JP6513167B2 - 仮想現実および拡張現実のシステムおよび方法 - Google Patents

仮想現実および拡張現実のシステムおよび方法 Download PDF

Info

Publication number
JP6513167B2
JP6513167B2 JP2017225733A JP2017225733A JP6513167B2 JP 6513167 B2 JP6513167 B2 JP 6513167B2 JP 2017225733 A JP2017225733 A JP 2017225733A JP 2017225733 A JP2017225733 A JP 2017225733A JP 6513167 B2 JP6513167 B2 JP 6513167B2
Authority
JP
Japan
Prior art keywords
light
item
user
waveguide
vfe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017225733A
Other languages
English (en)
Other versions
JP2018060213A (ja
Inventor
ショーウェンゲルト ブライアン
ショーウェンゲルト ブライアン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Magic Leap Inc
Original Assignee
Magic Leap Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Magic Leap Inc filed Critical Magic Leap Inc
Publication of JP2018060213A publication Critical patent/JP2018060213A/ja
Application granted granted Critical
Publication of JP6513167B2 publication Critical patent/JP6513167B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/42Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect
    • G02B27/4205Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect having a diffractive optical element [DOE] contributing to image formation, e.g. whereby modulation transfer function MTF or optical aberrations are relevant
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B17/00Systems with reflecting surfaces, with or without refracting elements
    • G02B17/08Catadioptric systems
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/0808Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more diffracting elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/0087Phased arrays
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/0093Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 with means for monitoring data relating to the user, e.g. head-tracking, eye-tracking
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • G02B27/0172Head mounted characterised by optical features
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • G02B27/0176Head mounted characterised by mechanical features
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/0006Arrays
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/0006Arrays
    • G02B3/0037Arrays characterized by the distribution or form of lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/22Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the stereoscopic type
    • G02B30/24Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the stereoscopic type involving temporal multiplexing, e.g. using sequentially activated left and right shutters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/34Stereoscopes providing a stereoscopic pair of separated images corresponding to parallactically displaced views of the same object, e.g. 3D slide viewers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/005Diaphragms
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings
    • G02B5/1814Diffraction gratings structurally combined with one or more further optical elements, e.g. lenses, mirrors, prisms or other diffraction gratings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings
    • G02B5/1828Diffraction gratings having means for producing variable diffraction
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02042Multicore optical fibres
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/04Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings formed by bundles of fibres
    • G02B6/06Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings formed by bundles of fibres the relative position of the fibres being the same at both ends, e.g. for transporting images
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/32Optical coupling means having lens focusing means positioned between opposed fibre ends
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/34Optical coupling means utilising prism or grating
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • G02B6/40Mechanical coupling means having fibre bundle mating means
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/02Lenses; Lens systems ; Methods of designing lenses
    • G02C7/04Contact lenses for the eyes
    • G02C7/049Contact lenses having special fitting or structural features achieved by special materials or material structures
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/10Filters, e.g. for facilitating adaptation of the eyes to the dark; Sunglasses
    • G02C7/104Filters, e.g. for facilitating adaptation of the eyes to the dark; Sunglasses having spectral characteristics for purposes other than sun-protection
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/0102Constructional details, not otherwise provided for in this subclass
    • G02F1/0105Illuminating devices
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1334Constructional arrangements; Manufacturing methods based on polymer dispersed liquid crystals, e.g. microencapsulated liquid crystals
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/17Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on variable-absorption elements not provided for in groups G02F1/015 - G02F1/169
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/29Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/29Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection
    • G02F1/292Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection by controlled diffraction or phased-array beam steering
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/29Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection
    • G02F1/294Variable focal length devices
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/29Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection
    • G02F1/31Digital deflection, i.e. optical switching
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/011Arrangements for interaction with the human body, e.g. for user immersion in virtual reality
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/011Arrangements for interaction with the human body, e.g. for user immersion in virtual reality
    • G06F3/012Head tracking input arrangements
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/011Arrangements for interaction with the human body, e.g. for user immersion in virtual reality
    • G06F3/013Eye tracking input arrangements
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/017Gesture based interaction, e.g. based on a set of recognized hand gestures
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/14Digital output to display device ; Cooperation and interconnection of the display device with other functional units
    • G06F3/1423Digital output to display device ; Cooperation and interconnection of the display device with other functional units controlling a plurality of local displays, e.g. CRT and flat panel display
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T13/00Animation
    • G06T13/203D [Three Dimensional] animation
    • G06T13/403D [Three Dimensional] animation of characters, e.g. humans, animals or virtual beings
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T15/003D [Three Dimensional] image rendering
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T15/003D [Three Dimensional] image rendering
    • G06T15/10Geometric effects
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T15/003D [Three Dimensional] image rendering
    • G06T15/50Lighting effects
    • G06T15/506Illumination models
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T17/00Three dimensional [3D] modelling, e.g. data description of 3D objects
    • G06T17/10Constructive solid geometry [CSG] using solid primitives, e.g. cylinders, cubes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T19/00Manipulating 3D models or images for computer graphics
    • G06T19/003Navigation within 3D models or images
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T19/00Manipulating 3D models or images for computer graphics
    • G06T19/006Mixed reality
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T19/00Manipulating 3D models or images for computer graphics
    • G06T19/20Editing of 3D images, e.g. changing shapes or colours, aligning objects or positioning parts
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T5/00Image enhancement or restoration
    • G06T5/50Image enhancement or restoration by the use of more than one image, e.g. averaging, subtraction
    • G06T5/70
    • G06T5/73
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/50Depth or shape recovery
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/70Determining position or orientation of objects or cameras
    • G06T7/73Determining position or orientation of objects or cameras using feature-based methods
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/40Extraction of image or video features
    • G06V10/42Global feature extraction by analysis of the whole pattern, e.g. using frequency domain transformations or autocorrelation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/18Eye characteristics, e.g. of the iris
    • G06V40/193Preprocessing; Feature extraction
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G5/00Control arrangements or circuits for visual indicators common to cathode-ray tube indicators and other visual indicators
    • G09G5/003Details of a display terminal, the details relating to the control arrangement of the display terminal and to the interfaces thereto
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G5/00Control arrangements or circuits for visual indicators common to cathode-ray tube indicators and other visual indicators
    • G09G5/02Control arrangements or circuits for visual indicators common to cathode-ray tube indicators and other visual indicators characterised by the way in which colour is displayed
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G5/00Control arrangements or circuits for visual indicators common to cathode-ray tube indicators and other visual indicators
    • G09G5/10Intensity circuits
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G5/00Control arrangements or circuits for visual indicators common to cathode-ray tube indicators and other visual indicators
    • G09G5/18Timing circuits for raster scan displays
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/10Processing, recording or transmission of stereoscopic or multi-view image signals
    • H04N13/106Processing image signals
    • H04N13/111Transformation of image signals corresponding to virtual viewpoints, e.g. spatial image interpolation
    • H04N13/117Transformation of image signals corresponding to virtual viewpoints, e.g. spatial image interpolation the virtual viewpoint locations being selected by the viewers or determined by viewer tracking
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/20Image signal generators
    • H04N13/204Image signal generators using stereoscopic image cameras
    • H04N13/239Image signal generators using stereoscopic image cameras using two 2D image sensors having a relative position equal to or related to the interocular distance
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/20Image signal generators
    • H04N13/286Image signal generators having separate monoscopic and stereoscopic modes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/327Calibration thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/332Displays for viewing with the aid of special glasses or head-mounted displays [HMD]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/332Displays for viewing with the aid of special glasses or head-mounted displays [HMD]
    • H04N13/341Displays for viewing with the aid of special glasses or head-mounted displays [HMD] using temporal multiplexing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/332Displays for viewing with the aid of special glasses or head-mounted displays [HMD]
    • H04N13/344Displays for viewing with the aid of special glasses or head-mounted displays [HMD] with head-mounted left-right displays
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/361Reproducing mixed stereoscopic images; Reproducing mixed monoscopic and stereoscopic images, e.g. a stereoscopic image overlay window on a monoscopic image background
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/363Image reproducers using image projection screens
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/366Image reproducers using viewer tracking
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/366Image reproducers using viewer tracking
    • H04N13/383Image reproducers using viewer tracking for tracking with gaze detection, i.e. detecting the lines of sight of the viewer's eyes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/14Picture signal circuitry for video frequency region
    • H04N5/21Circuitry for suppressing or minimising disturbance, e.g. moiré or halo
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/74Projection arrangements for image reproduction, e.g. using eidophor
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B2006/0098Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings for scanning
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • G02B2027/0118Head-up displays characterised by optical features comprising devices for improving the contrast of the display / brillance control visibility
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • G02B2027/0123Head-up displays characterised by optical features comprising devices increasing the field of view
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • G02B2027/0123Head-up displays characterised by optical features comprising devices increasing the field of view
    • G02B2027/0125Field-of-view increase by wavefront division
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • G02B2027/0132Head-up displays characterised by optical features comprising binocular systems
    • G02B2027/0134Head-up displays characterised by optical features comprising binocular systems of stereoscopic type
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • G02B2027/0138Head-up displays characterised by optical features comprising image capture systems, e.g. camera
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • G02B2027/014Head-up displays characterised by optical features comprising information/image processing systems
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0149Head-up displays characterised by mechanical features
    • G02B2027/0161Head-up displays characterised by mechanical features characterised by the relative positioning of the constitutive elements
    • G02B2027/0163Electric or electronic control thereof
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • G02B2027/0178Eyeglass type
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0179Display position adjusting means not related to the information to be displayed
    • G02B2027/0187Display position adjusting means not related to the information to be displayed slaved to motion of at least a part of the body of the user, e.g. head, eye
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C2202/00Generic optical aspects applicable to one or more of the subgroups of G02C7/00
    • G02C2202/16Laminated or compound lenses
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10016Video; Image sequence
    • G06T2207/10021Stereoscopic video; Stereoscopic image sequence
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30196Human being; Person
    • G06T2207/30201Face
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2213/00Indexing scheme for animation
    • G06T2213/08Animation software package
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N2013/0074Stereoscopic image analysis
    • H04N2013/0085Motion estimation from stereoscopic image signals

