KR101206128B1 - 리튬 이온 전지 캐소드 재료용 리튬-니켈-코발트-망간 혼합금속 산화물의 고체상 합성 - Google Patents

리튬 이온 전지 캐소드 재료용 리튬-니켈-코발트-망간 혼합금속 산화물의 고체상 합성 Download PDF

Info

Publication number
KR101206128B1
KR101206128B1 KR1020067010092A KR20067010092A KR101206128B1 KR 101206128 B1 KR101206128 B1 KR 101206128B1 KR 1020067010092 A KR1020067010092 A KR 1020067010092A KR 20067010092 A KR20067010092 A KR 20067010092A KR 101206128 B1 KR101206128 B1 KR 101206128B1
Authority
KR
South Korea
Prior art keywords
lithium
nickel
manganese
delete delete
cobalt
Prior art date
Application number
KR1020067010092A
Other languages
English (en)
Other versions
KR20060097734A (ko
Inventor
케빈 더블유. 에버만
제롬 이. 스캔란
크리스 제이. 굿브레이크
Original Assignee
쓰리엠 이노베이티브 프로퍼티즈 컴파니
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 쓰리엠 이노베이티브 프로퍼티즈 컴파니 filed Critical 쓰리엠 이노베이티브 프로퍼티즈 컴파니
Publication of KR20060097734A publication Critical patent/KR20060097734A/ko
Application granted granted Critical
Publication of KR101206128B1 publication Critical patent/KR101206128B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G45/00Compounds of manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G45/00Compounds of manganese
    • C01G45/12Manganates manganites or permanganates
    • C01G45/1221Manganates or manganites with a manganese oxidation state of Mn(III), Mn(IV) or mixtures thereof
    • C01G45/1228Manganates or manganites with a manganese oxidation state of Mn(III), Mn(IV) or mixtures thereof of the type [MnO2]n-, e.g. LiMnO2, Li[MxMn1-x]O2
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G51/00Compounds of cobalt
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G51/00Compounds of cobalt
    • C01G51/40Cobaltates
    • C01G51/42Cobaltates containing alkali metals, e.g. LiCoO2
    • C01G51/44Cobaltates containing alkali metals, e.g. LiCoO2 containing manganese
    • C01G51/50Cobaltates containing alkali metals, e.g. LiCoO2 containing manganese of the type [MnO2]n-, e.g. Li(CoxMn1-x)O2, Li(MyCoxMn1-x-y)O2
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • C01G53/44Nickelates containing alkali metals, e.g. LiNiO2 containing manganese
    • C01G53/50Nickelates containing alkali metals, e.g. LiNiO2 containing manganese of the type [MnO2]n-, e.g. Li(NixMn1-x)O2, Li(MyNixMn1-x-y)O2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • C01P2002/54Solid solutions containing elements as dopants one element only
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

코발트, 망간 및 니켈을 함유하는 단일상 리튬-전이금속 산화물 화합물은 코발트-, 망간-, 니켈- 및 리튬-함유 산화물 또는 산화물 전구체를 습식 분쇄하여 잘 분포된 코발트, 망간, 니켈 및 리튬을 함유하는 미세 분세된 슬러리를 형성하고, 이 슬러리를 가열하여 코발트, 망간 및 니켈을 함유하고 실질적으로 단일상 O3 결정구조를 갖는 리튬-전이금속 산화물 화합물을 제공함으로써 제조될 수 있다. 습식 분쇄는 건식 분쇄보다 현저히 짧은 분쇄 시간을 제공하고, 단일상 리튬-전이금속 산화물 화합물의 형성을 촉진시키는 것으로 보인다. 이러한 습식 분쇄 공정에서의 시간 단축은 가열 단계에서 슬러리를 건조시키는 데에 요구되는 시간을 더욱 더 벌충시킨다.
코발트, 망간 및 니켈을 함유하는 단일상 리튬-전이금속 산화물 화합물, 습식 분쇄

