弧形凹槽可以沿圆柱形加热丝的弧形侧面开设。其中,微槽2101也可以环绕在加热丝201表面,形成环形凹槽。
或者,请参阅图6,图6是图4所示加热丝另一实施方式的剖视图。如图6所示,微槽2101可以开设在微槽2101的部分表面,而构成非环形凹槽,具体的,微槽2101可以自其中部向两端延伸的方向上使得微槽2101的深度逐渐减小,且使得微槽2101两端不连接。
其中,微槽2101的延伸方向可以沿垂直于加热件200的长度方向设置;或者微槽2101的延伸方向也可以沿平行于加热件200的长度方向设置;或者微槽2101的延伸方向也可以与加热件200的长度方向呈预设的夹角设置。
本实施例中,微槽2101的数量为多个且均间隔设置,且相邻的微槽2101之间不连通。在其他的实施例中,微槽2101的数量可以为一个,且该微槽2101可以为连续的微槽,微槽2101可以沿加热件200的长度方向螺旋开设;或者,当微槽2101呈螺旋绕设时,微槽2101的数量也可以是两个或者两个以上,此时,两个或者两个以上微槽2101可以间隔且交错螺旋绕设于加热丝201上。或者,当微槽2101呈螺旋绕设时,微槽2101也可以不是连续的,即每一个间隔设置的微槽部210中均可以设置螺旋绕设的微槽2101,且相邻的两个微槽部210中的微槽2101不连通。
上述实施例中,微槽2101为开设在加热丝201表面的凹槽,其中,微槽2101可以通过采用激光加工等方式对加热丝201表面进行加工而形成。在其他的实施方式中,微槽2101还可以通过在微槽部210上设置凸起形成。
具体的,请参阅图7-图8,图7是形成图2所示的加热件的加热丝一段直线部另一实施例的结构示意图;图8是图7的所示的加热件的加热丝的剖视图。
其中,加热件200的微槽部210内可以设置至少两个凸起部211,且相邻的两个凸起部211之间则可以形成微槽2101。本实施方式中,微槽2101的延伸方向可以与前文实施相同,在此不作赘述。
同样的,如图7和图8所示,微槽2101可以是开设在加热丝201表面的弧 形凹槽,且微槽2101形成环形凹槽。
或者,在其他的实施方式中,微槽2101同样可以开设在微槽2101的部分表面,而构成非环形凹槽,在此不作赘述。
在前文实施例中,加热件200可以是金属加热丝,加热件200的截面可以呈圆形、半圆形、或者椭圆形。在其他的实施例中,加热件200也可以是金属加热片。
进一步的,如上述的实施例中,微槽2101均为开设在加热件200上的环形凹槽。
在此实施例中,微槽2101可以为弧形凹槽,且微槽2101两端的深度可以逐渐减小,即微槽2101可以开设在加热件200的部分区域上。在其他的实施例中,微槽2101可以为直线型凹槽,其中,直线型凹槽指凹槽底部沿直线延伸的凹槽。
请参阅图9,其中,图9是本申请提供的雾化芯另一实施例的结构示意图。
吸液体100可以整体大致形成一个长方体,吸液体100的一侧表面可以形成其雾化面1001,吸液体100的另一侧表面则可以形成其吸液面1002。加热件200可以至少贴设于吸液体100的雾化面1001上。具体的,加热件200可以整体贴设在吸液体100的雾化面1001上,或者加热件200也可以部分埋设于吸液体100内且位于雾化面1001和吸液面1002之间,且加热件200的另一部分则贴设于吸液体100的雾化面1001上。
本实施例中,加热件200可以采用加热片或者加热条形成。具体的,加热件200的外表面可以包括多个平面,其中,加热件200的截面可以是正方形、长方形、梯形或者其他的多边形。因此,直线型的微槽2101可以开设在加热件200的外表面上的至少一个平面上。
同样的,以加热件200为直线型的加热丝为例。
请参阅图10,图10是形成图9所示的加热件的加热丝一实施例在II区域的局部放大图。
加热丝201为直线型的加热丝,其可用于形成如图9所示的加热件200。
本实施例中,同样的,微槽2101可以为开设于加热丝201表面上的凹槽;或者微槽部210也可以包括设置于加热丝201表面上的至少两个凸起,且相邻的两个凸起之间形成该微槽2101。