Description

本開示は、仮想現実および拡張現実画像ならびに視覚化システムに関する。
現代のコンピューティングおよびディスプレイ技術は、デジタル的に再現された画像またはその一部が、現実であるように見える、またはそのように知覚され得る様式においてユーザに提示される、いわゆる「仮想現実」または「拡張現実」体験のためのシステムの開発を促進している。仮想現実、すなわち、「VR」シナリオは、典型的には、他の実際の実世界の視覚的入力に対して透明性を伴わずに、デジタルまたは仮想画像情報の提示を伴い、拡張現実、すなわち、「AR」シナリオは、典型的には、ユーザの周囲の実際の世界の視覚化の拡張として、デジタルまたは仮想画像情報の提示を伴う。例えば、図1を参照すると、拡張現実場面(4)が、描写されており、AR技術のユーザには、人々、木々、建物を背景として、有形プラットフォーム(1120)を特徴とする、実世界の公園のような設定(6)が見える。これらのアイテムに加え、AR技術のユーザはまた、実世界プラットフォーム(1120)上に立っているロボット像(1110)と、マルハナバチの擬人化のように見える、飛んでいる漫画のようなアバターキャラクタ(2)が「見えている」ことを知覚するが、これらの要素(2、1110)は、実世界には存在しない。結論から言うと、ヒトの視知覚系は、非常に複雑であって、他の仮想または実世界画像要素間における仮想画像要素の快適で、自然のような感覚で、かつ豊かな提示を促進する、VRまたはAR技術を生成することは、困難である。
図2Aを参照すると、概して、3次元遠近画がヒトの視覚系によって知覚されるように、若干異なる要素の提示を伴う画像を表示するように構成される、2つのディスプレイ(10、12)を特徴とする、立体視装着式眼鏡(8)タイプ構成が、開発されている。そのような構成は、画像を3次元で知覚するために克服されなければならない、両眼離反運動と遠近調節との間の不整合に起因して、多くのユーザにとって不快であることが見出されている。実際、一部のユーザは、立体視構成に耐えることができない。図2Bは、立体視ディスプレイを通したユーザへの拡張現実提示のための画像を捕捉するように構成される、2つの前方に配向されたカメラ(16、18)を特徴とする、別の立体視装着式眼鏡(14)タイプ構成を示す。カメラ(16、18)およびディスプレイの位置は、概して、眼鏡(14)がユーザの頭部上に搭載されると、ユーザの自然な視野を遮断する。
図2Cを参照すると、従来の眼鏡レンズ(22)もまた保持する眼鏡フレーム(24)に結合される、可視化モジュール(26)を特徴とする、拡張現実構成(20)が、示される。ユーザは、そのようなシステムを用いて、少なくとも部分的に妨害されていない実世界のビューを見ることができ、デジタル画像が単眼用AR提示のためにAR構成で片眼に提示され得る、小型ディスプレイ(28)を有する。図2Dは、可視化モジュール(32)が、帽子またはヘルメット(30)に結合され、小型ディスプレイ(34)を通して単眼用拡張デジタル画像をユーザに提示するように構成され得る、構成を特徴とする。図2Eは、可視化モジュール(38)が、画像を捕捉し、また、小型ディスプレイ(40)を通して単眼用拡張デジタル画像をユーザに提示するために利用され得るように、フレーム(36)が、眼鏡の継手と同様の様式でユーザの頭部に取付可能である、別の類似構成を図示する。そのような構成は、例えば、商標名GoogleGlass(RTM)の下、Google, Inc.(Mountain View, CA)から利用可能である。これらの構成はいずれも、部分的に、従来のシステムが、可視化の知覚をユーザにもたらすための網膜の視細胞および脳とのその相互作用を含む、ヒトの知覚系の基本側面のいくつかに対処できていないため、ユーザにとって快適かつ最大限に有用となるであろう様式で、豊かな双眼用の3次元拡張現実体験を提示するために最適に適していない。
図3を参照すると、角膜(42)、虹彩(44)、レンズ、すなわち、「水晶体」(46)、強膜(48)、脈絡膜層(50)、黄斑(52)、網膜(54)、および脳への視神経路(56)を特徴とする、ヒトの眼の簡略化された断面図が、描写される。黄斑は、網膜の中枢であって、中程度の詳細を見るために利用され、黄斑の中枢には、「中心窩」と称される網膜の一部があり、これは、最も細かい詳細を見るために利用され、網膜の任意の他の部分より多くの視細胞(視度あたり約120個の錐体)を含有する。ヒトの視覚系は、受動的センサタイプのシステムではない。すなわち、環境を能動的に走査するように構成される。画像を捕捉するためのフラットベッドスキャナの使用、または紙から点字を読み取るための指の使用に若干類似する様式において、眼の視細胞は、一定刺激状態に一定に応答するのではなく、刺激の変化に応答して、信号を発する。したがって、視細胞情報を脳に提示するための運動が、要求される(フラットベッドスキャナ内で紙片を横断する線形スキャナアレイの運動、または紙に刻印された点字の単語を横断する指の運動のように)。実際、眼の筋肉を麻痺させるために利用されたコブラ毒等の物質を用いた実験は、ヒト対象が、その眼が開かれ、毒によって誘発され麻痺した眼で静的場面を視認したまま位置付けられる場合、失明するであろうことを示している。言い換えると、刺激の変化がない場合、視細胞は、脳に入力を提供せず、失明する。これは、正常なヒトの眼が、「マイクロサッカード」と呼ばれる横運動において、往復移動する、すなわち、微動することが観察されていることの少なくとも1つの理由であると考えられる。
前述のように、網膜の中心窩は、視細胞の最大密度を含有し、ヒトは、典型的には、その視野全体を通して高分解能可視化能力を持つ知覚を有するが、概して、実際には、中心窩で最近捕捉された高分解能情報の持続的記憶とともに、多くのものを機械的に見渡す、小さな高分解能中枢のみを有する。若干類似する様式において、眼の焦点距離制御機構(毛様体弛緩が、毛様体結合線維の緊張を生じさせ、より離れた焦点距離のためにレンズを平坦化させ、毛様体収縮が、毛様体結合線維の弛緩を生じさせ、レンズがより近い焦点距離のためにより丸い幾何学形状をとることを可能にする様式で水晶体に動作可能に結合される毛様筋)は、標的焦点距離の近側および遠側の両方に、少量の「光屈折ぼけ」と呼ばれるものを周期的に誘発するために、約1/4〜1/2ジオプタだけ往復微動する。これは、針路を常に補正し、固定されたオブジェクトの網膜画像をほぼ合焦させて保つのに役立つ、周期的負のフィードバックとして、脳の遠近調節制御回路によって利用される。
脳の可視化中枢はまた、両眼およびその構成要素の相互に対する運動から有益な知覚情報を得る。相互に対する両眼の両眼離反運動(すなわち、眼の視線を収束させ、オブジェクトに固定するための相互に向かって、またはそこから離れる、瞳孔の転動)は、眼のレンズの合焦(または「遠近調節」)と密接に関連付けられる。正常条件下では、眼のレンズの焦点を変化させる、すなわち、眼を遠近調節させ、異なる距離におけるオブジェクトに合焦させることは、「遠近調節−両眼離反運動反射作用」として知られる関係下、自動的に、同一距離までの両眼離反運動における整合変化を生じさせるであろう。同様に、両眼離反運動の変化は、正常条件下では、遠近調節の整合変化も誘起するであろう。本反射作用に逆らう作用は、従来の立体視ARまたはVR構成の大部分におけるように、眼疲労、頭痛、または他の形態の不快感をユーザにもたらすことが知られている。
眼を格納する、頭部の移動もまた、オブジェクトの可視化に重要な影響を及ぼす。ヒトは、その頭部を移動させ、その周囲の世界を視覚化する。多くの場合、非常に一定状態において、頭部を着目オブジェクトに対して再位置付けおよび再配向する。さらに、大部分の人々は、その視線が、特定のオブジェクトに合焦させるために、中心から約20度を上回って移動する必要があるとき、その頭部を移動させることを好む(すなわち、人々は、典型的には、「眼の端から」物を見ることを好まない)。ヒトはまた、典型的には、音に連動してその頭部を走査または移動させ、オーディオ信号捕捉を改善し、頭部に対する耳の幾何学形状を利用する。ヒトの視覚系は、頭部の運動および眼の両眼離反運動距離の関数として、異なる距離におけるオブジェクトの相対運動に関連する、「頭部運動視差」と呼ばれるものから優れた深度の手掛かりを得る(すなわち、人がその頭部を横移動させ、オブジェクトに対して固定状態を維持する場合、そのオブジェクトからより遠いアイテムは、頭部と同一方向に移動し、そのオブジェクトの正面のアイテムは、頭部運動と反対に移動するであろう。これらは、人に対する環境内の空間的場所の非常に顕著な手掛かりであって、おそらく、立体視と同等に優れている)。頭部運動はまた、当然ながら、オブジェクトを見回すためにも利用される。
さらに、頭部および眼の運動は、頭部回転の間、網膜に対する画像情報を安定化させ、したがって、オブジェクト画像情報を網膜のほぼ中心に保つ、「前庭眼反射作用」と呼ばれるものと協調される。頭部の回転に応答して、眼は、反射的かつ比例的に反対方向に回転され、オブジェクトに対する安定した固定状態を維持する。本補償関係の結果として、多くのヒトは、その頭部を往復して振動させながら、本を読むことができる(興味深いことに、本が、頭部がほぼ定常のまま、同一速度で往復してめくられる場合、同じことは、概して、当てはまらない。すなわち、人は、めくられている本を読むことができない可能性が高い。前庭眼反射作用は、頭部および眼の運動協調のうちの1つであって、概して、手の運動のために発達されていない)。本パラダイムは、ユーザの頭部運動が、比較的に直接、眼の運動と関連付けられ得るため、拡張現実システムのために重要であり得、システムは、好ましくは、本関係と協働する準備ができたものとなるであろう。
実際、これらの種々の関係を前提として、デジタルコンテンツ(例えば、部屋の実世界ビューを拡張させるために提示される仮想シャンデリアオブジェクト等の3−Dコンテンツ、または部屋の実世界ビューを拡張させるために提示される平面/平坦仮想油絵オブジェクト等の2−Dコンテンツ)を設置するとき、オブジェクトの挙動を制御するための設計選択が、行われ得る。例えば、2−D油絵オブジェクトは、頭部を中心とし得、その場合、オブジェクトは、ユーザの頭部に伴って移動する(例えば、GoogleGlassアプローチにおけるように)、またはオブジェクトは、世界を中心とし得、その場合、ユーザが、実世界に対してオブジェクトの位置を移動させずに、その頭部または眼を移動させ得るように、実世界座標系の一部であるかのように提示され得る。
したがって、仮想コンテンツを拡張現実システムを用いて提示される拡張現実世界の中に設置するとき、オブジェクトは、世界を中心として(すなわち、仮想オブジェクトは、ユーザが、実世界壁等のそれを囲繞する実世界オブジェクトに対してその位置を変化させずに、その身体、頭部、眼をその周囲で移動させ得るように、実世界内の定位置に留まる)、身体、すなわち、胴体を中心として(その場合、仮想要素は、ユーザが、オブジェクトを移動させずに、その頭部または眼を移動させることができるが、胴体の移動に従動されるように、ユーザの胴体に対して固定され得る)、頭部を中心として(その場合、表示されるオブジェクト(および/またはディスプレイ自体)は、GoogleGlassを参照して前述のように、頭部の移動に伴って移動され得る)、または以下に説明されるような「中心窩ディスプレイ」構成におけるように、眼を中心として(コンテンツは、眼の位置の関数として従動される)、提示されるはずである。
世界を中心とした構成では、正確な頭部姿勢測定、ユーザの周囲の実世界オブジェクトおよび幾何学形状の正確な表現および/または測定、頭部姿勢の関数としての拡張現実ディスプレイにおける短待ち時間の動的レンダリング、ならびに概して短い待ち時間の表示等の入力を有することが望ましくあり得る。
本明細書に説明されるシステムおよび技法は、典型的ヒトの視覚的構成と連動し、これらの課題に対処するように構成される。
本発明の実施形態は、1人またはそれを上回るユーザのための仮想現実および/または拡張現実相互作用を促進するためのデバイス、システム、および方法を対象とする。一側面では、仮想コンテンツを表示するためのシステムが、開示される。
1つまたはそれを上回る実施形態では、システムは、画像データの1つまたはそれを上回るフレームと関連付けられた1つまたはそれを上回る光パターンを時系列様式で多重化するための光源と、1つまたはそれを上回る光パターンを受光し、光を射出瞳上に可変収束させるための反射体のアレイとを備える。
1つまたはそれを上回る実施形態では、システムは、画像データの1つまたはそれを上回るフレームを時系列様式で提供するための画像発生源と、画像データの1つまたはそれを上回るフレームと関連付けられた光を伝送するように構成される、光変調器と、画像情報をユーザの眼に指向するための基板であって、複数の反射体を格納する、基板と、画像データの第1のフレームと関連付けられた光を第1の角度でユーザの眼に反射させるための複数の反射体の第1の反射体と、画像データの第2のフレームと関連付けられた光を第2の角度でユーザの眼に反射させるための複数の反射体の第2の反射体とを備える。
複数の反射体の反射の角度は、1つまたはそれを上回る実施形態では、可変であってもよい。反射体は、1つまたはそれを上回る実施形態では、切替可能であってもよい。複数の反射体は、1つまたはそれを上回る実施形態では、電気光学活性であってもよい。複数の反射体の屈折率は、1つまたはそれを上回る実施形態では、基板の屈折率に一致するように変動されてもよい。随意の実施形態では、システムはまた、基板とユーザの眼との間に設置されるように構成可能である、高周波数ゲーティング層であって、制御可能に可動である開口を有する、高周波数ゲーティング層を備えてもよい。高周波数ゲーティング層の開口は、1つまたはそれを上回る実施形態では、画像データが開口を通して反射された光を通してのみ選択的に伝送されるような様式で移動されてもよい。透過性ビームスプリッタ基板の1つまたはそれを上回る反射体は、高周波数ゲーティング層によって遮断されてもよい。開口は、1つまたはそれを上回る実施形態では、LCD開口であってもよい。開口は、1つまたはそれを上回る実施形態では、MEMアレイであってもよい。第1の角度は、1つまたはそれを上回る実施形態では、第2の角度と同一であってもよい。第1の角度は、1つまたはそれを上回る実施形態では、第2の角度と異なってもよい。
1つまたはそれを上回る実施形態では、システムはさらに、光線の集合を節点を通してユーザの眼に操向するための第1のレンズを備えてもよい。第1のレンズは、1つまたはそれを上回る実施形態では、反射体から出射する光線の集合が、ユーザの眼に到達する前に、第1のレンズを通して通過するように、基板上かつ第1の反射体の正面に設置されるように構成可能であってもよい。
システムはさらに、1つまたはそれを上回る実施形態では、第2のレンズを備え、第1のレンズを補償してもよく、第2のレンズは、基板上かつ第1のレンズが設置される側と反対側に設置されるように構成可能であって、それによって、ゼロ倍率をもたらす。
複数の反射体の第1の反射体は、1つまたはそれを上回る実施形態では、ユーザの眼に送達される前に、画像データと関連付けられた光線の集合を単一出力点にまとめるための湾曲反射表面であってもよい。湾曲反射体は、1つまたはそれを上回る実施形態では、放物反射体であってもよい。湾曲反射体は、1つまたはそれを上回る実施形態では、楕円形反射体であってもよい。
別の実施形態では、仮想コンテンツを表示するための方法は、画像データの1つまたはそれを上回るフレームと関連付けられた1つまたはそれを上回る光パターンを時系列様式で提供するステップと、画像データの1つまたはそれを上回るフレームと関連付けられた1つまたはそれを上回る光パターンを透過性ビームスプリッタを介して射出瞳に反射させるステップであって、透過性ビームスプリッタは、複数の反射体を有し、射出瞳上に可変収束させる、ステップとを含む。
複数の反射体の反射の角度は、1つまたはそれを上回る実施形態では、可変であってもよい。反射体は、1つまたはそれを上回る実施形態では、切替可能であってもよい。複数の反射体は、1つまたはそれを上回る実施形態では、電気光学活性であってもよい。複数の反射体の屈折率は、1つまたはそれを上回る実施形態では、基板の屈折率に一致するように変動されてもよい。随意の実施形態では、システムはまた、基板とユーザの眼との間に設置されるように構成可能である、高周波数ゲーティング層であって、制御可能に可動である開口を有する、高周波数ゲーティング層を備えてもよい。高周波数ゲーティング層の開口は、1つまたはそれを上回る実施形態では、画像データが開口を通して反射された光を通してのみ選択的に伝送されるような様式で移動されてもよい。透過性ビームスプリッタ基板の1つまたはそれを上回る反射体は、高周波数ゲーティング層によって遮断されてもよい。開口は、1つまたはそれを上回る実施形態では、LCD開口であってもよい。開口は、1つまたはそれを上回る実施形態では、MEMアレイであってもよい。第1の角度は、1つまたはそれを上回る実施形態では、第2の角度と同一であってもよい。第1の角度は、1つまたはそれを上回る実施形態では、第2の角度と異なってもよい。
1つまたはそれを上回る実施形態では、システムはさらに、光線の集合を節点を通してユーザの眼に操向するための第1のレンズを備えてもよい。第1のレンズは、1つまたはそれを上回る実施形態では、反射体から出射する光線の集合が、ユーザの眼に到達する前に、第1のレンズを通して通過するように、基板上かつ第1の反射体の正面に設置されるように構成可能であってもよい。
システムはさらに、1つまたはそれを上回る実施形態では、第2のレンズを備え、第1のレンズを補償してもよく、第2のレンズは、基板上かつ第1のレンズが設置される側と反対側に設置されるように構成可能であって、それによって、ゼロ倍率をもたらす。
複数の反射体の第1の反射体は、1つまたはそれを上回る実施形態では、ユーザの眼に送達される前に、画像データと関連付けられた光線の集合を単一出力点にまとめるための湾曲反射表面であってもよい。湾曲反射体は、1つまたはそれを上回る実施形態では、放物反射体であってもよい。湾曲反射体は、1つまたはそれを上回る実施形態では、楕円形反射体であってもよい。
1つまたはそれを上回る実施形態では、波面は、コリメートされてもよい。1つまたはそれを上回る実施形態では、波面は、湾曲されてもよい。コリメートされた波面は、いくつかの実施形態では、無限遠深度平面として知覚されてもよい。湾曲波面は、いくつかの実施形態では、光学無限遠より近い深度平面として知覚されてもよい。
別の実施形態では、仮想コンテンツをユーザに表示するためのシステムは、画像データの1つまたはそれを上回るフレームと関連付けられた1つまたはそれを上回る光パターンを時系列様式で多重化するための光源と、1つまたはそれを上回る光パターンを受光するための反射体のアレイであって、特定の角度で配向される、反射体のアレイと、反射体のアレイに結合され、光パターンを射出瞳上に可変収束させるための複数の光学要素とを備える。
1つまたはそれを上回る実施形態では、反射体のアレイは、1つまたはそれを上回る実施形態では、光学要素と別個であってもよい。反射体のアレイは、1つまたはそれを上回る実施形態では、平面鏡を備えてもよい。光学要素は、1つまたはそれを上回る実施形態では、反射体のアレイに結合されるレンズレットであってもよい。反射体のアレイの1つまたはそれを上回る反射体は、1つまたはそれを上回る実施形態では、湾曲されてもよい。光学要素は、反射体のアレイの中に統合されてもよい。複数の光学要素は、1つまたはそれを上回る実施形態では、射出瞳を拡大させてもよい。
システムはさらに、1つまたはそれを上回る実施形態では、光線の集合を節点を通してユーザの眼に操向するための第1のレンズを備えてもよく、第1のレンズは、反射体から出射する光線の集合が、ユーザの眼に到達する前に、第1のレンズを通して通過するように、基板上かつ第1の反射体の正面に設置されるように構成可能である。
システムはさらに、1つまたはそれを上回る実施形態では、第1のレンズを補償するための第2のレンズを備えてもよく、第2のレンズは、基板上かつ第1のレンズが設置される側と反対側に設置されるように構成可能であり、それによって、ゼロ倍率をもたらす。複数の反射体は、1つまたはそれを上回る実施形態では、波長選択反射体を備えてもよい。複数の反射体は、1つまたはそれを上回る実施形態では、半透鏡を備えてもよい。複数の光学要素は、屈折レンズを備えてもよい。複数の光学要素は1つまたはそれを上回る実施形態では、回折レンズを備えてもよい。湾曲反射体は、1つまたはそれを上回る実施形態では、波長選択ノッチフィルタを備えてもよい。
別の実施形態では、仮想コンテンツをユーザに表示するための方法は、画像データの1つまたはそれを上回るフレームと関連付けられた1つまたはそれを上回る光パターンを時系列様式で提供するステップと、画像データの1つまたはそれを上回るフレームと関連付けられた1つまたはそれを上回る光パターンを透過性ビームスプリッタを介して射出瞳に反射させるステップであって、透過性ビームスプリッタは、複数の反射体を有し、射出瞳上に可変収束させる、ステップと、透過性ビームスプリッタの複数の反射体に結合される複数の光学要素を通して射出瞳を拡大させるステップとを含む。
1つまたはそれを上回る実施形態では、反射体のアレイは、光学要素と別個であってもよい。1つまたはそれを上回る実施形態では、反射体のアレイは、平面鏡を備える。光学要素は、1つまたはそれを上回る実施形態では、反射体のアレイに結合されるレンズレットであってもよい。
別の実施形態では、仮想コンテンツをユーザに表示するためのシステムは、画像データの1つまたはそれを上回るフレームと関連付けられた1つまたはそれを上回る光パターンを時系列様式で多重化するための光源と、1つまたはそれを上回る光パターンを受光し、光パターンを第1の焦点に収束させるための導波管と、導波管に結合され、光パターンの少なくとも一部を第2の焦点に収束させるための可変合焦要素(VFE)とを備える。
1つまたはそれを上回る実施形態では、VFEは、1つまたはそれを上回る実施形態では、テレセントリックである。VFEは、1つまたはそれを上回る実施形態では、非テレセントリックである。システムはさらに、1つまたはそれを上回る実施形態では、ユーザの外界のビューが歪められないように、補償レンズを備える。複数のフレームが、1つまたはそれを上回る実施形態では、ユーザが、フレームを単一コヒーレント場面の一部として知覚するように、高周波数でユーザに提示され、VFEは、焦点を第1のフレームから第2のフレームに変動させる。光源は、1つまたはそれを上回る実施形態では、走査光ディスプレイであって、VFEは、行毎様式で焦点を変動させる。光源は、1つまたはそれを上回る実施形態では、走査光ディスプレイであって、VFEは、ピクセル毎様式で焦点を変動させる。
VFEは、1つまたはそれを上回る実施形態では、回折レンズである。VFEは、1つまたはそれを上回る実施形態では、屈折レンズである。VFEは、1つまたはそれを上回る実施形態では、反射鏡である。反射鏡は、1つまたはそれを上回る実施形態では、不透明である。反射鏡は、1つまたはそれを上回る実施形態では、部分的に反射性である。システムはさらに、1つまたはそれを上回る実施形態では、ユーザの眼の遠近調節を追跡するための遠近調節モジュールを備え、VFEは、少なくとも部分的に、ユーザの眼の遠近調節に基づいて、光パターンの焦点を変動させる。
さらに別の実施形態では、仮想コンテンツをユーザに表示するためのシステムは、画像データの1つまたはそれを上回るフレームと関連付けられた1つまたはそれを上回る光パターンを時系列様式で多重化するための光源と、1つまたはそれを上回る光パターンを受光し、光パターンを第1の焦点に収束させるための導波管と、導波管に結合され、光パターンの少なくとも一部を第2の焦点に収束させるための可変合焦要素(VFE)であって、導波管の中に統合される、VFEとを備える。
別の実施形態では、仮想コンテンツをユーザに表示するためのシステムは、画像データの1つまたはそれを上回るフレームと関連付けられた1つまたはそれを上回る光パターンを時系列様式で多重化するための光源と、1つまたはそれを上回る光パターンを受光し、光パターンを第1の焦点に収束させるための導波管と、導波管に結合され、光パターンの少なくとも一部を第2の焦点に収束させるための可変合焦要素(VFE)であって、導波管と別個である、VFEとを備える。
別の側面では、仮想コンテンツをユーザに表示するための方法は、画像データの1つまたはそれを上回るフレームと関連付けられた1つまたはそれを上回る光パターンを提供するステップと、画像データの1つまたはそれを上回るフレームと関連付けられた1つまたはそれを上回る光パターンを導波管を通して第1の焦点に収束させるステップと、可変合焦要素(VFE)を通して、光の第1の焦点を修正し、波面を第2の焦点に生成するステップとを含む。
VFEは、1つまたはそれを上回る実施形態では、導波管と別個である。VFEは、1つまたはそれを上回る実施形態では、導波管の中に統合される。画像データの1つまたはそれを上回るフレームは、1つまたはそれを上回る実施形態では、時系列様式で提供される。VFEは、1つまたはそれを上回る実施形態では、画像データの1つまたはそれを上回るフレームの焦点をフレーム毎ベースで修正する。VFEは、1つまたはそれを上回る実施形態では、画像データの1つまたはそれを上回るフレームの焦点をピクセル毎ベースで修正する。VFEは、1つまたはそれを上回る実施形態では、第1の焦点を修正し、波面を第3の焦点に生成し、第2の焦点は、第3の焦点と異なる。第2の焦点における波面は、1つまたはそれを上回る実施形態では、特定の深度平面から生じているようにユーザによって知覚される。
いくつかの実施形態では、複数のフレームが、ユーザがフレームを単一コヒーレント場面の一部として知覚するように、高周波数でユーザに提示され、VFEは、焦点を第1のフレームから第2のフレームに変動させる。光源は、1つまたはそれを上回る実施形態では、走査光ディスプレイであって、VFEは、行毎様式で焦点を変動させる。
別の実施形態では、仮想コンテンツをユーザに表示するためのシステムは、画像データと関連付けられた光線を受光し、光線をユーザの眼に向かって伝送するための複数の導波管であって、ユーザの眼に面した方向にスタックされる、複数の導波管と、複数の導波管の第1の導波管に結合され、第1の導波管から伝送された光線を修正し、それによって、第1の波面曲率を有する光線を送達するための第1のレンズと、複数の導波管の第2の導波管に結合され、第2の導波管から伝送された光線を修正し、それによって、第2の波面曲率を有する光線を送達するための第2のレンズであって、第1の導波管に結合された第1のレンズおよび第2の導波管に結合された第2のレンズは、ユーザの眼に面した方向に水平にスタックされる、第2のレンズとを備える。
1つまたはそれを上回る実施形態では、第1の波面曲率は、第2の波面曲率と異なる。システムはさらに、1つまたはそれを上回る実施形態では、ユーザが、画像データを光学無限遠平面から生じているように知覚するように、コリメートされた光をユーザの眼に送達するための複数の導波管の第3の導波管を備える。導波管は、1つまたはそれを上回る実施形態では、コリメートされた光をレンズに伝送するように構成される。
システムはさらに、1つまたはそれを上回る実施形態では、ユーザの眼に面した方向にスタックされたレンズの凝集屈折力を補償するための補償レンズ層を備え、補償レンズ層は、ユーザの眼から最も離れてスタックされる。導波管は、1つまたはそれを上回る実施形態では、導波管の中に投入された光線をユーザの眼に向かって反射するように構成可能である、複数の反射体を備える。
導波管は、1つまたはそれを上回る実施形態では、電気活性である。導波管は、1つまたはそれを上回る実施形態では、切替可能である。第1の波面曲率を有する光線および第2の波面曲率を有する光線は1つまたはそれを上回る実施形態では、同時に送達される。第1の波面曲率を有する光線および第2の波面曲率を有する光線は、1つまたはそれを上回る実施形態では、順次送達される。第2の波面曲率は、1つまたはそれを上回る実施形態では、第1の波面曲率の境界に対応し、それによって、ユーザが遠近調節することができる焦点距離を提供する。システムはさらに、1つまたはそれを上回る実施形態では、ユーザの眼の遠近調節を追跡するための遠近調節モジュールを備え、VFEは、少なくとも部分的に、ユーザの眼の遠近調節に基づいて、光パターンの焦点を変動させる。
さらに別の実施形態では、仮想コンテンツをユーザに表示するためのシステムは、画像データの1つまたはそれを上回るフレームと関連付けられた1つまたはそれを上回る光パターンを時系列様式で多重化するための光源と、1つまたはそれを上回る光パターンを受光し、光を射出瞳に収束させるための複数の導波管であって、Z軸に沿って、ユーザの視線から離れるようにスタックされる、複数の導波管と、スタックされた導波管に結合され、複数の導波管によって伝送された光の焦点を修正するための少なくとも1つの光学要素とを備える。
複数の導波管の導波管は、1つまたはそれを上回る実施形態では、投影された光を導波管の長さを横断して分布させるための導波管と、波面曲率が作成されるような様式で光を修正するためのレンズとを備えてもよく、作成された波面曲率は、ユーザによって視認されるときの焦点面に対応する。
複数の導波管の導波管は、1つまたはそれを上回る実施形態では、回折光学要素(DOE)を備える。DOEは、1つまたはそれを上回る実施形態では、オン状態とオフ状態との間で切替可能である。複数の導波管の導波管は、1つまたはそれを上回る実施形態では、屈折レンズを備える。複数の導波管の導波管は、1つまたはそれを上回る実施形態では、フレネルゾーンプレートを備える。複数の導波管の導波管は、1つまたはそれを上回る実施形態では、基板導波光学(SGO)要素を備える。導波管は、1つまたはそれを上回る実施形態では、オン状態とオフ状態との間で切替可能である。導波管は、1つまたはそれを上回る実施形態では、静的である。画像データの第1のフレームおよび画像データの第2のフレームは、1つまたはそれを上回る実施形態では、ユーザの眼に同時に送達される。画像データの第1のフレームおよび画像データの第2のフレームは、1つまたはそれを上回る実施形態では、ユーザの眼に順次送達される。
本システムはさらに、1つまたはそれを上回る実施形態では、光をユーザの眼に送達するための複数の角度付けられた反射体を備え、第1の導波管構成要素および第2の導波管構成要素は、光を1つまたはそれを上回る角度付けられた反射体に指向する。システムはさらに、1つまたはそれを上回る実施形態では、ビーム分布導波管光学を備え、ビーム分布導波管は、導波管アセンブリに結合され、ビーム分布導波管光学は、ビーム分布導波管光学の中に投入された光線が、クローン化され、導波管アセンブリの導波管構成要素の中に投入されるように、投影された光を導波管アセンブリを横断して拡散させるように構成可能である。
別の実施形態では、仮想コンテンツをユーザに表示するためのシステムは、画像データの1つまたはそれを上回るフレームを時系列様式で提供するための画像発生源と、画像データの1つまたはそれを上回るフレームと関連付けられた光を投影するための光変調器と、投影された光を受光し、光をユーザの眼に向かって送達するための導波管アセンブリであって、導波管アセンブリは、少なくとも、光が第1の焦点面から生じているように知覚されるように、画像データの第1のフレームと関連付けられた光を修正するように構成可能である、第1の導波管構成要素と、光が第2の焦点面から生じているように知覚されるように、画像データの第2のフレームと関連付けられた光を修正するように構成可能である、第2の導波管構成要素とを備え、第1の導波管構成要素および第2の導波管構成要素は、ユーザの眼の正面において、Z軸に沿ってスタックされる、導波管アセンブリとを備える。
いくつかの実施形態では、導波管アセンブリの導波管構成要素は、投影された光を導波管の長さを横断して分布させるための導波管と、波面曲率が作成されるような様式で光を修正するためのレンズとを備え、作成された波面曲率は、ユーザによって視認されるときの焦点面に対応する。導波管アセンブリの導波管構成要素は、1つまたはそれを上回る実施形態では、回折光学要素(DOE)を備える。
DOEは、1つまたはそれを上回る実施形態では、オン状態とオフ状態との間で切替可能である。導波管アセンブリの導波管構成要素は、1つまたはそれを上回る実施形態では、屈折レンズを備える。導波管アセンブリの導波管構成要素は、1つまたはそれを上回る実施形態では、フレネルゾーンプレートを備える。画像データの第1のフレームおよび画像データの第2のフレームは、1つまたはそれを上回る実施形態では、ユーザの眼に同時に送達される。画像データの第1のフレームおよび画像データの第2のフレームは、1つまたはそれを上回る実施形態では、ユーザの眼に順次送達される。
システムはさらに、1つまたはそれを上回る実施形態では、光をユーザの眼に送達するための複数の角度付けられた反射体を備え、第1の導波管構成要素および第2の導波管構成要素は、光を1つまたはそれを上回る角度付けられた反射体に指向する。システムはさらに、ビーム分布導波管光学を備え、ビーム分布導波管は、導波管アセンブリに結合され、ビーム分布導波管光学は、1つまたはそれを上回る実施形態では、ビーム分布導波管光学の中に投入された光線が、クローン化され、導波管アセンブリの導波管構成要素の中に投入されるように、投影された光を導波管アセンブリを横断して拡散させるように構成可能である。
導波管アセンブリの導波管構成要素は、投影された光を所望の角度でユーザの眼に向かって反射させるように構成可能である、反射体を備える。第1の導波管構成要素は、1つまたはそれを上回る実施形態では、投影された光を第1の角度で反射させるように構成される、第1の反射体を備え、第2の導波管構成要素は、投影された光を第2の角度で反射させるように、第2の反射体を備える。第1の反射体は、1つまたはそれを上回る実施形態では、第2の反射体に対して交互にされ、それによって、ユーザによって視認されるにつれて、画像の視野を拡大させる。
導波管構成要素の反射体は、1つまたはそれを上回る実施形態では、導波管アセンブリを横断して連続湾曲反射表面を形成するような様式で位置付けられる。連続湾曲反射表面は、1つまたはそれを上回る実施形態では、放物線を備える。連続湾曲反射表面は、1つまたはそれを上回る実施形態では、楕円曲線を備える。
さらに別の実施形態では、仮想コンテンツをユーザに表示するための方法は、第1の導波管を通して、画像データの第1のフレームと関連付けられた光線をユーザに送達するステップであって、光線は、第1の波面曲率を有する、ステップと、第2の導波管を通して、画像データの第2のフレームと関連付けられた光線をユーザに送達するステップであって、光線は、第2の波面曲率を有し、第1の導波管および第2の導波管は、ユーザの眼に面してZ軸に沿ってスタックされる、ステップとを含む。
第1の波面曲率および第2の波面曲率は、1つまたはそれを上回る実施形態では、同時に送達される。第1の波面曲率および第2の波面曲率は、1つまたはそれを上回る実施形態では、順次送達される。第1および第2の波面曲率は、1つまたはそれを上回る実施形態では、ユーザによって第1および第2の深度平面として知覚される。第1および第2の導波管は、1つまたはそれを上回る実施形態では、1つまたはそれを上回る光学要素に結合される。方法はさらに、1つまたはそれを上回る実施形態では、1つまたはそれを上回る光学要素の効果を補償レンズを通して補償するステップを含んでもよい。
方法はさらに、1つまたはそれを上回る実施形態では、ユーザの眼の遠近調節を判定するステップと、少なくとも部分的に、判定された遠近調節に基づいて、光線を第1および第2の導波管のうちの少なくとも1つを通して送達するステップとを含んでもよい。
別の実施形態では、仮想コンテンツをユーザに表示するための方法は、ユーザの眼の遠近調節を判定するステップと、少なくとも部分的に、判定された遠近調節に基づいて、導波管のスタックの第1の導波管を通して、第1の波面曲率を有する光線を送達するステップであって、第1の波面曲率は、判定された遠近調節の焦点距離に対応する、ステップと、導波管のスタックの第2の導波管を通して、第2の波面曲率を有する光線を送達するステップであって、第2の波面曲率は、判定された遠近調節の焦点距離の所定の境界と関連付けられる、ステップとを含む。
境界は、1つまたはそれを上回る実施形態では、正の境界である。境界は、1つまたはそれを上回る実施形態では、負の境界である。第2の導波管は、1つまたはそれを上回る実施形態では、ユーザが遠近調節することができる焦点距離を増加させる。第1の導波管は、1つまたはそれを上回る実施形態では、可変合焦要素(VFE)に結合され、VFEは、導波管が光線を合焦させる焦点を変動させる。焦点は、1つまたはそれを上回る実施形態では、少なくとも部分的に、ユーザの眼の判定された遠近調節に基づいて、変動される。第1の波面曲率および第2の波面曲率は、1つまたはそれを上回る実施形態では、同時に送達される。
第1および第2の波面曲率は、1つまたはそれを上回る実施形態では、ユーザによって第1および第2の深度平面として知覚される。導波管は、1つまたはそれを上回る実施形態では、回折光学要素(DOE)である。導波管は、1つまたはそれを上回る実施形態では、基板導波光学(SGO)である。第1および第2の導波管は、1つまたはそれを上回る実施形態では、切替可能である。導波管は、1つまたはそれを上回る実施形態では、1つまたはそれを上回る切替可能要素を備える。
さらに別の実施形態では、仮想コンテンツをユーザに表示するためのシステムは、画像データの1つまたはそれを上回るフレームを時系列様式で提供するための画像発生源と、画像データの1つまたはそれを上回るフレームと関連付けられた光線を投影するためのディスプレイアセンブリであって、第1のフレームレートおよび第1のビット深度に対応する第1のディスプレイ要素と、第2のフレームレートおよび第2のビット深度に対応する第2のディスプレイ要素とを備える、ディスプレイアセンブリと、投影された光の焦点を変動させ、光をユーザの眼に伝送するように構成可能である、可変合焦要素(VFE)とを備える。
第1のフレームレートは、1つまたはそれを上回る実施形態では、第2のフレームレートより高く、第1のビット深度は、第2のビット深度より低い。第1のディスプレイ要素は、1つまたはそれを上回る実施形態では、DLP投影システムである。第2のディスプレイ要素は、1つまたはそれを上回る実施形態では、液晶ディスプレイ(LCD)である。第1のディスプレイ要素は、1つまたはそれを上回る実施形態では、LCDの周縁が一定照明を有するように、光を第2のディスプレイ要素の下位集合に投影する。第1のディスプレイ要素から伝送された光のみ、1つまたはそれを上回る実施形態では、VFEを通して合焦される。
VFEは、1つまたはそれを上回る実施形態では、投影された光の焦点が、画像データの倍率に影響を及ぼすことなく変動されるように、射出瞳に光学的に共役する。第1のディスプレイ要素は、1つまたはそれを上回る実施形態では、DLPであって、第2のディスプレイ要素は、LCDであって、DLPは、低分解能であって、LCDは、高分解能である。背面光の強度は、1つまたはそれを上回る実施形態では、経時的に変動され、第1のディスプレイ要素によって投影される下位画像の輝度を等化させ、それによって、第1のディスプレイ要素のフレームレートを増加させる。
VFEは、1つまたはそれを上回る実施形態では、投影された光の焦点をフレーム毎ベースで変動させるように構成可能である。システムはさらに、1つまたはそれを上回る実施形態では、VFEの動作と関連付けられた光学倍率を補償するためのソフトウェアを備える。画像発生源は、1つまたはそれを上回る実施形態では、ともにまたは順次投影されると、3次元ボリュームのオブジェクトを生成する、特定の画像のスライスを生成する。DLPは、1つまたはそれを上回る実施形態では、バイナリモードで動作される。DLPは、1つまたはそれを上回る実施形態では、階調モードで動作される。
VFEは、1つまたはそれを上回る実施形態では、第1のフレームが第1の焦点面から生じているように知覚され、第2のフレームが第2の焦点面から生じているように知覚されるように、投影された光を変動させ、第1の焦点面は、第2の焦点面と異なる。焦点面と関連付けられた焦点距離は、1つまたはそれを上回る実施形態では、固定される。焦点面と関連付けられた焦点距離は、1つまたはそれを上回る実施形態では、可変である。
別の実施形態では、仮想コンテンツをユーザに表示するための方法は、1つまたはそれを上回る画像スライスを提供するステップであって、1つまたはそれを上回る画像スライスの第1および第2の画像スライスは、3次元ボリュームを表す、ステップと、第1の画像スライスと関連付けられた光を空間光変調器を通して投影するステップと、可変合焦要素(VFE)を通して、第1の画像スライスを第1の焦点に合焦させるステップと、第1の焦点を有する第1の画像スライスをユーザに送達するステップと、第2の画像スライスと関連付けられた光を提供するステップと、VFEを通して、第2の画像スライスを第2の焦点に合焦させるステップであって、第1の焦点は、第2の焦点と異なる、ステップと、第2の焦点を有する第2の画像スライスをユーザに送達するステップとを含む。
方法はさらに、1つまたはそれを上回る実施形態では、ユーザの眼の遠近調節を判定するステップであって、VFEは、少なくとも部分的に、判定された遠近調節に基づいて、投影された光を合焦させる、ステップを含んでもよい。画像スライスは、1つまたはそれを上回る実施形態では、フレーム順次方式で提供される。第1の画像スライスおよび第2の画像スライスは、1つまたはそれを上回る実施形態では、同時に送達される。第1の画像スライスおよび第2の画像スライスは、1つまたはそれを上回る実施形態では、順次送達される。
さらに別の実施形態では、仮想コンテンツをユーザに表示するための方法は、第1のディスプレイ要素と第2のディスプレイ要素を組み合わせるステップであって、組み合わせられたディスプレイ要素が、高フレームレートおよび高ビット深度に対応するように、第1のディスプレイ要素は、高フレームレートおよび低ビット深度に対応し、第2のディスプレイ要素は、低フレームレートおよび高ビット深度に対応する、ステップと、画像データの1つまたはそれを上回るフレームと関連付けられた光を組み合わせられたディスプレイ要素を通して投影するステップと、第1の画像スライスが第1の焦点で投影され、第2の画像スライスが第2の焦点で投影されるように、投影された光の焦点を、可変合焦要素(VFE)を通して、フレーム毎ベースで切り替えるステップとを含む。
別の実施形態では、仮想コンテンツをユーザに表示するためのシステムは、画像データの1つまたはそれを上回るフレームと関連付けられたコヒーレント光を受光し、凝集波面を生成するための複数の光ガイドと、複数の光ガイドの1つまたはそれを上回る光ガイドに結合され、1つまたはそれを上回る光ガイドによって投影される光に位相遅延を誘発させるための位相変調器と、複数の光ガイドによって生成される凝集波面が変動されるような様式で位相変調器を制御するためのプロセッサとを備える。
複数の光ガイドの光ガイドによって生成される波面は、1つまたはそれを上回る実施形態では、球状波面である。少なくとも2つの光ガイドによって生成される球状波面は、1つまたはそれを上回る実施形態では、相互に建設的に干渉する。少なくとも2つの光ガイドによって生成される球状波面は、1つまたはそれを上回る実施形態では、相互に破壊的に干渉する。凝集波面は、1つまたはそれを上回る実施形態では、略平面波面である。
平面波面は、光学無限遠深度平面に対応する。凝集波面は、1つまたはそれを上回る実施形態では、球状である。球状波面は、1つまたはそれを上回る実施形態では、光学無限遠より近い深度平面に対応する。所望のビームの逆フーリエ変換は、1つまたはそれを上回る実施形態では、所望の凝集波面が生成されるように、マルチコアファイバの中に投入される。
別の側面では、仮想コンテンツをユーザに表示するシステムは、画像データの1つまたはそれを上回るフレームを提供するための画像発生源と、複数のマルチコアファイバを備え、画像データの1つまたはそれを上回るフレームと関連付けられた光を投影するためのマルチコアアセンブリであって、複数のマルチコアファイバのマルチコアファイバは、マルチコアアセンブリが投影された光の凝集波面を生成するように、波面に光を放出する、マルチコアアセンブリと、マルチコアアセンブリによって放出される凝集波面が、変動され、それによって、ユーザが画像データの1つまたはそれを上回るフレームを知覚する焦点距離を変動させるような様式でマルチコアファイバ間に位相遅延を誘発させるための位相変調器とを備える。
さらに別の側面では、仮想コンテンツをユーザに表示するための方法は、光をマルチコアファイバを通して放出するステップであって、マルチコアファイバは、複数の単一コアファイバを備え、単一コアファイバは、球状波面を放出する、ステップと、複数の単一コアファイバから放出される光から凝集波面を提供するステップと、マルチコアファイバによって生成される凝集波面が、少なくとも部分的に、誘発された位相遅延に基づいて、変動されるように、マルチコアファイバの単一コアファイバ間に位相遅延を誘発させるステップとを含む。
凝集波面は、1つまたはそれを上回る実施形態では、平面波面である。平面波面は、1つまたはそれを上回る実施形態では、光学無限遠に対応する。凝集波面は、1つまたはそれを上回る実施形態では、球状である。球状波面は、1つまたはそれを上回る実施形態では、光学無限遠より近い深度平面に対応する。方法はさらに、1つまたはそれを上回る実施形態では、凝集波面が所望の波面に対応するように、所望の波面の逆フーリエ変換をマルチコアファイバの中に投入するステップを含む。
さらに別の実施形態では、仮想コンテンツをユーザに表示するためのシステムは、画像データの1つまたはそれを上回るフレームを提供するための画像発生源と、複数のマルチコアファイバを備え、画像データの1つまたはそれを上回るフレームと関連付けられた光を投影するためのマルチコアアセンブリと、画像をマルチコアアセンブリの中に入力するための画像投入器であって、マルチコアアセンブリが、画像データと関連付けられた光を所望の波面に生成することによって、フーリエ変換を出力し、それによって、ユーザが、画像データを所望の焦点距離で知覚することを可能にするように、所望の波面の逆フーリエ変換をマルチコアアセンブリの中に入力するようにさらに構成可能である、入力投入器とを備える。
所望の波面は、1つまたはそれを上回る実施形態では、ホログラムと関連付けられる。逆フーリエ変換は、1つまたはそれを上回る実施形態では、1つまたはそれを上回る光ビームの焦点を変調させるための入力である。複数のマルチコアファイバのマルチコアファイバは、1つまたはそれを上回る実施形態では、マルチモードファイバである。複数のマルチコアファイバのマルチコアファイバは、1つまたはそれを上回る実施形態では、ファイバに沿った複数の経路に沿って、光を伝搬するように構成される。マルチコアファイバは、1つまたはそれを上回る実施形態では、単一コアファイバである。マルチコアファイバは、1つまたはそれを上回る実施形態では、同心コアファイバである。
画像投入器は、1つまたはそれを上回る実施形態では、ウェーブレットパターンをマルチコアアセンブリの中に入力するように構成される。画像投入器は、1つまたはそれを上回る実施形態では、ゼルニケ係数をマルチコアアセンブリの中に入力するように構成される。システムはさらに、1つまたはそれを上回る実施形態では、ユーザの眼の遠近調節を判定するための遠近調節追跡モジュールを備え、画像投入器は、ユーザの眼の判定された遠近調節に対応する波面の逆フーリエ変換を入力するように構成される。
さらに別の実施形態では、仮想コンテンツをユーザに表示する方法は、ユーザの眼の遠近調節を判定するステップであって、判定された遠近調節は、ユーザの焦点の現在の状態に対応する焦点距離と関連付けられる、ステップと、導波管を通して、画像データの1つまたはそれを上回るフレームと関連付けられた光を投影するステップと、少なくとも部分的に、判定された遠近調節に基づいて、投影された光の焦点を変動させるステップと、光が、ユーザの焦点の現在の状態に対応する焦点距離から生じているようにユーザによって知覚されるように、投影された光をユーザの眼に送達するステップとを含む。
遠近調節は、1つまたはそれを上回る実施形態では、直接測定される。遠近調節は、1つまたはそれを上回る実施形態では、間接的に測定される。遠近調節は、赤外線自動屈折計を通して測定される。遠近調節は、1つまたはそれを上回る実施形態では、偏心光屈折法を通して測定される。方法はさらに、1つまたはそれを上回る実施形態では、ユーザの両眼の収束レベルを測定し、遠近調節を推定するステップを含む。方法はさらに、1つまたはそれを上回る実施形態では、少なくとも部分的に、判定された遠近調節に基づいて、画像データの1つまたはそれを上回るフレームの1つまたはそれを上回る部分をぼかすステップを含む。焦点は、1つまたはそれを上回る実施形態では、固定された深度平面間で変動される。方法はさらに、1つまたはそれを上回る実施形態では、導波管の光学効果を補償するための補償レンズを含む。
1つまたはそれを上回る実施形態では、仮想コンテンツをユーザに表示する方法は、ユーザの眼の遠近調節を判定するステップであって、判定された遠近調節は、ユーザの焦点の現在の状態に対応する焦点距離と関連付けられる、ステップと、回折光学要素(DOE)を通して、画像データの1つまたはそれを上回るフレームと関連付けられた光を投影するステップと、少なくとも部分的に、判定された遠近調節に基づいて、投影された光の焦点を変動させるステップと、光が、ユーザの焦点の現在の状態に対応する焦点距離から生じているようにユーザによって知覚されるように、投影された光をユーザの眼に送達するステップとを含む。
別の実施形態では、仮想コンテンツをユーザに表示する方法は、ユーザの眼の遠近調節を判定するステップであって、判定された遠近調節は、ユーザの焦点の現在の状態に対応する焦点距離と関連付けられる、ステップと、自由形状光学を通して、画像データの1つまたはそれを上回るフレームと関連付けられた光を投影するステップと、少なくとも部分的に、判定された遠近調節に基づいて、投影された光の焦点を変動させるステップと、光が、ユーザの焦点の現在の状態に対応する焦点距離から生じているようにユーザによって知覚されるように、投影された光をユーザの眼に送達するステップとを含む。
別の側面では、仮想コンテンツをユーザに表示する方法は、ユーザの眼の遠近調節を判定するステップであって、判定された遠近調節は、ユーザの焦点の現在の状態に対応する焦点距離と関連付けられる、ステップと、画像データの1つまたはそれを上回るフレームと関連付けられた光を投影するステップと、少なくとも部分的に、判定された遠近調節に基づいて、投影された光の焦点を変動させるステップと、光が、ユーザの焦点の現在の状態に対応する焦点距離から生じているようにユーザによって知覚されるように、投影された光をユーザの眼に送達するステップとを含む。
光は、1つまたはそれを上回る実施形態では、基板導波光学アセンブリを通して、ユーザに送達される。光は、1つまたはそれを上回る実施形態では、自由形状光学要素を通して、ユーザに送達される。光は、1つまたはそれを上回る実施形態では、回折光学要素(DOE)を通して、ユーザに送達される。光は、1つまたはそれを上回る実施形態では、導波管のスタックを通して投影され、導波管のスタックの第1の導波管は、特定の波面で光を出力し、第2の導波管は、特定の波面に対して正の境界波面を出力し、第3の導波管は、特定の波面に対して負の境界波面を出力するように構成される。方法はさらに、1つまたはそれを上回る実施形態では、投影された光がユーザの眼に送達されるとき、画像データの1つまたはそれを上回るフレームの一部をその部分が焦点から外れるような様式でぼかすステップを含む。
さらに別の実施形態では、仮想コンテンツをユーザに表示するためのシステムは、画像データの1つまたはそれを上回るフレームを時系列様式で提供するための画像発生源と、画像データの1つまたはそれを上回るフレームと関連付けられた光を提供するための光発生器と、ユーザの眼の遠近調節を追跡するための遠近調節追跡モジュールと、画像データの1つまたはそれを上回るフレームと関連付けられた光の焦点を変動させるための導波管アセンブリであって、画像データの異なるフレームは、少なくとも部分的に、追跡された遠近調節に基づいて、異なるように合焦される、導波管アセンブリとを備える。
別の側面では、仮想コンテンツをユーザに表示するためのシステムは、ユーザの眼の遠近調節を判定するための遠近調節追跡モジュール、画像データの1つまたはそれを上回るフレームを時系列様式で提供するための画像発生源と、画像データの1つまたはそれを上回るフレームと関連付けられた光を投影するための光発生器と、画像データと関連付けられた光線を受光し、光線をユーザの眼に向かって伝送するための複数の導波管であって、ユーザの眼に面した方向にスタックされる、複数の導波管と、少なくとも部分的に、ユーザの眼の判定された遠近調節に基づいて、伝送された光の焦点を変動させるための可変合焦要素(VFE)とを備える。
複数の導波管の導波管は、1つまたはそれを上回る実施形態では、導波管要素であって、複数の導波管の第1の導波管から伝送された画像データの第1のフレームの焦点は、複数の導波管の第2の導波管から伝送された画像データの第2のフレームの焦点と異なる。第1のフレームは、1つまたはそれを上回る実施形態では、3D場面の第1の層であって、第2のフレームは、3D場面の第2の層である。システムはさらに、1つまたはそれを上回る実施形態では、画像データの1つまたはそれを上回るフレームの一部をユーザによって視認されるとその部分が焦点から外れるような様式でぼかすためのぼかしモジュールを備える。
VFEは、1つまたはそれを上回る実施形態では、複数の導波管に共通である。VFEは、1つまたはそれを上回る実施形態では、複数の導波管の導波管と関連付けられる。VFEは、1つまたはそれを上回る実施形態では、VFEが複数の導波管の2つの導波管間にインタリーブされるように、複数の導波管の導波管に結合される。VFEは、1つまたはそれを上回る実施形態では、複数の導波管の導波管の中に埋め込まれる。VFEは、1つまたはそれを上回る実施形態では、回折光学要素である。VFEは、1つまたはそれを上回る実施形態では、屈折要素である。
導波管は、1つまたはそれを上回る実施形態では、電気活性である。1つまたはそれを上回る複数の導波管の導波管は、1つまたはそれを上回る実施形態では、オフに切り替えられる。複数の導波管の導波管は、1つまたはそれを上回る実施形態では、固定された焦点面に対応する。システムはさらに、射出瞳を備え、1つまたはそれを上回る実施形態では、射出瞳の直径は、わずか0.5mmである。光発生器は、走査ファイバディスプレイである。システムはさらに、1つまたはそれを上回る実施形態では、射出瞳のアレイをさらに備える。
システムはさらに、1つまたはそれを上回る実施形態では、複数の光発生器を備え、光発生器は、射出瞳に結合される。システムはさらに、1つまたはそれを上回る実施形態では、射出瞳拡大器を備える。射出瞳は、1つまたはそれを上回る実施形態では、少なくとも部分的に、ユーザの眼の判定された遠近調節に基づいて、切替可能である。
別の側面では、システムは、ユーザの眼の遠近調節を判定するための遠近調節追跡モジュールと、画像データの1つまたはそれを上回るフレームと関連付けられた複数の光ビームを走査するためのファイバ走査ディスプレイであって、複数の光ビームの光ビームは、可動である、ファイバ走査ディスプレイと、少なくとも部分的に、ユーザの眼の判定された遠近調節に基づいて、シミュレートされた光屈折ぼけを画像データの1つまたはそれを上回るフレーム内にレンダリングするためのぼかしソフトウェアとを備える。
光ビームの直径は、1つまたはそれを上回る実施形態では、わずか2mmである。光ビームの直径は、1つまたはそれを上回る実施形態では、わずか0.5mmである。走査光ビームは、1つまたはそれを上回る実施形態では、複製され、複数の射出瞳を作成する。走査光ビームは、1つまたはそれを上回る実施形態では、複製され、より大きいアイボックスを作成する。射出瞳は、1つまたはそれを上回る実施形態では、切替可能である。
別の実施形態では、仮想コンテンツを表示するための方法は、ユーザの眼の遠近調節を判定するステップと、画像データの1つまたはそれを上回るフレームと関連付けられた複数の光ビームをファイバ走査ディスプレイを通して走査するステップであって、光ビームの直径は、ユーザによって視認されると、画像データのフレームが合焦して現れるように、わずか0.5mmである、ステップと、ぼかしソフトウェアを使用して、少なくとも部分的に、ユーザの眼の判定された遠近調節に基づいて、フレームの1つまたはそれを上回る部分をぼかすステップとを含む。
複数の射出瞳が、1つまたはそれを上回る実施形態では、作成される。光ビームは、1つまたはそれを上回る実施形態では、単一コアファイバによって発生される。光ビームは、1つまたはそれを上回る実施形態では、複製され、複数の射出瞳を作成する。射出瞳は、1つまたはそれを上回る実施形態では、切替可能である。
別の実施形態では、仮想コンテンツをユーザに表示するための方法は、光プロジェクタの束に対するユーザの瞳孔の位置を判定するステップであって、光プロジェクタの束は、ユーザに提示されるべき画像の下位画像に対応する、ステップと、ユーザの瞳孔の判定された位置に基づいて、下位画像に対応する光をユーザの瞳孔の一部の中に推進させるステップとを含む。
方法はさらに、1つまたはそれを上回る実施形態では、ユーザの瞳孔の別の部分に提示されるべき画像の別の下位画像に対応する光を光プロジェクタの別の束を通して推進させるステップを含む。方法はさらに、1つまたはそれを上回る実施形態では、ファイバ走査ディスプレイの光プロジェクタの1つまたはそれを上回る束とユーザの瞳孔の1つまたはそれを上回る部分をマッピングするステップを含む。マッピングは、1つまたはそれを上回る実施形態では、1:1マッピングである。
光の直径は、1つまたはそれを上回る実施形態では、わずか0.5mmである。光プロジェクタの束は、1つまたはそれを上回る実施形態では、凝集波面を生成する。光プロジェクタによって生成されるビームレットは、1つまたはそれを上回る実施形態では、離散化された凝集波面を形成する。ビームレットは、1つまたはそれを上回る実施形態では、ユーザの眼に平行に接近し、眼は、ビームレットを偏向させ、網膜上の同一スポットに収束させる。ユーザの眼は、1つまたはそれを上回る実施形態では、ビームレットの上位集合を受光し、ビームレットは、瞳孔を交差する複数の角度に対応する。
別の実施形態では、仮想コンテンツをユーザに表示するためのシステムは、画像データの1つまたはそれを上回るフレームと関連付けられた光を提供するための光源と、画像データの1つまたはそれを上回るフレームと関連付けられた光を受光するための光ディスプレイアセンブリであって、光ディスプレイアセンブリは、ともに離間される複数の射出瞳に対応し、複数の射出瞳は、光をユーザの瞳孔の中に伝送する、光ディスプレイアセンブリとを備える。
複数の射出瞳は、1つまたはそれを上回る実施形態では、六角形格子内に配列される。複数の射出瞳は、1つまたはそれを上回る実施形態では、正方形格子内に配列される。複数の射出瞳は、1つまたはそれを上回る実施形態では、2次元アレイ内に配列される。複数の射出瞳は、1つまたはそれを上回る実施形態では、3次元アレイ内に配列される。複数の射出瞳は、1つまたはそれを上回る実施形態では、時変アレイ内に配列される。
1つまたはそれを上回る実施形態では、仮想コンテンツをユーザに表示するための方法は、複数の光プロジェクタを群化し、射出瞳を形成するステップと、第1の光パターンを、第1の射出瞳を通してユーザの瞳孔の第1の部分の中に推進するステップと、第2の光パターンを、第2の射出瞳を通してユーザの瞳孔の第2の部分の中に推進するステップであって、第1の光パターンおよび第2の光パターンは、ユーザに提示されるべき画像の下位画像に対応し、第1の光パターンは、第2の光パターンと異なる、ステップとを含む。方法はさらに、1つまたはそれを上回る実施形態では、離散化された凝集波面を作成するステップを含む。
さらに別の実施形態では、仮想コンテンツをユーザに表示するための方法は、光ディスプレイアセンブリに対するユーザの瞳孔の場所を判定するステップと、少なくとも部分的に瞳孔の判定された場所の周囲に限定されたアイボックスに基づいて、光を瞳孔に収束させる焦点を計算するステップとを含む。
光の直径は、1つまたはそれを上回る実施形態では、わずか0.5mmである。方法はさらに、1つまたはそれを上回る実施形態では、離散化された凝集波面を作成するステップを含む。方法はさらに、1つまたはそれを上回る実施形態では、少なくとも部分的に、所望の凝集波面の曲率半径の中心に基づいて、複数の離散する近隣のコリメートされた光ビームを凝集させるステップを含む。方法はさらに、1つまたはそれを上回る実施形態では、ユーザの眼の遠近調節を判定するステップであって、焦点は、少なくとも部分的に、判定された遠近調節に基づいて、計算される、ステップを含む。
方法はさらに、1つまたはそれを上回る実施形態では、複数のビームレットの光の角度軌道を選択し、焦点外れ光ビームを作成するステップを含む。複数のビームレットは、1つまたはそれを上回る実施形態では、ユーザに提示されるべき画像データのピクセルを表す。ビームレットは、1つまたはそれを上回る実施形態では、複数の入射角度で眼に衝突する。
さらに別の実施形態では、仮想コンテンツをユーザに表示するためのシステムは、ユーザに提示されるべき画像の1つまたはそれを上回る部分を提供するための画像発生源と、画像の1つまたはそれを上回る部分と関連付けられた光を投影するための複数のマイクロプロジェクタであって、マイクロプロジェクタは、ユーザの瞳孔に面する様式で位置付けられ、複数のマイクロプロジェクタのマイクロプロジェクタは、下位画像の一部を表す光線の集合を投影するように構成され、光線の集合は、ユーザの瞳孔の一部に投影される、複数のマイクロプロジェクタとを備える。
ユーザの瞳孔の第1の部分は、1つまたはそれを上回る実施形態では、光線を複数のマイクロプロジェクタから受光する。システムはさらに、1つまたはそれを上回る実施形態では、複数のマイクロプロジェクタからの光をユーザの瞳孔の1つまたはそれを上回る部分に反射させるための反射表面を備える。反射表面は、1つまたはそれを上回る実施形態では、ユーザが反射表面を通して実世界を視認可能であるような様式で位置付けられる。光の直径は、1つまたはそれを上回る実施形態では、わずか0.5mmである。システムはさらに、1つまたはそれを上回る実施形態では、離散化された凝集波面を備える。
別の実施形態では、システムは、ユーザの瞳孔の場所を判定するためのプロセッサと、画像データの1つまたはそれを上回るフレームと関連付けられた光を投影するための空間光変調器(SLM)のアレイであって、SLMのアレイは、少なくとも部分的に、ユーザの瞳孔の判定された場所に基づいて、位置付けられ、ユーザによって視認されると、明視野を発生する、SLMのアレイとを備える。
別の側面では、仮想コンテンツをユーザに表示するためのシステムは、画像データの1つまたはそれを上回るフレームを提供するための画像発生源と、画像データの1つまたはそれを上回るフレームと関連付けられた光線を選択的に伝送するように構成される、第1の空間光変調器(SLM)と、第1のSLMに対して位置付けられる第2のSLMであって、同様に、画像データの1つまたはそれを上回るフレームと関連付けられた光線を選択的に伝送するように構成される、第2のSLMと、伝送された光線がユーザによって視認されると明視野が作成されるような様式で第1および第2のSLMを制御するためのプロセッサとを備える。
システムはさらに、1つまたはそれを上回る実施形態では、ユーザの眼の遠近調節を判定するための遠近調節追跡モジュールを備える。SLMは、1つまたはそれを上回る実施形態では、LCDである。LCDは、1つまたはそれを上回る実施形態では、減衰される。LCDは、1つまたはそれを上回る実施形態では、伝送された光の偏光を回転させる。SLMは、1つまたはそれを上回る実施形態では、DMDである。DMDは、1つまたはそれを上回る実施形態では、1つまたはそれを上回るレンズに結合される。SLMは、1つまたはそれを上回る実施形態では、MEMアレイである。MEMアレイは、1つまたはそれを上回る実施形態では、スライド式MEMシャッタのアレイを備える。MEMアレイは、1つまたはそれを上回る実施形態では、Pixtronics(R)MEMアレイである。
別の実施形態では、仮想コンテンツをユーザに表示するためのシステムは、ユーザに提示されるべき画像データの1つまたはそれを上回るフレームと関連付けられた光を投影するための複数の光ファイバを備え、複数の光ファイバの光ファイバは、レンズに結合され、レンズは、走査ファイバによって投影される光ビームの直径を改変するように構成され、レンズは、勾配屈折率を備える。
レンズは、1つまたはそれを上回る実施形態では、GRINレンズである。レンズは、1つまたはそれを上回る実施形態では、光ビームをコリメートする。システムはさらに、1つまたはそれを上回る実施形態では、複数の光ファイバの光ファイバに結合され、ファイバを走査するためのアクチュエータを備える。アクチュエータは、1つまたはそれを上回る実施形態では、圧電アクチュエータである。光ファイバの端部は、1つまたはそれを上回る実施形態では、レンズ効果を作成するための角度で研磨される。光ファイバの端部は、1つまたはそれを上回る実施形態では、レンズ効果を作成するように溶融される。
仮想コンテンツをユーザに表示するための方法は、1つまたはそれを上回る実施形態では、画像データの1つまたはそれを上回るフレームと関連付けられた光を投影するステップであって、光は、複数の光ファイバを通して投影される、ステップと、複数の光ファイバを通して投影される光をレンズを通して修正するステップであって、レンズは、複数の光ファイバの先端に結合される、ステップと、修正された光をユーザに送達するステップとを含む。
1つまたはそれを上回る実施形態では、仮想コンテンツを表示するためのシステムは、複数のファイバを備え、画像データの1つまたはそれを上回るフレームと関連付けられた光を多重化するためのマルチコアアセンブリと、第1の視認ゾーンが画像の第1の部分と関連付けられた光のみを受光し、第2の視認ゾーンが画像の第2の部分と関連付けられた光のみを受光するように、光パターンを受光し、光パターンを伝送するための導波管であって、第1および第2の視認ゾーンは、わずか0.5mmである、導波管とを備える。システムはさらに、1つまたはそれを上回る実施形態では、画像データのフレームの1つまたはそれを上回る部分をぼかすためのぼかしソフトウェアを備える。システムはさらに、1つまたはそれを上回る実施形態では、ユーザの眼の遠近調節を判定するための遠近調節モジュールを備える。導波管は、1つまたはそれを上回る実施形態では、中間視認光学を伴わずに、光をユーザの眼に直接投影する。
システムは、1つまたはそれを上回る実施形態では、複数のファイバを備え、画像データの1つまたはそれを上回るフレームと関連付けられた光を多重化するためのマルチコアアセンブリと、第1の視認ゾーンが画像の第1の部分と関連付けられた光のみを受光し、第2の視認ゾーンが画像の第2の部分と関連付けられた光のみを受光するように、光パターンを受光し、光パターンを伝送するための導波管であって、第1および第2の視認ゾーンは、わずか0.5mmである、導波管と、導波管に結合され、第1および第2の視認ゾーンに伝送される光ビームを修正するための光学アセンブリとを備える。
複数のファイバは、光を単一導波管アレイの中に投影する。マルチコアアセンブリは、1つまたはそれを上回る実施形態では、走査される。時変明視野が、1つまたはそれを上回る実施形態では、発生される。光学アセンブリは、DOE要素である。光学アセンブリは、1つまたはそれを上回る実施形態では、LC層である。
方法は、1つまたはそれを上回る実施形態では、マルチコアアセンブリを通して、画像データの1つまたはそれを上回るフレームと関連付けられた光を投影するステップであって、マルチコアアセンブリは、複数の光ファイバを備える、ステップと、ユーザの瞳孔の第1の部分が画像の第1の部分と関連付けられた光を受光し、ユーザの瞳孔の第2の部分が画像の第2の部分と関連付けられた光を受光するように、投影された光を導波管を通して送達するステップとを含む。
第1および第2の部分の直径は、1つまたはそれを上回る実施形態では、わずか0.5mmである。複数の光ファイバは、1つまたはそれを上回る実施形態では、光を単一導波管アレイの中に投影する。マルチコアアセンブリは、1つまたはそれを上回る実施形態では、走査される。導波管は、1つまたはそれを上回る実施形態では、複数の反射体を備える。反射体の角度は、1つまたはそれを上回る実施形態では、可変である。光学の集合が、1つまたはそれを上回る実施形態では、第1および第2の視認ゾーンに送達されている光を修正する。光学の集合は、DOE要素である。光学の集合は、自由形状光学である。光学の集合は、1つまたはそれを上回る実施形態では、LC層である。
一側面では、システムは、ユーザに提示されるべき画像データの1つまたはそれを上回るフレームと関連付けられた光を投影するためのマイクロプロジェクタのアレイを備え、1つまたはそれを上回る実施形態では、マイクロプロジェクタのアレイは、ユーザの瞳孔の場所に対して位置付けられ、光は、ユーザの瞳孔の中に投影される。第1および第2の光ビームは、1つまたはそれを上回る実施形態では、重畳される。第1および第2の光ビームは、1つまたはそれを上回る実施形態では、少なくとも部分的に、研磨された束状ファイバの臨界角に基づいて、偏向される。研磨された束状ファイバは、ディスプレイの分解能を増加させるために使用される。研磨された束状ファイバは、1つまたはそれを上回る実施形態では、明視野を作成するために使用される。
別の実施形態では、システムは、ユーザに提示されるべき画像データの1つまたはそれを上回るフレームと関連付けられた光を投影するためのマイクロプロジェクタのアレイであって、マイクロプロジェクタのアレイは、ユーザの瞳孔の場所に対して位置付けられ、光は、ユーザの瞳孔の中に投影される、マイクロプロジェクタと、マイクロプロジェクタのアレイに結合され、ユーザの瞳孔の中に投影される光を修正するための光学要素とを備える。
さらに別の実施形態では、システムは、光ビームを伝送するための複数のマルチコアファイバであって、複数のビームは、ともに結合される、複数のマルチコアファイバと、複数のマルチコアファイバをともに束化するための結合要素であって、マルチコアファイバの束は、束状ファイバの第1のファイバから伝送された第1の光ビームが第1の経路長を有し、束状ファイバの第2のファイバから伝送された第2の光ビームが第2の経路長を有するように、ファイバの縦軸に対して臨界角で研磨され、第1の経路長は、第1の光ビームが第2の光ビームに対して位相がずれるように、第2の経路長と異なる、結合要素とを備える。
第1および第2の光ビームは、1つまたはそれを上回る実施形態では、重畳される。第1および第2の光ビームは、1つまたはそれを上回る実施形態では、少なくとも部分的に、研磨された束状ファイバの臨界角に基づいて、偏向される。研磨された束状ファイバは、1つまたはそれを上回る実施形態では、ディスプレイの分解能を増加させるために使用される。研磨された束状ファイバは、1つまたはそれを上回る実施形態では、明視野を作成するために使用される。
別の実施形態では、仮想コンテンツをユーザに表示するためのシステムは、画像データの1つまたはそれを上回るフレームを提供するための画像発生源と、画像データの1つまたはそれを上回るフレームと関連付けられた光ビームを伝送するための複数の光ファイバと、複数の光ファイバに結合され、光ファイバからコリメートされた光を受光し、光ビームをユーザの眼に送達するための光学要素とを備え、光ビームは、第1の光ビームが第1の角度でユーザの眼の一部に送達され、第2の光ビームが第2の角度でユーザの眼の同一部分に送達されるように、複数の角度でユーザの眼に送達され、第1の角度は、第2の角度と異なる。光学要素は、1つまたはそれを上回る実施形態では、導波管である。システムはさらに、1つまたはそれを上回る実施形態では、位相変調器を備え、光ファイバを通る光の伝送を変調させる。
さらに別の実施形態では、方法は、画像データの1つまたはそれを上回るフレームを提供するステップと、複数の光ファイバを通して、画像データの1つまたはそれを上回るフレームと関連付けられた光ビームを伝送するステップと、光ビームをユーザの眼に複数の角度で送達するステップとを含む。
方法はさらに、1つまたはそれを上回る実施形態では、複数の光ファイバの位相遅延を変調させるステップを含む。方法はさらに、1つまたはそれを上回る実施形態では、光学要素を複数の光ファイバに結合するステップを含む。光学要素は、1つまたはそれを上回る実施形態では、導波管である。光学要素は、自由形状光学である。光学要素は、1つまたはそれを上回る実施形態では、DOEである。光学要素は、1つまたはそれを上回る実施形態では、導波管である。
1つまたはそれを上回る実施形態では、仮想現実ディスプレイシステムは、ユーザに提示されるべき1つまたはそれを上回る画像と関連付けられた光ビームを発生させるための複数の光ファイバと、複数の光ファイバに結合され、光ビームを変調させるための複数の位相変調器であって、複数の光ビームの結果として発生される波面に影響を及ぼす様式で光を変調させる、複数の位相変調器とを備える。
1つまたはそれを上回る光ファイバは、1つまたはそれを上回る実施形態では、1つまたはそれを上回る角度で偏向される。複数の光ファイバの光ファイバは、1つまたはそれを上回る実施形態では、GRINレンズに結合される。複数の光ファイバは、1つまたはそれを上回る実施形態では、光ファイバを走査するように物理的に作動される。
さらに別の側面では、方法は、ユーザに提示されるべき画像データの1つまたはそれを上回るフレームを提供するステップと、複数の光ファイバを通して、画像データの1つまたはそれを上回るフレームと関連付けられた光を投影するステップと、複数の位相変調器を通して、複数の光ファイバによって生成される凝集波面に影響を及ぼす様式で複数の光ファイバによって投影される光を変調させるステップとを含む。
1つまたはそれを上回る光ファイバによって投影される光は、1つまたはそれを上回る実施形態では、1つまたはそれを上回る角度で偏向される。1つまたはそれを上回る光ファイバは、1つまたはそれを上回る実施形態では、GRINレンズに結合される。方法はさらに、1つまたはそれを上回る実施形態では、光学光ビームを走査するステップを含み、複数の光ファイバは、光ファイバを走査するように物理的に作動される。
別の側面では、仮想コンテンツを表示するためのシステムは、ユーザに提示されるべき画像と関連付けられた光ビームを伝送するための光ファイバのアレイと、光ファイバのアレイに結合され、光ファイバのアレイによって出力された複数の光ビームを単一節点を通して偏向させるためのレンズとを備え、レンズは、光ファイバの移動がレンズを移動させるように、光ファイバに物理的に取り付けられ、単一節点は、走査される。
光ファイバのアレイによって出力された光ビームは、1つまたはそれを上回る実施形態では、ユーザに提示されるべき画像のピクセルを表す。レンズは、1つまたはそれを上回る実施形態では、GRINレンズである。光ファイバのアレイは、1つまたはそれを上回る実施形態では、明視野を表示するために使用される。光ファイバの別のアレイによって出力された光ビームの別の集合は、1つまたはそれを上回る実施形態では、ユーザに提示されるべき画像の別のピクセルを表す。光ファイバの複数のアレイは、1つまたはそれを上回る実施形態では、ユーザに提示されるべき画像のピクセルを表すように組み合わせられる。光ファイバのアレイは、1つまたはそれを上回る実施形態では、光ビームをユーザの瞳孔の所定の部分に送達するように構成される。出力光ビームは、1つまたはそれを上回る実施形態では、発散性である。出力光ビームは、1つまたはそれを上回る実施形態では、収束性である。
出力光ビームの開口数は、1つまたはそれを上回る実施形態では、個々の光ファイバによって伝送された光ビームに対して増加される。開口数の増加は、1つまたはそれを上回る実施形態では、より高い分解能を可能にする。光ファイバのアレイは、1つまたはそれを上回る実施形態では、第1の光ファイバを通して進行する第1の光ビームの経路長が、第2の光ファイバを通して進行する第2の光ビームと異なるような様式で斜角が付けられ、それによって、光ビームの複数の焦点距離がユーザの眼に送達されることを可能にする。
別の側面では、仮想コンテンツをユーザに表示するためのシステムは、画像データの1つまたはそれを上回るフレームと関連付けられた光を投影するためのマイクロプロジェクタのアレイであって、マイクロプロジェクタの1つまたはそれを上回るアレイのマイクロプロジェクタは、投影された光が偏向されるような角度で研磨され、研磨された角度は、光学要素に対して、マイクロプロジェクタのアレイの第1マイクロプロジェクタと第2のマイクロプロジェクタとの間に経路長差を生じさせる、マイクロプロジェクタのアレイと、偏向された光ビームを受光し、それらを少なくとも1つの軸において走査するための光スキャナとを備える。
さらに別の側面では、仮想または拡張現実体験のうちの少なくとも1つをユーザに提供するためのシステムは、フレームと、フレームによって担持され、フレームがユーザによって装着されると、ユーザの少なくとも片眼の正面に位置付け可能である、マイクロプロジェクタのアレイと、マイクロプロジェクタのアレイに通信可能に結合され、画像情報をマイクロプロジェクタに提供するためのローカルコントローラであって、少なくとも1つのプロセッサと、少なくとも1つのプロセッサに通信可能に結合される少なくとも1つの非一過性プロセッサ可読媒体とを備え、少なくとも1つの非一過性プロセッサ可読媒体は、少なくとも1つのプロセッサによって実行されると、少なくとも1つのプロセッサに、データの処理、キャッシュ、および記憶のうちの少なくとも1つを行わせ、画像情報をマイクロプロジェクタに提供し、仮想または拡張現実視覚体験のうちの少なくとも1つをユーザに生成する、少なくとも1つのプロセッサ実行可能命令またはデータを記憶する、ローカルコントローラとを備える。
システムはさらに、1つまたはそれを上回る実施形態では、フレームによって支持され、フレームがユーザによって装着されると、マイクロプロジェクタからの光をユーザの少なくとも片眼に向かって指向するように位置付けおよび配向される、少なくとも1つの反射体を備える。マイクロプロジェクタは、1つまたはそれを上回る実施形態では、複数の走査ファイバディスプレイの個別のものを備える。走査ファイバディスプレイはそれぞれ、1つまたはそれを上回る実施形態では、個別のコリメートレンズをその遠位先端に有する。個別のコリメートレンズは、1つまたはそれを上回る実施形態では、勾配屈折率(GRIN)レンズである。
個別のコリメートレンズは、1つまたはそれを上回る実施形態では、湾曲レンズである。個別のコリメートレンズは、1つまたはそれを上回る実施形態では、個別の走査ファイバディスプレイの遠位先端に融合される。走査ファイバディスプレイは、1つまたはそれを上回る実施形態では、個別の回折レンズをその遠位先端に有する。走査ファイバディスプレイはそれぞれ、1つまたはそれを上回る実施形態では、拡散器をその遠位先端に有する。
拡散器は、1つまたはそれを上回る実施形態では、個別の遠位先端の中にエッチングされる。走査ファイバディスプレイはそれぞれ、1つまたはそれを上回る実施形態では、個別のレンズをその遠位先端に有し、レンズは、刺激に応答して自由に振動するように十分な距離だけ遠位先端から延在する。走査ファイバディスプレイはそれぞれ、1つまたはそれを上回る実施形態では、個別の反射体をその遠位先端に有し、反射体は、刺激に応答して自由に振動するように十分な距離だけ遠位先端から延在する。走査ファイバディスプレイはそれぞれ、1つまたはそれを上回る実施形態では、個別の単一モード光ファイバを含む。
走査ファイバディスプレイはそれぞれ、1つまたはそれを上回る実施形態では、単一モード光ファイバの少なくとも遠位先端を移動させるように結合される、個別の機械的変換器を含む。個別の機械的変換器はそれぞれ、1つまたはそれを上回る実施形態では、圧電アクチュエータである。単一モード光ファイバはそれぞれ、1つまたはそれを上回る実施形態では、遠位先端を有し、遠位先端は、半球状レンズ形状を有する。単一モード光ファイバはそれぞれ、遠位先端を有し、遠位先端は、1つまたはそれを上回る実施形態では、そこに添着された屈折レンズを有する。
システムはさらに、1つまたはそれを上回る実施形態では、複数の単一モード光ファイバをともに保定する、透明ホルダ基板を備える。透明ホルダ基板は、1つまたはそれを上回る実施形態では、少なくとも、単一モード光ファイバのクラッディングの屈折率にほぼ一致する、屈折率を有する。透明ホルダ基板は、1つまたはそれを上回る実施形態では、それぞれ共通スポットに向かって角度付けられた複数の単一モード光ファイバを保定する。
システムはさらに、1つまたはそれを上回る実施形態では、複数の単一モード光ファイバと連動して移動するように結合される、少なくとも1つの機械的変換器を備える。少なくとも1つの機械的変換器は、1つまたはそれを上回る実施形態では、その一部が透明ホルダ基板から片持ち支持される、単一モード光ファイバの機械的共振周波数で、複数の単一モード光ファイバを振動させる。マイクロプロジェクタは、1つまたはそれを上回る実施形態では、複数の平面導波管の個別のものを備え、平面導波管のそれぞれの一部は、ホルダ基板から片持ち支持されて延在する。システムはさらに、1つまたはそれを上回る実施形態では、複数の平面導波管を連動して移動させるように結合される少なくとも1つの機械的変換器を備える。
少なくとも1つの機械的変換器は、1つまたはそれを上回る実施形態では、ホルダ基板を平面導波管の機械的共振周波数で振動させる。マイクロプロジェクタは、1つまたはそれを上回る実施形態では、平面導波管の個別のものをホルダ基板に対して移動させるように結合される複数の圧電アクチュエータの個別のものを備える。平面導波管はそれぞれ、1つまたはそれを上回る実施形態では、平面導波管の個別の長さに沿って、全内部反射経路を定義し、平面導波管は、個別の全内部反射経路から外向きに光を伝搬するように動作可能な複数の電子的に切替可能な回折光学要素(DOE)の個別のものを備える。マイクロプロジェクタのアレイは、1つまたはそれを上回る実施形態では、それぞれ、遠位先端および少なくとも1つの斜縁を有する、光ファイバのアレイを備える。少なくとも1つの斜縁は、1つまたはそれを上回る実施形態では、遠位先端にあって、遠位先端は、研磨された遠位先端である。
光ファイバはそれぞれ、1つまたはそれを上回る実施形態では、反射表面をその個別の遠位先端に有する。遠位先端は、1つまたはそれを上回る実施形態では、個別の光ファイバの縦軸に対して定義された臨界角で遠位先端に出力縁を有する。定義された臨界角は、1つまたはそれを上回る実施形態では、個別の光ファイバの縦軸に対して約45度である。システムはさらに、1つまたはそれを上回る実施形態では、光ファイバの遠位端から出射する光の光学経路内に合焦レンズを備え、光の複数のビームを受光し、ビームは、相互に位相がずれている。システムはさらに、1つまたはそれを上回る実施形態では、光ファイバのうちの少なくとも1つをX−Yデカルト座標系内で移動させ、少なくとも1つの光ファイバによって放出される光をX−Zデカルト座標系内で移動させるように結合される、少なくとも1つの変換器を備える。少なくとも1つの変換器は、1つまたはそれを上回る実施形態では、光ファイバの片持ち支持される部分を片持ち支持される部分が延在する方向に垂直方向に共振させる、第1の圧電アクチュエータである。
光ファイバは、1つまたはそれを上回る実施形態では、光ファイバの薄いリボンを備える。少なくとも1つの変換器は、1つまたはそれを上回る実施形態では、光ファイバの少なくとも片持ち支持される部分を片持ち支持される部分が延在する方向に縦方向に移動させる、第2の圧電アクチュエータである。マイクロプロジェクタは、1つまたはそれを上回る実施形態では、光ファイバのうちの少なくとも1つの縦軸に沿って低速走査を提供するように動作可能な少なくとも1つの単一軸鏡を含む。光ファイバのアレイは、1つまたはそれを上回る実施形態では、マルチコアファイバを備える。マルチコアファイバは、約7つの複数の疎らに位置付けられたクラスタを単一導管内に含み、各クラスタは、3つの光ファイバを備え、各光ファイバは、1つまたはそれを上回る実施形態では、3つの異なる光の色の個別のものを搬送する。
マルチコアファイバは、1つまたはそれを上回る実施形態では、約19の複数の疎らに位置付けられたクラスタを単一導管内に含み、各クラスタは、3つの光ファイバを備え、各光ファイバは、3つの異なる光の色の個別のものを搬送し、3つの異なる色の重複されたスポットの三連構造を生成する。マルチコアファイバは、1つまたはそれを上回る実施形態では、少なくとも1つのクラスタを単一導管内に含み、クラスタは、それぞれ、少なくとも3つの光ファイバを備え、光ファイバはそれぞれ、少なくとも2つの異なる光の色を搬送する。
マルチコアファイバは、1つまたはそれを上回る実施形態では、少なくとも1つのクラスタを単一導管内に含み、少なくとも1つのクラスタは、4つの光ファイバを備え、各光ファイバは、4つの異なる光の色の個別のものを搬送し、4つの色のうちの1つは、赤外線または近赤外線である。マルチコアファイバは、1つまたはそれを上回る実施形態では、複数のコアを密束内に含み、コアを疎らな渦巻パターンで移動させるように結合される少なくとも1つの変換器をさらに備える。少なくとも1つの斜縁は、1つまたはそれを上回る実施形態では、遠位先端から内向きに離間される。少なくとも1つの斜縁は、1つまたはそれを上回る実施形態では、研磨される。
システムはさらに、1つまたはそれを上回る実施形態では、光ファイバのうちの少なくとも1つをX−Yデカルト座標系内で移動させ、少なくとも1つの光ファイバによって放出される光をX−Zデカルト座標系内で移動させるように結合される、少なくとも1つの変換器を備える。
システムはさらに、1つまたはそれを上回る実施形態では、光ファイバの斜縁から出射する光の光学経路内に合焦レンズを備え、光の複数のビームを受光し、ビームは、相互に位相がずれている。システムはさらに、1つまたはそれを上回る実施形態では、レーザと、レーザの出力をマルチコアファイバのいくつかのコアに光学的に結合し、相互コヒーレンスを達成する、少なくとも1つの位相変調器とを備える。
システムはさらに、1つまたはそれを上回る実施形態では、マルチコアファイバのいくつかのコアの個別のものの入力端の上流に光学的に結合される、レンズレットアレイと、複数のコリメートレンズとマルチコアファイバのコアの入力端との間に光学的に結合され、光をレンズレットアレイからマルチコアファイバのコアに偏向させる、プリズムアレイとを備える。
システムはさらに、1つまたはそれを上回る実施形態では、マルチコアファイバのいくつかのコアの個別のものの入力端の上流に光学的に結合される、レンズレットアレイと、レンズレットアレイとマルチコアファイバのコアの入力端との間に光学的に結合され、光をレンズレットアレイからマルチコアファイバのコアに偏向させる、共有合焦レンズとを備える。
マイクロプロジェクタのアレイはさらに、1つまたはそれを上回る実施形態では、少なくとも1つの反射体を備え、少なくとも1つの反射体は、走査パターンを生成するように動作可能であって、光ファイバのアレイに光学的に結合される。少なくとも1つの反射体は、1つまたはそれを上回る実施形態では、多焦点ビームのラスター走査パターン、リサジュー走査パターン、または渦巻走査パターンのうちの少なくとも1つを生成するように動作可能である。マルチコアファイバの各コアは、1つまたはそれを上回る実施形態では、重複しないように、画像平面の個別の部分をアドレス指定する。マルチコアファイバの各コアは、1つまたはそれを上回る実施形態では、実質的に重複するように、画像平面の個別の部分をアドレス指定する。
別の実施形態では、仮想コンテンツを表示するためのシステムは、ユーザに提示されるべき画像データの1つまたはそれを上回るフレームを提供するための画像源と、ファイバ走査ディスプレイであって、ファイバ走査ディスプレイは、複数のファイバを備え、画像データの1つまたはそれを上回るフレームと関連付けられた光を投影し、複数のファイバは、アクチュエータを使用して走査される、ファイバ走査ディスプレイと、明視野がユーザに提示されるような様式でファイバ走査ディスプレイを制御するためのプロセッサとを備える。
アクチュエータは、1つまたはそれを上回る実施形態では、ファイバ走査ディスプレイの全ファイバ間で共有される。各ファイバは、1つまたはそれを上回る実施形態では、その個々のアクチュエータを有する。複数のファイバは、1つまたはそれを上回る実施形態では、複数のファイバがともに移動するように、格子によって機械的に結合される。格子は、1つまたはそれを上回る実施形態では、グラフェン平面である。格子は、1つまたはそれを上回る実施形態では、軽量支柱である。
別の実施形態では、仮想または拡張現実体験のうちの少なくとも1つをユーザに提供するためのシステムは、フレームと、フレームによって担持され、フレームがユーザによって装着されると、ユーザの少なくとも片眼の正面に位置付け可能である、ディスプレイシステムと、ディスプレイシステムに通信可能に結合され、画像情報をディスプレイシステムに提供する、ローカルコントローラであって、少なくとも1つのプロセッサと、少なくとも1つのプロセッサに通信可能に結合される少なくとも1つの非一過性プロセッサ可読媒体とを備え、少なくとも1つの非一過性プロセッサ可読媒体は、少なくとも1つのプロセッサによって実行されると、少なくとも1つのプロセッサに、データの処理、キャッシュ、および記憶のうちの少なくとも1つを行わせ、画像情報をディスプレイに提供し、仮想または拡張現実視覚体験のうちの少なくとも1つをユーザに生成する、少なくとも1つのプロセッサ実行可能命令またはデータを記憶する、ローカルコントローラとを備える。
ディスプレイは、1つまたはそれを上回る実施形態では、少なくとも1つの楔形状の導波管を備え、楔形状の導波管は、第1の楔形状の導波管の厚さを横断して相互に対向する少なくとも2つの平坦表面を有し、かつそれに沿って、楔形状の導波管の入射部分を介して楔形状の導波管に定義された角度で入射する光が、全内部反射を介して伝搬する、長さを有し、楔形状の導波管の厚さは、楔形状の導波管の長さに沿って線形に変動する。楔形状の導波管は、1つまたはそれを上回る実施形態では、二峰性全内部反射を提供する。
システムはさらに、1つまたはそれを上回る実施形態では、楔形状の導波管の入射部分に沿って個別の異なる場所において、楔形状の導波管に光学的に結合される、少なくとも2つのプロジェクタを備える。システムはさらに、1つまたはそれを上回る実施形態では、楔形状の導波管の入射部分に沿って個別の異なる場所において、楔形状の導波管に光学的に結合される、複数のプロジェクタの第1の線形アレイを備える。
複数のプロジェクタの第1の線形アレイのプロジェクタは、1つまたはそれを上回る実施形態では、走査ファイバディスプレイである。システムはさらに、1つまたはそれを上回る実施形態では、楔形状の導波管の入射部分に沿って楔形状の導波管に光学的に結合される、複数の空間光変調器のスタックを備える。システムはさらに、1つまたはそれを上回る実施形態では、楔形状の導波管の入射部分に沿って1つまたはそれを上回る場所において、楔形状の導波管に光学的に結合される、マルチコア光ファイバを備える。
プロジェクタの第1の線形アレイのプロジェクタは、1つまたはそれを上回る実施形態では、楔形状の導波管に光学的に結合され、光を楔形状の導波管の中に第1の角度で投入し、楔形状の導波管の入射部分に沿って個別の異なる場所において、楔形状の導波管に光学的に結合される、複数のプロジェクタの第2の線形アレイであって、プロジェクタの第2の線形アレイのプロジェクタは、楔形状の導波管に光学的に結合され、光を楔形状の導波管の中に第2の角度で投入し、第2の角度は、第1の角度と異なる、第2の線形アレイをさらに備える。
入射部分は、1つまたはそれを上回る実施形態では、楔形状の導波管の縦方向端である。入射部分は、1つまたはそれを上回る実施形態では、楔形状の導波管の側方縁である。入射部分は、1つまたはそれを上回る実施形態では、楔形状の導波管の平坦表面の1つである。システムはさらに、1つまたはそれを上回る実施形態では、プロジェクタに光学的に結合され、プロジェクタから受光された光の角度を変化させ、光を楔形状の導波管内で光の全内部反射を達成する角度で楔形状の導波管に光学的に結合する、少なくとも1つの光学構成要素を備える。
別の側面では、仮想コンテンツをユーザに表示するためのシステムは、ユーザに提示されるべき画像データの1つまたはそれを上回るフレームと関連付けられた光ビームを投影するためのマイクロプロジェクタのアレイであって、マイクロプロジェクタのアレイの1つまたはそれを上回るマイクロプロジェクタに対して可動であるように構成可能である、マイクロプロジェクタと、マイクロプロジェクタのアレイを格納するためのフレームと、マイクロプロジェクタのアレイの1つまたはそれを上回るマイクロプロジェクタに動作可能に結合され、1つまたはそれを上回る光ビームが、マイクロプロジェクタのアレイに対して、1つまたはそれを上回るマイクロプロジェクタの位置の関数として変調され、それによって、ユーザへの明視野画像の送達を可能にするような様式で1つまたはそれを上回るプロジェクタから伝送された1つまたはそれを上回る光ビームを制御するためのプロセッサとを備える。
マイクロプロジェクタのアレイのマイクロプロジェクタは、1つまたはそれを上回る実施形態では、レンズに結合される。マイクロプロジェクタのアレイは、1つまたはそれを上回る実施形態では、ユーザに提示されるべき画像の所望の分解能に基づく様式で配列される。マイクロプロジェクタのアレイは、1つまたはそれを上回る実施形態では、所望の視野に基づいて配列される。複数のマイクロプロジェクタの光ビームは、1つまたはそれを上回る実施形態では、重複する。システムはさらに、1つまたはそれを上回る実施形態では、アクチュエータを備え、アクチュエータは、1つまたはそれを上回るマイクロプロジェクタに結合され、アクチュエータは、1つまたはそれを上回るマイクロプロジェクタを移動させるように構成可能である。
アクチュエータは、1つまたはそれを上回る実施形態では、複数のマイクロプロジェクタに結合される。アクチュエータは、1つまたはそれを上回る実施形態では、単一マイクロプロジェクタに結合される。マイクロプロジェクタのアレイのマイクロプロジェクタは、1つまたはそれを上回る実施形態では、格子に機械的に結合される。
さらに別の実施形態では、仮想または拡張現実ディスプレイのユーザの眼の角膜と界面接触するコンタクトレンズは、部分的半球状基板と、選択フィルタとを備える。選択フィルタは、1つまたはそれを上回る実施形態では、光ビームをユーザの眼に選択的に通過させるように構成される。選択フィルタは、1つまたはそれを上回る実施形態では、ノッチフィルタである。ノッチフィルタは、1つまたはそれを上回る実施形態では、約450nm(ピーク青色)における波長を実質的に遮断し、電磁スペクトルの可視部分内の他の波長を実質的に通過させる。ノッチフィルタは、1つまたはそれを上回る実施形態では、約530nm(緑色)における波長を実質的に遮断し、電磁スペクトルの可視部分内の他の波長を実質的に通過させる。ノッチフィルタは、1つまたはそれを上回る実施形態では、約650nmにおける波長を実質的に遮断し、電磁スペクトルの可視部分内の他の波長を実質的に通過させる。
ノッチフィルタは、1つまたはそれを上回る実施形態では、基板によって担持される誘電材料の複数の層を備える。フィルタは、1つまたはそれを上回る実施形態では、1.5mm未満の直径のピンホール開口部を有する。ピンホール開口部は、1つまたはそれを上回る実施形態では、複数の波長の光ビームが通過することを可能にする。ピンホールのサイズは、1つまたはそれを上回る実施形態では、少なくとも部分的に、ディスプレイの所望の焦点深度に基づいて、変動される。コンタクトレンズはさらに、1つまたはそれを上回る実施形態では、複数の動作モードを備える。コンタクトレンズはさらに、1つまたはそれを上回る実施形態では、仮想コンテンツの多焦点深度ディスプレイ構成を備える。
コンタクトレンズはさらに、1つまたはそれを上回る実施形態では、ユーザの眼の遠近調節を判定するための遠近調節追跡モジュールを備える。特定のディスプレイオブジェクトの焦点深度が、1つまたはそれを上回る実施形態では、少なくとも部分的に、判定された遠近調節に基づいて、変動される。画像が、1つまたはそれを上回る実施形態では、導波管を通して中継され、中継された画像は、特定の焦点深度と関連付けられる。
別の実施形態では、仮想コンテンツをユーザに表示するための方法は、ユーザに提示されるべき画像データの1つまたはそれを上回るフレームを提供するステップと、画像データの1つまたはそれを上回るフレームと関連付けられた光を投影するステップと、ユーザの瞳孔に結合される部分的半球状基板を通して、投影された光を受光し、ユーザの瞳孔への光ビームを選択的にフィルタリングするステップとを含む。
別の実施形態では、仮想コンテンツをユーザに表示するためのシステムは、画像データの1つまたはそれを上回るフレームと関連付けられた光をユーザの眼に投影するための光投影システムであって、画像データと関連付けられた複数のピクセルに対応する光を投影するように構成される、光投影システムと、ユーザに表示される複数のピクセルの焦点深度を変調させるためのプロセッサとを備える。
焦点深度は、1つまたはそれを上回る実施形態では、空間的に変調される。焦点深度は、1つまたはそれを上回る実施形態では、経時的に変調される。システムはさらに、1つまたはそれを上回る実施形態では、画像データの1つまたはそれを上回るフレームを時系列様式で提供するための画像発生源を備える。焦点深度は、1つまたはそれを上回る実施形態では、フレーム毎ベースで変調される。光投影システムは、1つまたはそれを上回る実施形態では、複数の光ファイバを備え、焦点深度は、光ファイバの一部が第1の焦点深度と関連付けられ、光ファイバの別の部分が第2の焦点深度と関連付けられるように、複数の光ファイバを横断して変調され、第1の焦点深度は、第2の焦点深度と異なる。
特定のフレームの第1のディスプレイオブジェクトは、1つまたはそれを上回る実施形態では、第1の焦点深度を通して表示され、特定のフレームの第2のディスプレイオブジェクトは、第2の焦点深度を通して表示され、第1の焦点深度は、第2の焦点深度と異なる。特定のフレームの第1のピクセルは、1つまたはそれを上回る実施形態では、第1の焦点深度と関連付けられ、特定のフレームの第2のピクセルは、第2の焦点深度と関連付けられ、第1の焦点深度は、第2の焦点深度と異なる。システムはさらに、1つまたはそれを上回る実施形態では、ユーザの眼の遠近調節を判定するための遠近調節追跡モジュールを備え、焦点深度は、少なくとも部分的に、判定された遠近調節に基づいて、変調される。
光発生システムと関連付けられた光発生パターンは、1つまたはそれを上回る実施形態では、判定された遠近調節に動的に従動される。パターンは、1つまたはそれを上回る実施形態では、複数の光ファイバの走査パターンである。システムはさらに、1つまたはそれを上回る実施形態では、画像データの1つまたはそれを上回る部分をぼかすためのぼかしモジュールを備え、ぼかしは、第1の走査パターンと第2の走査パターンまたは第1の分解能走査ピッチと第2の分解能走査ピッチとの間の遷移を平滑化するために作成される。
別の実施形態では、仮想コンテンツをユーザに表示するためのシステムは、画像データの1つまたはそれを上回るフレームと関連付けられた光をユーザの眼に投影するための光投影システムであって、画像データと関連付けられた複数のピクセルに対応する光を投影するように構成される、光投影システムと、ユーザに表示される複数のピクセルのサイズを変調させるためのプロセッサとを備える。
光投影システムは、1つまたはそれを上回る実施形態では、ファイバ走査ディスプレイである。投影された光は、1つまたはそれを上回る実施形態では、走査パターンを通して表示される。プロセッサは、1つまたはそれを上回る実施形態では、少なくとも部分的に、走査パターンのタイプに基づいて、特定のピクセルのサイズを変調させる。1つまたはそれを上回るピクセルのサイズは、1つまたはそれを上回る実施形態では、少なくとも部分的に、走査パターンの走査線間の距離に基づいて、変調されてもよい。第1のピクセルのサイズは、1つまたはそれを上回る実施形態では、同一フレーム内の第2のピクセルのサイズと異なる。
別の側面では、仮想コンテンツをユーザに表示するための方法は、1つまたはそれを上回る実施形態では、画像データの1つまたはそれを上回るフレームと関連付けられた光を投影するステップであって、投影された光の1つまたはそれを上回る光ビームは、1つまたはそれを上回るピクセルに対応し、光は、ファイバ走査ディスプレイを通して投影される、ステップと、ユーザに表示される1つまたはそれを上回るピクセルのサイズを変調させるステップとを含む。
特定のピクセルのサイズは、1つまたはそれを上回る実施形態では、少なくとも部分的に、ファイバ走査ディスプレイの走査パターンに基づいて、変動される。1つまたはそれを上回るピクセルのサイズは、1つまたはそれを上回る実施形態では、少なくとも部分的に、走査パターンの走査線間の距離に基づいて、変調される。1つまたはそれを上回るピクセルのサイズは、1つまたはそれを上回る実施形態では、可変である。
さらに別の実施形態では、仮想コンテンツをユーザに表示するためのシステムは、1つまたはそれを上回る実施形態では、画像データの1つまたはそれを上回るフレームと関連付けられた光を送達する、ディスプレイシステムであって、ディスプレイシステムは、複数のピクセルを備え、可変線ピッチを有する光を走査する、ディスプレイシステムと、複数のピクセルの1つまたはそれを上回るピクセルの可変ぼかしを行い、1つまたはそれを上回るピクセルのサイズを修正するためのぼかしモジュールと、ピクセルサイズが、少なくとも部分的に、ディスプレイシステムの線ピッチに基づいて変動されるような様式でぼかしモジュールを制御するためのプロセッサとを備える。ディスプレイシステムは、1つまたはそれを上回る実施形態では、ファイバ走査システムである。ピクセルサイズは、1つまたはそれを上回る実施形態では、拡大される。ピクセルサイズは、1つまたはそれを上回る実施形態では、縮小される。ピッチ線は、1つまたはそれを上回る実施形態では、疎らである。ピッチ線は、1つまたはそれを上回る実施形態では、高密度である。
別の側面では、仮想コンテンツをユーザに表示する方法は、ユーザに提示されるべき画像データの1つまたはそれを上回るフレームと関連付けられた光を投影するステップと、少なくとも部分的に、画像データの特性に基づいて、投影された光ビームの少なくとも一部を選択的に減衰させるステップと、減衰された光ビームをユーザの眼に送達するステップとを含む。
光ビームは、1つまたはそれを上回る実施形態では、少なくとも部分的に、光ビームの入射角度に基づいて、選択的に減衰される。フレームの異なる部分は、1つまたはそれを上回る実施形態では、異なる量まで減衰される。減衰された光ビームの焦点深度は、1つまたはそれを上回る実施形態では、変動される。
1つまたはそれを上回る実施形態では、仮想コンテンツをユーザに表示するためのシステムは、画像データの1つまたはそれを上回るフレームを提供するための画像発生源と、スタックが、画像データの1つまたはそれを上回るフレームと関連付けられた光をユーザに送達するように位置付けられる、2つまたはそれを上回る空間光変調器(SLM)のスタックであって、外部環境からの光を空間的に減衰させる、SLMと、光ビームがSLMの1つまたはそれを上回るセルを通して通過する角度が変調されるような様式で、SLMのスタックを制御するためのプロセッサとを備える。
システムはさらに、ディスプレイ光学の集合を備え、ディスプレイ光学の集合は、1つまたはそれを上回る実施形態では、ユーザの眼と外部環境との間に位置付けられる。SLMのスタックのSLMは、コレステリックLCDである。SLMのうちの少なくとも1つは、1つまたはそれを上回る実施形態では、コレステリックLCDである。SLMのスタックは、1つまたはそれを上回る実施形態では、ユーザが外界をSLMのスタックを通して視認するように位置付けられ、SLMは、少なくとも半透明である。
空間光変調器アレイは、1つまたはそれを上回る実施形態では、いくつかの液晶アレイ、デジタル光処理システムのいくつかのデジタル鏡デバイス要素、いくつかの微小電気機械システム(MEMS)アレイ、またはいくつかのMEMSシャッタのうちの少なくとも1つを備える。システムはさらに、1つまたはそれを上回る実施形態では、少なくとも1つの光学構成要素を備えるオクルーダを備え、プロセッサは、オクルーダの少なくとも1つの光学構成要素を制御し、暗仮想オブジェクトの暗視野表現を生成する。
別の側面では、仮想コンテンツを表示するためのシステムは、空間光変調器のアレイであって、空間光変調器のアレイは、光パターンを発生させるように構成され、少なくとも2つの変調器を備える、空間光変調器のアレイと、少なくとも2つの空間変調器が、モアレパターンを形成し、モアレパターンが、少なくとも2つの空間光変調器上に形成される光パターンの周期と異なる周期で光を減衰させる、周期的空間パターンであるような様式で空間変調器のアレイを制御するためのプロセッサとを備える。
空間光変調器アレイは、1つまたはそれを上回る実施形態では、相互に光学的に結合され、モアレ効果を介して光の通過を制御する、少なくとも2つの空間光変調器アレイを備える。少なくとも2つの空間光変調器アレイはそれぞれ、1つまたはそれを上回る実施形態では、個別の減衰パターンを持つ。少なくとも2つの空間光変調器アレイはそれぞれ、1つまたはそれを上回る実施形態では、その上またはその中に印刷、エッチング、または別様に刻設される個別の微細ピッチ正弦波パターンを持つ。少なくとも2つの空間光変調器アレイは、1つまたはそれを上回る実施形態では、相互に位置合わせされる。少なくとも2つの空間光変調器アレイはそれぞれ、1つまたはそれを上回る実施形態では、個別の減衰パターンを持つ。
さらに別の実施形態では、仮想コンテンツをユーザに表示するためのシステムは、画像データの1つまたはそれを上回るフレームと関連付けられた光を提供するための光発生源であって、空間光変調器である、光発生源と、ピンホールアレイのピンホールが空間光変調器の複数のセルから光を受光するように、空間光変調器に対する様式で位置付けられる、ピンホールアレイであって、ピンホールを通して通過する第1の光ビームは、ピンホールを通して通過する第2の光ビームと異なる角度に対応し、空間光変調器のセルは、光を選択的に減衰させる、ピンホールアレイとを備える。
外部環境が、1つまたはそれを上回る実施形態では、ピンホールアレイおよびSLMを通して視認され、光ビームが、少なくとも部分的に、光ビームの入射角度に基づいて、選択的に減衰される。視野の異なる部分からの光は、1つまたはそれを上回る実施形態では、選択的に減衰される。システムはさらに、1つまたはそれを上回る実施形態では、それを通る光の伝送を減衰させるように選択的に動作可能である選択減衰層であって、ピンホール層と光学的に直列である、選択減衰層を備える。
選択減衰層は、1つまたはそれを上回る実施形態では、個別の減衰パターンを持つ、液晶アレイ、デジタル光プロジェクタシステム、または空間光変調器アレイを備える。ピンホールアレイは、1つまたはそれを上回る実施形態では、ユーザの眼の角膜から約30mmの距離に設置され、選択減衰パネルは、眼から見てピンホールアレイと反対に位置する。ピンホールアレイは、複数のピンホールを備え、プロセッサは、1つまたはそれを上回る実施形態では、光が、光ビームが複数のピンホールを通して通過する角度の関数として減衰されるような様式で、SLMを制御し、それによって、凝集明視野を生成する。凝集明視野は、1つまたはそれを上回る実施形態では、所望の焦点距離で遮閉を生じさせる。
別の実施形態では、システムは、1つまたはそれを上回る実施形態では、画像データの1つまたはそれを上回るフレームと関連付けられた光を提供するための光発生源であって、空間光変調器である、光発生源と、レンズアレイのレンズが空間光変調器の複数のセルから光を受光するように、空間光変調器に対する様式で位置付けられる、レンズアレイであって、レンズで受光された第1の光ビームは、レンズで受光された第2の光ビームと異なる角度に対応し、空間光変調器のセルは、光を選択的に減衰させる、レンズアレイとを備える。
外部環境が、1つまたはそれを上回る実施形態では、レンズアレイおよびSLMを通して視認され、光ビームが、少なくとも部分的に、光ビームの入射角度に基づいて、選択的に減衰される。視野の異なる部分からの光は、1つまたはそれを上回る実施形態では、選択的に減衰される。レンズアレイは、1つまたはそれを上回る実施形態では、複数のレンズを備え、プロセッサは、光が、光ビームが複数のレンズで受光される角度の関数として減衰されるような様式で、SLMを制御し、それによって、凝集明視野を生成する。凝集明視野は、1つまたはそれを上回る実施形態では、所望の焦点距離で遮閉を生じさせる。
別の実施形態では、仮想コンテンツをユーザに表示するためのシステムは、画像データの1つまたはそれを上回るフレームと関連付けられた光を投影するための光プロジェクタと、光を受光し、光の偏光を回転させるための少なくとも1つの偏光感受層と、偏光感受層の偏光を変調させるための偏光変調器のアレイであって、アレイ内のセルの状態は、偏光感受層を通して通過する光の量を判定する、偏光変調器のアレイとを備える。システムは、1つまたはそれを上回る実施形態では、眼近接構成で設置される。偏光変調器は、1つまたはそれを上回る実施形態では、液晶アレイである。
システムはさらに、1つまたはそれを上回る実施形態では、異なる射出瞳が偏光子を通して異なる経路を有するように、偏光子をオフセットするための視差障壁を備える。偏光子は、1つまたはそれを上回る実施形態では、xpol偏光子である。偏光子は、1つまたはそれを上回る実施形態では、multiPol偏光子である。偏光子は、1つまたはそれを上回る実施形態では、パターン化された偏光子である。光は、1つまたはそれを上回る実施形態では、1つまたはそれを上回るMEMアレイと相互作用する。
システムはさらに、1つまたはそれを上回る実施形態では、光を投影するためのSLMを備え、SLMは、1つまたはそれを上回る光学要素間に位置付けられ、光学要素は、ゼロ倍率望遠鏡に対応する。ユーザは、1つまたはそれを上回る実施形態では、ゼロ倍率望遠鏡を通して外部環境を視認する。少なくとも1つのSLMは、1つまたはそれを上回る実施形態では、ゼロ倍率望遠鏡内の画像平面に位置付けられる。システムはさらに、DMDを備え、DMDは、1つまたはそれを上回る実施形態では、透明基板に対応する。
システムはさらに、1つまたはそれを上回る実施形態では、少なくとも1つの光学構成要素を備えるオクルーダを備え、プロセッサは、オクルーダの少なくとも1つの光学構成要素を制御し、暗仮想オブジェクトの暗視野表現を生成する。システムはさらに、1つまたはそれを上回るLCDを備え、1つまたはそれを上回るLCDは、1つまたはそれを上回る実施形態では、光ビームを選択的に減衰させる。システムはさらに、1つまたはそれを上回る実施形態では、1つまたはそれを上回るLCDを備え、1つまたはそれを上回るLCDは、偏光回転子としての役割を果たす。オクルーダは、1つまたはそれを上回る実施形態では、ルーバMEMデバイスである。
ルーバMEMデバイスは、1つまたはそれを上回る実施形態では、不透明であって、ルーバMEMデバイスは、入射角度をピクセル毎ベースで変化させる。オクルーダは、1つまたはそれを上回る実施形態では、スライド式パネルMEMデバイスであって、スライド式パネルMEMデバイスは、前後に摺動し、遮閉の領域を修正する。
別の実施形態では、仮想コンテンツを表示するための方法は、画像データの1つまたはそれを上回るフレームと関連付けられた光を投影するステップと、投影された光を受光する基板において、偏光感受層を通して光の偏光を回転させるステップと、光の偏光を変調させ、偏光層を通して通過する光を選択的に減衰させるステップとを含む。
偏光変調器は、1つまたはそれを上回る実施形態では、液晶アレイである。方法はさらに、1つまたはそれを上回る実施形態では、異なる射出瞳が偏光子を通して異なる経路を有するように、偏光子をオフセットするための視差障壁を作成するステップを含む。偏光子は、1つまたはそれを上回る実施形態では、xpol偏光子である。偏光子は、1つまたはそれを上回る実施形態では、multiPol偏光子である。偏光子は、1つまたはそれを上回る実施形態では、パターン化された偏光子である。
別の実施形態では、仮想コンテンツを表示するためのシステムは、画像データの1つまたはそれを上回るフレームと関連付けられた光を提供するための光発生源であって、空間光変調器である、光発生源と、微小電気機械(MEM)ルーバのアレイであって、MEMルーバは、実質的に透明の基板内に格納され、MEMルーバは、光がピクセルに送達される角度を変化させるように構成可能であって、ユーザに送達される第1のピクセルの角度は、ユーザに送達される第2のピクセルと異なる、MEMルーバとを備える。
少なくとも1つの光学構成要素は、1つまたはそれを上回る実施形態では、微小電気機械システム(MEMS)ルーバの第1のアレイを備える。MEMSルーバのアレイは、1つまたはそれを上回る実施形態では、光学的に透明な基板によって担持される複数の実質的に不透明のルーバを備える。微小電気機械システム(MEMS)ルーバのアレイは、1つまたはそれを上回る実施形態では、光をピクセル毎ベースで選択的に遮閉するために十分に微細なルーバピッチを有する。システムはさらに、1つまたはそれを上回る実施形態では、MEMSルーバの第2のアレイを備える、オクルーダの少なくとも1つの光学構成要素を備え、MEMSルーバの第2のアレイは、MEMSルーバの第1のアレイとスタック構成にある。
MEMSルーバのアレイは、1つまたはそれを上回る実施形態では、光学的に透明な基板によって担持される複数の偏光ルーバを備え、ルーバのそれぞれの個別の偏光状態は、選択的に制御可能である。MEMSパネルの第1および第2のアレイのルーバは、1つまたはそれを上回る実施形態では、偏光子である。オクルーダの少なくとも1つの光学構成要素は、1つまたはそれを上回る実施形態では、フレーム内の移動のために搭載される微小電気機械システム(MEMS)パネルの第1のアレイを備える。
MEMSパネルの第1のアレイのパネルは、1つまたはそれを上回る実施形態では、フレーム内の移動のために摺動可能に搭載される。MEMSパネルの第1のアレイのパネルは、1つまたはそれを上回る実施形態では、フレーム内の移動のために枢動可能に搭載される。MEMSパネルの第1のアレイのパネルは、1つまたはそれを上回る実施形態では、フレーム内の移動のために平行移動可能かつ枢動可能に搭載される。パネルは、1つまたはそれを上回る実施形態では、モアレパターンを生成するように可動である。オクルーダの少なくとも1つの光学構成要素はさらに、1つまたはそれを上回る実施形態では、フレーム内の移動のために搭載されるMEMSパネルの第2のアレイを備え、第2のアレイは、第1のアレイとスタック構成にある。MEMSパネルの第1および第2のアレイのパネルは、偏光子である。オクルーダの少なくとも1つの光学構成要素は、1つまたはそれを上回る実施形態では、反射体アレイを備える。
別の実施形態では、システムは、外部環境からの光を受光し、光を1つまたはそれを上回る空間光変調器に指向するための少なくとも1つの導波管を備え、1つまたはそれを上回る空間光変調器は、ユーザの視野の異なる部分で受光された光を選択的に減衰させる。少なくとも1つの導波管は、1つまたはそれを上回る実施形態では、第1および第2の導波管を備え、第2の導波管は、SLMから出射する光をユーザの眼に送達するように構成される。
別の実施形態では、方法は、外部環境からの光を受光するステップと、光を選択減衰器に指向するステップと、選択減衰器を通して、ユーザの視野の異なる部分で受光された光を選択的に減衰させるステップとを含む。
少なくとも1つの導波管は、1つまたはそれを上回る実施形態では、第1および第2の導波管を備え、第2の導波管は、SLMから出射する光をユーザの眼に送達するように構成される。選択減衰器は、1つまたはそれを上回る実施形態では、空間光変調器である。空間光変調器は、1つまたはそれを上回る実施形態では、DMDアレイである。光は、1つまたはそれを上回る実施形態では、1つまたはそれを上回る導波管を通して1つまたはそれを上回る空間光変調器に指向される。方法はさらに、1つまたはそれを上回る実施形態では、光を導波管に戻るように再結合し、光をユーザの眼に向かって部分的に出射させるステップを含む。導波管は、1つまたはそれを上回る実施形態では、選択減衰器に実質的に垂直に配向される。
別の実施形態では、仮想コンテンツをユーザに表示するためのシステムは、画像データの1つまたはそれを上回るフレームと関連付けられた光を提供するための光発生源であって、複数のマイクロプロジェクタを備える、光発生源と、光を複数のマイクロプロジェクタから受光し、光をユーザの眼に伝送するように構成される、導波管とを備える。
マイクロプロジェクタは、1つまたはそれを上回る実施形態では、線形アレイ内に設置される。マイクロプロジェクタは、1つまたはそれを上回る実施形態では、導波管の1つの縁内に設置される。マイクロプロジェクタは、導波管の複数の縁内に設置される。マイクロプロジェクタは、1つまたはそれを上回る実施形態では、2次元アレイ内に設置される。マイクロプロジェクタは、1つまたはそれを上回る実施形態では、3次元アレイ内に設置される。マイクロプロジェクタは、1つまたはそれを上回る実施形態では、基板の複数の縁に設置される。マイクロプロジェクタは、1つまたはそれを上回る実施形態では、複数の角度に設置される。
別の実施形態では、仮想コンテンツを表示するためのシステムは、画像データの1つまたはそれを上回るフレームを提供するための画像発生源であって、画像データは、ユーザに提示されるべき1つまたはそれを上回る仮想オブジェクトを備える、画像発生源と、後光が1つまたはそれを上回る仮想オブジェクトの周囲でユーザによって知覚されるような様式で1つまたはそれを上回る仮想オブジェクトをレンダリングするためのレンダリングエンジンとを備える。
システムはさらに、1つまたはそれを上回る実施形態では、光減衰器を備え、光減衰器は、ユーザの視野を横断して、後光の光強度を平衡化させる。
別の実施形態では、仮想コンテンツを表示するための方法は、画像データの1つまたはそれを上回るフレームを提供するステップであって、画像データは、ユーザに提示されるべき1つまたはそれを上回る仮想オブジェクトを備える、ステップと、後光が1つまたはそれを上回る仮想オブジェクトの周囲でユーザによって知覚されるような様式で1つまたはそれを上回る仮想オブジェクトをレンダリングし、それによって、ユーザが、仮想オブジェクトを視認することを容易にし、仮想オブジェクトは、暗仮想オブジェクトである、ステップとを含む。
方法はさらに、1つまたはそれを上回る実施形態では、外部環境から受光する光を光減衰器を通して選択的に減衰させるステップであって、光減衰器は、ユーザの視野を横断して、後光の光強度を平衡化させる、ステップを含む。
別の実施形態では、仮想コンテンツを表示するためのシステムは、1つまたはそれを上回る実施形態では、実環境のビューを捕捉するためのカメラシステムと、実環境のビューにわたって重畳される1つまたはそれを上回る仮想オブジェクトを表示する、光学透視システムであって、捕捉されたビューは、ユーザに提示される1つまたはそれを上回る仮想オブジェクトをレンダリングするために使用される、光学透視システムと、暗仮想オブジェクトが1つまたはそれを上回る実オブジェクトと対照的に可視となるように、少なくとも、1つまたはそれを上回る実オブジェクトと1つまたはそれを上回る仮想オブジェクトとの間の相関に基づいて、実環境のビューの光強度を変調させるための光強度モジュールとを備える。
捕捉されたビューは、1つまたはそれを上回る実施形態では、後光を1つまたはそれを上回る仮想オブジェクトの周囲に発生させるために使用され、後光は、空間を横断して徐々に薄れる。システムはさらに、1つまたはそれを上回る実施形態では、光減衰器を備え、光減衰器は、ユーザの視野を横断して、後光の光強度を平衡化させる。
さらに別の実施形態では、拡張現実ディスプレイシステムを駆動させる方法は、第1の仮想オブジェクトをユーザの視野上の場所にレンダリングするステップと、第1の仮想オブジェクトのレンダリングと実質的に並行して、ユーザの視野内に視覚的強調をレンダリングされた第1の仮想オブジェクトに少なくとも空間的に近接してレンダリングするステップとを含む。
視覚的強調をレンダリングするステップは、1つまたはそれを上回る実施形態では、強度勾配を用いて視覚的強調をレンダリングするステップを含む。視覚的強調をレンダリングするステップは、1つまたはそれを上回る実施形態では、視覚的強調の周縁に近接してぼかしを用いて視覚的強調をレンダリングするステップを含む。
レンダリングされた第1の仮想オブジェクトに少なくとも空間的に近接して視覚的強調をレンダリングするステップは、1つまたはそれを上回る実施形態では、レンダリングされた第1の仮想オブジェクトに空間的に近接して後光視覚効果をレンダリングするステップを含む。レンダリングされた第1の仮想オブジェクトに空間的に近接して後光視覚効果をレンダリングするステップは、1つまたはそれを上回る実施形態では、後光視覚効果をレンダリングされた第1の仮想オブジェクトより明るくレンダリングするステップを含む。
後光視覚効果をレンダリングされた第1の仮想オブジェクトより明るくレンダリングするステップは、1つまたはそれを上回る実施形態では、レンダリングされた第1の仮想オブジェクトが暗度の閾値より暗いという判定に応答する。後光視覚効果をレンダリングするステップは、1つまたはそれを上回る実施形態では、知覚される3次元空間内のレンダリングされた第1の仮想オブジェクトと別個の焦点面において、後光視覚効果をレンダリングするステップを含む。後光視覚効果をレンダリングするステップは、1つまたはそれを上回る実施形態では、強度勾配を用いて後光視覚効果をレンダリングするステップを含む。後光視覚効果をレンダリングするステップは、1つまたはそれを上回る実施形態では、第1の仮想オブジェクトのレンダリングに適用される遮閉から生じる暗後光に一致し、遮閉の暗視野効果を補償する、強度勾配を用いて後光視覚効果をレンダリングするステップを含む。
後光視覚効果をレンダリングするステップは、1つまたはそれを上回る実施形態では、後光視覚効果の周縁に近接してぼかしを用いて後光視覚効果をレンダリングするステップを含む。レンダリングされた第1の視覚的オブジェクトは、1つまたはそれを上回る実施形態では、非円形周縁を有し、レンダリングされた後光視覚効果は、非円形周縁に合致する。レンダリングされた第1の仮想オブジェクトに少なくとも空間的に近接して視覚的強調をレンダリングするステップは、1つまたはそれを上回る実施形態では、知覚される3次元空間内のレンダリングされた第1の仮想オブジェクトと別個の焦点面において、視覚効果をレンダリングするステップを含む。知覚される3次元空間内のレンダリングされた第1の仮想オブジェクトと別個の焦点面において、視覚効果をレンダリングするステップは、1つまたはそれを上回る実施形態では、レンダリングされた第1の仮想オブジェクトがレンダリングされた焦点面に対して、ユーザから比較的に離間された焦点面において、視覚効果をレンダリングするステップを含む。
別の実施形態では、仮想コンテンツを表示するためのシステムは、ユーザに提示されるべき画像データの1つまたはそれを上回るフレームを提供するための画像発生源であって、画像データの1つまたはそれを上回るフレームは、少なくとも1つの黒色仮想オブジェクトを備える、画像発生源と、画像データの1つまたはそれを上回るフレームをレンダリングするためのレンダリングエンジンであって、黒色仮想オブジェクトがユーザに可視となるように、黒色仮想オブジェクトを青色仮想オブジェクトとしてレンダリングする、レンダリングエンジンとを備える。
第1の仮想オブジェクトをユーザの視野上の場所にレンダリングするステップは、1つまたはそれを上回る実施形態では、最初に、第1の仮想オブジェクトの任意の黒色色調を濃青色に変化させるステップを含む。
さらに別の実施形態では、仮想コンテンツの表示のための光ビームを伝送するためのシステムは、少なくとも1つの導波管であって、少なくとも1つの導波管の長さを横断して、第1の端部と、第1の端部から離間される第2の端部とを有し、その長さに沿って、個別の導波管に定義された角度で入射する光は、全内部反射を介して伝搬する、少なくとも1つの導波管と、少なくとも、少なくとも1つの導波管の第1の端部に近接して位置付けられ、光を少なくとも1つの導波管の第1の端部に戻るように光学的に反射結合するための少なくとも1つの縁反射体と、少なくとも、少なくとも1つの導波管の第2の端部に近接して位置付けられ、光を少なくとも1つの導波管の第2の端部に戻るように光学的に反射結合するための少なくとも1つの縁反射体とを備える。
少なくとも1つの導波管は、1つまたはそれを上回る実施形態では、光の少なくとも一部を導波管から横方向外向きに再指向する、いくつかの横方向反射および/または回折表面を導波管の内部に有する。横方向反射および/または回折表面は、1つまたはそれを上回る実施形態では、低回折効率回折光学要素(DOE)である。少なくとも、少なくとも1つの導波管の第1の端部に近接して位置付けられる、少なくとも1つの縁反射体は、1つまたはそれを上回る実施形態では、少なくとも、少なくとも1つの導波管の第1の端部に近接して位置付けられる、複数の反射体を備える。
少なくとも、少なくとも1つの導波管の第2の端部に近接して位置付けられる、少なくとも1つの縁反射体は、1つまたはそれを上回る実施形態では、少なくとも、少なくとも1つの導波管の第2の端部に近接して位置付けられる、複数の反射体を備える。少なくとも1つの導波管は、1つまたはそれを上回る実施形態では、単一導波管である。
さらに別の実施形態では、仮想コンテンツの表示のための光ビームを伝送するためのシステムは、複数の平面導波管を備える、導波管アセンブリであって、平面導波管はそれぞれ、それぞれ、平面導波管の厚さを横断して相互に対向する少なくとも2つの平坦平行主要面と、第1の端部と、その長さに沿って、個別の導波管に定義された角度で入射する光が、全内部反射を介して伝搬する、導波管の長さを横断して第1の端部に対向する、第2の端部と、導波管の幅を横断して相互に対向する、2つの平坦主要縁とを有し、複数の平面導波管は、平面導波管の厚さ方向と平衡な第1の軸に沿って、かつ平面導波管の幅と平行な第2の軸に沿って、スタックされた構成にあって、平面導波管の3次元アレイを形成する、導波管アセンブリとを備える。
1つまたはそれを上回る実施形態では、第1の軸の方向に少なくとも3つの平面導波管がスタックされる。1つまたはそれを上回る実施形態では、第2の軸の方向に少なくとも3つの平面導波管がスタックされる。1つまたはそれを上回る実施形態では、第2の軸の方向に少なくとも3つの平面導波管がスタックされる。第1の軸に沿ったスタック内の連続平面導波管は、1つまたはそれを上回る実施形態では、相互に直接隣接し、第2の軸に沿ったスタック内の連続平面導波管は、相互に直接隣接する。導波管アセンブリはさらに、1つまたはそれを上回る実施形態では、平面導波管のうちの少なくとも1つの少なくとも1つの表面上に担持される複数の反射層を備える。
反射層は、完全反射金属コーティングを含む。反射層は、1つまたはそれを上回る実施形態では、波長特有反射体を含む。反射層は、1つまたはそれを上回る実施形態では、第1または第2の軸のうちの少なくとも1つに沿って、各連続対の平面導波管内の平面導波管を分離させる。反射層は、1つまたはそれを上回る実施形態では、第1および第2の軸の両方に沿って、各連続対の平面導波管内の平面導波管を分離させる。
いくつかの平面導波管はそれぞれ、1つまたはそれを上回る実施形態では、それぞれ、個別の平面導波管によって受光された光の少なくとも一部を平面導波管から横方向外向きに再指向する、いくつかの横方向反射および/または回折表面を含む。横方向反射および/または回折表面は、1つまたはそれを上回る実施形態では、個別の平面導波管の主要面間の個別の平面導波管内に狭入された回折光学要素を備える。回折光学要素は、1つまたはそれを上回る実施形態では、焦点距離を変動させるように選択的に動作可能である。
第1の軸は、1つまたはそれを上回る実施形態では、湾曲軸であって、導波管アセンブリ内の少なくとも1つの集合内の平面導波管のそれぞれの主要縁のうちの少なくとも1つは、単一線上に合焦するように配向され、単一線は、平面導波管の長さに平行である。
1つまたはそれを上回る実施形態では、仮想コンテンツをユーザに表示するためのシステムは、画像データの1つまたはそれを上回るフレームと関連付けられた光を投影するための光プロジェクタであって、ファイバ走査ディスプレイである、光プロジェクタと、光をユーザの眼に可変偏向させるための導波管アセンブリであって、眼に向かって凹面湾曲される、導波管とを備える。
湾曲導波管は、1つまたはそれを上回る実施形態では、視野を拡大させる。湾曲導波管は、1つまたはそれを上回る実施形態では、光をユーザの眼に効率的に指向する。湾曲導波管は、1つまたはそれを上回る実施形態では、時変グレーティングを備え、それによって、ファイバ走査ディスプレイのための光を走査するための軸を作成する。
別の実施形態では、仮想コンテンツをユーザに表示するためのシステムは、1つまたはそれを上回る実施形態では、光を受光するための入口と、入口に対して角度付けられ、入口で受光された光の少なくとも一部を透過性ビームスプリッタ基板から横方向外向きにユーザの眼に向かって再指向するためのいくつかの内部反射または回折表面とを有する、透過性ビームスプリッタ基板であって、いくつかの内部反射または回折表面は、透過性ビームスプリッタ基板の縦軸に沿って離間される複数の横方向反射および/または回折表面を含み、横方向反射および/または回折表面はそれぞれ、入入口で受光された光の少なくとも一部を透過性ビームスプリッタ基板から横方向に外向きに光学経路に沿ってユーザの眼に向かって再指向するように、入口に対して角度付けられる、または角度付け可能である、透過性ビームスプリッタ基板と、光を透過性ビームスプリッタに伝送するための光発生システムと、ディスプレイシステムに通信可能に結合され、画像情報をディスプレイシステムに提供する、ローカルコントローラであって、少なくとも1つのプロセッサと、少なくとも1つのプロセッサに通信可能に結合される少なくとも1つの非一過性プロセッサ可読媒体とを備え、少なくとも1つの非一過性プロセッサ可読媒体は、少なくとも1つのプロセッサによって実行されると、少なくとも1つのプロセッサに、データの処理、キャッシュ、および記憶のうちの少なくとも1つを行わせ、画像情報をディスプレイに提供し、仮想または拡張現実視覚体験のうちの少なくとも1つをユーザに生成する、少なくとも1つのプロセッサ実行可能命令またはデータを記憶する、ローカルコントローラとを備える。
横方向反射および/または回折表面は、1つまたはそれを上回る実施形態では、少なくとも1つの回折光学要素(DOE)を備え、ビームスプリッタにいくつかの定義された角度で入射する、コリメートされたビームは、その長さに沿って全内部反射され、1つまたはそれを上回る場所において、DOEに交差する。少なくとも1つの回折光学要素(DOE)は、1つまたはそれを上回る実施形態では、第1のグレーティングを備える。第1のグレーティングは、1つまたはそれを上回る実施形態では、第1のブラッググレーティングである。
DOEは、1つまたはそれを上回る実施形態では、第2のグレーティングを備え、第1のグレーティングは、第1の平面上にあって、第2のグレーティングは、第2の平面上にあって、第1および第2のグレーティングが交差し、モアレビートパターンを生成するように、第2の平面は、第1の平面から離間される。第1のグレーティングは、1つまたはそれを上回る実施形態では、第1のピッチを有し、第2のグレーティングは、第2のピッチを有し、第1のピッチは、第2のピッチと同一である。第1のグレーティングは、1つまたはそれを上回る実施形態では、第1のピッチを有し、第2のグレーティングは、第2のピッチを有し、第1のピッチは、第2のピッチと異なる。第1のグレーティングピッチは、1つまたはそれを上回る実施形態では、第1のグレーティングピッチを経時的に変化させるように制御可能である。第1のグレーティングは、1つまたはそれを上回る実施形態では、弾性材料から成り、機械的変形を受ける。
第1のグレーティングは、1つまたはそれを上回る実施形態では、機械的変形を受ける、弾性材料によって担持される。第1のグレーティングピッチは、1つまたはそれを上回る実施形態では、第1のグレーティングピッチを経時的に変化させるように制御可能である。第2のグレーティングピッチは、1つまたはそれを上回る実施形態では、第2のグレーティングピッチを経時的に変化させるように制御可能である。第1のグレーティングは、1つまたはそれを上回る実施形態では、少なくとも1つのオン状態およびオフ状態を有する、電気活性グレーティングである。第1のグレーティングは、1つまたはそれを上回る実施形態では、高分子分散型液晶を備え、高分子分散型液晶の複数の液晶液滴は、第1のグレーティングの屈折率を変化させるように制御可能に活性化される。
第1のグレーティングは、1つまたはそれを上回る実施形態では、時変グレーティングであって、第1のグレーティングは、時変グレーティングであって、ローカルコントローラは、ディスプレイの視野を拡大させるように少なくとも第1のグレーティングを制御する。第1のグレーティングは、1つまたはそれを上回る実施形態では、時変グレーティングであって、ローカルコントローラは、少なくとも第1のグレーティングの時変制御を採用し、色収差を補正する。ローカルコントローラは、1つまたはそれを上回る実施形態では、少なくとも第1のグレーティングを駆動させ、画像のピクセルの赤色下位ピクセルの場所を画像の対応するピクセルの青色または緑色下位ピクセルのうちの少なくとも1つに対して変動させる。ローカルコントローラは、1つまたはそれを上回る実施形態では、少なくとも第1のグレーティングを駆動させ、出射パターンを側方に偏移させ、アウトバウンド画像パターン内の間隙を充填する。
少なくとも1つのDOE要素は、1つまたはそれを上回る実施形態では、第1の円形対称項を有する。少なくとも1つのDOE要素は、1つまたはそれを上回る実施形態では、第1の線形項を有し、第1の線形項は、第1の円形対称項と合計される。円形対称項は、1つまたはそれを上回る実施形態では、制御可能である。少なくとも1つのDOE要素は、1つまたはそれを上回る実施形態では、第2の円形対称項を有する。少なくとも1つの回折光学(DOE)要素は、1つまたはそれを上回る実施形態では、第1のDOEを備える。第1のDOEは、1つまたはそれを上回る実施形態では、円形DOEである。
円形DOEは、1つまたはそれを上回る実施形態では、時変DOEである。円形DOEは、1つまたはそれを上回る実施形態では、焦点変調のために、導波管に対して層化される。円形DOEの回折パターンは、1つまたはそれを上回る実施形態では、静的である。円形DOEの回折パターンは、1つまたはそれを上回る実施形態では、動的である。システムは、付加的円形DOEを備え、付加的円形DOEは、1つまたはそれを上回る実施形態では、多くの焦点レベルが少数の切替可能DOEを通して達成されるように、円形DOEに対して位置付けられる。
システムはさらに、1つまたはそれを上回る実施形態では、切替可能DOE要素のマトリクスを備える。マトリクスは、1つまたはそれを上回る実施形態では、視野を拡大させるために利用される。マトリクスは、1つまたはそれを上回る実施形態では、射出瞳のサイズを拡大させるために利用される。
1つまたはそれを上回る実施形態では、仮想コンテンツをユーザに表示するためのシステムは、画像データの1つまたはそれを上回るフレームと関連付けられた光ビームを投影するための光投影システムと、投影された光ビームを受光し、光ビームを所望の焦点で送達するための回折光学要素(DOE)であって、円形DOEである、DOEとを備える。