Description

리튬 이온 전지 캐소드 재료용 리튬-니켈-코발트-망간 혼합 금속 산화물의 고체상 합성 {Solid State Synthesis of Lithium-Nickel-Cobalt-Manganese Mixed Metal Oxides for Use in Lithium Ion Battery Cathode Material}
본원 발명은 리튬-이온 전지용 캐소드로서 유용한 화합물의 제조에 관한 것이다.
리튬-이온 전지는 전형적으로 애노드, 전해질 및 리튬-전이금속 산화물의 형태로 리튬을 함유하는 캐소드를 포함한다. 사용되어 온 전이금속 산화물은 이산화 코발트, 이산화 니켈 및 이산화망간을 포함한다.
코발트, 망간 및 니켈이 고체 격자 내에 각각 존재하는 리튬-전이금속 산화물 화합물은 4-금속 또는 4가(quaternary) 캐소드 화합물로 지칭될 수 있다. 이들 금속을 적당량 포함하는 단일상 격자는 특히 바람직한 리튬-이온 전지 캐소드를 제공할 수 있다. 예를 들어, 단일상으로 성공적으로 형성된다면 (만일 다중상이 존재하면, 전지 성능이 나빠진다), 다음의 화학식 1 내지 3의 4가 화합물이 중요하다.
LiNi0.1Mn0.1Co0.8O2
Li(Co(1/3)Mn(1/3)Ni(1/3))02
Li(Li0.08Co0.15Mn0.375Ni0.375)02
이들 세가지 화합물 내의 등몰량의 망간 및 니켈 함량이 특히 바람직하며, 더 안정된 결정 격자의 형성에 기여한다고 믿어지고 있다.
불행하게도, 리튬-함유 결정 격자 중에 전이금속인 코발트, 망간 및 니켈을 함유하는 단일상 4가 화합물을 형성하기 어려울 수 있다. 단일상을 달성하는 것은 전이금속 망간 또는 니켈의 하나 또는 그 이상을 배제시킴으로써 더 용이할 수 있다 (예를 들어, 3가지 금속 또는 3원 시스템, 예컨대 LiNi0.8Co0.202 또는 2가지 금속 또는 2원 시스템, 예컨대 LiCoO2를 만드는 것). 그러나, 이 또한 전지 성능을 저하시키거나 다른 문제들이 개입될 수 있다. 단일상 4가 화합물의 달성은, 발명의 명칭이 "LITHIATED OXIDE MATERIALS AND METHODS OF MANUFACTURE"인 미국특허출원 No. 2003/0022063 A1 (폴센 (Paulsen) 등)에서 제안 및 채택되고, 발명의 명칭이 "CATHODE COMPOSITIONS FOR LITHIUM-ION BATTERIES"인 미국 특허출원 No. 2003/0027048 Al (루(Lu) 등)의 실시예 19 및 20에서 채택된 혼합 수산화물의 공-침전에 의하여 성취될 수 있다. 그러나, 공침전은 여과, 반복적인 세척 및 건조가 요구되어 상대적으로 제한된 산출량을 보여주고 제작비용이 비싸다.
폴센 등은 또한 하기 식을 갖는 특정 리튬-전이금속 산화물 화합물을 제조하기 위한 고에너지 볼 분쇄(milling) 및 소결 방법을 그 실시예 6에서 기술 및 사용하고 있다.
Li(LixCoy(MnzNi1-z)1-x-y)02
여기서, 0.4 ≤ z ≤ 0.65, 0 < x ≤ 0.16 이고 0.1 ≤ y ≤ 0.3이다.
발명의 명칭이 "LITHIUM SECONDARY BATTERY"인 미국 특허 6,333,128 B1 (스나가와(Sunagawa) 등)는 실시예 A1 내지 A9에서 화학식 5의 특정 리튬-전이금속 산화물 화합물을 제조하기 위한 분말 혼합, 베이킹, 및 제트 분쇄 방법을 채택하고 있다.
LiaCobMncNi1-b-cO2
여기서, 0 ≤ a ≤1.2, 0.01 ≤ b ≤0.4, 0.01 ≤ c ≤ 0.4 이고 0.02 ≤ b+c ≤0.5이다.
이들 폴센 등 및 스나가와 등의 방법은 고체상 반응을 포함하며 공침전에 기초한 방법보다 더 높은 산출량 및 더 낮은 제조 비용을 효과적으로 제공한다.
그러나, 상기 기술한 방법을 사용하여 폴센 등과 스나가와 등의 화합물의 일부를 반복하고자 할 때, 원하는 단일상 구조를 얻기 보다는 다중상 화합물을 얻었다. 또한, 고체상 반응을 사용하여 상기 언급한 화학식 1 내지 3의 화합물(이들은 화학식 4 및 5의 범위 밖에 있음)을 제조하고자 할 때, 바람직한 단일상 구조가 아닌 다중상 화합물을 얻었다. 약 15중량% 과량의 리튬을 사용하여, 본 출원인은 고체상 반응에 의하여 LiCoO2과 Li2MnO3 사이의 고용체(solid solution) 중의 화합물을 제조할 수 있었다. 과량의 리튬은 단일상 물질의 형성을 촉진하였으나, 결과물은 불량한 전기화학적 성능을 보였다.
본 출원인은
a) 코발트-, 망간-, 니켈- 및 리튬-함유 산화물 또는 산화물 전구체를 습식 분쇄하여 잘 분포된 코발트, 망간, 니켈 및 리튬을 함유하는 미세 분쇄된 슬러리를 형성하는 단계, 및
b) 이 슬러리를 가열하여 코발트, 망간 및 니켈을 함유하고 실질적으로 단일상 O3 결정구조를 갖는 리튬-전이금속 산화물 화합물을 제공하는 단계에 의하여, 코발트, 망간 및 니켈을 함유하는 단일상 리튬-전이금속 산화물 화합물을 제조할 수 있음을 발견하였다.
습식 분쇄는 건식 분쇄보다 현저히 더 짧은 분쇄 시간을 제공하고 단일상 리튬-전이금속 산화물 화합물의 형성을 촉진하는 것으로 보인다. 습식 분쇄 단계에서의 시간 단축은 가열 단계 동안에 슬러리를 건조하는데에 요구될 수 있는 시간을 더 벌충해준다.
다른 태양으로, 본 발명은 앞서 기술한 리튬-전이금속 산화물 화합물의 입자를 전도성 탄소 및 결합제와 혼합하고 얻어진 혼합물을 지지 기질 위에 코팅하는 추가 단계를 포함하는 리튬-이온 전지 캐소드의 제조 방법을 제공한다.
또 다른 태양으로, 본 발명은 앞서 기술한 캐소드, 전기적으로 상용성의 애노드, 세퍼레이터 및 전해질을 용기 내에 배치하는 것을 포함한 리튬- 이온 전지의 제조 방법을 제공한다.
다른 태양으로, 본원 발명은 화학식 6의 리튬-전이금속 산화물 화합물 (및 하나 이상의 화합물을 포함하는 리튬 이온 전지)을 제공한다.
LiaCobMncNil-b-cO2
여기서, 0 ≤ a ≤ 1.2, 0.52 < b ≤ 0.98, 0.01 ≤ c ≤ 0.47 및 0.53 < b+c ≤ 0.99 이다.
다른 태양으로, 본 발명은 하기의 단일상 화합물로 이루어진 군에서 선택된 화합물로 실질적으로 이루어진 리튬-전이금속 산화물 조성물 (및 하나 이상의 조성물을 포함하는 리튬 이온 전지)을 제공한다.
<화학식 1>
LiNi0.1Mn0.1Co0.8O2
<화학식 2>
Li(Co(1/3)Mn(1/3)Ni(1/3))02
<화학식 3>
Li(Li0.08Co0.15Mn0.375Ni0.375)02
본 발명의 이들 및 다른 태양은 이하의 상세한 설명으로부터 명백할 것이다. 그러나, 어떠한 경우에도 상기 요약들이 발명의 보호받고자 하는 내용을 제한하는 것으로 해석되어서는 안되며, 이 보호받고자 하는 내용은 오로지 첨부된 특허청구범위에 의해서 정의되어야 한다 (이들은 출원절차 동안에 보정될 수 있다).
도 1은 다양한 리튬-전이금속 산화물 조성을 보여주는 삼각 피라미드 플롯이다.
도 2는 도 1로부터의 특정 리튬-전이금속 산화물 조성을 보여주는 삼각 플롯이다.
도 3은 전기화학 셀의 분해된 사시도이다.
이들 도면 중의 같은 도면부호를 갖는 것은 같은 요소를 가리킨다. 도면의 요소들은 일정한 비율로 그린 것은 아니다.
발명의 상세한 설명
본원에 개시되는 리튬-전이금속 산화물 화합물은 리튬-이온 전지 캐소드를 제조하는 데에 특수한 용도를 갖는다. 분쇄된 성분요소에 충분한 에너지를 주면서 코발트-, 망간-, 니켈- 및 리튬-함유 산화물 또는 산화물 전구체를 함께 습식 밀링하여, 이들 성분들이 잘 분포된 코발트, 망간, 니켈 및 리튬을 함유하는 미세 분쇄 슬러리를 형성시킴으로써 이들 화합물을 제조한다. 이들 산화물 또는 산화물 전구체는 한꺼번에 함께 혼합할 필요가 없다. 본 출원인은, 더 적은 표면적 또는 더 큰 입자 직경의 재료를 함께 먼저 분쇄하여 표면적을 증가시키거나 입자 크기를 감소시켜 후에 첨가되는 성분의 표면적 또는 입자 크기를 맞춤으로써, 더 짧은 시간에 더 균질하고 미세 분쇄된 최종 혼합물을 생성할 수 있음을 발견하였다. 분쇄 용기 중에 집괴되기 쉬운 아주 표면적이 큰 성분 (예컨대 수산화물)은 유사한 고 표면적으로 이미 분쇄되어 있는 다른 성분과 더 균질하게 배합될 수 있다. 균질하고 미세 분쇄된 최종 분쇄 혼합물은 단일상 소성된(fired) 생성물의 형성을 촉진하는 데 도움을 줄 수 있다. 예를 들어, "망간과 니켈을 먼저하고 리튬을 나중으로 하는" 것으로 지칭될 수 있는 분쇄 계획에서, 망간- 및 니켈- 함유 산화물 또는 산화물 전구체를 함께 습식 분쇄하여 잘 분포된 망간 및 니켈을 함유하는 미세 분쇄된 제1 슬러리를 형성할 수 있고, 다음에 코발트 함유 산화물 또는 산화물 전구체를 첨가하여 잘 분포된 코발트, 망간 및 니켈을 함유하는 미세 분쇄된 제2 슬러리를 형성할 수 있고, 다음에 리튬 함유 산화물 또는 산화물 전구체를 첨가하여 잘 분포된 코발트, 망간, 니켈 및 리튬을 함유하는 미세 분쇄된 제3 슬러리를 형성할 수 있다. "코발트, 망간 및 니켈을 먼저하고 리튬을 나중으로 하는" 것으로 기술될 수 있는 분쇄 계획을 사용하여, 리튬의 첨가 이전에, 잘 분포된 코발트, 망간 및 니켈을 함유하는 슬러리의 형성을 촉진시킬 수 있다.