本实施例中,以微槽2101为开设于加热丝201表面上的凹槽为例。其中,在每一微槽部210中,微槽2101可以呈环形凹槽。即,微槽2101可以沿垂直于加热丝201的长度方向延伸,且加热丝201外表面上相邻两个平面上的直线 型的微槽2101可以相连接,从而形成环形的凹槽,此时,微槽2101可以呈“口”形。
或者,微槽2101可以为非环形的凹槽。
请参阅图11,图11是形成图9所示的加热件的加热丝另一实施例在II区域的局部放大图。
即,加热丝201外表面上部分平面上设置有直线型的微槽2101。例如,微槽2101可以设置在加热丝201外表面上的一个平面上。此时,采用此加热丝201形成的加热件200,其上的微槽2101可以开设在加热件200位于吸液体100外且背离吸液体100的一侧,微槽2101可以呈“一”形。或者,微槽2101可以设置在加热件200外表面上的多个平面上,且相邻的两个平面上的微槽2101相连接,从而可以使得微槽2101呈“n”形或者“L”形。同样的,微槽2101的开口可以与雾化面1001相对接。
本实施例中,同样的,微槽2101的延伸方向可以沿垂直于加热件200(或者加热丝201)的长度方向设置。
在其他的实施例中,微槽2101的延伸方向还可以沿其他的方向设置。
其中,以具有直线型微槽的加热件200为例。
需要注意的是,上述实施例中所述的加热件200可以部分嵌设在吸液体100的雾化面1001上,因此,当加热件200上的微槽2101为环形凹槽时,则微槽2101可以部分延伸到吸液体100内;而当加热件200上的微槽2101为非环形凹槽时,此时,微槽2101两端开设则可以对接在雾化面1001上或者至少部分延伸到吸液体100内。例如,如图9所示加热件200上的微槽部210内的微槽下端的开口可以对接于雾化面1001,或者微槽部210内的微槽可以部分插设到吸液体100。
其中,图9所示加热件200仅在其部分加热丝的直线部上开设了微槽部210,同样的加热件200其他部分加热丝的直线部上同样也可以设置微槽部210。
请参阅图12,图12是图9所示的雾化芯中的加热件一实施例的结构示意图。
其中,微槽2101为直线型的微槽。微槽2101的延伸方向也可以沿平行于加热件200的长度方向设置,此时,加热件200在微槽2101的端部弯折。
请参阅图13,图13是图9所示的雾化芯中的加热件另一实施例的结构示意图。
同样的,微槽2101为直线型的微槽。微槽2101的延伸方向也可以与加热件200的长度方向呈预设的夹角设置。
进一步的,本实施例中,微槽2101的截面呈三角形、矩形、梯形、半圆形 或者椭圆形等形状,微槽2101的深度可以在5um-15um的范围内,例如可以将微槽2101的深度设置为5um、10um或者15um。
此方案可以确保加热件200局部电阻变化不会过大,从而可以提高加热件200局部热流的均匀性,从而可以使得加热件200在加热雾化过程中不容易出现烧断。同时,通过将微槽2101的深度控制在5um-15um的范围内,可以使得雾化液雾化后形成的气泡脱离速度明显,从而到达控制在雾化过程中的沸腾特性,控制气溶胶形成的机制的效果。
本实施例中,微槽2101的宽度可以在5um-30um的范围内,微槽部210内可以开设多个平行且间隔设置的微槽2101,此时,每一微槽部210的宽度可以设置为微槽2101的宽度的3-5倍,且相邻的两个微槽部210之间的间距可以设置为微槽部210的宽度的5-8倍。
如上述实施例中所述,加热件200可以通过多次弯折后形成,在其他的实施方式中,加热件200还可以通过模具冲压、铸造、机械编织、化学蚀刻等一种或几种方式获得。
其中,加热件200可以采用一条金属丝或者金属片形成,或者,加热件200也可以采用至少两条金属丝或者金属片形成,具体的加热件200可以采用多个直径较小的金属丝或者金属片,经过卷绕或者粘接或者焊接的方式形成。
进一步的,请参阅图14-图15,图14是现有技术中的加热件的部分加热丝的结构示意图;图15是采用现有技术中的加热件进行加热雾化时的示意图。