DOEは、1つまたはそれを上回る実施形態では、線形DOE項の角度を調節するために、単一軸に沿って延伸可能である。DOEは、1つまたはそれを上回る実施形態では、膜と、Z軸における発振運動を用いて、膜を選択的に振動させ、Z軸制御および焦点の経時的変化を提供するように動作可能な少なくとも1つの変換器とを備える。DOEは、1つまたはそれを上回る実施形態では、DOEのピッチが、媒体を物理的に延伸させることによって調節され得るように、延伸可能媒体内に埋め込まれる。DOEは、1つまたはそれを上回る実施形態では、2軸方向に延伸され、DOEの延伸は、DOEの焦点距離に影響を及ぼす。システムはさらに、1つまたはそれを上回る実施形態では、複数の円形DOEを備え、DOEは、Z軸に沿ってスタックされる。円形DOEは、焦点変調のために、導波管の正面に層化される。DOEは、1つまたはそれを上回る実施形態では、静的である。
1つまたはそれを上回る実施形態では、仮想コンテンツをユーザに表示するためのシステムは、画像データの1つまたはそれを上回るフレームと関連付けられた光ビームを投影するための光投影システムと、任意の回折光学要素(DOE)を伴わない第1の導波管であって、第1の導波管によって受光された光を、いくつかの定義された角度で、第1の導波管の長さの少なくとも一部に沿って、全内部反射を介して伝搬し、第1の導波管からの外部の光をコリメートされた光として提供する、第1の導波管と、少なくとも第1の円形対称回折光学要素(DOE)を伴う第2の導波管であって、コリメートされた光を第1の導波管から受光するように光学的に結合される、第2の導波管と、DOEのグレーティングを制御するためのプロセッサとを備える。
第1のDOEは、1つまたはそれを上回る実施形態では、選択的に制御可能である。ディスプレイは、1つまたはそれを上回る実施形態では、第1のDOEに加え、複数の付加的DOEを備え、DOEは、スタック構成で配列される。複数の付加的DOEのDOEはそれぞれ、1つまたはそれを上回る実施形態では、選択的に制御可能である。ローカルコントローラが、1つまたはそれを上回る実施形態では、第1のDOEおよび複数の付加的DOEを制御し、ディスプレイを通して通過する光の焦点を動的に変調させる。プロセッサは、1つまたはそれを上回る実施形態では、第1のDOEおよび複数の付加的DOEをそれぞれ選択的に切り替え、いくつかの焦点レベルを実現し、実現可能な焦点レベルの数は、スタック内のDOEの総数を上回る。
スタック内のDOEはそれぞれ、1つまたはそれを上回る実施形態では、個別の屈折力を有し、スタック内のDOEの屈折力は、相互に対して制御可能である。スタック内のDOEのうちの少なくとも1つの個別の屈折力は、1つまたはそれを上回る実施形態では、スタック内のDOEのうちの他の少なくとも1つの個別の屈折力の2倍である。プロセッサは、1つまたはそれを上回る実施形態では、第1のDOEおよび複数の付加的DOEをそれぞれ選択的に切り替え、DOEの個別の線形および半径方向項を経時的に変調させる。プロセッサは、1つまたはそれを上回る実施形態では、フレーム順次ベースで第1のDOEおよび複数の付加的DOEをそれぞれ選択的に切り替える。
DOEのスタックは、高分子分散型液晶要素のスタックを備える。印加される電圧の不在下、ホスト媒体屈折率は、1つまたはそれを上回る実施形態では、高分子分散型液晶要素の分散分子の集合のものに一致する。高分子分散型液晶要素は、1つまたはそれを上回る実施形態では、ニオブ酸リチウムの分子と、ホスト媒体の両側にいくつかの透明インジウムスズ酸化物層電極とを備え、ニオブ酸リチウムの分散分子は、屈折率を制御可能に変化させ、ホスト媒体内に回折パターンを機能的に形成する。
別の実施形態では、仮想コンテンツを表示するための方法は、1つまたはそれを上回る実施形態では、画像データの1つまたはそれを上回るフレームと関連付けられた光をユーザに投影するステップと、光を、第1の導波管であって、任意の回折光学要素を伴わない、第1の導波管において受光し、光を内部反射を通して伝搬させるステップと、コリメートされた光を、少なくとも第1の円形対称回折光学要素(DOE)を伴う第2の導波管であって、コリメートされた光を第1の導波管から受光するように光学的に結合される、第2の導波管において受光するステップであって、円形対称DOEのグレーティングは、変動され、第1の導波管および第2の導波管は、DOEのスタック内に組み立てられる、ステップとを含む。
1つまたはそれを上回る実施形態では、仮想コンテンツをユーザに表示するための光学要素は、光を受光するように位置付けられる、少なくとも1つの回折光学要素(DOE)を備え、少なくとも1つのDOEは、複数の別個にアドレス指定可能なセクションの第1のアレイを備え、別個にアドレス指定可能な下位セクション毎に少なくとも1つの電極を伴い、別個にアドレス指定可能な下位セクションはそれぞれ、個別の少なくとも1つの電極を介して受信された少なくとも1つの個別の信号に応答し、少なくとも第1の状態と第2の状態との間で選択的に切り替え、第2の状態は、第1の状態と異なる。
視野は、1つまたはそれを上回る実施形態では、隣接してアドレス指定可能な下位セクションを多重化することによって拡大される。第1の状態は、1つまたはそれを上回る実施形態では、オン状態であって、第2の状態は、オフ状態である。別個にアドレス指定可能な下位セクションはそれぞれ、1つまたはそれを上回る実施形態では、少なくとも2つのインジウムスズ酸化物電極の個別の集合を有する。少なくとも1つのDOEの複数の別個にアドレス指定可能なセクションの第1のアレイは、1つまたはそれを上回る実施形態では、1次元アレイである。少なくとも1つのDOEの複数の別個にアドレス指定可能なセクションの第1のアレイは、1つまたはそれを上回る実施形態では、2次元アレイである。別個にアドレス指定可能なセクションの第1のアレイは、1つまたはそれを上回る実施形態では、第1の平面層上に存在する、第1のDOEのセクションである。
少なくとも1つのDOEは、1つまたはそれを上回る実施形態では、少なくとも第2のDOEを備え、第2のDOEは、複数の別個にアドレス指定可能なセクションの第2のアレイを備え、別個にアドレス指定可能な下位セクション毎に少なくとも1つの電極を伴い、別個にアドレス指定可能な下位セクションはそれぞれ、個別の少なくとも1つの電極を介して受信された少なくとも1つの個別の信号に応答し、少なくとも第1の状態と第2の状態との間で選択的に切り替え、第2の状態は、第1の状態と異なり、DOEの第2のアレイは、第2の平面層上に存在し、第2の平面層は、第1の平面層とスタック構成にある。
少なくとも1つのDOEは、1つまたはそれを上回る実施形態では、少なくとも第3のDOEを備え、第3のDOEは、複数の別個にアドレス指定可能なセクションの第3のアレイを備え、別個にアドレス指定可能な下位セクション毎に少なくとも1つの電極を伴い、別個にアドレス指定可能な下位セクションはそれぞれ、個別の少なくとも1つの電極を介して受信された少なくとも1つの個別の信号に応答し、少なくとも第1の状態と第2の状態との間で選択的に切り替え、第2の状態は、第1の状態と異なり、DOEの第3のアレイは、第3の平面層上に存在し、第3の平面層は、第1および第2のの平面層とスタック構成にある。
別個にアドレス指定可能なセクションの第1のアレイは、1つまたはそれを上回る実施形態では、単一平面導波管内に埋め込まれる。ローカルコントローラは、1つまたはそれを上回る実施形態では、別個にアドレス指定可能な下位セクションを制御し、選択的に、コリメートされた光を平面導波管から第1の時間で放出し、発散性である光を平面導波管から第2の時間で放出し、第2の時間は、第1の時間と異なる。ローカルコントローラは、1つまたはそれを上回る実施形態では、別個にアドレス指定可能な下位セクションを制御し、選択的に、第1の方向における光を平面導波管から第1の時間で放出し、第2の方向における光を平面導波管から第1の時間で放出し、第2の方向は、第1の方向と異なる。
ローカルコントローラは、1つまたはそれを上回る実施形態では、別個にアドレス指定可能な下位セクションを制御し、選択的に、ある方向を横断する光を経時的に走査する。ローカルコントローラは、1つまたはそれを上回る実施形態では、別個にアドレス指定可能な下位セクションを制御し、選択的に、光を経時的に合焦させる。ローカルコントローラは、1つまたはそれを上回る実施形態では、別個にアドレス指定可能な下位セクションを制御し、選択的に、射出瞳の視野を経時的に変動させる。
1つまたはそれを上回る実施形態では、システムは、光学パラメータの定義された集合のために、視野のサイズを増加させるための第1の自由形状反射およびレンズ光学構成要素を備え、第1の自由形状反射およびレンズ光学構成要素は、第1の湾曲表面、第2の湾曲表面、および第3の湾曲表面を備え、第1の湾曲表面は、少なくとも部分的に、光学的に透過性および屈折性であって、第1の湾曲表面を介して、第1の自由形状反射およびレンズ光学構成要素によって受光された光に焦点変化を付与し、第2の湾曲表面は、少なくとも部分的に、第1の湾曲表面から第3の湾曲表面に向かって第2の湾曲表面によって受光された光を反射させ、第3の湾曲表面から第2の湾曲表面によって受光された光を通過させ、第3の湾曲表面は、少なくとも部分的に、第2の湾曲表面を介して、第1の自由形状反射およびレンズ光学構成要素から光を反射させる。
第1の自由形状反射およびレンズ光学構成要素の第1の湾曲表面は、1つまたはそれを上回る実施形態では、個別の自由形状湾曲表面である。第1の自由形状反射およびレンズ光学構成要素の第1の湾曲表面は、1つまたはそれを上回る実施形態では、無非点収差を光に追加する。第1の自由形状反射およびレンズ光学構成要素の第3の湾曲表面は、1つまたはそれを上回る実施形態では、逆無非点収差を追加し、第1の自由形状反射およびレンズ光学構成要素の第1の湾曲表面によって追加される無非点収差を相殺する。第1の自由形状反射およびレンズ光学構成要素の第2の湾曲表面は、1つまたはそれを上回る実施形態では、個別の自由形状湾曲表面である。第1の自由形状反射およびレンズ光学構成要素の第2の湾曲表面は、1つまたはそれを上回る実施形態では、全内部反射によって反射されるべき光の定義された角度を第3の湾曲表面に向かって反射させる。
1つまたはそれを上回る実施形態では、システムは、画像データの1つまたはそれを上回るフレームと関連付けられた光を投影するためのファイバ走査ディスプレイであって、光を第1の自由形状光学要素に送達するように構成される、ファイバ走査ディスプレイと、光学パラメータの定義された集合のために、視野のサイズを増加させるための第1の自由形状反射およびレンズ光学構成要素であって、第1の自由形状反射およびレンズ光学構成要素は、第1の湾曲表面、第2の湾曲表面、および第3の湾曲表面を備え、第1の湾曲表面は、少なくとも部分的に、光学的に透過性および屈折性であって、第1の湾曲表面を介して、第1の自由形状反射およびレンズ光学構成要素によって受光された光に焦点変化を付与し、第2の湾曲表面は、少なくとも部分的に、第1の湾曲表面から第3の湾曲表面に向かって第2の湾曲表面によって受光された光を反射させ、第3の湾曲表面から第2の湾曲表面によって受光された光を通過させ、第3の湾曲表面は、少なくとも部分的に、第2の湾曲表面を介して、第1の自由形状反射およびレンズ光学構成要素から光を反射させる、第1の自由形状反射およびレンズ光学構成要素とを備える。
自由形状光学は、1つまたはそれを上回る実施形態では、TIR自由形状光学である。自由形状光学は、1つまたはそれを上回る実施形態では、非均一厚を有する。自由形状光学は、1つまたはそれを上回る実施形態では、楔光学である。自由形状光学は、1つまたはそれを上回る実施形態では、円錐形である。自由形状光学は、1つまたはそれを上回る実施形態では、恣意的曲線に対応する。
1つまたはそれを上回る実施形態では、システムは、ユーザに提示されるべき画像データの1つまたはそれを上回るフレームを提供するための画像発生源と、画像データの1つまたはそれを上回るフレームと関連付けられた光を提供するためのディスプレイシステムと、提供される光を修正し、光をユーザに送達するための自由形状光学要素であって、自由形状光学は、反射コーティングを含み、ディスプレイシステムは、光の波長が反射コーティングの対応する波長に一致するように、自由形状光学要素を光で照明するように構成される、自由形状光学とを備える。
1つまたはそれを上回る自由形状光学要素は、相互に対してタイル表示される。1つまたはそれを上回る自由形状光学要素は、1つまたはそれを上回る実施形態では、Z軸に沿ってタイル表示される。
1つまたはそれを上回る実施形態では、システムは、ユーザに提示されるべき画像データの1つまたはそれを上回るフレームを提供するための画像発生源と、画像データの1つまたはそれを上回るフレームと関連付けられた光を提供するためのディスプレイシステムであって、複数のマイクロディスプレイを備える、ディスプレイシステムと、提供される光を修正し、光をユーザに送達するための自由形状光学要素とを備える。
1つまたはそれを上回る自由形状光学は、相互に対してタイル表示される。複数のマイクロディスプレイによって投影される光は、1つまたはそれを上回る実施形態では、視野を増加させる。自由形状光学要素は、1つまたはそれを上回る実施形態では、1つのみの色が特定の自由形状光学要素によって送達されるように構成される。タイル表示された自由形状は、1つまたはそれを上回る実施形態では、星形形状である。タイル表示された自由形状光学要素は、1つまたはそれを上回る実施形態では、射出瞳のサイズを増加させる。システムはさらに、1つまたはそれを上回る実施形態では、別の自由形状光学要素を備え、自由形状光学要素は、均一材料厚を作成する様式でともにスタックされる。システムはさらに、1つまたはそれを上回る実施形態では、別の自由形状光学要素を備え、他の光学要素は、外部環境に対応する光を捕捉するように構成される。
システムはさらに、DMDを備え、DMDは、1つまたはそれを上回る実施形態では、1つまたはそれを上回るピクセルを遮閉するように構成される。システムはさらに、1つまたはそれを上回るLCDを備える。システムはさらに、1つまたはそれを上回る実施形態では、コンタクトレンズ基板を備え、自由形状光学は、コンタクトレンズ基板に結合される。複数のマイクロディスプレイは、1つまたはそれを上回る実施形態では、凝集体として、大型の射出瞳の機能的均等物を形成する、小型射出瞳のアレイを提供する。
少なくとも1つの画像源は、1つまたはそれを上回る実施形態では、第1の光の色を提供する、少なくとも第1の単色画像源と、第2の光の色であって、第1の色と異なる第2の色を提供する、少なくとも第2の単色画像源と、第3の光の色であって、第1および第2の色と異なる第3の色を提供する、少なくとも第3の単色画像源とを含む。少なくとも第1の単色画像源は、1つまたはそれを上回る実施形態では、第1の下位群の走査ファイバを備え、少なくとも第2の単色画像源は、第2の下位群の走査ファイバを備え、少なくとも第3の単色画像源は、第3の下位群の走査ファイバを備える。
システムはさらに、第1の自由形状反射およびレンズ光学構成要素と少なくとも1つの反射体との間の光学経路内に位置付けられるオクルーダであって、ピクセル毎ベースで光を遮閉するよう選択するように動作可能なオクルーダを備える。第1の自由形状反射およびレンズ光学構成要素は、コンタクトレンズの少なくとも一部を形成する。システムはさらに、1つまたはそれを上回る実施形態では、第1の自由形状反射およびレンズ光学構成要素の一部に光学的に結合される、補償器レンズを備える。
1つまたはそれを上回る実施形態では、システムは、光学パラメータの定義された集合のために、視野のサイズを増加させるための第1の自由形状反射およびレンズ光学構成要素であって、第1の自由形状反射およびレンズ光学構成要素は、第1の表面、第2の表面、および第3の表面を備え、第1の表面は、少なくとも部分的に、第1の表面を介して第1の自由形状反射およびレンズ光学構成要素によって受光された光に光学的に透過性であって、第2の表面は、湾曲し、少なくとも部分的に、第2の表面によって第1の表面から第3の表面に向かって受光された光を反射させ、湾曲表面から第2の表面によって受光された光を通過させ、第3の表面は、湾曲し、少なくとも部分的に、第2の表面を介して第1の自由形状反射およびレンズ光学構成要素から光を反射させる、第1の自由形状反射およびレンズ光学構成要素と、第2の自由形状反射およびレンズ光学構成要素であって、第2の自由形状反射およびレンズ光学構成要素は、第1の表面、第2の表面、および第3の表面を備え、第2の自由形状反射およびレンズ光学構成要素の第1の表面は、少なくとも部分的に、第1の表面を介して第2の自由形状反射およびレンズ光学構成要素によって受光された光に光学的に透過性であって、第2の自由形状反射およびレンズ光学構成要素の第2の表面は、湾曲し、少なくとも部分的に、第2の表面によって第2の自由形状反射およびレンズ光学構成要素の第1の表面から第2の自由形状反射およびレンズ光学構成要素の第3の表面に向かって受光された光を反射させ、第2の表面によって第2の自由形状反射およびレンズ光学構成要素の第3の表面から受光された光を通過させ、第2の自由形状反射およびレンズ光学構成要素の第3の表面は、湾曲し、少なくとも部分的に、第2の表面を介して第2の自由形状反射およびレンズ光学構成要素から光を反射させる、第2の自由形状反射およびレンズ光学構成要素とを備え、第1および第2の自由形状反射およびレンズ光学構成要素は、Z軸に沿って反対に配向されたスタック構成にある。
第2の自由形状反射およびレンズ光学構成要素の第2の表面は、1つまたはそれを上回る実施形態では、第1の自由形状反射およびレンズ光学構成要素の第3の表面に隣接する。1つまたはそれを上回る実施形態では、第2の自由形状反射およびレンズ光学構成要素の第2の表面は、凹面であって、第1の自由形状反射およびレンズ光学構成要素の第3の表面は、凸面であって、第1の自由形状反射およびレンズ光学構成要素の第3の表面は、第2の自由形状反射およびレンズ光学構成要素の第2の表面を近接して受容する。第1の自由形状反射およびレンズ光学構成要素の第1の表面は、1つまたはそれを上回る実施形態では、平坦であって、第2の自由形状反射およびレンズ光学構成要素の第1の表面は、平坦であって、第1の自由形状反射およびレンズ光学構成要素の第1の表面を介して、第1の自由形状反射およびレンズ光学構成要素に光学的に結合される、少なくとも第1のプロジェクタと、第2の自由形状反射およびレンズ光学構成要素の第1の表面を介して、第2の自由形状反射およびレンズ光学構成要素に光学的に結合される、少なくとも第2のプロジェクタとをさらに備える。
システムはさらに、1つまたはそれを上回る実施形態では、第1または第2の自由形状反射およびレンズ光学構成要素のうちの少なくとも1つによって担持される少なくとも1つの波長選択材料を備える。システムはさらに、1つまたはそれを上回る実施形態では、第1の自由形状反射およびレンズ光学構成要素によって担持される少なくとも第1の波長選択材料と、第2の自由形状反射およびレンズ光学構成要素によって担持される少なくとも第2の波長選択材料とを備え、第1の波長選択材料は、第1の波長集合を選択し、第2の波長選択材料は、第2の波長集合を選択し、第2の波長集合は、第1の波長集合と異なる。
システムはさらに、1つまたはそれを上回る実施形態では、第1の自由形状反射およびレンズ光学構成要素によって担持される少なくとも第1の偏光子と、第2の自由形状反射およびレンズ光学構成要素によって担持される少なくとも第2の偏光子とを備え、第1の偏光子は、第2の偏光子と異なる偏光配向を有する。
光ファイバコアは、1つまたはそれを上回る実施形態では、同一ファイバクラッディング内にある。光ファイバコアは、1つまたはそれを上回る実施形態では、別個のファイバクラッディング内にある。遠近調節モジュールは、1つまたはそれを上回る実施形態では、ユーザの眼の両眼離反運動または注視を間接的に追跡することによって、遠近調節を追跡する。部分反射鏡は、1つまたはそれを上回る実施形態では、光源によって提供される光の他の偏光に対して比較的に高反射率を有し、外界によって提供される光の他の偏光状態に対して比較的に低反射率を有する。複数の部分反射鏡は、1つまたはそれを上回る実施形態では、誘電コーティングを備える。複数の反射鏡は、1つまたはそれを上回る実施形態では、光源によって提供される光の波長のための導波管に対して比較的に高反射率を有し、外界によって提供される光の他の導波管に対して比較的に低反射率を有する。VFEは、1つまたはそれを上回る実施形態では、変形可能鏡であって、その表面形状は、経時的に変動されることができる。VFEは、1つまたはそれを上回る実施形態では、静電作動式膜鏡であって、導波管または付加的透明層は、1つまたはそれを上回る実質的に透明電極を備え、1つまたはそれを上回る電極に印加される電圧は、膜鏡を静電的に変形させる。光源は、1つまたはそれを上回る実施形態では、走査光ディスプレイであって、VFEは、焦点を線セグメントベースで変動させる。導波管は、1つまたはそれを上回る実施形態では、射出瞳拡大機能を備え、光の入力光線は、分割され、複数の場所において導波管から出射する複数の光線として出力結合される。画像データは、1つまたはそれを上回る実施形態では、焦点レベルを調節する間、画像倍率が実質的に固定されたままであるように見えるように、導波管が1つまたはそれを上回る光パターンを受光する前に、プロセッサによって、変化する光学画像倍率に従ってスケーリングされ、それを補償する。
別の実施形態では、仮想コンテンツを表示するためのシステムは、画像データの1つまたはそれを上回るフレームを時系列様式で提供するための画像発生源と、画像データの1つまたはそれを上回るフレームと関連付けられた光線を投影するためのディスプレイアセンブリであって、第1のフレームレートおよび第1のビット深度に対応する第1のディスプレイ要素と、第2のフレームレートおよび第2のビット深度に対応する第2のディスプレイ要素とを備える、ディスプレイアセンブリと、投影された光の焦点を変動させ、光をユーザの眼に伝送するように構成可能である、可変合焦要素(VFE)とを備える。
さらに別の実施形態では、仮想コンテンツを表示するためのシステムは、ユーザに提示されるべき画像と関連付けられた光ビームを伝送するための光ファイバのアレイと、光ファイバのアレイに結合され、光ファイバのアレイによって出力された複数の光ビームを単一節点を通して偏向させるためのレンズであって、光ファイバの移動がレンズを移動させるように、光ファイバに物理的に取り付けられ、単一節点が走査される、レンズとを備える。
別の実施形態では、仮想現実ディスプレイシステムは、ユーザに提示されるべき1つまたはそれを上回る画像と関連付けられた光ビームを発生させるための複数の光ファイバと、複数の光ファイバに結合され、光ビームを変調させるための複数の位相変調器であって、複数の光ビームの結果として発生される波面に影響を及ぼす様式で光を変調させる、複数の位相変調器とを備える。
一実施形態では、仮想コンテンツをユーザに表示するためのシステムは、画像データの1つまたはそれを上回るフレームと関連付けられた光をユーザの眼に投影するための光投影システムであって、画像データと関連付けられた複数のピクセルに対応する光を投影するように構成される、光投影システムと、ユーザに表示される複数のピクセルのサイズを変調させるためのプロセッサとを備える。
一実施形態では、仮想コンテンツをユーザに表示するシステムは、画像データの1つまたはそれを上回るフレームを提供するための画像発生源と、複数のマルチコアファイバを備え、画像データの1つまたはそれを上回るフレームと関連付けられた光を投影するためのマルチコアアセンブリであって、複数のマルチコアファイバのマルチコアファイバは、マルチコアアセンブリが投影された光の凝集波面を生成するように、波面に光を放出する、マルチコアアセンブリと、マルチコアアセンブリによって放出される凝集波面が、変動され、それによって、ユーザが画像データの1つまたはそれを上回るフレームを知覚する焦点距離を変動させるような様式でマルチコアファイバ間に位相遅延を誘発させるための位相変調器とを備える。
別の実施形態では、仮想コンテンツをユーザに表示するためのシステムは、ユーザに提示されるべき画像データの1つまたはそれを上回るフレームと関連付けられた光ビームを投影するためのマイクロプロジェクタのアレイであって、マイクロプロジェクタのアレイの1つまたはそれを上回るマイクロプロジェクタに対して可動であるように構成可能である、マイクロプロジェクタと、マイクロプロジェクタのアレイを格納するためのフレームと、1つまたはそれを上回る光ビームが、マイクロプロジェクタのアレイに対して、1つまたはそれを上回るマイクロプロジェクタの位置の関数として変調され、それによって、ユーザへの明視野画像の送達を可能にするような様式でマイクロプロジェクタのアレイの1つまたはそれを上回るマイクロプロジェクタに動作可能に結合され、1つまたはそれを上回るプロジェクタから伝送された1つまたはそれを上回る光ビームを制御するためのプロセッサとを備える。
本発明の付加的ならびに他の目的、特徴、および利点は、詳細な説明、図、および請求項に説明される。
本発明は、例えば、以下を提供する。
(項目1)
仮想コンテンツを表示するためのシステムであって、
画像データの1つまたはそれを上回るフレームと関連付けられた1つまたはそれを上回る光パターンを時系列様式で多重化するための光源と、
前記1つまたはそれを上回る光パターンを受光し、光を射出瞳に向かって可変指向するための反射体のアレイと、
を備える、システム。
(項目2)
仮想コンテンツを表示するためのシステムであって、
画像データの1つまたはそれを上回るフレームを時系列様式で提供するための画像発生源と、
前記画像データの1つまたはそれを上回るフレームと関連付けられた光を伝送するように構成される、光変調器と、
画像情報をユーザの眼に指向するための基板であって、複数の反射体を格納する、基板と、
画像データの第1のフレームと関連付けられ、伝送された光を第1の角度で前記ユーザの眼に反射させるための前記複数の反射体の第1の反射体と、
前記画像データの第2のフレームと関連付けられ、伝送された光を第2の角度で前記ユーザの眼に反射させるための第2の反射体と、
を備える、システム。
(項目3)
前記複数の反射体の反射の角度は、可変である、項目1または2に記載のシステム。
(項目4)
前記反射体は、切替可能である、項目1または2に記載のシステム。
(項目5)
前記複数の反射体は、電気光学活性である、項目1または2に記載のシステム。
(項目6)
前記複数の反射体の屈折率は、前記基板の屈折率に一致するように変動される、項目2に記載のシステム。
(項目7)
前記基板と前記ユーザの眼との間に設置されるように構成可能である、高周波数ゲーティング層であって、制御可能に可動である開口を有する、高周波数ゲーティング層をさらに備える、項目1または2に記載のシステム。
(項目8)
前記高周波数ゲーティング層の開口は、画像データが前記開口を通して反射された光を通してのみ選択的に伝送されるような様式で移動され、前記透過性ビームスプリッタ基板の1つまたはそれを上回る反射体は、前記高周波数ゲーティング層によって遮断される、項目7に記載のシステム。
(項目9)
前記開口は、LCD開口である、項目7に記載のシステム。
(項目10)
前記開口は、MEMアレイである、項目7に記載のシステム。
(項目11)
前記第1の角度は、前記第2の角度と同一である、項目2に記載のシステム。
(項目12)
前記第1の角度は、前記第2の角度と異なる、項目2に記載のシステム。
(項目13)
光線の集合を節点を通して前記ユーザの眼に操向するための第1のレンズをさらに備え、前記第1のレンズは、前記反射体から出射する光線の集合が、前記ユーザの眼に到達する前に、前記第1のレンズを通して通過するように、前記基板上かつ前記第1の反射体の正面に設置されるように構成可能である、項目2に記載のシステム。
(項目14)
前記第1のレンズを補償するための第2のレンズをさらに備え、前記第2のレンズは、前記基板上かつ前記第1のレンズが設置される側と反対側に設置されるように構成可能であり、それによって、ゼロ倍率をもたらす、項目13に記載のシステム。
(項目15)
前記複数の反射体の第1の反射体は、前記ユーザの眼に送達される前に、前記画像データと関連付けられた光線の集合を単一出力点にまとめるための湾曲反射表面である、項目2に記載のシステム。
(項目16)
前記湾曲反射体は、放物反射体である、項目15に記載のシステム。
(項目17)
前記湾曲反射体は、楕円形反射体である、項目15に記載のシステム。
(項目18)
仮想コンテンツをユーザに表示するための方法であって、
画像データの1つまたはそれを上回るフレームと関連付けられた1つまたはそれを上回る光パターンを時系列様式で提供するステップと、
前記画像データの1つまたはそれを上回るフレームと関連付けられた1つまたはそれを上回る光パターンを透過性ビームスプリッタを介して射出瞳に反射させるステップであって、前記透過性ビームスプリッタは、複数の反射体を有し、光を前記射出瞳に向かって可変指向させる、ステップと、
を含む、方法。
(項目19)
前記複数の反射体の反射の角度は、可変である、項目18に記載の方法。
(項目20)
前記反射体は、切替可能である、項目18に記載の方法。
(項目21)
前記複数の反射体は、電気光学活性である、項目18に記載の方法。
(項目22)
前記複数の反射体の屈折率は、前記基板の屈折率に一致するように変動される、項目18に記載の方法。
(項目23)
高周波数ゲーティング層を前記透過性ビームスプリッタと前記ユーザの眼との間に設置するステップであって、前記高周波数ゲーティング層は、制御可能に可動である開口を有する、ステップをさらに含む、項目18に記載の方法。
(項目24)
前記高周波数ゲーティング層の開口は、画像データが前記開口を通して反射された光を通してのみ選択的に伝送されるような様式で移動され、前記透過性ビームスプリッタ基板の1つまたはそれを上回る反射体は、前記高周波数ゲーティング層によって遮断される、項目23に記載の方法。
(項目25)
前記開口は、LCD開口である、項目23に記載の方法。
(項目26)
前記開口は、MEMアレイである、項目23に記載の方法。
(項目27)
第1のレンズを通して、前記透過性ビームスプリッタを節点を通して前記ユーザの眼に出射する光線の集合を操向するステップであって、前記第1のレンズは、前記透過性ビームスプリッタと前記ユーザの眼との間に設置されるように構成可能である、ステップをさらに含む、項目18に記載の方法。
(項目28)
前記第1のレンズの効果を第2のレンズを通して補償するステップであって、前記第2のレンズは、前記基板上かつ前記第1のレンズが設置される側と反対側に設置されるように構成可能であって、前記補償レンズは、外部環境からの光のゼロ倍率をもたらす、ステップをさらに含む、項目27に記載の方法。
(項目29)
前記複数の反射体の反射体は、前記ユーザの眼に送達される前に、前記画像データと関連付けられた光線の集合を単一出力点にまとめるための湾曲反射表面である、項目18に記載の方法。
(項目30)
前記湾曲反射体は、放物反射体である、項目29に記載の方法。
(項目31)
前記湾曲反射体は、楕円形反射体である、項目29に記載の方法。
(項目32)
前記透過性ビームスプリッタ基板の複数の反射体は、波面を前記ユーザの眼に中継する、項目18に記載の方法。
(項目33)
前記波面は、コリメートされた波面である、項目32に記載の方法。
(項目34)
前記波面は、湾曲波面である、項目32に記載の方法。
(項目35)
前記コリメートされた波面は、前記ユーザによって、無限深度平面から生じているように知覚される、項目33に記載の方法。
(項目36)
前記湾曲波面は、特定の深度平面から生じているように知覚される、項目34に記載の方法。
(項目37)
仮想コンテンツをユーザに表示するためのシステムであって、
画像データの1つまたはそれを上回るフレームと関連付けられた1つまたはそれを上回る光パターンを時系列様式で多重化するための光源と、
前記1つまたはそれを上回る光パターンを受光するための反射体のアレイであって、特定の角度で配向される、反射体のアレイと、
前記反射体のアレイに結合され、前記光パターンを射出瞳に向かって可変指向するための複数の光学要素と、
を備える、システム。
(項目38)
前記反射体のアレイは、前記光学要素と別個である、項目37に記載のシステム。
(項目39)
前記反射体のアレイは、平面鏡を備える、項目38に記載のシステム。
(項目40)
前記光学要素は、前記反射体のアレイに結合されるレンズレットである、項目38に記載のシステム。
(項目41)
前記反射体のアレイの1つまたはそれを上回る反射体は、湾曲される、項目37に記載のシステム。
(項目42)
前記光学要素は、前記反射体のアレイの中に統合される、項目37に記載のシステム。
(項目43)
前記反射体は、放物反射体である、項目42に記載のシステム。
(項目44)
前記反射体は、楕円形反射体である、項目42に記載のシステム。
(項目45)
前記複数の光学要素は、射出瞳を拡大させる、項目42に記載のシステム。
(項目46)
光線の集合を節点を通して前記ユーザの眼に操向するための第1のレンズをさらに備え、前記第1のレンズは、前記反射体から出射する光線の集合が、前記ユーザの眼に到達する前に、前記第1のレンズを通して通過するように、前記基板上かつ前記第1の反射体と前記眼との間に設置されるように構成可能である、項目37に記載のシステム。
(項目47)
前記第1のレンズの屈折力を補償するための第2のレンズをさらに備え、前記第2のレンズは、ユーザが、前記レンズスタックを通して外界の実質的に歪みがないビューを視認し得るように、前記基板上かつ前記第1のレンズが設置される側と反対側に設置されるように構成可能である、項目46に記載のシステム。
(項目48)
前記複数の反射体は、波長選択反射体を備える、項目37に記載のシステム。
(項目49)
前記複数の反射体は、半透鏡を備える、項目37に記載のシステム。
(項目50)
前記複数の光学要素は、屈折レンズを備える、項目37に記載のシステム。
(項目51)
前記複数の光学要素は、回折レンズを備える、項目37に記載のシステム。
(項目52)
前記湾曲反射体は、波長選択ノッチフィルタを備える、項目41に記載のシステム。
(項目53)
仮想コンテンツをユーザに表示するための方法であって、
画像データの1つまたはそれを上回るフレームと関連付けられた1つまたはそれを上回る光パターンを時系列様式で提供するステップと、
前記画像データの1つまたはそれを上回るフレームと関連付けられた1つまたはそれを上回る光パターンを透過性ビームスプリッタを介して射出瞳に反射させるステップであって、前記透過性ビームスプリッタは、複数の反射体を有し、光を前記射出瞳に向かって可変指向させる、ステップと、
前記透過性ビームスプリッタの複数の反射体に結合される複数の光学要素を通して射出瞳を拡大させるステップと、
を含む、方法。
(項目54)
前記反射体のアレイは、前記光学要素と別個である、項目53に記載の方法。
(項目55)
前記反射体のアレイは、平面鏡を備える、項目53に記載の方法。
(項目56)
前記光学要素は、前記反射体のアレイに結合されるレンズレットである、項目53に記載の方法。
(項目57)
前記反射体のアレイの1つまたはそれを上回る反射体は、湾曲される、項目53に記載の方法。
(項目58)
前記光学要素は、前記反射体のアレイの中に統合される、項目53に記載の方法。
(項目59)
前記反射体は、放物反射体である、項目58に記載の方法。
(項目60)
前記反射体は、楕円形反射体である、項目58に記載の方法。
(項目61)
光線の集合を節点を通して前記ユーザの眼に操向するための第1のレンズをさらに備え、前記第1のレンズは、前記反射体から出射する光線の集合が、前記ユーザの眼に到達する前に、前記第1のレンズを通して通過するように、前記基板上かつ前記第1の反射体と前記眼との間に設置されるように構成可能である、項目53に記載の方法。
(項目62)
前記第1のレンズの屈折力を補償するための第2のレンズをさらに備え、前記第2のレンズは、ユーザが、前記レンズスタックを通して外界の実質的に歪みがないビューを視認し得るように、前記基板上かつ前記第1のレンズが設置される側と反対側に設置されるように構成可能である、項目61に記載の方法。
(項目63)
前記複数の反射体は、波長選択反射体を備える、項目53に記載の方法。
(項目64)
前記複数の反射体は、半透鏡を備える、項目53に記載の方法。
(項目65)
前記複数の光学要素は、屈折レンズを備える、項目53に記載の方法。
(項目66)
前記複数の光学要素は、回折レンズを備える、項目53に記載の方法。
(項目67)
前記湾曲反射体は、波長選択ノッチフィルタを備える、項目57に記載の方法。
(項目68)
仮想コンテンツをユーザに表示するためのシステムであって、
画像データの1つまたはそれを上回るフレームと関連付けられた1つまたはそれを上回る光パターンを時系列様式で多重化するための光源と、
前記1つまたはそれを上回る光パターンを第1の焦点レベルで受光するための導波管と、
前記導波管に結合され、前記光パターンの少なくとも一部を第2の焦点レベルにするための可変合焦要素(VFE)と、
を備える、システム。
(項目69)
前記VFEは、焦点レベルを調節する間、画像倍率を実質的に変化させない、項目68に記載のシステム。
(項目70)
前記VFEは、焦点レベルを調節する間、画像倍率を変化させない、項目68に記載のシステム。
(項目71)
前記第1のVFEが前記光パターンの焦点を変動させるにつれて、前記ユーザの外界のビューが実質的に歪められないように、外界からの光の波面を調節する、第2のVFEをさらに備える、項目68に記載のシステム。
(項目72)
複数のフレームが、前記ユーザが前記フレームを単一コヒーレント場面の一部として知覚するように、高周波数で前記ユーザに提示され、前記VFEは、前記焦点を第1のフレームから第2のフレームに変動させる、項目68に記載のシステム。
(項目73)
前記光源は、走査光ディスプレイであって、前記VFEは、行毎様式で前記焦点を変動させる、項目68に記載のシステム。
(項目74)
前記光源は、走査光ディスプレイであって、前記VFEは、ピクセル毎様式で前記焦点を変動させる、項目68に記載のシステム。
(項目75)
前記VFEは、回折レンズである、項目68に記載のシステム。
(項目76)
前記VFEは、屈折レンズである、項目68に記載のシステム。
(項目77)
前記VFEは、反射鏡である、項目68に記載のシステム。
(項目78)
前記反射鏡は、不透明である、項目77に記載のシステム。
(項目79)
前記反射鏡は、部分的に反射性である、項目77に記載のシステム。
(項目80)
ユーザの眼の遠近調節を追跡するための遠近調節モジュールをさらに備え、前記VFEは、少なくとも部分的に、前記ユーザの眼の遠近調節に基づいて、前記光パターンの焦点を変動させる、項目68に記載のシステム。
(項目81)
仮想コンテンツをユーザに表示するためのシステムであって、
画像データの1つまたはそれを上回るフレームと関連付けられた1つまたはそれを上回る光パターンを時系列様式で多重化するための光源と、
前記1つまたはそれを上回る光パターンを受光し、前記光パターンを第1の焦点に指向させるための導波管と、
前記導波管に結合され、前記光パターンの少なくとも一部を第2の焦点に指向させるための可変合焦要素(VFE)であって、前記導波管の中に統合される、VFEと、
を備える、システム。
(項目82)
前記VFEは、テレセントリックである、項目81に記載のシステム。
(項目83)
前記VFEは、非テレセントリックである、項目81に記載のシステム。
(項目84)
前記ユーザの外界のビューが歪められないように、補償レンズをさらに備える、項目81に記載のシステム。
(項目85)
複数のフレームが、前記ユーザが、前記フレームを単一コヒーレント場面の一部として知覚するように、高周波数で前記ユーザに提示され、前記VFEは、前記焦点を第1のフレームから第2のフレームに変動させる、項目81に記載のシステム。
(項目86)
前記光源は、走査光ディスプレイであって、前記VFEは、行毎様式で前記焦点を変動させる、項目81に記載のシステム。
(項目87)
前記光源は、走査光ディスプレイであって、前記VFEは、ピクセル毎様式で前記焦点を変動させる、項目81に記載のシステム。
(項目88)
前記VFEは、回折レンズである、項目81に記載のシステム。
(項目89)
前記VFEは、屈折レンズである、項目81に記載のシステム。
(項目90)
前記VFEは、反射鏡である、項目81に記載のシステム。
(項目91)
前記反射鏡は、不透明である、項目90に記載のシステム。
(項目92)
前記反射鏡は、部分的に反射性である、項目90に記載のシステム。
(項目93)
ユーザの眼の遠近調節を追跡するための遠近調節モジュールをさらに備え、前記VFEは、少なくとも部分的に、前記ユーザの眼の遠近調節に基づいて、前記光パターンの焦点を変動させる、項目81に記載のシステム。
(項目94)
仮想コンテンツをユーザに表示するためのシステムであって、
画像データの1つまたはそれを上回るフレームと関連付けられた1つまたはそれを上回る光パターンを時系列様式で多重化するための光源と、
前記1つまたはそれを上回る光パターンを受光し、前記光パターンを第1の焦点に指向させるための導波管と、
前記導波管に結合され、前記光パターンの少なくとも一部を第2の焦点に指向するための可変合焦要素(VFE)であって、前記導波管と別個である、VFEと、
を備える、システム。
(項目95)
前記VFEは、テレセントリックである、項目94に記載のシステム。
(項目96)
前記VFEは、非テレセントリックである、項目94に記載のシステム。
(項目97)
前記ユーザの外界のビューが歪められないように、補償レンズをさらに備える、項目94に記載のシステム。
(項目98)
前記ユーザが前記フレームを単一コヒーレント場面の一部として知覚するように、複数のフレームが、高周波数で前記ユーザに提示され、前記VFEは、前記焦点を第1のフレームから第2のフレームに変動させる、項目94に記載のシステム。
(項目99)
前記光源は、走査光ディスプレイであって、前記VFEは、行毎様式で前記焦点を変動させる、項目94に記載のシステム。
(項目100)
前記光源は、走査光ディスプレイであって、前記VFEは、ピクセル毎様式で前記焦点を変動させる、項目94に記載のシステム。
(項目101)
前記VFEは、回折レンズである、項目94に記載のシステム。
(項目102)
前記VFEは、屈折レンズである、項目94に記載のシステム。
(項目103)
前記VFEは、反射鏡である、項目94に記載のシステム。
(項目104)
前記反射鏡は、不透明である、項目103に記載のシステム。
(項目105)
前記反射鏡は、部分的に反射性である、項目103に記載のシステム。
(項目106)
ユーザの眼の遠近調節を追跡するための遠近調節モジュールをさらに備え、前記VFEは、少なくとも部分的に、前記ユーザの眼の遠近調節に基づいて、前記光パターンの焦点を変動させる、項目94に記載のシステム。
(項目107)
仮想コンテンツをユーザに表示するための方法であって、
画像データの1つまたはそれを上回るフレームと関連付けられた1つまたはそれを上回る光パターンを提供するステップと、
前記画像データの1つまたはそれを上回るフレームと関連付けられた1つまたはそれを上回る光パターンを導波管を通して第1の焦点に収束させるステップと、
可変合焦要素(VFE)を通して、前記光の第1の焦点を修正し、波面を第2の焦点に生成するステップと、
を含む、方法。
(項目108)
前記VFEは、前記導波管と別個である、項目107に記載の方法。
(項目109)
前記VFEは、前記導波管の中に統合される、項目107に記載の方法。
(項目110)
前記画像データの1つまたはそれを上回るフレームは、時系列様式で提供される、項目107に記載の方法。
(項目111)
前記VFEは、前記画像データの1つまたはそれを上回るフレームの焦点をフレーム毎ベースで修正する、項目110に記載の方法。
(項目112)
前記VFEは、前記画像データの1つまたはそれを上回るフレームの焦点をピクセル毎ベースで修正する、項目110に記載の方法。
(項目113)
前記VFEは、前記第1の焦点を修正し、波面を第3の焦点に生成し、前記第2の焦点は、前記第3の焦点と異なる、項目107に記載の方法。
(項目114)
前記第2の焦点における波面は、特定の深度平面から生じているように前記ユーザによって知覚される、項目107に記載の方法。
(項目115)
前記VFEは、テレセントリックである、項目107に記載の方法。
(項目116)
前記VFEは、非テレセントリックである、項目107に記載の方法。
(項目117)
前記ユーザの外界のビューが歪められないように、補償レンズをさらに含む、項目107に記載の方法。
(項目118)
複数のフレームが、前記ユーザが前記フレームを単一コヒーレント場面の一部として知覚するように、高周波数で前記ユーザに提示され、前記VFEは、前記焦点を第1のフレームから第2のフレームに変動させる、項目107に記載の方法。
(項目119)
前記光源は、走査光ディスプレイであって、前記VFEは、行毎様式で前記焦点を変動させる、項目107に記載の方法。
(項目120)
前記VFEは、回折レンズである、項目107に記載の方法。
(項目121)
前記VFEは、屈折レンズである、項目107に記載の方法。
(項目122)
前記VFEは、反射鏡である、項目107に記載の方法。
(項目123)
前記反射鏡は、不透明である、項目107に記載の方法。
(項目123)
前記反射鏡は、部分的に反射性である、項目107に記載の方法。
(項目124)
ユーザの眼の遠近調節を追跡するための遠近調節モジュールをさらに含み、前記VFEは、少なくとも部分的に、前記ユーザの眼の遠近調節に基づいて、前記光パターンの焦点を変動させる、項目107に記載の方法。
(項目125)
仮想コンテンツをユーザに表示するためのシステムであって、
画像データと関連付けられた光線を受光し、前記光線を前記ユーザの眼に向かって伝送するための複数の導波管であって、前記ユーザの眼に面した方向にスタックされる、複数の導波管と、
前記複数の導波管の第1の導波管に結合され、前記第1の導波管から伝送された光線を修正し、それによって、第1の波面曲率を有する光線を送達するための第1のレンズと、
前記複数の導波管の第2の導波管に結合され、前記第2の導波管から伝送された光線を修正し、それによって、第2の波面曲率を有する光線を送達するための第2のレンズであって、前記第1の導波管に結合された第1のレンズおよび前記第2の導波管に結合された第2のレンズは、前記ユーザの眼に面した方向に水平にスタックされる、第2のレンズと、
を備える、システム。
(項目126)
前記第1の波面曲率は、前記第2の波面曲率と異なる、項目125に記載のシステム。
(項目127)
前記ユーザが、前記画像データを光学無限遠平面から生じているように知覚するように、コリメートされた光を前記ユーザの眼に送達するための前記複数の導波管の第3の導波管をさらに備える、項目125に記載のシステム。
(項目128)
前記導波管は、コリメートされた光を前記レンズに伝送するように構成される、項目125に記載のシステム。
(項目129)
前記ユーザの眼に面した方向にスタックされたレンズの凝集屈折力を補償するための補償レンズ層をさらに備え、前記補償レンズ層は、前記ユーザの眼から最も離れてスタックされる、項目125に記載のシステム。
(項目130)
前記導波管は、前記導波管の中に投入された光線を前記ユーザの眼に向かって反射するように構成可能である、複数の反射体を備える、項目125に記載のシステム。
(項目131)
前記導波管は、電気活性である、項目125に記載のシステム。
(項目132)
前記導波管は、切替可能である、項目125に記載のシステム。
(項目133)
前記第1の波面曲率を有する光線および前記第2の波面曲率を有する光線は、同時に送達される、項目125に記載のシステム。
(項目134)
前記第1の波面曲率を有する光線および前記第2の波面曲率を有する光線は、順次送達される、項目125に記載のシステム。
(項目135)
前記第2の波面曲率は、前記第1の波面曲率の境界に対応し、それによって、前記ユーザが遠近調節することができる焦点距離を提供する、項目133に記載のシステム。
(項目136)
ユーザの眼の遠近調節を追跡するための遠近調節モジュールをさらに含み、前記VFEは、少なくとも部分的に、前記ユーザの眼の遠近調節に基づいて、前記光パターンの焦点を変動させる、項目125に記載の方法。
(項目137)
仮想コンテンツをユーザに表示するためのシステムであって、
画像データの1つまたはそれを上回るフレームと関連付けられた1つまたはそれを上回る光パターンを多重化するための光源と、
前記1つまたはそれを上回る光パターンを受光し、光を射出瞳に向かって指向するための複数の導波管であって、Z軸に沿ってスタックされる、複数の導波管と、
前記複数の導波管によって伝送された光の焦点を修正するための少なくとも1つの光学要素と、
を備える、システム。
(項目138)
前記複数の導波管の導波管は、前記投影された光を前記導波管の長さを横断して分布させるための導波管と、波面曲率が作成されるような様式で前記光を修正するための光学要素とを備え、前記作成された波面曲率は、前記ユーザによって視認されるときの焦点面に対応する、項目137に記載のシステム。
(項目139)
前記複数の導波管の導波管は、回折光学要素(DOE)を備える、項目137に記載のシステム。
(項目140)
前記DOEは、オン状態とオフ状態との間で切替可能である、項目137に記載のシステム。
(項目141)
前記少なくとも1つの光学要素は、屈折レンズを備える、項目137に記載のシステム。
(項目142)
前記少なくとも1つの光学要素は、フレネルゾーンプレートを備える、項目137に記載のシステム。
(項目143)
前記複数の導波管の導波管は、導波管要素を備える、項目137に記載のシステム。
(項目144)
前記導波管は、オン状態とオフ状態との間で切替可能である、項目143に記載のシステム。
(項目145)
前記導波管は、静的である、項目137に記載のシステム。
(項目146)
前記画像データの第1のフレームおよび前記画像データの第2のフレームは、前記ユーザの眼に同時に送達される、項目137に記載のシステム。
(項目147)
前記画像データの第1のフレームおよび前記画像データの第2のフレームは、前記ユーザの眼に順次送達される、項目137に記載のシステム。
(項目148)
光を前記ユーザの眼に送達するための複数の角度付けられた反射体をさらに備え、前記第1の導波管構成要素および前記第2の導波管構成要素は、光を前記1つまたはそれを上回る角度付けられた反射体に指向する、項目137に記載のシステム。
(項目149)
ビーム分布導波管光学をさらに備え、前記ビーム分布導波管は、前記導波管アセンブリに結合され、前記ビーム分布導波管光学は、前記ビーム分布導波管光学の中に投入された光線が、クローン化され、前記導波管アセンブリの導波管構成要素の中に投入されるように、前記投影された光を前記導波管アセンブリを横断して拡散させるように構成可能である、項目137に記載のシステム。
(項目150)
仮想コンテンツをユーザに表示するためのシステムであって、
画像データの1つまたはそれを上回るフレームを時系列様式で提供するための画像発生源と、
前記画像データの1つまたはそれを上回るフレームと関連付けられた光を投影するための光変調器と、
前記投影された光を受光し、前記光を前記ユーザの眼に向かって送達するための導波管アセンブリであって、前記導波管アセンブリは、前記光が第1の焦点面から生じているように知覚されるように、前記画像データの第1のフレームと関連付けられた光を修正するように構成可能である、少なくとも第1の導波管構成要素と、前記光が第2の焦点面から生じているように知覚されるように、前記画像データの第2のフレームと関連付けられた光を修正するように構成可能である、第2の導波管構成要素とを備え、前記第1の導波管構成要素および第2の導波管構成要素は、前記ユーザの眼の正面において、Z軸に沿ってスタックされる、導波管アセンブリと、
を備える、システム。
(項目151)
前記導波管アセンブリの導波管構成要素は、前記投影された光を前記導波管の長さを横断して分布させるための導波管と、波面曲率が作成されるような様式で前記光を修正するためのレンズとを備え、前記作成された波面曲率は、前記ユーザによって視認されるときの焦点面に対応する、項目150に記載のシステム。
(項目152)
前記導波管アセンブリの導波管構成要素は、回折光学要素(DOE)を備える、項目150に記載のシステム。
(項目153)
前記DOEは、オン状態とオフ状態との間で切替可能である、項目150に記載のシステム。
(項目154)
前記導波管アセンブリの導波管構成要素は、屈折レンズを備える、項目150に記載のシステム。
(項目155)
前記導波管アセンブリの導波管構成要素は、フレネルゾーンプレートを備える、項目150に記載のシステム。
(項目156)
前記導波管アセンブリの導波管構成要素は、基板導波光学(SGO)要素を備える、項目150に記載のシステム。
(項目157)
前記導波管は、オン状態とオフ状態との間で切替可能である、項目150に記載のシステム。
(項目158)
前記導波管は、静的である、項目150に記載のシステム。
(項目159)
前記画像データの第1のフレームおよび前記画像データの第2のフレームは、前記ユーザの眼に同時に送達される、項目150に記載のシステム。
(項目160)
前記画像データの第1のフレームおよび前記画像データの第2のフレームは、前記ユーザの眼に順次送達される、項目150に記載のシステム。
(項目161)
光を前記ユーザの眼に送達するための複数の角度付けられた反射体をさらに備え、前記第1の導波管構成要素および前記第2の導波管構成要素は、光を前記1つまたはそれを上回る角度付けられた反射体に指向する、項目150に記載のシステム。
(項目162)
ビーム分布導波管光学をさらに備え、前記ビーム分布導波管は、前記導波管アセンブリに結合され、前記ビーム分布導波管光学は、前記ビーム分布導波管光学の中に投入された光線が、クローン化され、前記導波管アセンブリの導波管構成要素の中に投入されるように、前記投影された光を前記導波管アセンブリを横断して拡散させるように構成可能である、項目150に記載のシステム。
(項目163)
前記導波管アセンブリの導波管構成要素は、前記投影された光を所望の角度で前記ユーザの眼に向かって反射させるように構成可能である、反射体を備える、項目150に記載のシステム。
(項目164)
前記第1の導波管構成要素は、前記投影された光を第1の角度で反射させるように構成される、第1の反射体を備え、前記第2の導波管構成要素は、前記投影された光を第2の角度で反射させるように構成される、第2の反射体を備える、項目150に記載のシステム。
(項目165)
前記第1の反射体は、前記第2の反射体に対して交互にされ、それによって、前記ユーザによって視認されるにつれて、前記画像の視野を拡大させる、項目150に記載のシステム。
(項目166)
前記導波管構成要素の反射体は、前記導波管アセンブリを横断して連続湾曲反射表面を形成するような様式で位置付けられる、項目150に記載のシステム。
(項目167)
前記連続湾曲反射表面は、放物線を備える、項目166に記載のシステム。
(項目168)
前記連続湾曲反射表面は、楕円曲線を備える、項目166に記載のシステム。
(項目169)
仮想コンテンツをユーザに表示するための方法であって、
第1の導波管を通して、画像データの第1のフレームと関連付けられた光線を前記ユーザに送達するステップであって、前記光線は、第1の波面曲率を有する、ステップと、
第2の導波管を通して、前記画像データの第2のフレームと関連付けられた光線を前記ユーザに送達するステップであって、前記光線は、第2の波面曲率を有し、前記第1の導波管および第2の導波管は、前記ユーザの眼に面してZ軸に沿ってスタックされる、ステップと、
を含む、方法。
(項目170)
前記第1の波面曲率および前記第2の波面曲率は、同時に送達される、項目169に記載の方法。
(項目171)
前記第1の波面曲率および前記第2の波面曲率は、順次送達される、項目169に記載の方法。
(項目172)
前記第1および第2の波面曲率は、前記ユーザによって第1および第2の深度平面として知覚される、項目169に記載の方法。
(項目173)
前記第1および第2の導波管は、1つまたはそれを上回る光学要素に結合される、項目169に記載の方法。
(項目174)
前記1つまたはそれを上回る光学要素の効果を補償レンズを通して補償するステップをさらに含む、項目172に記載の方法。
(項目175)
前記ユーザの眼の遠近調節を判定するステップと、
少なくとも部分的に、前記判定された遠近調節に基づいて、光線を前記第1および第2の導波管のうちの少なくとも1つを通して送達するステップと、
をさらに含む、項目169に記載の方法。
(項目175)
仮想コンテンツをユーザに表示するための方法であって、
前記ユーザの眼の遠近調節を判定するステップと、
少なくとも部分的に、前記判定された遠近調節に基づいて、導波管のスタックの第1の導波管を通して、第1の波面曲率を有する光線を送達するステップであって、前記第1の波面曲率は、前記判定された遠近調節の焦点距離に対応する、ステップと、
前記導波管のスタックの第2の導波管を通して、第2の波面曲率を有する光線を送達するステップであって、前記第2の波面曲率は、前記判定された遠近調節の焦点距離の所定の境界と関連付けられる、ステップと、
を含む、方法。
(項目176)
前記境界は、正の境界である、項目175に記載の方法。
(項目177)
前記境界は、負の境界である、項目175に記載の方法。
(項目178)
前記第2の導波管は、前記ユーザが遠近調節することができる焦点距離を増加させる、項目175に記載の方法。
(項目179)
前記第1の導波管は、可変合焦要素(VFE)に結合され、前記VFEは、前記導波管が前記光線を合焦させる焦点を変動させる、項目175に記載の方法。
(項目180)
前記焦点は、少なくとも部分的に、前記ユーザの眼の判定された遠近調節に基づいて、変動される、項目179に記載の方法。
(項目182)
前記第1の波面曲率および前記第2の波面曲率は、同時に送達される、項目175に記載の方法。
(項目183)
前記第1および第2の波面曲率は、前記ユーザによって第1および第2の深度平面として知覚される、項目175に記載の方法。
(項目184)
前記導波管は、回折光学要素(DOE)である、項目175に記載の方法。
(項目185)
前記導波管は、基板導波光学(SGO)である、項目175に記載の方法。
(項目186)
前記第1および第2の導波管は、切替可能である、項目175に記載の方法。
(項目187)
前記導波管は、1つまたはそれを上回る切替可能要素を備える、項目175に記載の方法。
(項目189)
仮想コンテンツをユーザに表示するためのシステムであって、
画像データの1つまたはそれを上回るフレームを時系列様式で提供するための画像発生源と、
前記画像データの1つまたはそれを上回るフレームと関連付けられた光線を投影するためのディスプレイアセンブリであって、第1のフレームレートおよび第1のビット深度に対応する第1のディスプレイ要素と、第2のフレームレートおよび第2のビット深度に対応する第2のディスプレイ要素とを備える、ディスプレイアセンブリと、
前記投影された光の焦点を変動させ、前記光を前記ユーザの眼に伝送するように構成可能である、可変合焦要素(VFE)と、
を備える、システム。
(項目190)
前記第1のフレームレートは、前記第2のフレームレートより高く、前記第1のビット深度は、前記第2のビット深度より低い、項目189に記載のシステム。
(項目191)
前記第1のディスプレイ要素は、DLP投影システムである、項目189に記載のシステム。
(項目192)
前記第2のディスプレイ要素は、液晶ディスプレイ(LCD)である、項目189に記載のシステム。
(項目193)
前記第1のディスプレイ要素は、前記LCDの周縁が一定照明を有するように、光を前記第2のディスプレイ要素の下位集合に投影する、項目189に記載のシステム。
(項目194)
前記第1のディスプレイ要素から伝送された光のみ、前記VFEを通して合焦される、項目193に記載のシステム。
(項目195)
前記VFEは、前記投影された光の焦点が、前記画像データの倍率に影響を及ぼすことなく変動されるように、射出瞳に光学的に共役する、項目189に記載のシステム。
(項目196)
前記第1のディスプレイ要素は、DLPであって、前記第2のディスプレイ要素は、LCDであって、前記DLPは、低分解能であって、前記LCDは、高分解能である、項目189に記載のシステム。
(項目197)
背面光の強度は、経時的に変動され、前記第1のディスプレイ要素によって投影される下位画像の輝度を等化させ、それによって、前記第1のディスプレイ要素のフレームレートを増加させる、項目189に記載のシステム。
(項目198)
前記VFEは、前記投影された光の焦点をフレーム毎ベースで変動させるように構成可能である、項目189に記載のシステム。
(項目199)
前記VFEの動作と関連付けられた光学倍率を補償するためのソフトウェアをさらに備える、項目189に記載のシステム。
(項目200)
前記画像発生源は、ともにまたは順次投影されると、3次元ボリュームのオブジェクトを生成する、特定の画像のスライスを生成する、項目189に記載のシステム。
(項目201)
前記DLPは、バイナリモードで動作される、項目189に記載のシステム。
(項目202)
前記DLPは、階調モードで動作される、項目189に記載のシステム。
(項目203)
前記VFEは、第1のフレームが第1の焦点面から生じているように知覚され、第2のフレームが第2の焦点面から生じているように知覚されるように、前記投影された光を変動させ、前記第1の焦点面は、前記第2の焦点面と異なる、項目189に記載のシステム。
(項目204)
前記焦点面と関連付けられた焦点距離は、固定される、項目189に記載のシステム。
(項目205)
前記焦点面と関連付けられた焦点距離は、可変である、項目189に記載のシステム。
(項目206)
仮想コンテンツをユーザに表示するための方法であって、
1つまたはそれを上回る画像スライスを提供するステップであって、前記1つまたはそれを上回る画像スライスの第1および第2の画像スライスは、3次元ボリュームを表す、ステップと、
前記第1の画像スライスと関連付けられた光を空間光変調器を通して投影するステップと、
可変合焦要素(VFE)を通して、前記第1の画像スライスを第1の焦点に合焦させるステップと、
前記第1の焦点を有する前記第1の画像スライスを前記ユーザに送達するステップと、
前記第2の画像スライスと関連付けられた光を提供するステップと、
前記VFEを通して、前記第2の画像スライスを第2の焦点に合焦させるステップであって、前記第1の焦点は、前記第2の焦点と異なる、ステップと、
前記第2の焦点を有する前記第2の画像スライスを前記ユーザに送達するステップと、
を含む、方法。
(項目207)
前記ユーザの眼の遠近調節を判定するステップをさらに含み、前記VFEは、少なくとも部分的に、前記判定された遠近調節に基づいて、前記投影された光を合焦させる、項目206に記載の方法。
(項目208)
前記画像スライスは、フレーム順次方式で提供される、項目206に記載の方法。
(項目209)
前記第1の画像スライスおよび前記第2の画像スライスは、同時に送達される、項目206に記載の方法。
(項目210)
前記第1の画像スライスおよび前記第2の画像スライスは、順次送達される、項目206に記載の方法。
(項目211)
仮想コンテンツをユーザに表示するための方法であって、
第1のディスプレイ要素と第2のディスプレイ要素を組み合わせるステップであって、前記組み合わせられたディスプレイ要素が、高フレームレートおよび高ビット深度に対応するように、前記第1のディスプレイ要素は、高フレームレートおよび低ビット深度に対応し、前記第2のディスプレイ要素は、低フレームレートおよび高ビット深度に対応する、ステップと、
画像データの1つまたはそれを上回るフレームと関連付けられた光を前記組み合わせられたディスプレイ要素を通して投影するステップと、
第1の画像スライスが第1の焦点で投影され、第2の画像スライスが第2の焦点で投影されるように、前記投影された光の焦点を、可変合焦要素(VFE)を通して、フレーム毎ベースで切り替えるステップと、
を含む、方法。
(項目212)
前記第1のディスプレイ要素は、DLPである、項目211に記載の方法。
(項目213)
前記第2のディスプレイ要素は、LCDである、項目211に記載の方法。
(項目214)
前記第1のディスプレイ要素は、前記第2のディスプレイ要素の一部を選択的に照明する、項目211に記載の方法。
(項目215)
前記VFEは、変形可能膜鏡である、項目211に記載の方法。
(項目216)
前記VFEは、射出瞳に光学的に共役する、項目211に記載の方法。
(項目217)
前記VFEは、射出瞳に光学的に共役しない、項目211に記載の方法。
(項目218)
前記第1および第2の画像スライスは、3次元仮想オブジェクトを表す、項目211に記載の方法。
(項目219)
前記DLPは、バイナリモードで動作する、項目212に記載の方法。
(項目220)
前記DLPは、階調モードで動作する、項目212に記載の方法。
(項目221)
前記階調は、前記ユーザの脳に、何かが2つの深度平面に隣接して存在しているという知覚を付与する、項目220に記載の方法。
(項目222)
前記ディスプレイ要素は、画像変調のために組み合わせられる、項目211に記載の方法。
(項目223)
前記ディスプレイ要素は、組み合わせられ、高ダイナミックレンジディスプレイを作成する、項目211に記載の方法。
(項目224)
前記VFEは、所定の数の固定された深度平面間で焦点を切り替える、項目211に記載の方法。
(項目225)
ユーザの眼の遠近調節を判定するステップをさらに含み、前記VFEは、少なくとも部分的に、前記判定された遠近調節に基づいて、焦点を切り替える、項目211に記載の方法。
(項目226)
仮想コンテンツをユーザに表示するためのシステムであって、
画像データの1つまたはそれを上回るフレームと関連付けられたコヒーレント光を受光し、凝集波面を生成するための複数の光ガイドと、
前記複数の光ガイドの1つまたはそれを上回る光ガイドに結合され、前記1つまたはそれを上回る光ガイドによって投影される光に位相遅延を誘発させるための位相変調器と、
前記複数の光ガイドによって生成される凝集波面が変動されるような様式で前記位相変調器を制御するためのプロセッサと、
を備える、システム。
(項目227)
前記複数の光ガイドの光ガイドによって生成される波面は、球状波面である、項目226に記載のシステム。
(項目228)
少なくとも2つの光ガイドによって生成される球状波面は、相互に建設的に干渉する、項目227に記載のシステム。
(項目229)
前記少なくとも2つの光ガイドによって生成される球状波面は、相互に破壊的に干渉する、項目227に記載のシステム。
(項目230)
前記凝集波面は、略平面波面である、項目226に記載のシステム。
(項目231)
前記平面波面は、光学無限遠深度平面に対応する、項目230に記載のシステム。
(項目232)
前記凝集波面は、球状である、項目226に記載のシステム。
(項目233)
前記球状波面は、光学無限遠より近い深度平面に対応する、項目232に記載のシステム。
(項目235)
所望のビームの逆フーリエ変換が、所望の凝集波面が生成されるように、前記マルチコアファイバの中に投入される、項目232に記載のシステム。
(項目236)
仮想コンテンツをユーザに表示するシステムであって、
画像データの1つまたはそれを上回るフレームを提供するための画像発生源と、
複数のマルチコアファイバを備え、前記画像データの1つまたはそれを上回るフレームと関連付けられた光を投影するためのマルチコアアセンブリであって、前記複数のマルチコアファイバのマルチコアファイバは、前記マルチコアアセンブリが前記投影された光の凝集波面を生成するように、波面に光を放出する、マルチコアアセンブリと、
前記マルチコアアセンブリによって放出される凝集波面が、変動され、それによって、前記ユーザが前記画像データの1つまたはそれを上回るフレームを知覚する焦点距離を変動させるような様式で前記マルチコアファイバ間に位相遅延を誘発させるための位相変調器と、
を備える、システム。
(項目237)
所望のビームの逆フーリエ変換が、所望の凝集波面が生成されるように、前記マルチコアファイバの中に投入される、項目236に記載のシステム。
(項目238)
仮想コンテンツをユーザに表示するための方法であって、
光をマルチコアファイバを通して放出するステップであって、前記マルチコアファイバは、複数の単一コアファイバを備え、前記単一コアファイバは、球状波面を放出する、ステップと、
前記複数の単一コアファイバから放出される光から凝集波面を提供するステップと、
前記マルチコアファイバによって生成される凝集波面が、少なくとも部分的に、誘発された位相遅延に基づいて、変動されるように、前記マルチコアファイバの単一コアファイバ間に位相遅延を誘発させるステップと、
を含む、方法。
(項目239)
前記凝集波面は、平面波面である、項目238に記載の方法。
(項目240)
前記平面波面は、光学無限遠に対応する、項目239に記載の方法。
(項目241)
前記凝集波面は、球状である、項目238に記載の方法。
(項目242)
前記球状波面は、光学無限遠より近い深度平面に対応する、項目241に記載の方法。
(項目243)
前記凝集波面が前記所望の波面に対応するように、所望の波面の逆フーリエ変換を前記マルチコアファイバの中に投入するステップをさらに含む、項目238に記載の方法。
(項目245)
仮想コンテンツをユーザに表示するためのシステムであって、
画像データの1つまたはそれを上回るフレームを提供するための画像発生源と、
複数のマルチコアファイバを備え、前記画像データの1つまたはそれを上回るフレームと関連付けられた光を投影するためのマルチコアアセンブリと、
画像を前記マルチコアアセンブリの中に入力するための画像投入器であって、前記マルチコアアセンブリが、前記画像データと関連付けられた光を前記所望の波面に生成することによって、前記フーリエ変換を出力し、それによって、前記ユーザが、前記画像データを所望の焦点距離で知覚することを可能にするように、所望の波面の逆フーリエ変換を前記マルチコアアセンブリの中に入力するようにさらに構成可能である、入力投入器と、
を備える、システム。
(項目246)
前記所望の波面は、ホログラムと関連付けられる、項目245に記載のシステム。
(項目247)
前記逆フーリエ変換は、前記1つまたはそれを上回る光ビームの焦点を変調させるための入力である、項目245に記載のシステム。
(項目248)
前記複数のマルチコアファイバのマルチコアファイバは、マルチモードファイバである、項目245に記載のシステム。
(項目249)
前記複数のマルチコアファイバのマルチコアファイバは、前記ファイバに沿った複数の経路に沿って、光を伝搬するように構成される、項目245に記載のシステム。
(項目250)
前記マルチコアファイバは、単一コアファイバである、項目245に記載のシステム。
(項目251)
前記マルチコアファイバは、同心コアファイバである、項目245に記載のシステム。
(項目252)
前記画像投入器は、ウェーブレットパターンを前記マルチコアアセンブリの中に入力するように構成される、項目245に記載のシステム。
(項目253)
前記画像投入器は、ゼルニケ係数を前記マルチコアアセンブリの中に入力するように構成される、項目245に記載のシステム。
(項目254)
前記ユーザの眼の遠近調節を判定するための遠近調節追跡モジュールをさらに備え、前記画像投入器は、前記ユーザの眼の前記判定された遠近調節に対応する波面の逆フーリエ変換を入力するように構成される、項目245に記載のシステム。
(項目255)
仮想コンテンツをユーザに表示する方法であって、
前記ユーザの眼の遠近調節を判定するステップであって、前記判定された遠近調節は、ユーザの焦点の現在の状態に対応する焦点距離と関連付けられる、ステップと、
導波管を通して、画像データの1つまたはそれを上回るフレームと関連付けられた光を投影するステップと、
少なくとも部分的に、前記判定された遠近調節に基づいて、前記投影された光の焦点を変動させるステップと、
前記投影された光を前記ユーザの眼に送達するステップと、
を含む、方法。
(項目256)
前記遠近調節は、直接測定される、項目255に記載の方法。
(項目257)
前記遠近調節は、間接的に測定される、項目255に記載の方法。
(項目258)
前記遠近調節は、赤外線自動屈折計を通して測定される、項目256に記載の方法。
(項目259)
前記遠近調節は、偏心光屈折法を通して測定される、項目256に記載の方法。
(項目260)
前記ユーザの両眼の収束レベルを測定し、前記遠近調節を推定するステップをさらに含む、項目257に記載の方法。
(項目261)
少なくとも部分的に、前記判定された遠近調節に基づいて、前記画像データの1つまたはそれを上回るフレームの1つまたはそれを上回る部分をぼかすステップをさらに含む、項目255に記載の方法。
(項目262)
前記焦点は、固定された深度平面間で変動される、項目255に記載の方法。
(項目263)
外部環境がゼロ倍率で知覚されるように、前記導波管の光学効果を補償するための補償レンズをさらに含む、項目255に記載の方法。
(項目264)
仮想コンテンツをユーザに表示する方法であって、
前記ユーザの眼の遠近調節を判定するステップであって、前記判定された遠近調節は、ユーザの焦点の現在の状態に対応する焦点距離と関連付けられる、ステップと、
回折光学要素(DOE)を通して、画像データの1つまたはそれを上回るフレームと関連付けられた光を投影するステップと、
少なくとも部分的に、前記判定された遠近調節に基づいて、前記投影された光の焦点を変動させるステップと、
前記投影された光を前記ユーザの眼に送達するステップと、
を含む、方法。
(項目265)
前記遠近調節は、直接測定される、項目264に記載の方法。
(項目266)
前記遠近調節は、間接的に測定される、項目264に記載の方法。
(項目267)
前記遠近調節は、赤外線自動屈折計を通して測定される、項目265に記載の方法。
(項目268)
前記遠近調節は、偏心光屈折法を通して測定される、項目265に記載の方法。
(項目269)
前記ユーザの両眼の収束レベルを測定し、前記遠近調節を推定するステップをさらに含む、項目266に記載の方法。
(項目270)
少なくとも部分的に、前記判定された遠近調節に基づいて、前記画像データの1つまたはそれを上回るフレームの1つまたはそれを上回る部分をぼかすステップをさらに含む、項目264に記載の方法。
(項目271)
前記焦点は、固定された深度平面間で変動される、項目264に記載の方法。
(項目272)
外部環境がゼロ倍率で知覚されるように、前記DOEの光学効果を補償するための補償レンズをさらに含む、項目264に記載の方法。
(項目273)
仮想コンテンツをユーザに表示する方法であって、
前記ユーザの眼の遠近調節を判定するステップであって、前記判定された遠近調節は、ユーザの焦点の現在の状態に対応する焦点距離と関連付けられる、ステップと、
自由形状光学を通して、画像データの1つまたはそれを上回るフレームと関連付けられた光を投影するステップと、
少なくとも部分的に、前記判定された遠近調節に基づいて、前記投影された光の焦点を変動させるステップと、
前記投影された光を前記ユーザの眼に送達するステップと、
を含む、方法。
(項目274)
前記遠近調節は、直接測定される、項目273に記載の方法。
(項目275)
前記遠近調節は、間接的に測定される、項目273に記載の方法。
(項目275)
前記遠近調節は、赤外線自動屈折計を通して測定される、項目274に記載の方法。
(項目276)
前記遠近調節は、偏心光屈折法を通して測定される、項目274に記載の方法。
(項目277)
前記ユーザの両眼の収束レベルを測定し、前記遠近調節を推定するステップをさらに含む、項目275に記載の方法。
(項目278)
少なくとも部分的に、前記判定された遠近調節に基づいて、前記画像データの1つまたはそれを上回るフレームの1つまたはそれを上回る部分をぼかすステップをさらに含む、項目273に記載の方法。
(項目279)
前記焦点は、固定された深度平面間で変動される、項目273に記載の方法。
(項目280)
外部環境がゼロ倍率で知覚されるように、前記自由形状光学の光学効果を補償するための補償レンズをさらに含む、項目273に記載の方法。
(項目281)
仮想コンテンツをユーザに表示する方法であって、
前記ユーザの眼の遠近調節を判定するステップであって、前記判定された遠近調節は、ユーザの焦点の現在の状態に対応する焦点距離と関連付けられる、ステップと、
画像データの1つまたはそれを上回るフレームと関連付けられた光を投影するステップと、
少なくとも部分的に、前記判定された遠近調節に基づいて、前記投影された光の焦点を変動させるステップと、
前記光が、前記ユーザの焦点の現在の状態に対応する焦点距離から生じているように前記ユーザによって知覚されるように、前記投影された光を前記ユーザの眼に送達するステップと、
を含む、方法。
(項目282)
前記光は、基板導波光学アセンブリを通して、前記ユーザに送達される、項目281に記載の方法。
(項目283)
前記光は、自由形状光学要素を通して、前記ユーザに送達される、項目281に記載の方法。
(項目284)
前記光は、回折光学要素(DOE)を通して、前記ユーザに送達される、項目281に記載の方法。
(項目285)
前記光は、導波管のスタックを通して投影され、前記導波管のスタックの第1の導波管は、特定の波面で光を出力し、第2の導波管は、前記特定の波面に対して正の境界波面を出力し、第3の導波管は、前記特定の波面に対して負の境界波面を出力するように構成される、項目281に記載の方法。
(項目286)
前記投影された光が前記ユーザの眼に送達されるとき、前記画像データの1つまたはそれを上回るフレームの一部を前記部分が焦点から外れるような様式でぼかすステップをさらに含む、項目281に記載の方法。
(項目287)
仮想コンテンツをユーザに表示するためのシステムであって、
画像データの1つまたはそれを上回るフレームを時系列様式で提供するための画像発生源と、
前記画像データの1つまたはそれを上回るフレームと関連付けられた光を提供するための光発生器と、
前記ユーザの眼の遠近調節を追跡するための遠近調節追跡モジュールと、
前記画像データの1つまたはそれを上回るフレームと関連付けられた光の焦点を変動させるための導波管アセンブリであって、画像データの異なるフレームは、少なくとも部分的に、前記追跡された遠近調節に基づいて、異なるように合焦される、導波管アセンブリと、
を備える、システム。
(項目288)
仮想コンテンツをユーザに表示するためのシステムであって、
前記ユーザの眼の遠近調節を判定するための遠近調節追跡モジュールと、
画像データの1つまたはそれを上回るフレームを時系列様式で提供するための画像発生源と、
前記画像データの1つまたはそれを上回るフレームと関連付けられた光を投影するための光発生器と、
画像データと関連付けられた光線を受光し、前記光線を前記ユーザの眼に向かって伝送するための複数の導波管であって、前記ユーザの眼に面した方向にスタックされる、複数の導波管と、
少なくとも部分的に、前記ユーザの眼の判定された遠近調節に基づいて、前記伝送された光の焦点を変動させるための可変合焦要素(VFE)と、
を備える、システム。
(項目289)
前記複数の導波管の導波管は、導波管要素であって、前記複数の導波管の第1の導波管から伝送された画像データの第1のフレームの焦点は、前記複数の導波管の第2の導波管から伝送された画像データの第2のフレームの焦点と異なる、項目288に記載のシステム。
(項目290)
前記第1のフレームは、3D場面の第1の層であって、第2のフレームは、3D場面の第2の層である、項目288に記載のシステム。
(項目291)
前記画像データの1つまたはそれを上回るフレームの一部を前記ユーザによって視認されると前記部分が焦点から外れるような様式でぼかすためのぼかしモジュールをさらに備える、項目288に記載のシステム。
(項目292)
前記VFEは、前記複数の導波管に共通である、項目288に記載のシステム。
(項目293)
前記VFEは、前記複数の導波管の導波管と関連付けられる、項目288に記載のシステム。
(項目294)
前記VFEは、前記VFEが前記複数の導波管の2つの導波管間にインタリーブされるように、前記複数の導波管の導波管に結合される、項目288に記載のシステム。
(項目295)
前記VFEは、前記複数の導波管の導波管の中に埋め込まれる、項目288に記載のシステム。
(項目296)
前記VFEは、回折光学要素である、項目288に記載のシステム。
(項目297)
前記VFEは、屈折要素である、項目288に記載のシステム。
(項目298)
前記VFEは、反射要素である、項目288に記載のシステム。
(項目299)
前記導波管は、電気活性である、項目288に記載のシステム。
(項目300)
1つまたはそれを上回る前記複数の導波管の導波管は、オフに切り替えられる、項目288に記載のシステム。
(項目301)
前記複数の導波管の導波管は、固定された焦点面に対応する、項目288に記載のシステム。
(項目302)
射出瞳をさらに備え、前記射出瞳の直径は、わずか0.5mmである、項目288に記載のシステム。
(項目303)
前記光発生器は、走査ファイバディスプレイである、項目288に記載のシステム。
(項目304)
射出瞳のアレイをさらに備える、項目302に記載のシステム。
(項目305)
複数の光発生器をさらに備え、光発生器は、射出瞳に結合される、項目302に記載のシステム。
(項目306)
射出瞳拡大器をさらに備える、項目288に記載のシステム。
(項目307)
前記射出瞳は、少なくとも部分的に、前記ユーザの眼の判定された遠近調節に基づいて、切替可能である、項目302に記載のシステム。
(項目308)
システムであって、
ユーザの眼の遠近調節を判定するための遠近調節追跡モジュールと、
画像データの1つまたはそれを上回るフレームと関連付けられた複数の光ビームを走査するためのファイバ走査ディスプレイであって、前記複数の光ビームの光ビームは、可動である、ファイバ走査ディスプレイと、
少なくとも部分的に、前記ユーザの眼の判定された遠近調節に基づいて、シミュレートされた光屈折ぼけを前記画像データの1つまたはそれを上回るフレーム内にレンダリングするためのぼかしソフトウェアと、
を備える、システム。
(項目309)
光ビームの直径は、わずか2mmである、項目308に記載のシステム。
(項目310)
光ビームの直径は、わずか0.5mmである、項目308に記載のシステム。
(項目311)
走査光ビームは、複製され、複数の射出瞳を作成する、項目308に記載のシステム。
(項目312)
前記走査光ビームは、複製され、より大きいアイボックスを作成する、項目308に記載のシステム。
(項目313)
前記射出瞳は、切替可能である、項目311に記載のシステム。
(項目314)
仮想コンテンツを表示するための方法であって、
ユーザの眼の遠近調節を判定するステップと、
画像データの1つまたはそれを上回るフレームと関連付けられた複数の光ビームをファイバ走査ディスプレイを通して走査するステップであって、前記光ビームの直径は、前記ユーザによって視認されると、画像データのフレームが合焦して現れるように、わずか0.5mmである、ステップと、
ぼかしソフトウェアを使用して、少なくとも部分的に、前記ユーザの眼の判定された遠近調節に基づいて、前記フレームの1つまたはそれを上回る部分をぼかすステップと、
を含む、方法。
(項目315)
複数の射出瞳が、作成される、項目314に記載の方法。
(項目316)
前記光ビームは、単一コアファイバによって発生される、項目314に記載の方法。
(項目317)
前記光ビームは、複製され、複数の射出瞳を作成する、項目314に記載の方法。
(項目318)
前記射出瞳は、切替可能である、項目317に記載の方法。
(項目319)
仮想コンテンツをユーザに表示するための方法であって、
光プロジェクタの束に対する前記ユーザの瞳孔の位置を判定するステップであって、前記光プロジェクタの束は、前記ユーザに提示されるべき画像の下位画像に対応する、ステップと、
前記ユーザの瞳孔の判定された位置に基づいて、前記下位画像に対応する光を前記ユーザの瞳孔の一部の中に推進させるステップと、
を含む、方法。
(項目320)
前記ユーザの瞳孔の別の部分に提示されるべき前記画像の別の下位画像に対応する光を光プロジェクタの別の束を通して推進させるステップをさらに含む、項目319に記載の方法。
(項目321)
前記ファイバ走査ディスプレイの光プロジェクタの1つまたはそれを上回る束と前記ユーザの瞳孔の1つまたはそれを上回る部分をマッピングするステップをさらに含む、項目319に記載の方法。
(項目322)
前記マッピングは、1:1マッピングである、項目321に記載の方法。
(項目323)
前記光の直径は、わずか0.5mmである、項目319に記載の方法。
(項目324)
前記光プロジェクタの束は、凝集波面を生成する、項目319に記載の方法。
(項目325)
前記光プロジェクタによって生成されるビームレットは、離散化された凝集波面を形成する、項目319に記載の方法。
(項目326)
前記ビームレットが、前記ユーザの眼に平行に接近するときに、前記眼は、前記ビームレットを偏向させ、前記網膜上の同一スポットに収束させる、項目325に記載の方法。
(項目327)
前記ユーザの眼は、ビームレットの上位集合を受光し、前記ビームレットは、前記瞳孔を交差する複数の角度に対応する、項目319に記載の方法。
(項目328)
仮想コンテンツをユーザに表示するためのシステムであって、
画像データの1つまたはそれを上回るフレームと関連付けられた光を提供するための光源と、
前記画像データの1つまたはそれを上回るフレームと関連付けられた光を受光するための光ディスプレイアセンブリであって、前記光ディスプレイアセンブリは、ともに離間される複数の射出瞳に対応し、前記複数の射出瞳は、光を前記ユーザの瞳孔の中に伝送する、光ディスプレイアセンブリと、
を備える、システム。
(項目329)
前記複数の射出瞳は、六角形格子内に配列される、項目328に記載のシステム。
(項目330)
前記複数の射出瞳は、正方形格子内に配列される、項目328に記載のシステム。
(項目331)
前記複数の射出瞳は、2次元アレイ内に配列される、項目328に記載のシステム。
(項目332)
前記複数の射出瞳は、3次元アレイ内に配列される、項目328に記載のシステム。
(項目333)
前記複数の射出瞳は、時変アレイ内に配列される、項目328に記載のシステム。
(項目334)
仮想コンテンツをユーザに表示するための方法であって、
複数の光プロジェクタを群化し、射出瞳を形成するステップと、
第1の光パターンを、第1の射出瞳を通して前記ユーザの瞳孔の第1の部分の中に推進するステップと、
第2の光パターンを、第2の射出瞳を通して前記ユーザの瞳孔の第2の部分の中に推進するステップであって、前記第1の光パターンおよび第2の光パターンは、前記ユーザに提示されるべき画像の下位画像に対応し、前記第1の光パターンは、前記第2の光パターンと異なる、ステップと、
を含む、方法。
(項目335)
前記複数の光プロジェクタは、六角形格子内に配列される、項目334に記載の方法。
(項目336)
前記複数の光プロジェクタは、正方形格子内に配列される、項目334に記載の方法。
(項目337)
前記複数の光プロジェクタは、2次元アレイ内に配列される、項目334に記載の方法。
(項目338)
前記複数の光プロジェクタは3次元アレイ内に配列される、項目334に記載の方法。
(項目339)
前記複数の光プロジェクタは、時変アレイ内に配列される、項目334に記載の方法。
(項目340)
前記ユーザの瞳孔の第1の部分は、光を前記第1の射出瞳からのみ受光し、前記ユーザの瞳孔の第2の部分は、光を前記第2の射出瞳からのみ受光する、項目334に記載の方法。
(項目341)
離散化された凝集波面を作成するステップをさらに含む、項目334に記載の方法。
(項目342)
仮想コンテンツをユーザに表示するための方法であって、
光ディスプレイアセンブリに対する前記ユーザの瞳孔の場所を判定するステップと、
少なくとも部分的に、前記瞳孔の判定された場所の周囲の限定されたアイボックスに基づいて、光を前記瞳孔に指向すべき焦点を計算するステップと、
を含む、方法。
(項目343)
光の直径は、わずか0.5mmである、項目342に記載の方法。
(項目344)
離散化された凝集波面を作成するステップをさらに含む、項目342に記載の方法。
(項目345)
少なくとも部分的に、所望の凝集波面の曲率半径の中心に基づいて、複数の離散する近隣のコリメートされた光ビームを凝集させるステップをさらに含む、項目344に記載の方法。
(項目346)
前記ユーザの眼の遠近調節を判定するステップをさらに含み、前記焦点は、少なくとも部分的に、前記判定された遠近調節に基づいて、計算される、項目344に記載の方法。
(項目347)
複数のビームレットの光の角度軌道を選択し、焦点外れ光ビームを作成するステップをさらに含む、項目346に記載の方法。
(項目348)
複数のビームレットは、前記ユーザに提示されるべき画像データのピクセルを表す、項目342に記載の方法。
(項目349)
前記ビームレットは、複数の入射角度で前記眼に衝突する、項目348に記載の方法。
(項目350)
仮想コンテンツをユーザに表示するためのシステムであって、
前記ユーザに提示されるべき画像の1つまたはそれを上回る部分を提供するための画像発生源と、
前記画像の1つまたはそれを上回る部分と関連付けられた光を投影するための複数のマイクロプロジェクタであって、前記マイクロプロジェクタは、前記ユーザの瞳孔に面する様式で位置付けられ、前記複数のマイクロプロジェクタのマイクロプロジェクタは、前記下位画像の一部を表す光線の集合を投影するように構成され、前記光線の集合は、前記ユーザの瞳孔の一部に投影される、複数のマイクロプロジェクタと、
を備える、システム。
(項目351)
前記ユーザの瞳孔の第1の部分は、光線を複数のマイクロプロジェクタから受光する、項目350に記載のシステム。
(項目352)
前記複数のマイクロプロジェクタからの光を前記ユーザの瞳孔の1つまたはそれを上回る部分に反射させるための反射表面をさらに備える、項目350に記載のシステム。
(項目353)
前記反射表面は、前記ユーザが前記反射表面を通して実世界を視認可能であるような様式で位置付けられる、項目350に記載のシステム。
(項目354)
光の直径は、わずか0.5mmである、項目350に記載のシステム。
(項目355)
離散化された凝集波面を作成するステップをさらに含む、項目350に記載のシステム。
(項目356)
少なくとも部分的に、所望の凝集波面の曲率半径の中心に基づいて、複数の離散する近隣のコリメートされた光ビームを凝集させるステップをさらに含む、項目350に記載のシステム。
(項目357)
前記ユーザの眼の遠近調節を判定するステップをさらに含み、前記焦点は、少なくとも部分的に、前記判定された遠近調節に基づいて、計算される、項目350に記載のシステム。
(項目358)
複数のビームレットの光の角度軌道を選択し、焦点外れ光ビームを作成する、項目350に記載のシステム。
(項目359)
複数のビームレットは、前記ユーザに提示されるべき画像データのピクセルを表す、項目350に記載のシステム。
(項目360)
前記ビームレットは、複数の入射角度で前記眼に衝突する、項目351に記載のシステム。
(項目361)
システムであって、
ユーザの瞳孔の場所を判定するためのプロセッサと、
画像データの1つまたはそれを上回るフレームと関連付けられた光を投影するための空間光変調器(SLM)のアレイであって、SLMのアレイは、少なくとも部分的に、前記ユーザの瞳孔の判定された場所に基づいて、位置付けられ、前記ユーザによって視認されると、明視野を発生する、SLMのアレイと、
を備える、システム。
(項目362)
仮想コンテンツをユーザに表示するためのシステムであって、
画像データの1つまたはそれを上回るフレームを提供するための画像発生源と、
前記画像データの1つまたはそれを上回るフレームと関連付けられた光線を選択的に伝送するように構成される、第1の空間光変調器(SLM)と、
前記第1のSLMに対して位置付けられる第2のSLMであって、同様に、前記画像データの1つまたはそれを上回るフレームと関連付けられた光線を選択的に伝送するように構成される、第2のSLMと、
前記伝送された光線が前記ユーザによって視認されると明視野が作成されるような様式で前記第1および第2のSLMを制御するためのプロセッサと、
を備える、システム。
(項目363)
前記ユーザの眼の遠近調節を判定するための遠近調節追跡モジュールをさらに備える、項目361または362に記載のシステム。
(項目364)
前記SLMは、LCDである、項目361または362に記載のシステム。
(項目365)
前記LCDは、減衰される、項目361または362に記載のシステム。
(項目366)
前記LCDは、前記伝送された光の偏光を回転させる、項目361または362に記載のシステム。
(項目367)
前記SLMは、DMDである、項目361または362に記載のシステム。
(項目368)
前記DMDは、1つまたはそれを上回るレンズに結合される、項目362に記載のシステム。
(項目369)
前記SLMは、MEMアレイである、項目361または362に記載のシステム。
(項目370)
前記MEMアレイは、スライド式MEMシャッタのアレイを備える、項目369に記載のシステム。
(項目371)
前記MEMアレイは、Pixtronics(R)MEMアレイである、項目369に記載のシステム。
(項目372)
仮想コンテンツをユーザに表示するためのシステムであって、
前記ユーザに提示されるべき画像データの1つまたはそれを上回るフレームと関連付けられた光を投影するための複数の光ファイバを備え、前記複数の光ファイバコアの光ファイバコアは、レンズに結合され、前記レンズは、前記走査ファイバによって投影される光ビームの直径を改変するように構成され、前記レンズは、勾配屈折率を備える、システム。
(項目373)
前記レンズは、GRINレンズである、項目372に記載のシステム。
(項目374)
前記レンズは、前記光ビームをコリメートする、項目372に記載のシステム。
(項目375)
前記複数の光ファイバコアの光ファイバコアに結合され、前記ファイバを走査するためのアクチュエータをさらに備える、項目372に記載のシステム。
(項目376)
前記アクチュエータは、圧電アクチュエータである、項目375に記載のシステム。
(項目377)
前記光ファイバコアの端部は、レンズ効果を作成するための角度で研磨される、項目372に記載のシステム。
(項目378)
前記光ファイバコアの端部は、レンズ効果を作成するように溶融される、項目372に記載のシステム。
(項目379)
仮想コンテンツをユーザに表示するための方法であって、
画像データの1つまたはそれを上回るフレームと関連付けられた光を投影するステップであって、前記光は、複数の光ファイバコアを通して投影される、ステップと、
前記複数の光ファイバコアを通して投影される光をレンズを通して修正するステップであって、前記レンズは、前記複数の光ファイバコアの先端に結合される、ステップと、
前記修正された光を前記ユーザに送達するステップと、
を含む、方法。
(項目380)
前記レンズは、GRINレンズである、項目379に記載の方法。
(項目381)
前記レンズは、勾配屈折率を備える、項目379に記載の方法。
(項目382)
前記レンズは、前記光ファイバコアによって投影される光ビームをコリメートする、項目379に記載の方法。
(項目383)
前記レンズは、複数の光ファイバコアに結合される、項目379に記載の方法。
(項目384)
前記レンズは、単一光ファイバコアに結合される、項目379に記載の方法。
(項目385)
1つまたはそれを上回る光ファイバコアは、研磨された端部を含み、レンズ効果を作成する、項目379に記載の方法。
(項目386)
1つまたはそれを上回る光ファイバコアは、溶融され、レンズ効果を作成する、項目367に記載の方法。
(項目387)
仮想コンテンツを表示するためのシステムであって、
複数のファイバを備え、画像データの1つまたはそれを上回るフレームと関連付けられた光を多重化するためのマルチコアアセンブリと、
第1の視認ゾーンが画像の第1の部分と関連付けられた光のみを受光し、第2の視認ゾーンが前記画像の第2の部分と関連付けられた光のみを受光するように、前記光パターンを受光し、前記光パターンを伝送するための導波管であって、前記第1および第2の視認ゾーンは、わずか0.5mmである、導波管と、
を備える、システム。
(項目388)
前記画像データのフレームの1つまたはそれを上回る部分をぼかすためのぼかしソフトウェアをさらに備える、項目387に記載のシステム。
(項目389)
前記ユーザの眼の遠近調節を判定するための遠近調節モジュールをさらに備える、項目387に記載のシステム。
(項目390)
前記導波管は、中間視認光学を伴わずに、光をユーザの眼に直接投影する、項目387に記載のシステム。
(項目391)
システムであって、
複数のファイバを備え、画像データの1つまたはそれを上回るフレームと関連付けられた光を多重化するためのマルチコアアセンブリと、
第1の視認ゾーンが画像の第1の部分と関連付けられた光のみを受光し、第2の視認ゾーンが前記画像の第2の部分と関連付けられた光のみを受光するように、前記光パターンを受光し、前記光パターンを伝送するための導波管であって、前記第1および第2の視認ゾーンは、わずか0.5mmである、導波管と、
前記導波管に結合され、前記第1および第2の視認ゾーンに伝送される光ビームを修正するための光学アセンブリと、
を備える、システム。
(項目392)
前記複数のファイバは、光を単一導波管アレイの中に投影する、項目391に記載のシステム。
(項目393)
前記マルチコアアセンブリは、走査される、項目391に記載のシステム。
(項目394)
時変明視野が、発生される、項目391に記載のシステム。
(項目395)
前記光学アセンブリは、DOE要素である、項目391に記載のシステム。
(項目396)
前記光学アセンブリは、LC層である、項目391に記載のシステム。
(項目397)
方法であって、
画像データの1つまたはそれを上回るフレームと関連付けられた光をマルチコアアセンブリを通して投影するステップであって、前記マルチコアアセンブリは、複数の光ファイバコアを備える、ステップと、
前記ユーザの瞳孔の第1の部分が画像の第1の部分と関連付けられた光を受光し、前記ユーザの瞳孔の第2の部分が前記画像の第2の部分と関連付けられた光を受光するように、前記投影された光を導波管を通して送達するステップと、
を含む、方法。
(項目398)
前記第1および第2の部分の直径は、わずか0.5mmである、項目397に記載の方法。
(項目399)
前記複数の光ファイバコアは、光を単一導波管アレイの中に投影する、項目397に記載の方法。
(項目400)
前記マルチコアアセンブリは、走査される、項目397に記載の方法。
(項目401)
前記導波管は、複数の反射体を備える、項目397に記載の方法。
(項目402)
前記反射体の角度は、可変である、項目401に記載の方法。
(項目403)
前記第1および第2の視認ゾーンに送達されている光を修正するための光学の集合をさらに含む、項目397に記載の方法。
(項目404)
前記光学の集合は、DOE要素である、項目403に記載の方法。
(項目405)
前記光学の集合は、自由形状光学である、項目403に記載の方法。
(項目406)
前記光学の集合は、LC層である、項目403に記載の方法。
(項目407)
システムであって、
ユーザに提示されるべき画像データの1つまたはそれを上回るフレームと関連付けられた光を投影するためのマイクロプロジェクタのアレイであって、前記マイクロプロジェクタのアレイは、前記ユーザの瞳孔の場所に対して位置付けられ、前記光は、前記ユーザの瞳孔の中に投影される、マイクロプロジェクタを備える、システム。
(項目408)
前記第1および第2の光ビームは、重畳される、項目407に記載のファイバ走査ディスプレイ。
(項目409)
前記第1および第2の光ビームは、少なくとも部分的に、前記研磨された束状ファイバの臨界角に基づいて、偏向される、項目407に記載のファイバ走査ディスプレイ。
(項目410)
前記研磨された束状ファイバは、前記ディスプレイの分解能を増加させるために使用される、項目407に記載のファイバ走査ディスプレイ。
(項目411)
前記研磨された束状ファイバは、明視野を作成するために使用される、項目407に記載のファイバ走査ディスプレイ。
(項目412)
システムであって、
ユーザに提示されるべき画像データの1つまたはそれを上回るフレームと関連付けられた光を投影するためのマイクロプロジェクタのアレイであって、前記マイクロプロジェクタのアレイは、前記ユーザの瞳孔の場所に対して位置付けられ、前記光は、前記ユーザの瞳孔の中に投影される、マイクロプロジェクタと、
前記マイクロプロジェクタのアレイに結合され、前記ユーザの瞳孔の中に投影される光を修正するための光学要素と、
を備える、システム。
(項目413)
システムであって、
光ビームを伝送するための複数のマルチコアファイバであって、前記複数のビームは、ともに結合される、複数のマルチコアファイバと、
前記複数のマルチコアファイバをともに束化するための結合要素であって、マルチコアファイバの束は、前記束状ファイバの第1のファイバから伝送された第1の光ビームが第1の経路長を有し、前記束状ファイバの第2のファイバから伝送された第2の光ビームが第2の経路長を有するように、前記ファイバの縦軸に対して臨界角で研磨され、前記第1の経路長は、前記第1の光ビームが前記第2の光ビームに対して位相がずれるように、前記第2の経路長と異なる、結合要素と、
を備える、システム。
(項目414)
前記第1および第2の光ビームは、重畳される、項目412または413に記載のシステム。
(項目415)
前記第1および第2の光ビームは、少なくとも部分的に、前記研磨された束状ファイバの臨界角に基づいて、偏向される、項目412または413に記載のシステム。
(項目416)
前記研磨された束状ファイバは、前記ディスプレイの分解能を増加させるために使用される、項目412または413に記載のシステム。
(項目417)
前記研磨された束状ファイバは、明視野を作成するために使用される、項目412または413に記載のシステム。
(項目418)
仮想コンテンツをユーザに表示するためのシステムであって、
画像データの1つまたはそれを上回るフレームを提供するための画像発生源と、
前記画像データの1つまたはそれを上回るフレームと関連付けられた光ビームを伝送するための複数の光ファイバコアと、
前記複数の光ファイバコアに結合され、コリメートされた光を前記光ファイバコアから受光し、前記光ビームを前記ユーザの眼に送達するための光学要素であって、前記光ビームは、第1の光ビームが第1の角度でユーザの眼の一部に送達され、第2の光ビームが第2の角度で前記ユーザの眼の同一部分に送達されるように、複数の角度で前記ユーザの眼に送達され、前記第1の角度は、前記第2の角度と異なる、光学要素と、
を備える、システム。
(項目419)
前記光学要素は、導波管である、項目418に記載のシステム。
(項目420)
前記光ファイバコアを通る光の伝送を変調させるための位相変調器をさらに備える、項目418に記載のシステム。
(項目421)
方法であって、
画像データの1つまたはそれを上回るフレームを提供するステップと、
前記画像データの1つまたはそれを上回るフレームと関連付けられた光ビームを複数の光ファイバコアを通して伝送するステップと、
前記光ビームを前記ユーザの眼に複数の角度で送達するステップと、
を含む、方法。
(項目422)
前記複数の光ファイバコアの位相遅延を変調させるステップをさらに含む、項目421に記載の方法。
(項目423)
光学要素を前記複数の光ファイバコアに結合するステップをさらに含む、項目421に記載の方法。
(項目424)
前記光学要素は、導波管である、項目423に記載の方法。
(項目425)
前記光学要素は、自由形状光学である、項目423に記載の方法。
(項目426)
前記光学要素は、DOEである、項目423に記載の方法。
(項目427)
前記光学要素は、SGOである、項目423に記載の方法。
(項目428)
仮想現実ディスプレイシステムであって、
ユーザに提示されるべき1つまたはそれを上回る画像と関連付けられた光ビームを発生させるための複数の光ファイバコアと、
前記複数の光ファイバコアに結合され、前記光ビームを変調させるための複数の位相変調器であって、前記複数の光ビームの結果として発生される波面に影響を及ぼす様式で前記光を変調させる、複数の位相変調器と、
を備える、システム。
(項目429)
1つまたはそれを上回る光ファイバコアは、1つまたはそれを上回る角度で偏向される、項目428に記載の仮想現実ディスプレイシステム。
(項目430)
前記複数の光ファイバコアの光ファイバは、GRINレンズに結合される、項目428に記載の仮想現実ディスプレイシステム。
(項目431)
前記複数の光ファイバコアは、前記光ファイバコアを走査するように物理的に作動される、項目428に記載の仮想現実ディスプレイシステム。
(項目432)
方法であって、
ユーザに提示されるべき画像データの1つまたはそれを上回るフレームを提供するステップと、
複数の光ファイバコアを通して、前記画像データの1つまたはそれを上回るフレームと関連付けられた光を投影するステップと、
複数の位相変調器を通して、前記複数の光ファイバコアによって生成される凝集波面に影響を及ぼす様式で前記複数の光ファイバコアによって投影される光を変調させるステップと、
を含む、方法。
(項目433)
前記1つまたはそれを上回る光ファイバコアによって投影される光は、1つまたはそれを上回る角度で偏向される、項目432に記載の方法。
(項目434)
1つまたはそれを上回る光ファイバコアは、GRINレンズに結合される、項目432に記載の方法。
(項目435)
前記光学光ビームを走査するステップをさらに含み、前記複数の光ファイバコアは、前記光ファイバコアを走査するように物理的に作動される、項目432に記載の方法。
(項目436)
仮想コンテンツを表示するためのシステムであって、
ユーザに提示されるべき画像と関連付けられた光ビームを伝送するための光ファイバコアのアレイと、
前記光ファイバコアのアレイに結合され、前記光ファイバコアのアレイによって出力される複数の光ビームを単一節点を通して偏向させるためのレンズであって、前記レンズは、前記光ファイバコアの移動が前記レンズを移動させるように、前記光ファイバコアに物理的に取り付けられ、前記単一節点は、走査される、レンズと、
を備える、システム。
(項目437)
前記光ファイバコアのアレイによって出力される光ビームは、前記ユーザに提示されるべき画像のピクセルを表す、項目436に記載のシステム。
(項目438)
前記レンズは、GRINレンズである、項目436に記載のシステム。
(項目439)
前記光ファイバコアのアレイは、明視野を表示するために使用される、項目436に記載のシステム。
(項目440)
光ファイバコアの別のアレイによって出力された光ビームの別の集合は、前記ユーザに提示されるべき画像の別のピクセルを表す、項目436に記載のシステム。
(項目441)
複数の光ファイバコアのアレイは、組み合わせられ、前記ユーザに提示されるべき画像のピクセルを表す、項目436に記載のシステム。
(項目442)
前記光ファイバコアのアレイは、前記光ビームを前記ユーザの瞳孔の所定の部分に送達するように構成される、項目436に記載のシステム。
(項目443)
前記出力光ビームは、発散性である、項目436に記載のシステム。
(項目444)
前記出力光ビームは、収束性である、項目436に記載のシステム。
(項目445)
前記出力光ビームの開口数は、前記個々の光ファイバコアによって伝送された光ビームに対して増加される、項目436に記載のシステム。
(項目446)
前記開口数の増加は、より高い分解能を可能にする、項目445に記載のシステム。
(項目447)
前記光ファイバコアのアレイは、第1の光ファイバを通して進行する第1の光ビームの経路長が、第2の光ファイバを通して進行する第2の光ビームと異なるような様式で斜角が付けられ、それによって、前記光ビームの複数の焦点距離が前記ユーザの眼に送達されることを可能にする、項目436に記載のシステム。
(項目448)
仮想コンテンツをユーザに表示するためのシステムであって、
画像データの1つまたはそれを上回るフレームと関連付けられた光を投影するための光ファイバコアのアレイであって、前記光ファイバコアのアレイの1つまたはそれを上回る光ファイバコアは、前記投影された光が偏向されるような角度で研磨され、前記研磨された角度は、光学要素に対して前記光ファイバコアのアレイの第1の光ファイバコアと第2の光ファイバコアとの間に経路長差を生じさせる、光ファイバコアのアレイと、
前記偏向された光ビームを受光し、それらを少なくとも1つの軸において走査するための光スキャナと、
を備える、システム。
(項目449)
仮想または拡張現実体験のうちの少なくとも1つをユーザに提供するためのシステムであって、
フレームと、
前記フレームによって担持され、前記フレームが前記ユーザによって装着されると、前記ユーザの少なくとも片眼の正面に位置付け可能である、マイクロプロジェクタのアレイと、
前記マイクロプロジェクタのアレイに通信可能に結合され、画像情報を前記マイクロプロジェクタに提供するためのローカルコントローラであって、前記ローカルコントローラは、少なくとも1つのプロセッサと、前記少なくとも1つのプロセッサに通信可能に結合される少なくとも1つの非一過性プロセッサ可読媒体とを備え、前記少なくとも1つの非一過性プロセッサ可読媒体は、前記少なくとも1つのプロセッサによって実行されると、前記少なくとも1つのプロセッサに、データの処理、キャッシュ、および記憶のうちの少なくとも1つを行わせ、前記画像情報を前記マイクロプロジェクタに提供し、仮想または拡張現実視覚体験のうちの少なくとも1つを前記ユーザに生成する、少なくとも1つのプロセッサ実行可能命令またはデータを記憶する、ローカルコントローラと、
を備える、システム。
(項目450)
前記フレームによって支持され、前記フレームが前記ユーザによって装着されると、前記マイクロプロジェクタからの光を前記ユーザの少なくとも片眼に向かって指向するように位置付けおよび配向される、少なくとも1つの反射体をさらに備える、項目449に記載のシステム。
(項目451)
前記マイクロプロジェクタは、複数の走査ファイバディスプレイの個別のものを備える、項目449に記載のシステム。
(項目452)
前記走査ファイバディスプレイはそれぞれ、個別のコリメートレンズをその遠位先端に有する、項目449に記載のシステム。
(項目453)
前記個別のコリメートレンズは、勾配屈折率(GRIN)レンズである、項目449に記載のシステム。
(項目454)
前記個別のコリメートレンズは、湾曲レンズである、項目449に記載のシステム。
(項目455)
前記個別のコリメートレンズは、前記個別の走査ファイバディスプレイの遠位先端に融合される、項目449に記載のシステム。
(項目456)
前記走査ファイバディスプレイは、個別の回折レンズをその遠位先端に有する、項目449に記載のシステム。
(項目457)
前記走査ファイバディスプレイはそれぞれ、拡散器をその遠位先端に有する、項目449に記載のシステム。
(項目458)
前記拡散器は、前記個別の遠位先端の中にエッチングされる、項目457に記載のシステム。
(項目459)
前記走査ファイバディスプレイはそれぞれ、個別のレンズをその遠位先端に有し、前記レンズは、刺激に応答して自由に振動するように十分な距離だけ前記遠位先端から延在する、項目449に記載のシステム。
(項目460)
前記走査ファイバディスプレイはそれぞれ、個別の反射体をその遠位先端に有し、前記反射体は、刺激に応答して自由に振動するように十分な距離だけ前記遠位先端から延在する、項目449に記載のシステム。
(項目461)
走査ファイバディスプレイはそれぞれ、個別の単一モード光ファイバを含む、項目460に記載のシステム。
(項目462)
走査ファイバディスプレイはそれぞれ、前記単一モード光ファイバの少なくとも遠位先端を移動させるように結合される、個別の機械的変換器を含む、項目460に記載のシステム。
(項目463)
前記個別の機械的変換器はそれぞれ、圧電アクチュエータである、項目462に記載のシステム。
(項目464)
各前記単一モード光ファイバコアは、遠位先端を有し、前記遠位先端は、半球状レンズ形状を有する、項目461に記載のシステム。
(項目465)
各前記単一モード光ファイバコアは、遠位先端を有し、前記遠位先端は、そこに添着された屈折レンズを有する、項目461に記載のシステム。
(項目466)
前記複数の単一モード光ファイバコアをともに保定する、透明ホルダ基板をさらに備える、項目461に記載のシステム。
(項目467)
前記透明ホルダ基板は、少なくとも、前記単一モード光ファイバコアのクラッディングの屈折率にほぼ一致する、屈折率を有する、項目461に記載のシステム。
(項目468)
前記透明ホルダ基板は、それぞれ角度付けられた複数の単一モード光ファイバコアを共通スポットに向かって保定する、項目461に記載のシステム。
(項目469)
前記複数の単一モード光ファイバコアを連動して移動させるように結合される少なくとも1つの機械的変換器をさらに備える、項目461に記載のシステム。
(項目470)
前記少なくとも1つの機械的変換器は、その一部が前記透明ホルダ基板から片持ち支持される、前記単一モード光ファイバコアの機械的共振周波数で、前記複数の単一モード光ファイバコアを振動させる、項目449に記載のシステム。
(項目471)
前記マイクロプロジェクタは、複数の平面導波管の個別のものを備え、前記平面導波管のそれぞれの一部は、ホルダ基板から片持ち支持されて延在する、項目449に記載のシステム。
(項目472)
前記複数の平面導波管を連動して移動させるように結合される少なくとも1つの機械的変換器をさらに備える、項目471に記載のシステム。
(項目473)
前記少なくとも1つの機械的変換器は、前記ホルダ基板を前記平面導波管の機械的共振周波数で振動させる、項目472に記載のシステム。
(項目474)
前記マイクロプロジェクタは、前記平面導波管の個別のものを前記ホルダ基板に対して移動させるように結合される複数の圧電アクチュエータの個別のものを備える、項目472に記載のシステム。
(項目475)
前記平面導波管はそれぞれ、前記平面導波管の個別の長さに沿って、全内部反射経路を定義し、前記平面導波管は、前記個別の全内部反射経路から外向きに光を伝搬するように動作可能な複数の電子的に切替可能な回折光学要素(DOE)の個別のものを備える、項目472に記載のシステム。
(項目476)
前記マイクロプロジェクタのアレイは、光ファイバコアのアレイを備え、それぞれ、遠位先端と、少なくとも1つの斜縁とを有する、項目449に記載のシステム。
(項目477)
前記少なくとも1つの斜縁は、前記遠位先端にあって、前記遠位先端は、研磨された遠位先端である、項目476に記載のシステム。
(項目478)
前記光ファイバコアはそれぞれ、反射表面をその前記個別の遠位先端に有する、項目477に記載のシステム。
(項目479)
前記遠位先端は、前記個別の光ファイバの縦軸に対して定義された臨界角で前記遠位先端に出力縁を有する、項目478に記載のシステム。
(項目480)
前記定義された臨界角は、前記個別の光ファイバの縦軸に対して約45度である、項目479に記載のシステム。
(項目481)
前記光の複数のビームを受光するための前記光ファイバコアの遠位端から出射する光の光学経路内の合焦レンズであって、前記ビームは、相互に位相がずれている、合焦レンズをさらに備える、項目449に記載のシステム。
(項目482)
前記光ファイバコアのうちの少なくとも1つをX−Yデカルト座標系内で移動させ、前記少なくとも1つの光ファイバによって放出される光をX−Zデカルト座標系内で移動させるように結合される、少なくとも1つの変換器をさらに備える、項目449に記載のシステム。
(項目483)
前記少なくとも1つの変換器は、前記光ファイバコアの片持ち支持される部分を前記片持ち支持される部分が延在する方向に垂直の方向に共振させる、第1の圧電アクチュエータである、項目449に記載のシステム。
(項目484)
前記光ファイバコアは、光ファイバコアの薄いリボンを備える、項目483に記載のシステム。
(項目485)
前記少なくとも1つの変換器は、前記光ファイバコアの少なくとも片持ち支持される部分を前記片持ち支持される部分が延在する方向に縦方向に移動させる、第2の圧電アクチュエータである、項目482に記載のシステム。
(項目486)
前記マイクロプロジェクタは、前記光ファイバコアのうちの少なくとも1つの縦軸に沿って低速走査を提供するように動作可能な少なくとも1つの単一軸鏡を含む、項目485に記載のシステム。
(項目487)
前記光ファイバコアのアレイは、マルチコアファイバを備える、項目449に記載のシステム。
(項目488)
前記マルチコアファイバは、約7つの複数の疎らに位置付けられたクラスタを単一導管内に含み、各クラスタは、3つの光ファイバコアを備え、各光ファイバは、3つの異なる光の色の個別のものを搬送する、項目487に記載のシステム。
(項目489)
前記マルチコアファイバは、約19の複数の疎らに位置付けられたクラスタを単一導管内に含み、各クラスタは、3つの光ファイバコアを備え、各光ファイバは、3つの異なる光の色の個別のものを搬送し、3つの異なる色の重複されたスポットの三連構造を生成する、項目487に記載のシステム。
(項目490)
前記マルチコアファイバは、少なくとも1つのクラスタを単一導管内に含み、前記クラスタは、それぞれ、少なくとも3つの光ファイバコアを備え、前記光ファイバコアはそれぞれ、少なくとも2つの異なる光の色を搬送する、項目487に記載のシステム。
(項目491)
前記マルチコアファイバは、少なくとも1つのクラスタを単一導管内に含み、前記少なくとも1つのクラスタは、4つの光ファイバコアを備え、各光ファイバは、4つの異なる光の色の個別のものを搬送し、前記4つの色のうちの1つは、赤外線または近赤外線である、項目490に記載のシステム。
(項目492)
前記マルチコアファイバは、複数のコアを密束内に含み、
前記コアを疎らな渦巻パターンで移動させるように結合される少なくとも1つの変換器をさらに備える、
項目490に記載のシステム。
(項目493)
前記少なくとも1つの斜縁は、前記遠位先端から内向きに離間される、項目476に記載のシステム。
(項目494)
前記少なくとも1つの斜縁は、研磨される、項目476に記載のシステム。
(項目495)
前記光ファイバコアのうちの少なくとも1つをX−Yデカルト座標系内で移動させ、前記少なくとも1つの光ファイバによって放出される光をX−Zデカルト座標系内で移動させるように結合される、少なくとも1つの変換器をさらに備える、項目494に記載のシステム。
(項目496)
前記光の複数のビームを受光するための前記光ファイバコアの斜縁から出射する光の光学経路内の合焦レンズであって、前記ビームは、相互に位相がずれている、合焦レンズをさらに備える、項目493に記載のシステム。
(項目497)
レーザと、
前記レーザの出力を前記マルチコアファイバのいくつかのコアに光学的に結合し、相互コヒーレンスを達成する、少なくとも1つの位相変調器と、
をさらに備える、項目483に記載のシステム。
(項目498)
前記マルチコアファイバのいくつかのコアの個別のものの入力端の上流に光学的に結合される、レンズレットアレイと、
前記複数のコリメートレンズと前記マルチコアファイバのコアの入力端との間に光学的に結合され、光を前記レンズレットアレイから前記マルチコアファイバのコアに偏向させる、プリズムアレイと、
をさらに備える、項目497に記載のシステム。
(項目499)
前記マルチコアファイバのいくつかのコアの個別のものの入力端の上流に光学的に結合される、レンズレットアレイと、
前記レンズレットアレイと前記マルチコアファイバのコアの入力端との間に光学的に結合され、光を前記レンズレットアレイから前記マルチコアファイバのコアに偏向させる、共有合焦レンズと、
をさらに備える、項目498に記載のシステム。
(項目500)
前記マイクロプロジェクタのアレイはさらに、少なくとも1つの反射体を備え、前記少なくとも1つの反射体は、走査パターンを生成し、前記光ファイバコアのアレイに光学的に結合されるように動作可能である、項目476に記載のシステム。
(項目501)
前記少なくとも1つの反射体は、多焦点ビームのラスター走査パターン、リサジュー走査パターン、または渦巻走査パターンのうちの少なくとも1つを生成するように動作可能である、項目500に記載のシステム。
(項目502)
前記マルチコアファイバの各コアは、重複しないように、画像平面の個別の部分をアドレス指定する、項目476に記載のシステム。
(項目503)
前記マルチコアファイバの各コアは、実質的に重複するように、画像平面の個別の部分をアドレス指定する、項目476に記載のシステム。
(項目504)
仮想コンテンツを表示するためのシステムであって、
ユーザに提示されるべき画像データの1つまたはそれを上回るフレームを提供するための画像源と、
ファイバ走査ディスプレイであって、前記ファイバ走査ディスプレイは、複数のファイバを備え、前記画像データの1つまたはそれを上回るフレームと関連付けられた光を投影し、前記複数のファイバは、アクチュエータを使用して走査される、ファイバ走査ディスプレイと、
明視野が前記ユーザに提示されるような様式で前記ファイバ走査ディスプレイを制御するためのプロセッサと、
を備える、システム。
(項目505)
前記アクチュエータは、前記ファイバ走査ディスプレイの全ファイバ間で共有される、項目504に記載のシステム。
(項目506)
各ファイバは、その個々のアクチュエータを有する、項目504に記載のシステム。
(項目507)
前記複数のファイバは、前記複数のファイバがともに移動するように、格子によって機械的に結合される、項目505に記載のシステム。
(項目508)
前記格子は、グラフェン平面である、項目507に記載のシステム。
(項目509)
前記格子は、軽量支柱である、項目507に記載のシステム。
(項目510)
仮想または拡張現実体験のうちの少なくとも1つをユーザに提供するためのシステムであって、
フレームと、
前記フレームによって担持され、前記フレームが前記ユーザによって装着されると、前記ユーザの少なくとも片眼の正面に位置付け可能である、ディスプレイシステムと、
前記ディスプレイシステムに通信可能に結合され、画像情報を前記ディスプレイシステムに提供する、ローカルコントローラであって、前記ローカルコントローラは、少なくとも1つのプロセッサと、前記少なくとも1つのプロセッサに通信可能に結合される少なくとも1つの非一過性プロセッサ可読媒体とを備え、前記少なくとも1つの非一過性プロセッサ可読媒体は、前記少なくとも1つのプロセッサによって実行されると、前記少なくとも1つのプロセッサに、データの処理、キャッシュ、および記憶のうちの少なくとも1つを行わせ、前記画像情報を前記ディスプレイに提供し、仮想または拡張現実視覚体験のうちの少なくとも1つを前記ユーザに生成する、少なくとも1つのプロセッサ実行可能命令またはデータを記憶する、ローカルコントローラと、
を備える、システム。
(項目511)
前記ディスプレイは、少なくとも1つの楔形状の導波管を備え、前記楔形状の導波管は、前記第1の楔形状の導波管の厚さを横断して相互に対向する少なくとも2つの平坦表面を有し、かつそれに沿って、前記楔形状の導波管の入射部分を介して前記楔形状の導波管に定義された角度で入射する光が、全内部反射を介して伝搬する、長さを有し、前記楔形状の導波管の厚さは、前記楔形状の導波管の長さに沿って線形に変動する、項目510に記載のシステム。
(項目512)
前記楔形状の導波管は、二峰性全内部反射を提供する、項目511に記載のシステム。
(項目513)
前記楔形状の導波管の入射部分に沿って個別の異なる場所において、前記楔形状の導波管に光学的に結合される、少なくとも2つのプロジェクタをさらに備える、項目510に記載のシステム。
(項目514)
前記楔形状の導波管の入射部分に沿って個別の異なる場所において、前記楔形状の導波管に光学的に結合される、複数のプロジェクタの第1の線形アレイをさらに備える、項目510に記載のシステム。
(項目515)
前記複数のプロジェクタの第1の線形アレイのプロジェクタは、走査ファイバディスプレイである、項目514に記載のシステム。
(項目516)
前記楔形状の導波管の入射部分に沿って前記楔形状の導波管に光学的に結合される、複数の空間光変調器のスタックをさらに備える、項目510に記載のシステム。
(項目517)
前記楔形状の導波管の入射部分に沿って1つまたはそれを上回る場所において、前記楔形状の導波管に光学的に結合される、マルチコア光ファイバをさらに備える、項目510に記載のシステム。
(項目518)
前記プロジェクタの第1の線形アレイのプロジェクタは、前記楔形状の導波管に光学的に結合され、光を前記楔形状の導波管の中に第1の角度で投入し、
前記楔形状の導波管の入射部分に沿って個別の異なる場所において、前記楔形状の導波管に光学的に結合される、複数のプロジェクタの第2の線形アレイであって、前記プロジェクタの第2の線形アレイのプロジェクタは、前記楔形状の導波管に光学的に結合され、光を前記楔形状の導波管の中に第2の角度で投入し、前記第2の角度は、前記第1の角度と異なる、第2の線形アレイをさらに備える、項目510に記載のシステム。
(項目519)
前記入射部分は、前記楔形状の導波管の縦方向端である、項目510に記載のシステム。
(項目520)
前記入射部分は、前記楔形状の導波管の側方縁である、項目510に記載のシステム。
(項目521)
前記入射部分は、前記楔形状の導波管の平坦表面の1つである、項目510に記載のシステム。
(項目522)
プロジェクタに光学的に結合され、前記プロジェクタから受光された光の角度を変化させ、前記光を前記楔形状の導波管内で前記光の全内部反射を達成する角度で前記楔形状の導波管に光学的に結合する、少なくとも1つの光学構成要素をさらに備える、項目510に記載のシステム。
(項目523)
仮想コンテンツをユーザに表示するためのシステムであって、
前記ユーザに提示されるべき画像データの1つまたはそれを上回るフレームと関連付けられた光ビームを投影するためのマイクロプロジェクタのアレイであって、前記マイクロプロジェクタのアレイの1つまたはそれを上回るマイクロプロジェクタに対して可動であるように構成可能である、マイクロプロジェクタと、
前記マイクロプロジェクタのアレイを格納するためのフレームと、
前記1つまたはそれを上回る光ビームが、前記マイクロプロジェクタのアレイに対して、前記1つまたはそれを上回るマイクロプロジェクタの位置の関数として変調され、それによって、前記ユーザへの明視野画像の送達を可能にするような様式で前記マイクロプロジェクタのアレイの1つまたはそれを上回るマイクロプロジェクタに動作可能に結合され、前記1つまたはそれを上回るプロジェクタから伝送された1つまたはそれを上回る光ビームを制御するためのプロセッサと、
を備える、システム。
(項目524)
前記マイクロプロジェクタのアレイのマイクロプロジェクタは、レンズに結合される、項目523に記載のシステム。
(項目525)
前記マイクロプロジェクタのアレイは、前記ユーザに提示されるべき画像の所望の分解能に基づく様式で配列される、項目523に記載のシステム。
(項目526)
前記マイクロプロジェクタのアレイは、所望の視野に基づいて配列される、項目523に記載のシステム。
(項目527)
前記複数のマイクロプロジェクタの光ビームは、重複する、項目523に記載のシステム。
(項目528)
アクチュエータをさらに備え、前記アクチュエータは、1つまたはそれを上回るマイクロプロジェクタに結合され、前記アクチュエータは、前記1つまたはそれを上回るマイクロプロジェクタを移動させるように構成可能である、項目523に記載のシステム。
(項目529)
前記アクチュエータは、複数のマイクロプロジェクタに結合される、項目523に記載のシステム。
(項目530)
前記アクチュエータは、単一マイクロプロジェクタに結合される、項目523に記載のシステム。
(項目531)
前記マイクロプロジェクタのアレイのマイクロプロジェクタは、格子に機械的に結合される、項目523に記載のシステム。
(項目532)
前記格子は、グラフェンシートである、項目531に記載のシステム。
(項目533)
前記格子は、カーボンナノチューブのマトリクスである、項目531に記載のシステム。
(項目534)
複数のマイクロプロジェクタは、前記複数のマイクロプロジェクタが全て同一片持ち支持長であるように、レーザ切断デバイスを介して切断される、項目523に記載のシステム。
(項目535)
仮想または拡張現実ディスプレイのユーザの眼の角膜と界面接触するコンタクトレンズであって、
部分的半球状基板と、選択フィルタであって、光ビームをユーザの眼に選択的に通過させるように構成される、選択フィルタとを備える、コンタクトレンズ。
(項目536)
前記選択フィルタは、ノッチフィルタである、項目535に記載のコンタクトレンズ。
(項目537)
前記ノッチフィルタは、約450nm(ピーク青色)における波長を実質的に遮断し、前記電磁スペクトルの可視部分内の他の波長を実質的に通過させる、項目535に記載のコンタクトレンズ。
(項目538)
前記ノッチフィルタは、約530nm(緑色)における波長を実質的に遮断し、前記電磁スペクトルの可視部分内の他の波長を実質的に通過させる、項目535に記載のコンタクトレンズ。
(項目539)
前記ノッチフィルタは、約650nmにおける波長を実質的に遮断し、前記電磁スペクトルの可視部分内の他の波長を実質的に通過させる、項目535に記載のコンタクトレンズ。
(項目540)
前記ノッチフィルタは、前記基板によって担持される誘電材料の複数の層を備える、項目539に記載のコンタクトレンズ。
(項目541)
前記フィルタは、1.5mm未満の直径のピンホール開口部を有する、項目539に記載のコンタクトレンズ。
(項目542)
前記ピンホール開口部は、複数の波長の光ビームが通過することを可能にする、項目541に記載のコンタクトレンズ。
(項目543)
前記ピンホールのサイズは、少なくとも部分的に、前記ディスプレイの所望の焦点深度に基づいて、変動される、項目539に記載のコンタクトレンズ。
(項目544)
複数の動作モードをさらに備える、項目539に記載のコンタクトレンズ。
(項目545)
前記仮想コンテンツの多焦点深度ディスプレイ構成をさらに備える、項目539に記載のコンタクトレンズ。
(項目546)
前記ユーザの眼の遠近調節を判定するための遠近調節追跡モジュールをさらに備える、項目539に記載のコンタクトレンズ。
(項目547)
特定のディスプレイオブジェクトの焦点深度が、少なくとも部分的に、前記判定された遠近調節に基づいて、変動される、項目539に記載のコンタクトレンズ。
(項目548)
画像が、導波管を通して中継され、前記中継された画像は、特定の焦点深度と関連付けられる、項目539に記載のコンタクトレンズ。
(項目549)
仮想コンテンツをユーザに表示するための方法であって、
ユーザに提示されるべき画像データの1つまたはそれを上回るフレームを提供するステップと、
前記画像データの1つまたはそれを上回るフレームと関連付けられた光を投影するステップと、
前記ユーザの瞳孔に結合される部分的半球状基板を通して、前記投影された光を受光し、前記ユーザの瞳孔への前記光ビームを選択的にフィルタリングするステップと、
を含む、方法。
(項目550)
前記光は、ノッチフィルタを通してフィルタリングされる、項目549に記載の方法。
(項目551)
前記ノッチフィルタは、約450nm(ピーク青色)における波長を実質的に遮断し、前記電磁スペクトルの可視部分内の他の波長を実質的に通過させる、項目550に記載の方法。
(項目552)
前記ノッチフィルタは、約530nm(緑色)における波長を実質的に遮断し、前記電磁スペクトルの可視部分内の他の波長を実質的に通過させる、項目550に記載の方法。
(項目553)
前記ノッチフィルタは、約650nmにおける波長を実質的に遮断し、前記電磁スペクトルの可視部分内の他の波長を実質的に通過させる、項目550に記載の方法。
(項目554)
前記ノッチフィルタは、前記基板によって担持される誘電材料の複数の層を備える、項目550に記載の方法。
(項目555)
前記フィルタは、1.5mm未満の直径のピンホール開口部を有する、項目550に記載の方法。
(項目556)
前記ピンホール開口部は、複数の波長の光ビームが通過することを可能にする、項目555に記載の方法。
(項目557)
前記ピンホールのサイズは、少なくとも部分的に、前記ディスプレイの所望の焦点深度に基づいて、変動される、項目555に記載の方法。
(項目558)
前記部分的半球状基板は、コンタクトレンズである、項目549に記載の方法。
(項目559)
仮想コンテンツをユーザに表示するためのシステムであって、
画像データの1つまたはそれを上回るフレームと関連付けられた光をユーザの眼に投影するための光投影システムであって、前記画像データと関連付けられた複数のピクセルに対応する光を投影するように構成される、光投影システムと、
前記ユーザに表示される前記複数のピクセルの焦点深度を変調させるためのプロセッサと、
を備える、システム。
(項目560)
前記焦点深度は、空間的に変調される、項目559に記載のシステム。
(項目561)
前記焦点深度は、経時的に変調される、項目559に記載のシステム。
(項目562)
前記画像データの1つまたはそれを上回るフレームを時系列様式で提供するための画像発生源をさらに備える、項目559に記載のシステム。
(項目563)
前記焦点深度は、フレーム毎ベースで変調される、項目559に記載のシステム。
(項目564)
前記光投影システムは、複数の光ファイバコアを備え、前記焦点深度は、前記光ファイバコアの一部が第1の焦点深度と関連付けられ、前記光ファイバコアの別の部分が第2の焦点深度と関連付けられるように、前記複数の光ファイバコアを横断して変調され、前記第1の焦点深度は、前記第2の焦点深度と異なる、項目559に記載のシステム。
(項目565)
特定のフレームの第1のディスプレイオブジェクトは、第1の焦点深度を通して表示され、前記特定のフレームの第2のディスプレイオブジェクトは、第2の焦点深度を通して表示され、前記第1の焦点深度は、前記第2の焦点深度と異なる、項目559に記載のシステム。
(項目566)
特定のフレームの第1のピクセルは、第1の焦点深度と関連付けられ、前記特定のフレームの第2のピクセルは、第2の焦点深度と関連付けられ、前記第1の焦点深度は、前記第2の焦点深度と異なる、項目559に記載のシステム。
(項目567)
前記ユーザの眼の遠近調節を判定するための遠近調節追跡モジュールをさらに備え、前記焦点深度は、少なくとも部分的に、前記判定された遠近調節に基づいて、変調される、項目559に記載のシステム。
(項目568)
前記光発生システムと関連付けられた光発生パターンは、前記判定された遠近調節に動的に従動される、項目567に記載のシステム。
(項目569)
前記パターンは、複数の光ファイバコアの走査パターンである、項目568に記載のシステム。
(項目570)
前記画像データの1つまたはそれを上回る部分をぼかすためのぼかしモジュールをさらに備え、前記ぼかしは、第1の走査パターンと第2の走査パターンまたは第1の分解能走査ピッチと第2の分解能走査ピッチとの間の遷移を平滑化するために作成される、項目559に記載のシステム。
(項目571)
仮想コンテンツをユーザに表示するためのシステムであって、
画像データの1つまたはそれを上回るフレームと関連付けられた光をユーザの眼に投影するための光投影システムであって、前記画像データと関連付けられた複数のピクセルに対応する光を投影するように構成される、光投影システムと、
前記ユーザに表示される前記複数のピクセルのサイズを変調させるためのプロセッサと、
を備える、システム。
(項目572)
前記光投影システムは、ファイバ走査ディスプレイである、項目571に記載のシステム。
(項目573)
前記投影された光は、走査パターンを通して表示される、項目572に記載のシステム。
(項目574)