"망간 및 니켈을 먼저하고, 코발트 및 리튬을 나중에", "망간 및 니켈을 먼저하고, 코발트를 나중에" (리튬은 망간 및 니켈 다음, 코발트 이전에 첨가됨), "니켈 및 코발트는 처음에 망간 및 니켈은 나중에", "리튬 및 코발트는 처음에 망간 및 니켈은 나중에"와 같은 분쇄 계획 및 당업자에게 명백할 다른 변경도 채택될 수 있다.
적합한 코발트-, 망간- 및 니켈-함유 산화물 또는 산화물 전구체는 코발트 수산화물 (Co(OH)2), 코발트 산화물 (예를 들어 Co304 및 CoO), 망간 카보네이트 (Mn2CO3), 망간 산화물 (MnO), 망간 사산화물 (Mn304), 망간 수산화물 (Mn(OH)2), 염기 망간 카보네이트 (Mn2CO3* xMn(OH)2), 니켈 카보네이트 (Ni2CO3), 니켈 수산화물 (Ni(OH)2), 및 염기 니켈 카보네이트 (Ni2CO3 * xNi(OH)2)를 포함하고, 바람직하게 망간 또는 니켈 전구체 중 적어도 하나는 카보네이트이다.
적합한 리튬-함유 산화물 및 산화물 전구체로 리튬 카보네이트(Li2CO3) 및 리튬 수산화물 (LiOH)를 포함한다. 필요하다면, 전구체의 수화물을 사용할 수 있다.
산화물 또는 산화물 전구체의 각각의 양은 전형적으로 목적하는 최종 화합물의 조성에 기초하여 선택한다. 다양한 범위의 목적 최종 화합물을 제조할 수 있다. 도 1 및 도 2에서 보여진 플롯은 목적물을 선택하는 데 도움을 준다. 도 1은 삼각 피라미드 플롯으로서, 꼭지점 A, B, C 및 D 각각이 조성 LiCoO2, LiMnO2, LiNiO2 및 Li(Li1/3Mn2/3)O2을 나타낸다. 따라서, 꼭지점 A, B 및 C는 각각 지적한 화학정량으로 이들 전이금속을 함유하는 이가 리튬-전이금속 산화물 화합물에 대한 최대 코발트, 망간 및 니켈 함량을 나타낸다. 모서리 BC의 중간에 위치한 지점 E는 LiMn1/2Nil/202을 나타낸다. ABC 위쪽에 위치한 플롯 내의 점들은 리튬이 삽입(intercalation)된 화합물을 나타낸다. 도 2는 점 A, D 및 E에 의하여 정의된 평면을 나타내는 삼각 플롯이다. 도 2 중의 사다리꼴 영역 AEFG (꼭지점 A 및 D에 가장 가까운 점들은 제외하고, 예를 들어 약 0.01 전이금속 몰 단위 이내의 것은 제외)은 특히 바람직한, 등량의 망간 및 니켈을 함유하는 조성을 도시하고 있다. 이 바람직한 조성의 집단(set)은 화학식 Lia[Cox(Ni1/2 Mn1/2)1-x]O2로 표현될 수 있다 (여기서, 0 ≤ a ≤1.2 이고 0.1 ≤ x ≤ 0.98이다). 화학식 1, 2, 및 3의 화합물이 영역 AEFG 내의 점들로서 표현된다.
매개 분쇄 (예를 들어, 볼 분쇄, 어트리터 분쇄, 수평 분쇄 또는 수직 분쇄), 무매개 분쇄 (예를 들어 해머 분쇄, 제트 분쇄, 또는 고압 분산 분쇄) 및 코발트-, 망간- 및 니켈- 함유 산화물 또는 산화물 전구체를 적합하게 분쇄하고 서로 혼합시키는 다른 기술을 비롯한 다양한 습식 분쇄 기술을 사용할 수 있다. 매개 분쇄를 사용할 때, 적합한 매개는 세라믹 매개 (예를 들어 세라믹 봉 또는 볼)을 포함한다. 물이 바람직한 습식 분쇄의 액체이나 저비점 알콜, 톨루엔 및 아세톤과 같은 다른 물질도 필요에 따라 사용될 수 있다. 볼 분쇄는 최종 슬러리가 잘 분포된 코발트, 망간, 니켈 및 리튬을 함유하도록 충분한 시간 및 충분한 강도로 수행해야 한다. 바람직하게는, 슬러리는 상대적으로 작은 입자, 예를 들어 전자 주사 현미경(SEM) 화상을 사용하여 측정할 때 평균 입자 직경이 약 0.3 ㎛ 미만, 바람직하게는 약 0.1 ㎛ 미만의 비교적 작은 입자를 함유할 때까지 분쇄한다. 슬러리 전반에 걸쳐 완전히 고른 분포와 최소의 평균 입자 직경은 요구되지 않는다. 그러나, 주어진 단일 금속 성분의 입자가 0.5㎛보다 큰 것은 피하는 것이 바람직하다. 분쇄가 수행되는 정도는 단지, 가열 단계의 종기에서 얻고자 하는 단일상 리튬-전이금속 산화물 화합물을 제공하기에 충분할 필요가 있을 것이다. 적합한 혼합 시간 (및 사용될 경우 적합한 매개)는 전형적으로, 출발 물질 및 사용되는 혼합 장비와 같은 요소에 부분적으로 의존할 것이다. 종종 일부 실험 방법은 적합한 분쇄 시간 또는 매개를 결정하기 위한 생산 설치에 도움을 주어 원하는 단일상 리튬-전이금속 산화물 화합물을 얻을 수 있도록 한다.
필요하다면, 최종 리튬-전이금속 산화물 화합물을 제공하기 위해서 소성하기 전에 다른 전이금속 산화물 또는 산화물 전구체를 리튬-전이금속 산화물 조성물 내에 포함시킬 수 있다. 대표적인 예로 철, 바나듐, 알루미늄, 구리, 아연, 지르코늄, 몰리브데늄, 니오븀 및 이들의 조합을 포함한다. 이들 기타 전이금속 산화물 또는 산화물 전구체는 사용되는 다른 요소와 함께 첨가하여 슬러리를 형성하거나, 슬러리가 형성된 후에 첨가될 수 있다.
슬러리와 매개(사용된다면)를 분리하고 충분한 시간동안 그리고 충분한 온도에서 슬러리를 소성, 베이킹, 소결 또는 다르게는 가열하여 원하는 단일상 화합물을 형성함으로써, 슬러리를 리튬-전이금속 산화물 화합물로 전환한다. 가열 사이클은 바람직하게 급속 가열 속도, 예를 들어 시간당 10 ℃ 이상을 사용한다. 바람직한 가열 사이클은 900℃ 이상의 온도까지 10℃/분 이상이다. 공기가 바람직한 가열 분위기이나, 다른 가스, 예컨대 산소 또는 이산화탄소, 일산화탄소 및 수소의 혼합물도 필요하다면 사용될 수 있다.
약 1050 ℃ 이상의 온도가 사용되면, 세라믹 로 및 더 오랜 냉각 시간이 필요할 수 있다. 이러한 더 높은 온도는 단일상 리튬-전이금속 산화물 화합물을 얻는데 도움을 줄 수 있으나, 자본 비용을 높이고 산출량을 감소시킬 수도 있다. 1100℃ 정도의 온도가 사용되면, 리튬-전이금속 산화물 화합물을 사용하여 만든 리튬 이온 전지는 비가역적인 제1 사이클 성능 소실이 조금 증가하는 것을 보일 수 있다. 바람직하게는 최대 가열 온도는 1050℃ 미만, 더 바람직하게는 1000℃ 미만, 가장 바람직하게는 900℃ 이하이다.
얻어진 리튬-전이금속 산화물 화합물은 바람직하게는 원하는 평균 입자 직경을 갖는 미세-분쇄된 입자의 형태로 형성되거나 상기 형태로 전환된다. 예를 들어, 산화물이 로터리 소결기 또는 기타 적합한 소성 장비를 사용하여 소성되고 크기별로 분급하여 원하는 것보다 큰 입자는 다시 습식 분쇄(또는 필요하다면 건식 분쇄)하고, 원하는 것보다 더 작은 입자는 소결기에서 더 소성되는 피드백 메카니즘을 사용하여 리튬-전이금속 산화물 화합물을 제조할 수 있다. 이런 방식으로, 적합한 입자 크기 분포를 얻을 수 있다.
리튬-전이금속 산화물 화합물을 캐소드 내에서 단독으로 사용할 수 있고, 또는 다른 캐소드 재료 예컨대 리튬 산화물, 술피드, 할라이드, 등과 조합하여 캐소드 첨가제로서 사용할 수 있다. 예를 들면, 리튬-전이금속 산화물 화합물을 통상의 캐소드 재료 예컨대 리튬 이산화 코발트와 조합하거나 LiMn204 스피넬 및 LiFePO4과 같은 화합물과 조합할 수 있다. 첨가되는 다른 캐소드 재료의 양은 다른 캐소드 재료로부터 사용가능한 리튬의 몰수가 애노드에 의하여 비가역적으로 소모되는 리튬의 몰수와 부합되도록 선택된다. 비가역적으로 소모되는 리튬의 몰수는 개별 애노드의 성질의 함수이다.
캐소드는 애노드와 전해질을 조합하여 리튬 이온 전지를 형성한다. 적합한 애노드의 예로 리튬 금속, 흑연, 난흑연화 탄소(hard carbon) 및 발명의 명칭이 "ELECTRODE FOR A LITHIUM BATTERY"인 미국 특허 6,203,944 (터너(Turner) '944호) 및 발명의 명칭이 "ELECTRODE MATERIAL AND COMPOSITIONS"인 PCT 공개된 특허출원 WO 00103444 (터너(Turner) PCT)에서 개시된 유형의 리튬 합금 조성물을 포함한다. 이 전해질은 액체, 고체 또는 겔일 수 있다.
고체 전해질의 예는 중합체 전해질, 예컨대 폴리에틸렌 옥시드, 폴리테트라플루오로에틸렌, 불소 함유 공중합체 및 이들의 조합을 포함한다. 액체 전해질의 예는 에틸렌 카보네이트, 디에틸 카보네이트, 프로필렌 카보네이트, 및 이들의 조합을 포함한다. 이 전해질은 대표적으로 리튬 전해질 염으로 제공된다. 적합한 염의 예로 LiPF6, LiBF4, 및 LiClO4를 포함한다. 바람직하게는, 전지 용량은 전지가 충전되고 방전된 후에도 75 mA/g 방전 속도에서 적어도 100 사이클 동안에도 4.4 내지 2.5 볼트 사이에서 실질적으로 감소되지 않는다.
본원 발명은 다음의 실시예에서 더 설명될 것이며, 여기서 다르게 나타내지 않으면 모든 부와 퍼센티지는 중량부, 중량%이다.
X-선 회절