其中,加热丝300表面平滑且未设置微槽结构;因此,在采用加热丝300对雾化液进行加热雾化时,雾化液雾化后形成的气泡体积差异较大,且气泡分布不均匀。
其中,如图16a-图16c所示,图16a-图16c是采用现有技术中的加热件进行加热雾化时雾化效果变化示意图。
其中,图16a-图16c分别为间隔1秒后的雾化效果变化示意图,其可以显示出采用现有技术中的加热件进行加热雾化时,形成的气泡位置随机性较大。
进一步的,请参阅图17-图19,图17是本申请提供的加热件的部分加热丝的结构示意图;图18是图17提供的加热丝的局部放大图;图19是采用本申请提供的加热件进行加热雾化时的示意图。
其中,采用本申请提供的加热件200进行加热雾化时,可以使得雾化后形成的气体在微槽2101的位置形成气泡,并且气泡逐渐长大后逐渐脱离微槽2101而释放出,其可以使得脱离微槽2101的气泡的位置固定,因此,在加热件200上设置多个间隔设置的微槽部210,可以使得释放出的气泡分布更加均匀;且, 由于气泡在微槽2101内更容易脱离雾化液的液膜表面,因此可以将气泡体积控制在一定的范围内,从而可以有效的实现雾化过程中的口感。
其中,如图20a-图20c所示,图20a-图20c是采用本申请提供的一种加热件进行加热雾化时雾化效果变化示意图。
同样的,图20a-图20c分别为间隔1秒后的雾化效果变化示意图。其可以显示出在加热件200上形成的雾化气泡,均可以在微槽部的位置形成,因此雾化气泡形成的位置稳定。
本实施例中,加热件200可以采用一根加热丝形成。
如图21a-图21c所示,图21a-图21c是采用本申请提供的另一种加热件进行加热雾化时雾化效果变化示意图。
同样的,图21a-图21c分别为间隔1秒后的雾化效果变化示意图。其可以显示出在加热件200上形成的雾化气泡,均可以在微槽部的位置形成,因此雾化气泡形成的位置稳定。
此方案与前文所述方案区别在于,本实施例中,加热件200可以采用两根加热丝形成,其中,两根加热丝可以并排设置。
进一步的,本申请还提供了一种雾化器。请参阅图22,图22是本申请提供的一种雾化器一实施例的结构示意图。
其中,雾化器40包括雾化套筒410、安装座420以及如前文所述的雾化芯10。其中,雾化套筒410内可以设置储液腔411及出气通路412,安装座420则盖设于雾化套筒410的开口处,安装座420可以用于固定安装雾化芯10。
其中,雾化芯10中的吸液体100的吸液面1002可以与储液腔411相连通,以使得的储液腔411中存储的雾化液可以进入吸液体100,雾化芯10的雾化面1001则可以与出气通路412相连通,从而使得雾化芯10对雾化液加热后形成的雾化汽可以从出气通路412中释放出。
进一步的,本申请还提供了一种电子雾化装置。请参阅图23,图23是本申请提供的一种电子雾化装置一实施例的结构示意图。
其中,电子雾化装置50可以包括如前文所述的雾化器40及本体组件510。
其中,雾化器40用于存储雾化液并雾化该雾化液以形成可供用户吸食的烟雾,本体组件510则可以包括电源组件,其电源组件可以与雾化器40中的加热件200电连接,以用于为加热件200供电。
综上,本领域技术人员容易理解,本申请的有益效果是:本申请通过在加热件上开设微槽,从而可以在加热件对雾化液进行加热雾化过程中,使得雾化液更容易形成汽化核心,增加雾化过程中沸腾气化核心,降低雾化过程中的热 流密度,从而使得汽化核心形成的气泡可以在微槽结构中脱离长大,并脱离雾化液的液膜表面,这样通过设置微槽可以控制在雾化过程中沸腾特性,控制气溶胶形成的机制(即,控制气溶胶形成的位置和气溶胶的尺寸),从而可以有效的实现雾化过程中的口感。
以上所述仅为本申请的实施例,并非因此限制本申请的专利范围,凡是利用本申请说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其它相关的技术领域,均同理包括在本申请的专利保护范围内。