前記プロセッサは、少なくとも部分的に、走査パターンのタイプに基づいて、特定のピクセルのサイズを変調させる、項目571に記載のシステム。
(項目575)
前記1つまたはそれを上回るピクセルのサイズは、少なくとも部分的に、前記走査パターンの走査線間の距離に基づいて、変調されてもよい、項目571に記載のシステム。
(項目576)
第1のピクセルのサイズは、同一フレーム内の第2のピクセルのサイズと異なる、項目571に記載のシステム。
(項目577)
仮想コンテンツをユーザに表示するための方法であって、
画像データの1つまたはそれを上回るフレームと関連付けられた光を投影するステップであって、前記投影された光の1つまたはそれを上回る光ビームは、1つまたはそれを上回るピクセルに対応し、光は、ファイバ走査ディスプレイを通して投影される、ステップと、
前記ユーザに表示される前記1つまたはそれを上回るピクセルのサイズを変調させるステップと、
を含む、方法。
(項目578)
特定のピクセルのサイズは、少なくとも部分的に、前記ファイバ走査ディスプレイの走査パターンに基づいて、変動される、項目577に記載の方法。
(項目579)
前記1つまたはそれを上回るピクセルのサイズは、少なくとも部分的に、前記走査パターンの走査線間の距離に基づいて、変調される、項目578に記載の方法。
(項目580)
前記1つまたはそれを上回るピクセルのサイズは、可変である、項目579に記載の方法。
(項目581)
仮想コンテンツをユーザに表示するためのシステムであって、
画像データの1つまたはそれを上回るフレームと関連付けられた光を送達する、ディスプレイシステムであって、複数のピクセルを備え、可変線ピッチを有する光を走査する、ディスプレイシステムと、
前記複数のピクセルの1つまたはそれを上回るピクセルの可変ぼかしを行い、前記1つまたはそれを上回るピクセルのサイズを修正するためのぼかしモジュールと、
ピクセルサイズが、少なくとも部分的に、前記ディスプレイシステムの線ピッチに基づいて、変動されるような様式で前記ぼかしモジュールを制御するためのプロセッサと、
を備える、システム。
(項目582)
前記ディスプレイシステムは、ファイバ走査システムである、項目581に記載のシステム。
(項目583)
前記ピクセルサイズは、拡大される、項目581に記載のシステム。
(項目584)
前記ピクセルサイズは、縮小される、項目581に記載のシステム。
(項目585)
前記ピッチ線は、疎らである、項目581に記載のシステム。
(項目586)
前記ピッチ線は、高密度である、項目581に記載のシステム。
(項目587)
仮想コンテンツをユーザに表示する方法であって、
前記ユーザが外界を前記視認光学を通して視認することを可能にする、光学透視視認光学を使用して、前記ユーザに提示されるべき画像データの1つまたはそれを上回るフレームと関連付けられた光を投影するステップと、
外界からの一部の光が、前記視認光学を通して通過し、前記ユーザの眼に到達するように、前記ユーザの眼への途中で前記視認光学を通して通過するであろう、外界からの光の少なくとも一部を選択的に減衰させるステップと、
を含む、方法。
(項目588)
光ビームは、少なくとも部分的に、前記光ビームの入射角度に基づいて、選択的に減衰される、項目587に記載の方法。
(項目589)
前記フレームの異なる部分は、異なる量まで減衰される、項目587に記載の方法。
(項目590)
前記減衰された光ビームの焦点レベルは、変動される、項目587に記載の方法。
(項目591)
仮想コンテンツをユーザに表示するためのシステムであって、
画像データの1つまたはそれを上回るフレームを提供するための画像発生源と、
前記スタックが、前記画像データの1つまたはそれを上回るフレームと関連付けられた光を前記ユーザに送達するように位置付けられる、2つまたはそれを上回る空間光変調器(SLM)のスタックであって、外部環境からの光を空間的に減衰させる、SLMと、
光ビームが前記SLMの1つまたはそれを上回るセルを通して通過する角度が変調されるような様式で、前記SLMのスタックを制御するためのプロセッサと、
を備える、システム
(項目592)
ディスプレイ光学の集合をさらに備え、前記ディスプレイ光学の集合は、前記ユーザの眼と前記外部環境との間に位置付けられる、項目591に記載のシステム。
(項目593)
前記SLMのスタックのSLMは、コレステリックLCDである、項目591に記載のシステム。
(項目594)
前記SLMのうちの少なくとも1つは、コレステリックLCDである、項目591に記載のシステム。
(項目595)
前記SLMのスタックは、前記ユーザが外界を前記SLMのスタックを通して視認するように位置付けられ、前記SLMは、少なくとも半透明である、項目591に記載のシステム。
(項目596)
前記空間光変調器アレイは、いくつかの液晶アレイ、デジタル光処理システムのいくつかのデジタル鏡デバイス要素、いくつかの微小電気機械システム(MEMS)アレイ、またはいくつかのMEMSシャッタのうちの少なくとも1つを備える、項目591に記載のシステム。
(項目597)
少なくとも1つの光学構成要素を備えるオクルーダをさらに備え、前記プロセッサは、前記オクルーダの少なくとも1つの光学構成要素を制御し、暗仮想オブジェクトの暗視野表現を生成する、項目591に記載のシステム。
(項目598)
仮想コンテンツを表示するためのシステムであって、
空間光変調器のアレイであって、空間光変調器のアレイは、光パターンを発生させるように構成され、少なくとも2つの変調器を備える、空間光変調器のアレイと、
前記少なくとも2つの空間変調器がモアレパターンを形成するような様式で前記空間変調器のアレイを制御するためのプロセッサであって、前記モアレパターンは、前記少なくとも2つの空間光変調器上に形成される光パターンの周期と異なる周期で光を減衰させる、周期的空間パターンである、プロセッサと、
を備える、システム
(項目599)
前記空間光変調器アレイは、相互に光学的に結合され、モアレ効果を介して光の通過を制御する、少なくとも2つの空間光変調器アレイを備える、項目598に記載のシステム。
(項目600)
前記少なくとも2つの空間光変調器アレイはそれぞれ、個別の減衰パターンを持つ、項目599に記載のシステム。
(項目601)
前記少なくとも2つの空間光変調器アレイはそれぞれ、その上またはその中に印刷、エッチング、または別様に刻設される個別の微細ピッチ正弦波パターンを持つ、項目598に記載のシステム。
(項目602)
前記少なくとも2つの空間光変調器アレイは、相互に位置合わせされる、項目599に記載のシステム。
(項目603)
前記少なくとも2つの空間光変調器アレイはそれぞれ、個別の減衰パターンを持つ、項目599に記載のシステム。
(項目604)
仮想コンテンツをユーザに表示するためのシステムであって、
画像データの1つまたはそれを上回るフレームと関連付けられた光を提供するための光発生源であって、空間光変調器である、光発生源と、
前記ピンホールアレイのピンホールが前記空間光変調器の複数のセルから光を受光するように、前記空間光変調器に対する様式で位置付けられる、ピンホールアレイであって、前記ピンホールを通して通過する第1の光ビームは、前記ピンホールを通して通過する第2の光ビームと異なる角度に対応し、空間光変調器のセルは、光を選択的に減衰させる、ピンホールアレイと、
を備える、システム。
(項目605)
外部環境は、前記ピンホールアレイおよび前記SLMを通して視認され、光ビームは、少なくとも部分的に、前記光ビームの入射角度に基づいて、選択的に減衰される、項目604に記載のシステム。
(項目606)
視野の異なる部分からの光は、選択的に減衰される、項目604に記載のシステム。
(項目607)
それを通る光の伝送を減衰させるように選択的に動作可能である選択減衰層であって、前記ピンホール層と光学的に直列である、選択減衰層をさらに備える、項目604に記載のシステム。
(項目608)
前記選択減衰層は、個別の減衰パターンを持つ、液晶アレイ、デジタル光プロジェクタシステム、または空間光変調器アレイを備える、項目607に記載のシステム。
(項目609)
前記ピンホールアレイは、前記ユーザの眼の角膜から約30mmの距離に設置され、前記選択減衰パネルは、前記眼から見て前記ピンホールアレイと反対に位置する、項目604に記載のシステム。
(項目610)
前記ピンホールアレイは、複数のピンホールを備え、前記プロセッサは、光が、光ビームが前記複数のピンホールを通して通過する角度の関数として減衰されるような様式で、前記SLMを制御し、それによって、凝集明視野を生成する、項目604に記載のシステム。
(項目611)
前記凝集明視野は、所望の焦点距離で遮閉を生じさせる、項目610に記載のシステム。
(項目612)
システムであって、
画像データの1つまたはそれを上回るフレームと関連付けられた光を提供するための光発生源であって、空間光変調器である、光発生源と、
前記レンズアレイのレンズが前記空間光変調器の複数のセルから光を受光するように、前記空間光変調器に対する様式で位置付けられる、レンズアレイであって、前記レンズで受光された第1の光ビームは、前記レンズで受光された第2の光ビームと異なる角度に対応し、空間光変調器のセルは、光を選択的に減衰させる、レンズアレイと、
を備える、システム。
(項目613)
外部環境は、前記レンズアレイおよび前記SLMを通して視認され、光ビームは、少なくとも部分的に、前記光ビームの入射角度に基づいて、選択的に減衰される、項目612に記載のシステム。
(項目614)
視野の異なる部分からの光は、選択的に減衰される、項目612に記載のシステム。
(項目615)
前記レンズアレイは、複数のレンズを備え、前記プロセッサは、光が、光ビームが前記複数のレンズで受光される角度の関数として減衰されるような様式で、前記SLMを制御し、それによって、凝集明視野を生成する、項目612に記載のシステム。
(項目616)
前記凝集明視野は、所望の焦点距離で遮閉を生じさせる、項目615に記載のシステム。
(項目617)
仮想コンテンツをユーザに表示するためのシステムであって、
画像データの1つまたはそれを上回るフレームと関連付けられた光を投影するための光プロジェクタと、
前記光を受光し、前記光の偏光を回転させるための少なくとも1つの偏光感受層と、
前記偏光感受層の偏光を変調させるための偏光変調器のアレイであって、前記アレイ内のセルの状態は、前記偏光感受層を通して通過する光の量を判定する、偏光変調器のアレイと、
を備える、システム。
(項目618)
前記システムは、眼近接構成で設置される、項目617に記載のシステム。
(項目619)
前記偏光変調器は、液晶アレイである、項目617に記載のシステム。
(項目620)
異なる射出瞳が前記偏光子を通して異なる経路を有するように、前記偏光子をオフセットするための視差障壁をさらに備える、項目617に記載のシステム。
(項目621)
前記偏光子は、xpol偏光子である、項目620に記載のシステム。
(項目622)
前記偏光子は、multiPol偏光子である、項目620に記載のシステム。
(項目623)
前記偏光子は、パターン化された偏光子である、項目620に記載のシステム。
(項目624)
前記光は、1つまたはそれを上回るMEMアレイと相互作用する、項目617に記載のシステム。
(項目625)
光を投影するためのSLMをさらに備え、前記SLMは、1つまたはそれを上回る光学要素間に位置付けられ、前記光学要素は、ゼロ倍率望遠鏡に対応する、項目618に記載のシステム。
(項目626)
前記ユーザは、前記ゼロ倍率望遠鏡を通して外部環境を視認する、項目625に記載のシステム。
(項目627)
少なくとも1つのSLMは、前記ゼロ倍率望遠鏡内の画像平面に位置付けられる、項目625に記載のシステム。
(項目628)
DMDをさらに備え、前記DMDは、透明基板に対応する、項目617に記載のシステム。
(項目629)
少なくとも1つの光学構成要素を備えるオクルーダをさらに備え、前記プロセッサは、前記オクルーダの少なくとも1つの光学構成要素を制御し、暗仮想オブジェクトの暗視野表現を生成する、項目628に記載のシステム。
(項目630)
1つまたはそれを上回るLCDをさらに備え、前記1つまたはそれを上回るLCDは、光ビームを選択的に減衰させる、項目628に記載のシステム。
(項目631)
1つまたはそれを上回るLCDをさらに備え、前記1つまたはそれを上回るLCDは、偏光回転子としての役割を果たす、項目617に記載のシステム。
(項目632)
前記オクルーダは、ルーバMEMデバイスである、項目629に記載のシステム。
(項目633)
前記ルーバMEMデバイスは、不透明であって、前記ルーバMEMデバイスは、入射角度をピクセル毎ベースで変化させる、項目632に記載のシステム。
(項目634)
前記オクルーダは、スライド式パネルMEMデバイスであって、前記スライド式パネルMEMデバイスは、前後に摺動し、遮閉の領域を修正する、項目632に記載のシステム。
(項目635)
仮想コンテンツを表示するための方法であって、
画像データの1つまたはそれを上回るフレームと関連付けられた光を投影するステップと、
前記投影された光を受光する基板において、偏光感受層を通して光の偏光を回転させるステップと、
光の偏光を変調させ、前記偏光層を通して通過する光を選択的に減衰させるステップと、
を含む、方法。
(項目636)
前記偏光変調器は、液晶アレイである、項目635に記載の方法。
(項目637)
異なる射出瞳が前記偏光子を通して異なる経路を有するように、前記偏光子をオフセットするための視差障壁をさらに含む、項目635に記載の方法。
(項目638)
前記偏光子は、xpol偏光子である、項目637に記載の方法。
(項目639)
前記偏光子は、multiPol偏光子である、項目637に記載の方法。
(項目640)
前記偏光子は、パターン化された偏光子である、項目637に記載の方法。
(項目641)
前記光は、1つまたはそれを上回るMEMアレイと相互作用する、項目617に記載の方法。
(項目642)
光を投影するためのSLMをさらに含み、前記SLMは、1つまたはそれを上回る光学要素間に位置付けられ、前記光学要素は、ゼロ倍率望遠鏡に対応する、項目636に記載の方法。
(項目643)
前記ユーザは、前記ゼロ倍率望遠鏡を通して外部環境を視認する、項目642に記載の方法。
(項目644)
少なくとも1つのSLMは、前記ゼロ倍率望遠鏡内の画像平面に位置付けられる、項目642に記載の方法。
(項目645)
DMDをさらに含み、前記DMDは、透明基板に対応する、項目635に記載の方法。
(項目646)
少なくとも1つの光学構成要素を備えるオクルーダをさらに含み、前記プロセッサは、前記オクルーダの少なくとも1つの光学構成要素を制御し、暗仮想オブジェクトの暗視野表現を生成する、項目635に記載の方法。
(項目647)
1つまたはそれを上回るLCDをさらに含み、前記1つまたはそれを上回るLCDは、光ビームを選択的に減衰させる、項目635に記載の方法。
(項目648)
1つまたはそれを上回るLCDをさらに備え、前記1つまたはそれを上回るLCDは、偏光回転子としての役割を果たす、項目635に記載の方法。
(項目649)
前記オクルーダは、ルーバMEMデバイスである、項目646に記載の方法。
(項目650)
前記ルーバMEMデバイスは、不透明であって、前記ルーバMEMデバイスは、入射角度をピクセル毎ベースで変化させる、項目649に記載の方法。
(項目651)
前記オクルーダは、スライド式パネルMEMデバイスであって、前記スライド式パネルMEMデバイスは、前後に摺動し、遮閉の領域を修正する、項目646に記載の方法。
(項目652)
仮想コンテンツを表示するためのシステムであって、
画像データの1つまたはそれを上回るフレームと関連付けられた光を提供するための光発生源であって、空間光変調器である、光発生源と、
微小電気機械(MEM)ルーバのアレイであって、前記MEMルーバは、実質的に透明の基板内に格納され、前記MEMルーバは、光がピクセルに送達される角度を変化させるように構成可能であって、前記ユーザに送達される第1のピクセルの角度は、前記ユーザに送達される第2のピクセルと異なる、MEMルーバと、
を備える、システム。
(項目653)
前記少なくとも1つの光学構成要素は、微小電気機械システム(MEMS)ルーバの第1のアレイを備える、項目652に記載のシステム。
(項目654)
前記MEMSルーバのアレイは、光学的に透明な基板によって担持される複数の実質的に不透明のルーバを備える、項目652に記載のシステム。
(項目655)
微小電気機械システム(MEMS)ルーバのアレイは、光をピクセル毎ベースで選択的に遮閉するために十分に微細なルーバピッチを有する、項目652に記載のシステム。
(項目656)
前記オクルーダの少なくとも1つの光学構成要素は、MEMSルーバの第2のアレイをさらに備え、前記MEMSルーバの第2のアレイは、前記MEMSルーバの第1のアレイとスタック構成にある、項目652に記載のシステム。
(項目657)
前記MEMSルーバのアレイは、光学的に透明な基板によって担持される複数の偏光ルーバを備え、前記ルーバのそれぞれの個別の偏光状態は、選択的に制御可能である、項目652に記載のシステム。
(項目658)
前記MEMSパネルの第1および第2のアレイのルーバは、偏光子である、項目652に記載のシステム。
(項目659)
前記オクルーダの少なくとも1つの光学構成要素は、フレーム内の移動のために搭載される微小電気機械システム(MEMS)パネルの第1のアレイを備える、項目652に記載のシステム。
(項目660)
前記MEMSパネルの第1のアレイのパネルは、前記フレーム内の移動のために摺動可能に搭載される、項目625に記載のシステム。
(項目661)
前記MEMSパネルの第1のアレイのパネルは、前記フレーム内の移動のために枢動可能に搭載される、項目652に記載のシステム。
(項目662)
前記MEMSパネルの第1のアレイのパネルは、前記フレーム内の移動のために平行移動可能かつ枢動可能に搭載される、項目652に記載のシステム。
(項目663)
前記パネルは、モアレパターンを生成するように可動である、項目652に記載のシステム。
(項目664)
前記オクルーダの少なくとも1つの光学構成要素はさらに、フレーム内の移動のために搭載されるMEMSパネルの第2のアレイを備え、前記第2のアレイは、前記第1のアレイとスタック構成にある、項目652に記載のシステム。
(項目665)
前記MEMSパネルの第1および第2のアレイのパネルは、偏光子である、項目652に記載のシステム。
(項目666)
前記オクルーダの少なくとも1つの光学構成要素は、反射体アレイを備える、項目652に記載のシステム。
(項目667)
システムであって、
外部環境からの光を受光し、前記光を1つまたはそれを上回る空間光変調器に指向するための少なくとも1つの導波管を備え、前記1つまたはそれを上回る空間光変調器は、前記ユーザの視野の異なる部分で受光された光を選択的に減衰させる、システム。
(項目668)
前記少なくとも1つの導波管は、第1および第2の導波管を備え、前記第2の導波管は、前記SLMから出射する光を前記ユーザの眼に送達するように構成される、項目667に記載のシステム。
(項目669)
方法であって、
外部環境からの光を受光するステップと、
前記光を選択減衰器に指向するステップと、
前記選択減衰器を通して、前記ユーザの視野の異なる部分で受光された光を選択的に減衰させるステップと、
を含む、方法。
(項目670)
前記少なくとも1つの導波管は、第1および第2の導波管を備え、前記第2の導波管は、前記SLMから出射する光を前記ユーザの眼に送達するように構成される、項目669に記載の方法。
(項目671)
前記選択減衰器は、DMDである、項目669に記載の方法。
(項目672)
前記空間光変調器は、DMDアレイである、項目669に記載の方法。
(項目673)
光は、1つまたはそれを上回る導波管を通して前記1つまたはそれを上回る空間光変調器に指向される、項目669に記載の方法。
(項目674)
光を前記導波管に戻るように再結合し、光を前記ユーザの眼に向かって部分的に出射させるステップをさらに含む、項目673に記載の方法。
(項目675)
前記導波管は、前記選択減衰器に実質的に垂直に配向される、項目673に記載の方法。
(項目676)
仮想コンテンツをユーザに表示するためのシステムであって、
画像データの1つまたはそれを上回るフレームと関連付けられた光を提供するための光発生源であって、複数のマイクロプロジェクタを備える、光発生源と、
光を前記複数のマイクロプロジェクタから受光し、光をユーザの眼に伝送するように構成される、導波管と、
を備える、システム。
(項目677)
前記マイクロプロジェクタは、線形アレイ内に設置される、項目676に記載のシステム。
(項目678)
前記マイクロプロジェクタは、前記導波管の1つの縁内に設置される、項目676に記載のシステム。
(項目679)
前記マイクロプロジェクタは、前記導波管の複数の縁内に設置される、項目676に記載のシステム。
(項目680)
前記マイクロプロジェクタは、2次元アレイ内に設置される、項目676に記載のシステム。
(項目681)
前記マイクロプロジェクタは、3次元アレイ内に設置される、項目676に記載のシステム。
(項目682)
前記マイクロプロジェクタは、前記基板の複数の縁に設置される、項目681に記載のシステム。
(項目683)
前記マイクロプロジェクタは、複数の角度に設置される、項目681に記載のシステム。
(項目684)
仮想コンテンツを表示するためのシステムであって、
画像データの1つまたはそれを上回るフレームを提供するための画像発生源であって、前記画像データは、ユーザに提示されるべき1つまたはそれを上回る仮想オブジェクトを備える、画像発生源と、
後光が前記1つまたはそれを上回る仮想オブジェクトの周囲で前記ユーザによって知覚されるような様式で前記1つまたはそれを上回る仮想オブジェクトをレンダリングするためのレンダリングエンジンと、
を備える、システム。
(項目685)
光減衰器をさらに備え、前記光減衰器は、前記ユーザの視野を横断して、前記後光の光強度を平衡化させる、項目684に記載のシステム。
(項目686)
仮想コンテンツを表示するための方法であって、
画像データの1つまたはそれを上回るフレームを提供するステップであって、前記画像データは、ユーザに提示されるべき1つまたはそれを上回る仮想オブジェクトを備える、ステップと、
後光が前記1つまたはそれを上回る仮想オブジェクトの周囲で前記ユーザによって知覚されるような様式で前記1つまたはそれを上回る仮想オブジェクトをレンダリングし、それによって、前記ユーザが、前記仮想オブジェクトを視認することを容易にし、前記仮想オブジェクトは、暗仮想オブジェクトである、ステップと、
を含む、方法。
(項目687)
外部環境から受光する光を光減衰器を通して選択的に減衰させるステップをさらに含み、前記光減衰器は、前記ユーザの視野を横断して、前記後光の光強度を平衡化させる、項目686に記載の方法。
(項目688)
仮想コンテンツを表示するためのシステムであって、
実環境のビューを捕捉するためのカメラシステムと、
前記実環境のビューにわたって重畳される1つまたはそれを上回る仮想オブジェクトを表示する、光学透視システムであって、前記捕捉されたビューは、前記ユーザに提示される1つまたはそれを上回る仮想オブジェクトをレンダリングするために使用される、光学透視システムと、
暗仮想オブジェクトが前記1つまたはそれを上回る実オブジェクトと対照的に可視となるように、少なくとも、1つまたはそれを上回る実オブジェクトと前記1つまたはそれを上回る仮想オブジェクトとの間の相関に基づいて、前記実環境のビューの光強度を変調させるための光強度モジュールと、
を備える、システム。
(項目689)
前記捕捉されたビューは、後光を1つまたはそれを上回る仮想オブジェクトの周囲に発生させるために使用され、前記後光は、空間を横断して徐々に薄れる、項目688に記載のシステム。
(項目690)
光減衰器をさらに備え、前記光減衰器は、前記ユーザの視野を横断して、前記後光の光強度を平衡化させる、項目688に記載のシステム。
(項目691)
拡張現実ディスプレイシステムを駆動させる方法であって、
第1の仮想オブジェクトをユーザの視野上の場所にレンダリングするステップと、
前記第1の仮想オブジェクトのレンダリングと実質的に並行して、前記ユーザの視野内に視覚的強調を前記レンダリングされた第1の仮想オブジェクトに少なくとも空間的に近接してレンダリングするステップと、
を含む、方法。
(項目692)
視覚的強調をレンダリングするステップは、強度勾配を用いて前記視覚的強調をレンダリングするステップを含む、項目691に記載の方法。
(項目693)
視覚的強調をレンダリングするステップは、前記視覚的強調の周縁に近接してぼかしを用いて前記視覚的強調をレンダリングするステップを含む、項目691に記載の方法。
(項目694)
前記レンダリングされた第1の仮想オブジェクトに少なくとも空間的に近接して視覚的強調をレンダリングするステップは、前記レンダリングされた第1の仮想オブジェクトに空間的に近接して後光視覚効果をレンダリングするステップを含む、項目691に記載の方法。
(項目695)
前記レンダリングされた第1の仮想オブジェクトに空間的に近接して後光視覚効果をレンダリングするステップは、前記後光視覚効果を前記レンダリングされた第1の仮想オブジェクトより明るくレンダリングするステップを含む、項目694に記載の方法。
(項目696)
前記後光視覚効果を前記レンダリングされた第1の仮想オブジェクトより明るくレンダリングするステップは、前記レンダリングされた第1の仮想オブジェクトが暗度の閾値より暗いという判定に応答する、項目694に記載の方法。
(項目697)
後光視覚効果をレンダリングするステップは、知覚される3次元空間内の前記レンダリングされた第1の仮想オブジェクトと別個の焦点面において、前記後光視覚効果をレンダリングするステップを含む、項目694に記載の方法。
(項目698)
後光視覚効果をレンダリングするステップは、強度勾配を用いて前記後光視覚効果をレンダリングするステップを含む、項目694に記載の方法。
(項目699)
後光視覚効果をレンダリングするステップは、前記第1の仮想オブジェクトのレンダリングに適用される遮閉から生じる暗後光に一致し、前記遮閉の暗視野効果を補償する、強度勾配を用いて前記後光視覚効果をレンダリングするステップを含む、項目694に記載の方法。
(項目700)
後光視覚効果をレンダリングするステップは、前記後光視覚効果の周縁に近接してぼかしを用いて前記後光視覚効果をレンダリングするステップを含む、項目694に記載の方法。
(項目701)
前記レンダリングされた第1の視覚的オブジェクトは、非円形周縁を有し、前記レンダリングされた後光視覚効果は、前記非円形周縁に合致する、項目691に記載の方法。
(項目702)
前記レンダリングされた第1の仮想オブジェクトに少なくとも空間的に近接して視覚的強調をレンダリングするステップは、知覚される3次元空間内の前記レンダリングされた第1の仮想オブジェクトと別個の焦点面において、前記視覚効果をレンダリングするステップを含む、項目691に記載の方法。
(項目703)
知覚される3次元空間内の前記レンダリングされた第1の仮想オブジェクトと別個の焦点面において、前記視覚効果をレンダリングするステップは、前記レンダリングされた第1の仮想オブジェクトがレンダリングされた焦点面に対して、前記ユーザから比較的に離間された焦点面において、前記視覚効果をレンダリングするステップを含む、項目691に記載の方法。
(項目704)
仮想コンテンツを表示するためのシステムであって、
ユーザに提示されるべき画像データの1つまたはそれを上回るフレームを提供するための画像発生源であって、前記画像データの1つまたはそれを上回るフレームは、少なくとも1つの黒色仮想オブジェクトを備える、画像発生源と、
前記画像データの1つまたはそれを上回るフレームをレンダリングするためのレンダリングエンジンであって、前記黒色仮想オブジェクトが前記ユーザに可視となるように、前記黒色仮想オブジェクトを青色仮想オブジェクトとしてレンダリングする、レンダリングエンジンと、
を備える、方法。
(項目705)
第1の仮想オブジェクトをユーザの視野上の場所にレンダリングするステップは、最初に、前記第1の仮想オブジェクトの任意の黒色調を濃青色に変化させるステップを含む、項目704に記載のシステム。
(項目706)
仮想コンテンツの表示のための光ビームを伝送するためのシステムであって、
少なくとも1つの導波管であって、前記少なくとも1つの導波管の長さを横断して、第1の端部と、前記第1の端部から離間される第2の端部とを有し、その長さに沿って、前記個別の導波管に定義された角度で入射する光は、全内部反射を介して伝搬する、少なくとも1つの導波管と、
少なくとも、前記少なくとも1つの導波管の第1の端部に近接して位置付けられ、光を前記少なくとも1つの導波管の前記第1の端部に戻るように光学的に反射結合するための少なくとも1つの縁反射体と、
少なくとも、前記少なくとも1つの導波管の第2の端部に近接して位置付けられ、光を前記少なくとも1つの導波管の前記第2の端部に戻るように光学的に反射結合するための少なくとも1つの縁反射体と、
を備える、システム。
(項目707)
前記少なくとも1つの導波管は、前記光の少なくとも一部を前記導波管から横方向外向きに再指向する、いくつかの横方向反射および/または回折表面を前記導波管の内部に有する、項目706に記載のシステム。
(項目708)
前記横方向反射および/または回折表面は、低回折効率回折光学要素(DOE)である、項目706に記載のシステム。
(項目709)
少なくとも、前記少なくとも1つの導波管の第1の端部に近接して位置付けられる、少なくとも1つの縁反射体は、少なくとも、前記少なくとも1つの導波管の第1の端部に近接して位置付けられる、複数の反射体を備える、項目706に記載のシステム。
(項目710)
少なくとも、前記少なくとも1つの導波管の第2の端部に近接して位置付けられる、少なくとも1つの縁反射体は、少なくとも、前記少なくとも1つの導波管の第2の端部に近接して位置付けられる、複数の反射体を備える、項目706に記載のシステム。
(項目711)
少なくとも1つの導波管は、単一導波管である、項目706に記載のシステム。
(項目712)
仮想コンテンツの表示のための光ビームを伝送するためのシステムであって、
複数の平面導波管を備える、導波管アセンブリであって、前記平面導波管はそれぞれ、それぞれ、前記平面導波管の厚さを横断して相互に対向する少なくとも2つの平坦平行主要面と、第1の端部と、その長さに沿って、前記個別の導波管に定義された角度で入射する光が、全内部反射を介して伝搬する、前記導波管の長さを横断して前記第1の端部に対向する、第2の端部と、前記導波管の幅を横断して相互に対向する、2つの平坦主要縁とを有し、前記複数の平面導波管は、前記平面導波管の厚さ方向と平衡な第1の軸に沿って、かつ前記平面導波管の幅と平行な第2の軸に沿って、スタックされた構成にあって、平面導波管の3次元アレイを形成する、導波管アセンブリと、
を備える、システム。
(項目713)
前記第1の軸の方向に、少なくとも3つの平面導波管がスタックされる、項目712に記載のシステム。
(項目714)
前記第2の軸の方向に、少なくとも3つの平面導波管がスタックされる、項目713に記載のシステム。
(項目715)
前記第2の軸の方向に、少なくとも3つの平面導波管がスタックされる、項目713に記載のシステム。
(項目716)
前記第1の軸に沿った前記スタック内の連続平面導波管は、相互に直接隣接し、前記第2の軸に沿った前記スタック内の連続平面導波管は、相互に直接隣接する、項目712に記載のシステム。
(項目717)
前記導波管アセンブリはさらに、前記平面導波管のうちの少なくとも1つの少なくとも1つの表面上に担持される複数の反射層を備える、項目712に記載のシステム。
(項目718)
前記反射層は、完全反射金属コーティングを含む、項目717に記載のシステム。
(項目719)
前記反射層は、波長特有反射体を含む、項目717に記載のシステム。
(項目720)
前記反射層は、前記第1または前記第2の軸のうちの少なくとも1つに沿って、各連続対の前記平面導波管内の平面導波管を分離させる、項目717に記載のシステム。
(項目721)
前記反射層は、前記第1および第2の軸の両方に沿って、各連続対の前記平面導波管内の平面導波管を分離させる、項目717に記載のシステム。
(項目722)
いくつかの前記平面導波管はそれぞれ、それぞれ、前記個別の平面導波管によって受光された光の少なくとも一部を前記平面導波管から横方向外向きに再指向する、いくつかの横方向反射および/または回折表面を含む、項目712に記載のシステム。
(項目723)
前記横方向反射および/または回折表面は、前記個別の平面導波管の主要面間の個別の平面導波管内に狭入された回折光学要素を備える、項目712に記載のシステム。
(項目724)
前記回折光学要素は、焦点距離を変動させるように選択的に動作可能である、項目713に記載のシステム。
(項目725)
前記第1の軸は、湾曲軸であって、前記導波管アセンブリ内の少なくとも1つの集合内の平面導波管のそれぞれの主要縁のうちの少なくとも1つは、単一線上に合焦するように配向され、前記単一線は、前記平面導波管の長さに平行である、項目713に記載のシステム。
(項目726)
仮想コンテンツをユーザに表示するためのシステムであって、
画像データの1つまたはそれを上回るフレームと関連付けられた光を投影するための光プロジェクタであって、ファイバ走査ディスプレイである、光プロジェクタと、
光をユーザの眼に可変偏向させるための導波管アセンブリであって、前記眼に向かって凹面湾曲される、導波管と、
を備える、システム。
(項目727)
前記湾曲導波管は、視野を拡大させる、項目726に記載のシステム。
(項目728)
前記湾曲導波管は、光を前記ユーザの眼に効率的に指向する、項目726に記載のシステム。
(項目729)
前記湾曲導波管は、時変グレーティングを備え、それによって、前記ファイバ走査ディスプレイのための光を走査するための軸を作成する、項目726に記載のシステム。
(項目730)
仮想コンテンツをユーザに表示するためのシステムであって、
光を受光するための入口と、入口に対して角度付けられ、入口で受光された光の少なくとも一部を透過性ビームスプリッタ基板から横方向外向きにユーザの眼に向かって再指向するためのいくつかの内部反射または回折表面とを有する、透過性ビームスプリッタ基板であって、前記いくつかの内部反射または回折表面は、前記透過性ビームスプリッタ基板の縦軸に沿って離間される複数の横方向反射および/または回折表面を含み、前記横方向反射および/または回折表面はそれぞれ、前記入口で受光された光の少なくとも一部を前記透過性ビームスプリッタ基板から横方向に外向きに光学経路に沿って前記ユーザの眼に向かって再指向するように、前記入射に対して角度付けられる、または角度付け可能である、透過性ビームスプリッタ基板と、
光を前記透過性ビームスプリッタに伝送するための光発生システムと、
前記ディスプレイシステムに通信可能に結合され、画像情報を前記ディスプレイシステムに提供する、ローカルコントローラであって、前記ローカルコントローラは、少なくとも1つのプロセッサと、前記少なくとも1つのプロセッサに通信可能に結合される少なくとも1つの非一過性プロセッサ可読媒体とを備え、前記少なくとも1つの非一過性プロセッサ可読媒体は、前記少なくとも1つのプロセッサによって実行されると、前記少なくとも1つのプロセッサに、データの処理、キャッシュ、および記憶のうちの少なくとも1つを行わせ、前記画像情報を前記ディスプレイに提供し、仮想または拡張現実視覚体験のうちの少なくとも1つを前記ユーザに生成する、少なくとも1つのプロセッサ実行可能命令またはデータを記憶する、ローカルコントローラと、
を備える、システム。
(項目731)
前記横方向反射および/または回折表面は、少なくとも1つの回折光学要素(DOE)を備え、前記ビームスプリッタにいくつかの定義された角度で入射する、コリメートされたビームは、その長さに沿って全内部反射され、1つまたはそれを上回る場所において、前記DOEに交差する、項目730に記載のシステム。
(項目732)
少なくとも1つの回折光学要素(DOE)は、第1のグレーティングを備える、項目730に記載のシステム。
(項目733)
前記第1のグレーティングは、第1のブラッググレーティングである、項目730に記載のシステム。
(項目734)
前記DOEは、第2のグレーティングを備え、前記第1のグレーティングは、第1の平面上にあって、前記第2のグレーティングは、第2の平面上にあって、前記第1および第2のグレーティングが交差し、モアレビートパターンを生成するように、前記第2の平面は、前記第1の平面から離間される、項目730に記載のシステム。
(項目735)
前記第1のグレーティングは、第1のピッチを有し、前記第2のグレーティングは、第2のピッチを有し、前記第1のピッチは、前記第2のピッチと同一である、項目734に記載のシステム。
(項目736)
前記第1のグレーティングは、第1のピッチを有し、前記第2のグレーティングは、第2のピッチを有し、前記第1のピッチは、前記第2のピッチと異なる、項目734に記載のシステム。
(項目737)
前記第1のグレーティングピッチは、前記第1のグレーティングピッチを経時的に変化させるように制御可能である、項目734に記載のシステム。
(項目738)
前記第1のグレーティングは、弾性材料を含み、機械的変形を受ける、項目737に記載のシステム。
(項目739)
前記第1のグレーティングは、機械的変形を受ける、弾性材料によって担持される、項目738に記載のシステム。
(項目740)
前記第1のグレーティングピッチは、前記第1のグレーティングピッチを経時的に変化させるように制御可能である、項目734に記載のシステム。
(項目741)
前記第2のグレーティングピッチは、前記第2のグレーティングピッチを経時的に変化させるように制御可能である、項目734に記載のシステム。
(項目742)
前記第1のグレーティングは、電気活性グレーティングであって、少なくとも1つのオン状態およびオフ状態を有する、項目4734に記載のシステム。
(項目743)
前記第1のグレーティングは、高分子分散型液晶を備え、前記高分子分散型液晶の複数の液晶液滴は、前記第1のグレーティングの屈折率を変化させるように制御可能に活性化される、項目734に記載のシステム。
(項目744)
前記第1のグレーティングは、時変グレーティングであって、前記第1のグレーティングは、時変グレーティングであって、前記ローカルコントローラは、前記ディスプレイの視野を拡大させるように少なくとも前記第1のグレーティングを制御する、項目738に記載のシステム。
(項目745)
前記第1のグレーティングは、時変グレーティングであって、前記ローカルコントローラは、少なくとも前記第1のグレーティングの時変制御を採用し、色収差を補正する、項目738に記載のシステム。
(項目746)
前記ローカルコントローラは、少なくとも前記第1のグレーティングを駆動させ、画像のピクセルの赤色下位ピクセルの場所を前記画像の対応するピクセルの青色または緑色下位ピクセルのうちの少なくとも1つに対して変動させる、項目745に記載のシステム。
(項目747)
前記ローカルコントローラは、少なくとも前記第1のグレーティングを駆動させ、出射パターンを側方に偏移させ、アウトバウンド画像パターン内の間隙を充填する、項目746に記載のシステム。
(項目748)
少なくとも1つのDOE要素は、第1の円形対称項を有する、項目732に記載のシステム。
(項目749)
少なくとも1つのDOE要素は、第1の線形項を有し、前記第1の線形項は、前記第1の円形対称項と合計される、項目732に記載のシステム。
(項目750)
前記円形対称項は、制御可能である、項目749に記載のシステム。
(項目751)
少なくとも1つのDOE要素は、第2の第1円形対称項を有する、項目730に記載のシステム。
(項目752)
前記少なくとも1つの回折光学(DOE)要素は、第1のDOEを備える、項目730に記載のシステム。
(項目753)
前記第1のDOEは、円形DOEである、項目752に記載のシステム。
(項目754)
前記円形DOEは、時変DOEである、項目753に記載のシステム。
(項目755)
前記円形DOEは、焦点変調のために、導波管に対して層化される、項目753に記載のシステム。
(項目756)
前記円形DOEの回折パターンは、静的である、項目753に記載のシステム。
(項目757)
前記円形DOEの回折パターンは、動的である、項目753に記載のシステム。
(項目758)
付加的円形DOEを備え、前記付加的円形DOEは、多くの焦点レベルが少数の切替可能DOEを通して達成されるように、前記円形DOEに対して位置付けられる、項目753に記載のシステム。
(項目759)
切替可能DOE要素のマトリクスをさらに備える、項目740に記載のシステム。
(項目760)
前記マトリクスは、視野を拡大させるために利用される、項目759に記載のシステム。
(項目761)
前記マトリクスは、射出瞳のサイズを拡大させるために利用される、項目759に記載のシステム。
(項目762)
仮想コンテンツをユーザに表示するためのシステムであって、
画像データの1つまたはそれを上回るフレームと関連付けられた光ビームを投影するための光投影システムと、
前記投影された光ビームを受光し、前記光ビームを所望の焦点で送達するための回折光学要素(DOE)であって、円形DOEである、DOEと、
を備える、システム。
(項目763)
前記DOEは、線形DOE項の角度を調節するために、単一軸に沿って延伸可能である、項目762に記載のシステム。
(項目764)
前記DOEは、膜と、Z軸における発振運動を用いて、前記膜を選択的に振動させ、Z軸制御および焦点の経時的変化を提供するように動作可能な少なくとも1つの変換器とを備える、項目792に記載のシステム。
(項目765)
前記DOEは、前記DOEのピッチが、前記媒体を物理的に延伸させることによって調節され得るように、延伸可能媒体内に埋め込まれる、項目792に記載のシステム。
(項目766)
前記DOEは、2軸方向に延伸され、前記DOEの延伸は、前記DOEの焦点距離に影響を及ぼす、項目762に記載のシステム。
(項目767)
複数の円形DOEをさらに備え、前記DOEは、Z軸に沿ってスタックされる、項目762に記載のシステム。
(項目768)
円形DOEは、焦点変調のために、導波管の正面に層化される、項目762に記載のシステム。
(項目769)
前記DOEは、静的である、項目768に記載のシステム。
(項目770)
前記DOEは、動的である、項目768に記載のシステム。
(項目771)
仮想コンテンツをユーザに表示するためのシステムであって、
画像データの1つまたはそれを上回るフレームと関連付けられた光ビームを投影するための光投影システムと、
任意の回折光学要素(DOE)を伴わない第1の導波管であって、前記第1の導波管によって受光された光を、いくつかの定義された角度で、前記第1の導波管の長さの少なくとも一部に沿って、全内部反射を介して伝搬し、前記第1の導波管からの外部の光をコリメートされた光として提供する、第1の導波管と、
少なくとも第1の円形対称回折光学要素(DOE)を伴う第2の導波管であって、前記コリメートされた光を前記第1の導波管から受光するように光学的に結合される、第2の導波管と、
前記DOEのグレーティングを制御するためのプロセッサと、
を備える、システム。
(項目772)
前記第1のDOEは、選択的に制御可能である、項目771に記載のシステム。
(項目773)
前記ディスプレイは、前記第1のDOEに加え、複数の付加的DOEを備え、前記DOEは、スタック構成で配列される、項目771に記載のシステム。
(項目774)
前記複数の付加的DOEのDOEはそれぞれ、選択的に制御可能である、項目771に記載のシステム。
(項目775)
ローカルコントローラが、前記第1のDOEおよび前記複数の付加的DOEを制御し、前記ディスプレイを通して通過する光の焦点を動的に変調させる、項目771に記載のシステム。
(項目776)
前記プロセッサは、前記第1のDOEおよび前記複数の付加的DOEをそれぞれ選択的に切り替え、いくつかの焦点レベルを実現し、前記実現可能な焦点レベルの数は、前記スタック内のDOEの総数を上回る、項目771に記載のシステム。
(項目777)
前記スタック内のDOEはそれぞれ、個別の屈折力を有し、前記スタック内のDOEの屈折力は、相互に対して制御可能である、項目771に記載のシステム。
(項目778)
前記スタック内のDOEのうちの少なくとも1つの個別の屈折力は、前記スタック内のDOEのうちの他の少なくとも1つの個別の屈折力の2倍である、項目771に記載のシステム。
(項目779)
前記プロセッサは、前記第1のDOEおよび前記複数の付加的DOEをそれぞれ選択的に切り替え、前記DOEの個別の線形および半径方向項を経時的に変調させる、項目771に記載のシステム。
(項目780)
前記プロセッサは、フレーム順次ベースで前記第1のDOEおよび前記複数の付加的DOEをそれぞれ選択的に切り替える、項目771に記載のシステム。
(項目781)
前記DOEのスタックは、高分子分散型液晶要素のスタックを備える、項目771に記載のシステム。
(項目782)
印加される電圧の不在下、ホスト媒体屈折率は、前記高分子分散型液晶要素の分散分子の集合のものに一致する、項目781に記載のシステム。
(項目783)
前記高分子分散型液晶要素は、ニオブ酸リチウムの分子と、ホスト媒体の両側にいくつかの透明インジウムスズ酸化物層電極とを備え、前記ニオブ酸リチウムの分散分子は、屈折率を制御可能に変化させ、前記ホスト媒体内に回折パターンを機能的に形成する、項目781に記載のシステム。
(項目784)
仮想コンテンツを表示するための方法であって、
画像データの1つまたはそれを上回るフレームと関連付けられた光をユーザに投影するステップと、
光を第1の導波管において受光するステップであって、前記第1の導波管は、任意の回折光学要素を伴わず、前記光を内部反射を通して伝搬させる、ステップと、
コリメートされた光を、少なくとも第1の円形対称回折光学要素(DOE)を伴う第2の導波管において受光するステップであって、前記第2の導波管は、前記コリメートされた光を前記第1の導波管から受光するように光学的に結合されており、前記円形対称DOEのグレーティングは、変動され、前記第1の導波管および第2の導波管は、DOEのスタック内に組み立てられる、ステップと、
を含む、方法。
(項目785)
前記DOEのスタックは、高分子分散型液晶要素のスタックを備える、項目784に記載の方法。
(項目786)
前記高分子分散型液晶要素は、ニオブ酸リチウムの分子と、ホスト媒体の両側にいくつかの透明インジウムスズ酸化物層電極とを備え、前記ニオブ酸リチウムの分散分子は、屈折率を制御可能に変化させ、前記ホスト媒体内に回折パターンを機能的に形成する、項目785に記載の方法。
(項目787)
印加される電圧の不在下、ホスト媒体屈折率は、前記高分子分散型液晶要素の分散分子の集合のものに一致する、項目784に記載の方法。
(項目788)
仮想コンテンツをユーザに表示するための光学要素であって、
光を受光するように位置付けられる少なくとも1つの回折光学要素(DOE)であって、前記少なくとも1つのDOEは、複数の別個にアドレス指定可能なセクションの第1のアレイを備え、前記別個にアドレス指定可能な下位セクション毎に少なくとも1つの電極を伴い、前記別個にアドレス指定可能な下位セクションはそれぞれ、前記個別の少なくとも1つの電極を介して受信された少なくとも1つの個別の信号に応答し、少なくとも第1の状態と第2の状態との間で選択的に切り替え、前記第2の状態は、前記第1の状態と異なる、DOEを備える、光学要素。
(項目789)
視野は、隣接してアドレス指定可能な下位セクションを多重化することによって拡大される、項目788に記載のシステム。
(項目790)
前記第1の状態は、オン状態であって、前記第2の状態は、オフ状態である、項目788に記載のシステム。
(項目791)
前記別個にアドレス指定可能な下位セクションはそれぞれ、少なくとも2つのインジウムスズ酸化物電極の個別の集合を有する、項目788に記載のシステム。
(項目792)
前記少なくとも1つのDOEの複数の別個にアドレス指定可能なセクションの第1のアレイは、1次元アレイである、項目788に記載のシステム。
(項目793)
前記少なくとも1つのDOEの複数の別個にアドレス指定可能なセクションの第1のアレイは、2次元アレイである、項目788に記載のシステム。
(項目794)
前記別個にアドレス指定可能なセクションの第1のアレイは、第1の平面層上に存在する、第1のDOEのセクションである、項目788に記載のシステム。
(項目795)
前記少なくとも1つのDOEは、少なくとも第2のDOEを備え、前記第2のDOEは、複数の別個にアドレス指定可能なセクションの第2のアレイを備え、前記別個にアドレス指定可能な下位セクション毎に少なくとも1つの電極を伴い、前記別個にアドレス指定可能な下位セクションはそれぞれ、前記個別の少なくとも1つの電極を介して受信された少なくとも1つの個別の信号に応答し、少なくとも第1の状態と第2の状態との間で選択的に切り替え、前記第2の状態は、前記第1の状態と異なり、前記DOEの第2のアレイは、第2の平面層上に存在し、前記第2の平面層は、前記第1の平面層とスタック構成にある、項目794に記載のシステム。
(項目796)
前記少なくとも1つのDOEは、少なくとも第3のDOEを備え、前記第3のDOEは、複数の別個にアドレス指定可能なセクションの第3のアレイを備え、前記別個にアドレス指定可能な下位セクション毎に少なくとも1つの電極を伴い、前記別個にアドレス指定可能な下位セクションはそれぞれ、前記個別の少なくとも1つの電極を介して受信された少なくとも1つの個別の信号に応答し、少なくとも第1の状態と第2の状態との間で選択的に切り替え、前記第2の状態は、前記第1の状態と異なり、前記DOEの第3のアレイは、第3の平面層上に存在し、前記第3の平面層は、前記第1および第2の平面層とスタック構成にある、項目794に記載のシステム。
(項目797)
前記別個にアドレス指定可能なセクションの第1のアレイは、単一平面導波管内に埋め込まれる、項目788に記載のシステム。
(項目798)
前記ローカルコントローラは、前記別個にアドレス指定可能な下位セクションを制御し、選択的に、コリメートされた光を前記平面導波管から第1の時間で放出し、発散光を前記平面導波管から第2の時間で放出し、前記第2の時間は、前記第1の時間と異なる、項目794に記載のシステム。
(項目799)
前記ローカルコントローラは、前記別個にアドレス指定可能な下位セクションを制御し、選択的に、第1の方向における光を前記平面導波管から第1の時間で放出し、第2の方向における光を前記平面導波管から前記第1の時間で放出し、前記第2の方向は、前記第1の方向と異なる、項目794に記載のシステム。
(項目800)
前記ローカルコントローラは、前記別個にアドレス指定可能な下位セクションを制御し、選択的に、ある方向を横断する光を経時的に走査する、項目788に記載のシステム。
(項目801)
前記ローカルコントローラは、前記別個にアドレス指定可能な下位セクションを制御し、選択的に、光を経時的に合焦させる、項目788に記載のシステム。
(項目802)
前記ローカルコントローラは、前記別個にアドレス指定可能な下位セクションを制御し、選択的に、射出瞳の視野を経時的に変動させる、項目788に記載のシステム。
(項目803)
システムであって、
光学パラメータの定義された集合のために、視野のサイズを増加させるための第1の自由形状反射およびレンズ光学構成要素であって、前記第1の自由形状反射およびレンズ光学構成要素は、第1の湾曲表面、第2の湾曲表面、および第3の湾曲表面を備え、前記第1の湾曲表面は、少なくとも部分的に、光学的に透過性および屈折性であって、前記第1の湾曲表面を介して、前記第1の自由形状反射およびレンズ光学構成要素によって受光された光に焦点変化を付与し、前記第2の湾曲表面は、少なくとも部分的に、前記第1の湾曲表面から前記第3の湾曲表面に向かって前記第2の湾曲表面によって受光された光を反射させ、前記第3の湾曲表面から前記第2の湾曲表面によって受光された光を通過させ、前記第3の湾曲表面は、少なくとも部分的に、前記第2の湾曲表面を介して、前記第1の自由形状反射およびレンズ光学構成要素から光を反射させる、第1の自由形状反射およびレンズ光学構成要素を備える、システム。
(項目804)
前記第1の自由形状反射およびレンズ光学構成要素の第1の湾曲表面は、個別の自由形状湾曲表面である、項目803に記載のシステム。
(項目805)
前記第1の自由形状反射およびレンズ光学構成要素の第1の湾曲表面は、無非点収差を前記光に追加する、項目803に記載のシステム。
(項目806)
前記第1の自由形状反射およびレンズ光学構成要素の第3の湾曲表面は、逆無非点収差を追加し、前記第1の自由形状反射およびレンズ光学構成要素の第1の湾曲表面によって追加される無非点収差を相殺する、項目803に記載のシステム。
(項目807)
前記第1の自由形状反射およびレンズ光学構成要素の第2の湾曲表面は、個別の自由形状湾曲表面である、項目803に記載のシステム。
(項目808)
前記第1の自由形状反射およびレンズ光学構成要素の第2の湾曲表面は、全内部反射によって反射されるべき光の定義された角度を前記第3の湾曲表面に向かって反射させる、項目803に記載のシステム。
(項目809)
システムであって、
画像データの1つまたはそれを上回るフレームと関連付けられた光を投影するためのファイバ走査ディスプレイであって、前記光を第1の自由形状光学要素に送達するように構成される、ファイバ走査ディスプレイと、
光学パラメータの定義された集合のために、視野のサイズを増加させるための第1の自由形状反射およびレンズ光学構成要素であって、前記第1の自由形状反射およびレンズ光学構成要素は、第1の湾曲表面、第2の湾曲表面、および第3の湾曲表面を備え、前記第1の湾曲表面は、少なくとも部分的に、光学的に透過性および屈折性であって、前記第1の湾曲表面を介して、前記第1の自由形状反射およびレンズ光学構成要素によって受光された光に焦点変化を付与し、前記第2の湾曲表面は、少なくとも部分的に、前記第1の湾曲表面から前記第3の湾曲表面に向かって前記第2の湾曲表面によって受光された光を反射させ、前記第3の湾曲表面から前記第2の湾曲表面によって受光された光を通過させ、前記第3の湾曲表面は、少なくとも部分的に、前記第2の湾曲表面を介して、前記第1の自由形状反射およびレンズ光学構成要素から光を反射させる、第1の自由形状反射およびレンズ光学構成要素と、
を備える、システム。
(項目810)
前記自由形状光学は、TIR自由形状光学である、項目809に記載のシステム。
(項目811)
前記自由形状光学は、非均一厚を有する、項目809に記載のシステム。
(項目812)
前記自由形状光学は、楔光学である、項目809に記載のシステム。
(項目813)
前記自由形状光学は、円錐形である、項目809に記載のシステム。
(項目814)
前記自由形状光学は、恣意的曲線に対応する、項目809に記載のシステム。
(項目815)
システムであって、
ユーザに提示されるべき画像データの1つまたはそれを上回るフレームを提供するための画像発生源と、
前記画像データの1つまたはそれを上回るフレームと関連付けられた光を提供するためのディスプレイシステムと、
前記提供される光を修正し、前記光を前記ユーザに送達するための自由形状光学要素であって、前記自由形状光学は、反射コーティングを含み、前記ディスプレイシステムは、前記光の波長が前記反射コーティングの対応する波長に一致するように、前記自由形状光学要素を光で照明するように構成される、自由形状光学と、
を備える、システム。
(項目816)
前記1つまたはそれを上回る自由形状光学要素は、相互に対してタイル表示される、項目815に記載のシステム。
(項目817)
前記1つまたはそれを上回る自由形状光学要素は、Z軸に沿ってタイル表示される、項目816に記載のシステム。
(項目818)
システムであって、
ユーザに提示されるべき画像データの1つまたはそれを上回るフレームを提供するための画像発生源と、
前記画像データの1つまたはそれを上回るフレームと関連付けられた光を提供するためのディスプレイシステムであって、複数のマイクロディスプレイを備える、ディスプレイシステムと、
前記提供される光を修正し、前記光を前記ユーザに送達するための自由形状光学要素と、
を備える、システム。
(項目819)
1つまたはそれを上回る自由形状光学は、相互に対してタイル表示される、項目818に記載のシステム。
(項目820)
前記複数のマイクロディスプレイによって投影される光は、視野を増加させる、項目818に記載のシステム。
(項目821)
前記自由形状光学要素は、1つのみの色が特定の自由形状光学要素によって送達されるように構成される、項目818に記載のシステム。
(項目822)
前記タイル表示された自由形状は、星形形状である、項目821に記載のシステム。
(項目823)
前記タイル表示された自由形状光学要素は、射出瞳のサイズを増加させる、項目821に記載のシステム。
(項目824)
別の自由形状光学要素をさらに備え、前記自由形状光学要素は、均一材料厚を作成する様式でともにスタックされる、項目818に記載のシステム。
(項目825)
別の自由形状光学要素をさらに備え、前記他の光学要素は、外部環境に対応する光を捕捉するように構成される、項目818に記載のシステム。
(項目826)
DMDをさらに備え、前記DMDは、1つまたはそれを上回るピクセルを遮閉するように構成される、項目818に記載のシステム。
(項目827)
1つまたはそれを上回るLCDをさらに備える、項目818に記載のシステム。
(項目828)
コンタクトレンズ基板をさらに備え、前記自由形状光学は、前記コンタクトレンズ基板に結合される、項目818に記載のシステム。
(項目829)
前記複数のマイクロディスプレイは、凝集体として、大型の射出瞳の機能的均等物を形成する、小型射出瞳のアレイを提供する、項目818に記載のシステム。
(項目830)
前記少なくとも1つの画像源は、第1の光の色を提供する、少なくとも第1の単色画像源と、第2の光の色であって、前記第1の色と異なる第2の色を提供する、少なくとも第2の単色画像源と、第3の光の色であって、前記第1および第2の色と異なる第3の色を提供する、少なくとも第3の単色画像源とを含む、項目818に記載のシステム。
(項目831)
前記少なくとも第1の単色画像源は、第1の下位群の走査ファイバを備え、前記少なくとも第2の単色画像源は、第2の下位群の走査ファイバを備え、前記少なくとも第3の単色画像源は、第3の下位群の走査ファイバを備える、項目830に記載のシステム。
(項目832)
前記第1の自由形状反射およびレンズ光学構成要素と前記少なくとも1つの反射体との間の光学経路内に位置付けられるオクルーダであって、ピクセル毎ベースで光を遮閉するよう選択するように動作可能なオクルーダをさらに備える、項目818に記載のシステム。
(項目833)
前記第1の自由形状反射およびレンズ光学構成要素は、コンタクトレンズの少なくとも一部を形成する、項目832に記載のシステム。
(項目834)
前記第1の自由形状反射およびレンズ光学構成要素の一部に光学的に結合される、補償器レンズをさらに備える、項目818に記載のシステム。
(項目835)
システムであって、
光学パラメータの定義された集合のために、視野のサイズを増加させるための第1の自由形状反射およびレンズ光学構成要素であって、前記第1の自由形状反射およびレンズ光学構成要素は、第1の表面、第2の表面、および第3の表面を備え、前記第1の表面は、少なくとも部分的に、前記第1の表面を介して前記第1の自由形状反射およびレンズ光学構成要素によって受光された光に光学的に透過性であって、前記第2の表面は、湾曲し、少なくとも部分的に、前記第2の表面によって前記第1の表面から前記第3の表面に向かって受光された光を反射させ、前記湾曲表面から前記第2の表面によって受光された光を通過させ、前記第3の表面は、湾曲し、少なくとも部分的に、前記第2の表面を介して前記第1の自由形状反射およびレンズ光学構成要素から光を反射させる、第1の自由形状反射およびレンズ光学構成要素と、
第2の自由形状反射およびレンズ光学構成要素であって、前記第2の自由形状反射およびレンズ光学構成要素は、第1の表面、第2の表面、および第3の表面を備え、前記第2の自由形状反射およびレンズ光学構成要素の第1の表面は、少なくとも部分的に、前記第1の表面を介して前記第2の自由形状反射およびレンズ光学構成要素によって受光された光に光学的に透過性であって、前記第2の自由形状反射およびレンズ光学構成要素の第2の表面は、湾曲し、少なくとも部分的に、前記第2の表面によって前記第2の自由形状反射およびレンズ光学構成要素の第1の表面から前記第2の自由形状反射およびレンズ光学構成要素の第3の表面に向かって受光された光を反射させ、前記第2の表面によって前記第2の自由形状反射およびレンズ光学構成要素の第3の表面から受光された光を通過させ、前記第2の自由形状反射およびレンズ光学構成要素の第3の表面は、湾曲し、少なくとも部分的に、前記第2の表面を介して前記第2の自由形状反射およびレンズ光学構成要素から光を反射させる、第2の自由形状反射およびレンズ光学構成要素と、
を備え、
前記第1および第2の自由形状反射およびレンズ光学構成要素は、Z軸に沿って反対に配向されたスタック構成にある、システム。
(項目836)
前記第2の自由形状反射およびレンズ光学構成要素の第2の表面は、前記第1の自由形状反射およびレンズ光学構成要素の第3の表面に隣接する、項目835に記載のシステム。
(項目837)
前記第2の自由形状反射およびレンズ光学構成要素の第2の表面は、凹面であって、前記第1の自由形状反射およびレンズ光学構成要素の第3の表面は、凸面であって、前記第1の自由形状反射およびレンズ光学構成要素の第3の表面は、前記第2の自由形状反射およびレンズ光学構成要素の第2の表面を近接して受容する、項目835に記載のシステム。
(項目838)
前記第1の自由形状反射およびレンズ光学構成要素の第1の表面は、平坦であって、前記第2の自由形状反射およびレンズ光学構成要素の第1の表面は、平坦であって、
前記第1の自由形状反射およびレンズ光学構成要素の第1の表面を介して、前記第1の自由形状反射およびレンズ光学構成要素に光学的に結合される、少なくとも第1のプロジェクタと、
前記第2の自由形状反射およびレンズ光学構成要素の第1の表面を介して、前記第2の自由形状反射およびレンズ光学構成要素に光学的に結合される、少なくとも第2のプロジェクタと、
をさらに備える、項目835に記載のシステム。
(項目839)
前記第1または前記第2の自由形状反射およびレンズ光学構成要素のうちの少なくとも1つによって担持される少なくとも1つの波長選択材料をさらに備える、項目835に記載のシステム。
(項目840)
前記第1の自由形状反射およびレンズ光学構成要素によって担持される少なくとも第1の波長選択材料と、
前記第2の自由形状反射およびレンズ光学構成要素によって担持される少なくとも第2の波長選択材料と、
をさらに備え、前記第1の波長選択材料は、第1の波長集合を選択し、前記第2の波長選択材料は、第2の波長集合を選択し、前記第2の波長集合は、前記第1の波長集合と異なる、項目835に記載のシステム。
(項目841)
前記第1の自由形状反射およびレンズ光学構成要素によって担持される少なくとも第1の偏光子と、
前記第2の自由形状反射およびレンズ光学構成要素によって担持される少なくとも第2の偏光子と、
をさらに備え、
前記第1の偏光子は、前記第2の偏光子と異なる偏光配向を有する、項目835に記載のシステム。
(項目842)
前記光ファイバコアは、同一ファイバクラッディング内にある、項目436に記載のシステム。
(項目843)
前記光ファイバコアは、別個のファイバクラッディング内にある、項目436に記載のシステム。
(項目844)
前記光ファイバコアは、同一ファイバクラッディング内にある、項目428に記載のシステム。
(項目845)
前記光ファイバコアは、別個のファイバクラッディング内にある、項目428に記載のシステム。
(項目846)
前記光ファイバコアは、同一ファイバクラッディング内にある、項目418に記載のシステム。
(項目847)
前記光ファイバコアは、別個のファイバクラッディング内にある、項目418に記載のシステム。
(項目848)
前記遠近調節モジュールは、前記ユーザの眼の両眼離反運動または注視を追跡することによって、遠近調節を間接的に追跡する、項目80に記載のシステム。
(項目849)
前記部分反射鏡は、前記光源によって提供される光の偏光に対して比較的に高反射率を有し、外界によって提供される光の他の偏光状態に対して比較的に低反射率を有する、項目79に記載のシステム。
(項目850)
前記複数の部分反射鏡は、誘電コーティングを備える、項目79に記載のシステム。
(項目851)
前記複数の反射鏡は、前記光源によって提供される光の波長のための導波管に対して比較的に高反射率を有し、外界によって提供される光の他の導波管に対して比較的に低反射率を有する、項目79に記載のシステム。
(項目852)
前記VFEは、変形可能鏡であって、その表面形状は、経時的に変動されることができる、項目77に記載のシステム。
(項目853)
前記VFEは、静電作動式膜鏡であって、前記導波管または付加的透明層は、1つまたはそれを上回る実質的に透明電極を備え、前記1つまたはそれを上回る電極に印加される電圧は、前記膜鏡を静電的に変形させる、項目77に記載のシステム。
(項目854)
前記光源は、走査光ディスプレイであって、前記VFEは、前記焦点を線セグメントベースで変動させる、項目68に記載のシステム。
(項目855)
前記導波管は、射出瞳拡大機能を備え、光の入力光線は、分割され、複数の場所において前記導波管から出射する複数の光線として出力結合される、項目68に記載のシステム。
(項目856)
前記画像データは、焦点レベルを調節する間、前記画像倍率が実質的に固定されたままであるように見えるように、前記導波管が前記1つまたはそれを上回る光パターンを受光する前に、プロセッサによって、変化する光学画像倍率に従ってスケーリングされ、それを補償する、項目70に記載のシステム。
(項目857)
前記第1の焦点レベルは、コリメートされる、項目68に記載のシステム。
(項目858)
前記VFEは、前記導波管の中に統合される、項目68に記載のシステム。
(項目859)
前記VFEは、前記導波管と別個である、項目68に記載のシステム。
(項目860)
前記遠近調節モジュールは、前記ユーザの眼の両眼離反運動または注視を追跡することによって、遠近調節を間接的に追跡する、項目93に記載のシステム。
(項目861)
前記部分反射鏡は、前記光源によって提供される光の偏光に対して比較的に高反射率を有し、外界によって提供される光の他の偏光状態に対して比較的に低反射率を有する、項目92に記載のシステム。
(項目862)
前記複数の部分反射鏡は、誘電コーティングを備える、項目92に記載のシステム。
(項目863)
前記複数の反射鏡は、前記光源によって提供される光の波長のための導波管に対して比較的に高反射率を有し、外界によって提供される光の他の導波管に対して比較的に低反射率を有する、項目90に記載のシステム。
(項目864)
前記VFEは、変形可能鏡であって、その表面形状は、経時的に変動されることができる、項目81に記載のシステム。
(項目865)
前記VFEは、静電作動式膜鏡であって、前記導波管または付加的透明層は、1つまたはそれを上回る実質的に透明電極を備え、前記1つまたはそれを上回る電極に印加される電圧は、前記膜鏡を静電的に変形させる、項目81に記載のシステム。
(項目866)
前記光源は、走査光ディスプレイであって、前記VFEは、前記焦点を線セグメントベースで変動させる、項目81に記載のシステム。
(項目867)
前記導波管は、射出瞳拡大機能を備え、光の入力光線は、分割され、複数の場所において前記導波管から出射する複数の光線として出力結合される、項目81に記載のシステム。
(項目868)
前記画像データは、焦点レベルを調節する間、前記画像倍率が実質的に固定されたままであるように見えるように、前記導波管が前記1つまたはそれを上回る光パターンを受光する前に、プロセッサによって、変化する光学画像倍率に従ってスケーリングされ、それを補償する、項目81に記載のシステム。
(項目869)
前記第1の焦点レベルは、コリメートされる、項目68に記載のシステム。
(項目870)
前記遠近調節モジュールは、前記ユーザの眼の両眼離反運動または注視を追跡することによって、遠近調節を間接的に追跡する、項目106に記載のシステム。
(項目871)
前記部分反射鏡は、前記光源によって提供される光の偏光に対して比較的に高反射率を有し、外界によって提供される光の他の偏光状態に対して比較的に低反射率を有する、項目105に記載のシステム。
(項目872)
前記複数の部分反射鏡は、誘電コーティングを備える、項目105に記載のシステム。
(項目873)
前記複数の反射鏡は、前記光源によって提供される光の波長のための導波管に対して比較的に高反射率を有し、外界によって提供される光の他の導波管に対して比較的に低反射率を有する、項目103に記載のシステム。
(項目874)
前記VFEは、変形可能鏡であって、その表面形状は、経時的に変動されることができる、項目94に記載のシステム。
(項目875)
前記VFEは、静電作動式膜鏡であって、前記導波管または付加的透明層は、1つまたはそれを上回る実質的に透明電極を備え、前記1つまたはそれを上回る電極に印加される電圧は、前記膜鏡を静電的に変形させる、項目94に記載のシステム。
(項目876)
前記光源は、走査光ディスプレイであって、前記VFEは、前記焦点を線セグメントベースで変動させる、項目94に記載のシステム。
(項目878)
前記導波管は、射出瞳拡大機能を備え、光の入力光線は、分割され、複数の場所において前記導波管から出射する複数の光線として出力結合される、項目94に記載のシステム。
(項目879)
前記画像データは、焦点レベルを調節する間、前記画像倍率が実質的に固定されたままであるように見えるように、前記導波管が前記1つまたはそれを上回る光パターンを受光する前に、プロセッサによって、変化する光学画像倍率に従ってスケーリングされ、それを補償する、項目94に記載のシステム。
(項目880)
前記第1の焦点レベルは、コリメートされる、項目94に記載のシステム。
図1は、例証される実施形態の1つにおける、装着式ARユーザデバイスを通した拡張現実(AR)のユーザのビューを図示する。
図2A−2Eは、装着式ARデバイスの種々の実施形態を図示する。 図2A−2Eは、装着式ARデバイスの種々の実施形態を図示する。 図2A−2Eは、装着式ARデバイスの種々の実施形態を図示する。 図2A−2Eは、装着式ARデバイスの種々の実施形態を図示する。 図2A−2Eは、装着式ARデバイスの種々の実施形態を図示する。
図3は、例証される実施形態の1つにおける、ヒトの眼の断面図を図示する。
図4A−4Dは、装着式ARデバイスの種々の内部処理構成要素の1つまたはそれを上回る実施形態を図示する。 図4A−4Dは、装着式ARデバイスの種々の内部処理構成要素の1つまたはそれを上回る実施形態を図示する。 図4A−4Dは、装着式ARデバイスの種々の内部処理構成要素の1つまたはそれを上回る実施形態を図示する。 図4A−4Dは、装着式ARデバイスの種々の内部処理構成要素の1つまたはそれを上回る実施形態を図示する。
図5A−5Hは、透過性ビームスプリッタ基板を通したユーザへの合焦された光の伝送の実施形態を図示する。 図5A−5Hは、透過性ビームスプリッタ基板を通したユーザへの合焦された光の伝送の実施形態を図示する。 図5A−5Hは、透過性ビームスプリッタ基板を通したユーザへの合焦された光の伝送の実施形態を図示する。 図5A−5Hは、透過性ビームスプリッタ基板を通したユーザへの合焦された光の伝送の実施形態を図示する。 図5A−5Hは、透過性ビームスプリッタ基板を通したユーザへの合焦された光の伝送の実施形態を図示する。 図5A−5Hは、透過性ビームスプリッタ基板を通したユーザへの合焦された光の伝送の実施形態を図示する。 図5A−5Hは、透過性ビームスプリッタ基板を通したユーザへの合焦された光の伝送の実施形態を図示する。 図5A−5Hは、透過性ビームスプリッタ基板を通したユーザへの合焦された光の伝送の実施形態を図示する。
図6Aおよび6Bは、レンズ要素と図5A−5Hの透過性ビームスプリッタ基板の結合の実施形態を図示する。 図6Aおよび6Bは、レンズ要素と図5A−5Hの透過性ビームスプリッタ基板の結合の実施形態を図示する。
図7Aおよび7Bは、光をユーザに伝送するための1つまたはそれを上回る導波管の使用の実施形態を図示する。 図7Aおよび7Bは、光をユーザに伝送するための1つまたはそれを上回る導波管の使用の実施形態を図示する。
図8A−8Qは、回折光学要素(DOE)の実施形態を図示する。 図8A−8Qは、回折光学要素(DOE)の実施形態を図示する。 図8A−8Qは、回折光学要素(DOE)の実施形態を図示する。 図8A−8Qは、回折光学要素(DOE)の実施形態を図示する。 図8A−8Qは、回折光学要素(DOE)の実施形態を図示する。 図8A−8Qは、回折光学要素(DOE)の実施形態を図示する。 図8A−8Qは、回折光学要素(DOE)の実施形態を図示する。 図8A−8Qは、回折光学要素(DOE)の実施形態を図示する。 図8A−8Qは、回折光学要素(DOE)の実施形態を図示する。 図8A−8Qは、回折光学要素(DOE)の実施形態を図示する。 図8A−8Qは、回折光学要素(DOE)の実施形態を図示する。 図8A−8Qは、回折光学要素(DOE)の実施形態を図示する。 図8A−8Qは、回折光学要素(DOE)の実施形態を図示する。 図8A−8Qは、回折光学要素(DOE)の実施形態を図示する。 図8A−8Qは、回折光学要素(DOE)の実施形態を図示する。 図8A−8Qは、回折光学要素(DOE)の実施形態を図示する。 図8A−8Qは、回折光学要素(DOE)の実施形態を図示する。
図9Aおよび9Bは、例証される実施形態の1つによる、光プロジェクタから生成された波面を図示する。
図10は、例証される実施形態の1つによる、光学要素と結合される複数の透過性ビームスプリッタ基板のスタックされた構成の実施形態を図示する。
図11A−11Cは、例証される実施形態による、ユーザの瞳孔の中に投影されるビームレットの集合を図示する。 図11A−11Cは、例証される実施形態による、ユーザの瞳孔の中に投影されるビームレットの集合を図示する。 図11A−11Cは、例証される実施形態による、ユーザの瞳孔の中に投影されるビームレットの集合を図示する。
図12Aおよび12Bは、例証される実施形態による、マイクロプロジェクタのアレイの構成を図示する。 図12Aおよび12Bは、例証される実施形態による、マイクロプロジェクタのアレイの構成を図示する。
図13A−13Mは、例証される実施形態による、マイクロプロジェクタと光学要素の結合の実施形態を図示する。 図13A−13Mは、例証される実施形態による、マイクロプロジェクタと光学要素の結合の実施形態を図示する。 図13A−13Mは、例証される実施形態による、マイクロプロジェクタと光学要素の結合の実施形態を図示する。 図13A−13Mは、例証される実施形態による、マイクロプロジェクタと光学要素の結合の実施形態を図示する。 図13A−13Mは、例証される実施形態による、マイクロプロジェクタと光学要素の結合の実施形態を図示する。 図13A−13Mは、例証される実施形態による、マイクロプロジェクタと光学要素の結合の実施形態を図示する。 図13A−13Mは、例証される実施形態による、マイクロプロジェクタと光学要素の結合の実施形態を図示する。 図13A−13Mは、例証される実施形態による、マイクロプロジェクタと光学要素の結合の実施形態を図示する。 図13A−13Mは、例証される実施形態による、マイクロプロジェクタと光学要素の結合の実施形態を図示する。 図13A−13Mは、例証される実施形態による、マイクロプロジェクタと光学要素の結合の実施形態を図示する。 図13A−13Mは、例証される実施形態による、マイクロプロジェクタと光学要素の結合の実施形態を図示する。 図13A−13Mは、例証される実施形態による、マイクロプロジェクタと光学要素の結合の実施形態を図示する。 図13A−13Mは、例証される実施形態による、マイクロプロジェクタと光学要素の結合の実施形態を図示する。
図14A−14Fは、例証される実施形態による、光学要素と結合される空間光変調器の実施形態を図示する。 図14A−14Fは、例証される実施形態による、光学要素と結合される空間光変調器の実施形態を図示する。 図14A−14Fは、例証される実施形態による、光学要素と結合される空間光変調器の実施形態を図示する。 図14A−14Fは、例証される実施形態による、光学要素と結合される空間光変調器の実施形態を図示する。 図14A−14Fは、例証される実施形態による、光学要素と結合される空間光変調器の実施形態を図示する。 図14A−14Fは、例証される実施形態による、光学要素と結合される空間光変調器の実施形態を図示する。
図15A−15Cは、例証される実施形態による、複数の光源とともに、楔タイプ導波管の使用を図示する。 図15A−15Cは、例証される実施形態による、複数の光源とともに、楔タイプ導波管の使用を図示する。 図15A−15Cは、例証される実施形態による、複数の光源とともに、楔タイプ導波管の使用を図示する。
図16A−16Oは、例証される実施形態による、光学要素と光ファイバの結合の実施形態を図示する。 図16A−16Oは、例証される実施形態による、光学要素と光ファイバの結合の実施形態を図示する。 図16A−16Oは、例証される実施形態による、光学要素と光ファイバの結合の実施形態を図示する。 図16A−16Oは、例証される実施形態による、光学要素と光ファイバの結合の実施形態を図示する。 図16A−16Oは、例証される実施形態による、光学要素と光ファイバの結合の実施形態を図示する。 図16A−16Oは、例証される実施形態による、光学要素と光ファイバの結合の実施形態を図示する。 図16A−16Oは、例証される実施形態による、光学要素と光ファイバの結合の実施形態を図示する。 図16A−16Oは、例証される実施形態による、光学要素と光ファイバの結合の実施形態を図示する。 図16A−16Oは、例証される実施形態による、光学要素と光ファイバの結合の実施形態を図示する。 図16A−16Oは、例証される実施形態による、光学要素と光ファイバの結合の実施形態を図示する。 図16A−16Oは、例証される実施形態による、光学要素と光ファイバの結合の実施形態を図示する。 図16A−16Oは、例証される実施形態による、光学要素と光ファイバの結合の実施形態を図示する。 図16A−16Oは、例証される実施形態による、光学要素と光ファイバの結合の実施形態を図示する。 図16A−16Oは、例証される実施形態による、光学要素と光ファイバの結合の実施形態を図示する。 図16A−16Oは、例証される実施形態による、光学要素と光ファイバの結合の実施形態を図示する。
図17は、例証される実施形態の1つによる、ノッチフィルタを図示する。
図18は、例証される実施形態の1つによる、ファイバ走査ディスプレイの渦巻パターンを図示する。
図19A−19Nは、例証される実施形態による、暗視野をユーザに提示する際の遮閉効果を図示する。 図19A−19Nは、例証される実施形態による、暗視野をユーザに提示する際の遮閉効果を図示する。 図19A−19Nは、例証される実施形態による、暗視野をユーザに提示する際の遮閉効果を図示する。 図19A−19Nは、例証される実施形態による、暗視野をユーザに提示する際の遮閉効果を図示する。 図19A−19Nは、例証される実施形態による、暗視野をユーザに提示する際の遮閉効果を図示する。 図19A−19Nは、例証される実施形態による、暗視野をユーザに提示する際の遮閉効果を図示する。 図19A−19Nは、例証される実施形態による、暗視野をユーザに提示する際の遮閉効果を図示する。 図19A−19Nは、例証される実施形態による、暗視野をユーザに提示する際の遮閉効果を図示する。 図19A−19Nは、例証される実施形態による、暗視野をユーザに提示する際の遮閉効果を図示する。 図19A−19Nは、例証される実施形態による、暗視野をユーザに提示する際の遮閉効果を図示する。 図19A−19Nは、例証される実施形態による、暗視野をユーザに提示する際の遮閉効果を図示する。 図19A−19Nは、例証される実施形態による、暗視野をユーザに提示する際の遮閉効果を図示する。 図19A−19Nは、例証される実施形態による、暗視野をユーザに提示する際の遮閉効果を図示する。 図19A−19Nは、例証される実施形態による、暗視野をユーザに提示する際の遮閉効果を図示する。
図20A−20Oは、例証される実施形態による、種々の導波管アセンブリの実施形態を図示する。 図20A−20Oは、例証される実施形態による、種々の導波管アセンブリの実施形態を図示する。 図20A−20Oは、例証される実施形態による、種々の導波管アセンブリの実施形態を図示する。 図20A−20Oは、例証される実施形態による、種々の導波管アセンブリの実施形態を図示する。 図20A−20Oは、例証される実施形態による、種々の導波管アセンブリの実施形態を図示する。 図20A−20Oは、例証される実施形態による、種々の導波管アセンブリの実施形態を図示する。 図20A−20Oは、例証される実施形態による、種々の導波管アセンブリの実施形態を図示する。 図20A−20Oは、例証される実施形態による、種々の導波管アセンブリの実施形態を図示する。 図20A−20Oは、例証される実施形態による、種々の導波管アセンブリの実施形態を図示する。 図20A−20Oは、例証される実施形態による、種々の導波管アセンブリの実施形態を図示する。 図20A−20Oは、例証される実施形態による、種々の導波管アセンブリの実施形態を図示する。 図20A−20Oは、例証される実施形態による、種々の導波管アセンブリの実施形態を図示する。 図20A−20Oは、例証される実施形態による、種々の導波管アセンブリの実施形態を図示する。 図20A−20Oは、例証される実施形態による、種々の導波管アセンブリの実施形態を図示する。 図20A−20Oは、例証される実施形態による、種々の導波管アセンブリの実施形態を図示する。
図21A−21Nは、例証される実施形態による、他の光学要素に結合されるDOEの種々の構成を図示する。 図21A−21Nは、例証される実施形態による、他の光学要素に結合されるDOEの種々の構成を図示する。 図21A−21Nは、例証される実施形態による、他の光学要素に結合されるDOEの種々の構成を図示する。 図21A−21Nは、例証される実施形態による、他の光学要素に結合されるDOEの種々の構成を図示する。 図21A−21Nは、例証される実施形態による、他の光学要素に結合されるDOEの種々の構成を図示する。 図21A−21Nは、例証される実施形態による、他の光学要素に結合されるDOEの種々の構成を図示する。 図21A−21Nは、例証される実施形態による、他の光学要素に結合されるDOEの種々の構成を図示する。 図21A−21Nは、例証される実施形態による、他の光学要素に結合されるDOEの種々の構成を図示する。 図21A−21Nは、例証される実施形態による、他の光学要素に結合されるDOEの種々の構成を図示する。 図21A−21Nは、例証される実施形態による、他の光学要素に結合されるDOEの種々の構成を図示する。 図21A−21Nは、例証される実施形態による、他の光学要素に結合されるDOEの種々の構成を図示する。 図21A−21Nは、例証される実施形態による、他の光学要素に結合されるDOEの種々の構成を図示する。 図21A−21Nは、例証される実施形態による、他の光学要素に結合されるDOEの種々の構成を図示する。 図21A−21Nは、例証される実施形態による、他の光学要素に結合されるDOEの種々の構成を図示する。
図22A−22Yは、例証される実施形態による、自由形状光学の種々の構成を図示する。 図22A−22Yは、例証される実施形態による、自由形状光学の種々の構成を図示する。 図22A−22Yは、例証される実施形態による、自由形状光学の種々の構成を図示する。 図22A−22Yは、例証される実施形態による、自由形状光学の種々の構成を図示する。 図22A−22Yは、例証される実施形態による、自由形状光学の種々の構成を図示する。 図22A−22Yは、例証される実施形態による、自由形状光学の種々の構成を図示する。 図22A−22Yは、例証される実施形態による、自由形状光学の種々の構成を図示する。 図22A−22Yは、例証される実施形態による、自由形状光学の種々の構成を図示する。 図22A−22Yは、例証される実施形態による、自由形状光学の種々の構成を図示する。 図22A−22Yは、例証される実施形態による、自由形状光学の種々の構成を図示する。 図22A−22Yは、例証される実施形態による、自由形状光学の種々の構成を図示する。 図22A−22Yは、例証される実施形態による、自由形状光学の種々の構成を図示する。 図22A−22Yは、例証される実施形態による、自由形状光学の種々の構成を図示する。 図22A−22Yは、例証される実施形態による、自由形状光学の種々の構成を図示する。 図22A−22Yは、例証される実施形態による、自由形状光学の種々の構成を図示する。 図22A−22Yは、例証される実施形態による、自由形状光学の種々の構成を図示する。 図22A−22Yは、例証される実施形態による、自由形状光学の種々の構成を図示する。 図22A−22Yは、例証される実施形態による、自由形状光学の種々の構成を図示する。 図22A−22Yは、例証される実施形態による、自由形状光学の種々の構成を図示する。 図22A−22Yは、例証される実施形態による、自由形状光学の種々の構成を図示する。 図22A−22Yは、例証される実施形態による、自由形状光学の種々の構成を図示する。 図22A−22Yは、例証される実施形態による、自由形状光学の種々の構成を図示する。 図22A−22Yは、例証される実施形態による、自由形状光学の種々の構成を図示する。 図22A−22Yは、例証される実施形態による、自由形状光学の種々の構成を図示する。 図22A−22Yは、例証される実施形態による、自由形状光学の種々の構成を図示する。
図4A−4Dを参照すると、いくつかの一般的構成要素選択肢が、図示される。図4A−4Dの議論に続く詳細な説明の一部では、種々のシステム、下位システム、および構成要素が、ヒトVRおよび/またはARのための高品質で快適に知覚されるディスプレイシステムを提供する目的に対処するために提示される。
図4Aに示されるように、ARシステムユーザ(60)が、ユーザの眼の正面に位置付けられるディスプレイシステム(62)に結合される、フレーム(64)構造を装着した状態で描写される。スピーカ(66)が、描写される構成では、フレーム(64)に結合され、ユーザの外耳道に隣接して位置付けられる(一実施形態では、図示されない別のスピーカが、ユーザの他方の外耳道に隣接して位置付けられ、ステレオ/成形可能音制御を提供する)。ディスプレイ(62)は、有線導線または無線接続等によって、フレーム(64)に固定して取り付けられる、図4Bの実施形態に示されるように、ヘルメットまたは帽子(80)に固定して取り付けられる、ヘッドホン内に埋め込まれる、図4Cの実施形態に示されるように、リュック式構成でユーザ(60)の胴体(82)に可撤性に取り付けられる、または図4Dの実施形態に示されるように、ベルト結合式構成でユーザ(60)の腰(84)に可撤性に取り付けられる等、種々の構成で搭載され得る、ローカル処理およびデータモジュール(70)に動作可能に結合される(68)。
ローカル処理およびデータモジュール(70)は、省電力プロセッサまたはコントローラと、フラッシュメモリ等のデジタルメモリとを備えてもよく、両方とも、a)画像捕捉デバイス(カメラ等)、マイクロホン、慣性測定ユニット、加速度計、コンパス、GPSユニット、無線デバイス、および/またはジャイロスコープ等、フレーム(64)に動作可能に結合され得る、センサから捕捉された、および/またはb)可能性として、処理または読み出し後にディスプレイ(62)への通過のために、遠隔処理モジュール(72)および/または遠隔データリポジトリ(74)を使用して取得および/または処理されたデータの処理、キャッシュ、および記憶を補助するために利用されてもよい。ローカル処理およびデータモジュール(70)は、これらの遠隔モジュール(72、74)が、相互に動作可能に結合され、ローカル処理およびデータモジュール(70)へのリソースとして利用可能であるように、有線または無線通信リンク等を介して、遠隔処理モジュール(72)および遠隔データリポジトリ(74)に動作可能に結合されてもよい(76、78)。一実施形態では、遠隔処理モジュール(72)は、データおよび/または画像情報を分析かつ処理するように構成される、1つまたはそれを上回る比較的に強力なプロセッサまたはコントローラを備えてもよい。一実施形態では、遠隔データリポジトリ(74)は、「クラウド」リソース構成におけるインターネットまたは他のネットワーキング構成を通して利用可能であり得る、比較的に大規模なデジタルデータ記憶設備を備えてもよい。一実施形態では、全てのデータは、記憶され、全ての計算は、ローカル処理およびデータモジュール内で行われ、任意の遠隔モジュールからの完全自律使用を可能にする。
図5Aから22Yを参照すると、ヒトの眼に、高レベルの画質および3次元知覚を伴って、かつ2次元コンテンツも提示可能である、物理的現実に対する拡張として快適に知覚され得る、光子ベースの放射パターンを提示するように設計される、種々のディスプレイ構成が、提示される。
図5Aを参照すると、簡略化された実施例において、45度の反射表面(102)を伴う透過性ビームスプリッタ基板(104)が、レンズ(図示せず)から眼(58)の瞳孔(45)を通して網膜(54)に出力され得る、入射放射(106)を指向させる。そのようなシステムのための視野は、ビームスプリッタ(104)の幾何学形状によって限定される。最小限のハードウェアを用いて快適な視認を得たいという所望に対応するために、一実施形態では、より大きい視野が、種々の異なる反射および/または回折表面の出力/反射を凝集させ、例えば、眼(58)に、高周波数でフレームのシーケンスが提示され、単一コヒーレント場面の知覚を提供するようなフレーム順次構成を使用して、作成され得る。異なる画像データを異なる反射体を介して時系列方式で提示することの代替として、またはそれに加え、反射体は、偏光選択性または波長選択性等の他の手段によって、コンテンツを分離してもよい。2次元画像を中継可能であることに加え、反射体は、実際の物理的オブジェクトの真の3次元視認と関連付けられた3次元波面を中継することができる。
図5Bを参照すると、複数の角度(110)における複数の反射体を備える、基板(108)が、示され、各反射体は、例証目的のために、描写される構成では、能動的に反射する。反射体は、時間的選択性を促進するように切替可能要素であってもよい。一実施形態では、反射表面は、意図的に、順次、フレーム順次入力情報(106)で活性化され、各反射表面は、他の反射表面によって提示される他の狭視野下位画像とともにタイル表示される狭視野下位画像を提示し、複合広視野画像を形成する。例えば、図5C、5D、および5Eを参照すると、基板(108)のほぼ中央にある表面(110)は、入射画像情報(106)を反射させ、比較的に狭視野下位画像をより大きい視野の中央に表すように反射状態「オン」に切り替えられる一方、他の潜在的反射表面は、透過性状態である。
図5Cを参照すると、狭視野下位画像の右側から生じる入射画像情報(106)(基板108の入力インターフェース112に対する入射ビーム106の角度と、基板108から出射する角度とによって示されるように)は、反射表面(110)から眼(58)に向かって反射される。図5Dは、同一反射体(110)がアクティブであることを図示し、画像情報は、入力インターフェース(112)における入力情報(106)の角度と、基板(108)から出射する際のその角度とによって示されるように、狭視野下位画像の中央から生じる。図5Eは、同一反射体(110)がアクティブであることを図示し、画像情報は、入力インターフェース(112)における入力情報(106)の角度と、基板(108)の表面において得られた出射角度とによって示されるように、視野の左側から生じる。図5Fは、底側反射体(110)がアクティブであって、画像情報(106)が、全体的視野の最右側から生じる、構成を図示する。例えば、図5C、5D、および5Eは、フレーム順次タイル表示画像の中心を表す1つのフレームを図示し得、図5Fは、そのタイル表示画像の最右側を表す第2のフレームを図示し得る。
一実施形態では、画像情報(106)を搬送する光は、最初に、基板(108)の表面から反射せずに、直接、入力インターフェース(112)において基板(108)に入射後、反射表面(110)に衝打してもよい。一実施形態では、画像情報(106)を搬送する光は、入力インターフェース(112)に入射後、反射表面(110)に衝打する前に、基板(108)の1つまたはそれを上回る表面から反射してもよい。例えば、基板(108)は、平面導波管として作用し、画像情報(106)を搬送する光を全内部反射によって伝搬させてもよい。光はまた、部分反射コーティング、波長選択コーティング、角度選択コーティング、および/または偏光選択コーティングを通して、基板(108)の1つまたはそれを上回る表面から反射してもよい。
一実施形態では、角度付けられた反射体は、特定の反射体への電圧および/または電流の印加に応じて、そのような反射体を備える材料の屈折率が、基板(108)の残りと実質的に一致する屈折率から変化するように、電気活性材料を使用して構築されてもよく、その場合、反射体は、反射効果が作成されるように、反射体の屈折率が基板(108)の屈折率と不整合である反射構成に対して透過性構成にある。例示的電気活性材料として、ニオブ酸リチウムおよび電気活性ポリマーが挙げられる。複数のそのような反射体を制御するための好適な実質的に透明な電極として、液晶ディスプレイにおいて利用される、インジウムスズ酸化物等の材料が挙げられ得る。
一実施形態では、電気活性反射体(110)は、ガラスまたはプラスチック等の基板(108)のホスト媒体中に埋め込まれる、液晶を備えてもよい。いくつかの変形例では、バイナリ(1つの透過性状態から1つの反射状態に)とは対照的に、よりアナログ的な変化が遂行され得るように、印加される電気信号の関数として屈折率を変化させる、液晶が、選択されてもよい。6つの下位画像が、眼にフレーム順次方式で提示され、全体的リフレッシュレート60フレーム/秒で大規模なタイル表示画像を形成する、ある実施形態では、約360Hzのレートでリフレッシュすることができる入力ディスプレイとともに、そのような周波数を保つことができる電気活性反射体アレイを有することが望ましい。一実施形態では、ニオブ酸リチウムが、液晶とは対照的に、電気活性反射材料として利用されてもよい。ニオブ酸リチウムは、高速スイッチおよび光ファイバネットワークのための光工学産業において利用されており、印加された電圧に応答して、超高周波数において屈折率を切り替える能力を有する。本高周波数は、特に、入力ディスプレイが、ファイバ走査ディスプレイまたは走査鏡ベースのディスプレイ等の走査光ディスプレイである場合、線順次またはピクセル順次下位画像情報を操向するために使用されてもよい。
別の実施形態では、可変切替可能な角度付けられた鏡構成が、MEMS(微小電気機械システム)デバイス等の1つまたはそれを上回る高速機械的に再位置付け可能である反射表面を備えてもよい。MEMSデバイスは、「デジタル鏡デバイス」、すなわち、「DMD」、(多くの場合、Texas Instruments, Inc.から利用可能なもの等の「デジタル光処理」、すなわち、「DLP」システムの一部)として知られるものを含んでもよい。別の電気機械的実施形態では、複数の空気で隔てられた(または真空中)反射表面が、高周波数で、定位置および定位置外に機械的に移動され得る。別の電気機械的実施形態では、単一反射表面が、上下に移動され、超高周波数で再ピッチ化されてもよい。
図5Gを参照すると、本明細書に説明される切替可能可変角度反射体構成は、コリメートまたは平坦波面情報を眼(58)の網膜(54)だけではなく、また、図5Gの例証に示されるように、湾曲波面(122)画像情報も通過させることが可能であることに留意されたい。これは、概して、湾曲波面情報の全内部反射が望ましくない複雑化を生じさせ、したがって、入力は、概して、コリメートされなければならない、他の導波管ベースの構成には該当しない。湾曲波面情報をパスするための能力は、網膜(54)に、光学無限遠(他の手掛かりがない場合のコリメートされた光の解釈となるであろう)だけではなく、眼(58)からの種々の距離において合焦されるにつれて知覚される入力を提供するための図5B−5Hに示されるもの等の構成の能力を促進する。
図5Hを参照すると、別の実施形態では、静的部分反射表面(116)のアレイ(すなわち、常時、反射モードである;別の実施形態では、前述のように、電気活性であり得る)が、制御可能に可動である、開口(120)を通した伝送のみを可能にすることによって、眼(58)の出力を制御する高周波数ゲーティング層(118)とともに、基板(114)内に埋め込まれてもよい。言い換えると、開口(120)を通した伝送以外全て、選択的に遮断され得る。ゲーティング層(118)は、液晶アレイ、ニオブ酸リチウムアレイ、MEMSシャッタ要素のアレイ、DLPDMD要素のアレイ、または伝送モードに切り替えられることに応じて、比較的に高周波数切替および高伝達率で通過もしくは伝送するように構成される、他のMEMSデバイスのアレイを備えてもよい。
図6A−6Bを参照すると、アレイ状光学要素が、射出瞳拡大構成と組み合わせられ、ユーザの仮想または拡張現実体験の快適性を補助し得る、他の実施形態が、描写される。光学構成のための「射出瞳」が大きいほど、システムのより大きい射出瞳に起因して、ユーザの解剖学的瞳孔が、依然として、所望に応じて、ディスプレイシステムから情報を受信するように位置付けられ得る、より大きい容認可能面積が存在するため、ディスプレイ(図4A−4Dにおけるように、眼鏡状の構成でユーザの頭部に取り付けられ得る)に対するユーザの眼の位置決めは、その体験を妨害しにくい。言い換えると、射出瞳が大きいほど、システムは、ユーザの解剖学的瞳孔に対するディスプレイの若干の不整合に対して感受性が低くなり、ディスプレイ/眼鏡とのその関係に及ぼす幾何学的制約が少ないことから、ユーザにとってより快適性が、達成され得る。
図6Aに示されるように、左側のディスプレイ(140)は、平行な光線の集合を基板(124)の中に供給する。一実施形態では、ディスプレイは、示されるような角度で光の狭ビームを往復走査し、角度走査光を収集し、それを光線の平行束に変換するために利用され得る、レンズまたは他の光学要素(142)を通して、画像を投影する、走査ファイバディスプレイであってもよい。光線は、光が反射表面(126、128、130、132、134、136)群を横断してほぼ等しく共有され得るように、入射光を部分的に反射し、部分的に伝送するように構成される、一連の反射表面(126、128、130、132、134、136)から反射されてもよい。小型レンズ(138)が、導波管(124)からの各出射点に設置され、出射光線は、節点を通して操向され、眼(58)に向かって走査され、ディスプレイシステムを注視する際、ユーザによって使用可能な射出瞳のアレイまたは1つの大きな射出瞳の機能的均等物を提供し得る。
導波管を通して実世界(144)もまた透視可能であることが望ましい仮想現実構成のために、レンズ(139)の類似集合が、導波管(124)の反対側に提示され、レンズの下位集合を補償し、したがって、ゼロ倍率望遠鏡の均等物を作成してもよい。反射表面(126、128、130、132、134、136)はそれぞれ、示されるように、約45度で整合されてもよく、または異なる整合を有するように構成されてもよい(例えば、図5B−5Hの構成に類似する)。反射表面(126、128、130、132、134、136)は、波長選択反射体、帯域通過反射体、半透鏡、または他の反射構成を備えてもよい。示されるレンズ(138、139)は、屈折レンズであるが、回折レンズ要素もまた、利用されてもよい。
図6Bを参照すると、複数の湾曲反射表面(148、150、152、154、156、158)が、図6Aの実施形態のレンズ(図6Aの要素138)と反射体(図6Aの要素126、128、130、132、134、136)の機能性を効果的に組み合わせ、それによって、2つのレンズ群(図6Aの要素138)の必要性を排除するために利用され得る、若干類似する構成が、描写される。湾曲反射表面(148、150、152、154、156、158)は、放物または楕円形湾曲表面等、反射および角度変化の付与の両方を行うように選択される、種々の湾曲構成であってもよい。放物形状では、入射光線の平行集合は、単一出力点の中に収集されるであろう。楕円形構成では、単一発生点から発散する光線の集合が、単一出力点に収集される。図6Aの構成と同様に、湾曲反射表面(148、150、152、154、156、158)は、好ましくは、入射光が導波管(146)の長さを横断して共有されるように、部分的に反射し、部分的に伝送するように構成される。湾曲反射表面(148、150、152、154、156、158)は、波長選択ノッチ反射体、半透鏡、または他の反射構成を備えてもよい。別の実施形態では、湾曲反射表面(148、150、152、154、156、158)は、反射させ、また、偏向させるように構成される、回折反射体と置換されてもよい。
図7Aを参照すると、Z軸差(すなわち、光学軸に沿って眼からの直線距離)の知覚が、導波管と可変焦点光学要素構成を併用することによって、促進され得る。図7Aに示されるように、ディスプレイ(160)からの画像情報が、例えば、図6Aおよび6Bを参照して説明されるもの等の構成、または当業者に公知の他の基板誘導光学方法を使用して、コリメートされ、導波管(164)の中に投入され、大射出瞳様式で分布されてもよく、次いで、可変焦点光学要素能力が、導波管から現れる光の波面の焦点を変化させ、眼に、導波管(164)から生じる光が特定の焦点距離からのものであるという知覚を提供するために利用されてもよい。言い換えると、入射光は、全内部反射導波管構成における課題を回避するためにコリメートされているため、コリメートされた方式で出射し、視認者の眼が、遠点が網膜上で合焦するように遠近調節することを要求し、必然的に、何らかの他の介入が、光を再合焦され、異なる視認距離からとして知覚させない限り、光学無限遠からであるように解釈されるであろう。好適なそのような介入の1つは、可変焦点レンズである。
図7Aの実施形態では、コリメートされた画像情報は、全内部反射し、隣接する導波管(164)の中に通過されるような角度で、ガラス(162)または他の材料片の中に投入される。導波管(164)は、ディスプレイからのコリメートされた光が、導波管の長さに沿って、反射体または回折特徴の分布を横断してほぼ均一に出射するよう分布されるように、図6Aまたは6Bの導波管(それぞれ、124、146)と同様に構成されてもよい。眼(58)に向かう出射に応じて、描写される構成では、出射光は、可変焦点レンズ要素(166)を通して通過され、可変焦点レンズ要素(166)の制御された焦点に応じて、可変焦点レンズ要素(166)から出射し、眼(58)に入射する光は、種々のレベルの焦点を有するであろう(コリメートされた平坦波面は、光学無限遠を表し、ビーム発散/波面曲率が大きいほど、眼58に対してより近い視認距離を表す)。
眼(58)と導波管(164)との間の可変焦点レンズ要素(166)を補償するために、別の類似可変焦点レンズ要素(167)が、導波管(164)の反対側に設置され、拡張現実のために、世界(144)から生じる光に対するレンズ(166)の光学効果を相殺する(すなわち、前述のように、一方のレンズが、他方のレンズを補償し、ゼロ倍率望遠鏡の機能的均等物を生成する)。
可変焦点レンズ要素(166)は、液晶レンズ、電気活性レンズ、可動要素を伴う従来の屈折レンズ、機械的変形ベースのレンズ(流体充填膜レンズ、または可撓性要素がアクチュエータによって撓曲および弛緩される、ヒト水晶体に類似するレンズ等)、エレクトロウェッティングレンズ、または異なる屈折率を伴う複数の流体等の屈折要素であってもよい。可変焦点レンズ要素(166)はまた、切替可能回折光学要素を備えてもよい(電圧が印加されると、分子が、その屈折率がホスト媒体のものともはや一致しないように再配向し、それによって、高周波数切替可能回折パターンを作成する、ポリマー材料等のホスト媒体が材料内に分散された液晶の微小液滴を有する、高分子分散型液晶アプローチを特徴とするもの等)。
一実施形態は、ニオブ酸リチウム等のカー効果ベースの電気活性材料の微小液滴が、ホスト媒体内に分散され、ファイバ走査ディスプレイまたは走査鏡ベースのディスプレイ等の走査光ディスプレイと結合されると、ピクセル毎または行毎ベースで画像情報の再合焦を可能にする、ホスト媒体を含む。液晶、ニオブ酸リチウム、または他の技術が、パターンを表すために利用される、可変焦点レンズ要素(166)構成では、パターン間隔は、可変焦点レンズ要素(166)の焦点力を変化させるだけではなく、また、ズームレンズタイプの機能性のために、全体的光学系の焦点力を変化させるために変調され得る。
一実施形態では、レンズ(166)は、写真撮影用のズームレンズが焦点をズーム位置から切り離すように構成され得るものと同一方法で、ディスプレイ画像の焦点が倍率を一定に保ちながら改変されることができるという点において、テレセントリックであり得る。別の実施形態では、レンズ(166)は、焦点変化がまた、ズーム変化に従動するであろうように、非テレセントリックであってもよい。そのような構成では、そのような倍率変化は、焦点変化と同期するグラフィックシステムからの出力の動的スケーリングを用いて、ソフトウェアにおいて補償されてもよい。
「フレーム順次」構成における、プロジェクタまたは他のビデオディスプレイユニット(160)と、画像を光学ディスプレイシステムの中に供給する方法の問題に戻って参照すると、順次2次元画像のスタックが、コンピュータ断層撮影システムがスタックされた画像スライスを使用して3次元構造を表す様式と同様の様式で、ディスプレイに順次供給され、3次元知覚を経時的に生成し得る。一連の2次元画像スライスが、それぞれ、眼に対して異なる焦点距離で、眼に提示され得、眼/脳は、そのようなスタックをコヒーレント3次元ボリュームの知覚の中に統合するであろう。ディスプレイタイプに応じて、行毎またはさらにピクセル毎シーケンス処理が、3次元視認の知覚を生成するために行われ得る。例えば、走査光ディスプレイ(走査ファイバディスプレイまたは走査鏡ディスプレイ等)では、ディスプレイは、導波管(164)に、順次方式で1度に1つの線または1つのピクセルを提示する。
可変焦点レンズ要素(166)が、高周波数のピクセル毎または行毎提示を保つことが可能である場合、各線またはピクセルは、可変焦点レンズ要素(166)を通して提示され、動的に合焦され、眼(58)から異なる焦点距離で知覚され得る。ピクセル毎焦点変調は、概して、超高速/高周波数可変焦点レンズ要素(166)を要求する。例えば、全体的フレームレート60フレーム/秒を伴う、1080P分解能ディスプレイは、典型的には、約1億2,500万ピクセル/秒を表す。そのような構成はまた、電気活性材料、例えば、ニオブ酸リチウムまたは電気活性ポリマーを使用するもの等、固体切替可能レンズを使用して構築されてもよい。図7Aに図示されるシステムとのその互換性に加え、フレーム順次多焦点ディスプレイ駆動アプローチは、本開示に説明されるいくつかのディスプレイシステムおよび光学実施形態と併用されてもよい。
図7Bを参照すると、電気活性層(172)(液晶またはニオブ酸リチウムを備えるもの等)が、インジウムスズ酸化物から作製され得る機能電極(170、174)によって囲繞され、従来の透過性基板(176、電気活性層172のオンまたはオフ状態に一致する既知の全内部反射特性および屈折率を伴う、ガラスまたはプラスチックから作製されるもの等)を伴う、導波管(168)が、入射ビームの経路が、本質的に、時変明視野を作成するように動的に改変され得るように、制御され得る。
図8Aを参照すると、スタックされた導波管アセンブリ(178)が、その導波管レベルに対して知覚されるべき焦点距離を示す導波管レベル毎の種々のレベルの波面曲率で、画像情報を眼に送信するようにともに構成される、複数の導波管(182、184、186、188、190)および複数の弱レンズ(198、196、194、192)を有することによって、3次元知覚を眼/脳に提供するために利用されてもよい。複数のディスプレイ(200、202、204、206、208)、または別の実施形態では、単一多重化ディスプレイが、それぞれ、前述のように、眼に出射するために、各導波管の長さを横断して、入射光を実質的に等しく分布させるように構成され得る、導波管(182、184、186、188、190)の中にコリメートされた画像情報を投入するために利用されてもよい。
眼に最も近い導波管(182)は、光学無限遠焦点面を表し得る、そのような導波管(182)の中に投入されるにつれて、コリメートされた光を眼に送達するように構成される。次の上方導波管(184)は、眼(58)に到達し得る前に、第1の弱レンズ(192;例えば、弱い負のレンズ)を通して通過する、コリメートされた光を送光するように構成される。そのような第1の弱レンズ(192)は、眼/脳が、その次の上方導波管(184)から生じる光を光学無限遠から人に向かって内向きにより近い第1の焦点面から生じているよう解釈するように、若干の凸面波面曲率を作成するように構成されてもよい。同様に、第3の上方導波管(186)は、眼(58)に到達する前に、その出力光を第1(192)および第2(194)レンズを通して通過させる。第1(192)および第2(194)レンズの組み合わせられた屈折力は、眼/脳が、その上方の第3の導波管(186)から生じている光を次の上方導波管(184)からの光より光学無限遠から人に向かってさらにより内向きに近い第2の焦点面から生じているよう解釈するように、別の漸増量の波面発散を作成するように構成されてもよい。
他の導波管層(188、190)および弱レンズ(196、198)も同様に、構成され、スタック内の最高導波管(190)は、人に最も近い焦点面を表す凝集焦点力のために、その出力をそれと眼との間の弱レンズの全てを通して送光する。スタックされた導波管アセンブリ(178)の他側の世界(144)から生じる光を視認/解釈するとき、レンズ(198、196、194、192)のスタックを補償するために、補償レンズ層(180)が、スタックの上部に配置され、下方のレンズスタック(198、196、194、192)の凝集屈折力を補償する。そのような構成は、前述のように、利用可能な導波管/レンズ対合と同じ数の知覚される焦点面に、再び、比較的に大きな射出瞳構成を提供する。導波管の反射側面およびレンズの合焦側面は両方とも、静的であってもよい(すなわち、動的または電気活性ではない)。代替実施形態では、動的であって、前述のように、電気活性特徴を使用し、少数の導波管が、時系列方式で多重化され、より多数の有効焦点面を生成することを可能にしてもよい。
図8B−8Nを参照すると、コリメートされたビームを合焦および/または再指向させるための回折構成の種々の側面が、描写される。そのような目的のための回折システムの他の側面は、米国特許出願第61/845,907号(米国特許出願第14/331,218号)に開示されており、参照することによってその全体として本明細書に組み込まれる。図8Bを参照すると、ブラッググレーティング等のコリメートされたビームを線形回折パターン(210)を通して通過させることは、ビームを偏向、すなわち、「操向」させるであろう。コリメートされたビームを半径方向対称回折パターン(212)、すなわち、「フレネルゾーンプレート」を通して通過させることは、ビームの焦点を変化させるであろう。図8Cは、コリメートされたビームを線形回折パターン(210)を通して通過させる偏向効果を図示する。図8Dは、コリメートされたビームを半径方向対称回折パターン(212)を通して通過させることの合焦効果を図示する。
図8Eおよび8Fを参照すると、線形および半径方向要素(214)の両方を有する、組み合わせ回折パターンが、コリメートされた入力ビームの偏向および合焦の両方を生成する。これらの偏向および合焦効果は、反射ならびに透過性モードで生成されることができる。これらの原理は、例えば、図8G−8Nに示されるように、付加的光学系制御を可能にするための導波管構成とともに適用されてもよい。図8G−8Nに示されるように、回折パターン(220)、すなわち、「回折光学要素」(または「DOE」)が、コリメートされたビームが平面導波管(216)に沿って全内部反射されるにつれて、多数の場所において回折パターン(220)に交差するように、平面導波管(216)内に埋め込まれている。
好ましくは、DOE(220)は、ビームの光の一部のみ、DOE(220)の各交差点を用いて、眼(58)に向かって偏向される一方、残りは、全内部反射を介して、平面導波管(216)を通して移動し続けるように、比較的に低回折効率を有する。画像情報を搬送する光は、したがって、多数の場所において導波管から出射する、いくつかの関連光ビームに分割され、結果として、図8Hに示されるように、平面導波管(216)内で跳ね返る本特定のコリメートされたビームに対して、眼(58)に向かって非常に均一なパターンの出射放出がもたらされる。眼(58)に向かう出射ビームは、この場合、DOE(220)が、線形回折パターンのみを有するため、実質的に平行として図8Hに示される。図8L、8M、および8N間の比較に示されるように、本線形回折パターンピッチに対する変化は、出射平行ビームを制御可能に偏向させ、それによって、走査またはタイル表示機能性を生成するために利用されてもよい。
図8Iに戻って参照すると、埋め込まれるDOE(220)の半径方向対称回折パターン構成要素の変化に伴って、出射ビームパターンは、より発散性となり、眼がより近い距離に対して遠近調節を行い、網膜上で合焦させることを要求し、光学無限遠より眼に近い視認距離からの光として脳によって解釈されるであろう。図8Jを参照すると、その中にビームが投入され得る(例えば、プロジェクタまたはディスプレイによって)、別の導波管(218)の追加に伴って、線形回折パターン等の本他の導波管(218)内に埋め込まれたDOE(221)は、光をより大きい平面導波管(216)全体を横断して拡散させるように機能し得、これは、眼(58)に、稼働中の特定のDOE構成に従って、より大きい平面導波管(216)から出射する、入射光の非常に大きな入射場、すなわち、大型のアイボックスを提供するように機能する。
DOE(220、221)は、関連付けられた導波管(216、218)を二分するように描写されるが、これは、該当する必要はない。それらは、同一機能性を有するように、導波管(216、218)のいずれかの両側により近くに、またはその上に設置されることもできる。したがって、図8Kに示されるように、単一のコリメートされたビームの投入に伴って、クローン化されたコリメートビームの場全体が、眼(58)に向かって指向され得る。加えて、図8F(214)および8I(220)に描写されるもの等の組み合わせられた線形回折パターン/半径方向対称回折パターンシナリオでは、Z軸合焦能力を伴う、ビーム分布導波管光学(射出瞳の機能的拡張等の機能性のため;図8Kのもの等の構成を用いると、射出瞳は、光学要素自体と同じ大きさとなり得、これは、ユーザ快適性および人間工学のために非常に有意な利点となり得る)が、提示され、クローン化されたビームの発散角度および各ビームの波面曲率は両方とも、光学無限遠より近い点から生じる光を表す。
一実施形態では、1つまたはそれを上回るDOEは、能動的に回折する「オン」状態と、有意に回折しない「オフ」状態との間で切替可能である。例えば、切替可能DOEは、微小液滴が、ホスト媒体内に回折パターンを備え、微小液滴の屈折率が、ホスト材料の屈折率に実質的に一致するように切り替えられることができる(その場合、パターンは、入射光を著しく回折しない)、または微小液滴が、ホスト媒体のものに一致しない屈折率に切り替えられることができる(その場合、パターンは、入射光を能動的に回折する)、高分子分散型液晶の層を備えてもよい。さらに、図8L−8Nにおけるように、線形回折ピッチ項等の回折項に対する動的変化に伴って、ビーム走査またはタイル表示機能性が、達成され得る。光の分布を促進するため、また、望ましく伝送される、導波管を通して生じる光(例えば、拡張現実構成では、世界144から眼58に向かって生じる光)が、それが越えるDOE(220)の回折効率がより低いとき、あまり影響を受けず、したがって、そのような構成を通して実世界のより優れたビューが、達成されるため、前述のように、DOE(220、221)のそれぞれに比較的に低回折グレーティング効率を有することが望ましい。
図8Kに図示されるもの等の構成は、好ましくは、時系列アプローチにおける画像情報の投入に伴って駆動され、フレーム順次駆動は、最も実装が簡単である。例えば、光学無限遠における空の画像が、時間1で投入され得、光のコリメートを留保する回折グレーティングが、利用されてもよい。次いで、より近い木の枝の画像が、時間2で投入され得る一方、DOEが、例えば、1ジオプタまたは1メートル離れて、焦点変化を制御可能に付与し、眼/脳に、枝の光情報がより近い焦点距離から生じているという知覚を提供する。本種類のパラダイムは、眼/脳が、入力が同一画像の全部分であることを知覚するような高速時系列方式で繰り返されることができる。これは、2つの焦点面の実施例にすぎない。好ましくは、システムは、より多くの焦点面を有し、オブジェクトとその焦点距離との間のより平滑な遷移を提供するように構成されるであろう。本種類の構成は、概して、DOEが比較的に低速で(すなわち、数十〜数百サイクル/秒の範囲内で画像を投入するディスプレイのフレームレートと同期して)切り替えられると仮定する。
正反対のものは、DOE要素が、数十〜数百MHzまたはそれを上回って焦点を偏移させることができ、ピクセルが、走査光ディスプレイタイプのアプローチを使用して、眼(58)の中に走査されるにつれて、ピクセル毎ベースでDOE要素の焦点状態の切替を促進する、構成であってもよい。これは、全体的ディスプレイフレームレートが非常に低く保たれ得る(「フリッカー」が問題ではない(約60〜120フレーム/秒の範囲内である)ことを確実にするために十分に低い)ことを意味するため、望ましい。
これらの範囲間では、DOEが、KHzレートで切り替えられ得る場合、行毎ベースで、各走査線上の焦点は、調節されてもよく、これは、ユーザに、例えば、ディスプレイに対する眼運動の間、時間的アーチファクトの観点から可視利点を与え得る。例えば、場面内の異なる焦点面は、このように、インタリーブされ、頭部の運動に応答して、可視アーチファクトを最小限にし得る(本開示の後半で詳細に論じられるように)。行毎焦点変調器は、ピクセルの線形アレイが、掃引され、画像を形成する、グレーティング光弁ディスプレイ等の線走査ディスプレイに動作可能に結合されてもよく、ファイバ走査ディスプレイおよび鏡走査光ディスプレイ等の走査光ディスプレイに動作可能に結合されてもよい。
、図8Aのものに類似するスタックされた構成は、動的DOE(図8Aの実施形態の静的導波管およびレンズではなく)を使用して、多平面合焦を同時に提供してもよい。例えば、3つの同時焦点面では、一次焦点平面(例えば、測定された眼遠近調節に基づいて)が、ユーザに提示され得、+境界および−境界(すなわち、一方の焦点面は、より近く、一方の焦点面は、より離れている)が、平面の更新が必要とされる前に、ユーザが遠近調節することができる、大焦点距離を提供するために利用され得る。本増加される焦点距離は、ユーザが、より近いまたはより遠い焦点(すなわち、遠近調節測定によって判定されるように)に切り替える場合、焦点の新しい平面が、中央焦点深度にされ得、+および−境界は、再び、システムが追い付く間、いずれか一方への高速切替の準備ができた状態となるという時間的利点を提供することができる。
図8Oを参照すると、それぞれ、反射体(254、256、258、260、262)を端部に有し、ディスプレイ(224、226、228、230、232)によって一端に投入されたコリメートされた画像情報が、反射体までの全内部反射によって跳ね返り、その時点で、光の一部または全部が、眼もしくは他の標的に向かって反射されるように構成される、平面導波管(244、246、248、250、252)のスタック(222)が、示される。反射体はそれぞれ、全て、出射光を瞳孔等の共通目的地に向かって反射させるように、若干異なる角度を有してもよい。そのような構成は、図5Bのものに若干類似するが、図8Oの実施形態における各異なる角度付けられた反射体は、投影された光が標的反射体に進行しているとき、ほとんど干渉しないために、その独自の導波管を有する。レンズ(234、236、238、240、242)は、ビーム操向および/または合焦のために、ディスプレイと導波管との間に介在されてもよい。
図8Pは、反射体(276、278、280、282、284)が、出射ビームが解剖学的瞳孔等のオブジェクトと比較的に容易に整合され得るように、導波管(266、268、270、272、274)内で交互長に位置付けられる、幾何学的に交互にされたバージョンを図示する。スタック(264)の眼からの距離(典型的快適幾何学形状である、眼の角膜と眼鏡レンズとの間の28mm等)の知識を用いて、反射体(276、278、280、282、284)および導波管(266、268、270、272、274)の幾何学形状は、出射光で眼の瞳孔を充填するように設定されてもよい(典型的には、幅約8mmまたはそれ未満)。光を眼の瞳孔の直径より大きいアイボックスに指向することによって、視認者は、表示される画像を見る能力を留保しながら、眼を移動させ得る。視野拡大および反射体サイズに関する図5Aおよび5Bに関連する議論に戻って参照すると、拡大される視野は、図8Pの構成によっても同様に提示され、図5Bの実施形態の切替可能反射要素の複雑性を伴わない。
図8Qは、多くの反射体(298)が、全体的曲線と整合するように配向される、凝集または離散平坦ファセット内に比較的に連続した湾曲反射表面を形成する、バージョンを図示する。曲線は、放物または楕円曲線であり得、複数の導波管(288、290、292、294、296)を横断して切断し、任意のクロストーク問題を最小限にするように示されるが、また、モノリシック導波管構成とも併用され得る。
一実装では、高フレームレートおよびより低い持続性のディスプレイが、より低いフレームレートおよびより高い持続性ディスプレイならびに可変合焦要素と組み合わせられ、比較的に高周波数フレームの順次立体ディスプレイを構成してもよい。一実施形態では、高フレームレートディスプレイは、より低いビット深度を有し、より低いフレームレートディスプレイは、より高いビット深度を有し、フレーム順次方式における画像スライス提示に非常に好適である、効果的高フレームレートおよび高ビット深度ディスプレイを構成するように組み合わせられる。そのようなアプローチを用いて、望ましく表される3次元ボリュームが、一連の2次元スライスに機能的に分割される。それらの2次元スライスはそれぞれ、眼フレームに順次投影され、本提示と同期して、可変合焦要素の焦点が、変化される。
一実施形態では、そのような構成をサポートするための十分なフレームレートを得るために、2つのディスプレイ要素、すなわち、60フレーム/秒で動作する、フルカラー高分解能液晶ディスプレイ(「LCD」;背面光付き強誘電パネルディスプレイもまた、別の実施形態では利用されてもよい;さらなる実施形態では、走査ファイバディスプレイが、利用されてもよい)と、より高い周波数のDLPシステムの側面とが、統合されてもよい。LCDパネルの背面を従来の様式で(すなわち、フルサイズ蛍光灯またはLEDアレイを用いて)照明する代わりに、従来の照明構成は、DLPプロジェクタを使用して遠近調節し、LCDの背面上にマスクパターンを投影するために除去されてもよい(一実施形態では、マスクパターンは、DLPが照明を投影するかどうかという点において、バイナリであってもよい;以下に説明される別の実施形態では、DLPは、階調マスク画像を投影するために利用されてもよい)。
DLP投影システムは、非常に高いフレームレートで動作することができる。60フレーム/秒における6つの深度平面のための一実施形態では、DLP投影システムは、360フレーム/秒でLCDディスプレイの背面に対して動作される。次いで、DLPプロジェクタが、LCDパネルの視認側とユーザの眼との間に配置される、高周波数可変合焦要素(変形可能膜鏡等)(可変合焦要素は、360フレーム/秒においてフレームベースでフレーム上の全体的ディスプレイ焦点を変化させるために使用される)と同期して、LCDパネルの一部を選択的に照明するために利用される。一実施形態では、可変合焦要素は、同時に、画像倍率または「ズーム」に影響を及ぼさずに、射出瞳に光学的に共役し、焦点の調節を可能にするために位置付けられる。別の実施形態では、可変合焦要素は、画像倍率変化が焦点調節を伴わないように、射出瞳に共役されず、ソフトウェアが、提示されるべき画像を事前スケーリングし、歪曲させることによって、これらの光学倍率変化および任意の歪曲を補償するために使用される。
動作上、ここで再び、3次元場面が、ユーザに提示されるべきであって、背景中の空が、光学無限遠の視認距離にあって、光学無限遠よりユーザに近いある場所に位置する木に結合される枝が、枝の先端が木の幹に継合する枝の近位部分よりユーザに近くなるように、木の幹からユーザに向かう方向に延在する、実施例を検討することは、有用である。
一実施形態では、所与の全体的フレームのために、システムは、LCD上に、空の正面に木の枝のフルカラーの全合焦画像を提示するように構成されてもよい。次いで、全体的フレーム内の下位フレーム1において、バイナリマスキング構成(すなわち、照明または無照明)におけるDLPプロジェクタが、空と同一焦点距離で知覚されるべきではない木の枝および他の要素を表す、LCDの部分を機能的に黒色マスキング(すなわち、照明不能)しながら、曇った空を表す、LCDの部分のみを照明するために使用されてもよく、可変合焦要素(変形可能膜鏡等)が、下位フレーム1における下位画像を無限に離れた雲として眼に見えるように、焦点面を光学無限遠に位置付けるために利用されてもよい。
次いで、下位フレーム2において、可変合焦要素は、ユーザの眼から約1メートル(または要求されるいずれかの距離;ここでは、枝の場所に対して1メートルが、例証目的のために使用される)離れた点に合焦させるように切り替えられてもよく、DLPからの照明のパターンは、システムが、木の枝と同一焦点距離で知覚されるべきではない空および他の要素を表す、LCDの部分を機能的に黒色マスキング(すなわち、照明不能)しながら、木の枝を表すLCDの部分のみを照明するように、切り替えられることができる。したがって、眼は、光学無限遠における雲の高速フラッシュに続いて、1メートルにおいて木の高速フラッシュを取得し、シーケンスは、眼/脳によって3次元知覚を形成するように統合される。枝は、視認距離の範囲を通して延在するように、視認者に対して対角線上に位置付けられてもよく、例えば、約2メートルの視認距離において幹と継合されてもよい一方、枝の先端は、1メートルのより近い位置にある。
この場合、ディスプレイシステムは、木の枝の3−Dボリュームを、1メートルにおける単一スライスではなく、複数のスライスに分割することができる。例えば、1つの焦点スライスが、空を表すために使用されてもよい(本スライスの提示の間、DLPを使用して、木の全面積をマスクする)一方、木の枝は、5つの焦点スライスを横断して分割される(DLPを使用して、空と、提示されるべき木の枝の部分毎に1つを除く木の全ての部分とをマスクする)。好ましくは、深度スライスは、視認者がスライス間の遷移に気付く可能性が低く、代わりに、焦点範囲を通して枝の平滑かつ連続したフローを知覚するであろうように、眼の焦点深度と等しいまたはより小さい間隔で位置付けられる。
別の実施形態では、DLPをバイナリ(照明または暗視野のみ)モードで利用するのではなく、階調(例えば、256陰影の階調)マスクをLCDパネルの背面上に投影させ、3次元知覚を向上させるために利用されてもよい。階調陰影は、眼/脳に、何かが隣接する深度または焦点面間に存在しているという知覚を付与するために利用されてもよい。枝および雲のシナリオに戻ると、ユーザに最も近い枝の前縁が、焦点平面1にあるべき場合、下位フレーム1において、LCD上のその部分枝は、焦点平面1における可変合焦要素を用いて、DLPシステムから最大強度白色で照明されてもよい。
次いで、下位フレーム2において、可変合焦要素が、照明された部分のすぐ背後の焦点平面2にあると、照明はないであろう。これらは、前述のバイナリDLPマスキング構成と類似ステップである。しかしながら、焦点平面1と焦点平面1との間の、例えば、半分の位置に知覚されるべき枝の部分がある場合、階調マスキングが、利用されることができる。DLPは、下位フレーム1および下位フレーム2の両方の間、照明マスクをその部分に投影することができるが、下位フレーム毎に、半照明(256階調のレベル128等において)である。これは、焦点深度層の混成の知覚を提供し、知覚される焦点距離は、下位フレーム1と下位フレーム2との間の照度比率に比例する。例えば、焦点平面1と焦点平面2との間の3/4にあるべき木の枝の部分に対して、約25%強度階調マスクが、下位フレーム1におけるLCDのその部分を照明するために使用されることができ、約75%階調マスクが、下位フレーム2におけるLCDの同一部分を照明するために使用されることができる。
一実施形態では、低フレームレートディスプレイおよび高フレームレートディスプレイの両方のビット深度は、画像変調のために組み合わせられ、高ダイナミックレンジディスプレイを作成することができる。高ダイナミックレンジ駆動は、前述の焦点平面アドレス指定機能と連動して行われ、高ダイナミックレンジ多焦点3−Dディスプレイを構成してもよい。
計算リソースにより効率的となり得る、別の実施形態では、ディスプレイ(すなわち、LCD)出力のある部分のみ、DMDによってマスク照明され、ユーザの眼までの途中で可変合焦されてもよい。例えば、ディスプレイの中央部分は、マスク照明され、ディスプレイの周縁は、可変遠近調節手掛かりをユーザに提供しなくてもよい(すなわち、周縁は、DLP DMDによって均一に照明され得る一方、中心部分は、能動的にマスクされ、眼までの途中で可変合焦される)。
前述の説明される実施形態では、約360Hzのリフレッシュレートは、それぞれ、約60フレーム/秒における、6つの深度平面を可能にする。別の実施形態では、さらにより高いリフレッシュレートが、DLPの動作周波数を増加させることによって達成されてもよい。標準的DLP構成は、光をディスプレイまたはユーザに向かって反射させるモードと、光をディスプレイまたはユーザから光トラップ等の中に反射させるモードとの間でトグルする、MEMSデバイスおよび微小鏡のアレイを使用し、したがって、本質的にバイナリである。DLPは、典型的には、鏡が、より明るいピクセルまたは中間の輝度のピクセルを作成するために、可変デューティサイクルのための可変時間量の間、「オン」状態にされる、パルス幅変調方式を使用して、階調画像を作成する。したがって、適度なフレームレートで階調画像を作成するために、それらは、はるかに高いバイナリレートで起動していることになる。
前述の説明される構成では、そのような設定は、階調マスキングを作成するために良好に機能する。しかしながら、DLP駆動方式が、バイナリパターンで下位画像をフラッシュさせるように適合される場合、フレームレートは、数千フレーム/秒と有意に増加され得、これは、数百〜数千の深度平面が、60フレーム/秒でリフレッシュされることを可能にし、前述のような深度平面間階調補間を排除するために利用され得る。Texas Instruments DLPシステムのための典型的パルス幅変調方式は、構成が2〜8乗の異なる照明レベルを作成し得るように、8ビットコマンド信号を有する(第1のビットは、鏡の第1の長パルスであって、第2のビットは、第1のものの長さの半分のパルスであって、第3のビットも、再び半分の長さである、等と続く)。一実施形態では、DLPからの背面照明は、DMDの異なるパルスと同期してその強度を変動させ、作成される下位画像の輝度を等化させてもよく、これは、既存のDMD駆動電子機器に有意により高いフレームレートを生成させるための実践的処置である。
別の実施形態では、DMD駆動電子機器およびソフトウェアに対する直接制御変化が、鏡が、常時、従来の可変オン時間構成の代わりに、等しいオン時間を有するために利用されてもよく、これは、より高いフレームレートを促進するであろう。別の実施形態では、DMD駆動電子機器は、高ビット深度画像のものを上回るが、バイナリフレームレートより低いフレームレートで低ビット深度画像を提示し、焦点平面の数を適度に増加させながら、焦点平面間のある階調混成を可能にするように構成されてもよい。
別の実施形態では、有限数の深度平面(例えば、前述の実施例では、6)に限定されるとき、ユーザに提示されている場面内で最大限に有用であるように、これらの6つの深度平面を機能的に移動させることが望ましい。例えば、ユーザが、部屋の中に立っており、仮想モンスターが、その拡張現実ビューの中に設置されるべき場合(仮想モンスターは、ユーザの眼からZ軸において直線約2フィートの深度にある)、モンスターの直接領域内の全6つの深度平面(例えば、モンスターの中心の正面に3つ、モンスターの中心の背面に3つ)とともに、より豊かな遠近調節の手掛かりがユーザに提供され得るように、全6つの深度平面をモンスターの現在の場所の中心の周囲にクラス化する(かつモンスターがユーザに対して移動するにつれて、それらをモンスターとともに動的に移動させる)ことは、理にかなっている。そのような深度平面の配分は、コンテンツ依存性である。
例えば、前述の場面では、同一モンスターが、同一部屋内に提示されるべきであるが、仮想窓フレーム要素、次いで、仮想窓フレームから光学無限遠までの仮想ビューもまた、ユーザに提示されるためには、少なくとも1つの深度平面を光学無限遠において、1つを仮想窓フレームを格納するためのものである壁の深度において、次いで、おそらく、残りの4つの深度平面を部屋内のモンスターに費やすことが有用であろう。コンテンツが、仮想窓を消失させる場合、2つの深度平面は、モンスターの周囲の領域等に動的に再割り当てされ得、すなわち、コンピューティングおよび提示リソースを前提として、最も豊かな体験をユーザに提供するための焦点面リソースのコンテンツベースの動的配分となる。
別の実施形態では、マルチコアファイバまたは単一コアファイバのアレイにおける位相遅延が、可変焦点光波面を作成するために利用されてもよい。図9Aを参照すると、マルチコアファイバ(300)は、複数の個々のファイバ(302)の凝集体を備えてもよい。図9Bは、それぞれからの球状波面(304)の形態で各コアから光を放出する、マルチコアアセンブリの拡大図を示す。コアが、例えば、共有レーザ光源からコヒーレント光を伝送している場合、これらの小球状波面は、最終的には、相互に建設的および破壊的に干渉し、マルチコアファイバから同相で放出される場合、示されるように、略平面波面(306)を凝集体内に発生させるであろう。しかしながら、位相遅延が、コア間に誘発される(ニオブ酸リチウムを使用したもの等の従来の位相変調器を使用して、例えば、いくつかのコアの経路を他のコアの経路に対して減速させる)場合、湾曲または球状波面が、凝集体内に作成され、眼/脳に、光学無限遠により近い点から生じるオブジェクトを表し得、これは、前述の可変合焦要素の代わりに使用され得る、別の選択肢を提示する。言い換えると、そのような位相マルチコア構成、すなわち、位相アレイは、光源から複数の光学焦点レベルを作成するために利用されてもよい。
光ファイバの使用に関連する別の実施形態では、マルチモード光ファイバまたは光誘導ロッドもしくはパイプの公知のフーリエ変換側面が、そのようなファイバから出力される波面の制御のために利用されてもよい。光ファイバは、典型的には、2つのカテゴリ、すなわち、単一モードおよびマルチモードにおいて利用可能である。マルチモード光ファイバは、典型的には、より大きいコア直径を有し、単一モード光ファイバのような1つだけではなく、複数の角度経路に沿って、光が伝搬することを可能にする。画像が、マルチモードファイバの一端の中に投入される場合、その画像の中にエンコードされるその角度差は、マルチモードファイバを通して伝搬するにつれて、ある程度まで留保され、いくつかの構成に関して、ファイバからの出力は、入力された画像のフーリエ変換に有意に類似するであろうことが知られている。