각 샘플에 대한 분말 x-선 회절 (XRD) 패턴을 구리 타겟 X-선 튜브 및 회절된 빔 모노크로메이터를 장착한 지멘스 D500 회절기를 사용하여 수집하였다. 충분히 두껍고 넓어서 X-선 빔에 의해 조사되는 분말의 부피가 일정하도록 하는 편평한 사각형 분말-베드로서 샘플을 제조하였다. 이 데이터를 문헌[A. C. Larson and R. B. Von Dreele, "General Structure Analysis System (GSAS) ", Los Alamos National Laboratory Report LAUR 86-748 (2000)]에서 기술된 리트펠트 정제 프로그램의 GSAS 버젼을 사용하여 분석하였다. GSAS 프로그램에 의하여 계산된 두개의 통계치 Rp 및 Chi2를 사용하여, 의도하는 단일상 결정 구조의 모델에 대한 데이터로의 적합 정도(quality of fit) (Rp의 경우에 대하여 핏팅(fitting)시 잔여 오차(residual error)이고 Chi2의 경우에는 적합도(goodness-of-fit)로 표현됨)를 결정하였다. Chi2가 1 (1.000)에 가까울수록, 모델의 데이터로의 적합도는 더 양호하다. Rp 및 Chi2는 일반적으로 비고려 상(들)이 존재할 경우 더 커진다. 단위셀의 격자 상수 또는 치수도 GSAS 프로그램을 사용하여 계산되었다.
전기화학 셀 제조
산화물 분말 2.0 부, N-메틸 피롤리디논 2.3 부, N-메틸 피롤리디논 중 10 중량%의 카이나(KYNAR; 엘프 아토켐으로부터 입수가능)TM 461 폴리비닐리덴 플루오라이드 용액 1.1 부, 및 수퍼-P TM 전도성 탄소 (MMM 카본 (Carbon) 제, 벨기에 소재) 0.11부를 함께 배합함으로써 분말을 제제화하였다. 이 현탁액을 1시간 이상 동안 고전단하에서 교반하고 다음에 알루미늄 호일 상에서 노치 바(notch bar)를 사용하여 피복하여 90% 활성, 5% 폴리비닐리덴 플루오라이드, 5% 전도성 탄소 코팅을 제공하였다. 이 코팅을 진공하에서 150℃에서 4시간 동안 건조시키고, 다음에 금속성의 두께 380 마이크로미터, 직경 17mm의 Li 호일 애노드, 2층의 두께 50마이크로미터의 셀가드(CELLGARD)TM 2400 세퍼레이터(훼스트-셀라네제로부터 상업적으로 입수가능), 및 전해질로서 에틸렌 카보네이트 및 디에틸 카보네이트의 1:2 부피 혼합물 내의 1 몰랄 LiPF6를 사용하여 2325 코인셀(반쪽 셀)로 전환시켰다.
캐소드를 평가하기 위하여 사용된 전기 화학 셀 10의 분해 사시도를 도 3에 나타내었다. 스텐레스 강철 캡 24 및 특수 내산화 케이스 26은 셀을 포함하고, 각각 음극 및 양극 단자로서 작용한다. 캐소드 12는 상기와 같이 제조된다. 리튬 호일 애노드 14는 또한 기준 전극으로서 작용한다. 이 셀은 캐소드 아래쪽에 알루미늄 스페이서 플레이트 16를 구비하고 애노드 아래쪽에 구리 스페이서 플레이트 18을 구비한 2325 코인 셀 하드웨어를 특색으로 삼고 있다. 셀을 밀봉하였을때 타이트하게 압착시킨 적층구조가 형성되도록 스페이서 16 및 18을 선택한다. 세퍼레이터 20을 에틸렌 카보네이트와 디에틸 카보네이트의 1:2 부피 혼합물에 용해한 LiPF의 용액 1M로 웨팅(wetting)시켰다. 가스켓 27을 밀봉씰로 사용하여 두 단자를 분리하였다. 일정 전류 사이클러를 사용하여 실온 및 "C/5" (5시간 충전 및 5시간 방전) 속도로 셀을 주기반복수행하였다.
실시예 1
금속 함유 전구체를 여러 비로 조합하여 최종 산화물 조성물 LiNi0.1Mn0.1Co0.8O2를 제공하였다. 전구체를 검정함으로써 정확한 1회분처리를 수행하였다. 이 검정은 600℃에서 밤새 전구체의 소량을 베이킹함으로써 물을 완전히 포함하지 않는 단일상 산화물을 얻음으로써 수행하였다. 최종 상 조성의 지식과 조합하여 가열전 및 후의 중량을 측정하는 것을 이용하여 각 전구체 중의 금속 몰 당 질량을 계산하였다. 이 방법은 적어도 +/- 0.1 중량부 정밀도의 1회분 처리를 허용한다. 전구체 NiC03 (스펙트럼 케미칼로부터 입수 가능, 22.44 부) 및 MnCO3 (스펙트럼 케미칼로부터 입수 가능, 21.48부)을 반경 12.7mm 말단 실린더형 지르코늄 산화물 매개 지르코아(ZIRCOA)TM 333 부 (지르코아 사로부터 입수 가능) 및 유사한 6.35mm 지르코아 지르코늄 산화물 매개 1000부와 함께 1 리터 고밀도 폴리에틸렌 스웨코 (SWECO)TM 분쇄 용기 (mill jar) (스웨코로부터 입수 가능) 내에 두었다. 탈이온수 200부를 분쇄 용기 내에 첨가하고, 니켈 및 망간 카보네이트를 스웨코 M 18-5 분쇄기 (스웨코로부터 입수)내에서 24시간 동안 습식 분쇄하였다. Li2CO3 (68.12부, 펜실베니아주 필라델피아 소재 FMC로부터 입수), Co(OH)2 (알파 애사(Alpha Aesar)로부터 입수, 137.97 부) 및 추가로 100 부 탈이온수를 분쇄 용기에 첨가하고, 추가 4시간 동안 분쇄하였다. 얻어진 습식 분쇄된 슬러리를 파이렉스TM 케이크 팬(코닝 인크 제) 내로 쏟아붇고, 70℃에서 밤새 공기 건조하였다. 건조된 케이크를 팬으로부터 긁어내고, 매개와 분리하고 25 메쉬(707㎛) 스크린을 통하여 과립화하였다. 얻어진 스크린 분말을 청결한 폴리에틸렌 병 내에 넣고 두껑을 테이프로 봉하였다.
스크린한 분말 15 부를 알루미나 도가니 내에 넣고 실온에서 900℃까지 산소 중에서 1시간 주기를 걸쳐 가열하고 900℃에서 3시간 동안 유지하고 냉각하였다. 얻어진 소성 분말을 XRD 분석을 위하여 리트펠트 정제를 이용하여 얻었다. 관찰된 XRD 패턴은 소성된 분말은 단일상을 갖는다는 것을 나타내었다.
상기 기술된 바와 같이, 소성 분말을 사용하여 전기화학 셀 내에 캐소드를 형성하였다. 전기화학 셀은 146 mAh/g의 용량을 가졌다. 이 셀을 4.3 V로 충전 및 방전한 후의 비가역적인 제1 사이클 용량 손실은 5%였다.
실시예 2
실시예 1로부터 습식 분쇄된 슬러리 15부를 다음과 같이 "램프-소크(ramp-soak)" 사이클을 사용하여 산소 내에서 가열하였다. 이 슬러리를 알루미나 도가니 내에 넣고, 오븐 내에서 가열하였는데, 온도를 20분에 걸쳐 실온에서 250℃까지 높이고 1시간 동안 250℃에서 유지하고 20분동안 750℃까지 높이고 750℃에서 추가 1시간동안 유지하고, 900℃까지 20분동안 높이고 900℃에서 세시간 동안 유지하였다. 이 소성된 샘플을 로 내에서 밤새 냉각하고, 리트펠트 정제를 이용하여 XRD 분석을 위해 얻었다. 관찰된 LiNi0.1Mn0.1Co0.8O2의 XRD 패턴은 샘플이 단일상을 가졌음을 보여주었다.
비교예 1
Co(OH)2 (알파 애사로부터 입수, 7.63 부), NiC03 (스펙트럼 케미칼로부터 입수, 1.27 부) 및 MnCO3 (1.17 부, 스펙트럼 케미칼로부터 입수)의 분말을 실시예 2에서 사용한 바와 같이 약 100 ml 부피를 갖고 15mm 구 한 개 및 7개의 6mm 구인 지르콘 분쇄 매개를 함유하는 텡스텐 카바이드 분쇄 용기 내에서 조합하였다. 이 성분을 스펙스 모델 8000-D 듀얼 쉐이커 믹서 [SPEX Model 8000-D Dual Shaker Mixer; 스펙스 서티프렙 인크(SPEX CertiPrep Inc.)로부터 입수가능] 상에서 30분동안 건식 분쇄하였다. 리튬을 Li2CO3 (FMC 제, 3.79부)의 형태로 전이 금속 혼합물에 첨가하였다. 리튬 첨가 후에, 추가의 건식 분쇄를 15분 동안 수행하였다.
분쇄 후에, 이 혼합물을 알루미나 도가니로 옮기고, 900℃의 온도로 소성하고, 1시간 동안 이 온도를 유지하였다. 이렇게하여 화학식 LiNi0.1Mn0.1Co0.8O2의 화합물을 얻고, 이를 XRD 분석하여 적어도 2상을 갖는다는 것을 알아냈다.
비교예 2
니켈, 망간, 및 코발트 니트레이트의 수용액을 1:8:1의 Ni:Co:Mn 몰비로 조합하였다. 이 혼합물을 1.6 M LiOH의 와류적으로 교반된 수용액(이는 Ni0.1Mn0.1Co0.8(OH)2의 생성에 대하여 20% 과량으로 존재함) 내에 떨어뜨렸다. 얻어진 슬러리를 여과하고 습식 케이크 내의 잔여 Li이 존재하는 금속 중 0.2 원자% 미만이 될 때까지 바스켓 원심분리기 내에서 연속적으로 세척하였다. 다음으로, 500 마이크론의 체를 통과하도록 깨지고 분쇄될 때까지, 세척한 수산화물 재료의 케이크를 120℃ 미만에서 건조시켰다. 금속 함량에 대해 이 분말을 검정하였다. 이 분말 및 Li2CO3를 100ml 텡스텐 카바이드 분쇄기(프리취 게엠베하(Fritsch GmbH)로부터 입수 가능) 내에 Li: Ni: Co: Mn 몰비 10: 1: 8: 1로 조합하였다. 실시예 2에서 사용된 바와 같은 10개의 5mm의 작은 구인 지르콘 분쇄 매개를 용기 내에 첨가하였다. 이 용기를 스펙스TM 서티프렙TM 믹서/밀 (스펙스 서티프렙 인크로부터 입수가능) 내에 10분간 쉐이킹하였다. 얻어진 혼합물을 알루미나 도가니 내로 옮기고 1시간 동안 480℃에서, 1시간 동안 750℃에서 끝으로 1시간 동안 900℃에서 가열처리하였다. 얻어진 분말을 막자에서 갈고, 리트펠트 정제를 이용하여 XRD로 시험하였다. 얻어진 XRD 패턴은 단일상을 갖는 화학식 1의 LiNi0.1Mn0.1Co0.8O2의 화합물을 얻었음을 보여주었다. 이는 실시예 1 및 2에서 얻은 동일한 생성물이었으나, 실시예 1 및 2에서 요구되지 않는 지나치게 오랜 세척과 건조 단계를 요구하였다.
이제까지 본 발명의 많은 실시형태를 기술하였다. 그럼에도 불구하고 발명의 정신 및 범위를 벗어나지 않고도 다양한 변경을 할 수 있음을 이해할 것이다. 따라서, 다른 실시형태도 다음의 청구범위 내에 있다.