Claims (14)

  1. 一种用于雾化的加热件,其特征在于,
    所述加热件用于与预设的吸液体相连接,以对所述吸液体提供的雾化液进行加热雾化;
    所述加热件的表面开设有微槽部,且所述微槽部至少设置于所述加热件背离所述吸液体的一侧,所述微槽部包括微槽,且所述微槽的开口与所述吸液体相连接。
  2. 根据权利要求1所述的加热件,其特征在于,
    所述微槽为开设于所述加热件表面上的凹槽;或者
    所述微槽部为设置于所述加热件表面上的至少两个凸起,且相邻的两个所述凸起之间形成所述微槽。
  3. 根据权利要求1所述的加热件,其特征在于,所述加热件为金属丝;
    所述微槽为开设于所述金属丝表面的弧形凹槽;或者
    所述微槽为开设于所述金属丝表面的直线形凹槽。
  4. 根据权利要求3所述的加热件,其特征在于,所述微槽为开设于所述金属丝表面的弧形凹槽;
    所述弧形凹槽为设置于所述金属丝表面的环形凹槽;或者
    所述弧形凹槽为设置于所述金属丝表面的螺旋形凹槽。
  5. 根据权利要求3所述的加热件,其特征在于,所述微槽为开设于所述金属丝表面的直线形凹槽;
    所述直线形凹槽的延伸方向垂直于所述金属丝的长度方向;或者
    所述直线形凹槽的延伸方向平行于所述金属丝的长度方向,且所述金属丝在所述直线形凹槽的端部弯折。
  6. 根据权利要求3所述的加热件,其特征在于,
    所述微槽部的数量为多个,多个所述微槽部沿所述金属丝的长度方向依次间隔设置。
  7. 根据权利要求6所述的加热件,其特征在于,
    每一所述微槽部内开设有多个平行间隔设置的微槽,所述微槽部的宽度为所述微槽的宽度的3-5倍。
  8. 根据权利要求6所述的加热件,其特征在于,
    相邻的两个所述微槽部之间的间距为所述微槽部的宽度的5-8倍。
  9. 根据权利要求1所述的加热件,其特征在于,
    所述微槽的深度为5um-15um,宽度为5um-30um。
  10. 根据权利要求1所述的雾化芯,其特征在于,
    所述微槽的截面呈三角形、矩形、梯形、半圆形或者椭圆形。
  11. 一种雾化芯,其特征在于,所述雾化芯包括吸液体及如权利要求1-10任一项所述的加热件。
    所述吸液体包括雾化面和吸液面,所述吸液体用于供雾化液自所述吸液面进入且穿过所述吸液体后到达所述雾化面;
    所述加热件与所述吸液体相连接,所述加热件设置在所述雾化面一侧以用于对穿过所述雾化面的雾化液进行加热雾化;
    其中,所述微槽部至少设置于所述加热件背离所述雾化面的一侧,所述微槽部包括微槽,且所述微槽的开口与所述雾化面相连接。
  12. 根据权利要求11所述的雾化芯,其特征在于,
    所述吸液体上开设有雾化孔,所述雾化面设置于所述雾化孔的内壁上;
    所述加热件为呈螺旋状盘绕设置的金属丝,且与所述雾化孔的内壁固定连接。
  13. 一种雾化器,其特征在于,所述雾化器包括雾化套筒、安装座以及雾化芯,其中,所述雾化芯为如权利要求11或12所述的雾化芯。
  14. 一种电子雾化装置,其特征在于,所述电子雾化装置包括:
    雾化器,所述雾化器用于存储雾化液并雾化所述雾化液以形成可供用户吸食的烟雾,其中,所述雾化器为如权利要求13所述的雾化器;以及
    本体组件,所述本体组件用于为所述雾化器供电。
PCT/CN2020/116295 2020-09-18 2020-09-18 一种电子雾化装置及其加热件、雾化芯、雾化器 WO2022056865A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2020/116295 WO2022056865A1 (zh) 2020-09-18 2020-09-18 一种电子雾化装置及其加热件、雾化芯、雾化器
US18/183,357 US20230218002A1 (en) 2020-09-18 2023-03-14 Electronic vaporization device and heating element, vaporization core, and vaporizer thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/116295 WO2022056865A1 (zh) 2020-09-18 2020-09-18 一种电子雾化装置及其加热件、雾化芯、雾化器