したがって、一実施形態では、波面(光学無限遠よりユーザに近い焦点面を表すための発散性球状波面等)の逆フーリエ変換が、フーリエ変換を光学的に付与するファイバを通して通過後、出力が所望の形状または合焦波面となるように入力されてもよい。そのような入力端は、例えば、走査ファイバディスプレイとして使用されるように走査されてもよく、または走査鏡のための光源として使用され、画像を形成してもよい。したがって、そのような構成は、さらに別の焦点変調下位システムとして利用されてもよい。入力端に、ある空間パターンが放出されるように、他の種類の光パターンおよび波面が、マルチモードファイバの中に投入されてもよい。これは、ウェーブレットパターンの均等物を有するために利用されてもよい(光学では、光学系は、ゼルニケ係数と呼ばれるものの観点から分析されてもよく、画像は、同様に、特性評価され、より小さい主成分、すなわち、比較的より単純な画像成分の加重組み合わせに分解される)。したがって、光が、入力側の主成分を使用して眼の中に走査される場合、より高い分解能画像が、マルチモードファイバの入力端で回収され得る。
別の実施形態では、ホログラムのフーリエ変換が、マルチモードファイバの入力端の中に投入され、3次元焦点変調および/または分解能向上のために使用され得る、波面を出力してもよい。ある単一ファイバコア、マルチコアファイバ、または同心コア+クラッディング構成もまた、前述の逆フーリエ変換構成において利用されてもよい。
別の実施形態では、遠近調節または視線のユーザの特定の状態にかかわらず、高フレームレートでユーザの眼に接近する波面を物理的に操作するのではなく、システムは、ユーザの遠近調節を監視し、複数の異なる光波面の集合を提示するのではなく、眼の遠近調節状態に対応する単一波面を1度に提示するように構成されてもよい。遠近調節は、直接(赤外線自動屈折計または偏心光屈折法等によって)または間接的に(ユーザの両眼の収束レベルを測定すること等によって;前述のように、両眼離反運動および遠近調節は、神経学的に強く結び付けられ、したがって、遠近調節の推定は、両眼離反運動幾何学形状に基づいて行われることができる)測定されてもよい。したがって、例えば、ユーザから1メートルの遠近調節が判定されると、次いで、眼における波面提示は、前述の可変焦点構成のいずれかを使用して、1メートル焦点距離のために構成されてもよい。2メートルにおいて合焦するための遠近調節変化が検出される場合、眼における波面提示は、2メートル焦点距離のために再構成されてもよい、等となる。
したがって、遠近調節追跡を組み込む、一実施形態では、可変合焦要素が、焦点が眼の遠近調節変化とともに変化され得るように(すなわち、好ましくは、それと同一レートで)、出力コンバイナ(例えば、導波管またはビームスプリッタ)とユーザの眼との間の光学経路内に設置されてもよい。ソフトウェア効果が、可変量ぼかし(例えば、ガウス)を合焦すべきではないオブジェクトに生成し、オブジェクトがその視認距離にある場合、網膜に予期される光屈折ぼけをシミュレートし、眼/脳による3次元知覚を向上させるために利用されてもよい。
単純実施形態は、その焦点レベルが視認者の遠近調節レベルに従動される、単一平面であるが、しかしながら、遠近調節追跡システムに対する性能要求は、少数の複数の平面が使用される場合でも、緩和され得る。図10を参照すると、別の実施形態では、約3つの導波管(318、320、322)のスタック(328)が、波面に値する3つの焦点面を同時に作成するために利用されてもよい。一実施形態では、弱レンズ(324、326)は、静的焦点距離を有してもよく、可変焦点レンズ(316)は、3つの導波管のうちの1つ(例えば、中央導波管320)が、合焦波面であると見なされるものを出力する一方、他の2つの導波管(322、318)が、3次元知覚を改善し、また、脳/眼遠近調節制御システムがある程度のぼかしを負のフィードバックとして感知するために十分な差異を提供し、現実の知覚を向上させ、焦点レベルの物理的調節が必要とされる前に、ある遠近調節の範囲を可能にし得るよう、+境界波面および−境界波面(すなわち、検出される焦点距離からわずかに遠い、検出される焦点距離からわずかに近い)を出力するように、眼の遠近調節追跡に従動されてもよい。
拡張現実構成における実世界(144)から生じる光が、スタック(328)および出力レンズ(316)のアセンブリによって、再合焦または拡大されないことを確実にするために、可変焦点補償レンズ(314)もまた、示される。レンズ(316、314)内の可変焦点は、前述のように、屈折、回折、または反射技法を用いて達成されてもよい。
別の実施形態では、スタック内の導波管はそれぞれ、可変合焦要素が、図10の構成のスタック(328)内の中心である必要はないように、焦点を変化させるためのその独自の能力を含有してもよい(含有式の電子的に切替可能なDOEを有すること等によって)。
別の実施形態では、可変合焦要素は、スタックの導波管間にインタリーブされ(すなわち、図10の実施形態におけるように、固定された焦点弱レンズではなく)、固定された焦点弱レンズとスタック全体の再合焦可変合焦要素の組み合わせの必要性を排除してもよい。
そのようなスタック構成は、本明細書に説明されるような遠近調節追跡変形例において、また、フレーム順次多焦点ディスプレイアプローチにおいて使用されてもよい。
光が1/2mm直径またはそれ未満等の小射出瞳を伴う瞳に入射する、構成では、ビームが、常時、眼/脳によって合焦していると解釈される、ピンホールレンズ構成の均等物を有する。例えば、走査光ディスプレイは、0.5mm直径ビームを使用して、画像を眼に走査する。そのような構成は、マクスウェル視構成として知られ、一実施形態では、遠近調節追跡入力が、ソフトウェアを使用して、遠近調節追跡から判定された焦点面の背面または正面の焦点面として知覚されるべき画像情報にぼかしを誘発するために利用されてもよい。言い換えると、マクスウェル視を提示するディスプレイから開始し、次いで、全てのものが、理論的に合焦され得る場合、豊かであって、かつ自然な3次元知覚を提供するために、シミュレートされた光屈折ぼけが、ソフトウェアを用いて誘発されてもよく、遠近調節追跡ステータスに従動されてもよい。
一実施形態では、走査ファイバディスプレイは、小径ビームのみをマクスウェル形態において出力するように構成され得るため、そのような構成に非常に好適である。別の実施形態では、小射出瞳のアレイが、1つのみが任意の所与の時間で解剖学的ユーザの瞳孔に衝突することを確実にする、提示される射出瞳のアレイ内のピッチを用いて(例えば、平均的解剖学的瞳孔径が4mmである場合、一構成は、約4mm間隔離して離間される、1/2mm射出瞳を備えてもよい)、1つまたはそれを上回る走査ファイバディスプレイによって、または図8Kを参照して説明されるもの等のDOE構成によって等、システムの機能的アイボックスを増加させる(また、眼の硝子体または角膜内に存在し得る、光遮断粒子の影響を低減させる)ために作成されてもよい。そのような射出瞳はまた、眼が、常時、1つであって、かつ1つのみである、アクティブ小射出瞳のみを1度に受容し、より密度の高い射出瞳のアレイを可能にするように、眼の位置に応答して、切替可能であってもよい。そのようなユーザは、ソフトウェアベースのぼかし技法が知覚される深度知覚を向上させるために追加され得る、大焦点深度を有するであろう。
前述のように、光学無限遠におけるオブジェクトは、実質的に平面波面を作成する。眼から1m等、より近いオブジェクトは、湾曲波面(約1m凸面曲率半径を伴う)を作成する。眼の光学系は、最終的に網膜上に合焦される(凸面波面は、凹面に変えられ、次いで、網膜上の焦点に至る)ように、光の入射光線を混成させるために十分な屈折力を有する必要がある。これらは、眼の基本機能である。
前述の実施形態の多くでは、眼に指向される光は、1つの連続波面の一部として取り扱われ、その一部の下位集合が、特定の眼の瞳孔に衝突するであろう。別のアプローチでは、眼に指向される光は、ビームレットまたは光線の凝集体とともに機能的に作成され得る、より大きな凝集波面の一部として、それぞれ、直径約0.5mm未満および一意の伝搬経路を有する、複数のビームレットまたは個々の光線に効果的に離散化もしくは分割されてもよい。例えば、湾曲波面は、それぞれ、適切な角度から眼に接近し、所望の凝集波面の曲率半径の中心に一致する、原点を表す、複数の離散する近隣のコリメートされたビームを凝集させることによって近似されてもよい。
ビームレットは、直径約0.5mmまたはそれ未満を有するとき、ピンホールレンズ構成を通して生じているかのようであって、これは、各個々のビームレットが、常時、眼の遠近調節状態から独立して、網膜上の相対焦点内にあるが、しかしながら、各ビームレットの軌道が、遠近調節状態によって影響されるであろうことを意味する。例えば、ビームレットが、眼に平行に接近し、離散化されたコリメートされた凝集波面を表す場合、無限遠に正しく遠近調節される眼は、ビームレットを偏向させ、全て、網膜上の同一共有スポットに収束させ、合焦して見えるであろう。眼が、例えば、1mに遠近調節する場合、ビームは、網膜の正面のスポットに収束され、経路を越え、網膜上の複数の近隣または部分的重複スポットに当たり、ぼけて見えるであろう。
ビームレットが、視認者から1メートルの共有原点を伴って、発散性構成において眼に接近する場合、1mの遠近調節は、ビームを網膜上の単一スポットに操向し、合焦して見えるであろう。視認者が、無限遠に遠近調節する場合、ビームレットは、網膜の背後のスポットに収束し、複数の近隣または部分的重複スポットを網膜上に生成し、ぼけた画像を生成するであろう。より一般的に述べると、眼の遠近調節は、網膜上のスポットの重複度を判定し、所与のピクセルは、スポットの全てが網膜上の同一スポットに指向されると、「合焦」し、スポットが相互からオフセットされると、「焦点ぼけ」となる。0.5mm直径またはそれ未満のビームレットが全て、常時、合焦し、コヒーレント波面と実質的に同一であるかのように眼/脳によって知覚されるように凝集され得るという本概念は、快適な3次元仮想または拡張現実知覚のための構成を生成する際に利用されてもよい。
言い換えると、複数の狭ビームの集合が、より大きい直径可変焦点ビームを用いる際の状態を模倣するために使用されてもよく、ビームレット径が、最大約0.5mmに保たれる場合、所望のビームレット角度軌道が、より大きい焦点ずれビームに類似する効果を作成するように選択され得るとき、比較的に静的焦点レベルを維持し、焦点がずれた知覚を生成する(そのような焦点ぼけ処理は、より大きいビームに対するようなガウスぼかし処理と同一ではない場合があるが、ガウスぼかしと類似方式で解釈され得る、多峰性点拡がり関数を作成するであろう)。
好ましい実施形態では、ビームレットは、本凝集焦点効果を形成するように機械的に偏向されず、むしろ、眼が、ビームレットが瞳孔を交差する多数の入射角度および多数の場所の両方を含む、多くのビームレットの上位集合を受光する。特定の視認距離からの所与のピクセルを表すために、適切な入射角度および瞳孔との交差点を備える、上位集合からのビームレットの下位集合(空間内の同一共有原点から放出されているかのように)が、凝集波面を表すために、一致する色および強度でオンにされる一方、共有原点と一貫しない上位集合内のビームレットは、その色および強度でオンにされない(但し、そのうちの一部は、ある他の色および強度レベルでオンにされ、例えば、異なるピクセルを表し得る)。
図11Aを参照すると、多数の入射ビームレット(332)はそれぞれ、離散化された波面ディスプレイ構成において、眼(58)に対して小射出瞳(330)を通して通過する。図11Bを参照すると、ビームレット(332)群の下位集合(334)が、一致する色および強度レベルで駆動され、同一のより大きいサイズの光線の一部であるかのように知覚され得る(太字下位群334は、「凝集されたビーム」と見なされ得る)。この場合、ビームレットの下位集合は、相互に平行であって、光学無限遠(遠くの山から生じる光等)からのコリメートされた凝集ビームを表す。眼は、無限遠に遠近調節され、したがって、ビームレットの下位集合は、眼の角膜およびレンズによって偏向され、全て、実質的に網膜の同一場所に当たり、単一合焦ピクセルを構成するように知覚される。
図11Cは、眼(58)が、上から冠状式平面ビューで視認される場合、ユーザの眼(58)の視野の右側から生じる凝集されたコリメートビーム(336)を表す、別のビームレットの下位集合を示す。再び、眼は、無限遠に遠近調節されて示され、したがって、ビームレットは、網膜の同一スポットに当たり、ピクセルは、合焦して知覚される。対照的に、発散性光線扇として眼に到達している、異なるビームレットの下位集合が、選定される場合、それらのビームレットは、眼が遠近調節をその光線扇の幾何学的原点に一致する近点に偏移するまで、網膜上の同一場所に当たらない(かつ合焦して知覚されない)であろう。
ビームレットと眼の解剖学的瞳孔の交差点のパターン(すなわち、射出瞳のパターン)に関して、断面効率的六角形格子(例えば、図12Aに示されるように)または正方形格子もしくは他の2次元アレイ等の構成で編成されてもよい。さらに、3次元射出瞳のアレイだけではなく、時変射出瞳のアレイも作成されてもよい。
離散化された凝集波面は、付加的中間視認光学、連続空間光変調アレイ技法、または図8Kに関係して説明されるもの等の導波管技法を伴わずに、眼に直接光を投影するように、直接視野基板(眼鏡レンズ等)に結合される、視認光学、マイクロディスプレイ、またはマイクロプロジェクタアレイの射出瞳と光学的に共役して設置されるマイクロディスプレイまたはマイクロプロジェクタのアレイ等のいくつかの構成を使用して、作成されてもよい。
図12Aを参照すると、一実施形態では、明視野が、小型プロジェクタまたはディスプレイユニット(走査ファイバディスプレイ等)群を束化することによって作成されてもよい。図12Aは、例えば、7mm直径の六角形アレイを作成し得る、六角形格子投影束(338)を描写し、各ファイバディスプレイは、下位画像(340)を出力する。そのようなアレイが、レンズ等の光学系を有する場合、アレイが眼の入射瞳と光学的に共役して設置されるように、その正面に設置され、これは、図12Bに示されるように、アレイの画像を眼の瞳孔に作成し、これは、本質的に、図11Aの実施形態と同一光学配列を提供する。
構成の小射出瞳はそれぞれ、走査ファイバディスプレイ等の束(338)内の専用小型ディスプレイによって作成される。光学的に、六角形アレイ(338)全体が、解剖学的瞳孔(45)の中に真っすぐ位置付けられるかのようである。そのような実施形態は、異なる下位画像を、多数の入射角度および眼の瞳孔との交差点を伴うビームレットの上位集合を備える、眼のより大きい解剖学的入射瞳(45)内の異なる小射出瞳に推進するための手段である。別個のプロジェクタまたはディスプレイはそれぞれ、下位画像が、異なる光強度および色で駆動されるべき異なる光線の集合を引き出すために作成され得るように、若干異なる画像で駆動されてもよい。
一変形例では、厳密な画像共役が、図12Bの実施形態におけるように、作成されてもよく、アレイ(338)と瞳孔(45)との直接1/1マッピングが存在する。別の変形例では、間隔は、アレイと眼の瞳孔の共役マッピングを得る代わりに、眼の瞳孔が、ある他の距離でアレイから光線を捕捉し得るように、アレイ内のディスプレイと光学系(図12Bにおけるレンズ342)との間で変化されてもよい。そのような構成では、依然として、それを通して離散化された凝集波面表現が作成され得る、ビームの角度多様性を得るであろうが、どの光線をどの屈折力および強度で推進させるかの方法に関する算術計算は、より複雑になり得る(但し、一方で、そのような構成は、視認光学の観点からは、より単純と見なされ得る)。明視野画像捕捉に関わる算術計算が、これらの計算に活用されてもよい。
図13Aを参照すると、マイクロディスプレイまたはマイクロプロジェクタ(346)のアレイが、眼(58)の正面に位置付けられるようにフレーム(344;眼鏡フレーム等)に結合され得る、別の明視野作成実施形態が、描写される。描写される構成は、非共役配列であって、大規模光学要素は、アレイ(346)のディスプレイ(例えば、走査ファイバディスプレイ)と眼(58)との間に介在されない。一対の眼鏡があって、眼鏡表面に直交して位置付けられ、ユーザの瞳孔を指すように全て内向きに角度付けられた、走査ファイバエンジン等の複数のディスプレイが、それらの眼鏡に結合されていると想像されたい。各ディスプレイは、ビームレット上位集合の異なる要素を表す光線の集合を作成するように構成されてもよい。
そのような構成では、解剖学的瞳孔(45)において、ユーザは、図11Aを参照して論じられる実施形態において受容されるような類似結果を受容し、ユーザの瞳孔における全ての点が、異なるディスプレイから寄与されている多数の入射角度および交差点を伴う光線を受光する。図13Bは、図13Aのものに類似する非共役構成を図示するが、図13Bの実施形態は、眼(58)の視野から離れるようなディスプレイアレイ(346)の移動を促進する一方、また、反射表面(348)を通した実世界(144)のビューも可能にする、反射表面(348)を特徴とする。
したがって、離散化された凝集波面ディスプレイのために必要な角度多様性を作成するための別の構成が、提示される。そのような構成を最適化するために、ディスプレイのサイズは、最大まで減少されてもよい。ディスプレイとして利用され得る、走査ファイバディスプレイは、1mmの範囲内のベースライン直径を有してもよいが、封入体および投影レンズハードウェアの縮小は、そのようなディスプレイの直径を約0.5mmまたはそれ未満まで減少させ得、これは、ユーザをほとんど妨害しない。別の小型化による幾何学的精緻化は、ファイバ走査ディスプレイアレイの場合、直接、コリメートレンズ(例えば、勾配屈折率を備え得る、すなわち、「GRIN」レンズ、従来の湾曲レンズ、または回折レンズ)を走査ファイバ自体の先端に結合することによって達成されてもよい。例えば、図13Dを参照すると、GRINレンズ(354)が、単一モード光ファイバの端部に融合されて示される。アクチュエータ(350;圧電アクチュエータ等)が、ファイバ(352)に結合され、ファイバ先端を走査するために使用されてもよい。
別の実施形態では、ファイバの端部は、光ファイバの湾曲研磨処理を使用して半球状形状に成形され、レンズ効果を作成してもよい。別の実施形態では、標準的屈折レンズが、接着剤を使用して、各光ファイバの端部に結合されてもよい。別の実施形態では、レンズは、エポキシ等の少量の透過性ポリマー材料またはガラスから構築されてもよい。別の実施形態では、光ファイバの端部は、溶融され、レンズ効果のための湾曲表面を作成してもよい。
図13C−2は、図13Dに示されるもの等のディスプレイ構成(すなわち、GRINレンズを伴う走査ファイバディスプレイ;図13C−1の拡大図に示される)が、好ましくは、ファイバ自体が、描写されるアセンブリを横断して外界の視認のためにあまり可視ではないように、光ファイバ(352)のクラッディングに厳密に一致する屈折率を有する、単一透明基板(356)を通してともに結合され得る、実施形態を示す(クラッディングの屈折率整合が精密に行われる場合、より大きいクラッディング/筐体は、透明となり、好ましくは、約3ミクロンの直径の極小コアのみ、ビューを妨害するであろう)。一実施形態では、ディスプレイのマトリクス(358)は全て、内向きに角度付けられ、したがって、ユーザの解剖学的瞳孔に向かって指向されてもよい(別の実施形態では、相互に平行に留まってもよいが、そのような構成は、あまり効率的ではない)。
図13Eを参照すると、円形ファイバを使用して、周期的に移動するのではなく、薄型の一連の平面導波管(358)が、より大きい基板構造(356)に対して片持ち支持されるように構成される、別の実施形態が、描写される。一変形例では、基板(356)は、基板構造に対して平面導波管の周期的運動を生成するように移動されてもよい(すなわち、片持ち支持される部材358の共振周波数において)。別の変形例では、片持ち支持される導波管部分(358)は、基板に対して圧電または他のアクチュエータとともに作動されてもよい。画像照明情報が、例えば、片持ち支持される導波管部分(358)の中に結合される基板構造の右側(360)から投入されてもよい。一実施形態では、基板(356)は、入射光(360)をその長さに沿って全内部反射させ、次いで、それを片持ち支持される導波管部分(358)に再指向するように構成される(前述のように、統合されたDOE構成等を用いて)、導波管を備えてもよい。人が、片持ち支持される導波管部分(358)に向かって、背後の実世界(144)を通して注視する際、平面導波管は、その平面形状因子を用いて、任意の分散および/または焦点変化を最小限にするように構成される。
離散化された凝集波面ディスプレイについて論じる文脈では、眼の射出瞳内の全ての点のためにある程度の角度多様性をもたせることに重きが置かれる。言い換えると、各ピクセルを表示される画像内に表すために、複数の入射ビームを有することが望ましい。図13F−1および13F−2を参照すると、さらなる角度および空間多様性を得るための方法の1つは、マルチコアファイバを使用して、出射ビームが単一節点(366)を通して偏向されるように、GRINレンズ等のレンズを出射点に設置することである。その節点は、次いで、走査ファイバタイプの配列において往復走査され得る(圧電アクチュエータ368等によって)。網膜共役点が、GRINレンズの端部に定義された平面に設置される場合、ディスプレイは、前述の一般的場合の離散化された凝集波面構成と機能的均等物となるように作成されてもよい。
図13Gを参照すると、類似効果が、レンズを使用してではなく、光学系(372)の正しい共役点においてマルチコアシステムの面を走査することによって達成されてもよく、その目標は、ビームのより高い角度および空間多様性をもたらすことである。言い換えると、前述の図12Aの束状実施例におけるように、別個の走査ファイバディスプレイの束を有するのではなく、本必要角度および空間多様性の一部は、導波管によって中継され得る平面を作成するための複数のコアの使用を通してもたらされてもよい。図13Hを参照すると、マルチコアファイバ(362)は、導波管(370)によって眼(58)に中継され得る、多数の入射角度および交差点を伴うビームレットの集合を作成するように走査されてもよい(圧電アクチュエータ368等によって)。したがって、一実施形態では、コリメートされた明視野画像は、明視野ディスプレイが、直接、ヒトの眼に変換され得るように、任意の付加的再合焦要素を伴わずに、導波管の中に投入されてもよい。
図13I−13Lは、長方形断面を伴う一変形例(363)と、平坦出射面(372)および角度付けられた出射面(374)を伴う変形例とを含む、(Mitsubishi
Cable Industries, Ltd.(日本)等の供給業者からの)ある市販のマルチコアファイバ(362)構成を描写する。
図13Mを参照すると、ある程度の付加的角度多様性が、走査ファイバディスプレイ等のディスプレイ(378)の線形アレイが供給された導波管(376)を有することによってもたらされてもよい。
図14A−14Fを参照すると、固定された視点の明視野ディスプレイを作成するための別の構成群が、説明される。図11Aに戻って参照すると、2次元平面が、左側から生じる極小ビームの全てを交差するように作成される場合、各ビームレットは、その平面とのある交差点を有するであろう。別の平面が、左側に異なる距離で作成される場合、ビームレットは全て、異なる場所でその平面に交差するであろう。次いで、図14Aに戻ると、2つまたはそれを上回る平面のそれぞれ上の種々の位置が、それを通して指向される光放射を選択的に伝送または遮断することを可能にされることができる場合、そのような多平面構成は、独立して、個々のビームレットを変調させることによって、明視野を選択的に作成するために利用されてもよい。
図14Aの基本実施形態は、独立して、高分解能ベースで異なる光線を遮断または伝送するように制御され得る、液晶ディスプレイパネル(380、382;他の実施形態では、MEMSシャッタディスプレイまたはDLP DMDアレイであってもよい)等の2つの空間光変調器を示す。例えば、図14Aを参照すると、第2のパネル(382)が、点「a」(384)において、光線の伝送を遮断または減衰させる場合、描写される光線は全て、遮断されるであろうが、第1のパネル(380)のみが、点「b」(386)において、光線の伝送を遮断または減衰させる場合、より低い入射光線(388)のみ、遮断/減衰されるであろう一方、残りは、瞳孔(45)に向かって伝送されるであろう。制御可能パネルまたは平面はそれぞれ、「空間光変調器」または「fatte」と見なされ得る。一連のSLMを通して通過される各伝送ビームの強度は、種々のSLMアレイ内の種々のピクセルの透明度の組み合わせの関数となるであろう。したがって、任意の種類のレンズ要素を伴わずに、多数の角度および交差点を伴うビームレットの集合(または「明視野」)が、複数のスタックされたSLMを使用して作成されてもよい。2つを超える付加的数のSLMは、どのビームが選択的に減衰されるかを制御するためのより多くの機会を提供する。
前述で簡単に述べられたように、SLMとしてスタックされた液晶ディスプレイの使用に加え、DLPシステムからのDMDデバイスの平面は、SLMとして機能するようにスタックされてもよく、光をより効率的に通過させるその能力に起因して、SLMとしての液晶システムより好ましくあり得る(鏡要素が第1の状態にあると、眼に向かう途中の次の要素に対する反射率は、非常に効率的となり得、鏡要素が第2の状態にあると、鏡の角度が、12度等の角度だけ移動され、光を経路から眼まで指向し得る)。図14Bを参照すると、一DMD実施形態では、2つのDMD(390、390)が、潜望鏡タイプの構成において、一対のレンズ(394、396)と直列に利用され、実世界(144)からユーザの眼(58)への多量の光の伝送を維持してもよい。図14Cの実施形態は、6つの異なるDMD(402、404、406、408、410、412)平面に、ビーム制御のための2つのレンズ(398、400)とともに、ビームが眼(58)に経路指定されるにつれて、SLM機能性を引き継ぐ機会を提供する。
図14Dは、SLM機能性のための最大4つのDMD(422、424、426、428)と、4つのレンズ(414、420、416、418)とを伴う、より複雑な潜望鏡タイプ配列を図示する。本構成は、画像が眼(58)を通して進行するにつれて、上下逆に反転されないことを確実にするように設計される。図14Eは、ディスプレイが、「鏡の間」を通して視認され、図14Aに図示されるものに実質的に類似するモードで動作し得る、鏡の間タイプの配列において、任意の介在レンズ(前述の設計におけるレンズは、実世界からの画像情報を組み込むためのそのような構成において有用である)を伴わずに、光が2つの異なるDMDデバイス(430、432)間で反射され得る、実施形態を図示する。図14Fは、2つの対面DMDチップ(434、436)の非ディスプレイ部分が、反射層で被覆され、DMDチップのアクティブディスプレイ領域(438、440)へおよびそこから光を伝搬し得る、実施形態を図示する。他の実施形態では、SLM機能性のためのDMDの代わりに、スライド式MEMSシャッタ(Qualcomm, Inc.の子会社であるPixtronics等の供給業者から利用可能なもの等)のアレイが、光の通過または遮断のいずれかを行うために利用されてもよい。別の実施形態では、定位置外に移動し、光伝送開口を提示する、小型ルーバのアレイも同様に、SLM機能性のために凝集されてもよい。
多くの小ビームレット(例えば、約0.5mm未満の直径)の明視野が、導波管または他の光学系の中に投入され、それを通して伝搬されてもよい。例えば、従来の「水盤」タイプの光学系は、以下に説明されるように、明視野入力、または自由形状光学設計、または任意の数の導波管構成の光の伝達のために好適であり得る。図15A−15Cは、明視野を作成する際に有用な別の構成として、複数の光源とともに、楔タイプ導波管(442)の使用を図示する。図15Aを参照すると、光は、2つの異なる場所/ディスプレイ(444、446)からの楔形状の導波管(442)の中に投入され得、導波管の中への投入点に基づいて、異なる角度(448)で楔形状の導波管の全内部反射特性に従って出現するであろう。
図15Bを参照すると、示されるように、ディスプレイ(走査ファイバディスプレイ等)の線形アレイ(450)を作成し、導波管の端部の中に投影する場合、ビーム(452)の大角度多様性が、図15Cに示されるように、1次元において導波管から出射するであろう。実際、ディスプレイのさらに別の線形アレイを追加し、導波管の端部の中に、但し、若干異なる角度で投入することを検討する場合、図15Cに示される扇状出射パターンに類似して、但し、直交軸において、出射する、ビームの角度多様性が、作成され得る。ともにこれらは、導波管の各場所から出射する光線の2次元扇を作成するために利用されてもよい。したがって、別の構成は、1つまたはそれを上回る走査ファイバディスプレイアレイを使用して(または代替として、小型DLP投影構成等の空間要件を満たすであろう、他のディスプレイを使用して)、角度多様性をもたらし、明視野ディスプレイを形成するために提示される。
代替として、本明細書に示される楔形状の導波管への入力として、SLMデバイスのスタックが、利用されてもよく、その場合、前述のように、SLM出力の直接ビューではなく、SLM構成からの明視野出力が、図15Cに示されるもの等の構成への入力として使用されてもよい。ここでの重要な概念の1つは、従来の導波管が、小径コリメートビームの明視野を伴う、コリメートされた光のビームの中継を成功させるために最も好適であるが、従来の導波管技術が、ビームサイズ/コリメートに起因して、楔形状の導波管等の導波管の側方に投入されるにつれて、そのような明視野システムの出力をさらに操作するために利用され得ることである。
別の関連実施形態では、複数の別個のディスプレイを用いて投影するのではなく、マルチコアファイバは、明視野を発生させ、それを導波管の中に投入するために使用されてもよい。さらに、明視野から生じるビームレットの静的分布を作成するのではなく、ビームの集合の経路を方法論的に変化させる、いくつかの動的要素を有し得るように、時変明視野が、入力として利用されてもよい。それらは、2つの光学経路が、作成される(1つは、液晶層が、第1の電圧状態に設置され、他の基板材料の導波管のみを辿って全内部反射を生じさせるように、他の基板材料と一致する屈折率を有する、より小さい全内部反射経路であって、1つは、液晶層が、第2の電圧状態に設置され、光が、液晶部分および他の基板部分の両方を含む、複合導波管を通して全内部反射するように、他の基板材料と一致する屈折率を有する、より大きい全内部反射光学経路である)、DOE(例えば、図8B−8Nを参照して前述のもの、または図7Bを参照して説明されるような液晶層等)が埋め込まれた導波管等の構成要素を使用して行われてもよい。同様に、楔形状の導波管は、二峰性全内部反射パラダイムを有するように構成されてもよい(例えば、一変形例では、楔形状の要素は、液晶部分が活性化されると、間隔のみではなく、ビームが反射される角度も変化されるように構成されてもよい)。
走査光ディスプレイの一実施形態は、単に、走査ファイバの端部にレンズを伴う走査ファイバディスプレイとして特徴付けられてもよい。GRINレンズ等の多くのレンズ変形例が、好適であって、光をコリメートする、またはファイバのモードフィールド径より小さいスポットまで光を合焦させ、開口数(または「NA」)増加を生成する利点を提供し、スポットサイズと逆相関する、光学不変量を回避するために使用されてもよい。より小さいスポットサイズは、概して、ディスプレイの観点から、より高い分解能機会を促進し、概して、好ましい。一実施形態では、GRINレンズは、振動要素を備え得る(すなわち、走査ファイバディスプレイを伴う通常の遠位ファイバ先端振動ではなく)ファイバに対して、十分な長さであってもよい(「走査GRINレンズディスプレイ」と見なされ得る構成)。
別の実施形態では、回折レンズが、走査ファイバディスプレイの出射端で利用されてもよい(すなわち、ファイバ上にパターン化される)。別の実施形態では、湾曲鏡が、ファイバの端部に位置付けられ、反射構成で動作してもよい。本質的に、ビームをコリメートおよび合焦させることが知られている構成のいずれも、好適な走査光ディスプレイを生成するために、走査ファイバの端部で使用されてもよい。
走査ファイバの端部に結合される、またはそれを備える、レンズを有することの2つの有意な有用性(すなわち、非結合レンズが、ファイバから出射後、光を指向するために利用され得る、構成と比較して)は、a)光出射が、コリメートされ、それを行うための他の外部光学を使用する必要性を回避し得ることと、b)NA、すなわち、光が単一モードファイバコアの端部から広がる円錐角が、増加され、それによって、ファイバのための関連付けられたスポットサイズを減少させ、ディスプレイのために利用可能な分解能を増加させ得ることである。
前述のように、GRINレンズ等のレンズは、光ファイバの端部に融合もしくは別様に結合される、または研磨等の技法を使用して、ファイバの端部の一部から形成されてもよい。一実施形態では、NA約0.13または0.14を伴う典型的光ファイバは、約3ミクロンのスポットサイズ(NAを前提として、光ファイバのための「モードフィールド径」としても知られる)を有し得る。これは、産業標準的ディスプレイ分解能パラダイムを前提として、比較的に高分解能のディスプレイの可能性を提供する(例えば、LCDまたは有機発光ダイオード、すなわち、「OLED」等の典型的マイクロディスプレイ技術は、スポットサイズ約5ミクロンを有する)。したがって、前述の走査光ディスプレイは、従来のディスプレイで利用可能な最小ピクセルピッチの3/5を有し得る。さらに、ファイバの端部にレンズを使用することによって、前述の構成は、1〜2ミクロンの範囲内のスポットサイズを生成し得る。
別の実施形態では、走査円筒形ファイバを使用するのではなく、導波管(延伸マイクロファイバ技法ではなく、マスキングおよびエッチング等のマイクロ加工プロセスを使用して作成された導波管等)の片持ち支持される部分が、走査発振運動の中に設置されてもよく、出射端でレンズと嵌合されてもよい。
別の実施形態では、走査されるべきファイバのための開口数の増加が、ファイバの出射端を被覆する、拡散器(すなわち、光を散乱させ、より大きいNAを作成するように構成されるもの)を使用してもたらされてもよい。一変形例では、拡散器は、ファイバの端部をエッチングし、光を散乱させる小領域を作成することによって作成されてもよい。別の変形例では、ビーズもしくはサンドブラスト技法または直接サンディング/スカッフィング技法が、散乱領域を作成するために利用されてもよい。別の変形例では、工学的拡散器が、回折要素と同様に、望ましいNAを伴う完全スポットサイズを維持するために作成されてもよく、これは、前述のように、回折レンズを使用する概念に結び付けられる。
図16Aを参照すると、光ファイバのアレイ(454)が、その端部が、研削および研磨され、入力ファイバの縦方向軸に対する臨界角(458;例えば、大部分のガラスでは、42度)に出力縁を有し、角度付けられた面から出射する光が、プリズムを通して通過されるかのように出射し、屈曲し、研磨された面の表面と略平行になるであろうように、それらをともに平行に保持するように構成される、結合器(456)に結合されて示される。束内のファイバ(454)から出射するビームは、重畳されるであろうが、異なる経路長に起因して、縦方向に位相がずれるであろう(図16Bを参照すると、例えば、異なるコアに対する角度付けられた出射面から合焦レンズまでの経路長の差が、可視である)。
角度付けられた面から出射する前の束内のX軸タイプの分離は、Z軸分離となり、この事実は、そのような構成から多焦点光源を作成する際に有用である。別の実施形態では、束状/結合された複数の単一モードファイバを使用するのではなく、Mitsubishi Cable Industries, Ltd.(日本)から利用可能なもの等のマルチコアファイバが、角度研磨されてもよい。
一実施形態では、45度の角度が、鏡コーティング等の反射要素で被覆されたファイバの中に研磨される場合、出射光は、通常、X−Yデカルト座標系軸となるであろうものの中でファイバが走査されるにつれて、ファイバが、ここで、走査の過程の間の距離の変化に伴って、X−Z走査の均等物を機能的に行うであろうように、研磨された表面から反射され、ファイバの側面から(一実施形態では、平坦に研磨された出射窓がファイバの側面に作成された場所において)出現し得る。そのような構成は、ディスプレイの焦点を変化させるためにも同様に有益に利用され得る。
マルチコアファイバは、ディスプレイ分解能向上(すなわち、より高い分解能)に役割を果たすように構成されてもよい。例えば、一実施形態では、別個のピクセルデータが、マルチコアファイバ内の19のコアの密束に送信され、そのクラスタが、疎らな渦巻パターンの周囲で走査され、渦間のピッチが、マルチコアの直径にほぼ等しい場合、掃引が、同様に走査される単一コアファイバの分解能の約19倍のディスプレイ分解能を効果的に作成する。実際、それぞれ、導管(462)内に格納される、3つのファイバの7つのクラスタ(464;7は、効率的タイル表示/六角形パターンであるため、例証目的のために使用される;他のパターンまたは数も、利用されてもよい;例えば、19のクラスタ;構成は、拡大または縮小される)を有する、図16Cの構成におけるように、ファイバを相互に対してより疎らに位置付けさせることは、より実践的であり得る。
図16Cに示されるような疎らな構成では、マルチコアの走査は、コアが全て、ともに緊密に充塞され、走査される構成とは対照的に、その独自の局所領域を通して、コアのそれぞれを走査する(コアは、最終的に、走査と重複する;コアが、相互にあまりに近い場合、コアのNAは、十分に大きくはなく、非常に密接に充塞されたコアは、最終的に、ともに若干ぼけ、識別可能であるように、ディスプレイのためのスポットを作成しない)。したがって、分解能増加のために、疎らなタイル表示ではなく、非常に高密度のタイル表示を有することが好ましいが、両方とも、機能するであろう。
高密度に充塞された走査コアは、一実施形態では、ディスプレイにぼかしを作成し得るという概念は、各三連構造が、赤色、緑色、および青色光を特徴とする重複されたスポットの三連構造を形成するように、複数のコア(例えば、赤色、緑色、および青色光を搬送するための三連構造またはコア)が、意図的にともに高密度に充塞され得る、利点として利用されてもよい。そのような構成では、赤色、緑色、および青色を単一モードコアの中に組み合わせる必要なく、RGBディスプレイを有することが可能であって、これは、光の複数(3つ等)のウェーブレットを単一コアの中に組み合わせるための従来の機構が、光学エネルギー中の有意な損失を被るため、利点である。図16Cを参照すると、一実施形態では、3つのファイバコアの各緊密なクラスタは、赤色光を中継する1つのコアと、緑色光を中継する1つのコアと、青色光を中継する1つのコアとを含有し、3つのファイバコアは、その位置差が後続中継光学によって分解可能ではないように十分にともに近接し、効果的に重畳されたRGBピクセルを形成する。したがって、7つのクラスタの疎らなタイル表示は、分解能向上をもたらす一方、クラスタ内の3つのコアの緊密な充塞は、見かけ倒しのRGBファイバコンバイナ(例えば、波長分割多重化またはエバネセント結合技法を使用するもの)を利用する必要なく、シームレスな色混成を促進する。
図16Dを参照すると、別のより単純な変形例では、1つのみのクラスタ(464)が、例えば、赤色/緑色/青色のための導管(468)内に格納されてもよい(別の実施形態では、別のコアが、眼追跡等の使用のための赤外線のために追加されてもよい)。別の実施形態では、付加的コアが、緊密なクラスタ内に設置され、付加的波長の光を搬送し、色域増加のために、複数の一次ディスプレイを構成してもよい。図16Eを参照すると、別の実施形態では、導管(466)内の単一コア(470)の疎らなアレイ(一変形例では、赤色、緑色、および青色が、それらのそれぞれに組み合わせられる)が、利用されてもよい。そのような構成は、分解能増加のためにそれほど効果的ではないものの機能可能であるが、赤色/緑色/青色の組み合わせに最適ではない。
マルチコアファイバはまた、明視野ディスプレイを作成するために利用されてもよい。実際、コアが、明視野ディスプレイを用いて、走査光ディスプレイを作成する文脈に前述のように、ディスプレイパネルにおいて相互の局所面積を走査しないように、コアを相互から十分に分離させて維持するのではなく、生成されるビームがそれぞれ、明視野の具体的部分を表すため、高密度に充塞された複数のファイバを走査することが望ましい。束状ファイバ先端から出射する光は、ファイバが小NAを有する場合、比較的に狭小であり得る。明視野構成は、これを利用し、解剖学的瞳孔において、複数の若干異なるビームがアレイから受光される、構成を有してもよい。したがって、単一走査ファイバモジュールのアレイの機能的均等物である、マルチコアの走査を伴う、光学構成が存在し、したがって、明視野は、単一モードファイバ群を走査するのではなく、マルチコアを走査することによって作成されてもよい。
一実施形態では、マルチコア位相アレイアプローチが大射出瞳可変波面構成を作成し、3次元知覚を促進するように使用されてもよい。位相変調器を伴う単一レーザ構成が、前述されている。マルチコア実施形態では、位相遅延が、単一レーザの光が、相互コヒーレンスが存在するように、マルチコア構成のコアの全ての中に投入されるように、マルチコアファイバの異なるチャネルの中に誘発されてもよい。
一実施形態では、マルチコアファイバは、GRINレンズ等のレンズと組み合わせられてもよい。そのようなレンズは、例えば、屈折レンズ、回折レンズ、またはレンズとして機能する研磨された縁であってもよい。レンズは、単一光学表面であってもよく、または上方にスタックされた複数の光学表面を備えてもよい。実際、マルチコアの直径を拡大する単一レンズを有することに加え、より小さいレンズレットアレイが、例えば、マルチコアのコアからの光の出射点において望ましい。図16Fは、マルチコアファイバ(470)が、複数のビームをGRINレンズ等のレンズ(472)の中に放出する、実施形態を示す。レンズは、ビームをレンズの正面の空間内の焦点(474)にまとめる。多くの従来の構成では、ビームは、発散しながらマルチコアファイバから出射するであろう。GRINまたは他のレンズは、コリメートされた結果が、例えば、明視野ディスプレイのために走査され得るように、それらを単一点に指向し、それらをコリメートするよう機能するように構成される。
図16Gを参照すると、より小さいレンズ(478)が、マルチコア(476)構成のコアのそれぞれの正面に設置されてもよく、これらのレンズは、コリメートするために利用されてもよい。次いで、共有レンズ(480)が、コリメートされたビームを、3つのスポットの全てのために整合される、回折限界スポット(482)に合焦させるように構成されてもよい。そのような構成の正味結果は、示されるように、3つのコリメートされた狭ビームと狭NAをともに組み合わせことによって、全3つをはるかに大きい放出角度に効果的に組み合わせ、例えば、頭部搭載式光学ディスプレイシステム内でより小さいスポットサイズに変換し、これは、次いで、光送達鎖をユーザにもたらし得る。
図16Hを参照すると、一実施形態は、個々のコアによって発生されるビームを共通点に偏向させる小プリズムアレイ(484)に光を供給する、レンズレット(478)アレイを伴う、マルチコアファイバ(476)を特徴とする。代替として、光が単一点に偏向および合焦されるように、小レンズレットアレイをコアに対して偏移させてもよい。そのような構成は、開口数を増加させるために利用されてもよい。
図16Iを参照すると、マルチコアファイバ(476)から光を捕捉する小レンズレット(478)アレイに続いて、順次、共有レンズ(486)による、ビームの単一点(488)への合焦を伴う、2ステップ構成が、示される。そのような構成は、開口数を増加させるために利用されてもよい。前述のように、より大きいNAは、より小さいピクセルサイズおよびより高い可能性として考えられるディスプレイ分解能に対応する。
図16Jを参照すると、前述のもの等の結合器(456)とともに保持され得る、斜角が付けられたファイバアレイが、反射デバイス(494;DLPシステムのDMDモジュール等)を用いて走査されてもよい。複数の単一ファイバ(454)が、アレイ、または代わりに、マルチコアの中に結合されると、重畳された光は、1つまたはそれを上回る合焦レンズ(490、492)を通して指向され、多焦点ビームを作成することができる。アレイの重畳および角度付けを用いることによって、異なる源が、合焦レンズから異なる距離に存在し、レンズ(492)から出現し、ユーザの眼(58)の網膜(54)に向かって指向されるにつれて、ビームに異なる焦点レベルをもたらす。例えば、最も遠い光学ルート/ビームは、光学無限遠焦点位置を表す、コリメートされたビームとなるように設定され得る。より近いルート/ビームは、より近い焦点場所の発散性球状波面と関連付けられ得る。
多焦点ビームは、一連の合焦レンズを通して、次いで、眼の角膜および水晶体を通過され得る、多焦点ビームのラスター走査(または、例えば、リサジュー曲線走査パターンもしくは渦巻走査パターン)を作成するように構成され得る、走査鏡の中に通過されてもよい。レンズから出現する種々のビームは、重畳される可変焦点距離の異なるピクセルまたはボクセルを作成する。
一実施形態では、フロントエンドにおいて、異なるデータを光変調チャネルのそれぞれに書き込み、それによって、1つまたはそれを上回る合焦要素を用いて眼に投影される画像を作成してもよい。水晶体の焦点距離を変化させることによって(すなわち、遠近調節することによって)、ユーザは、水晶体が異なるZ軸位置にある、図16Kおよび16Lに示されるように、異なる入射ピクセルを合焦および合焦解除させることができる。別の実施形態では、ファイバアレイは、圧電アクチュエータによって、作動/移動されてもよい。別の実施形態では、比較的に薄いリボンアレイが、圧電アクチュエータが活性化されると、アレイファイバの配列と垂直な軸に沿って(すなわち、リボンの薄い方向に)、片持ち支持された形態で共振されてもよい。一変形例では、別個の圧電アクチュエータが、直交長軸において、振動走査をもたらすために利用されてもよい。別の実施形態では、単一鏡軸走査が、ファイバリボンが共振振動される間、長軸に沿った低速走査のために採用されてもよい。
図16Mを参照すると、走査ファイバディスプレイ(498)のアレイ(496)が、効果的分解能増加のために有益に束化/タイル表示され得る、その概念は、そのような構成では、例えば、画像平面の各部分が少なくとも1つの束からの放出によってアドレス指定される、図16Nに示されるように、束の各走査ファイバが、画像平面(500)の異なる部分に書き込むように構成されるというものである。他の実施形態では、光学構成が、ディスプレイ平面に衝突する六角形または他の格子パターン内にある程度の重複が存在し、また、適正な小スポットサイズを画像平面に維持し、その画像平面にわずかな拡大が存在することを理解しながら、より優れた曲線因子が存在するように、光ファイバから出射するにつれて、ビームの若干の拡大を可能にするために利用されてもよい。
個々のレンズを各走査ファイバ封入体筐体の端部に有するのではなく、一実施形態では、レンズが、光学系内でより低い倍率量を使用し得るため、可能な限り密接に充塞され、画像平面にさらにより小さいスポットサイズを可能にし得るように、モノリシックレンズレットアレイが、利用されてもよい。したがって、各エンジンが視野の異なる部分を走査するために使用されているため、ファイバ走査ディスプレイのアレイは、ディスプレイの分解能を増加させるために使用されてもよく、または言い換えると、ディスプレイの視野を増加させるために使用されてもよい。
明視野構成のために、放出は、より望ましくは、画像平面において重複され得る。一実施形態では、明視野ディスプレイは、空間内で走査される複数の小径ファイバを使用して作成されてもよい。例えば、前述のように、ファイバの全てに画像平面の異なる部分をアドレス指定させる代わりに、より多くの重複、内向きに角度付けられたより多くのファイバを有する等、または小スポットサイズがタイル表示された画像平面構成と共役しないように、レンズの焦点力を変化させる。そのような構成は、同一物理的空間内で傍受されるたくさんのより小さい直径の光線を走査するための明視野ディスプレイを作成するために使用されてもよい。
図12Bに戻って参照すると、明視野ディスプレイを作成する方法の1つとして、左側の要素の出力を狭ビームとコリメートさせ、次いで、投影アレイを右側の眼の瞳孔と共役させることを伴うことが論じられた。
図16Oを参照すると、共通基板ブロック(502)とともに、単一アクチュエータが、複数のファイバ(506)をともに連動して作動させるために利用されてもよい。類似構成が、図13−C−1および13−C−2を参照して前述されている。ファイバ全てに、同一共振周波数を留保させる、相互に望ましい位相関係で振動させる、または基板ブロックから片持ち支持する同一寸法を有することは、実践的に困難であり得る。本課題に対処するために、ファイバの先端は、非常に薄く、剛性であって、かつ軽量のグラフェンシート等の格子またはシート(504)と機械的に結合されてもよい。そのような結合を用いることによって、アレイ全体が、同様に振動し、かつ同一位相関係を有し得る。別の実施形態では、カーボンナノチューブのマトリクスが、ファイバを結合するために利用されてもよく、または非常に薄い平面ガラス片(液晶ディスプレイパネルを作成する際に使用される種類等)が、ファイバ端に結合されてもよい。さらに、レーザまたは他の精度の切断デバイスが、全関連付けられたファイバを同一片持ち支持長に切断するために利用されてもよい。
図17を参照すると、一実施形態では、角膜と直接界面接触され、非常に近接する(角膜と眼鏡レンズとの間の典型的距離等)ディスプレイ上への眼の合焦を促進するように構成される、コンタクトレンズを有することが望ましくあり得る。光学レンズをコンタクトレンズとして設置するのではなく、一変形例では、レンズは、選択フィルタを備えてもよい。図17は、450nm(ピーク青色)、530nm(緑色)、および650nm等のある波長帯域のみを遮断し、概して、他の波長を通過または伝送させるためのその設計に起因して、「ノッチフィルタ」と見なされ得る、プロット(508)を描写する。一実施形態では、誘電コーティングのいくつかの層は、凝集され、ノッチフィルタ機能性を提供してもよい。
そのようなフィルタ構成は、赤色、緑色、および青色のための非常に狭帯域の照明を生成する、走査ファイバディスプレイと結合されてもよく、ノッチフィルタを伴うコンタクトレンズは、透過性波長以外、ディスプレイ(通常眼鏡レンズによって占有される位置に搭載される、OLEDディスプレイ等の小型ディスプレイ等)から生じる光を全て遮断するであろう。狭小ピンホールが、小開口(すなわち、約1.5mm未満の直径)が、そうでなければ遮断される波長の通過を可能にするように、コンタクトレンズフィルタ層/フィルムの中央に作成されてもよい。したがって、赤色、緑色、および青色のみが、小型ディスプレイからの画像を取り込む一方、概して、広帯域照明である、実世界からの光が、比較的に妨害されずにコンタクトレンズを通して通過するであろう、ピンホール様式で機能する、ピンホールレンズ構成が、作成される。したがって、大焦点深度仮想ディスプレイ構成が、組み立てられ、動作され得る。別の実施形態では、導波管から出射するコリメートされた画像が、ピンホールの大焦点深度のため、網膜で可視となるであろう。
その焦点深度を経時的に変動させることができる、ディスプレイを作成することは、有用となり得る。例えば、一実施形態では、ディスプレイは、非常に大きな焦点深度と小射出瞳径を組み合わせる、第1のモード(すなわち、全てのものが常時合焦されるように)と、より大きい射出瞳およびより狭い焦点深度を特徴とする、第2のモード等、オペレータによって選択され得る(好ましくは、オペレータのコマンドでその2つの間を迅速にトグルする)、異なるディスプレイモードを有するように構成されてもよい。動作時、ユーザが、多くの被写界深度で知覚されるべきオブジェクトを伴う、3次元ビデオゲームをプレイしようとする場合、オペレータは、第1のモードを選択してもよい。代替として、ユーザが、2次元ワード処理ディスプレイ構成を使用して、長いエッセイをタイプしようとする場合(すなわち、比較的に長期間の間)、より大きい射出瞳およびより鮮明な画像の利便性を有するために、第2のモードに切り替えることがより望ましくあり得る。
別の実施形態では、いくつかの下位画像が、大焦点深度で提示される一方、他の下位画像が、小焦点深度で提示される、多焦点深度ディスプレイ構成を有することが望ましくあり得る。例えば、一構成は、常時、合焦するように、赤色波長および青色波長チャネルを非常に小射出瞳で提示させてもよい。次いで、緑色チャネルのみ、複数の深度平面を伴う大射出瞳構成で提示されてもよい(すなわち、ヒトの遠近調節システムは、焦点レベルを最適化するために、緑色波長を優先的に標的化する傾向があるため)。したがって、赤色、緑色、および青色を全深度平面で表すためのあまりに多くの要素を有することと関連付けられたコストを削減するために、緑色波長は、優先化され、種々の異なる波面レベルで表されてもよい。赤色および青色は、よりマクスウェル的アプローチで表されるように格下げされてもよい(マクスウェルディスプレイを参照して前述のように、ソフトウェアが、ガウスレベルのぼかしを誘発するために利用されてもよい)。そのようなディスプレイは、同時に、複数の焦点深度を提示するであろう。
前述のように、より高い密度の光センサを有する、網膜の部分がある。中心窩部分には、例えば、概して、約120錐体/視度が存在する。ディスプレイシステムは、従来、眼または注視追跡を入力として使用し、人がその時に注視している場所のための非常に高い分解能のレンダリングのみを作成する一方、より低い分解能のレンダリングが、網膜の残りに提示されることによって、計算リソースを節約するように作成されていた。高対低分解能部分の場所は、「中心窩ディスプレイ」と称され得る、そのような構成では、追跡された注視場所に動的に従動され得る。
そのような構成における改良として、追跡された視線に動的に従動され得るパターン間隔を伴う、走査ファイバディスプレイが挙げられ得る。例えば、図18に示されるように、渦巻パターンで動作する典型的走査ファイバディスプレイでは(図18における画像の最左部分510は、走査マルチコアファイバ514の渦巻運動パターンを図示し、図18における画像の最右部分512は、比較のための走査単一ファイバ516の渦巻運動パターンを図示する)、一定パターンピッチが、均一ディスプレイ分解能を提供する。
中心窩ディスプレイ構成では、非均一走査ピッチが、検出される注視場所に動的に従動される、より小さい/より緊密なピッチ(したがって、より高い分解能)とともに利用されてもよい。例えば、ユーザの注視が、ディスプレイ画面の縁に向かって移動するにつれて検出される場合、渦巻は、そのような場所においてより高密度にクラスタ化されてもよく、これは、高分解能部分のためにトロイドタイプ走査パターンを作成し、ディスプレイの残りは、より低い分解能モードにあるであろう。間隙が、より低い分解能モードにあるディスプレイの部分において作成され得る構成では、ぼかしが、走査間ならびに高分解能からより低い分解能走査ピッチへの遷移間の遷移を平滑化するために意図的に動的に作成され得る。
用語「明視野」は、オブジェクトから視認者の眼に進行する光の立体3−D表現を説明するために使用され得る。しかしながら、光学透視ディスプレイは、光を眼に反射させることのみでき、光が不在ではない場合、実世界からの周囲光が、仮想オブジェクトを表す任意の光に追加されるであろう。すなわち、眼に提示される仮想オブジェクトが、黒色または非常に暗部分を含有する場合、実世界からの周囲光は、その暗部分を通して通過し、暗くなるように意図されるものを目立たなくし得る。
それにもかかわらず、暗仮想オブジェクトを明るい実背景にわたって提示し、その暗仮想オブジェクトが、ボリュームを所望の視認距離で占有して見えることが可能となることが望ましい。すなわち、光の不在が空間内の特定の点に位置するように知覚される、その暗仮想オブジェクトの「暗視野」表現を作成することが有用である。非常に明るい実際の環境においても、仮想オブジェクトの暗視野側面を知覚し得るような遮閉要素およびユーザの眼への情報の提示に関して、前述の空間光変調器、すなわち、「SLM」構成のある側面が、関連する。前述のように、眼等の光感知系では、暗視野の選択知覚を得るための方法の1つは、ディスプレイのそのような部分からの光を選択的に減衰させることであって、本主題のディスプレイシステムは、光の操作および提示に関する。言い換えると、暗視野は、本質的に、投影されることができない。これは、暗視野として知覚され得る照明の欠如であって、したがって、照明の選択減衰のための構成が、開発されている。
SLM構成の議論に戻って参照すると、暗視野知覚のために選択的に減衰させるための方法の1つは、1つの角度から生じる光を全て遮断する一方、他の角度からの光が伝送されることを可能にすることである。これは、前述のように、液晶(伝送状態にあるとき、その比較的に低透明度に起因して、最適ではなくなり得る)、DLPシステムのDMD要素(そのようなモードにあるとき、相対的高伝送/反射比率を有する)、および光放射を制御可能に閉鎖または通過させるように構成されるMEMSアレイまたはシャッタ等の要素を備える複数のSLM平面を用いて遂行されてもよい。
好適な液晶ディスプレイ(「LCD」)構成に関して、コレステリックLCDアレイが、制御式遮閉/遮断アレイのために利用されてもよい。偏光状態が電圧の関数として変化される、従来のLCDパラダイムとは対照的に、コレステリックLCD構成では、顔料が、液晶分子に結合されており、次いで、分子は、印加される電圧に応答して、物理的に傾斜される。そのような構成は、透過性モードにあるとき、従来のLCDより高い透明度を達成するように設計されてもよく、偏光フィルムのスタックは、従来のLCDにおけるように必要とされない。
別の実施形態では、制御可能に中断されたパターンの複数の層が、モアレ効果を使用して、光の選択された提示を制御可能に遮断するために利用されてもよい。例えば、一構成では、それぞれ、例えば、ガラス基板等の透明平面材料上に印刷または塗布された微細ピッチ正弦波を備え得る、減衰パターンの2つのアレイが、視認者がパターンのいずれかのみを通してみるとき、ビューが本質的に透明であるが、視認者がシーケンスで並べられた両パターンを通して見る場合、視認者には、2つの減衰パターンが、ユーザの眼に比較的に近接するシーケンス内に設置されるときでも、空間的ビート周波数のモアレ減衰パターンが見えるであろうために十分に近接した距離で、ユーザの眼に提示されてもよい。
ビート周波数は、2つの減衰平面上のパターンのピッチに依存し、したがって、一実施形態では、暗視野知覚のために、ある光伝送を選択的に遮断するための減衰パターンは、それぞれ、そうでなければユーザに透明となるであろうが、ともに直列に、拡張現実システムにおいて所望される暗視野知覚に従って減衰させるように選択される、空間的ビート周波数のモアレ減衰パターンを作成する、2つの順次パターンを使用して作成されてもよい。
別の実施形態では、暗視野効果のための制御式遮閉パラダイムが、マルチビューディスプレイ式オクルーダを使用して作成されてもよい。例えば、一構成は、前述のもの等のLCD、DLPシステム、または他の選択減衰層構成を備え得る、選択減衰層と直列に、小開口またはピンホール以外、完全に遮閉する、1つのピンホール層を備えてもよい。一シナリオでは、角膜から典型的眼鏡レンズ距離(約30mm)に設置されるピンホールアレイと、眼から見てピンホールアレイと反対に位置する選択減衰パネルとを用いることによって、空間内に鮮明な機械的縁の知覚が、作成され得る。要するに、構成が、ある角度の光が通過し、他の光が遮断または遮閉されることを可能にするであろう場合、鮮明な縁投影等の非常に鮮明なパターンの知覚が、作成され得る。別の関連実施形態では、ピンホールアレイ層は、第2の動的減衰層と置換され、若干類似するが、静的ピンホールアレイ層(静的ピンホール層が、シミュレートされ得るが、そうである必要はない)より制御を伴う構成を提供してもよい。
別の関連実施形態では、ピンホールは、円筒形レンズと置換されてもよい。ピンホールアレイ層構成におけるような遮閉の同一パターンが、達成されてもよいが、円筒形レンズでは、アレイは、非常に極小のピンホール幾何学形状に制限されない。実世界を通して視認するとき、レンズに起因して、眼に歪曲が提示されないように防止するために、第2のレンズアレイが、眼に最も近い側の開口またはレンズアレイの反対側に追加され、照明を通したビューを補償し、基本的にゼロ屈折力の望遠鏡構成を提供してもよい。
別の実施形態では、暗視野知覚の遮閉および作成のために、光を物理的に遮断するのではなく、光は、屈曲もしくは跳ね返されてもよく、または液晶層が利用される場合、光の偏光が、変化されてもよい。例えば、一変形例では、各液晶層は、パターン化された偏光材料が、パネルの1面上に組み込まれる場合、実世界から生じる個々の光線の偏光が、選択的に操作され、パターン化された偏光子の一部を捕捉し得るように、偏光回転子として作用してもよい。「市松模様ボックス」の半分が垂直偏光を有し、残りの半分が水平偏光を有する、市松模様パターンを有する、当技術分野において公知の偏光子がある。加えて、偏光が選択的に操作され得る、液晶等の材料が、使用される場合、光は、これを用いて選択的に減衰されてもよい。
前述のように、選択反射体は、LCDより大きな伝送効率を提供し得る。一実施形態では、レンズシステムが、実世界から生じる光を捕らえ、平面を実世界から画像平面上に合焦させるように設置される場合、かつDMD(すなわち、DLP技術)が、その画像平面に設置され、「オン」状態にあるとき、光を眼に通過させるレンズの別の集合に向かって光を反射させ、それらのレンズもまた、DMDをその焦点距離に有する場合、眼のために合焦する減衰パターンを作成し得る。言い換えると、DMDは、図19Aに示されるように、ゼロ倍率望遠鏡構成において、選択反射体平面内で使用され、暗視野知覚の作成を制御可能に遮閉および促進してもよい。
図19Aに示されるように、レンズ(518)は、光を実世界(144)から捕らえ、それを画像平面(520)に合焦させている。DMD(または他の空間減衰デバイス)(522)が、レンズの焦点距離(すなわち、画像平面520)に設置される場合、レンズ(518)は、光学無限遠から生じるどのような光も捕らえ、それを画像平面(520)上に合焦させるであろう。次いで、空間減衰器(522)は、減衰されるべきものを選択的に遮断するために利用されてもよい。図19Aは、透過性モードにおける減衰器DMDを示し、それらは、示されるビームを通過させ、デバイスを越えさせる。画像は、次いで、第2のレンズ(524)の焦点距離に設置される。好ましくは、2つのレンズ(518、524)は、同一焦点力を有し、したがって、それらは、最終的に、実世界(144)に対してビューを拡大させない、ゼロ屈折力望遠鏡、すなわち、「中継器」となる。そのような構成は、あるピクセルの選択遮断/減衰もまた可能にしながら、世界の非拡大ビューを提示するために使用されてもよい。
別の実施形態では、図19Bおよび19Cに示されるように、付加的DMDが、光が眼に通過する前に、4つのDMD(526、528、530、532)のそれぞれから反射するように、追加されてもよい。図19Bは、ゼロ屈折力望遠鏡効果を有するように相互から2F関係に設置される、好ましくは、同一焦点力(焦点距離「F」)の2つのレンズ(第1のものの焦点距離は、第2のものの焦点距離に共役される)を伴う、実施形態を示す。図19Cは、レンズを伴わない、実施形態を示す。図19Bおよび19Cの描写される実施形態における4つの反射パネル(526、528、530、532)の配向の角度は、単純例証目的のために、約45度であるように示されるが、具体的相対配向が、要求される(例えば、典型的DMDは、約12度の角度で反射する)。
別の実施形態では、パネルはまた、強誘電性であってもよく、または任意の他の種類の反射または選択減衰器パネルもしくはアレイであってもよい。一実施形態では、図19Bおよび19Cに描写されるものと同様に、3つの反射体アレイのうちの1つは、他の3つが選択減衰器であって、したがって、依然として、3つの独立平面を提供し、暗視野知覚の増進のために、入射照明の一部を制御可能に遮閉するように、単純鏡であってもよい。複数の動的反射減衰器を直列に有することによって、実世界に対して異なる光学距離におけるマスクが、作成され得る。
代替として、図19Cに戻って参照すると、1つまたはそれを上回るDMDが、任意のレンズを伴わずに、反射潜望鏡構成で設置される、構成を作成してもよい。そのような構成は、明視野アルゴリズムで駆動され、選択的に、ある光線を減衰させる一方、他の光線を通過させてもよい。
別の実施形態では、DMDまたは類似マトリクスの制御可能に可動であるデバイスが、仮想現実等の透過性構成において使用するための概して不透明の基板とは対照的に、透明基板上に作成されてもよい。
別の実施形態では、2つのLCDパネルが、明視野オクルーダとして利用されてもよい。一変形例では、それらは、前述のようなその減衰能力に起因して、減衰器と見なされ得る。代替として、それらは、共有偏光子スタックを伴う偏光回転子と見なされ得る。好適なLCDは、青色相液晶、コレステリック液晶、強誘電液晶、および/またはねじれネマティック液晶等の構成要素が挙げられ得る。
一実施形態は、特定の角度から生じる光の大部分を通過させるが、広い面の多くを異なる角度から生じる光に提示するように、回転を変化させ得るルーバの集合を特徴とする、MEMSデバイス等の指向性の選択遮閉要素のアレイを備えてもよい(農園のシャッタが典型的ヒトスケールの窓とともに利用され得る様式に若干類似する)。MEMS/ルーバ構成は、実質的に不透明のルーバとともに、光学的に透明な基板上に設置されてもよい。理想的には、そのような構成は、ピクセル毎ベースで光を選択的に遮閉するために十分に微細なルーバピッチを有するであろう。別の実施形態では、ルーバの2つまたはそれを上回る層もしくはスタックが、組み合わせられ、さらなる制御を提供してもよい。別の実施形態では、光を選択的に遮断するのではなく、ルーバは、制御可能に可変ベースで光の偏光状態を変化させるように構成される、偏光子であってもよい。
前述のように、選択遮閉のための別の実施形態は、スライド式パネルが、光を小フレームまたは開口を通して伝送するために制御可能に開放され、かつフレームまたは開口を遮閉し、伝送を防止するように制御可能に閉鎖され得るように、MEMSデバイス内にスライド式パネルのアレイを備えてもよい(すなわち、第1の位置から第2の位置に平面方式で摺動することによって、または第1の配向から第2の配向に回転させることによって、または、例えば、回転再配向および変位を組み合わせて)。アレイは、減衰されるべき光線を最大限に減衰させ、伝送されるべき光線を最小限にのみ減衰させるよう種々のフレームまたは開口を開放もしくは遮閉するように構成されてもよい。
固定数のスライド式パネルが、第1の開口を遮閉し、第2の開口を開放させる第1の位置または第2の開口を遮閉し、第1の開口を開放させる第2の位置のいずれかを占有することができる、ある実施形態では、常時、同一量の光が全体的に伝送されるであろう(そのような構成では、開口の50%は、遮閉され、他の50%は、開放されるため)が、シャッタまたはドアの局所位置変化は、種々のスライド式パネルの動的位置付けに伴って、暗視野知覚のための標的モアレまたは他の効果を作成し得る。一実施形態では、スライド式パネルは、スライド式偏光子を備えてもよく、静的または動的のいずれかである他の偏光要素とともにスタックされた構成に配置される場合、選択的に減衰させるために利用されてもよい。
図19Dを参照すると、一対の合焦要素(540、542)および反射体(534;DMD等)とともに、2つの導波管(536、538)のスタックされた集合が、入射反射体(544)を用いて入射光の一部を捕捉するために使用され得るように、DMD式反射体アレイ(534)等を介して、選択反射のための機会を提供する別の構成が、示される。反射された光は、第1の導波管(536)の長さを辿って、合焦要素(540)の中に全内部反射され、光をDMDアレイ等の反射体(534)上に合焦させてもよく、その後、DMDは、導波管から眼(58)に向かって光を出射するように構成される、出射反射体(546)までの全内部反射のために、光の一部を選択的に減衰させ、合焦レンズ(542;第2の導波管の中に戻る光の投入を促進するように構成される、レンズ)を通して第2の導波管(538)の中に反射させてもよい。
そのような構成は、比較的に薄い形状因子を有してもよく、実世界(144)からの光が選択的に減衰されることを可能にするように設計される。導波管が、コリメートされた光と最も滑らかに協働するため、そのような構成は、合焦距離が光学無限遠の範囲内にある仮想現実構成に非常に好適となり得る。より近い焦点距離のためには、明視野ディスプレイが、前述の選択減衰/暗視野構成によって作成された輪郭の上部の層として使用され、光が別の焦点距離から生じているという他の手掛かりをユーザの眼に提供してもよい。遮閉マスクが、望ましくないことに、焦点から外れ得、したがって、次いで、一実施形態では、マスキング層の上部の明視野が、暗視野が誤った焦点距離にあり得るという事実を隠すために使用されてもよい。
図19Eを参照すると、それぞれ、約45度で示される、例証目的のために2つの角度付けられた反射体(558、544;556、546)を有する、2つの導波管(552、554)を特徴とする、実施形態が、示される。実際の構成では、角度は、選択減衰のために使用され得るDMD等の各端部における反射体(548、550)に衝突するように、実世界から入射する光の一部を第1の導波管の両側(または上部層がモノリシックではない場合、2つの別個の導波管)まで指向し、その後、反射された光が、眼(58)に向かった出射のために、第2の導波管(または底側層がモノリシックではない場合、2つの別個の導波管)の中に、2つの角度付けられた反射体(再び、示されるような45度である必要はない)に引き返して投入され得る反射表面(導波管等の反射/屈折特性)に応じて異なってもよい。
合焦レンズもまた、各端部における反射体と導波管との間に設置されてもよい。別の実施形態では、各端部における反射体(548、550)は、標準的鏡(アルミ表面鏡等)を備えてもよい。さらに、反射体は、二色性鏡またはフィルム干渉フィルタ等の波長選択反射体であってもよい。さらに、反射体は、入射光を反射させるように構成される、回折要素であってもよい。
図19Fは、ピラミッドタイプ構成における4つの反射表面が、光を2つの導波管(560、562)を通して指向するために利用され、実世界からの入射光が、分割され、4つの異なる軸に反射され得る、構成を図示する。ピラミッド形状の反射体(564)は、4つを上回るファセットを有してもよく、図19Eの構成の反射体と同様に、基板プリズム内に存在してもよい。図19Fの構成は、図19Eのものの拡張である。
図19Gを参照すると、単一導波管(566)が、1つまたはそれを上回る反射表面(574、576、578、580、582)を用いて、光を世界(144)から捕捉し、それ(570)を選択減衰器(568;DMDアレイ等)に中継し、伝搬(572)し、少なくとも部分的に、経路上の導波管からユーザの眼(58)に向かって出射(594)させる、1つまたはそれを上回る他の反射表面(584、586、588、590、592)に遭遇するように、それを同一導波管の中に戻って再結合させるために利用されてもよい。好ましくは、導波管は、1つの群(574、576、578、580、582)が、入射光を捕捉し、それを選択減衰器まで指向させるようオンに切り替えられ得る一方、別個の別の群(584、586、588、590、592)が、選択減衰器から戻る光を眼(58)に向かって出射させるようオンに切り替えられ得るように、選択反射体を備える。
便宜上、選択減衰器は、導波管に対して実質的に垂直に配向されて示される。他の実施形態では、屈折または反射光学等の種々の光学構成要素が、導波管に対して異なり、かつよりコンパクトな配向で選択減衰器を有するために利用されてもよい。
図19Hを参照すると、図19Dを参照して説明される構成における変形例が、図示される。本構成は、図5Bを参照して前述されているものに若干類似し、切替可能反射体のアレイが、一対の導波管(602、604)のそれぞれ内に埋め込まれてもよい。図19Hを参照すると、コントローラが、複数の反射体がフレーム順次ベースで動作され得るように、反射体(598、600)をシーケンスでオンおよびオフにするように構成されてもよい。次いで、DMDまたは他の選択減衰器(594)もまた、オンおよびオフにされる異なる鏡と同期して、順次、駆動されてもよい。
図19Iを参照すると、前述のもの(例えば、図15A−15Cを参照して)に類似する一対の楔形状の導波管が、側面図または断面図に示され、各楔形状の導波管(610、612)の2つの長い表面が同一平面ではないことを図示する。「転向フィルム」(606、608;本質的に、マイクロプリズムアレイを備える、商標名「TRAF」の下、3M corporationから利用可能なもの等)が、入射光線を全内部反射によって捕捉されるであろうような角度で転向させるか、または導波管から出射するにつれて、出射光線を眼または他の標的に向かって転向させるかのいずれかのために、楔形状の導波管の1つまたはそれを上回る表面上で利用されてもよい。入射光線は、第1の楔を辿って、DMD、LCD(強誘電LCD等)、またはLCDスタック(マスクとして作用する)等の選択減衰器(614)に向かって指向される。
選択減衰器(614)後、反射された光は、第2の楔形状の導波管の中に逆結合され、次いで、全内部反射によって光を楔に沿って中継する。楔形状の導波管の特性は、光の各跳ね返りが、角度変化を生じさせるように意図的であることである。角度が全内部反射を逃散させるための臨界角となるために十分に変化した点は、楔形状の導波管からの出射点となる。典型的には、出射は、斜角において行われ、したがって、転向フィルムの別の層が、出射光を眼(58)等の標的オブジェクトに向かって「転向」させるために使用されてもよい。
図19Jを参照すると、いくつかの弧状レンズレットアレイ(616、620、622)が、眼に対して位置付けられ、空間減衰器アレイ(618)が、眼(58)と合焦し得るように、焦点/画像平面に位置付けられるように構成される。第1(616)および第2(620)のアレイは、凝集体として、実世界から眼に通過する光が、本質的に、ゼロ屈折力望遠鏡を通して通過されるように構成される。図19Jの実施形態は、改良された光学補償のために利用され得るが、一般的場合、そのような第3の層を要求しない、レンズレットの第3のアレイ(622)を示す。前述のように、視認光学の直径である伸縮自在レンズを有することは、望ましくないほど大きい形状因子を作成し得る(小集合の双眼鏡の束を眼の正面に有することに若干類似する)。
全体的幾何学形状を最適化するための方法の1つは、図19Jに示されるように、より小さいレンズレットに分割することによって(すなわち、1つの単一の大きなレンズではなく、レンズのアレイ)、レンズの直径を縮小させることである。レンズレットアレイ(616、620、622)は、瞳孔に入射するビームが適切なレンズレットを通して整合される(そうでなければ、システムは、分散、エイリアシング、および/または焦点の欠如等の光学問題に悩まされ得る)ことを確実にするために、半径方向または弧状に眼(58)の周囲に巻装されるように示される。したがって、レンズレットは全て、「内向きに」配向され、眼(58)の瞳孔に向けられ、システムは、光線が瞳孔までの途中で意図されないレンズの集合を通して伝搬される、シナリオの回避を促進する。
図19K−19Nを参照すると、種々のソフトウェアアプローチが、仮想または拡張現実変位シナリオにおける暗視野の提示を補助するために利用されてもよい。図19Kを参照すると、拡張現実に関する典型的課題シナリオが、織加工されたカーペット(624)および非均一背景の建築特徴(626)(両方とも、薄く着色されている)とともに描写される(632)。描写される黒色ボックス(628)は、1つまたはそれを上回る拡張現実特徴が、3次元知覚のためにユーザに提示されるべき、ディスプレイの領域を示し、黒色ボックス内では、例えば、ユーザが関わる拡張現実ゲームの一部であり得る、ロボット創造物(630)が、提示されている。描写される実施例では、ロボットキャラクタ(630)は、濃く着色されおり、特に、本実施例シナリオのために選択される背景では、3次元知覚における提示を困難にする。
前述で簡単に論じられたように、暗視野拡張現実オブジェクトを提示するための主要な課題の1つは、システムが、概して、「暗度」を追加または塗布することができない。概して、ディスプレイは、光を追加するように構成される。したがって、図19Lを参照すると、暗視野知覚を向上させるための任意の特殊ソフトウェア処理を伴わない場合、拡張現実ビュー内のロボットキャラクタの提示は、提示内で本質的に艶無しの黒色となるべきロボットキャラクタの部分が不可視となり、ある程度の照明を有するロボットキャラクタの部分(ロボットキャラクタの肩撃ち銃の薄く着色されたカバー等)がかろうじてのみ可視である、場面をもたらす(634)。それらは、そうでなければ正常な背景画像に対して、明階調崩壊のように見える。
図19Mを参照すると、ソフトウェアベースの全体的減衰処理(一対のサングラスをデジタル的に置くことに類似する)の使用は、ほぼ黒色のロボットキャラクタの輝度が、ここではより暗く見える、空間の残りに対して効果的に増加されるため、向上した可視性をロボットキャラクタに提供する(640)。また、図19Mに示されるのは、ここではより可視であるロボットキャラクタ形状(638)を強調させ、背景から区別するために追加され得る、デジタル的に追加された光の後光(636)である。後光処理を用いることによって、艶無しの黒色として提示されるべきロボットキャラクタの部分さえ、ロボットキャラクタの周囲に提示される白色後光、すなわち、「オーラ」と対照的に可視となる。
好ましくは、後光は、3次元空間内のロボットキャラクタの焦点距離の背後の知覚される焦点距離とともに、ユーザに提示されてもよい。前述のもの等の単一パネル遮閉技法が暗視野を提示するために利用されている構成では、光の後光は、遮閉をともに得る暗後光に一致する強度勾配とともに提示され、いずれかの暗視野効果の可視性を最小限にしてもよい。さらに、後光は、さらなる区別効果のために、提示される後光照明の背景に対するぼかしとともに提示されてもよい。よりわずかなオーラまたは後光効果は、少なくとも部分的に、比較的に薄く着色された背景の色および/または輝度を一致させることによって、作成され得る。
図19Nを参照すると、ロボットキャラクタの黒色色調の一部または全部は、暗いクールブルー色に変化され、背景に対してさらなる区別効果と、ロボット(642)の比較的に良好な可視化とを提供してもよい。
楔形状の導波管が、図15A−15Dおよび図19I等を参照して前述されている。楔形状の導波管では、光線が非同一平面表面の1つから跳ね返る度に、角度変化を得て、最終的には、表面の1つに対するそのアプローチ角が臨界角を越えると、光線が全内部反射から出射する結果をもたらす。転向フィルムが、出射ビームが、幾何学的および人間工学的当該問題に応じて、出射表面に略垂直な軌道を伴って出て行くように、出射光を再指向するために使用されてもよい。
例えば、図15Cに示されるように、画像情報を楔形状の導波管の中に投入する、一連またはアレイのディスプレイでは、楔形状の導波管は、楔から出現する角度バイアス光線の微細ピッチアレイを作成するように構成されてもよい。若干類似するように、明視野ディスプレイまたは可変波面作成導波管が両方とも、眼がどこに位置付けられようとも、眼が、ディスプレイパネルの正面のその特定の眼の位置に一意である、複数の異なるビームレットまたはビームによって衝突されるように、空間内の単一ピクセルを表すために、多数のビームレットまたはビームを生成し得ることが前述されている。
明視野ディスプレイの文脈においてさらに前述されたように、複数の視認ゾーンが、所与の瞳孔内に作成されてもよく、それぞれ、異なる焦点距離のために使用されてもよく、その凝集体は、可変波面作成導波管のものと類似する、または実物として視認されるオブジェクトの現実の実際の光物理学に類似する、知覚を生成する。したがって、複数のディスプレイを伴う楔形状の導波管が、明視野を発生させるために利用されてもよい。画像情報を投入するディスプレイの線形アレイを伴う、図15Cのものに類似する実施形態では、出射光線の扇が、ピクセル毎に作成される。本概念は、複数の線形アレイが、スタックされ、全て、画像情報を楔形状の導波管の中に投入し(一変形例では、1つのアレイが、楔形状の導波管面に対して1つの角度で投入する一方、第2のアレイは、楔形状の導波管面に対して第2の角度で投入してもよい)、その場合、出射ビームが、楔から2つの異なる軸において扇状になる、実施形態に拡張されてもよい。
したがって、そのような構成は、たくさんの異なる角度で広がる複数のビームを生成するために利用されてもよく、各ビームは、そのような構成下では、各ビームが別個のディスプレイを使用して駆動されるという事実に起因して、別個に駆動されてもよい。別の実施形態では、1つまたはそれを上回るアレイまたはディスプレイは、全内部反射構成の中に投入された画像情報を楔形状の導波管に対して屈曲させるための回折光学等を使用して、画像情報を、図15Cに示されるもの以外の楔形状の導波管の側面または面を通して楔形状の導波管の中に投入するように構成されてもよい。
種々の反射体または反射表面もまた、そのような楔形状の導波管実施形態と連動して利用され、楔形状の導波管からの光を出力結合および管理してもよい。一実施形態では、楔形状の導波管に対する入射開口または図15Cに示されるもの以外の異なる面を通した画像情報の投入が、Z軸デルタもまた、3次元情報を楔形状の導波管の中に投入するための手段として開発され得るように、異なるディスプレイおよびアレイの(幾何学的および/または時間的)交互配置を促進するために利用されてもよい。3次元を上回るアレイ構成のために、種々のディスプレイが、より高い次元構成を得るための交互配置を用いて、複数のスタック内の複数の縁において楔形状の導波管に進入するように構成されてもよい。
図20Aを参照すると、導波管(646)が中央に狭入された回折光学要素(648;または前述のような「DOE」)を有する、図8Hに描写されるものに類似する構成が、示される(代替として、前述のように、回折光学要素は、描写される導波管の正面または背面上に存在してもよい)。光線は、プロジェクタまたはディスプレイ(644)から導波管(646)に入射してもよい。いったん導波管(646)に入ると、光線がDOE(648)に交差する度に、その部分は、導波管(646)から出射される。前述のように、DOEは、導波管(646)の長さを横断する出射照度が、ほぼ均一であるように設計されてもよい(例えば、第1のそのようなDOE交差点は、81%が通過される等となるように、光の約10%を出射するように構成されてもよく、次いで、第2のDOE交差点は、残りの光の約10%を出射するように構成されてもよい。別の実施形態では、DOEは、その長さに沿って、線形減少回折効率等の可変回折効率を有し、導波管の長さを横断してより均一な出射照度をマップするように設計されてもよい)。
端部に到達する残りの光をさらに分布させるために(一実施形態では、世界に対するビューの透明度の観点から好ましいであろう、比較的に低回折効率DOEの選択を可能にするために)、反射要素(650)が、一端または両端に含まれてもよい。さらに、図20Bの実施形態を参照すると、付加的分布および保存が、示されるように、導波管の長さを横断して伸長反射体(652)を含む(例えば、波長選択性である薄膜二色性コーティングを備える)ことによって、達成されてもよい。好ましくは、そのような反射体は、偶発的に上向きに(視認者によって利用されないであろうように、出射のために実世界144に引き返して)反射される光を遮断するであろう。いくつかの実施形態では、そのような伸長反射体は、ユーザによる「ゴースト発生」効果知覚に寄与し得る。
一実施形態では、本ゴースト発生効果は、導波管アセンブリの長さを横断して、好ましくは、実質的に等しく分布された様式で、眼(58)に向かって出射されるまで、光を移動させ続けるように設計される、図20Cに示されるもの等の二重導波管(646、654)循環反射構成を有することによって、排除され得る。図20Cを参照すると、光が、プロジェクタまたはディスプレイ(644)を用いて投入され、第1の導波管(654)のDOE(656)を横断して進行するにつれて、好ましくは、光の実質的に均一パターンを眼(58)に向かって放出させてもよい。第1の導波管内に留まる光は、第1の反射体アセンブリ(660)によって、第2の導波管(646)の中に反射される。一実施形態では、第2の導波管(646)は、第2の反射体アセンブリを使用して、単に、残りの光を第1の導波管に逆移送または再利用するように、DOEを有しないように構成されてもよい。
別の実施形態では(図20Cに示されるように)、第2の導波管(646)はまた、3次元知覚のために、進行する光の一部を均一に放出し、第2の焦点平面を提供するように構成される、DOE(648)を有してもよい。図20Aおよび20Bの構成と異なり、図20Cの構成は、光が導波管を一方向に進行するように設計され、DOEを用いて導波管を通して後方に通過する光に関連する前述のゴースト発生問題を回避する。図20Dを参照すると、光を再利用するために、導波管の端部に鏡またはボックス式反射体アセンブリ(660)を有するのではなく、より小さい逆反射体(662)のアレイまたは逆反射材料が、利用されてもよい。
図20Eを参照すると、底側に到達する前に、導波管(646)を何度も往復して交差し、その時点で、さらなる再利用のための最大レベルまで再利用され得るように、図20Cの実施形態の光再利用構成のいくつかを利用し、ディスプレイまたはプロジェクタ(644)を用いて投入された後、狭入DOE(648)を有する導波管(646)を通して光を「蛇行」させる、実施形態が、示される。そのような構成は、光を再利用し、光を眼(58)に向かって出射するための比較的に低回折効率のDOE要素の使用を促進させるだけではなく、また、光を分布させ、図8Kを参照して説明されるものに類似する大射出瞳構成を提供する。
図20Fを参照すると、入力投影(106)、走査、またはその他が、プリズムの跳ね返り内に保たれるため(これは、そのようなプリズムの幾何学形状が有意な制約となることを意味する)入射光が、全内部反射を伴わずに(すなわち、プリズムは、導波管と見なされない)、従来のプリズムまたはビームスプリッタ基板(104)に沿って反射体(102)に投入される、図5Aのものに類似する例証的構成が、示される。別の実施形態では、導波管が、図20Fの単純プリズムの代わりに利用されてもよく、これは、全内部反射の使用を促進し、より幾何学的柔軟性を提供する。
前述の他の構成は、類似操作および光のための導波管の含有から利益を享受するように構成される。例えば、図7Aに戻って参照すると、その中に図示される一般的概念は、実世界からの光の視認を促進するようにもまた設計される構成において、導波管の中に投入されたコリメート画像が、眼に向かって移送される前に、再合焦され得るというものである。図7Aに示される屈折レンズの代わりに、回折光学要素が、可変合焦要素として使用されてもよい。
図7Bに戻って参照すると、別の導波管構成が、コントローラがフレーム毎ベースでどの経路が辿られるかを調整することができるように、より小さい経路(導波管を通した全内部反射)とより大きい経路(元々の導波管と、屈折率が主導波管と補助導波管との間で実質的に整合されるモードに切り替えられる液晶を伴う液晶隔離領域とを備える、ハイブリッド導波管を通した全内部反射)との間の制御可能アクセストグルを伴う、相互にスタックされた複数の層を有する文脈において図示される。ニオブ酸リチウム等の電気活性材料の高速切替は、ギガヘルツレートにおけるそのような構成を用いた経路変化を促進し、これは、ピクセル毎ベースで、光の経路を変化させることを可能にする。
図8Aに戻って参照すると、弱レンズと対合された導波管のスタックが、レンズおよび導波管要素が静的であり得る、多焦点構成を実証するために図示される。各対の導波管およびレンズは、図8Iを参照して説明されるもの等のDOE要素が埋め込まれた導波管(図8Aの構成により類似するものでは、静的であってもよく、または動的であってもよい)と機能的に置換されてもよい。
図20Gを参照すると、透明プリズムまたはブロック(104;すなわち、導波管ではない)が、鏡または反射体(102)を潜望鏡タイプの構成に保持し、光をレンズ(662)およびプロジェクタまたはディスプレイ(644)等の他の構成要素から受光するために利用される場合、視野は、その反射体のサイズによって限定される(102;反射体が大きいほど、視野が広くなる)。したがって、そのような構成を用いてより大きい視野を有するために、より厚い基板が、より大きい反射体を保持するために必要とされ得る。別様に、凝集された複数の反射体の機能性が、図8O、8P、および8Qを参照して説明されるように、機能的視野を増加させるために利用されてもよい。図20Hを参照すると、それぞれ、ディスプレイまたはプロジェクタ(644;または別の実施形態では、単一ディスプレイの多重化)が供給され、出射反射体(668)を有する、平面導波管(666)のスタック(664)が、より大きい単一反射体の機能に向かって凝集させるために利用されてもよい。出射反射体は、アセンブリに対する眼(58)の位置付けに応じて、ある場合には、同一角度にあって、または他の場合には、同一角度になくてもよい。
図20Iは、平面導波管(670、672、674、676、678)のそれぞれ内の反射体(680、682、684、686、688)が、相互からオフセットされ、それぞれ、光をプロジェクタまたはディスプレイ(644)から取り込み、平面導波管(670、672、674、676、678)のそれぞれ内の反射体(680、682、684、686、688)によってレンズ(690)を通して送光され、最終的には、眼(58)の瞳孔(45)への出射光に寄与し得る、関連構成を図示する。場面に見られることが予期されるであろう角度の全ての総範囲を作成することができる場合(すなわち、好ましくは、重要な視野内に盲目点を伴わない)、有用視野が、達成される。前述のように、眼(58)は、少なくとも、光線が眼に入射する角度に基づいて機能し、これは、シミュレートされることができる。光線は、瞳孔における空間内の正確に同一点を通して通過する必要はない。むしろ、光線は、瞳孔を通り抜け、網膜によって感知されることのみ必要である。図20Kは、光学アセンブリの陰影部分が、補償レンズとして利用され、ゼロ屈折力望遠鏡を通して通過されるかのように、実世界(144)からの光をアセンブリを通して通過させるように機能し得る、変形例を図示する。
図20Jを参照すると、前述の光線はそれぞれまた、全内部反射によって、関連導波管(670、672)を通して反射されている、相対的広ビームであってもよい。反射体(680、682)ファセットサイズは、とり得る出射ビーム幅を判定するであろう。
図20Lを参照すると、複数の小直線角度反射体が、導波管またはそのスタック(696)を通して、凝集体として略放物反射表面(694)を形成し得る、反射体のさらなる離散化が、示される。レンズ(690)等を通して、ディスプレイ(644;または、例えば、単一多重ディスプレイ)から生じる光は全て、眼(58)の瞳孔(45)における同一共有焦点に向かって指向される。
図13Mに戻って参照すると、ディスプレイ(378)の線形アレイが、光を共有導波管(376)の中に投入する。別の実施形態では、単一ディスプレイが、一連の入射レンズに多重化され、図13Mの実施形態と類似機能性を提供してもよく、入射レンズは、導波管を通して伝わる光線の平行経路を作成する。
全内部反射が光伝搬のために依拠される、従来の導波管アプローチでは、導波管を通して伝搬する光線のある角度範囲のみがある(他の光線は逃散し得る)ため、視野が制限される。一実施形態では、ある波長のみに対して高度に反射性であり、他の波長に対しては低反射性である、薄膜干渉フィルタと同様に、赤色/緑色/青色(または「RGB」)レーザ線反射体が平面の一端または両端に設置される場合には、光伝搬の角度の範囲を機能的に増加させることができる。窓(コーティングを伴わない)が、光が所定の場所で出射することを可能にするために提供されてもよい。さらに、コーティングは、(若干ある入射角度のみに対して高度に反射性である反射要素のように)を有する指向選択性を有するように選択されてもよい。そのようなコーティングは、導波管のより大きい平面/側に最も関連し得る。
図13Eに戻って参照すると、種々の投入されたビームが全内部反射に伴って通り過ぎている場合に、構成が振動要素(358)の縁から逃散するビームの線形アレイを機能的に提供するであろうように、複数の非常に薄い平面導波管(358)が発振または振動させられ得るような走査薄型導波管構成と見なされ得る、走査ファイバディスプレイの変形例が論じられた。描写される構成は、透明であるが、好ましくは、光が、外部投影平面導波管部分(358)に最終的に供給する(描写される実施形態では、光を外向きに跳ね返すために平面、湾曲、または他の反射体が利用され得る点において、各経路内に90度転向がある)、基板結合小型導波管のそれぞれの内の全内部反射の中にとどまるように、異なる屈折率を有する、ホスト媒体または基板(356)の中に約5つの外部投影平面導波管部分(358)を有する。
外部投影平面導波管部分(358)は、個々に、または基板(356)の発振運動とともに一群として、振動させられてもよい。そのような走査運動は、水平走査を提供してもよく、垂直走査のために、アセンブリの入力(360)側面(すなわち、垂直軸において走査する、1つまたはそれを上回る走査ファイバディスプレイ等)が利用されてもよい。したがって、走査ファイバディスプレイの変形例が提示される。
図13Hに戻って参照すると、導波管(370)が、明視野を作成するために利用されてもよい。知覚の観点から光学無限遠と関連付けられ得る、コリメートされたビームとともに最良に機能する導波管を用いることによって、合焦したままである全てのビームが、知覚不快感を引き起こし得る(すなわち、眼は、遠近調節の関数として光屈折ぼけの識別できる差異を生じず、言い換えると、0.5mmまたはそれ未満等の狭い直径のコリメートされたビームレットは、眼の遠近調節/両眼離反運動系を開ループし、不快感を引き起こし得る)。
一実施形態では、いくつかの円錐ビームレットが生じるとともに、単一のビームが供給されてもよいが、入射ビームの導入ベクトルが変化させられた(すなわち、導波管に対してプロジェクタ/ディスプレイのためのビーム投入場所を側方に偏移させる)場合、眼に向かって指向されるにつれて、ビームが導波管から出射する場所を制御してもよい。したがって、狭い直径のコリメートされたビームの束を作成することによって、明視野を作成するために導波管を使用してもよく、そのような構成は、眼における所望の知覚と関連付けられる光波面の真の変動に依拠しない。
角度的および側方に多様なビームレットの集合が、導波管の中に投入される場合(例えば、マルチコアファイバを使用して、各コアを別個に駆動することによって;別の構成は、異なる角度から生じる複数のファイバスキャナを利用してもよい;別の構成は、その上にレンズレットアレイを伴う高分解能パネルディスプレイを利用してもよい)、いくつかの出射ビームレットが、異なる出射角度および出射場所で作成されることができる。導波管が明視野を混乱させ得るため、好ましくは、復号が事前に判定される。
図20Mおよび20Nを参照すると、垂直または水平軸にスタックされた導波管構成要素を備える、導波管(646)アセンブリ(696)が示されている。1つのモノリシック平面導波管を有するのではなく、これらの実施形態の概念は、全内部反射によって、そのような導波管を辿って伝搬する(すなわち、+X、−Xにおける全内部反射に伴ってZ軸に沿って伝搬する)ことに加えて、1つの導波管に導入される光もまた、他の面積の中へ流出しないように、垂直軸(+y、−Y)において完全に内部反射するように、相互に直接隣接して複数のより小さい導波管(646)をスタックすることである。言い換えると、全内部反射がZ軸伝搬の間に左から右にある場合、上側または底側に衝突する任意の光を全内部反射するように、構成が設定されるであろう。各層は、他の層からの干渉を伴わずに、別個に駆動されてもよい。各導波管は、所定の焦点距離構成(0.5メートルから光学無限遠に及ぶように図20Mに示される)を伴って、前述のように、導波管の長さに沿った所定の分布で光を放出するように埋め込まれ、構成されるDOE(648)を有してもよい。
別の変形例では、埋め込みDOEを伴う導波管の非常に高密度のスタックが、眼の解剖学的瞳孔のサイズに跨架するように(すなわち、複合導波管の複数の層698が、図20Nに図示されるように、射出瞳を横断することを要求されるように)生成されてもよい。そのような構成では、DOEおよび導波管を通してDOEを横断する全内部反射の結果として、射出瞳がいくつかの異なる導波管から生じているという概念を用いて、1つの波長のためのコリメートされた画像を供給してもよく、次いで、次の1ミリメートルに位置する部分が、例えば、15メートル等の離れた焦点距離から生じるオブジェクトを表す、発散性波面を生成する。したがって、1つの均一な射出瞳を作成するのではなく、そのような構成は、凝集体として、眼/脳による異なる焦点深度の知覚を促進する、複数の縞を作成する。
そのような概念は、各導波管を横断する軸においてより効率的な光捕捉を可能にする、図8B−8Nに関して説明されるもの等の切替可能/制御可能な埋め込みDOEを伴う(すなわち、異なる焦点距離に切替可能である)導波管を備える、構成に拡張されてもよい。複数のディスプレイが、層のそれぞれの中に結合されてもよく、DOEを伴う各導波管は、その独自の長さに沿って光線を放出するであろう。別の実施形態では、全内部反射に依拠するのではなく、レーザ線反射体が、角度範囲を増加させるために使用されてもよい。複合導波管の層の間には、アルミニウム等の完全に反射性の金属化コーティングが、全反射を確実にするために利用されてもよく、または代替として、二色性もしくは狭帯域反射体が利用されてもよい。
図20Oを参照すると、複合導波管アセンブリ(696)全体は、個々の導波管のそれぞれが瞳孔に向かって指向されるように、眼(58)に向かって凹面状に湾曲されてもよい。言い換えると、構成は、瞳孔が存在する可能性が高い場所に向かって光をより効率的に指向するように設計されてもよい。そのような構成はまた、視野を増加させるために利用されてもよい。
図8L、8M、および8Nに関して前述されたように、変化可能な回折構成は、走査光ディスプレイと若干類似する、1つの軸における走査を可能にする。図21Aは、示されるように、導波管からの出射光(702)の出射角度を変更するように変化させられ得る、線形グレーティング項を伴う埋め込み(すなわち、その中に挟入された)DOE(700)を有する、導波管(698)を図示する。ニオブ酸リチウム等の高周波数切替えDOE材料が利用されてもよい。一実施形態では、そのような走査構成は、1つの軸においてビームを走査するための唯一の機構として使用されてもよく、別の実施形態では、走査構成は、他の走査軸と組み合わせられてもよく、より大きい視野を作成するために使用されてもよい(すなわち、正常な視野が40度であって、線形回折ピッチを変化させることによって、別の40度にわたって操向することができる場合、システムのための効果的な使用可能視野は、80度である)。
図21Bを参照すると、従来の構成では、導波管(708)は、ビームが、テレビまたは他の目的のために視認可能なディスプレイを提供する走査構成において、導波管(708)からレンズ(706)を通してパネル(704)の中へ投入され得るように、LCDまたはOLEDパネル等のパネルディスプレイ(704)と垂直に設置されてもよい。したがって、導波管は、単一の光のビームが、異なる角度場所を通して掃引するように走査ファイバまたは他の要素によって操作されてもよく、加えて、別の方向が、高周波数回折光学要素を使用して走査され得る、図21Aを参照して説明される構成とは対照的に、走査画像源等の構成で利用されてもよい。
別の実施形態では、一軸方向走査ファイバディスプレイ(例えば、走査ファイバが比較的高周波数であるため、高速線走査を走査する)が、導波管の中に高速線走査を投入するために使用されてもよく、次いで、比較的に低いDOE切替(すなわち、100Hzの範囲内)が、他の軸における線を走査して画像を形成するために使用されてもよい。
別の実施形態では、固定ピッチのグレーティングを伴うDOEは、光が異なる角度でグレーティングの中に再指向され得るように、動的屈折率を有する電気活性材料(液晶等)の隣接する層と組み合わせられてもよい。これは、光線が導波管から出現する角度を変化させるように、液晶またはニオブ酸リチウム等の電気活性材料を備える電気活性層が、その屈折率を変化させ得る、図7Bを参照して前述されている基本的多経路構成の用途である。回折グレーティングが、固定ピッチでとどまり得るが、光がグレーティングに衝突する前にバイアスをかけられるように、線形回折グレーティングが、図7Bの構成に追加されてもよい(一実施形態では、より大きい下側導波管を備える、ガラスまたは他の材料内に狭入される)。
図21Cは、2つの楔状導波管要素(710、712)を特徴とする、別の実施形態を示し、それらのうちの1つまたはそれを上回るものは、関連屈折率が変化させられ得るように、電気活性であり得る。要素は、楔が一致する屈折率を有するとき、光がその対(凝集体として、両方の楔が一致している平面導波管に類似して機能する)を通して全内部反射する一方、楔界面がいかなる効果も及ぼさないように、構成されてもよい。次いで、屈折率のうちの1つが不整合をもたらすように変化させられる場合、楔界面(714)におけるビーム偏向が引き起こされ、その表面から関連楔の中へ戻る全内部反射がある。次いで、線形グレーティングを伴う制御可能DOE(716)は、光が出射して望ましい出射角度で眼に到達することを可能にするように、楔の長縁のうちの1つに沿って結合されてもよい。
別の実施形態では、ブラッググレーティング等のDOEは、グレーティングの機械的延伸(例えば、グレーティングが弾性材料上に存在するか、またはそれを備える場合)、2つの異なる平面上の2つのグレーティングの間のモアレビートパターン(グレーティングは、同一または異なるピッチであってもよい)、事実上グレーティングの延伸に機能的に類似する、グレーティングのZ軸運動(すなわち、眼により近い、または眼からより遠い)、または電圧をオフにし、ホスト媒体に一致する屈折率への切替を可能にすることと対比して、液晶液滴が屈折率を変化させて活性グレーティングになるように制御可能に活性化される、高分子分散型液晶アプローチを使用して作成されるもの等のオンまたはオフに切り替えられ得る電気活性グレーティングによって等、ピッチ対時間を変化させるように構成されてもよい。
別の実施形態では、時変グレーティングが、タイル表示されたディスプレイ構成を作成することによって、視野拡大のために利用されてもよい。さらに、時変グレーティングは、色収差(同一の焦点において全ての色/波長を合焦できないこと)に対処するために利用されてもよい。回折グレーティングの1つの特性は、それらがその入射角度および波長の関数としてビームを偏向させるであろうことである(すなわち、単純なプリズムがビームをその波長成分に分割するであろう様式に若干類似して、DOEが、異なる角度によって異なる波長を偏向させるであろう)。
視野拡大に加えて、色収差を補償するために、時変グレーティング制御を使用してもよい。したがって、例えば、前述のような埋め込みDOEタイプの構成を伴う導波管は、DOEが、赤色波長を緑色および青色と若干異なる場所に駆動して、望ましくない色収差に対処するように構成されてもよい。DOEは、オンおよびオフに切り替える(すなわち、赤色、緑色、および青色を同様に外向きに回折されるように)要素のスタックを有することによって、時間変動されてもよい。
別の実施形態では、時変グレーティングが、射出瞳拡大のために利用されてもよい。例えば、図21Dを参照すると、関連ピクセルがユーザによって欠損されるであろうように、ベースラインモードにおいて出射するビームが実際に標的瞳孔(45)に入射しないように、埋め込みDOE(720)を伴う導波管(718)が標的瞳孔に対して位置付けられ得ることが、可能である。時変構成は、5つの出射ビームのうちの1つが眼の瞳孔に衝突することをより確実にするように、出射パターンを側方に(鎖線/点線で示される)偏移させてビームのそれぞれを効果的に走査することによって、外向き出射パターンで間隙を充填するために利用されてもよい。言い換えると、ディスプレイシステムの機能的な射出瞳は、拡大される。
別の実施形態では、時変グレーティングは、1、2、または3軸光走査のための導波管とともに利用されてもよい。図21Aを参照して説明されるものに類似する様式において、垂直軸にビームを走査しているグレーティングならびに水平軸に走査しているグレーティングにおける項を使用してもよい。さらに、グレーティングの半径方向要素が、図8B−8Nに関して上記で論じられるように組み込まれる場合、全て時系列走査であり得る、Z軸における(すなわち、眼に向かった/から離れた)ビームの走査を有してもよい。
概して、導波管に関連する、DOEの特殊処理および使用に関する、本明細書の議論にかかわらず、DOEのこれらの使用の多くは、DOEが導波管に埋め込まれているかどうかを問わず使用可能である。例えば、導波管の出力は、DOEを使用して別個に操作されてもよく、またはビームは、導波管の中に投入される前にDOEによって操作されてもよく、さらに、時変DOE等の1つまたはそれを上回るDOEは、以下に論じられるように、自由形状光学構成のための入力として利用されてもよい。
図8B−8Nを参照して前述のように、DOEの要素は、制御された出射パターンを作成するように線形項と合計され得る、円形対称項を有してもよい(すなわち、前述のように、光を出力結合する同一のDOEもそれを合焦させてもよい)。別の実施形態では、DOE回折グレーティングの円形対称項は、それらの関連ピクセルを表すビームの焦点が変調されるように変動されてもよい。加えて、一構成は、DOEにおいて線形項を有する必要性を排除して、第2/別個の円形DOEを有してもよい。
図21Eを参照すると、DOE要素が埋め込まれていない、コリメートされた光を出力する導波管(722)と、一実施形態では、オン/オフに切り替えられることができる、そのようなDOE要素のスタック(724)を有することによって、複数の構成の間で切り替えられることができる円形対称DOEを有する第2の導波管とを有してもよい(図21Fは、DOE要素の機能的スタック728が、前述のように、高分子分散型液晶要素のスタック726を備え得る、別の構成を示し、電圧が印加されていないと、ホスト媒体屈折率は、液晶の分散分子の屈折率に一致する;別の実施形態では、ニオブ酸リチウムの分子は、より速い応答時間のために分散させられてもよい:ホスト媒体の両側の透明インジウムスズ酸化物層等を通して、電圧が印加されると、分散された分子が屈折率を変化させ、ホスト媒体内に回折パターンを機能的に形成する)。
別の実施形態では、円形DOEが、焦点変調のために、導波管の正面に層化されてもよい。図21Gを参照すると、導波管(722)は、別様に修正されない限り、光学無限遠の焦点深度と関連付けられると知覚されるであろう、コリメートされた光を出力している。導波管からのコリメートされた光は、動的焦点変調のために使用され得る回折光学要素(730)の中に入力されてもよい(すなわち、種々の異なる焦点を出射光に付与するように、異なる円形DOEパターンをオンおよびオフに切り替えてもよい)。関連実施形態では、導波管から出射するコリメートされた光を、特定のユーザ用途のために有用であり得る単一の焦点深度に合焦させるために、静的DOEが使用されてもよい。
別の実施形態では、複数のスタックされた円形DOEが、比較的少数の切替可能DOE層から、付加屈折力および多くの焦点レベルのために使用されてもよい。言い換えると、3つの異なるDOE層が、相互に対して種々の組み合わせでオンに切り替えられてもよく、オンに切り替えられるDOEの屈折力が追加されてもよい。最大4ジオプタの範囲が所望される、一実施形態では、例えば、第1のDOEは、所望される全ジオプタ範囲の半分(本実施例では、2ジオプタの焦点変化)を提供するように構成されてもよく、第2のDOEは、1ジオプタ焦点変化を誘発するように構成されてもよく、次いで、第3のDOEは、1/2ジオプタ焦点変化を誘発するように構成されてもよい。これら3つのDOEは、混合され、1/2、1、1.5、2、2.5、3、および3.5ジオプタの焦点変化を提供するように一致させられてもよい。したがって、比較的広い範囲の制御を得るために、極めて多数のDOEは、必要とされない。
一実施形態では、切替可能DOE要素のマトリクスが、走査、視野拡大、および/または射出瞳拡大のために利用されてもよい。概して、DOEの前述の議論では、典型的DOEは、全てオンまたは全てオフのいずれかであると仮定されている。一変形例では、DOE(732)は、それぞれ、好ましくは、オンまたはオフであるように一意に制御可能である、複数の機能的下位セクション(図21Hで要素734として標識されるもの等)に細分されてもよい(例えば、図21Hを参照すると、各下位セクションは、インジウムスズ酸化物、または他の制御線材料、中心コントローラに戻る電圧印加線736のその独自の集合によって動作されてもよい)。DOEパラダイムに対する本レベルの制御を前提として、付加的構成が促進される。
図21Iを参照すると、埋め込みDOE(740)を伴う導波管(738)が、ユーザの眼が導波管の前に位置付けられた状態で、上から下に視認される。所与のピクセルが、ビームの集合として導波管から出て行くように回折パターンによって出射され得るまで、導波管の中に入り、全内部反射するビームとして表されてもよい。回折構成に応じて、ビームは、(便宜上図21Iに示されるように)平行に/コリメートされて、または光学無限遠より近い焦点距離を表す場合は、発散扇構成で出て行ってもよい。
平行出射ビームの描写される集合は、例えば、導波管を通して視認されるように、ユーザが実世界で見ているものの最左ピクセルを表してもよく、最右端へ出る光は、異なる一群の平行出射ビームであろう。実際、前述のようなDOE下位セクションのモジュール式制御を用いると、ユーザの瞳孔に能動的に対処している可能性が高いビームのわずかな下位集合を作成して操作することにより多くのコンピューティングリソースまたは時間を費やし得る(すなわち、他のビームがユーザの眼に決して到達せず、事実上無駄にされるため)。したがって、図21Jを参照すると、ユーザの瞳孔(45)に対処する可能性が高いと見なされる、DOE(744)の2つの下位セクション(740、742)が起動される、導波管(738)構成が示されている。好ましくは、1つの下位セクションは、別の下位セクションが異なる方向に光を指向すると同時に、一方向に光を指向するように構成されてもよい。
図21Kは、DOE(732)の2つの独立して制御される下位セクション(734、746)の直交図を示す。図21Lの上面図を参照すると、そのような独立制御は、光を走査または合焦させるために使用されてもよい。図21Kに描写される構成では、3つの独立して制御されるDOE/導波管下位セクション(750、752、754)のアセンブリ(748)が、走査し、視野を増加させ、および/または射出瞳領域を増加させるために使用されてもよい。そのような機能性は、そのような独立して制御可能なDOE下位セクションを伴う単一の導波管、または付加的複雑性のためのこれらの垂直スタックから生じ得る。
一実施形態では、円形DOEが、半径方向に対称的に、制御可能に延伸され得る場合、回折ピッチが変調されてもよく、DOEが、アナログタイプの制御とともに同調可能レンズとして利用されてもよい。別の実施形態では、(例えば、線形DOE項の角度を調節するための)単一の延伸軸が、DOE制御のために利用されてもよい。さらに、別の実施形態では、ドラムヘッドに類似する膜が、経時的にZ軸制御および焦点変化を提供する、Z軸における(すなわち、眼に向かった/から離れた)発振運動とともに振動させられてもよい。
図21Mを参照すると、導波管(722)からコリメートされた光を受光し、活性化されたDOEの付加屈折力に基づいてそれを再合焦させる、いくつかのDOE(756)のスタックが示されている。DOEの線形および/または半径方向対称項は、導波管から生じ、好ましくは、ユーザの眼に向かって出射する光のための種々の処理(タイル表示ディスプレイ構成または拡大した視野等)を生成するように、フレーム順次ベース等で経時的に変調されてもよい。DOEまたは複数のDOEが導波管内に埋め込まれる構成では、実世界から通過される光の透明度を最大限にするように、低回折効率が所望され、DOEまたは複数のDOEが埋め込まれていない構成では、前述のように、高回折効率が所望され得る。一実施形態では、線形および半径方向DOE項は両方とも、導波管の外側で組み合わせられてもよく、その場合、高回折効率が所望されるであろう。
図21Nを参照すると、図8Qにおいて前述のもの等のセグメント化または放物反射体が示されている。複数のより小さい反射体を組み合わせることによって、セグメント化反射体を実行するのではなく、一実施形態では、下位セクションによって制御可能であるように、同一の機能性が、各セクションのための異なる位相プロファイルを有するDOEを伴う単一の導波管から生じてもよい。言い換えると、セグメント化反射体の機能性全体は、ともにオンまたはオフにされてもよいが、概して、DOEは、空間(すなわち、ユーザの瞳孔)内の同一の領域に向かって光を指向するように構成されてもよい。
図22A−22Zを参照すると、「自由形状光学」として知られる光学構成が、前述の課題のうちのあるものにおいて利用されてもよい。用語「自由形状」は、概して、球状、放物、または円筒形レンズが幾何学的制約等の設計複雑性を満たさない状況で利用され得る、恣意的に湾曲した表面を参照して使用される。例えば、図22Aを参照すると、ユーザが鏡(およびまた、時として、レンズ760)を覗き込んでいるときのディスプレイ(762)構成に関する共通課題のうちの1つは、視野がシステムの最終レンズ(760)によって輪郭を成される面積によって制限されることである。
図22Bを参照すると、簡単に言うと、いくつかのレンズ要素を含み得るディスプレイ(762)を有する場合、視野がディスプレイ(762)によって輪郭を成される角度より大きくなり得ないように、単純な幾何学的関係がある。図22Cを参照すると、そのような場合において、多くの場合、レンズ(760)につながる反射体(764)があるため、本課題は、ユーザが、実世界からの光も光学システムを通過させられる、拡張現実体験を有しようとしている場合に悪化し、反射体を介在させることによって、眼からレンズに達する全体的経路長が増加させられ、角度をきつくし、視野を縮小させる。
これを前提として、視野を増加させたい場合、レンズのサイズを増加させなければならないが、それは、人間工学的な観点から、ユーザの額に向かって物理的レンズを押動させることを意味し得る。さらに、反射体は、より大きいレンズから光の全てを捕捉しない場合がある。したがって、ヒトの頭部の幾何学形状によって課せられる実用的制限があり、概して、従来の透視ディスプレイおよびレンズを使用して、40度を上回る視野を得る課題がある。
自由形状レンズでは、前述のような標準的平面反射体を有するのではなく、湾曲レンズ幾何学形状が視野を判定することを意味する、屈折力を伴う複合反射体およびレンズ(すなわち、湾曲反射体766)を有する。図22Dを参照すると、図22Cを参照して前述のような従来のパラダイムの遠回りの経路長がないと、自由形状配列が光学的要件の所与の集合のために有意により大きい視野を実現することが、可能である。
図22Eを参照すると、典型的自由形状光学は、3つの活性表面を有する。図22Eを参照すると、1つの典型的自由形状光学(770)構成では、光は、フラットパネルディスプレイ(768)等の画像平面から自由形状光学に向かって、典型的には、透過光を屈折させ、焦点変化を付与する、主に透過性の自由形状表面(第3の表面からの最終的な跳ね返りが一致/反対無非点収差を追加し、これらが望ましくは相殺されるため、追加無非点収差等)である、第1の活性表面(772)の中へ指向されてもよい。入射光は、第1の表面から第2の表面(774)へ指向されてもよく、それは、第3の表面(776)に向かった全内部反射下で光を反射させるために十分に浅い角度で衝打してもよい。
第3の表面は、図22Eに示されるように、第2の表面を通して眼に向かって光を跳ね返すように構成される、半透の恣意的に湾曲した表面を備えてもよい。したがって、描写される典型的自由形状構成では、光は、第1の表面を通って入射し、第2の表面から跳ね返り、第3の表面から跳ね返り、第2の表面から外へ指向される。第1の通過での必要反射特性、ならびに光が眼に向かって出射される際の第2の通過での屈折特性を有するための第2の表面の最適化により、単純な球体または放物線よりも高次の形状を伴う種々の湾曲表面が、自由形状光学の中に形成される。
図22Fを参照すると、補償レンズ(780)は、光学アセンブリの総厚が実質的に均一な厚さであるように、自由形状光学(770)に、好ましくは、倍率を伴わずに、拡張現実構成において実世界(144)から入射する光に追加されてもよい。
図22Gを参照すると、自由形状光学(770)は、ある制約内で捕捉された光の全内部反射を促進するように構成される導波管(778)と組み合わせられてもよい。例えば、図22Gに示されるように、光は、フラットパネルディスプレイ等の画像平面から自由形状/導波管アセンブリの中へ指向され、湾曲自由形状表面に衝突し、ユーザの眼に向かって逃散するまで、導波管内で全内部反射されてもよい。したがって、光は、自由形状楔部分に到達するまで、全内部反射において数回跳ね返る。
そのようなアセンブリを用いた主要な目的のうちの1つは、より大きい視野のために(全内部反射による移送、また、さらなる補償を伴わないアセンブリを通した世界の視認を促進するように)可能な限り均一な厚さを保持しながら、光学アセンブリを延長しようとすることである。図22Hは、図22Hの構成がまた、厚さの均一性をさらに拡張し、さらなる補償を伴わないアセンブリを通した世界の視認を支援するように、補償レンズ部分を特徴とすることを除いて、図22Gに類似する構成を描写する。
図22Iを参照すると、別の実施形態では、左下の角に、典型的には、自由形状光学とともに使用されるものとは異なる場所において画像情報の投入を促進するように構成される、小さい平坦表面、すなわち、第4の面(784)を伴って、自由形状光学(782)が示されている。入力デバイス(786)は、例えば、非常に小さい出力幾何学形状を有するように設計され得る、走査ファイバディスプレイを備えてもよい。第4の面は、それ自体が種々の幾何学形状を備え、平面または自由形状表面幾何学形状を使用すること等によって、その独自の屈折力を有してもよい。
図22Jを参照すると、実際は、そのような構成はまた、光を第2の表面に戻るように指向し、次いで、第2の表面を横断して眼(58)に光を指向する、第3の表面に光を跳ね返すように、第1の表面に沿って反射コーティング(788)を特徴としてもよい。画像情報の投入のための第4の小さい表面の追加は、よりコンパクトな構成を促進する。古典的な自由形状入力構成および走査ファイバディスプレイ(790)が利用される、ある実施形態では、いくつかのレンズ(792、794)が、走査ファイバディスプレイからの出力を使用して画像平面(796)を適切に形成するために必要とされてもよく、これらのハードウェア構成要素は、所望されない場合がある、余分な体積を追加し得る。
図22Kを参照すると、走査ファイバディスプレイ(790)からの光が、画像平面(796)まで入力光学アセンブリ(792、794)を通過され、次いで、自由形状光学(770)の第1の表面を横断して、第2の表面から跳ね返る全内部反射に指向され、次いで、第3の表面から跳ね返る別の全内部反射が、光を第2の表面を横断して出射させ、眼(58)に向かって指向させる、実施形態が示されている。
反射コーティングがないように(すなわち、表面との入射臨界角が満たされ、その時点で前述の楔形状の光学に類似する様式で光が出射するまで、全内部反射が光の伝搬のために依拠されているように)完全内部反射自由形状導波管が、作成されてもよい。言い換えると、2つの平面表面を有するのではなく、放物線、球体、楕円形等の円錐形曲線の集合からの1つまたはそれを上回る下位表面を備える、表面を有してもよい。
そのような構成は、依然として、光学内で全内部反射のための十分に浅い角度を生成してもよく、したがって、若干、従来の自由形状光学と楔形状の導波管との間のハイブリッドである、アプローチが提示される。そのような構成を有する1つの動機は、製品反射に役立つが、実世界(144)から透過する光の比較的大部分(50%等)の透過を防止することが知られている、反射コーティングの使用を避けることである。さらに、そのようなコーティングはまた、入力デバイスから自由形状光学の中に入る同等量の光を遮断し得る。したがって、反射コーティングを有していない設計を開発する理由がある。
前述のように、従来の自由形状光学の表面の内の1つは、半透反射表面を備えてもよい。概して、そのような反射表面は、概して、全ての波長を同様に反射することを意味する、「中性密度」であろう。走査ファイバディスプレイが入力として利用される実施形態等の別の実施形態では、従来の反射体パラダイムは、薄膜レーザ線反射体等の波長感受性である狭帯域反射体と置換されてもよい。したがって、一実施形態では、構成は、特定の赤色/緑色/青色波長範囲を反射し、他の波長に対して受動的なままであってもよく、これは、概して、光学の透明度を増加させ、したがって、光学を横断する実世界(144)からの画像情報の伝送も重視される、拡張現実構成のために好ましいであろう。
図22Lを参照すると、複数の自由形状光学(770)がZ軸において(すなわち、眼の光学軸と実質的に整合される軸に沿って)スタックされ得る、実施形態が描写されている。一変形例では、3つの描写される自由形状光学のそれぞれは、青色を1つの表面から、緑色を別の表面から、赤色を第3の表面から反射させるよう、画像がそれぞれの中へ投入され得るように、波長選択的コーティング(例えば、1つが青色に対して、次が緑色に対して、次が赤に対して高度に選択的である)を有してもよい。そのような構成は、例えば、色収差問題に対処するため、明視野を作成するため、または機能的な射出瞳サイズを増加させるために利用されてもよい。
図22Mを参照すると、単一の自由形状光学(798)が、それらの反射特性が個々に制御され得るように、それぞれ、波長または偏光選択的であり得る、複数の反射表面(800、802、804)を有する、実施形態が示されている。
図22Nを参照すると、一実施形態では、走査光ディスプレイ(786)等の複数のマイクロディスプレイが、画像をタイル状にし(それによって、増加した視野を提供し)、機能的瞳孔サイズを増加させ、または(すなわち、1つのディスプレイにつき1つの波長を反射することによって)色収差等の課題に対処するように、単一自由形状光学の中に投入されてもよい。描写されるディスプレイのそれぞれは、より大きい機能的射出瞳出力を提供するであろう、自由形状光学に対するディスプレイの異なる位置付けにより、自由形状光学を通した異なる経路をとるであろう光を投入するであろう。
一実施形態では、走査ファイバディスプレイのパケットまたは束が、走査ファイバディスプレイを自由形状光学に動作時可能に結合する際に課題のうちの1つを克服するために、入力として利用されてもよい。走査ファイバディスプレイ構成に関する1つのそのような課題は、個々のファイバの出力が、ファイバからの光の投影角度に類似する、ある開口数または「NA」を用いて放出されることであり、最終的には、本角度は、種々の光学を通過するビームの直径を判定し、かつ最終的には、出射機能的射出瞳サイズを判定する。したがって、自由形状光学構成を伴う射出瞳サイズを最大限にするために、コアとクラッディングとの間等の最適化された屈折関係を使用して、ファイバのNAを増加させてもよく、または、ファイバの端部にレンズ(すなわち、勾配屈折率レンズまたは「GRIN」レンズ等の屈折レンズ)を設置し、もしくは前述のようにファイバの端部の中へレンズを構築してもよく、または自由形状光学の中へ供給しているファイバのアレイを作成してもよく、その場合、束の中のこれらのNAの全ては、小さいままであり、射出瞳において、凝集体として大射出瞳の機能的均等物を形成する、小射出瞳のアレイが生成される。
代替として、別の実施形態では、走査ファイバディスプレイまたは他のディスプレイのより疎らなアレイ(すなわち、パケットとして緊密に束化されていない)が、仮想画像の視野を自由形状光学を通して機能的に増加させるために利用されてもよい。図22Oを参照すると、別の実施形態では、複数のディスプレイまたはディスプレイ(786)が、自由形状光学(770)の上部を通して、別の複数のディスプレイ(786)が、下側の角を通して投入されてもよい。ディスプレイアレイは、2または3次元アレイであってもよい。図22Pを参照すると、別の関連実施形態では、画像情報はまた、自由形状光学(770)の側面(806)からも同様に投入されてもよい。
複数のより小さい射出瞳が機能的により大きい射出瞳の中に凝集されるべき、ある実施形態では、所与の束または複数のプロジェクタもしくはディスプレイ内に、赤色ファイバのみの下位群、青色ファイバのみの下位群、および緑色ファイバのみの下位群を有し得るように、走査ファイバのそれぞれを単色にするように選択してもよい。そのような構成は、光を光ファイバの中にもたらすための出力結合の際、さらなる効率性を促進する。例えば、そのような実施形態では、赤色、緑色、および青色を同一帯域の中に重畳させる必要はないであろう。
図22Q−22Vを参照すると、種々の自由形状光学タイル表示構成が、描写される。図22Qを参照すると、2つの自由形状光学が、隣り合わせでタイル表示され、各側の走査光ディスプレイ(786)等のマイクロディスプレイが、1つの自由形状光学楔が視野の各半分を表すように、画像情報を各側から投入するように構成される、実施形態が、描写される。
図22Rを参照すると、補償器レンズ(808)が、光学アセンブリを通して実世界のビューを促進するために含まれてもよい。図22Sは、自由形状光学楔が、そのような光学アセンブリの厚さを比較的に均一に保ちながら、機能的視野を増加させるために隣り合わせでタイル表示される、構成を図示する。
図22Tを参照すると、星形形状のアセンブリが、比較的に薄い全体的光学アセンブリ厚もまた維持しながら、より大きい視野拡大を提供し得る構成において、複数の自由形状光学楔を備える(また、画像情報を入力するための複数のディスプレイとともに示される)。
タイル表示された自由形状光学アセンブリでは、光学要素は、より大きい視野を生成するように凝集されてもよい。前述のタイル表示構成は、本概念に対処している。例えば、2つの自由形状導波管が、図22Rに描写されるもの等、眼に照準されている構成では、視野を増加させるためのいくつかの方法がある。1つの選択肢は、その出力が、瞳孔の空間内で共有、すなわち、重畳されるように、自由形状導波管を「内向き」にすることである(例えば、ユーザには、左側自由形状導波管を通して視野の左半分が、右側自由形状導波管を通して視野の右半分が見え得る)。
そのような構成では、視野は、タイル表示された自由形状導波管を用いて増加されているが、射出瞳のサイズは、拡大されていない。代替として、自由形状導波管は、それほど内向きではないように配向されてもよく、したがって、眼の解剖学的瞳孔において隣り合わせの射出瞳を作成する。一実施例では、解剖学的瞳孔は、8mmの幅であり得、隣り合わせの射出瞳はそれぞれ、機能的射出瞳が約2倍拡大されるように、8mmであってもよい。したがって、そのような構成は、拡大された射出瞳を提供するが、眼が、その射出瞳によって画定された「アイボックス」の周囲で移動される場合、その眼は、視野の一部を喪失(すなわち、そのような構成の隣り合わせの性質のため、左または右入射光のいずれかの一部を損失)し得る。
特に、ユーザの眼に対してZ軸において、自由形状光学をタイル表示するためのそのようなアプローチを使用する、一実施形態では、赤色/緑色/青色色収差が対処され得るように、赤色波長は、1つの自由形状光学を通して、緑色は、別の自由形状光学を通して、青色は、別の自由形状光学を通して駆動されてもよい。複数の自由形状光学がまた、それぞれ、特定の波長をアドレス指定するように構成される、スタックされたそのような構成に提供されてもよい。
図22Uを参照すると、2つの反対に配向された自由形状光学が、Z軸にスタックされて示される(すなわち、相互に対して上下逆である)。そのような構成では、補償レンズは、アセンブリを通した正確なビューを促進するために要求されなくてもよい。言い換えると、図22Fまたは図22Rの実施形態におけるように、補償レンズを有するのではなく、光を眼に経路指定するのをさらに補助し得る、付加的自由形状光学が、利用されてもよい。図22Vは、2つの自由形状光学のアセンブリが垂直スタックとして提示される、別の類似構成を示す。
1つの表面が自由形状光学内の別の表面に干渉しないことを確実にするために、波長または偏光選択反射体表面を使用してもよい。例えば、図22Vを参照すると、650nm、530nm、および450nmの形態の赤色、緑色、ならびに青色波長が、620nm、550nm、および470nmの形態における赤色、緑色、ならびに青色波長と同様に、投入されてもよい。異なる選択反射体が、相互に干渉しないように、自由形状光学のそれぞれにおいて利用されてもよい。偏光フィルタが類似目的のために使用される構成では、特定の軸において偏光される光のための反射/伝送選択性が、変動されてもよい(すなわち、画像は、各自由形状導波管に送信される前に事前に偏光され、反射体選択性と協働してもよい)。
図22Wおよび22Xを参照すると、複数の自由形状導波管がともに直列に利用され得る構成が、図示される。図22Wを参照すると、光が、実世界から入射し、順次、第1の自由形状光学(770)を通して、ピクセル毎ベースでフィルタリングされた光を反射させるように構成され得る(すなわち、遮閉マスクが、前述のように、暗視野知覚等のために、実世界のある要素を遮断するために利用されてもよい;前述のように、DMD、LCD、強誘電LCOS、MEMSシャッタアレイ、および同等物を備える、好適な空間光変調器が、使用されてもよい)、DLPシステムからのDMD等の反射体(810)に光を中継するように構成され得る、随意のレンズ(812)を通して、光をユーザの眼(28)に中継する別の自由形状光学(770)に指向され得る。そのような構成は、空間光変調のための従来のレンズを使用するものよりコンパクトであり得る。
図22Xを参照すると、全体的厚さを最小限に保つことが非常に重要なシナリオでは、光を別のコンパクトに位置付けられた自由形状光学の中に直線に跳ね返り得るように高反射性である、1つの表面を有する、構成が、利用されてもよい。一実施形態では、選択減衰器(814)が、2つの自由形状光学(770)間に介在されてもよい。
図22Yを参照すると、自由形状光学(770)がコンタクトレンズシステムの一側面を備え得る、実施形態が、描写される。小型自由形状光学が、図22Fを参照して説明されるものと同様に、小型補償器レンズ部分(780)とともに、ユーザの眼(58)の角膜に対して係合されて示される。信号が、例えば、自由形状光学とユーザの涙管面積との間または自由形状光学と別の頭部搭載ディスプレイ構成との間に結合され得る、テザリングされた走査ファイバディスプレイを使用して、小型自由形状アセンブリの中に投入されてもよい。
種々の本発明の例示的実施形態が、本明細書で説明される。非限定的な意味で、これらの実施例が参照される。それらは、本発明のより広くて紀要可能な側面を例証するように提供される。種々の変更が、説明される本発明に行われてもよく、本発明の真の精神および範囲から逸脱することなく、同等物が置換されてもよい。加えて、特定の状況、材料、物質組成、プロセス、プロセス行為、またはステップを本発明の目的、精神、もしくは範囲に適合させるように、多くの修正が行われてもよい。さらに、当業者によって理解されるように、本明細書で説明および例証される個々の変形例のそれぞれは、本発明の範囲または精神から逸脱することなく、他のいくつかの実施形態のうちのいずれかの特徴から容易に分離され、またはそれらと組み合わせられ得る、離散構成要素および特徴を有する。全てのそのような修正は、本開示と関連付けられる請求項の範囲内にあることを目的としている。
本発明は、対象デバイスを使用して行われ得る方法を含む。方法は、そのような好適なデバイスを提供するという行為を含んでもよい。そのような提供は、エンドユーザによって行われてもよい。換言すれば、「提供する」行為は、単に、エンドユーザが、対象方法において必須デバイスを提供するように、取得し、アクセスし、接近し、位置付けし、設定し、起動し、電源を入れ、または別様に作用することを要求する。本明細書で記載される方法は、論理的に可能である記載された事象の任意の順番で、ならびに事象の記載された順番で実行されてもよい。
本発明の例示的側面が、材料選択および製造に関する詳細とともに、上記で記載されている。本発明の他の詳細に関しては、これらは、上記で参照された特許および出版物と関連して理解されるとともに、概して、当業者によって公知または理解され得る。一般的または論理的に採用されるような付加的な行為の観点から、本発明の方法ベースの側面に関して、同じことが当てはまり得る。
加えて、本発明は、種々の特徴を随意的に組み込むいくつかの実施例を参照して説明されているが、本発明は、本発明の各変形例に関して考慮されるような説明および指示されるものに限定されるものではない。種々の変更が、説明される本発明に行われてもよく、本発明の真の精神および範囲から逸脱することなく、同等物(本明細書に記載されようと、いくらか簡単にするために含まれていなかろうと)が置換されてもよい。加えて、値の範囲が提供される場合、その範囲の上限と下限との間の全ての介在値、およびその規定範囲内の任意の他の規定または介在値が、本発明内に包含されることを理解されたい。
また、説明される本発明の変形例の任意の随意的な特徴が、独立して、または本明細書で説明される特徴のうちのいずれか1つまたはそれを上回るものと組み合わせて、記載および請求されてもよいことが考慮される。単数形のアイテムへの参照は、複数形の同一のアイテムが存在するという可能性を含む。より具体的には、本明細書で、および本明細書に関連付けられる請求項で使用されるように、「1つの(「a」、「an」)」、「該(said)」、および「前記(the)」という単数形は、特に規定がない限り、複数形の指示対象を含む。換言すれば、冠詞の使用は、上記の説明ならびに本開示と関連付けられる請求項において、対象アイテムの「少なくとも1つ」を可能にする。さらに、そのような請求項は、任意の随意的な要素を除外するように起草され得ることに留意されたい。したがって、この記述は、請求項の要素の記載と関連して、「単に」、「のみ」、および同等物等の排他的用語の使用、または「否定的」制限の使用のために、先行詞としての機能を果たすことを目的としている。
そのような排他的用語を使用することなく、本開示と関連付けられる請求項での「備える」という用語は、所与の数の要素がそのような請求項で列挙されるか、または特徴の追加をそのような請求項に記載される要素の性質の変換として見なすことができるかにかかわらず、任意の付加的な要素を含むことを可能にするものとする。本明細書で具体的に定義される場合を除いて、本明細書で使用される全ての技術および科学用語は、請求項の有効性を維持しながら、可能な限り広い一般的に理解されている意味を与えられるものである。
本発明の範疇は、提供される実施例および/または対象の明細書に限定されるものではなく、むしろ、本開示と関連付けられる請求項の言葉の範囲のみによって限定されるものである。