Claims (21)

  1. a) 코발트-, 망간-, 니켈- 및 리튬-함유 산화물 또는 산화물 전구체를 습식 분쇄하여 잘 분포된 코발트, 망간, 니켈 및 리튬이 함유된 미세 분쇄된 슬러리를 형성하는 단계와,
    b) 상기 슬러리를 가열하여 코발트, 망간 및 니켈을 함유하고 실질적으로 단일상 O3 결정 구조를 갖는 리튬-전이금속 산화물 화합물을 제공하는 단계를 포함하는,
    코발트, 망간 및 니켈을 함유하는 단일상 리튬-전이금속 산화물 화합물의 제조 방법.
  2. 제1항에 있어서, 리튬-전이금속 산화물 화합물의 입자를 전도성 탄소 및 결합제와 혼합하는 단계 및 얻어진 혼합물을 지지 기질위로 코팅하여 리튬-전이금속 산화물 캐소드를 형성하는 단계를 추가로 포함하는 제조 방법.
  3. 제2항에 있어서, 캐소드, 전기적으로 상용성의 애노드, 세퍼레이터 및 전해질을 용기 내에 배치하여 리튬 이온 전지를 형성하는 단계를 추가로 포함하는 제조 방법.
  4. 삭제
  5. 삭제
  6. 삭제
  7. 삭제
  8. 삭제
  9. 삭제
  10. 삭제
  11. 삭제
  12. 삭제
  13. 삭제
  14. 삭제
  15. 삭제
  16. 삭제
  17. 삭제
  18. 삭제
  19. 삭제
  20. 삭제
  21. 삭제
KR1020067010092A 2003-11-26 2004-10-20 리튬 이온 전지 캐소드 재료용 리튬-니켈-코발트-망간 혼합금속 산화물의 고체상 합성 KR101206128B1 (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US10/723,511 2003-11-26
US10/723,511 US7211237B2 (en) 2003-11-26 2003-11-26 Solid state synthesis of lithium ion battery cathode material
PCT/US2004/034750 WO2005056480A1 (en) 2003-11-26 2004-10-20 Solid state synthesis of lithium-nickel-cobalt-manganese mixed metal oxides for use in lithium ion battery cathode material

Publications (2)

Publication Number Publication Date
KR20060097734A KR20060097734A (ko) 2006-09-14
KR101206128B1 true KR101206128B1 (ko) 2012-11-28

Family

ID=34592297

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020067010092A KR101206128B1 (ko) 2003-11-26 2004-10-20 리튬 이온 전지 캐소드 재료용 리튬-니켈-코발트-망간 혼합금속 산화물의 고체상 합성

Country Status (10)

Country Link
US (2) US7211237B2 (ko)
EP (1) EP1689681A1 (ko)
JP (1) JP2007515366A (ko)
KR (1) KR101206128B1 (ko)
CN (1) CN100526222C (ko)
BR (1) BRPI0416961A (ko)
CA (1) CA2546889A1 (ko)
RU (1) RU2006118158A (ko)
WO (1) WO2005056480A1 (ko)
ZA (1) ZA200605223B (ko)