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/183,357 Continuation US20230218002A1 (en) 2020-09-18 2023-03-14 Electronic vaporization device and heating element, vaporization core, and vaporizer thereof

Publications (1)

Publication Number Publication Date
WO2022056865A1 true WO2022056865A1 (zh) 2022-03-24

Family

ID=80777388

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/116295 WO2022056865A1 (zh) 2020-09-18 2020-09-18 一种电子雾化装置及其加热件、雾化芯、雾化器

Country Status (2)

Country Link
US (1) US20230218002A1 (zh)
WO (1) WO2022056865A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022179641A3 (zh) * 2022-05-13 2022-11-24 深圳麦克韦尔科技有限公司 发热体、雾化器及电子雾化装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104605482A (zh) * 2015-01-05 2015-05-13 深圳市合元科技有限公司 可更换的雾化单元和包括该雾化单元的雾化器及电子烟
CN206260841U (zh) * 2016-11-12 2017-06-20 深圳群众道科技有限公司 一种新的注吸油电子烟雾化器
CN111011935A (zh) * 2019-12-31 2020-04-17 深圳麦克韦尔科技有限公司 雾化器和电子雾化装置
CN111109666A (zh) * 2020-01-17 2020-05-08 深圳麦克韦尔科技有限公司 电子雾化装置及其雾化组件和雾化组件的制造方法
CN210642456U (zh) * 2019-06-20 2020-06-02 扬州捷裕特玻璃制品有限公司 一种电子烟雾化芯的雾化组件
US20200196676A1 (en) * 2018-12-25 2020-06-25 Shenzhen Kanger Technology Co., Ltd. Heating elements and dual-use electronic cigarettes having the heating elements
CN211021004U (zh) * 2019-10-17 2020-07-17 深圳市康特客科技有限公司 一种电子烟及其发热组件

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104605482A (zh) * 2015-01-05 2015-05-13 深圳市合元科技有限公司 可更换的雾化单元和包括该雾化单元的雾化器及电子烟
CN206260841U (zh) * 2016-11-12 2017-06-20 深圳群众道科技有限公司 一种新的注吸油电子烟雾化器
US20200196676A1 (en) * 2018-12-25 2020-06-25 Shenzhen Kanger Technology Co., Ltd. Heating elements and dual-use electronic cigarettes having the heating elements
CN210642456U (zh) * 2019-06-20 2020-06-02 扬州捷裕特玻璃制品有限公司 一种电子烟雾化芯的雾化组件
CN211021004U (zh) * 2019-10-17 2020-07-17 深圳市康特客科技有限公司 一种电子烟及其发热组件
CN111011935A (zh) * 2019-12-31 2020-04-17 深圳麦克韦尔科技有限公司 雾化器和电子雾化装置
CN111109666A (zh) * 2020-01-17 2020-05-08 深圳麦克韦尔科技有限公司 电子雾化装置及其雾化组件和雾化组件的制造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022179641A3 (zh) * 2022-05-13 2022-11-24 深圳麦克韦尔科技有限公司 发热体、雾化器及电子雾化装置

Also Published As

Publication number Publication date
US20230218002A1 (en) 2023-07-13

Similar Documents

Publication Publication Date Title
WO2022042654A1 (zh) 一种电子雾化装置及其雾化器、雾化芯
JP7357658B2 (ja) エアロゾル発生システムのためのカートリッジ
EP3637950B1 (en) Electronic cigarette and atomizer thereof
US20170035109A1 (en) Atomizer and electronic cigarette
WO2022056865A1 (zh) 一种电子雾化装置及其加热件、雾化芯、雾化器
WO2021142786A1 (zh) 电子雾化装置及其雾化器和发热体
WO2023124409A1 (zh) 发热组件、雾化器及电子雾化装置
CN213096094U (zh) 一种电子雾化装置及其雾化器、雾化芯
US11116253B2 (en) Inner core element for use with electronic cigarette
WO2022141550A1 (zh) 一种电子雾化装置及其雾化器、雾化芯
US20220104550A1 (en) Atomization sheet for electronic cigarette and atomizer
CN114190593A (zh) 一种电子雾化装置及其加热件、雾化芯、雾化器
CN103277798A (zh) 不锈钢金属波纹板红外线燃烧器
CN115500558A (zh) 一种多孔加热体空气加热的加热不燃烧烟具
WO2023273507A1 (zh) 雾化器
WO2024093477A1 (zh) 发热体、雾化器及电子雾化装置
CN113876043A (zh) 一种电子雾化装置
CN114794569A (zh) 一种雾化芯、雾化器及其电子雾化装置
WO2023124162A1 (zh) 发热组件、雾化器及电子雾化装置
CN218921698U (zh) 发热体、雾化器及电子雾化装置
WO2024050719A1 (zh) 一种发热组件、雾化器及电子雾化装置
CN220343691U (zh) 发热组件、雾化器及电子雾化装置
WO2024065822A1 (zh) 发热组件及雾化器
WO2023035912A1 (zh) 雾化器及电子雾化装置
CN216416037U (zh) 发热网、雾化器及电子雾化装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20953723

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20953723

Country of ref document: EP

Kind code of ref document: A1