Claims (23)

  1. 仮想コンテンツをユーザに表示するためのシステムであって、前記システムは、
    画像データの1つまたは複数のフレームと関連付けられた1つまたは複数の光ビームを時系列様式で投影するための光源と、
    前記1つまたは複数の光ビームを第1の焦点レベルで受光するための導波管と、
    前記導波管に結合される第1の可変合焦要素(VFE)であって、前記第1のVFEは、第1の複数の焦点レベルを定義し、前記第1のVFEは、前記光ビームの少なくとも一部を前記第1の複数の焦点レベルのうちの第2の焦点レベルにするように構成されている、第1のVEと
    第2の複数の焦点レベルを定義する第2のVFEであって、前記第2のVFEは、前記第2のVFEが外部場面からの光の焦点を変動させるにつれて前記ユーザの前記外部場面のビューが実質的に歪められないように、前記外部場面からの光の焦点を調節するように構成される、第2のVFEと
    ユーザの眼の遠近調節を追跡するための遠近調節モジュールと
    を備え、前記VFEは、前記ユーザの眼の前記遠近調節に基づいて、前記光ビームの前記焦点を変動させる、システム。
  2. 前記第1および第2のVFEの組み合わせられた焦点レベルは、焦点レベルを調節する間、前記外部場面または前記光ビームによって表される画像の前記ユーザのビューを拡大させない、請求項1に記載のシステム。
  3. 前記第1および第2のVFEの組み合わせられた焦点レベルは、焦点レベルを調節する間、前記外部場面または前記光ビームによって表される画像の前記ユーザのビューを拡大させる、請求項1に記載のシステム。
  4. 複数のフレームが、前記ユーザが前記フレームを同一画像の一部として知覚するように高周波数で前記ユーザに提示され、前記第1のVFEは、前記第1のVFEによって受光された光ビームが、第2の焦点レベルを有する第1のフレームと関連付けられた第1の光ビームから第3の焦点レベルを有する第2のフレームと関連付けられた第2の光ビームへと変動させるときに、前記第2の焦点レベルから前記第1の複数の焦点レベルのうちの焦点レベルに前記焦点を変動させる、請求項1に記載のシステム。
  5. 前記光源は、走査光ディスプレイであり、前記VFEは、行毎の様式で前記焦点を変動させる、請求項1に記載のシステム。
  6. 前記光源は、走査光ディスプレイであり、前記VFEは、ピクセル毎の様式で前記焦点を変動させる、請求項1に記載のシステム。
  7. 前記VFEは、回折レンズであり、前記第2のVFEは、前記外部場面からの前記光が合焦してレンダリングされるべき焦点面の焦点距離を変動させる、請求項1に記載のシステム。
  8. 前記VFEは、屈折レンズである、請求項1に記載のシステム。
  9. 前記VFEは、反射鏡である、請求項1に記載のシステム。
  10. 前記反射鏡は、不透明である、請求項9に記載のシステム。
  11. 前記反射鏡は、部分的に反射性を有する、請求項9に記載のシステム。
  12. 前記遠近調節モジュールは、前記ユーザの眼の両眼離反運動または注視を追跡することによって、間接的に遠近調節を追跡する、請求項に記載のシステム。
  13. 部分反射鏡は前記光源によって提供される光の偏光に対して比較的高い反射率を有し、前記外部場面によって提供される光の他の偏光状態に対して比較的低い反射率を有する、請求項11に記載のシステム。
  14. 複数の部分反射鏡は、誘電コーティングを備える、請求項11に記載のシステム。
  15. 前記光源によって投影された前記1つまたは複数の光ビームは、前記外部場面からの前記光と比較して狭帯域光ビームであり、前記複数の反射鏡は前記光源によって提供される光の波長に対して比較的高い反射率を有し、前記外部場面からの光の波長に対して比較的低い反射率を有する、請求項11に記載のシステム。
  16. 前記VFEは、変形可能鏡であり、前記VFEの表面形状は、経時的に変動されることが可能である、請求項9に記載のシステム。
  17. 前記VFEは、静電作動式膜鏡であり、前記導波管または付加的透明層が、1つまたは複数の実質的に透明な電極を備え、前記1つまたは複数の電極に印加される電圧が、前記膜鏡を静電的に変形させる、請求項9に記載のシステム。
  18. 前記導波管は、射出瞳拡大機能を備え、光の入力光線は、前記射出瞳拡大機能によって前記導波管内で分割され、複数の場所において前記導波管から出射する複数の光線として出力結合される、請求項1に記載のシステム。
  19. 前記画像データは、焦点レベルを調節する間には前記第1のVFEに入力される光ビームによって表された画像のユーザのビューの拡大が実質的に固定されたままであるように見えるように、前記導波管が前記1つまたは複数の光ビームを受光する前に、プロセッサによって、前記ユーザのビューの拡大に従って前記ユーザのビューの拡大を補償するようにスケーリングされる、請求項3に記載のシステム。
  20. 前記第1の焦点レベルにおける前記1つまたは複数の光ビームは、コリメートされる、請求項1に記載のシステム。
  21. 前記VFEは、前記導波管に統合される、請求項1に記載のシステム。
  22. 前記VFEは、前記導波管と別個である、請求項1に記載のシステム。
  23. 前記第1のVFEおよび前記第2のVFEは、前記導波管の両側に配置される、請求項1に記載のシステム。
JP2017225733A 2013-11-27 2017-11-24 仮想現実および拡張現実のシステムおよび方法 Active JP6513167B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201361909774P 2013-11-27 2013-11-27
US61/909,774 2013-11-27