Families Citing this family (94)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6710162B2 (en) * 2001-02-16 2004-03-23 Genzyme Corporation Method of drying a material having a cohesive phase
US7498100B2 (en) * 2003-08-08 2009-03-03 3M Innovative Properties Company Multi-phase, silicon-containing electrode for a lithium-ion battery
US7767349B2 (en) 2005-07-25 2010-08-03 3M Innovative Properties Company Alloy compositions for lithium ion batteries
US7851085B2 (en) * 2005-07-25 2010-12-14 3M Innovative Properties Company Alloy compositions for lithium ion batteries
US7871727B2 (en) * 2005-07-25 2011-01-18 3M Innovative Properties Company Alloy composition for lithium ion batteries
JP4445447B2 (ja) * 2005-09-15 2010-04-07 株式会社東芝 非水電解質電池および電池パック
KR101369095B1 (ko) * 2005-10-13 2014-02-28 쓰리엠 이노베이티브 프로퍼티즈 컴파니 전기화학 전지의 사용 방법
WO2007064531A1 (en) * 2005-12-01 2007-06-07 3M Innovative Properties Company Electrode compositions based on an amorphous alloy having a high silicon content
US7906238B2 (en) 2005-12-23 2011-03-15 3M Innovative Properties Company Silicon-containing alloys useful as electrodes for lithium-ion batteries
JP5153135B2 (ja) * 2006-03-09 2013-02-27 三洋電機株式会社 非水電解質二次電池
CN100372774C (zh) * 2006-03-16 2008-03-05 中国科学院上海微系统与信息技术研究所 过渡金属复合氧化物作为中间产物制备锂离子电池多元正极材料的方法
US20070269718A1 (en) * 2006-05-22 2007-11-22 3M Innovative Properties Company Electrode composition, method of making the same, and lithium ion battery including the same
CN101139108B (zh) * 2006-09-06 2010-09-29 北京有色金属研究总院 锂离子电池用的层状锂镍钴锰氧化物正极材料的制备方法
KR100753521B1 (ko) 2006-09-19 2007-08-30 이화여자대학교 산학협력단 층상 코발트 니켈 망간 산화물 나노콜로이드, 이와전이금속 산화물과의 나노혼성체, 및 이들의 제조방법
KR101338705B1 (ko) * 2007-01-29 2013-12-06 유미코르 아일랜드-커버형 리튬 코발타이트 산화물
US9177689B2 (en) 2007-01-29 2015-11-03 Umicore High density and high voltage stable cathode materials for secondary batteries
US9608266B2 (en) 2007-01-29 2017-03-28 Umicore Cathode material for lithium-ion rechargeable batteries
US9614220B2 (en) 2007-01-29 2017-04-04 Umicore Doped and island-covered lithium cobaltite oxides
US20080280205A1 (en) * 2007-05-07 2008-11-13 3M Innovative Properties Company Lithium mixed metal oxide cathode compositions and lithium-ion electrochemical cells incorporating same
KR100909412B1 (ko) 2007-08-27 2009-07-24 이화여자대학교 산학협력단 층상 코발트 산화물 나노콜로이드의 제조방법, 상기 방법에의해 제조된 층상 코발트 산화물 나노콜로이드 및 그보관방법
US8012624B2 (en) * 2007-09-28 2011-09-06 3M Innovative Properties Company Sintered cathode compositions
JP2010541166A (ja) * 2007-09-28 2010-12-24 スリーエム イノベイティブ プロパティズ カンパニー カソード組成物の製造方法
US8993051B2 (en) * 2007-12-12 2015-03-31 Technische Universiteit Delft Method for covering particles, especially a battery electrode material particles, and particles obtained with such method and a battery comprising such particle
JP2010135285A (ja) * 2008-10-31 2010-06-17 Sanyo Electric Co Ltd リチウム二次電池用正極活物質及びその製造方法
US20100273055A1 (en) 2009-04-28 2010-10-28 3M Innovative Properties Company Lithium-ion electrochemical cell
DE102009049326A1 (de) 2009-10-14 2011-04-21 Li-Tec Battery Gmbh Kathodische Elektrode und elektrochemische Zelle hierzu
CN102668178B (zh) * 2009-11-25 2014-10-08 株式会社Lg化学 由两种组分的组合制成的阴极以及使用该阴极的锂二次电池
US20110183209A1 (en) * 2010-01-27 2011-07-28 3M Innovative Properties Company High capacity lithium-ion electrochemical cells
DE102010011413A1 (de) 2010-03-15 2011-09-15 Li-Tec Battery Gmbh Kathodische Elektrode und elektrochemische Zelle für dynamische Einsätze
DE102010011414A1 (de) 2010-03-15 2011-09-15 Li-Tec Battery Gmbh Lithiumionenzelle mit intrinsischem Schutz gegen thermisches Durchgehen
WO2011122865A2 (ko) * 2010-04-01 2011-10-06 주식회사 엘지화학 양극 활물질 및 이를 이용한 리튬 이차전지
CN102714308A (zh) 2010-04-01 2012-10-03 株式会社Lg化学 新型的二次电池用正极
KR20110121274A (ko) * 2010-04-30 2011-11-07 삼성정밀화학 주식회사 리튬 전이금속 산화물의 제조방법
KR101240174B1 (ko) * 2010-04-30 2013-03-07 주식회사 엘지화학 양극 활물질 및 이를 이용한 리튬 이차전지
US8968940B2 (en) 2010-05-25 2015-03-03 Uchicago Argonne, Llc Redox shuttles for high voltage cathodes
US8877390B2 (en) 2010-05-25 2014-11-04 Uchicago Argonne, Llc Redox shuttles for lithium ion batteries
JP5460922B2 (ja) 2010-05-25 2014-04-02 ウチカゴ アルゴン,エルエルシー リチウムイオン電池のためのポリエーテル官能化レドックスシャトル添加剤
US9178249B2 (en) 2010-05-27 2015-11-03 Uchicago Argonne, Llc Electrode stabilizing materials
CN103038169B (zh) 2010-06-02 2015-05-13 夏普株式会社 含锂复合氧化物的制造方法
KR20110136001A (ko) * 2010-06-13 2011-12-21 삼성에스디아이 주식회사 리튬 이차전지용 양극 활물질의 제조 방법 및 이를 이용한 리튬 이차전지
JP5646088B1 (ja) * 2010-06-29 2014-12-24 ユミコア ソシエテ アノニムUmicore S.A. 二次電池のための高密度および高電圧安定性のカソード材料
US9419271B2 (en) 2010-07-02 2016-08-16 Semiconductor Energy Laboratory Co., Ltd. Electrode material and method for forming electrode material
EP2618408A4 (en) * 2010-09-17 2017-01-25 LG Chem, Ltd. Positive electrode active material and lithium secondary battery using same
JP5698951B2 (ja) * 2010-10-19 2015-04-08 シャープ株式会社 正極活物質及びその製造方法、正極ならびに非水電解質二次電池
EP2638582A1 (en) 2010-11-09 2013-09-18 3M Innovative Properties Company High capacity alloy anodes and lithium-ion electrochemical cells containing same
JP5478549B2 (ja) 2011-04-18 2014-04-23 シャープ株式会社 正極活物質の製造方法
US8992794B2 (en) * 2011-06-24 2015-03-31 Basf Corporation Process for synthesis of a layered oxide cathode composition
KR101405059B1 (ko) * 2011-07-13 2014-06-12 주식회사 엘지화학 양극 활물질 및 이를 이용한 리튬 이차전지
WO2013032593A2 (en) 2011-08-31 2013-03-07 Uchicago Argonne, Llc Redox shuttles for overcharge protection of lithium batteries
KR101452029B1 (ko) * 2011-09-20 2014-10-23 주식회사 엘지화학 고용량 양극활물질 및 이를 포함하는 리튬이차전지
KR20140125856A (ko) * 2012-02-15 2014-10-29 바스프 에스이 입자, 이의 제조 방법 및 이의 용도
EP2875540A2 (en) * 2012-07-20 2015-05-27 3M Innovative Properties Company High voltage cathode compositions for lithium-ion batteries
CN102881892B (zh) * 2012-10-15 2015-04-08 福建师范大学 一种通过氧化/烧结过程制备富锂固溶体正极材料的方法
US9005822B2 (en) 2013-03-06 2015-04-14 Uchicago Argonne, Llc Functional electrolyte for lithium-ion batteries
WO2014164927A1 (en) 2013-03-12 2014-10-09 Apple Inc. High voltage, high volumetric energy density li-ion battery using advanced cathode materials
US9601755B2 (en) 2013-03-14 2017-03-21 Ovonic Battery Company, Inc. Composite cathode materials having improved cycle life
EP2973801A1 (en) * 2013-03-15 2016-01-20 Ovonic Battery Company, Inc. Composite cathode materials having improved cycle life
US10076737B2 (en) 2013-05-06 2018-09-18 Liang-Yuh Chen Method for preparing a material of a battery cell
CN104241622A (zh) * 2013-06-13 2014-12-24 苏州宝时得电动工具有限公司 正极材料及其制备方法
JP5813277B1 (ja) * 2013-12-04 2015-11-17 三井金属鉱業株式会社 スピネル型リチウムコバルトマンガン含有複合酸化物
US10008743B2 (en) 2014-02-03 2018-06-26 Uchicago Argonne, Llc High voltage redox shuttles, method for making high voltage redox shuttles
JP2015164891A (ja) * 2014-02-04 2015-09-17 東京電力株式会社 リチウムマンガンニッケルコバルト系複合酸化物の製造方法
EP3154909B1 (en) 2014-05-27 2022-08-10 Jiangsu Hengtron Nanotech Co., Ltd. Improved lithium metal oxide cathode materials and method to make them
CN106663791A (zh) * 2014-07-25 2017-05-10 台湾立凯电能科技股份有限公司 锂镍锰氧电池正极材料的制备方法及锂镍锰氧电池正极材料
US9716265B2 (en) 2014-08-01 2017-07-25 Apple Inc. High-density precursor for manufacture of composite metal oxide cathodes for Li-ion batteries
WO2016022620A1 (en) * 2014-08-05 2016-02-11 3M Innovative Properties Company Cathode compositions for lithium-ion batteries
EP3101012A1 (en) 2015-06-04 2016-12-07 Bayer Pharma Aktiengesellschaft New gadolinium chelate compounds for use in magnetic resonance imaging
WO2017042047A1 (en) 2015-09-08 2017-03-16 Basf Se Process for making an electrode active material for lithium ion batteries
US10297821B2 (en) 2015-09-30 2019-05-21 Apple Inc. Cathode-active materials, their precursors, and methods of forming
WO2017160851A1 (en) 2016-03-14 2017-09-21 Apple Inc. Cathode active materials for lithium-ion batteries
CN112158891B (zh) 2016-09-20 2023-03-31 苹果公司 具有改善的颗粒形态的阴极活性材料
KR102223565B1 (ko) 2016-09-21 2021-03-04 애플 인크. 리튬 이온 배터리용 표면 안정화된 캐소드 재료 및 이의 합성 방법
KR20180049401A (ko) * 2016-11-01 2018-05-11 주식회사 아모그린텍 전극 및 이를 이용한 이차전지와 전극의 제조방법
CN109309204A (zh) * 2017-07-26 2019-02-05 中能中科(天津)新能源科技有限公司 用于批量生产锂碳复合材料的方法、设备以及检验方法
KR102643568B1 (ko) * 2017-09-19 2024-03-05 더 리젠츠 오브 더 유니버시티 오브 캘리포니아 양이온-무질서 암염 리튬 금속 산화물 및 옥시플루오라이드 및 이들의 제조방법
US11316157B1 (en) 2018-05-26 2022-04-26 Ge Solartech, LLC Methods for the production of cathode materials for lithium ion batteries
US11695108B2 (en) 2018-08-02 2023-07-04 Apple Inc. Oxide mixture and complex oxide coatings for cathode materials
US11749799B2 (en) 2018-08-17 2023-09-05 Apple Inc. Coatings for cathode active materials
JP7443340B2 (ja) * 2018-08-30 2024-03-05 ハイドロ-ケベック コーティングされたリチウムイオン再充電可能電池活物質
WO2020047213A1 (en) * 2018-08-30 2020-03-05 HYDRO-QUéBEC Attritor-mixed positive electrode active materials
CN109678216A (zh) * 2018-12-12 2019-04-26 无锡晶石新型能源股份有限公司 一种镍锰酸锂材料的制备方法
CN109786672B (zh) * 2018-12-25 2022-03-04 中国电子科技集团公司第十八研究所 一种微米级单晶三元正极材料的制备方法
US11376559B2 (en) 2019-06-28 2022-07-05 eJoule, Inc. Processing system and method for producing a particulate material
US11673112B2 (en) 2020-06-28 2023-06-13 eJoule, Inc. System and process with assisted gas flow inside a reaction chamber
US11121354B2 (en) 2019-06-28 2021-09-14 eJoule, Inc. System with power jet modules and method thereof
CN110416513B (zh) * 2019-07-23 2021-08-31 中国恩菲工程技术有限公司 碳硅复合材料的制备方法、碳硅复合电极及包含其的电池
US11757096B2 (en) 2019-08-21 2023-09-12 Apple Inc. Aluminum-doped lithium cobalt manganese oxide batteries
WO2021040931A1 (en) 2019-08-29 2021-03-04 Novonix Battery Testing Services Inc. Lithium transition metal oxide and precursor particulates and methods
GB2589063A (en) * 2019-10-22 2021-05-26 Dyson Technology Ltd A cathode composition
US11728482B2 (en) 2020-06-25 2023-08-15 The Regents Of The University Of California Doping strategy for layered oxide electrode materials used in lithium-ion batteries
TWI800941B (zh) * 2021-10-06 2023-05-01 芯量科技股份有限公司 製備成分均勻正極材料前驅物的方法
WO2023164309A1 (en) * 2022-02-28 2023-08-31 Virginia Tech Intellectual Properties, Inc. Cation-disordered cathode materials for stable lithium-ion batteries
WO2023230537A1 (en) 2022-05-27 2023-11-30 Novonix Battery Technology Solutions Inc. Methods for preparing lithium nickel manganese cobalt oxide particulate
WO2023235475A1 (en) * 2022-06-03 2023-12-07 Wildcat Discovery Technologies, Inc. Disordered rocksalt cathode material and method of making it

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993004996A1 (en) 1991-09-06 1993-03-18 Ferro Corporation Improved mixed metal oxide crystalline powders and method for the synthesis thereof
JP2002343356A (ja) 2001-05-17 2002-11-29 Dainippon Toryo Co Ltd リチウムマンガン系複酸化物粒子、その製造方法及び二次電池
JP2003034538A (ja) 2001-05-17 2003-02-07 Mitsubishi Chemicals Corp リチウムニッケルマンガン複合酸化物の製造方法