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2016534677A Division JP2017500605A (ja) 2013-11-27 2014-11-27 仮想現実および拡張現実のシステムおよび方法

Publications (2)

Publication Number Publication Date
JP2018060213A JP2018060213A (ja) 2018-04-12
JP6513167B2 true JP6513167B2 (ja) 2019-05-15

Family

ID=53199737

Family Applications (18)

Application Number Title Priority Date Filing Date
JP2016534677A Withdrawn JP2017500605A (ja) 2013-11-27 2014-11-27 仮想現実および拡張現実のシステムおよび方法
JP2017225733A Active JP6513167B2 (ja) 2013-11-27 2017-11-24 仮想現実および拡張現実のシステムおよび方法
JP2017225731A Active JP6510015B2 (ja) 2013-11-27 2017-11-24 仮想現実および拡張現実のシステムおよび方法
JP2017225736A Active JP6600675B2 (ja) 2013-11-27 2017-11-24 仮想現実および拡張現実のシステムおよび方法
JP2017225726A Active JP6510012B2 (ja) 2013-11-27 2017-11-24 仮想現実および拡張現実のシステムおよび方法
JP2017225729A Active JP6510014B2 (ja) 2013-11-27 2017-11-24 仮想現実および拡張現実のシステムおよび方法
JP2017225727A Active JP6529143B2 (ja) 2013-11-27 2017-11-24 仮想現実および拡張現実のシステムおよび方法
JP2017225732A Active JP6514302B2 (ja) 2013-11-27 2017-11-24 仮想現実および拡張現実のシステムおよび方法
JP2017225730A Withdrawn JP2018060212A (ja) 2013-11-27 2017-11-24 仮想現実および拡張現実のシステムおよび方法
JP2017225728A Active JP6510013B2 (ja) 2013-11-27 2017-11-24 仮想現実および拡張現実のシステムおよび方法
JP2017225734A Pending JP2018060214A (ja) 2013-11-27 2017-11-24 仮想現実および拡張現実のシステムおよび方法
JP2017225735A Active JP6510016B2 (ja) 2013-11-27 2017-11-24 仮想現実および拡張現実のシステムおよび方法
JP2019035288A Active JP6720368B2 (ja) 2013-11-27 2019-02-28 仮想現実および拡張現実のシステムおよび方法
JP2019143520A Active JP6971281B2 (ja) 2013-11-27 2019-08-05 仮想現実および拡張現実のシステムおよび方法
JP2019143519A Active JP6763070B2 (ja) 2013-11-27 2019-08-05 仮想現実および拡張現実のシステムおよび方法
JP2021178713A Active JP7179140B2 (ja) 2013-11-27 2021-11-01 仮想現実および拡張現実のシステムおよび方法
JP2022182285A Active JP7432687B2 (ja) 2013-11-27 2022-11-15 仮想現実および拡張現実のシステムおよび方法
JP2024015576A Pending JP2024040250A (ja) 2013-11-27 2024-02-05 仮想現実および拡張現実のシステムおよび方法

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2016534677A Withdrawn JP2017500605A (ja) 2013-11-27 2014-11-27 仮想現実および拡張現実のシステムおよび方法

Family Applications After (16)

Application Number Title Priority Date Filing Date
JP2017225731A Active JP6510015B2 (ja) 2013-11-27 2017-11-24 仮想現実および拡張現実のシステムおよび方法
JP2017225736A Active JP6600675B2 (ja) 2013-11-27 2017-11-24 仮想現実および拡張現実のシステムおよび方法
JP2017225726A Active JP6510012B2 (ja) 2013-11-27 2017-11-24 仮想現実および拡張現実のシステムおよび方法
JP2017225729A Active JP6510014B2 (ja) 2013-11-27 2017-11-24 仮想現実および拡張現実のシステムおよび方法
JP2017225727A Active JP6529143B2 (ja) 2013-11-27 2017-11-24 仮想現実および拡張現実のシステムおよび方法
JP2017225732A Active JP6514302B2 (ja) 2013-11-27 2017-11-24 仮想現実および拡張現実のシステムおよび方法
JP2017225730A Withdrawn JP2018060212A (ja) 2013-11-27 2017-11-24 仮想現実および拡張現実のシステムおよび方法
JP2017225728A Active JP6510013B2 (ja) 2013-11-27 2017-11-24 仮想現実および拡張現実のシステムおよび方法
JP2017225734A Pending JP2018060214A (ja) 2013-11-27 2017-11-24 仮想現実および拡張現実のシステムおよび方法
JP2017225735A Active JP6510016B2 (ja) 2013-11-27 2017-11-24 仮想現実および拡張現実のシステムおよび方法
JP2019035288A Active JP6720368B2 (ja) 2013-11-27 2019-02-28 仮想現実および拡張現実のシステムおよび方法
JP2019143520A Active JP6971281B2 (ja) 2013-11-27 2019-08-05 仮想現実および拡張現実のシステムおよび方法
JP2019143519A Active JP6763070B2 (ja) 2013-11-27 2019-08-05 仮想現実および拡張現実のシステムおよび方法
JP2021178713A Active JP7179140B2 (ja) 2013-11-27 2021-11-01 仮想現実および拡張現実のシステムおよび方法
JP2022182285A Active JP7432687B2 (ja) 2013-11-27 2022-11-15 仮想現実および拡張現実のシステムおよび方法
JP2024015576A Pending JP2024040250A (ja) 2013-11-27 2024-02-05 仮想現実および拡張現実のシステムおよび方法

Country Status (10)

Country Link
US (94) US9791700B2 (ja)
EP (2) EP3075090B1 (ja)
JP (18) JP2017500605A (ja)
KR (4) KR102378457B1 (ja)
CN (15) CN109445095B (ja)
AU (14) AU2014354673B2 (ja)
CA (1) CA2931776A1 (ja)
IL (11) IL291010B2 (ja)
NZ (2) NZ755272A (ja)
WO (1) WO2015081313A2 (ja)