Family Cites Families (100)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3668749A (en) * 1970-05-06 1972-06-13 Champion Spark Plug Co Spark plug seat
US4567031A (en) * 1983-12-27 1986-01-28 Combustion Engineering, Inc. Process for preparing mixed metal oxides
US4780381A (en) * 1987-11-05 1988-10-25 Allied-Signal, Inc. Rechargeable battery cathode from sodium cobalt dioxide in the O3, O'3, P3 and/or P'3 phases
US5264201A (en) * 1990-07-23 1993-11-23 Her Majesty The Queen In Right Of The Province Of British Columbia Lithiated nickel dioxide and secondary cells prepared therefrom
US5521027A (en) * 1990-10-25 1996-05-28 Matsushita Electric Industrial Co., Ltd. Non-aqueous secondary electrochemical battery
EP0482287B2 (en) * 1990-10-25 2004-09-01 Matsushita Electric Industrial Co., Ltd. A non-aqueous secondary electrochemical battery
CA2055305C (en) * 1990-11-17 2002-02-19 Naoyuki Sugeno Nonaqueous electrolyte secondary battery
JPH05299092A (ja) * 1992-01-17 1993-11-12 Matsushita Electric Ind Co Ltd 非水電解質リチウム二次電池及びその製造方法
US5393622A (en) * 1992-02-07 1995-02-28 Matsushita Electric Industrial Co., Ltd. Process for production of positive electrode active material
US5478671A (en) * 1992-04-24 1995-12-26 Fuji Photo Film Co., Ltd. Nonaqueous secondary battery
CA2096386A1 (en) * 1992-05-18 1993-11-19 Masahiro Kamauchi Lithium secondary battery
US5474858A (en) * 1992-07-21 1995-12-12 Medtronic, Inc. Method for preventing gas formation in electro-chemical cells
JP3487441B2 (ja) * 1993-09-22 2004-01-19 株式会社デンソー リチウム二次電池用活物質の製造方法
US5742070A (en) * 1993-09-22 1998-04-21 Nippondenso Co., Ltd. Method for preparing an active substance of chemical cells
WO1995009449A1 (en) * 1993-09-27 1995-04-06 Arthur D. Little, Inc. Small particle electrodes by aerosol process
US5478675A (en) * 1993-12-27 1995-12-26 Hival Ltd. Secondary battery
US5503930A (en) * 1994-03-07 1996-04-02 Tdk Corporation Layer structure oxide
US5609975A (en) * 1994-05-13 1997-03-11 Matsushita Electric Industrial Co., Ltd. Positive electrode for non-aqueous electrolyte lithium secondary battery and method of manufacturing the same
US5531920A (en) * 1994-10-03 1996-07-02 Motorola, Inc. Method of synthesizing alkaline metal intercalation materials for electrochemical cells
DE69502690T2 (de) * 1994-12-16 1998-11-26 Matsushita Electric Ind Co Ltd Verfahren zur Herstellung positiven aktiven Materials für Lithium-Sekundärbatterien und diese enthaltende sekundäre Zellen
JP3329124B2 (ja) * 1995-03-03 2002-09-30 松下電器産業株式会社 非水電解液二次電池用正極活物質の製造法
DE19511355A1 (de) * 1995-03-28 1996-10-02 Merck Patent Gmbh Verfahren zur Herstellung von Lithium-Interkalationsverbindungen
JP3606289B2 (ja) * 1995-04-26 2005-01-05 日本電池株式会社 リチウム電池用正極活物質およびその製造法
US6365299B1 (en) * 1995-06-28 2002-04-02 Fuji Photo Film Co., Ltd. Nonaqueous secondary battery
WO1997019023A1 (fr) * 1995-11-24 1997-05-29 Fuji Chemical Industry Co., Ltd. Oxyde composite lithium-nickel, son procede de preparation, et materiau actif positif destine a une batterie secondaire
DE69634670T2 (de) * 1995-12-26 2006-03-09 Kao Corp. Aktives anodenmaterial und nichtwässrige sekundärbatterie
US5718989A (en) * 1995-12-29 1998-02-17 Japan Storage Battery Co., Ltd. Positive electrode active material for lithium secondary battery
GB9600772D0 (en) * 1996-01-15 1996-03-20 Univ St Andrews Improvements in and relating to electrochemical cells
JPH09245836A (ja) * 1996-03-08 1997-09-19 Fuji Photo Film Co Ltd 非水電解質二次電池
US5753202A (en) * 1996-04-08 1998-05-19 Duracell Inc. Method of preparation of lithium manganese oxide spinel
JP3846601B2 (ja) * 1996-06-13 2006-11-15 株式会社ジーエス・ユアサコーポレーション リチウム電池用正極活物質およびその製造方法ならびに前記活物質を備えた電池
US6030726A (en) * 1996-06-17 2000-02-29 Hitachi, Ltd. Lithium secondary battery having negative electrode of carbon material which bears metals
US5981445A (en) * 1996-06-17 1999-11-09 Corporation De I'ecole Polytechnique Process of making fine ceramic powders from aqueous suspensions
TW363940B (en) * 1996-08-12 1999-07-11 Toda Kogyo Corp A lithium-nickle-cobalt compound oxide, process thereof and anode active substance for storage battery
JP3489771B2 (ja) * 1996-08-23 2004-01-26 松下電器産業株式会社 リチウム電池およびリチウム電池の製造法
US6077496A (en) * 1996-09-12 2000-06-20 Dowa Mining Co., Ltd. Positive electrode active material for nonaqueous secondary cells and a process for producing said active material
US5783333A (en) 1996-11-27 1998-07-21 Polystor Corporation Lithium nickel cobalt oxides for positive electrodes
EP0849817A3 (en) * 1996-12-20 1999-03-24 Japan Storage Battery Company Limited Positive active material for lithium battery having the same, and method for producing the same
US6040089A (en) * 1997-02-28 2000-03-21 Fmc Corporation Multiple-doped oxide cathode material for secondary lithium and lithium-ion batteries
JP3036694B2 (ja) * 1997-03-25 2000-04-24 三菱重工業株式会社 Liイオン電池電極材料用Li複合酸化物の製造方法
DE69819395T2 (de) * 1997-04-15 2004-09-09 Sanyo Electric Co., Ltd., Moriguchi Positivelektrodenmaterialf für Verwendung nichtwässriger Elektrolyt enthaltender Batterie und Verfahren zur seiner Herstellung und nichtwässriger Elektrolyt enthaltende Batterie
US5858324A (en) * 1997-04-17 1999-01-12 Minnesota Mining And Manufacturing Company Lithium based compounds useful as electrodes and method for preparing same
JP4326041B2 (ja) * 1997-05-15 2009-09-02 エフエムシー・コーポレイション ドープされた層間化合物およびその作製方法
US6277521B1 (en) * 1997-05-15 2001-08-21 Fmc Corporation Lithium metal oxide containing multiple dopants and method of preparing same
DE19728382C2 (de) * 1997-07-03 2003-03-13 Hosokawa Alpine Ag & Co Verfahren und Vorrichtung zur Fließbett-Strahlmahlung
US5948569A (en) * 1997-07-21 1999-09-07 Duracell Inc. Lithium ion electrochemical cell
US6017654A (en) * 1997-08-04 2000-01-25 Carnegie Mellon University Cathode materials for lithium-ion secondary cells
US5900385A (en) * 1997-10-15 1999-05-04 Minnesota Mining And Manufacturing Company Nickel--containing compounds useful as electrodes and method for preparing same
SG77657A1 (en) * 1997-10-31 2001-01-16 Canon Kk Electrophotographic photosensitive member and process cartridge and electrophotographic apparatus having the electrophotographic photosensitive member
CN1146062C (zh) * 1998-02-10 2004-04-14 三星电管株式会社 正极活性材料及其制造方法以及使用该材料的锂二次电池
DE19810549A1 (de) * 1998-03-11 1999-09-16 Delo Industrieklebstoffe Gmbh Polymerisierbare fluorhaltige Zubereitung, ihre Verwendung und Verfahren zur Herstellung ausgehärteter Polymermassen aus dieser Zubereitung
JP3524762B2 (ja) 1998-03-19 2004-05-10 三洋電機株式会社 リチウム二次電池
US6203944B1 (en) * 1998-03-26 2001-03-20 3M Innovative Properties Company Electrode for a lithium battery
IL124007A (en) 1998-04-08 2001-08-26 Univ Ramot Long cycle-life alkali metal battery
US6255017B1 (en) 1998-07-10 2001-07-03 3M Innovative Properties Co. Electrode material and compositions including same
KR100473413B1 (ko) * 1998-11-13 2005-03-08 에프엠씨 코포레이션 국부화된 입방형 스피넬 구조의 상을 가지지 않는 층상리튬 금속 산화물 및 그 제조방법
CN1170773C (zh) * 1998-11-20 2004-10-13 Fmc公司 含多种掺杂剂的含锂、锰和氧的化合物及其制备方法
KR100280998B1 (ko) * 1998-12-10 2001-03-02 김순택 리튬 이차 전지용 양극 활물질
US6168887B1 (en) * 1999-01-15 2001-01-02 Chemetals Technology Corporation Layered lithium manganese oxide bronze and electrodes thereof
JP3244227B2 (ja) * 1999-04-26 2002-01-07 日本電気株式会社 非水電解液二次電池
JP3378222B2 (ja) * 1999-05-06 2003-02-17 同和鉱業株式会社 非水系二次電池用正極活物質および正極並びに二次電池
CA2308346A1 (en) * 1999-05-14 2000-11-14 Mitsubishi Cable Industries, Ltd. Positive electrode active material, positive electrode active material composition and lithium ion secondary battery
JP3649953B2 (ja) * 1999-06-23 2005-05-18 三洋電機株式会社 活物質、電極、非水電解液二次電池及び活物質の製造方法
US6248477B1 (en) * 1999-09-29 2001-06-19 Kerr-Mcgee Chemical Llc Cathode intercalation compositions, production methods and rechargeable lithium batteries containing the same
US6230947B1 (en) * 1999-10-22 2001-05-15 Mcclaran Robert E. Bracket mounting device
KR100315227B1 (ko) * 1999-11-17 2001-11-26 김순택 리튬 이차 전지용 양극 활물질 및 그의 제조 방법
US7247408B2 (en) * 1999-11-23 2007-07-24 Sion Power Corporation Lithium anodes for electrochemical cells
JP4960561B2 (ja) * 1999-12-10 2012-06-27 エフエムシー・コーポレイション リチウムコバルト酸化物及びその製造方法
US6623886B2 (en) * 1999-12-29 2003-09-23 Kimberly-Clark Worldwide, Inc. Nickel-rich quaternary metal oxide materials as cathodes for lithium-ion and lithium-ion polymer batteries
KR100326460B1 (ko) * 2000-02-10 2002-02-28 김순택 리튬 이차 전지용 양극 활물질 및 그의 제조 방법
JP4383681B2 (ja) 2000-02-28 2009-12-16 三星エスディアイ株式会社 リチウム二次電池用正極活物質及びその製造方法
JP3611190B2 (ja) * 2000-03-03 2005-01-19 日産自動車株式会社 非水電解質二次電池用正極活物質および非水電解質二次電池
JP4210892B2 (ja) * 2000-03-30 2009-01-21 ソニー株式会社 二次電池
JP4020565B2 (ja) * 2000-03-31 2007-12-12 三洋電機株式会社 非水電解質二次電池
US6680143B2 (en) * 2000-06-22 2004-01-20 The University Of Chicago Lithium metal oxide electrodes for lithium cells and batteries
US6677082B2 (en) * 2000-06-22 2004-01-13 The University Of Chicago Lithium metal oxide electrodes for lithium cells and batteries
JP3890185B2 (ja) * 2000-07-27 2007-03-07 松下電器産業株式会社 正極活物質およびこれを含む非水電解質二次電池
US6660432B2 (en) * 2000-09-14 2003-12-09 Ilion Technology Corporation Lithiated oxide materials and methods of manufacture
US6984469B2 (en) * 2000-09-25 2006-01-10 Samsung Sdi Co., Ltd. Positive active material for rechargeable lithium batteries and method of preparing same
JP4183374B2 (ja) * 2000-09-29 2008-11-19 三洋電機株式会社 非水電解質二次電池
US7138209B2 (en) * 2000-10-09 2006-11-21 Samsung Sdi Co., Ltd. Positive active material for rechargeable lithium battery and method of preparing same
US20020053663A1 (en) 2000-11-06 2002-05-09 Tanaka Chemical Corporation High density cobalt-manganese coprecipitated nickel hydroxide and process for its production
JP5034136B2 (ja) * 2000-11-14 2012-09-26 株式会社Gsユアサ 非水電解質二次電池用正極活物質およびそれを用いた非水電解質二次電池
CN100400425C (zh) * 2000-11-16 2008-07-09 日立马库塞鲁株式会社 含有锂的复合氧化物和使用它的非水二次电池、及其制法
US6568137B2 (en) * 2000-12-19 2003-05-27 Michael Alexander Ballantyne Insulated metal cladding for wood door frame
US6706447B2 (en) * 2000-12-22 2004-03-16 Fmc Corporation, Lithium Division Lithium metal dispersion in secondary battery anodes
JP3991189B2 (ja) * 2001-04-04 2007-10-17 株式会社ジーエス・ユアサコーポレーション 正極活物質及びその製造方法並びにそれを用いた二次電池
US6964828B2 (en) * 2001-04-27 2005-11-15 3M Innovative Properties Company Cathode compositions for lithium-ion batteries
JP4510331B2 (ja) * 2001-06-27 2010-07-21 パナソニック株式会社 非水電解質二次電池
US20030108793A1 (en) * 2001-08-07 2003-06-12 3M Innovative Properties Company Cathode compositions for lithium ion batteries
US6680145B2 (en) * 2001-08-07 2004-01-20 3M Innovative Properties Company Lithium-ion batteries
US6878490B2 (en) * 2001-08-20 2005-04-12 Fmc Corporation Positive electrode active materials for secondary batteries and methods of preparing same
JP2003249216A (ja) * 2002-02-22 2003-09-05 Mitsubishi Chemicals Corp リチウム遷移金属複合酸化物、リチウム二次電池用正極及びリチウム二次電池
US6881393B2 (en) * 2002-03-08 2005-04-19 Altair Nanomaterials Inc. Process for making nano-sized and sub-micron-sized lithium-transition metal oxides
EP1450423B1 (en) * 2003-02-21 2008-11-19 Toyota Jidosha Kabushiki Kaisha Active material for positive electrode in non-aqueous electrolyte secondary battery
US20050130042A1 (en) * 2003-12-11 2005-06-16 Byd America Corporation Materials for positive electrodes of lithium ion batteries and their methods of fabrication
JP4100341B2 (ja) * 2003-12-26 2008-06-11 新神戸電機株式会社 リチウム二次電池用正極材料及びそれを用いたリチウム二次電池
WO2005078831A1 (ja) * 2004-02-16 2005-08-25 Nec Corporation 蓄電デバイス
US20060015994A1 (en) * 2004-07-26 2006-01-26 Simmons David G Automatic dispenser
JP4762174B2 (ja) * 2007-03-02 2011-08-31 住友金属鉱山株式会社 非水系電解質二次電池用正極活物質およびその製造方法、ならびに非水系電解質二次電池

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993004996A1 (en) 1991-09-06 1993-03-18 Ferro Corporation Improved mixed metal oxide crystalline powders and method for the synthesis thereof
JP2002343356A (ja) 2001-05-17 2002-11-29 Dainippon Toryo Co Ltd リチウムマンガン系複酸化物粒子、その製造方法及び二次電池
JP2003034538A (ja) 2001-05-17 2003-02-07 Mitsubishi Chemicals Corp リチウムニッケルマンガン複合酸化物の製造方法

Also Published As

Publication number Publication date
US7211237B2 (en) 2007-05-01
US7488465B2 (en) 2009-02-10
US20070202407A1 (en) 2007-08-30
CA2546889A1 (en) 2005-06-23
RU2006118158A (ru) 2008-01-10
BRPI0416961A (pt) 2007-02-21
ZA200605223B (en) 2007-05-30
CN1886343A (zh) 2006-12-27
JP2007515366A (ja) 2007-06-14
CN100526222C (zh) 2009-08-12
US20050112054A1 (en) 2005-05-26
EP1689681A1 (en) 2006-08-16
WO2005056480A1 (en) 2005-06-23
KR20060097734A (ko) 2006-09-14

Similar Documents

Publication Publication Date Title
KR101206128B1 (ko) 리튬 이온 전지 캐소드 재료용 리튬-니켈-코발트-망간 혼합금속 산화물의 고체상 합성
US11444279B2 (en) High tap density lithium positive electrode active material, intermediate and process of preparation
US7771877B2 (en) Electrode active material powder with size dependent composition and method to prepare the same
JP7236459B2 (ja) O3/p2混合相ナトリウム含有ドープ層状酸化物材料
CN109715562B (zh) 用于锂离子电池的表面稳定阴极材料及其合成方法
TWI485920B (zh) 於可充電鋰電池中綜合高安全性和高功率之正極材料
KR102024962B1 (ko) 정극 활물질 입자 분말 및 그의 제조 방법, 및 비수전해질 이차 전지
EP2492243A1 (en) Nickel-cobalt-manganese compound particle powder and method for producing same, lithium composite oxide particle powder and method for producing same, and nonaqueous electrolyte secondary battery
JP4496150B2 (ja) リチウム・遷移金属複合酸化物の製造方法及び該リチウム・遷移金属複合酸化物を用いてなるリチウム電池
JP2003068305A (ja) リチウム2次電池用負極材料とその製造方法
Ruess et al. Transition Metal Oxides and Li2CO3 as Precursors for the Synthesis of Ni-Rich Single-Crystalline NCM for Sustainable Lithium-Ion Battery Production
JP7135354B2 (ja) 非水系電解質二次電池用正極活物質前駆体、非水系電解質二次電池用正極活物質前駆体の製造方法、非水系電解質二次電池用正極活物質の製造方法
JP7338133B2 (ja) 非水系電解質二次電池用正極活物質前駆体、非水系電解質二次電池用正極活物質前駆体の製造方法、非水系電解質二次電池用正極活物質の製造方法
EP3597603A1 (en) Spinel type lithium nickel manganese-containing composite oxide
JP2003054952A (ja) リチウム・マンガン複合酸化物の製造方法及び該リチウム・マンガン複合酸化物を用いてなるリチウム電池
JPH10241689A (ja) 非水系電池用電極活物質
MXPA06005785A (en) Solid state synthesis of lithium-nickel-cobalt-manganese mixed metal oxides for use in lithium ion battery cathode material
CN116613307A (zh) 一种Cr、Mg双金属元素掺杂的高镍三元正极材料及其制备方法

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20151016

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20161019

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20171018

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20191029

Year of fee payment: 8