Families Citing this family (1044)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IL166799A (en) 2005-02-10 2014-09-30 Lumus Ltd Aluminum shale surfaces for use in a conductive substrate
US10073264B2 (en) 2007-08-03 2018-09-11 Lumus Ltd. Substrate-guide optical device
US20070081123A1 (en) * 2005-10-07 2007-04-12 Lewis Scott W Digital eyewear
US10048499B2 (en) 2005-11-08 2018-08-14 Lumus Ltd. Polarizing optical system
GB0522968D0 (en) 2005-11-11 2005-12-21 Popovich Milan M Holographic illumination device
GB0718706D0 (en) 2007-09-25 2007-11-07 Creative Physics Ltd Method and apparatus for reducing laser speckle
US9823737B2 (en) * 2008-04-07 2017-11-21 Mohammad A Mazed Augmented reality personal assistant apparatus
US9865043B2 (en) 2008-03-26 2018-01-09 Ricoh Company, Ltd. Adaptive image acquisition and display using multi-focal display
US9866826B2 (en) * 2014-11-25 2018-01-09 Ricoh Company, Ltd. Content-adaptive multi-focal display
US9952664B2 (en) 2014-01-21 2018-04-24 Osterhout Group, Inc. Eye imaging in head worn computing
US20150205111A1 (en) 2014-01-21 2015-07-23 Osterhout Group, Inc. Optical configurations for head worn computing
US9298007B2 (en) 2014-01-21 2016-03-29 Osterhout Group, Inc. Eye imaging in head worn computing
US9229233B2 (en) 2014-02-11 2016-01-05 Osterhout Group, Inc. Micro Doppler presentations in head worn computing
US9400390B2 (en) 2014-01-24 2016-07-26 Osterhout Group, Inc. Peripheral lighting for head worn computing
US9715112B2 (en) 2014-01-21 2017-07-25 Osterhout Group, Inc. Suppression of stray light in head worn computing
US9965681B2 (en) 2008-12-16 2018-05-08 Osterhout Group, Inc. Eye imaging in head worn computing
US11726332B2 (en) 2009-04-27 2023-08-15 Digilens Inc. Diffractive projection apparatus
US9335604B2 (en) 2013-12-11 2016-05-10 Milan Momcilo Popovich Holographic waveguide display
US10156722B2 (en) 2010-12-24 2018-12-18 Magic Leap, Inc. Methods and systems for displaying stereoscopy with a freeform optical system with addressable focus for virtual and augmented reality
WO2012136970A1 (en) 2011-04-07 2012-10-11 Milan Momcilo Popovich Laser despeckler based on angular diversity
WO2013027004A1 (en) 2011-08-24 2013-02-28 Milan Momcilo Popovich Wearable data display
WO2016020630A2 (en) 2014-08-08 2016-02-11 Milan Momcilo Popovich Waveguide laser illuminator incorporating a despeckler
US10670876B2 (en) 2011-08-24 2020-06-02 Digilens Inc. Waveguide laser illuminator incorporating a despeckler
WO2013102759A2 (en) 2012-01-06 2013-07-11 Milan Momcilo Popovich Contact image sensor using switchable bragg gratings
EP2842003B1 (en) 2012-04-25 2019-02-27 Rockwell Collins, Inc. Holographic wide angle display
WO2013167864A1 (en) 2012-05-11 2013-11-14 Milan Momcilo Popovich Apparatus for eye tracking
IL219907A (en) 2012-05-21 2017-08-31 Lumus Ltd Integrated head display system with eye tracking
US9933684B2 (en) 2012-11-16 2018-04-03 Rockwell Collins, Inc. Transparent waveguide display providing upper and lower fields of view having a specific light output aperture configuration
US10528135B2 (en) 2013-01-14 2020-01-07 Ctrl-Labs Corporation Wearable muscle interface systems, devices and methods that interact with content displayed on an electronic display
WO2014113455A1 (en) 2013-01-15 2014-07-24 The University Of North Carolina At Chapel Hill Methods, systems, and computer readable media for generating an augmented scene display
US9699433B2 (en) * 2013-01-24 2017-07-04 Yuchen Zhou Method and apparatus to produce re-focusable vision with detecting re-focusing event from human eye
US11490809B2 (en) 2013-01-25 2022-11-08 Wesley W. O. Krueger Ocular parameter-based head impact measurement using a face shield
US10231614B2 (en) 2014-07-08 2019-03-19 Wesley W. O. Krueger Systems and methods for using virtual reality, augmented reality, and/or a synthetic 3-dimensional information for the measurement of human ocular performance
US10716469B2 (en) 2013-01-25 2020-07-21 Wesley W. O. Krueger Ocular-performance-based head impact measurement applied to rotationally-centered impact mitigation systems and methods
US9788714B2 (en) 2014-07-08 2017-10-17 Iarmourholdings, Inc. Systems and methods using virtual reality or augmented reality environments for the measurement and/or improvement of human vestibulo-ocular performance
US11504051B2 (en) 2013-01-25 2022-11-22 Wesley W. O. Krueger Systems and methods for observing eye and head information to measure ocular parameters and determine human health status
US10602927B2 (en) 2013-01-25 2020-03-31 Wesley W. O. Krueger Ocular-performance-based head impact measurement using a faceguard
US11389059B2 (en) 2013-01-25 2022-07-19 Wesley W. O. Krueger Ocular-performance-based head impact measurement using a faceguard
US11714487B2 (en) 2013-03-04 2023-08-01 Tobii Ab Gaze and smooth pursuit based continuous foveal adjustment
US10082870B2 (en) 2013-03-04 2018-09-25 Tobii Ab Gaze and saccade based graphical manipulation
US10895908B2 (en) 2013-03-04 2021-01-19 Tobii Ab Targeting saccade landing prediction using visual history
US9665171B1 (en) 2013-03-04 2017-05-30 Tobii Ab Gaze and saccade based graphical manipulation
US9898081B2 (en) 2013-03-04 2018-02-20 Tobii Ab Gaze and saccade based graphical manipulation
US10209517B2 (en) 2013-05-20 2019-02-19 Digilens, Inc. Holographic waveguide eye tracker
US9977256B2 (en) * 2013-05-30 2018-05-22 Johnson & Johnson Vision Care, Inc. Methods for manufacturing and programming an energizable ophthalmic lens with a programmable media insert
US9874749B2 (en) 2013-11-27 2018-01-23 Magic Leap, Inc. Virtual and augmented reality systems and methods
CN105408805B (zh) * 2013-07-26 2018-06-15 西铁城时计株式会社 光源装置以及投影装置
US9727772B2 (en) 2013-07-31 2017-08-08 Digilens, Inc. Method and apparatus for contact image sensing
US11921471B2 (en) 2013-08-16 2024-03-05 Meta Platforms Technologies, Llc Systems, articles, and methods for wearable devices having secondary power sources in links of a band for providing secondary power in addition to a primary power source
US20150124566A1 (en) 2013-10-04 2015-05-07 Thalmic Labs Inc. Systems, articles and methods for wearable electronic devices employing contact sensors
US10042422B2 (en) 2013-11-12 2018-08-07 Thalmic Labs Inc. Systems, articles, and methods for capacitive electromyography sensors
US9143880B2 (en) 2013-08-23 2015-09-22 Tobii Ab Systems and methods for providing audio to a user based on gaze input
EP3036620B1 (en) 2013-08-23 2017-03-29 Tobii AB Systems and methods for providing audio to a user based on gaze input
CN108209857B (zh) 2013-09-03 2020-09-11 托比股份公司 便携式眼睛追踪设备
US10310597B2 (en) 2013-09-03 2019-06-04 Tobii Ab Portable eye tracking device
US10686972B2 (en) 2013-09-03 2020-06-16 Tobii Ab Gaze assisted field of view control
US10677969B2 (en) 2013-11-27 2020-06-09 Magic Leap, Inc. Manufacturing for virtual and augmented reality systems and components
US9915826B2 (en) 2013-11-27 2018-03-13 Magic Leap, Inc. Virtual and augmented reality systems and methods having improved diffractive grating structures
US9857591B2 (en) 2014-05-30 2018-01-02 Magic Leap, Inc. Methods and system for creating focal planes in virtual and augmented reality
WO2015081113A1 (en) 2013-11-27 2015-06-04 Cezar Morun Systems, articles, and methods for electromyography sensors
CN109445095B (zh) 2013-11-27 2021-11-23 奇跃公司 虚拟和增强现实系统与方法
US10274731B2 (en) 2013-12-19 2019-04-30 The University Of North Carolina At Chapel Hill Optical see-through near-eye display using point light source backlight
JP6731851B2 (ja) * 2013-12-23 2020-07-29 エシロール・アンテルナシオナル フィルター機能を備えるヘッドマウントディスプレイ
US9465237B2 (en) 2013-12-27 2016-10-11 Intel Corporation Automatic focus prescription lens eyeglasses
US20150187115A1 (en) * 2013-12-27 2015-07-02 Mark A. MacDonald Dynamically adjustable 3d goggles
US9841598B2 (en) 2013-12-31 2017-12-12 3M Innovative Properties Company Lens with embedded multilayer optical film for near-eye display systems
US10684687B2 (en) 2014-12-03 2020-06-16 Mentor Acquisition One, Llc See-through computer display systems
US9671613B2 (en) 2014-09-26 2017-06-06 Osterhout Group, Inc. See-through computer display systems
US9810906B2 (en) 2014-06-17 2017-11-07 Osterhout Group, Inc. External user interface for head worn computing
US10254856B2 (en) 2014-01-17 2019-04-09 Osterhout Group, Inc. External user interface for head worn computing
US11227294B2 (en) 2014-04-03 2022-01-18 Mentor Acquisition One, Llc Sight information collection in head worn computing
US20150228119A1 (en) 2014-02-11 2015-08-13 Osterhout Group, Inc. Spatial location presentation in head worn computing
US10649220B2 (en) 2014-06-09 2020-05-12 Mentor Acquisition One, Llc Content presentation in head worn computing
US9575321B2 (en) 2014-06-09 2017-02-21 Osterhout Group, Inc. Content presentation in head worn computing
US9746686B2 (en) 2014-05-19 2017-08-29 Osterhout Group, Inc. Content position calibration in head worn computing
US9841599B2 (en) 2014-06-05 2017-12-12 Osterhout Group, Inc. Optical configurations for head-worn see-through displays
US10191279B2 (en) 2014-03-17 2019-01-29 Osterhout Group, Inc. Eye imaging in head worn computing
US9939934B2 (en) 2014-01-17 2018-04-10 Osterhout Group, Inc. External user interface for head worn computing
US9594246B2 (en) 2014-01-21 2017-03-14 Osterhout Group, Inc. See-through computer display systems
US9829707B2 (en) 2014-08-12 2017-11-28 Osterhout Group, Inc. Measuring content brightness in head worn computing
US20160048019A1 (en) * 2014-08-12 2016-02-18 Osterhout Group, Inc. Content presentation in head worn computing
US9448409B2 (en) 2014-11-26 2016-09-20 Osterhout Group, Inc. See-through computer display systems
US11103122B2 (en) 2014-07-15 2021-08-31 Mentor Acquisition One, Llc Content presentation in head worn computing
US20150277118A1 (en) 2014-03-28 2015-10-01 Osterhout Group, Inc. Sensor dependent content position in head worn computing
US9299194B2 (en) 2014-02-14 2016-03-29 Osterhout Group, Inc. Secure sharing in head worn computing
US20160019715A1 (en) 2014-07-15 2016-01-21 Osterhout Group, Inc. Content presentation in head worn computing
US9529195B2 (en) 2014-01-21 2016-12-27 Osterhout Group, Inc. See-through computer display systems
US11737666B2 (en) 2014-01-21 2023-08-29 Mentor Acquisition One, Llc Eye imaging in head worn computing
US9836122B2 (en) 2014-01-21 2017-12-05 Osterhout Group, Inc. Eye glint imaging in see-through computer display systems
US9651784B2 (en) 2014-01-21 2017-05-16 Osterhout Group, Inc. See-through computer display systems
US9494800B2 (en) 2014-01-21 2016-11-15 Osterhout Group, Inc. See-through computer display systems
US11487110B2 (en) 2014-01-21 2022-11-01 Mentor Acquisition One, Llc Eye imaging in head worn computing
US11669163B2 (en) 2014-01-21 2023-06-06 Mentor Acquisition One, Llc Eye glint imaging in see-through computer display systems
US11892644B2 (en) 2014-01-21 2024-02-06 Mentor Acquisition One, Llc See-through computer display systems
US9753288B2 (en) 2014-01-21 2017-09-05 Osterhout Group, Inc. See-through computer display systems
US9615742B2 (en) 2014-01-21 2017-04-11 Osterhout Group, Inc. Eye imaging in head worn computing
US20150205135A1 (en) 2014-01-21 2015-07-23 Osterhout Group, Inc. See-through computer display systems
US9746676B2 (en) 2014-01-21 2017-08-29 Osterhout Group, Inc. See-through computer display systems
US9811159B2 (en) 2014-01-21 2017-11-07 Osterhout Group, Inc. Eye imaging in head worn computing
US9766463B2 (en) 2014-01-21 2017-09-19 Osterhout Group, Inc. See-through computer display systems
US9846308B2 (en) 2014-01-24 2017-12-19 Osterhout Group, Inc. Haptic systems for head-worn computers
AU2015210708B2 (en) 2014-01-31 2020-01-02 Magic Leap, Inc. Multi-focal display system and method
EP4099274B1 (en) 2014-01-31 2024-03-06 Magic Leap, Inc. Multi-focal display system and method
US20150241964A1 (en) 2014-02-11 2015-08-27 Osterhout Group, Inc. Eye imaging in head worn computing
US9401540B2 (en) 2014-02-11 2016-07-26 Osterhout Group, Inc. Spatial location presentation in head worn computing
US9852545B2 (en) 2014-02-11 2017-12-26 Osterhout Group, Inc. Spatial location presentation in head worn computing
US10430985B2 (en) 2014-03-14 2019-10-01 Magic Leap, Inc. Augmented reality systems and methods utilizing reflections
US11138793B2 (en) * 2014-03-14 2021-10-05 Magic Leap, Inc. Multi-depth plane display system with reduced switching between depth planes
US10048647B2 (en) 2014-03-27 2018-08-14 Microsoft Technology Licensing, Llc Optical waveguide including spatially-varying volume hologram
US20160187651A1 (en) 2014-03-28 2016-06-30 Osterhout Group, Inc. Safety for a vehicle operator with an hmd
US10642044B2 (en) 2014-04-09 2020-05-05 3M Innovative Properties Company Near-eye display system having a pellicle as a combiner
IL232197B (en) 2014-04-23 2018-04-30 Lumus Ltd Compact head-up display system
US9651787B2 (en) 2014-04-25 2017-05-16 Osterhout Group, Inc. Speaker assembly for headworn computer
US10853589B2 (en) 2014-04-25 2020-12-01 Mentor Acquisition One, Llc Language translation with head-worn computing
US9672210B2 (en) 2014-04-25 2017-06-06 Osterhout Group, Inc. Language translation with head-worn computing
CN111856755B (zh) 2014-05-30 2022-07-19 奇跃公司 用于显示虚拟和增强现实的立体视觉的方法和系统
NZ764952A (en) 2014-05-30 2022-05-27 Magic Leap Inc Methods and system for creating focal planes in virtual and augmented reality
US10663740B2 (en) 2014-06-09 2020-05-26 Mentor Acquisition One, Llc Content presentation in head worn computing
US9880632B2 (en) 2014-06-19 2018-01-30 Thalmic Labs Inc. Systems, devices, and methods for gesture identification
US9766449B2 (en) 2014-06-25 2017-09-19 Thalmic Labs Inc. Systems, devices, and methods for wearable heads-up displays
US10204530B1 (en) 2014-07-11 2019-02-12 Shape Matrix Geometric Instruments, LLC Shape-matrix geometric instrument
WO2016020632A1 (en) 2014-08-08 2016-02-11 Milan Momcilo Popovich Method for holographic mastering and replication
KR20160029245A (ko) * 2014-09-04 2016-03-15 삼성디스플레이 주식회사 헤드 마운트 디스플레이 장치
CN106796655A (zh) * 2014-09-12 2017-05-31 眼锁有限责任公司 用于引导用户在虹膜识别系统中的视线的方法和设备
US10241330B2 (en) 2014-09-19 2019-03-26 Digilens, Inc. Method and apparatus for generating input images for holographic waveguide displays
EP3198192A1 (en) 2014-09-26 2017-08-02 Milan Momcilo Popovich Holographic waveguide opticaltracker
EP3968085A1 (en) 2014-09-29 2022-03-16 Magic Leap, Inc. Architectures and methods for outputting different wavelength light out of wave guides
EP3212068B1 (en) 2014-10-31 2020-11-25 Lake Region Medical, Inc. Fiber bragg grating multi-point pressure sensing guidewire with birefringent component
IL235642B (en) 2014-11-11 2021-08-31 Lumus Ltd A compact head-up display system is protected by an element with a super-thin structure
TWI688789B (zh) * 2014-11-20 2020-03-21 美商英特爾股份有限公司 虛擬影像產生器及投影虛擬影像的方法
US9864205B2 (en) * 2014-11-25 2018-01-09 Ricoh Company, Ltd. Multifocal display
US9684172B2 (en) 2014-12-03 2017-06-20 Osterhout Group, Inc. Head worn computer display systems
EP3234920A1 (en) * 2014-12-23 2017-10-25 Meta Company Apparatuses, methods and systems coupling visual accommodation and visual convergence to the same plane at any depth of an object of interest
IL289705B2 (en) 2014-12-29 2023-10-01 Magic Leap Inc A light projector that uses an acousto-optical control device
USD751552S1 (en) 2014-12-31 2016-03-15 Osterhout Group, Inc. Computer glasses
WO2016107921A1 (en) * 2014-12-31 2016-07-07 Essilor International (Compagnie Generale D'optique) Binocular device comprising a monocular display device
USD753114S1 (en) 2015-01-05 2016-04-05 Osterhout Group, Inc. Air mouse
EP3245444B1 (en) 2015-01-12 2021-09-08 DigiLens Inc. Environmentally isolated waveguide display
US20180275402A1 (en) 2015-01-12 2018-09-27 Digilens, Inc. Holographic waveguide light field displays
US9659411B2 (en) * 2015-01-14 2017-05-23 Oculus Vr, Llc Passive locators for a virtual reality headset
EP3248026B1 (en) 2015-01-20 2019-09-04 DigiLens Inc. Holographic waveguide lidar
CA3134568A1 (en) 2015-01-22 2016-07-28 Magic Leap, Inc. Methods and system for creating focal planes using an alvarez lens
US11726241B2 (en) 2015-01-26 2023-08-15 Magic Leap, Inc. Manufacturing for virtual and augmented reality systems and components
IL303820B1 (en) 2015-01-26 2024-03-01 Magic Leap Inc Virtual and augmented reality systems and methods with improved diffractive lattice structures
US9632226B2 (en) 2015-02-12 2017-04-25 Digilens Inc. Waveguide grating device
US10878775B2 (en) 2015-02-17 2020-12-29 Mentor Acquisition One, Llc See-through computer display systems
EP3259634A4 (en) 2015-02-17 2018-10-17 Thalmic Labs Inc. Systems, devices, and methods for eyebox expansion in wearable heads-up displays
US20160239985A1 (en) 2015-02-17 2016-08-18 Osterhout Group, Inc. See-through computer display systems
US11468639B2 (en) * 2015-02-20 2022-10-11 Microsoft Technology Licensing, Llc Selective occlusion system for augmented reality devices
EP3062142B1 (en) 2015-02-26 2018-10-03 Nokia Technologies OY Apparatus for a near-eye display
JP6663441B2 (ja) 2015-03-01 2020-03-11 ノバサイト リミテッド 眼球運動を測定するためのシステム
US10180734B2 (en) 2015-03-05 2019-01-15 Magic Leap, Inc. Systems and methods for augmented reality
JP7136558B2 (ja) 2015-03-05 2022-09-13 マジック リープ, インコーポレイテッド 拡張現実のためのシステムおよび方法
US10838207B2 (en) 2015-03-05 2020-11-17 Magic Leap, Inc. Systems and methods for augmented reality
WO2016146963A1 (en) 2015-03-16 2016-09-22 Popovich, Milan, Momcilo Waveguide device incorporating a light pipe
KR102630754B1 (ko) 2015-03-16 2024-01-26 매직 립, 인코포레이티드 증강 현실 펄스 옥시미트리
US20160274365A1 (en) * 2015-03-17 2016-09-22 Thalmic Labs Inc. Systems, devices, and methods for wearable heads-up displays with heterogeneous display quality
JP6528498B2 (ja) * 2015-03-25 2019-06-12 セイコーエプソン株式会社 頭部搭載型ディスプレイ
US10591756B2 (en) 2015-03-31 2020-03-17 Digilens Inc. Method and apparatus for contact image sensing
US11061232B2 (en) * 2015-04-03 2021-07-13 David T. Markus Method and apparatus for an imaging lens
JP2016212177A (ja) * 2015-05-01 2016-12-15 セイコーエプソン株式会社 透過型表示装置
US10133075B2 (en) 2015-05-04 2018-11-20 Thalmic Labs Inc. Systems, devices, and methods for angle- and wavelength-multiplexed holographic optical elements
EP3295371A4 (en) 2015-05-11 2018-06-27 Magic Leap, Inc. Devices, methods and systems for biometric user recognition utilizing neural networks
CN107710048A (zh) 2015-05-28 2018-02-16 赛尔米克实验室公司 在可穿戴式平视显示器中集成眼睛追踪和扫描激光投射的系统、设备和方法
EP3310043A4 (en) * 2015-06-10 2019-01-16 Sony Interactive Entertainment Inc. HEAD-MOUNTED DISPLAY, DISPLAY CONTROL METHOD AND PROGRAM
CA2989414A1 (en) 2015-06-15 2016-12-22 Magic Leap, Inc. Display system with optical elements for in-coupling multiplexed light streams
US10210844B2 (en) 2015-06-29 2019-02-19 Microsoft Technology Licensing, Llc Holographic near-eye display
KR102386764B1 (ko) * 2015-07-17 2022-04-13 매직 립, 인코포레이티드 동적 지역 해상도를 가진 가상/증강 현실 시스템
IL256838B2 (en) * 2015-07-20 2023-10-01 Magic Leap Inc Tuning such as a fiber scanner with inward aiming angles in a virtual/augmented reality system
US9877824B2 (en) * 2015-07-23 2018-01-30 Elwha Llc Intraocular lens systems and related methods
US10154897B2 (en) 2015-07-23 2018-12-18 Elwha Llc Intraocular lens systems and related methods
US10376357B2 (en) * 2015-07-23 2019-08-13 Elwha Llc Intraocular lens systems and related methods
US10307246B2 (en) 2015-07-23 2019-06-04 Elwha Llc Intraocular lens devices, systems, and related methods
US10007115B2 (en) * 2015-08-12 2018-06-26 Daqri, Llc Placement of a computer generated display with focal plane at finite distance using optical devices and a see-through head-mounted display incorporating the same
IL257505B2 (en) 2015-08-18 2024-01-01 Magic Leap Inc Virtual and augmented reality systems and methods
IL283014B (en) 2015-08-21 2022-07-01 Magic Leap Inc Assessment of eyelid shape
KR102591552B1 (ko) 2015-08-21 2023-10-18 매직 립, 인코포레이티드 눈 포즈 측정을 사용한 눈꺼풀 형상 추정
JP6367166B2 (ja) 2015-09-01 2018-08-01 株式会社東芝 電子機器及び方法
KR20180053308A (ko) * 2015-09-02 2018-05-21 라크테일 피티와이 엘티디 절첩 가능한 유모차
US10078164B2 (en) 2015-09-03 2018-09-18 3M Innovative Properties Company Optical system
JP2018528475A (ja) 2015-09-04 2018-09-27 サルミック ラブス インコーポレイテッド ホログラフィック光学素子を眼鏡レンズに統合するシステム、製品、及び方法
CA2996925C (en) * 2015-09-05 2022-06-28 Leia Inc. Light concentrating backlight and near-eye display system using same
JP6887422B2 (ja) 2015-09-16 2021-06-16 マジック リープ, インコーポレイテッドMagic Leap,Inc. オーディオファイルの頭部姿勢ミキシング
KR20180084749A (ko) 2015-09-17 2018-07-25 루미, 인코퍼레이티드 멀티뷰 디스플레이 및 관련 시스템과 방법
US9978183B2 (en) * 2015-09-18 2018-05-22 Fove, Inc. Video system, video generating method, video distribution method, video generating program, and video distribution program
CN108351527A (zh) 2015-09-23 2018-07-31 奇跃公司 采用离轴成像器的眼睛成像
WO2017059127A1 (en) * 2015-09-29 2017-04-06 Newracom, Inc. Resource allocation indication for multi-user multiple-input-multiple-output (mu-mimo) orthogonal frequency division multiple access (ofdma) communication
US20170097753A1 (en) 2015-10-01 2017-04-06 Thalmic Labs Inc. Systems, devices, and methods for interacting with content displayed on head-mounted displays
IL294587A (en) * 2015-10-05 2022-09-01 Magic Leap Inc Microlens collimator for optical fiber scanning in a virtual/augmented reality system
US10690916B2 (en) 2015-10-05 2020-06-23 Digilens Inc. Apparatus for providing waveguide displays with two-dimensional pupil expansion
EP4246215A3 (en) * 2015-10-06 2023-12-27 Magic Leap, Inc. Virtual/augmented reality system having reverse angle diffraction grating
CA2994231C (en) * 2015-10-16 2022-06-21 Leia Inc. Multibeam diffraction grating-based near-eye display
EP3362946B1 (en) 2015-10-16 2020-08-26 Magic Leap, Inc. Eye pose identification using eye features
US11609427B2 (en) * 2015-10-16 2023-03-21 Ostendo Technologies, Inc. Dual-mode augmented/virtual reality (AR/VR) near-eye wearable displays
US10088685B1 (en) * 2015-10-19 2018-10-02 Meta Company Apparatuses, methods and systems for multiple focal distance display
WO2017070121A1 (en) 2015-10-20 2017-04-27 Magic Leap, Inc. Selecting virtual objects in a three-dimensional space
US9904051B2 (en) 2015-10-23 2018-02-27 Thalmic Labs Inc. Systems, devices, and methods for laser eye tracking
US9842868B2 (en) * 2015-10-26 2017-12-12 Sensors Unlimited, Inc. Quantum efficiency (QE) restricted infrared focal plane arrays
US11106273B2 (en) 2015-10-30 2021-08-31 Ostendo Technologies, Inc. System and methods for on-body gestural interfaces and projection displays
US10048513B2 (en) 2015-11-02 2018-08-14 Focure Inc. Continuous autofocusing eyewear
US10281744B2 (en) 2015-11-02 2019-05-07 Focure Inc. Continuous autofocusing eyewear using structured light
EP4080194A1 (en) 2015-11-04 2022-10-26 Magic Leap, Inc. Light field display metrology
US11231544B2 (en) 2015-11-06 2022-01-25 Magic Leap, Inc. Metasurfaces for redirecting light and methods for fabricating
US10204451B2 (en) 2015-11-30 2019-02-12 Microsoft Technology Licensing, Llc Multi-optical surface optical design
US20180045960A1 (en) 2015-12-02 2018-02-15 Augmenteum, LLC. System for and method of projecting augmentation imagery in a head-mounted display
US10404955B2 (en) 2015-12-02 2019-09-03 Abl Ip Holding Llc Projection and/or waveguide arrangements for a software configurable lighting device
AU2016365422A1 (en) 2015-12-04 2018-06-28 Magic Leap, Inc. Relocalization systems and methods
US10445860B2 (en) 2015-12-08 2019-10-15 Facebook Technologies, Llc Autofocus virtual reality headset
KR102436809B1 (ko) * 2015-12-15 2022-08-29 삼성디스플레이 주식회사 윈도우 표시 장치
US10802190B2 (en) 2015-12-17 2020-10-13 Covestro Llc Systems, devices, and methods for curved holographic optical elements
US10345594B2 (en) 2015-12-18 2019-07-09 Ostendo Technologies, Inc. Systems and methods for augmented near-eye wearable displays
CN108139801B (zh) * 2015-12-22 2021-03-16 谷歌有限责任公司 用于经由保留光场渲染来执行电子显示稳定的系统和方法
US20170188021A1 (en) * 2015-12-24 2017-06-29 Meta Company Optical engine for creating wide-field of view fovea-based display
JP6769444B2 (ja) * 2015-12-28 2020-10-14 日本電気株式会社 情報処理装置、制御方法、及びプログラム
US10578882B2 (en) 2015-12-28 2020-03-03 Ostendo Technologies, Inc. Non-telecentric emissive micro-pixel array light modulators and methods of fabrication thereof
US20200301150A1 (en) * 2015-12-28 2020-09-24 Intelligent Technologies International, Inc. Secure testing device with liquid crystal shutter
US11030443B2 (en) 2015-12-28 2021-06-08 Nec Corporation Information processing apparatus, control method, and program
US10764503B2 (en) 2015-12-28 2020-09-01 Nec Corporation Information processing apparatus, control method, and program for outputting a guide for correcting a field of view of a camera
US9964925B2 (en) * 2015-12-29 2018-05-08 Oculus Vr, Llc Holographic display architecture
US11281003B2 (en) * 2015-12-30 2022-03-22 Dualitas Ltd Near eye dynamic holography
WO2017120271A1 (en) 2016-01-04 2017-07-13 Meta Company Apparatuses, methods and systems for application of forces within a 3d virtual environment
JP6701559B2 (ja) * 2016-02-17 2020-05-27 株式会社リコー ライトガイド及び虚像表示装置
US10747001B2 (en) 2016-01-06 2020-08-18 Vuzix Corporation Double-sided imaging light guide with embedded dichroic filters
JP6681042B2 (ja) * 2016-02-17 2020-04-15 株式会社リコー ライトガイド及び虚像表示装置
WO2017120552A1 (en) 2016-01-06 2017-07-13 Meta Company Apparatuses, methods and systems for pre-warping images for a display system with a distorting optical component
CN108474960B (zh) 2016-01-07 2021-11-16 奇跃公司 显示系统
AU2017207827B2 (en) * 2016-01-12 2021-09-30 Magic Leap, Inc. Beam angle sensor in virtual/augmented reality system
US10681328B1 (en) 2016-01-13 2020-06-09 Apple Inc. Dynamic focus 3D display
US11262580B1 (en) 2016-01-13 2022-03-01 Apple Inc. Virtual reality system
EP3405829A4 (en) 2016-01-19 2019-09-18 Magic Leap, Inc. COLLECTION, SELECTION AND COMBINATION OF EYE IMAGES
CN108780228B (zh) 2016-01-19 2021-04-20 奇跃公司 利用映像的增强现实系统和方法
US10303246B2 (en) 2016-01-20 2019-05-28 North Inc. Systems, devices, and methods for proximity-based eye tracking
US10587848B2 (en) 2016-01-20 2020-03-10 Magic Leap, Inc. Polarizing maintaining optical fiber in virtual/augmented reality system
US10110935B2 (en) 2016-01-29 2018-10-23 Cable Television Laboratories, Inc Systems and methods for video delivery based upon saccadic eye motion
US11284109B2 (en) 2016-01-29 2022-03-22 Cable Television Laboratories, Inc. Visual coding for sensitivities to light, color and spatial resolution in human visual system
US11006101B2 (en) 2016-01-29 2021-05-11 Hewlett-Packard Development Company, L.P. Viewing device adjustment based on eye accommodation in relation to a display
KR20180107193A (ko) 2016-01-29 2018-10-01 매직 립, 인코포레이티드 3차원 이미지용 디스플레이
US10151926B2 (en) 2016-01-29 2018-12-11 North Inc. Systems, devices, and methods for preventing eyebox degradation in a wearable heads-up display
CA3007627C (en) 2016-01-30 2021-05-25 Leia Inc. Privacy display and dual-mode privacy display system
EP3398007A1 (en) 2016-02-04 2018-11-07 DigiLens, Inc. Holographic waveguide optical tracker
EP3205512B1 (en) 2016-02-09 2018-06-13 CSEM Centre Suisse d'Electronique et de Microtechnique SA - Recherche et Développement Optical security device
CN113225547A (zh) * 2016-02-11 2021-08-06 奇跃公司 减少深度平面之间切换的多深度平面显示系统
JP6908872B2 (ja) * 2016-02-17 2021-07-28 株式会社リコー ライトガイド、虚像表示装置及び導光部材
US10591728B2 (en) 2016-03-02 2020-03-17 Mentor Acquisition One, Llc Optical systems for head-worn computers
IL301720A (en) * 2016-02-24 2023-05-01 Magic Leap Inc Polarizing beam splitter with low light leakage
CA3015077A1 (en) 2016-02-24 2017-08-31 Magic Leap, Inc. Low profile interconnect for light emitter
US11157072B1 (en) * 2016-02-24 2021-10-26 Apple Inc. Direct retinal projector
CA3014821A1 (en) * 2016-02-26 2017-08-31 Magic Leap, Inc. Light output system with reflector and lens for highly spatially uniform light output
CN109073821B (zh) 2016-02-26 2021-11-02 奇跃公司 具有用于多个光发射器的多个光管的显示系统
JP6944461B2 (ja) * 2016-02-29 2021-10-06 マジック リープ, インコーポレイテッドMagic Leap,Inc. 仮想および拡張現実システムおよび方法
US10667981B2 (en) 2016-02-29 2020-06-02 Mentor Acquisition One, Llc Reading assistance system for visually impaired
NZ757279A (en) 2016-03-01 2022-10-28 Magic Leap Inc Reflective switching device for inputting different wavelengths of light into waveguides
EP3423784B1 (en) 2016-03-01 2021-07-28 Magic Leap, Inc. Depth sensing systems and methods
KR102079181B1 (ko) * 2016-03-04 2020-02-19 주식회사 고영테크놀러지 패턴광 조사 장치 및 방법
CN109074785B (zh) 2016-03-04 2022-05-10 奇跃公司 减少用电的显示系统以及用于减少显示系统的用电的方法
WO2017155826A1 (en) 2016-03-07 2017-09-14 Magic Leap, Inc. Blue light adjustment for biometri security
US11106276B2 (en) 2016-03-11 2021-08-31 Facebook Technologies, Llc Focus adjusting headset
KR20200035499A (ko) 2016-03-11 2020-04-03 매직 립, 인코포레이티드 콘볼루셔널 신경 네트워크들에서의 구조 학습
EP4327769A2 (en) * 2016-03-12 2024-02-28 Philipp K. Lang Devices and methods for surgery
US9886742B2 (en) * 2016-03-17 2018-02-06 Google Llc Electro-optic beam steering for super-resolution/lightfield imagery
CN105589202A (zh) 2016-03-18 2016-05-18 京东方科技集团股份有限公司 一种显示装置、显示方法和显示系统
WO2017165231A1 (en) * 2016-03-22 2017-09-28 Magic Leap, Inc. Head mounted display system configured to exchange biometric information
WO2017164573A1 (en) * 2016-03-23 2017-09-28 Samsung Electronics Co., Ltd. Near-eye display apparatus and near-eye display method
EP3223062A1 (en) 2016-03-24 2017-09-27 Thomson Licensing Device for forming at least one focused beam in the near zone, from incident electromagnetic waves
EP3223063A1 (en) 2016-03-24 2017-09-27 Thomson Licensing Device for forming a field intensity pattern in the near zone, from incident electromagnetic waves
JP6895451B2 (ja) 2016-03-24 2021-06-30 ディジレンズ インコーポレイテッド 偏光選択ホログラフィー導波管デバイスを提供するための方法および装置
NZ746514A (en) * 2016-03-25 2020-03-27 Magic Leap Inc Virtual and augmented reality systems and methods
KR101788452B1 (ko) * 2016-03-30 2017-11-15 연세대학교 산학협력단 시선 인식을 이용하는 콘텐츠 재생 장치 및 방법
KR102438052B1 (ko) * 2016-03-31 2022-08-29 매직 립, 인코포레이티드 포즈들 및 멀티-dof 제어기들을 사용하는 3d 가상 객체들과 상호작용들
US10815145B2 (en) * 2016-03-31 2020-10-27 Corning Incorporated High index glass and devices incorporating such
US10317679B2 (en) 2016-04-04 2019-06-11 Akonia Holographics, Llc Light homogenization
US10353203B2 (en) 2016-04-05 2019-07-16 Ostendo Technologies, Inc. Augmented/virtual reality near-eye displays with edge imaging lens comprising a plurality of display devices
CN109073819A (zh) * 2016-04-07 2018-12-21 奇跃公司 用于增强现实的系统和方法
US9897811B2 (en) * 2016-04-07 2018-02-20 Google Llc Curved eyepiece with color correction for head wearable display
US10379356B2 (en) 2016-04-07 2019-08-13 Facebook Technologies, Llc Accommodation based optical correction
AU2017246901B2 (en) * 2016-04-08 2022-06-02 Magic Leap, Inc. Augmented reality systems and methods with variable focus lens elements
JP6734933B2 (ja) 2016-04-11 2020-08-05 ディジレンズ インコーポレイテッド 構造化光投影のためのホログラフィック導波管装置
US10178378B2 (en) * 2016-04-12 2019-01-08 Microsoft Technology Licensing, Llc Binocular image alignment for near-eye display
WO2017180906A2 (en) 2016-04-13 2017-10-19 Thalmic Labs Inc. Systems, devices, and methods for focusing laser projectors
IL262279B2 (en) * 2016-04-21 2023-04-01 Magic Leap Inc A visual aura around the field of vision
US11009714B1 (en) * 2016-04-22 2021-05-18 Holochip Corporation Interactive virtual reality display providing accommodation depth cues
AU2017257549B2 (en) 2016-04-26 2021-09-09 Magic Leap, Inc. Electromagnetic tracking with augmented reality systems
CN105759447A (zh) * 2016-04-27 2016-07-13 江苏卡罗卡国际动漫城有限公司 增强现实眼镜
US10453431B2 (en) 2016-04-28 2019-10-22 Ostendo Technologies, Inc. Integrated near-far light field display systems
US20170315347A1 (en) * 2016-04-29 2017-11-02 Mikko Antton Juhola Exit Pupil Expander for Laser-Scanner and Waveguide Based Augmented-Reality Displays
CN105788390A (zh) * 2016-04-29 2016-07-20 吉林医药学院 基于增强现实的医学解剖辅助教学系统
US10522106B2 (en) 2016-05-05 2019-12-31 Ostendo Technologies, Inc. Methods and apparatus for active transparency modulation
KR20230159898A (ko) 2016-05-06 2023-11-22 매직 립, 인코포레이티드 광을 재지향시키기 위한 비대칭 격자들을 가진 메타표면들 및 제조를 위한 방법들
AU2017264695B2 (en) 2016-05-09 2022-03-31 Magic Leap, Inc. Augmented reality systems and methods for user health analysis
CN105898276A (zh) * 2016-05-10 2016-08-24 北京理工大学 基于非周期全息微透镜阵列的近眼三维显示系统
KR102641964B1 (ko) 2016-05-12 2024-02-27 매직 립, 인코포레이티드 이미징 도파관을 통해 분배된 광 조작
US10215986B2 (en) 2016-05-16 2019-02-26 Microsoft Technology Licensing, Llc Wedges for light transformation
WO2017199232A1 (en) * 2016-05-18 2017-11-23 Lumus Ltd. Head-mounted imaging device
JP6880075B2 (ja) 2016-05-20 2021-06-02 マジック リープ, インコーポレイテッドMagic Leap,Inc. ユーザインターフェースメニューのコンテキスト認識
CN109219386B (zh) 2016-05-29 2021-06-22 诺瓦赛特有限公司 显示系统和方法
CA3025936A1 (en) 2016-06-03 2017-12-07 Magic Leap, Inc. Augmented reality identity verification
US10429647B2 (en) 2016-06-10 2019-10-01 Facebook Technologies, Llc Focus adjusting virtual reality headset
AU2017279495B2 (en) 2016-06-10 2022-06-30 Magic Leap, Inc. Integrating point source for texture projecting bulb
US10684479B2 (en) 2016-06-15 2020-06-16 Vrvaorigin Vision Technology Corp. Ltd. Head-mounted personal multimedia systems and visual assistance devices thereof
CN107526165B (zh) * 2016-06-15 2022-08-26 威亚视觉科技股份有限公司 头戴式个人多媒体系统、视觉辅助装置以及相关眼镜
JP7385993B2 (ja) 2016-06-20 2023-11-24 マジック リープ, インコーポレイテッド 視覚的処理および知覚の疾患を含む神経学的疾患の評価および修正のための拡張現実ディスプレイシステム
US10444509B2 (en) * 2016-06-27 2019-10-15 Daqri, Llc Near eye diffractive holographic projection method
US10366536B2 (en) 2016-06-28 2019-07-30 Microsoft Technology Licensing, Llc Infinite far-field depth perception for near-field objects in virtual environments
IL280983B (en) 2016-06-30 2022-07-01 Magic Leap Inc Pose assessment in three-dimensional space
CN107561698A (zh) * 2016-07-01 2018-01-09 成都理想境界科技有限公司 一种近眼显示系统、虚拟现实设备和增强现实设备
CN107562181B (zh) * 2016-07-01 2020-01-31 成都理想境界科技有限公司 近眼显示系统、虚拟现实设备及增强现实设备
CN107561700A (zh) * 2016-07-01 2018-01-09 成都理想境界科技有限公司 一种近眼显示系统、虚拟现实设备和增强现实设备
CN107561697B (zh) * 2016-07-01 2019-04-30 成都理想境界科技有限公司 近眼显示系统、虚拟现实设备及增强现实设备
US10649209B2 (en) 2016-07-08 2020-05-12 Daqri Llc Optical combiner apparatus
DE112017003546A5 (de) * 2016-07-13 2019-03-28 Seereal Technologies S.A. Anzeigevorrichtung
WO2018013200A1 (en) 2016-07-14 2018-01-18 Magic Leap, Inc. Deep neural network for iris identification
CN109661194B (zh) 2016-07-14 2022-02-25 奇跃公司 使用角膜曲率的虹膜边界估计
AU2017296073B2 (en) * 2016-07-15 2019-02-14 Light Field Lab, Inc. Energy propagation and transverse Anderson localization with two-dimensional, light field and holographic relays
US10152122B2 (en) * 2016-07-18 2018-12-11 Tobii Ab Foveated rendering
CN106201213A (zh) * 2016-07-19 2016-12-07 深圳市金立通信设备有限公司 一种虚拟现实焦点的控制方法及终端
WO2020112986A1 (en) 2018-11-27 2020-06-04 Facebook Technologies, Inc. Methods and apparatus for autocalibration of a wearable electrode sensor system
EP4345831A3 (en) * 2016-07-25 2024-04-24 Magic Leap, Inc. Imaging modification, display and visualization using augmented and virtual reality eyewear
KR102412525B1 (ko) 2016-07-25 2022-06-23 매직 립, 인코포레이티드 광 필드 프로세서 시스템
US10277874B2 (en) 2016-07-27 2019-04-30 North Inc. Systems, devices, and methods for laser projectors
US10241244B2 (en) 2016-07-29 2019-03-26 Lumentum Operations Llc Thin film total internal reflection diffraction grating for single polarization or dual polarization
CA3032282A1 (en) 2016-07-29 2018-02-01 Magic Leap, Inc. Secure exchange of cryptographically signed records
US10390165B2 (en) 2016-08-01 2019-08-20 Magic Leap, Inc. Mixed reality system with spatialized audio
IL294134B2 (en) * 2016-08-02 2023-10-01 Magic Leap Inc Virtual and augmented reality systems at a fixed distance and methods
US10627625B2 (en) 2016-08-11 2020-04-21 Magic Leap, Inc. Automatic placement of a virtual object in a three-dimensional space
US10459221B2 (en) 2016-08-12 2019-10-29 North Inc. Systems, devices, and methods for variable luminance in wearable heads-up displays
US10185153B2 (en) 2016-08-12 2019-01-22 Avegant Corp. Orthogonal optical path length extender
US10187634B2 (en) * 2016-08-12 2019-01-22 Avegant Corp. Near-eye display system including a modulation stack
US10809546B2 (en) 2016-08-12 2020-10-20 Avegant Corp. Digital light path length modulation
US10516879B2 (en) 2016-08-12 2019-12-24 Avegant Corp. Binocular display with digital light path length modulation
AU2017308914B2 (en) 2016-08-12 2021-12-09 Magic Leap, Inc. Word flow annotation
US10379388B2 (en) 2016-08-12 2019-08-13 Avegant Corp. Digital light path length modulation systems
US10057488B2 (en) 2016-08-12 2018-08-21 Avegant Corp. Image capture with digital light path length modulation
US10401639B2 (en) 2016-08-12 2019-09-03 Avegant Corp. Method and apparatus for an optical path length extender
AU2017317599B2 (en) 2016-08-22 2021-12-23 Magic Leap, Inc. Augmented reality display device with deep learning sensors
KR102217789B1 (ko) 2016-08-22 2021-02-19 매직 립, 인코포레이티드 나노그레이팅 방법 및 장치
AU2017317600B2 (en) 2016-08-22 2021-12-09 Magic Leap, Inc. Virtual, augmented, and mixed reality systems and methods
US20180061084A1 (en) * 2016-08-24 2018-03-01 Disney Enterprises, Inc. System and method of bandwidth-sensitive rendering of a focal area of an animation
US10255714B2 (en) 2016-08-24 2019-04-09 Disney Enterprises, Inc. System and method of gaze predictive rendering of a focal area of an animation
EP3510321B1 (en) 2016-09-07 2023-10-25 Magic Leap, Inc. Virtual reality, augmented reality, and mixed reality systems including thick media and related methods
KR101894555B1 (ko) * 2016-09-07 2018-10-04 주식회사 레티널 반사 렌즈 모듈
US9958749B2 (en) * 2016-09-12 2018-05-01 Disney Enterprises, Inc. Optical assemblies that are both brightly backlit and transparent for use in costumed characters
KR102257181B1 (ko) 2016-09-13 2021-05-27 매직 립, 인코포레이티드 감각 안경류
EP3513405B1 (en) 2016-09-14 2023-07-19 Magic Leap, Inc. Virtual reality, augmented reality, and mixed reality systems with spatialized audio
CN107835288A (zh) * 2016-09-16 2018-03-23 天津思博科科技发展有限公司 应用智能终端实现的互动娱乐装置
WO2018057660A2 (en) 2016-09-20 2018-03-29 Apple Inc. Augmented reality system
CN109863435B (zh) * 2016-09-21 2021-03-09 奇跃公司 用于具有出瞳扩展器的光学系统的系统和方法
US10330935B2 (en) 2016-09-22 2019-06-25 Apple Inc. Predictive, foveated virtual reality system
EP3504610A1 (en) 2016-09-22 2019-07-03 Apple Inc. Postponing the state change of an information affecting the graphical user interface until during the conditon of inattentiveness
CN109997174B (zh) 2016-09-22 2023-06-02 奇跃公司 可穿戴光谱检查系统
WO2018055618A1 (en) 2016-09-23 2018-03-29 Novasight Ltd. Screening apparatus and method
GB2554416A (en) 2016-09-26 2018-04-04 Design Led Ltd Illuminated eyewear device
KR20240011881A (ko) 2016-09-26 2024-01-26 매직 립, 인코포레이티드 가상 현실 또는 증강 현실 디스플레이 시스템에서 자기 및 광학 센서들의 교정
IL265520B2 (en) 2016-09-28 2023-09-01 Magic Leap Inc Capturing a facial model using a wearable device
RU2016138608A (ru) 2016-09-29 2018-03-30 Мэджик Лип, Инк. Нейронная сеть для сегментации изображения глаза и оценки качества изображения
US10425636B2 (en) 2016-10-03 2019-09-24 Microsoft Technology Licensing, Llc Automatic detection and correction of binocular misalignment in a display device
CN110073359B (zh) 2016-10-04 2023-04-04 奇跃公司 用于卷积神经网络的有效数据布局
AU2017340609B2 (en) 2016-10-05 2021-12-16 Magic Leap, Inc. Surface modeling systems and methods
KR102402467B1 (ko) 2016-10-05 2022-05-25 매직 립, 인코포레이티드 혼합 현실 교정을 위한 안구주위 테스트
US10466479B2 (en) 2016-10-07 2019-11-05 Coretronic Corporation Head-mounted display apparatus and optical system
KR102482528B1 (ko) 2016-10-09 2022-12-28 루머스 리미티드 직사각형 도파관을 사용하는 개구 배율기
JP6209662B1 (ja) 2016-10-13 2017-10-04 株式会社Qdレーザ 画像投影装置
EP3312646A1 (en) 2016-10-21 2018-04-25 Thomson Licensing Device and method for shielding at least one sub-wavelength-scale object from an incident electromagnetic wave
EP3312660A1 (en) 2016-10-21 2018-04-25 Thomson Licensing Device for forming at least one tilted focused beam in the near zone, from incident electromagnetic waves
EP3529653B1 (en) * 2016-10-21 2024-01-24 Magic Leap, Inc. System and method for presenting image content on multiple depth planes by providing multiple intra-pupil parallax views
CN106371218B (zh) * 2016-10-28 2019-05-24 苏州苏大维格光电科技股份有限公司 一种头戴式三维显示装置
CN108024187A (zh) * 2016-10-31 2018-05-11 苏州乐听电子科技有限公司 一种可自主调试验配的智能助听器
US10254542B2 (en) 2016-11-01 2019-04-09 Microsoft Technology Licensing, Llc Holographic projector for a waveguide display
CN108007386B (zh) * 2016-11-02 2021-04-20 光宝电子(广州)有限公司 基于结构光的三维扫描方法及其装置与系统
US10274732B2 (en) 2016-11-04 2019-04-30 Microsoft Technology Licensing, Llc Hologram focus accommodation
EP3371635B1 (en) 2016-11-08 2022-05-04 Lumus Ltd. Light-guide device with optical cutoff edge and corresponding production methods
US10948981B2 (en) * 2016-11-10 2021-03-16 Magic Leap, Inc. Method and system for eye tracking using speckle patterns
US10345596B2 (en) 2016-11-10 2019-07-09 North Inc. Systems, devices, and methods for astigmatism compensation in a wearable heads-up display
EP3538946B1 (en) * 2016-11-11 2023-02-15 Magic Leap, Inc. Periocular and audio synthesis of a full face image
IL285121B2 (en) 2016-11-15 2023-04-01 Magic Leap Inc A deep learning system for discovering a cube
CN110168427B (zh) * 2016-11-15 2022-06-17 见真实股份有限公司 具有正确的单目深度线索的近眼顺序光场投影仪
KR102595171B1 (ko) 2016-11-16 2023-10-26 매직 립, 인코포레이티드 웨어러블 컴포넌트들을 위한 열 관리 시스템들
KR102563846B1 (ko) 2016-11-16 2023-08-03 매직 립, 인코포레이티드 머리-장착 디스플레이 시스템들을 위한 다해상도 디스플레이 어셈블리
CN106657976B (zh) * 2016-11-17 2019-06-11 宇龙计算机通信科技(深圳)有限公司 一种可视范围延伸方法、装置及虚拟现实眼镜
US11067860B2 (en) 2016-11-18 2021-07-20 Magic Leap, Inc. Liquid crystal diffractive devices with nano-scale pattern and methods of manufacturing the same
EP3542216A4 (en) 2016-11-18 2020-10-07 Magic Leap, Inc. MULTI-LAYER LIQUID CRYSTAL DIFFRACTION NETWORKS TO REDIRECT LIGHT FROM LARGE INCIDENCE ANGLE RANGES
KR102533671B1 (ko) * 2016-11-18 2023-05-16 매직 립, 인코포레이티드 공간 가변적 액정 회절 격자들
AU2017363078B2 (en) * 2016-11-18 2022-09-29 Magic Leap, Inc. Waveguide light multiplexer using crossed gratings
US10649233B2 (en) 2016-11-28 2020-05-12 Tectus Corporation Unobtrusive eye mounted display
US10509153B2 (en) * 2016-11-29 2019-12-17 Akonia Holographics Llc Input coupling
EP4152077A1 (en) 2016-11-30 2023-03-22 Magic Leap, Inc. Method and system for high resolution digitized display
CA3045192A1 (en) 2016-11-30 2018-06-07 North Inc. Systems, devices, and methods for laser eye tracking in wearable heads-up displays
EP3549095B1 (en) * 2016-11-30 2022-02-16 Novasight Ltd. Methods and devices for displaying image with changed field of view
CN106780297B (zh) * 2016-11-30 2019-10-25 天津大学 场景和光照变化条件下的图像高精度配准方法
CN113703270B (zh) * 2016-12-01 2023-02-17 奇跃公司 具有扫描阵列光引擎的投影仪
WO2018102834A2 (en) 2016-12-02 2018-06-07 Digilens, Inc. Waveguide device with uniform output illumination
KR102531542B1 (ko) 2016-12-05 2023-05-10 매직 립, 인코포레이티드 혼합 현실 환경의 가상 사용자 입력 콘트롤들
US10531220B2 (en) 2016-12-05 2020-01-07 Magic Leap, Inc. Distributed audio capturing techniques for virtual reality (VR), augmented reality (AR), and mixed reality (MR) systems
US10310268B2 (en) 2016-12-06 2019-06-04 Microsoft Technology Licensing, Llc Waveguides with peripheral side geometries to recycle light
KR102585679B1 (ko) 2016-12-08 2023-10-05 매직 립, 인코포레이티드 콜레스테릭 액정에 기초한 회절 디바이스들
US10353213B2 (en) * 2016-12-08 2019-07-16 Darwin Hu See-through display glasses for viewing 3D multimedia
US9946075B1 (en) * 2016-12-08 2018-04-17 Darwin Hu See-through display glasses for virtual reality and augmented reality applications
US10922887B2 (en) 2016-12-13 2021-02-16 Magic Leap, Inc. 3D object rendering using detected features
AU2017377915B2 (en) 2016-12-13 2022-12-15 Magic Leap. Inc. Augmented and virtual reality eyewear, systems, and methods for delivering polarized light and determining glucose levels
EP3555700B1 (en) 2016-12-14 2023-09-13 Magic Leap, Inc. Patterning of liquid crystals using soft-imprint replication of surface alignment patterns
KR102170123B1 (ko) * 2016-12-14 2020-10-26 주식회사 엘지화학 차광막이 형성되어 있는 도파관 및 이의 제조방법
JP7104704B2 (ja) * 2016-12-15 2022-07-21 フサオ イシイ シースルーディスプレイシステム及びディスプレイシステム
CN110959131A (zh) * 2016-12-15 2020-04-03 株式会社Ntt都科摩 使用激光束扫描仪的可穿戴显示器的光学器件
US9977248B1 (en) 2016-12-21 2018-05-22 PhantaField, Inc. Augmented reality display system
EP3559785B1 (en) 2016-12-21 2021-02-03 PCMS Holdings, Inc. Systems and methods for selecting spheres of relevance for presenting augmented reality information
CN106599893B (zh) * 2016-12-22 2020-01-24 深圳大学 基于增强现实的物体偏离识别图后的处理方法及装置
US10371896B2 (en) 2016-12-22 2019-08-06 Magic Leap, Inc. Color separation in planar waveguides using dichroic filters
CN114675420A (zh) 2016-12-22 2022-06-28 奇跃公司 用于操纵来自环境光源的光的系统和方法
US10365492B2 (en) 2016-12-23 2019-07-30 North Inc. Systems, devices, and methods for beam combining in wearable heads-up displays
US11100831B2 (en) * 2016-12-26 2021-08-24 Maxell, Ltd. Image display apparatus and image display method
US10746999B2 (en) 2016-12-28 2020-08-18 Magic Leap, Inc. Dual depth exit pupil expander
CN108254918B (zh) * 2016-12-28 2021-10-26 精工爱普生株式会社 光学元件和显示装置
US10650552B2 (en) 2016-12-29 2020-05-12 Magic Leap, Inc. Systems and methods for augmented reality
KR102553190B1 (ko) 2016-12-29 2023-07-07 매직 립, 인코포레이티드 외부 조건들에 기초한 웨어러블 디스플레이 디바이스의 자동 제어
US10209520B2 (en) * 2016-12-30 2019-02-19 Microsoft Technology Licensing, Llc Near eye display multi-component dimming system
EP4300160A2 (en) 2016-12-30 2024-01-03 Magic Leap, Inc. Polychromatic light out-coupling apparatus, near-eye displays comprising the same, and method of out-coupling polychromatic light
CN106713882A (zh) * 2016-12-30 2017-05-24 中国科学院苏州生物医学工程技术研究所 光刺激视觉修复设备和光刺激视觉成像方法
US11022939B2 (en) 2017-01-03 2021-06-01 Microsoft Technology Licensing, Llc Reduced bandwidth holographic near-eye display
USD864959S1 (en) 2017-01-04 2019-10-29 Mentor Acquisition One, Llc Computer glasses
WO2018129398A1 (en) 2017-01-05 2018-07-12 Digilens, Inc. Wearable heads up displays
JP7071374B2 (ja) 2017-01-05 2022-05-18 マジック リープ, インコーポレイテッド プラズマエッチングによる高屈折率ガラスのパターン化
KR101894955B1 (ko) 2017-01-05 2018-09-05 주식회사 미디어프론트 가상 휴먼 인식 및 실시간 증강 합성 기술을 이용한 라이브 소셜 미디어 시스템 및 증강 합성 서버
US10481678B2 (en) 2017-01-11 2019-11-19 Daqri Llc Interface-based modeling and design of three dimensional spaces using two dimensional representations
CN108303804A (zh) * 2017-01-12 2018-07-20 北京维信诺光电技术有限公司 3d眼镜
TWI629506B (zh) * 2017-01-16 2018-07-11 國立台灣大學 眼球凝視運動之影像穿透式擴增實境裝置、頭戴式顯示器及近距離物體之擴增實境方法
US10409066B2 (en) 2017-01-19 2019-09-10 Coretronic Corporation Head-mounted display device with waveguide elements
EP3571535B1 (en) * 2017-01-23 2023-07-19 Magic Leap, Inc. Eyepiece for virtual, augmented, or mixed reality systems
US10812936B2 (en) 2017-01-23 2020-10-20 Magic Leap, Inc. Localization determination for mixed reality systems
US10437074B2 (en) 2017-01-25 2019-10-08 North Inc. Systems, devices, and methods for beam combining in laser projectors
CA3051414A1 (en) * 2017-01-27 2018-08-02 Magic Leap, Inc. Diffraction gratings formed by metasurfaces having differently oriented nanobeams
JP7155129B2 (ja) 2017-01-27 2022-10-18 マジック リープ, インコーポレイテッド メタ表面のための反射防止コーティング
CN110431467A (zh) * 2017-01-28 2019-11-08 鲁姆斯有限公司 增强现实成像系统
US10303211B2 (en) * 2017-02-01 2019-05-28 Facebook Technologies, Llc Two part cone display using flexible substrates
US9983412B1 (en) 2017-02-02 2018-05-29 The University Of North Carolina At Chapel Hill Wide field of view augmented reality see through head mountable display with distance accommodation
US10410566B1 (en) * 2017-02-06 2019-09-10 Andrew Kerdemelidis Head mounted virtual reality display system and method
US10904514B2 (en) 2017-02-09 2021-01-26 Facebook Technologies, Llc Polarization illumination using acousto-optic structured light in 3D depth sensing
SG11201907370XA (en) * 2017-02-12 2019-09-27 Lemnis Tech Pte Ltd Methods, devices and systems for focus adjustment of displays
CN110300912B (zh) 2017-02-15 2022-09-02 奇跃公司 包括伪影抑制的投影仪架构
US11347054B2 (en) * 2017-02-16 2022-05-31 Magic Leap, Inc. Systems and methods for augmented reality
US10485420B2 (en) * 2017-02-17 2019-11-26 Analog Devices Global Unlimited Company Eye gaze tracking
CN110383139A (zh) * 2017-02-17 2019-10-25 康尼柴克斯 用于显示图像的方法和系统
CN110268448B (zh) 2017-02-20 2023-11-24 交互数字Vc控股公司 动态呈现增强现实信息以减少峰值认知需求
JP7027856B2 (ja) * 2017-02-21 2022-03-02 株式会社リコー 表示装置及び機器
EP3397998A4 (en) 2017-02-22 2019-04-17 Lumus Ltd. OPTICAL LIGHT GUIDE ASSEMBLY
CN106980983A (zh) 2017-02-23 2017-07-25 阿里巴巴集团控股有限公司 基于虚拟现实场景的业务认证方法及装置
CN110537122B (zh) * 2017-02-23 2022-04-29 奇跃公司 基于偏振转换的可变焦虚拟图像设备
JP6774603B2 (ja) * 2017-03-06 2020-10-28 株式会社Jvcケンウッド レーザ光照射検出装置、レーザ光照射検出方法、レーザ光照射検出システム
WO2018164914A2 (en) * 2017-03-07 2018-09-13 Apple Inc. Head-mounted display system
WO2018165119A1 (en) * 2017-03-09 2018-09-13 Arizona Board Of Regents On Behalf Of The University Of Arizona Head-mounted light field display with integral imaging and waveguide prism
CN107452031B (zh) * 2017-03-09 2020-06-26 叠境数字科技(上海)有限公司 虚拟光线跟踪方法及光场动态重聚焦显示系统
CA3053963A1 (en) 2017-03-14 2018-09-20 Magic Leap, Inc. Waveguides with light absorbing films and processes for forming the same
IL251189A0 (en) 2017-03-15 2017-06-29 Ophir Yoav Gradual transition between two-dimensional and three-dimensional augmented reality simulations
EP3596526B1 (en) 2017-03-15 2024-02-28 Magic Leap, Inc. Techniques for improving a fiber scanning system
CN110392844B (zh) * 2017-03-16 2024-03-12 特里纳米克斯股份有限公司 用于光学检测至少一个对象的检测器
KR20210113443A (ko) 2017-03-17 2021-09-15 매직 립, 인코포레이티드 룸 레이아웃 추정 방법들 및 기술들
CN117873313A (zh) 2017-03-17 2024-04-12 奇跃公司 具有彩色虚拟内容扭曲的混合现实系统及使用该系统生成虚拟内容的方法
WO2018170409A1 (en) 2017-03-17 2018-09-20 Magic Leap, Inc. Mixed reality system with multi-source virtual content compositing and method of generating virtual content using same
JP7055815B2 (ja) 2017-03-17 2022-04-18 マジック リープ, インコーポレイテッド 仮想コンテンツをワーピングすることを伴う複合現実システムおよびそれを使用して仮想コンテンツを生成する方法
WO2018175627A1 (en) 2017-03-21 2018-09-27 Magic Leap, Inc. Low-profile beam splitter
US11079603B2 (en) * 2017-03-21 2021-08-03 Magic Leap, Inc. Display system with spatial light modulator illumination for divided pupils
CN115097625A (zh) 2017-03-21 2022-09-23 奇跃公司 光学设备、头戴式显示器、成像系统和对对象成像的方法
CN114755824A (zh) * 2017-03-21 2022-07-15 奇跃公司 用于结合光扫描投影仪跟踪眼睛运动的方法和系统
EP3602167A4 (en) * 2017-03-21 2020-03-04 Magic Leap, Inc. METHOD AND SYSTEM FOR A FIBER SCANNING PROJECTOR
CN117075345A (zh) 2017-03-21 2023-11-17 奇跃公司 用于照射空间光调制器的方法、设备和系统
KR20190126408A (ko) 2017-03-21 2019-11-11 매직 립, 인코포레이티드 결합된 시야에 대한 상이한 회절 격자들을 갖는 스택된 도파관들
US10455153B2 (en) 2017-03-21 2019-10-22 Magic Leap, Inc. Depth sensing techniques for virtual, augmented, and mixed reality systems
AU2018239511A1 (en) * 2017-03-22 2019-10-17 Magic Leap, Inc. Depth based foveated rendering for display systems
CN113341566B (zh) * 2017-03-22 2023-12-15 鲁姆斯有限公司 交叠的反射面构造
AU2018240367B2 (en) * 2017-03-22 2022-06-02 Magic Leap, Inc. Dynamic field of view variable focus display system
US10748333B2 (en) 2017-03-23 2020-08-18 Nvidia Corporation Finite aperture omni-directional stereo light transport
US10277943B2 (en) 2017-03-27 2019-04-30 Microsoft Technology Licensing, Llc Selective rendering of sparse peripheral displays based on user movements
US10216260B2 (en) 2017-03-27 2019-02-26 Microsoft Technology Licensing, Llc Selective rendering of sparse peripheral displays based on element saliency
AU2018244316B2 (en) * 2017-03-28 2022-09-29 Magic Leap, Inc. Augmented reality system with spatialized audio tied to user manipulated virtual object
CN106959514B (zh) * 2017-03-29 2021-09-14 联想(北京)有限公司 一种头戴式设备
CN110520784A (zh) 2017-03-31 2019-11-29 根特大学 集成的近眼显示器
CN106933022A (zh) * 2017-04-01 2017-07-07 深圳优立全息科技有限公司 一种虚拟现实互动体验装置
DE102017107346A1 (de) * 2017-04-05 2018-10-11 Carl Zeiss Ag Vorrichtung zur Energieversorgung von und/oder Kommunikation mit einem Augenimplantat mittels Beleuchtungsstrahlung
IL251645B (en) 2017-04-06 2018-08-30 Lumus Ltd Waveguide and method of production
DE102018002772A1 (de) * 2017-04-06 2018-10-11 Konstantin Roggatz Minimalistische Brille mit Glasfaser induziertem hoch aufgelösten integralen Lichtfeld zur Einblendung von erweiterten virtuellen Realitäten
EP3385219B1 (en) 2017-04-07 2021-07-14 InterDigital CE Patent Holdings Method for manufacturing a device for forming at least one focused beam in a near zone
WO2018194987A1 (en) 2017-04-18 2018-10-25 Magic Leap, Inc. Waveguides having reflective layers formed by reflective flowable materials
CN113608617A (zh) 2017-04-19 2021-11-05 奇跃公司 可穿戴系统的多模式任务执行和文本编辑
CN107123096B (zh) 2017-04-20 2018-11-06 腾讯科技(深圳)有限公司 Vr设备中的图像显示方法和装置以及vr设备
US11474354B2 (en) * 2017-04-25 2022-10-18 Ati Technologies Ulc Display pacing in multi-head mounted display virtual reality configurations
EP3602242A1 (en) * 2017-04-27 2020-02-05 Siemens Aktiengesellschaft Authoring augmented reality experiences using augmented reality and virtual reality
EP4141623A1 (en) 2017-04-27 2023-03-01 Magic Leap, Inc. Augmented reality system comprising light-emitting user input device
JP6888897B2 (ja) * 2017-04-28 2021-06-18 深▲セン▼前▲海▼▲達▼▲闥▼▲雲▼端智能科技有限公司Cloudminds (Shenzhen) Robotics Systems Co., Ltd. 指向性光導波路、指向性バックライトモジュール及び表示装置
US10409074B2 (en) 2017-05-03 2019-09-10 Microsoft Technology Licensing, Llc Near-to-eye display with steerable phased arrays
US10386923B2 (en) * 2017-05-08 2019-08-20 International Business Machines Corporation Authenticating users and improving virtual reality experiences via ocular scans and pupillometry
US10412378B2 (en) 2017-05-08 2019-09-10 Microsoft Technology Licensing, Llc Resonating optical waveguide using multiple diffractive optical elements
US20200201038A1 (en) * 2017-05-15 2020-06-25 Real View Imaging Ltd. System with multiple displays and methods of use
KR102365138B1 (ko) 2017-05-16 2022-02-18 매직 립, 인코포레이티드 혼합 현실을 위한 시스템들 및 방법들
CN108873326A (zh) 2017-05-16 2018-11-23 中强光电股份有限公司 头戴式显示装置
WO2018211074A1 (de) * 2017-05-19 2018-11-22 Seereal Technologies S.A. Anzeigevorrichtung mit einem lichtleiter
CA3061332A1 (en) 2017-05-19 2018-11-22 Magic Leap, Inc. Keyboards for virtual, augmented, and mixed reality display systems
KR20230070522A (ko) 2017-05-22 2023-05-23 매직 립, 인코포레이티드 컴패니언 디바이스와의 페어링
WO2018215834A1 (en) * 2017-05-26 2018-11-29 Spectrum Optix, Inc. Reflective truncated ball imaging system
US10222615B2 (en) 2017-05-26 2019-03-05 Microsoft Technology Licensing, Llc Optical waveguide with coherent light source
CN110325892A (zh) * 2017-05-26 2019-10-11 谷歌有限责任公司 具有稀疏采样超分辨率的近眼显示
US10764552B2 (en) 2017-05-26 2020-09-01 Google Llc Near-eye display with sparse sampling super-resolution
WO2018217252A1 (en) * 2017-05-26 2018-11-29 Google Llc Near-eye display with extended accommodation range adjustment
US10869517B1 (en) 2017-05-28 2020-12-22 Nexus House LLC Folding hat with integrated display system
KR20240012612A (ko) 2017-05-30 2024-01-29 매직 립, 인코포레이티드 전자 디바이스를 위한 팬 조립체를 갖는 전력 공급기 조립체
CN108984075B (zh) * 2017-05-31 2021-09-07 华为技术有限公司 显示模式切换方法、装置及终端
CN110945405B (zh) 2017-05-31 2024-01-02 奇跃公司 眼睛跟踪校准技术
US10613413B1 (en) 2017-05-31 2020-04-07 Facebook Technologies, Llc Ultra-wide field-of-view scanning devices for depth sensing
US10634921B2 (en) * 2017-06-01 2020-04-28 NewSight Reality, Inc. See-through near eye optical display
US11119353B2 (en) 2017-06-01 2021-09-14 E-Vision Smart Optics, Inc. Switchable micro-lens array for augmented reality and mixed reality
US10921613B2 (en) * 2017-06-01 2021-02-16 NewSight Reality, Inc. Near eye display and related computer-implemented software and firmware
DE112018002775T5 (de) * 2017-06-02 2020-02-20 Apple Inc. Verfahren und vorrichtung zum erfassen von ebenen und/oder quadtrees zur verwendung als ein virtuelles substrat
US10409001B2 (en) 2017-06-05 2019-09-10 Applied Materials, Inc. Waveguide fabrication with sacrificial sidewall spacers
CN111052720A (zh) 2017-06-12 2020-04-21 奇跃公司 具有更改深度平面的多元件自适应透镜的增强现实显示器
KR102365726B1 (ko) * 2017-06-13 2022-02-22 한국전자통신연구원 광학 투시 기반의 합성 이미지 제공 방법 및 이를 위한 장치
US10712567B2 (en) 2017-06-15 2020-07-14 Microsoft Technology Licensing, Llc Holographic display system
CN107121787A (zh) * 2017-06-16 2017-09-01 北京灵犀微光科技有限公司 立体成像显示装置和方法
CN107065196B (zh) * 2017-06-16 2019-03-15 京东方科技集团股份有限公司 一种增强现实显示装置及增强现实显示方法
EP3639042A1 (en) * 2017-06-16 2020-04-22 Tektronix, Inc. Test and measurement devices, systems and methods associated with augmented reality
US11598971B2 (en) * 2017-06-21 2023-03-07 Fusao Ishii Image device with a compact homogenizer
US10181200B1 (en) 2017-06-28 2019-01-15 Facebook Technologies, Llc Circularly polarized illumination and detection for depth sensing
KR102314789B1 (ko) * 2017-06-29 2021-10-20 에스케이텔레콤 주식회사 증강현실용 디스플레이 장치
US10338400B2 (en) 2017-07-03 2019-07-02 Holovisions LLC Augmented reality eyewear with VAPE or wear technology
US10859834B2 (en) 2017-07-03 2020-12-08 Holovisions Space-efficient optical structures for wide field-of-view augmented reality (AR) eyewear
US10908680B1 (en) 2017-07-12 2021-02-02 Magic Leap, Inc. Pose estimation using electromagnetic tracking
CN107219629B (zh) * 2017-07-14 2021-01-08 惠州Tcl移动通信有限公司 采用rgb叠加防vr设备色散的方法、存储介质及设备
CN107277496B (zh) * 2017-07-17 2019-05-10 京东方科技集团股份有限公司 近眼光场显示系统及控制电路
RU2698919C2 (ru) * 2017-07-18 2019-09-02 Святослав Иванович АРСЕНИЧ Стереодисплей (варианты), видеокамера для стереосъёмки и способ компьютерного формирования стереоизображений для этого стереодисплея
CN110869839B (zh) 2017-07-19 2022-07-08 鲁姆斯有限公司 通过光导光学元件的硅基液晶照明器
US20190025602A1 (en) * 2017-07-20 2019-01-24 Google Llc Compact near-eye display optics for augmented reality
CA3069974A1 (en) * 2017-07-24 2019-01-31 Quantum-Si Incorporated Optical rejection photonic structures
KR102461253B1 (ko) * 2017-07-24 2022-10-31 삼성전자주식회사 시선 추적기를 구비하는 투사형 디스플레이 장치
US10578870B2 (en) 2017-07-26 2020-03-03 Magic Leap, Inc. Exit pupil expander
CN110914790A (zh) 2017-07-26 2020-03-24 奇跃公司 采用用户界面设备的表示来训练神经网络
WO2019023489A1 (en) 2017-07-28 2019-01-31 Magic Leap, Inc. FAN ASSEMBLY FOR DISPLAYING IMAGE
US11122256B1 (en) 2017-08-07 2021-09-14 Apple Inc. Mixed reality system
US11007772B2 (en) 2017-08-09 2021-05-18 Fathom Optics Inc. Manufacturing light field prints
CN107817471B (zh) * 2017-08-11 2021-07-20 北京圣威特科技有限公司 光学跟踪方法、装置及系统
CN107479705B (zh) * 2017-08-14 2020-06-02 中国电子科技集团公司第二十八研究所 一种基于HoloLens的指挥所协同作业电子沙盘系统
CN107390365A (zh) * 2017-08-18 2017-11-24 联想(北京)有限公司 一种成像装置、增强现实显示设备和成像方法
JP7231546B2 (ja) * 2017-08-23 2023-03-01 ソニーセミコンダクタソリューションズ株式会社 撮像素子および撮像装置
US10521661B2 (en) 2017-09-01 2019-12-31 Magic Leap, Inc. Detailed eye shape model for robust biometric applications
CN107644443B (zh) * 2017-09-01 2020-07-28 北京七鑫易维信息技术有限公司 视线追踪设备中参数设定方法和装置
US10574973B2 (en) 2017-09-06 2020-02-25 Facebook Technologies, Llc Non-mechanical beam steering for depth sensing
IL272289B (en) 2017-09-20 2022-08-01 Magic Leap Inc A personal neural network for eye tracking
KR20200057727A (ko) 2017-09-21 2020-05-26 매직 립, 인코포레이티드 눈 및/또는 환경의 이미지들을 캡처하도록 구성된 도파관을 갖는 증강 현실 디스플레이
KR102481884B1 (ko) 2017-09-22 2022-12-28 삼성전자주식회사 가상 영상을 표시하는 방법 및 장치
EP3460561A1 (en) 2017-09-26 2019-03-27 Thomson Licensing Device for deviating and focusing light
US11467407B2 (en) 2017-09-26 2022-10-11 Apple Inc. Displays with volume phase gratings
US10890767B1 (en) 2017-09-27 2021-01-12 United Services Automobile Association (Usaa) System and method for automatic vision correction in near-to-eye displays
EP3688516A4 (en) 2017-09-27 2021-06-23 Magic Leap, Inc. CLOSE-UP 3D DISPLAY WITH SEPARATE PHASE AND AMPLITUDE MODULATORS
US10867368B1 (en) 2017-09-29 2020-12-15 Apple Inc. Foveated image capture for power efficient video see-through
IL255049B (en) * 2017-10-16 2022-08-01 Oorym Optics Ltd A compact, high-efficiency head-up display system
WO2019068304A1 (en) 2017-10-02 2019-04-11 CSEM Centre Suisse d'Electronique et de Microtechnique SA - Recherche et Développement RESONANT WAVEGUIDE NETWORK AND ITS APPLICATIONS
US10930709B2 (en) 2017-10-03 2021-02-23 Lockheed Martin Corporation Stacked transparent pixel structures for image sensors
US10788677B2 (en) * 2017-10-03 2020-09-29 Facebook Technologies, Llc Fresnel assembly for light redirection in eye tracking systems
CN110651215B (zh) 2017-10-09 2021-01-29 华为技术有限公司 聚焦可调光学系统和多焦显示设备
US11733516B2 (en) * 2017-10-11 2023-08-22 Magic Leap, Inc. Augmented reality display comprising eyepiece having a transparent emissive display
US10551625B2 (en) 2017-10-16 2020-02-04 Palo Alto Research Center Incorporated Laser homogenizing and beam shaping illumination optical system and method
JP7399084B2 (ja) 2017-10-16 2023-12-15 ディジレンズ インコーポレイテッド ピクセル化されたディスプレイの画像分解能を倍増させるためのシステムおよび方法
CA3077661A1 (en) 2017-10-16 2019-04-25 Oorym Optics Ltd. Highly efficient compact head-mounted display system
WO2019079757A1 (en) 2017-10-19 2019-04-25 Ctrl-Labs Corporation SYSTEMS AND METHODS FOR IDENTIFYING BIOLOGICAL STRUCTURES ASSOCIATED WITH NEUROMUSCULAR SOURCE SIGNALS
US20190121133A1 (en) 2017-10-23 2019-04-25 North Inc. Free space multiple laser diode modules
AU2018354257A1 (en) 2017-10-26 2020-05-14 Magic Leap, Inc. Gradient normalization systems and methods for adaptive loss balancing in deep multitask networks
CN111566723A (zh) 2017-10-26 2020-08-21 奇跃公司 用于增强现实显示器的宽带自适应透镜组件
US10890769B2 (en) 2017-10-26 2021-01-12 Magic Leap, Inc. Augmented reality display having liquid crystal variable focus element and roll-to-roll method and apparatus for forming the same
WO2019084325A1 (en) 2017-10-27 2019-05-02 Magic Leap, Inc. VIRTUAL RETICLE FOR INCREASED REALITY SYSTEMS
TW201917447A (zh) * 2017-10-27 2019-05-01 廣達電腦股份有限公司 頭戴式顯示裝置以及色差強化方法
KR102507626B1 (ko) * 2017-10-31 2023-03-07 엘지디스플레이 주식회사 부피표현방식 3차원 표시장치
CN109344677B (zh) * 2017-11-07 2021-01-15 长城汽车股份有限公司 识别立体物的方法、装置、车辆和存储介质
US10510812B2 (en) 2017-11-09 2019-12-17 Lockheed Martin Corporation Display-integrated infrared emitter and sensor structures
CN207965356U (zh) * 2017-11-14 2018-10-12 塔普翊海(上海)智能科技有限公司 一种近眼可透视头显光学系统
JP7213241B2 (ja) 2017-11-14 2023-01-26 マジック リープ, インコーポレイテッド ニューラルネットワークに関するマルチタスク学習のためのメタ学習
WO2019095133A1 (en) * 2017-11-15 2019-05-23 Source Photonics (Chengdu) Company Limited Waveguide array module and receiver optical sub-assembly
EP4329296A2 (en) * 2017-11-15 2024-02-28 Magic Leap, Inc. System and methods for extrinsic calibration of cameras and diffractive optical elements
AU2018370858B2 (en) * 2017-11-22 2023-04-27 Magic Leap, Inc. Thermally actuated cantilevered beam optical scanner
KR102182768B1 (ko) * 2017-11-24 2020-11-25 주식회사 엘지화학 차광막이 형성되어 있는 도파관 및 이의 제조방법
WO2019104046A1 (en) * 2017-11-27 2019-05-31 University Of Central Florida Research Optical display system, method, and applications
KR102467882B1 (ko) * 2017-11-28 2022-11-16 엘지디스플레이 주식회사 개인 몰입형 표시장치와 이의 구동방법
CN109839742A (zh) * 2017-11-29 2019-06-04 深圳市掌网科技股份有限公司 一种基于视线追踪的增强现实装置
CN108012139B (zh) * 2017-12-01 2019-11-29 北京理工大学 应用于真实感近眼显示的图像生成方法和装置
KR102005508B1 (ko) 2017-12-01 2019-07-30 김태경 이미지 표시 광학장치 및 이를 위한 이미지 생성 방법
KR102436730B1 (ko) * 2017-12-06 2022-08-26 삼성전자주식회사 가상 스크린의 파라미터 추정 방법 및 장치
KR20230152180A (ko) 2017-12-10 2023-11-02 매직 립, 인코포레이티드 광학 도파관들 상의 반사―방지 코팅들
EP3724712A4 (en) 2017-12-11 2021-08-04 Magic Leap, Inc. WAVE GUIDE LIGHTING
AU2018383539A1 (en) 2017-12-14 2020-06-18 Magic Leap, Inc. Contextual-based rendering of virtual avatars
WO2019118886A1 (en) 2017-12-15 2019-06-20 Magic Leap, Inc. Enhanced pose determination for display device
EP4293414A3 (en) * 2017-12-15 2024-03-13 Magic Leap, Inc. Eyepieces for augmented reality display system
DE102017130344A1 (de) 2017-12-18 2019-06-19 Carl Zeiss Ag Optisches System zum Übertragen eines Quellbildes
US10175490B1 (en) * 2017-12-20 2019-01-08 Aperture In Motion, LLC Light control devices and methods for regional variation of visual information and sampling
US10768431B2 (en) 2017-12-20 2020-09-08 Aperture In Motion, LLC Light control devices and methods for regional variation of visual information and sampling
KR20200100720A (ko) 2017-12-20 2020-08-26 매직 립, 인코포레이티드 증강 현실 뷰잉 디바이스용 인서트
US10845594B1 (en) 2017-12-21 2020-11-24 Facebook Technologies, Llc Prism based light redirection system for eye tracking systems
CN108294739B (zh) * 2017-12-27 2021-02-09 苏州创捷传媒展览股份有限公司 一种测试用户体验的方法及其装置
US10506220B2 (en) 2018-01-02 2019-12-10 Lumus Ltd. Augmented reality displays with active alignment and corresponding methods
AU2018400510A1 (en) 2018-01-04 2020-07-02 Magic Leap, Inc. Optical elements based on polymeric structures incorporating inorganic materials
CN111566571B (zh) 2018-01-08 2022-05-13 迪吉伦斯公司 波导单元格中全息光栅高吞吐量记录的系统和方法
US10914950B2 (en) 2018-01-08 2021-02-09 Digilens Inc. Waveguide architectures and related methods of manufacturing
CN111771179A (zh) 2018-01-17 2020-10-13 奇跃公司 用于确定显示器与用户的眼睛之间的配准的显示系统和方法
US10477186B2 (en) * 2018-01-17 2019-11-12 Nextvr Inc. Methods and apparatus for calibrating and/or adjusting the arrangement of cameras in a camera pair
CA3087333A1 (en) 2018-01-17 2019-07-25 Magic Leap, Inc. Eye center of rotation determination, depth plane selection, and render camera positioning in display systems
US11893755B2 (en) 2018-01-19 2024-02-06 Interdigital Vc Holdings, Inc. Multi-focal planes with varying positions
US10551544B2 (en) 2018-01-21 2020-02-04 Lumus Ltd. Light-guide optical element with multiple-axis internal aperture expansion
US10739595B2 (en) 2018-01-22 2020-08-11 Facebook Technologies, Llc Application specific integrated circuit for waveguide display
US10942355B2 (en) * 2018-01-22 2021-03-09 Facebook Technologies, Llc Systems, devices, and methods for tiled multi-monochromatic displays
US11961494B1 (en) 2019-03-29 2024-04-16 Meta Platforms Technologies, Llc Electromagnetic interference reduction in extended reality environments
US11907423B2 (en) 2019-11-25 2024-02-20 Meta Platforms Technologies, Llc Systems and methods for contextualized interactions with an environment
US10540941B2 (en) 2018-01-30 2020-01-21 Magic Leap, Inc. Eclipse cursor for mixed reality displays
US11567627B2 (en) 2018-01-30 2023-01-31 Magic Leap, Inc. Eclipse cursor for virtual content in mixed reality displays
JP7100333B2 (ja) * 2018-02-02 2022-07-13 Fairy Devices株式会社 光走査型画像表示装置
US10673414B2 (en) 2018-02-05 2020-06-02 Tectus Corporation Adaptive tuning of a contact lens
KR20200116459A (ko) 2018-02-06 2020-10-12 매직 립, 인코포레이티드 증강 현실을 위한 시스템들 및 방법들
CN108366250B (zh) * 2018-02-06 2020-03-17 深圳市鹰硕技术有限公司 影像显示系统、方法以及数字眼镜
US10594951B2 (en) 2018-02-07 2020-03-17 Lockheed Martin Corporation Distributed multi-aperture camera array
US10951883B2 (en) 2018-02-07 2021-03-16 Lockheed Martin Corporation Distributed multi-screen array for high density display
US10652529B2 (en) 2018-02-07 2020-05-12 Lockheed Martin Corporation In-layer Signal processing
US10838250B2 (en) 2018-02-07 2020-11-17 Lockheed Martin Corporation Display assemblies with electronically emulated transparency
US10129984B1 (en) 2018-02-07 2018-11-13 Lockheed Martin Corporation Three-dimensional electronics distribution by geodesic faceting
US11616941B2 (en) 2018-02-07 2023-03-28 Lockheed Martin Corporation Direct camera-to-display system
US10979699B2 (en) 2018-02-07 2021-04-13 Lockheed Martin Corporation Plenoptic cellular imaging system
US10690910B2 (en) 2018-02-07 2020-06-23 Lockheed Martin Corporation Plenoptic cellular vision correction
EP3729176A4 (en) * 2018-02-09 2021-09-22 Vuzix Corporation CIRCULAR POLARIZER IMAGE LIGHT GUIDE
US10488666B2 (en) 2018-02-10 2019-11-26 Daqri, Llc Optical waveguide devices, methods and systems incorporating same
US10735649B2 (en) 2018-02-22 2020-08-04 Magic Leap, Inc. Virtual and augmented reality systems and methods using display system control information embedded in image data
CN108537111A (zh) * 2018-02-26 2018-09-14 阿里巴巴集团控股有限公司 一种活体检测的方法、装置及设备
CA3089316A1 (en) 2018-02-27 2019-09-06 Magic Leap, Inc. Matching meshes for virtual avatars
WO2019168723A1 (en) 2018-02-28 2019-09-06 Magic Leap, Inc. Head scan alignment using ocular registration
US10866426B2 (en) 2018-02-28 2020-12-15 Apple Inc. Scanning mirror display devices
WO2019173357A1 (en) * 2018-03-05 2019-09-12 Vijayakumar Bhagavatula Display system for rendering a scene with multiple focal planes
US10802285B2 (en) 2018-03-05 2020-10-13 Invensas Corporation Remote optical engine for virtual reality or augmented reality headsets
JP7303818B2 (ja) 2018-03-05 2023-07-05 マジック リープ, インコーポレイテッド 低遅延瞳孔トラッカーを伴うディスプレイシステム
AU2019232746A1 (en) 2018-03-07 2020-08-20 Magic Leap, Inc. Adaptive lens assemblies including polarization-selective lens stacks for augmented reality display
KR102345492B1 (ko) 2018-03-07 2021-12-29 매직 립, 인코포레이티드 주변 디바이스들의 시각적 추적
WO2019178060A1 (en) 2018-03-12 2019-09-19 Magic Leap, Inc. Tilting array based display
KR102486664B1 (ko) 2018-03-14 2023-01-10 주식회사 엘지화학 회절 도광판 모듈
JP7356995B2 (ja) 2018-03-14 2023-10-05 マジック リープ, インコーポレイテッド コンテンツをクリッピングし、視認快適性を増加させるためのディスプレイシステムおよび方法
US11430169B2 (en) 2018-03-15 2022-08-30 Magic Leap, Inc. Animating virtual avatar facial movements
CN112136152A (zh) * 2018-03-15 2020-12-25 奇跃公司 由观看设备的部件变形导致的图像校正
USD878420S1 (en) * 2018-03-16 2020-03-17 Magic Leap, Inc. Display panel or portion thereof with a transitional mixed reality graphical user interface
JP7235146B2 (ja) * 2018-03-16 2023-03-08 株式会社リコー 頭部装着型表示装置および表示システム
US10690851B2 (en) 2018-03-16 2020-06-23 Digilens Inc. Holographic waveguides incorporating birefringence control and methods for their fabrication
JP7027987B2 (ja) * 2018-03-16 2022-03-02 株式会社リコー 頭部装着型表示装置および表示システム
EP3765943A4 (en) 2018-03-16 2021-12-22 Magic Leap, Inc. DEPTH-BASED FOVEA REPRESENTATION FOR DISPLAY SYSTEMS
CN112106066A (zh) 2018-03-16 2020-12-18 奇跃公司 根据眼睛跟踪相机的面部表情
CN110297324B (zh) * 2018-03-21 2021-08-03 京东方科技集团股份有限公司 显示装置和交通工具
WO2019183399A1 (en) 2018-03-21 2019-09-26 Magic Leap, Inc. Augmented reality system and method for spectroscopic analysis
US11526009B2 (en) 2018-03-22 2022-12-13 Saint-Gobain Glass France Projection arrangement for a head-up display (HUD) with P-polarised light portions
EP4266113A3 (en) * 2018-03-23 2023-12-27 InterDigital VC Holdings, Inc. Multifocal plane based method to produce stereoscopic viewpoints in a dibr system (mfp-dibr)
CN108810519A (zh) * 2018-03-26 2018-11-13 成都理想境界科技有限公司 一种3d图像显示设备
EP4328650A2 (en) 2018-03-26 2024-02-28 Adlens Limited Improvements in or relating to augmented reality display units and augmented reality headsets comprising the same
US20210041693A1 (en) * 2018-03-26 2021-02-11 Sony Corporation Information detection apparatus, video projection apparatus, information detection method, and video projection method
FI128552B (en) * 2018-03-28 2020-07-31 Dispelix Oy Wavelength display element with reflector surface
US20190045174A1 (en) * 2018-03-29 2019-02-07 Intel Corporation Extended depth of focus integral displays
US11443719B2 (en) * 2018-03-29 2022-09-13 Sony Corporation Information processing apparatus and information processing method
CN108398791B (zh) * 2018-03-29 2022-11-25 陈超平 一种基于偏光隐形眼镜的近眼显示装置
JP7349445B2 (ja) * 2018-04-02 2023-09-22 マジック リープ, インコーポレイテッド 統合型光学要素を伴う導波管および同一物を作製する方法
US11886000B2 (en) 2018-04-02 2024-01-30 Magic Leap, Inc. Waveguides having integrated spacers, waveguides having edge absorbers, and methods for making the same
WO2019195186A1 (en) 2018-04-02 2019-10-10 Magic Leap, Inc. Hybrid polymer waveguide and methods for making the same
CN111989609B (zh) * 2018-04-03 2022-06-14 华为技术有限公司 用于头戴式安装的显示设备及显示方法
WO2019195390A1 (en) * 2018-04-03 2019-10-10 Magic Leap, Inc. Waveguide display with cantilevered light scanner
US10690922B2 (en) * 2018-04-13 2020-06-23 Facebook Technologies, Llc Super-resolution scanning display for near-eye displays
US11048082B1 (en) 2018-04-13 2021-06-29 Apple Inc. Wireless bandwidth reduction with display data interleaving
WO2019204164A1 (en) 2018-04-16 2019-10-24 Magic Leap, Inc. Systems and methods for cross-application authoring, transfer, and evaluation of rigging control systems for virtual characters
US11067805B2 (en) 2018-04-19 2021-07-20 Magic Leap, Inc. Systems and methods for operating a display system based on user perceptibility
FI129306B (en) * 2018-04-19 2021-11-30 Dispelix Oy Diffractive outlet pupil dilator for display applications
CN108333781B (zh) * 2018-04-20 2023-10-27 深圳创维新世界科技有限公司 近眼显示系统
CN108333780A (zh) * 2018-04-20 2018-07-27 深圳创维新世界科技有限公司 近眼显示系统
US10505394B2 (en) 2018-04-21 2019-12-10 Tectus Corporation Power generation necklaces that mitigate energy absorption in the human body
US10318811B1 (en) * 2018-04-22 2019-06-11 Bubbler International Llc Methods and systems for detecting objects by non-visible radio frequencies and displaying associated augmented reality effects
WO2019209431A1 (en) 2018-04-23 2019-10-31 Magic Leap, Inc. Avatar facial expression representation in multidimensional space
US10895762B2 (en) 2018-04-30 2021-01-19 Tectus Corporation Multi-coil field generation in an electronic contact lens system
US10838239B2 (en) 2018-04-30 2020-11-17 Tectus Corporation Multi-coil field generation in an electronic contact lens system
US11257268B2 (en) 2018-05-01 2022-02-22 Magic Leap, Inc. Avatar animation using Markov decision process policies
US10295723B1 (en) 2018-05-01 2019-05-21 Facebook Technologies, Llc 2D pupil expander using holographic Bragg grating
WO2019213220A1 (en) 2018-05-03 2019-11-07 Magic Leap, Inc. Using 3d scans of a physical subject to determine positions and orientations of joints for a virtual character
US10783230B2 (en) 2018-05-09 2020-09-22 Shape Matrix Geometric Instruments, LLC Methods and apparatus for encoding passwords or other information
US10747309B2 (en) * 2018-05-10 2020-08-18 Microsoft Technology Licensing, Llc Reconfigurable optics for switching between near-to-eye display modes
EP3625617B1 (en) 2018-05-14 2023-09-06 Lumus Ltd. Projector configuration with subdivided optical aperture for near-eye displays, and corresponding optical systems
WO2019222215A1 (en) * 2018-05-14 2019-11-21 The Trustees Of Columbia University In The City Of New York Micromachined waveguide and methods of making and using
EP3781979A4 (en) * 2018-05-17 2021-12-15 Nokia Technologies Oy DEVICE AND METHOD FOR DISPLAYING IMAGE
CN108508616B (zh) * 2018-05-17 2024-04-16 成都工业学院 一种3d显示系统及3d显示装置
JP7079146B2 (ja) * 2018-05-18 2022-06-01 シャープ株式会社 立体表示装置
US10790700B2 (en) 2018-05-18 2020-09-29 Tectus Corporation Power generation necklaces with field shaping systems
WO2019226494A1 (en) 2018-05-21 2019-11-28 Magic Leap, Inc. Generating textured polygon strip hair from strand-based hair for a virtual character
WO2019226549A1 (en) 2018-05-22 2019-11-28 Magic Leap, Inc. Computer generated hair groom transfer tool
JP7341166B2 (ja) 2018-05-22 2023-09-08 マジック リープ, インコーポレイテッド ウェアラブルシステムのためのトランスモード入力融合
IL259518B2 (en) 2018-05-22 2023-04-01 Lumus Ltd Optical system and method for improving light field uniformity
CN112437950A (zh) 2018-05-22 2021-03-02 奇跃公司 用于对虚拟头像制作动画的骨架系统
BR112020023513A2 (pt) 2018-05-23 2021-02-09 Lumus Ltd. sistema óptico
WO2019226865A1 (en) 2018-05-25 2019-11-28 Magic Leap, Inc. Compression of dynamic unstructured point clouds
KR102558106B1 (ko) * 2018-05-30 2023-07-21 엘지디스플레이 주식회사 디스플레이 패널, 디스플레이 장치 및 가상 현실/증강 현실 장치
WO2019232282A1 (en) 2018-05-30 2019-12-05 Magic Leap, Inc. Compact variable focus configurations
JP7319303B2 (ja) 2018-05-31 2023-08-01 マジック リープ, インコーポレイテッド レーダ頭部姿勢位置特定
CN110554593B (zh) * 2018-05-31 2021-01-26 京东方科技集团股份有限公司 全息光学元件及其制作方法、像重建方法、增强现实眼镜
WO2019236495A1 (en) 2018-06-05 2019-12-12 Magic Leap, Inc. Homography transformation matrices based temperature calibration of a viewing system
WO2019236344A1 (en) 2018-06-07 2019-12-12 Magic Leap, Inc. Augmented reality scrollbar
JP7421505B2 (ja) 2018-06-08 2024-01-24 マジック リープ, インコーポレイテッド 自動化された表面選択設置およびコンテンツ配向設置を用いた拡張現実ビューア
EP3807708A1 (de) * 2018-06-15 2021-04-21 Continental Automotive GmbH Gerät zum erzeugen eines virtuellen bildes mit variabler projektionsdistanz
EP3807715A4 (en) 2018-06-15 2022-03-23 Magic Leap, Inc. WIDE FIELD OF VIEW POLARIZATION SWITCHES AND LIQUID CRYSTAL OPTICAL ELEMENTS WITH FORWARD TILT
WO2019246044A1 (en) 2018-06-18 2019-12-26 Magic Leap, Inc. Head-mounted display systems with power saving functionality
WO2019246058A1 (en) 2018-06-18 2019-12-26 Magic Leap, Inc. Systems and methods for temporarily disabling user control interfaces during attachment of an electronic device
JP7378431B2 (ja) 2018-06-18 2023-11-13 マジック リープ, インコーポレイテッド フレーム変調機能性を伴う拡張現実ディスプレイ
US11151793B2 (en) 2018-06-26 2021-10-19 Magic Leap, Inc. Waypoint creation in map detection
US11415812B2 (en) 2018-06-26 2022-08-16 Lumus Ltd. Compact collimating optical device and system
CN108932058B (zh) 2018-06-29 2021-05-18 联想(北京)有限公司 显示方法、装置及电子设备
WO2020010097A1 (en) * 2018-07-02 2020-01-09 Magic Leap, Inc. Pixel intensity modulation using modifying gain values
US11669726B2 (en) 2018-07-02 2023-06-06 Magic Leap, Inc. Methods and systems for interpolation of disparate inputs
US11510027B2 (en) 2018-07-03 2022-11-22 Magic Leap, Inc. Systems and methods for virtual and augmented reality
US11856479B2 (en) 2018-07-03 2023-12-26 Magic Leap, Inc. Systems and methods for virtual and augmented reality along a route with markers
EP3818694A1 (en) 2018-07-05 2021-05-12 PCMS Holdings, Inc. Method and system for near-eye focal plane overlays for 3d perception of content on 2d displays
CN112673298A (zh) * 2018-07-05 2021-04-16 奇跃公司 用于头戴式显示系统的基于波导的照明
US11302156B1 (en) * 2018-07-06 2022-04-12 Amazon Technologies, Inc. User interfaces associated with device applications
CN109001907A (zh) * 2018-07-06 2018-12-14 成都理想境界科技有限公司 一种高分辨率显示模组
WO2020014074A1 (en) 2018-07-07 2020-01-16 Acucela Inc. Device to prevent retinal hypoxia
WO2020014038A2 (en) * 2018-07-11 2020-01-16 Pure Depth Inc. Ghost multi-layer and single layer display systems
JP7408621B2 (ja) 2018-07-13 2024-01-05 マジック リープ, インコーポレイテッド ディスプレイの両眼変形補償のためのシステムおよび方法
US11137622B2 (en) 2018-07-15 2021-10-05 Tectus Corporation Eye-mounted displays including embedded conductive coils
CN115097627A (zh) 2018-07-23 2022-09-23 奇跃公司 用于地图构建的系统和方法
CN116483200A (zh) 2018-07-23 2023-07-25 奇跃公司 具有虚拟内容翘曲的混合现实系统和使用该系统生成虚拟内容的方法
JP2021530790A (ja) 2018-07-23 2021-11-11 マジック リープ, インコーポレイテッドMagic Leap, Inc. 頭部姿勢予測のための深層予測器再帰ニューラルネットワーク
WO2020023303A1 (en) 2018-07-23 2020-01-30 Magic Leap, Inc. Coexistence interference avoidance between two different radios operating in the same band
KR102578653B1 (ko) * 2018-07-23 2023-09-15 삼성전자 주식회사 디스플레이에서 출력된 광에 대해 다중 초점을 제공할 수 있는 전자 장치
CN116300091A (zh) 2018-07-23 2023-06-23 奇跃公司 用于使用位置向量解析半球模糊度的方法和系统
US10943521B2 (en) 2018-07-23 2021-03-09 Magic Leap, Inc. Intra-field sub code timing in field sequential displays
WO2020023546A1 (en) 2018-07-24 2020-01-30 Magic Leap, Inc. Diffractive optical elements with mitigation of rebounce-induced light loss and related systems and methods
EP3827374A4 (en) 2018-07-24 2021-09-15 Magic Leap, Inc. CORNER DETECTION METHODS AND APPARATUS
EP4270016A3 (en) 2018-07-24 2024-02-07 Magic Leap, Inc. Temperature dependent calibration of movement detection devices
USD918176S1 (en) 2018-07-24 2021-05-04 Magic Leap, Inc. Totem controller having an illumination region
EP3827585A4 (en) 2018-07-24 2022-04-27 Magic Leap, Inc. DISPLAY SYSTEMS AND METHODS FOR DETERMINING THE VERTICAL ALIGNMENT BETWEEN LEFT AND RIGHT DISPLAYS AND A USER'S EYES
USD924204S1 (en) 2018-07-24 2021-07-06 Magic Leap, Inc. Totem controller having an illumination region
WO2020023404A1 (en) 2018-07-24 2020-01-30 Magic Leap, Inc. Flicker mitigation when toggling eyepiece display illumination in augmented reality systems
USD930614S1 (en) 2018-07-24 2021-09-14 Magic Leap, Inc. Totem controller having an illumination region
US11624929B2 (en) 2018-07-24 2023-04-11 Magic Leap, Inc. Viewing device with dust seal integration
JP7309849B2 (ja) 2018-07-24 2023-07-18 マジック リープ, インコーポレイテッド 画像ディスプレイデバイスの位置特定マップを決定および/または評価するための方法および装置
US11567336B2 (en) 2018-07-24 2023-01-31 Magic Leap, Inc. Display systems and methods for determining registration between display and eyes of user
WO2020023779A1 (en) 2018-07-25 2020-01-30 Digilens Inc. Systems and methods for fabricating a multilayer optical structure
CN108919492B (zh) * 2018-07-25 2021-05-07 京东方科技集团股份有限公司 一种近眼显示装置、系统及显示方法
CN112753007A (zh) 2018-07-27 2021-05-04 奇跃公司 虚拟角色的姿势空间变形的姿势空间维度减小
US10712837B1 (en) * 2018-07-30 2020-07-14 David Douglas Using geo-registered tools to manipulate three-dimensional medical images
US11353767B2 (en) * 2018-07-30 2022-06-07 Facebook Technologies, Llc Varifocal system using hybrid tunable liquid crystal lenses
CN112740099A (zh) 2018-07-30 2021-04-30 奥克塞拉有限公司 用于延缓近视进展的电子接触透镜的光学设计
CN109116577B (zh) * 2018-07-30 2020-10-20 杭州光粒科技有限公司 一种全息隐形眼镜及其应用
WO2020028834A1 (en) 2018-08-02 2020-02-06 Magic Leap, Inc. A viewing system with interpupillary distance compensation based on head motion
US10795458B2 (en) 2018-08-03 2020-10-06 Magic Leap, Inc. Unfused pose-based drift correction of a fused pose of a totem in a user interaction system
CN112805659A (zh) 2018-08-03 2021-05-14 奇跃公司 通过用户分类为多深度平面显示系统选择深度平面
US10955677B1 (en) 2018-08-06 2021-03-23 Apple Inc. Scene camera
CN110825280A (zh) * 2018-08-09 2020-02-21 北京微播视界科技有限公司 控制虚拟物体位置移动的方法、装置和计算机可读存储介质
CN108965857A (zh) * 2018-08-09 2018-12-07 张家港康得新光电材料有限公司 一种立体显示方法及装置、可穿戴式立体显示器
US10778963B2 (en) * 2018-08-10 2020-09-15 Valve Corporation Head-mounted display (HMD) with spatially-varying retarder optics
US10996463B2 (en) 2018-08-10 2021-05-04 Valve Corporation Head-mounted display (HMD) with spatially-varying retarder optics
CN112805750A (zh) 2018-08-13 2021-05-14 奇跃公司 跨现实系统
KR102605397B1 (ko) * 2018-08-20 2023-11-24 삼성디스플레이 주식회사 증강 현실 제공 장치
WO2020044198A1 (en) * 2018-08-26 2020-03-05 Lumus Ltd. Reflection suppression in near eye displays
US10699383B2 (en) 2018-08-27 2020-06-30 Nvidia Corp. Computational blur for varifocal displays
GB2576738B (en) * 2018-08-29 2020-08-19 Envisics Ltd Head-up display
US11170565B2 (en) 2018-08-31 2021-11-09 Magic Leap, Inc. Spatially-resolved dynamic dimming for augmented reality device
DE102018215272A1 (de) * 2018-09-07 2020-03-12 Bayerische Motoren Werke Aktiengesellschaft Verfahren zum Betreiben einer Blickfeldanzeigevorrichtung für ein Kraftfahrzeug
CN116184666A (zh) 2018-09-09 2023-05-30 鲁姆斯有限公司 包括具有二维扩展的光导光学元件的光学系统
US10529107B1 (en) 2018-09-11 2020-01-07 Tectus Corporation Projector alignment in a contact lens
US11141645B2 (en) 2018-09-11 2021-10-12 Real Shot Inc. Athletic ball game using smart glasses
US11103763B2 (en) 2018-09-11 2021-08-31 Real Shot Inc. Basketball shooting game using smart glasses
EP3850420A4 (en) 2018-09-14 2021-11-10 Magic Leap, Inc. SYSTEMS AND PROCEDURES FOR EXTERNAL LIGHT MANAGEMENT
USD934872S1 (en) 2018-09-18 2021-11-02 Magic Leap, Inc. Mobile computing support system having an illumination region
USD934873S1 (en) 2018-09-18 2021-11-02 Magic Leap, Inc. Mobile computing support system having an illumination region
USD950567S1 (en) 2018-09-18 2022-05-03 Magic Leap, Inc. Mobile computing support system having an illumination region
USD955396S1 (en) 2018-09-18 2022-06-21 Magic Leap, Inc. Mobile computing support system having an illumination region
US11520044B2 (en) * 2018-09-25 2022-12-06 Waymo Llc Waveguide diffusers for LIDARs
US11733523B2 (en) 2018-09-26 2023-08-22 Magic Leap, Inc. Diffractive optical elements with optical power
JP7086392B2 (ja) * 2018-10-01 2022-06-20 株式会社Qdレーザ 画像投影装置及び画像投影方法
JP2022512600A (ja) 2018-10-05 2022-02-07 マジック リープ, インコーポレイテッド 任意の場所における場所特有の仮想コンテンツのレンダリング
CN111007589A (zh) * 2018-10-08 2020-04-14 成都理想境界科技有限公司 一种波导模组、基于波导的显示模组及近眼显示设备
CN111077670B (zh) * 2018-10-18 2022-02-18 中强光电股份有限公司 光传递模块以及头戴式显示装置
EP3871034A4 (en) 2018-10-26 2022-08-10 Magic Leap, Inc. ELECTROMAGNETIC AMBIENT DISTORTION CORRECTION FOR ELECTROMAGNETIC TRACKING
US20200386994A1 (en) * 2018-11-01 2020-12-10 North Inc. Optical combiner lens with lightguide and spacers embedded in lens
KR102099785B1 (ko) * 2018-11-06 2020-04-10 주식회사 레티널 증강 현실용 광학 장치
KR102140733B1 (ko) * 2018-11-06 2020-08-03 주식회사 레티널 증강 현실용 광학 장치
US11269180B2 (en) 2018-11-12 2022-03-08 Magic Leap, Inc. Multi-depth exit pupil expander
EP3881232A4 (en) 2018-11-15 2022-08-10 Magic Leap, Inc. DEEP NEURON NETWORK POSE ESTIMATION SYSTEM
DE102018219474A1 (de) * 2018-11-15 2020-05-20 Robert Bosch Gmbh Verfahren und Anordnung zum Durchführen einer virtuellen Netzhautanzeige
CN109348210A (zh) * 2018-11-16 2019-02-15 成都理想境界科技有限公司 图像源模组、近眼显示系统、控制方法及近眼显示设备
CN113196138B (zh) 2018-11-16 2023-08-25 奇跃公司 用于保持图像清晰度的图像尺寸触发的澄清
CN113302546A (zh) 2018-11-20 2021-08-24 奇跃公司 用于增强现实显示系统的目镜
US10838232B2 (en) 2018-11-26 2020-11-17 Tectus Corporation Eye-mounted displays including embedded solenoids
CN111240145B (zh) * 2018-11-29 2022-04-15 青岛海信激光显示股份有限公司 光阀驱动控制方法及投影设备
CN113330390A (zh) 2018-11-30 2021-08-31 奇跃公司 用于化身运动的多模态手的位置和取向
EP3887887A4 (en) 2018-11-30 2022-01-19 Magic Leap, Inc. METHODS AND SYSTEMS FOR HIGH EFFICIENCY OCULAR IN AUGMENTED REALITY DEVICES
US10866413B2 (en) 2018-12-03 2020-12-15 Lockheed Martin Corporation Eccentric incident luminance pupil tracking
US11543565B2 (en) 2018-12-04 2023-01-03 Beijing Boe Technology Development Co., Ltd. Display panel, display device and display method
JP2022514489A (ja) 2018-12-10 2022-02-14 フェイスブック・テクノロジーズ・リミテッド・ライアビリティ・カンパニー ハイパーボーカルビューポート(hvp)ディスプレイのための適応型ビューポート
US11125993B2 (en) * 2018-12-10 2021-09-21 Facebook Technologies, Llc Optical hyperfocal reflective systems and methods, and augmented reality and/or virtual reality displays incorporating same
US11107972B2 (en) 2018-12-11 2021-08-31 Facebook Technologies, Llc Nanovoided tunable optics
US11409240B2 (en) * 2018-12-17 2022-08-09 Meta Platforms Technologies, Llc Holographic pattern generation for head-mounted display (HMD) eye tracking using a diffractive optical element
US10644543B1 (en) 2018-12-20 2020-05-05 Tectus Corporation Eye-mounted display system including a head wearable object
JP7161934B2 (ja) * 2018-12-21 2022-10-27 株式会社日立エルジーデータストレージ 映像表示装置及び映像表示システム
KR102041261B1 (ko) 2018-12-28 2019-11-07 한국광기술원 반응형 다초점 광학계 및 이를 이용한 증강현실 장치
EP3903480A4 (en) * 2018-12-28 2023-01-11 Magic Leap, Inc. AUGMENTED REALITY AND VIRTUAL REALITY DISPLAY SYSTEMS WITH SPLIT LEFT AND RIGHT EYE DISPLAY
CN113544560A (zh) 2018-12-28 2021-10-22 奇跃公司 具有发光微显示器的虚拟和增强现实显示系统
KR20200084498A (ko) * 2019-01-02 2020-07-13 삼성디스플레이 주식회사 증강 현실 제공 장치
KR20210111278A (ko) 2019-01-09 2021-09-10 페이스북 테크놀로지스, 엘엘씨 Ar, hmd 및 hud 애플리케이션을 위한 광학 도파관들의 불-균일한 서브-동공 반사기들 및 방법들
US11598958B2 (en) 2019-01-15 2023-03-07 Lumus Ltd. Method of fabricating a symmetric light guide optical element
JP7259341B2 (ja) * 2019-01-18 2023-04-18 セイコーエプソン株式会社 投射装置、投射システム、及び投射装置の制御方法
US11061254B2 (en) 2019-01-24 2021-07-13 International Business Machines Corporation Adjusting contact lens prescription while wearing lens
WO2020152688A1 (en) 2019-01-24 2020-07-30 Lumus Ltd. Optical systems including loe with three stage expansion
US11099406B2 (en) * 2019-01-24 2021-08-24 International Business Machines Corporation Delivering augmented reality via embedded contact lens
WO2020154524A1 (en) 2019-01-25 2020-07-30 Magic Leap, Inc. Eye-tracking using images having different exposure times
US20210382307A1 (en) * 2019-01-31 2021-12-09 Creal Sa Light-field mixed reality system with correct monocular depth cues to a viewer
US11425189B2 (en) 2019-02-06 2022-08-23 Magic Leap, Inc. Target intent-based clock speed determination and adjustment to limit total heat generated by multiple processors
US11237389B1 (en) * 2019-02-11 2022-02-01 Facebook Technologies, Llc Wedge combiner for eye-tracking
JP2022520472A (ja) 2019-02-15 2022-03-30 ディジレンズ インコーポレイテッド 統合された格子を使用してホログラフィック導波管ディスプレイを提供するための方法および装置
KR101982098B1 (ko) * 2019-02-27 2019-05-24 주식회사 두리번 광섬유 모션 센서 및 이를 포함하는 가상/증강현실 시스템
US11287657B2 (en) 2019-02-28 2022-03-29 Magic Leap, Inc. Display system and method for providing variable accommodation cues using multiple intra-pupil parallax views formed by light emitter arrays
US11360269B2 (en) * 2019-03-04 2022-06-14 Lumentum Operations Llc High-power all fiber telescope
US11624906B2 (en) * 2019-03-04 2023-04-11 Microsoft Technology Licensing, Llc IR illumination module for MEMS-based eye tracking
US20200292745A1 (en) 2019-03-12 2020-09-17 Digilens Inc. Holographic Waveguide Backlight and Related Methods of Manufacturing
EP3939030A4 (en) 2019-03-12 2022-11-30 Magic Leap, Inc. REGISTRATION OF LOCAL CONTENT BETWEEN FIRST AND SECOND VIEWERS OF AUGMENTED REALITY
JP7398131B2 (ja) 2019-03-12 2023-12-14 ルムス エルティーディー. 画像プロジェクタ
US20200301239A1 (en) * 2019-03-18 2020-09-24 Microsoft Technology Licensing, Llc Varifocal display with fixed-focus lens
KR101984616B1 (ko) * 2019-03-20 2019-06-03 (주)락앤크리에이티브 이미지 활용 컨텐츠 제공 시스템
JP2022526743A (ja) * 2019-03-20 2022-05-26 マジック リープ, インコーポレイテッド 眼の照明を提供するためのシステム
US11221487B2 (en) * 2019-03-26 2022-01-11 Kevin Chew Figueroa Method and device of field sequential imaging for large field of view augmented/virtual reality
CN111751987B (zh) * 2019-03-29 2023-04-14 托比股份公司 全息眼睛成像设备
US10698201B1 (en) 2019-04-02 2020-06-30 Lockheed Martin Corporation Plenoptic cellular axis redirection
US10867543B2 (en) 2019-04-09 2020-12-15 Facebook Technologies, Llc Resolution reduction of color channels of display devices
US10861369B2 (en) * 2019-04-09 2020-12-08 Facebook Technologies, Llc Resolution reduction of color channels of display devices
US11016305B2 (en) 2019-04-15 2021-05-25 Magic Leap, Inc. Sensor fusion for electromagnetic tracking
US10659772B1 (en) * 2019-04-23 2020-05-19 Disney Enterprises, Inc. Augmented reality system for layering depth on head-mounted displays using external stereo screens
CN110069310B (zh) * 2019-04-23 2022-04-22 北京小米移动软件有限公司 切换桌面壁纸的方法、装置及存储介质
KR102302159B1 (ko) * 2019-04-26 2021-09-14 주식회사 레티널 외부 빛샘 방지 기능을 갖는 증강 현실용 광학 장치
WO2020223636A1 (en) 2019-05-01 2020-11-05 Magic Leap, Inc. Content provisioning system and method
KR20210152546A (ko) 2019-05-10 2021-12-15 트웬티 트웬티 테라퓨틱스 엘엘씨 안구 내 마이크로디스플레이를 위한 자연스러운 물리-광학적 사용자 인터페이스
US11778856B2 (en) 2019-05-15 2023-10-03 Apple Inc. Electronic device having emissive display with light recycling
CN114127610A (zh) 2019-05-20 2022-03-01 奇跃公司 用于估计眼睛姿势的系统和技术
WO2020236993A1 (en) 2019-05-21 2020-11-26 Magic Leap, Inc. Hand pose estimation
WO2020243014A1 (en) 2019-05-24 2020-12-03 Magic Leap, Inc. Variable focus assemblies
CN110187506B (zh) * 2019-05-28 2021-12-17 京东方科技集团股份有限公司 光学显示系统和增强现实设备
US11622470B2 (en) 2019-05-28 2023-04-04 Magic Leap, Inc. Thermal management system for portable electronic devices
USD962981S1 (en) 2019-05-29 2022-09-06 Magic Leap, Inc. Display screen or portion thereof with animated scrollbar graphical user interface
JP2022535460A (ja) 2019-06-07 2022-08-08 ディジレンズ インコーポレイテッド 透過格子および反射格子を組み込んだ導波路、ならびに関連する製造方法
EP3987343A4 (en) 2019-06-20 2023-07-19 Magic Leap, Inc. EYEWEARS FOR AUGMENTED REALITY DISPLAY SYSTEM
CN114270312A (zh) 2019-06-21 2022-04-01 奇跃公司 经由模态窗口的安全授权
US11927872B2 (en) 2019-06-23 2024-03-12 Lumus Ltd. Display with foveated optical correction
US11049302B2 (en) 2019-06-24 2021-06-29 Realwear, Inc. Photo redaction security system and related methods
US11726317B2 (en) 2019-06-24 2023-08-15 Magic Leap, Inc. Waveguides having integral spacers and related systems and methods
JP7270481B2 (ja) 2019-06-25 2023-05-10 株式会社日立製作所 車両制御システム
GB201909179D0 (en) * 2019-06-26 2019-08-07 Wave Optics Ltd Pupil relay system
TWI690745B (zh) * 2019-06-26 2020-04-11 點晶科技股份有限公司 多功能眼鏡裝置
WO2020261279A1 (en) 2019-06-27 2020-12-30 Lumus Ltd. Apparatus and methods for eye tracking based on eye imaging via a light-guide optical element
US11151794B1 (en) 2019-06-28 2021-10-19 Snap Inc. Messaging system with augmented reality messages
AU2020300121A1 (en) 2019-07-04 2022-02-03 Lumus Ltd. Image waveguide with symmetric beam multiplication
US11029805B2 (en) 2019-07-10 2021-06-08 Magic Leap, Inc. Real-time preview of connectable objects in a physically-modeled virtual space
USD907037S1 (en) 2019-07-12 2021-01-05 Magic Leap, Inc. Clip-on accessory
EP3997512A4 (en) 2019-07-12 2022-09-14 Magic Leap, Inc. METHODS AND SYSTEMS FOR AUGMENTED REALITY DISPLAY WITH DYNAMIC FIELD OF VIEW
USD980840S1 (en) 2019-07-12 2023-03-14 Magic Leap, Inc. Clip-on accessory
WO2021011686A1 (en) 2019-07-16 2021-01-21 Magic Leap, Inc. Eye center of rotation determination with one or more eye tracking cameras
CN110349383A (zh) * 2019-07-18 2019-10-18 浙江师范大学 一种智能护眼设备及方法
CN114514443A (zh) 2019-07-19 2022-05-17 奇跃公司 制造衍射光栅的方法
WO2021016045A1 (en) 2019-07-19 2021-01-28 Magic Leap, Inc. Display device having diffraction gratings with reduced polarization sensitivity
US11907417B2 (en) 2019-07-25 2024-02-20 Tectus Corporation Glance and reveal within a virtual environment
CN112305776B (zh) * 2019-07-26 2022-06-07 驻景(广州)科技有限公司 基于光波导耦出光出瞳分割-组合控制的光场显示系统
US11514673B2 (en) 2019-07-26 2022-11-29 Magic Leap, Inc. Systems and methods for augmented reality
JP2022543571A (ja) 2019-07-29 2022-10-13 ディジレンズ インコーポレイテッド 画素化されたディスプレイの画像解像度および視野を乗算するための方法および装置
KR20210014816A (ko) * 2019-07-30 2021-02-10 삼성디스플레이 주식회사 광학 장치
CN110426853B (zh) * 2019-07-31 2020-10-16 华为技术有限公司 镜片和头戴式显示装置
JP2022542965A (ja) 2019-07-31 2022-10-07 アキュセラ インコーポレイテッド 画像を網膜上に投影するためのデバイス
US10944290B2 (en) 2019-08-02 2021-03-09 Tectus Corporation Headgear providing inductive coupling to a contact lens
US11586024B1 (en) 2019-08-05 2023-02-21 Meta Platforms Technologies, Llc Peripheral see-through pancake lens assembly and display device with same
US11579425B1 (en) 2019-08-05 2023-02-14 Meta Platforms Technologies, Llc Narrow-band peripheral see-through pancake lens assembly and display device with same
US11822083B2 (en) 2019-08-13 2023-11-21 Apple Inc. Display system with time interleaving
CN112399157A (zh) * 2019-08-15 2021-02-23 中强光电股份有限公司 投影机及投影方法
KR102386259B1 (ko) * 2019-08-21 2022-04-18 주식회사 레티널 시력 보정 기능을 구비하는 증강 현실용 광학 장치
EP4018231A4 (en) 2019-08-21 2022-11-09 Magic Leap, Inc. FLAT SPECTRAL RESPONSE GRATINGS USING HIGH INDEX MATERIALS
WO2021035482A1 (zh) * 2019-08-26 2021-03-04 京东方科技集团股份有限公司 光学显示系统和方法、显示装置
US11442222B2 (en) 2019-08-29 2022-09-13 Digilens Inc. Evacuated gratings and methods of manufacturing
WO2021040096A1 (ko) * 2019-08-30 2021-03-04 엘지전자 주식회사 머리에 착용할 수 있는 전자 디바이스
US11391948B2 (en) 2019-09-10 2022-07-19 Facebook Technologies, Llc Display illumination using a grating
US11726336B2 (en) 2019-09-10 2023-08-15 Meta Platforms Technologies, Llc Active zonal display illumination using a chopped lightguide
US11467332B2 (en) 2019-09-10 2022-10-11 Meta Platforms Technologies, Llc Display with switchable retarder array
EP4028354A4 (en) 2019-09-11 2023-11-22 Magic Leap, Inc. DISPLAY DEVICE PROVIDED WITH A DIFFRACTION GRATING WITH REDUCED POLARIZATION SENSITIVITY
WO2021049740A1 (en) * 2019-09-12 2021-03-18 Samsung Electronics Co., Ltd. Eye accommodation distance measuring device and method, and head-mounted display
US11245880B2 (en) * 2019-09-12 2022-02-08 Universal City Studios Llc Techniques for spatial data projection
JP2022547621A (ja) 2019-09-16 2022-11-14 アキュセラ インコーポレイテッド 近視の進行を阻害するように設計される、電子ソフトコンタクトレンズのための組立プロセス
US11372247B2 (en) 2019-09-17 2022-06-28 Facebook Technologies, Llc Display device with diffusive display and see-through lens assembly
EP4033288A4 (en) * 2019-09-18 2023-11-15 Letinar Co., Ltd AUGMENTED REALITY OPTICAL DEVICE HAVING IMPROVED OPTICAL EFFICIENCY
US11137608B2 (en) * 2019-09-25 2021-10-05 Electronics And Telecommunications Research Institute Slim immersive display device, slim visualization device, and user eye-tracking device
US11933949B2 (en) 2019-09-27 2024-03-19 Apple Inc. Freeform folded optical system
US11039113B2 (en) * 2019-09-30 2021-06-15 Snap Inc. Multi-dimensional rendering
US11175509B2 (en) * 2019-09-30 2021-11-16 Microsoft Technology Licensing, Llc Tuned waveguides
JP2021056369A (ja) 2019-09-30 2021-04-08 セイコーエプソン株式会社 ヘッドマウントディスプレイ
US11276246B2 (en) 2019-10-02 2022-03-15 Magic Leap, Inc. Color space mapping for intuitive surface normal visualization
US11176757B2 (en) 2019-10-02 2021-11-16 Magic Leap, Inc. Mission driven virtual character for user interaction
EP4046139A4 (en) 2019-10-15 2023-11-22 Magic Leap, Inc. EXTENDED REALITY SYSTEM WITH LOCATION SERVICE
EP4046401A4 (en) 2019-10-15 2023-11-01 Magic Leap, Inc. CROSS-REALLY SYSTEM WITH WIRELESS FINGERPRINTS
US11257294B2 (en) 2019-10-15 2022-02-22 Magic Leap, Inc. Cross reality system supporting multiple device types
EP4045964A4 (en) 2019-10-17 2023-11-08 Magic Leap, Inc. ATTENUATION OF LIGHT TRANSMISSION ARTIFACTS IN PORTABLE DISPLAY UNITS
US10901505B1 (en) 2019-10-24 2021-01-26 Tectus Corporation Eye-based activation and tool selection systems and methods
US11662807B2 (en) 2020-01-06 2023-05-30 Tectus Corporation Eye-tracking user interface for virtual tool control
CN110866895B (zh) * 2019-10-25 2023-09-08 广西电网有限责任公司电力科学研究院 一种检测输变电钢构架热镀锌层色差质量方法
JP2023501952A (ja) * 2019-10-31 2023-01-20 マジック リープ, インコーポレイテッド 持続座標フレームについての品質情報を伴うクロスリアリティシステム
KR102282422B1 (ko) * 2019-11-01 2021-07-27 주식회사 레티널 고스트 이미지 차단 기능 및 광 시야각을 갖는 컴팩트형 증강 현실용 광학 장치
KR102200144B1 (ko) * 2019-11-01 2021-01-08 주식회사 레티널 고스트 이미지 차단 기능 및 광 시야각을 갖는 컴팩트형 증강 현실용 광학 장치
WO2021085960A1 (ko) * 2019-11-01 2021-05-06 주식회사 레티널 고스트 이미지 차단 기능 및 광 시야각을 갖는 컴팩트형 증강 현실용 광학 장치
KR102248606B1 (ko) * 2019-12-26 2021-05-06 주식회사 레티널 곡선 배치 반사 구조를 갖는 컴팩트형 증강 현실용 광학 장치
CN110727115A (zh) * 2019-11-05 2020-01-24 华东交通大学 一种基于衍射光学的超多视点近眼显示装置
US11493989B2 (en) 2019-11-08 2022-11-08 Magic Leap, Inc. Modes of user interaction
USD982593S1 (en) 2019-11-08 2023-04-04 Magic Leap, Inc. Portion of a display screen with animated ray
JP7467619B2 (ja) 2019-11-08 2024-04-15 マジック リープ, インコーポレイテッド 複数の材料を含む光再指向構造を伴うメタ表面およびその加工方法
JP2023504775A (ja) 2019-11-12 2023-02-07 マジック リープ, インコーポレイテッド 位置特定サービスおよび共有場所ベースのコンテンツを伴うクロスリアリティシステム
WO2021097323A1 (en) 2019-11-15 2021-05-20 Magic Leap, Inc. A viewing system for use in a surgical environment
WO2021101844A1 (en) 2019-11-18 2021-05-27 Magic Leap, Inc. Mapping and localization of a passable world
US11282288B2 (en) 2019-11-20 2022-03-22 Shape Matrix Geometric Instruments, LLC Methods and apparatus for encoding data in notched shapes
WO2021102165A1 (en) 2019-11-22 2021-05-27 Magic Leap, Inc. Method and system for patterning a liquid crystal layer
KR102244445B1 (ko) * 2019-11-22 2021-04-26 인하대학교 산학협력단 단일 디지털 마이크로미러 장치를 이용한 오클루전 가능 증강현실용 근안 디스플레이 장치 및 방법
WO2021107828A1 (en) * 2019-11-26 2021-06-03 Telefonaktiebolaget Lm Ericsson (Publ) Supply of multi-layer extended reality images to a user
JP7467623B2 (ja) 2019-11-26 2024-04-15 マジック リープ, インコーポレイテッド 拡張または仮想現実ディスプレイシステムのための向上された眼追跡
CN110873971B (zh) * 2019-11-29 2021-08-31 维沃移动通信有限公司 可穿戴设备及其滤光方法
GB2589575B (en) 2019-12-02 2022-01-12 Envisics Ltd Pupil expander
IL293243A (en) 2019-12-05 2022-07-01 Lumus Ltd A light-guiding optical element using complementary coated partial reflectors, and a light-guiding optical element with reduced light scattering
US11941408B2 (en) 2019-12-06 2024-03-26 Magic Leap, Inc. Encoding stereo splash screen in static image
EP4070150A4 (en) 2019-12-06 2023-12-06 Magic Leap, Inc. DYNAMIC BROWSER STAGE
CN114746797A (zh) 2019-12-08 2022-07-12 鲁姆斯有限公司 具有紧凑型图像投影仪的光学系统
USD940189S1 (en) 2019-12-09 2022-01-04 Magic Leap, Inc. Portion of a display screen with transitional graphical user interface for guiding graphics
US20210173144A1 (en) * 2019-12-09 2021-06-10 KDH Design Co., Ltd. Guiding apparatus for an imaging light path and guiding method thereof
US20230023734A1 (en) * 2019-12-09 2023-01-26 Jarvish Pty Ltd. Light guiding apparatus and guiding method thereof
USD952673S1 (en) 2019-12-09 2022-05-24 Magic Leap, Inc. Portion of a display screen with transitional graphical user interface for guiding graphics
USD941353S1 (en) 2019-12-09 2022-01-18 Magic Leap, Inc. Portion of a display screen with transitional graphical user interface for guiding graphics
US11562542B2 (en) 2019-12-09 2023-01-24 Magic Leap, Inc. Cross reality system with simplified programming of virtual content
US11269181B2 (en) 2019-12-09 2022-03-08 Magic Leap, Inc. Systems and methods for operating a head-mounted display system based on user identity
USD940749S1 (en) 2019-12-09 2022-01-11 Magic Leap, Inc. Portion of a display screen with transitional graphical user interface for guiding graphics
USD941307S1 (en) 2019-12-09 2022-01-18 Magic Leap, Inc. Portion of a display screen with graphical user interface for guiding graphics
USD940748S1 (en) 2019-12-09 2022-01-11 Magic Leap, Inc. Portion of a display screen with transitional graphical user interface for guiding graphics
US11288876B2 (en) 2019-12-13 2022-03-29 Magic Leap, Inc. Enhanced techniques for volumetric stage mapping based on calibration object
CN113007618B (zh) 2019-12-19 2023-11-28 隆达电子股份有限公司 光学元件与发光装置
JP7458485B2 (ja) 2019-12-20 2024-03-29 ナイアンティック, インコーポレイテッド 予測可能なクエリ応答時間を有するジオロケーションデータのシャードストレージ
CN110989172B (zh) * 2019-12-24 2021-08-06 平行现实(杭州)科技有限公司 一种超大视场角的波导显示装置
KR102310804B1 (ko) * 2019-12-26 2021-10-08 주식회사 레티널 곡선 배치 반사 구조를 갖는 컴팩트형 증강 현실용 광학 장치
WO2021137228A1 (en) 2019-12-30 2021-07-08 Lumus Ltd. Optical systems including light-guide optical elements with two-dimensional expansion
TW202125039A (zh) * 2019-12-30 2021-07-01 宏碁股份有限公司 穿戴式顯示裝置
US11372478B2 (en) * 2020-01-14 2022-06-28 Htc Corporation Head mounted display
KR20210091580A (ko) 2020-01-14 2021-07-22 삼성전자주식회사 3차원 영상 표시 장치 및 방법
CN111221126B (zh) * 2020-01-17 2022-01-14 歌尔股份有限公司 成像系统、成像方法及虚拟现实设备
CN111175976B (zh) * 2020-01-17 2022-02-22 歌尔股份有限公司 光波导组件、显示系统、增强现实设备及显示方法
US11360308B2 (en) 2020-01-22 2022-06-14 Facebook Technologies, Llc Optical assembly with holographic optics for folded optical path
JP2023511905A (ja) 2020-01-24 2023-03-23 マジック リープ, インコーポレイテッド 単一コントローラを使用したコンテンツ移動および相互作用
US11340695B2 (en) 2020-01-24 2022-05-24 Magic Leap, Inc. Converting a 2D positional input into a 3D point in space
EP4097685A4 (en) 2020-01-27 2024-02-21 Magic Leap Inc NEUTRAL AVATARS
EP4097564A4 (en) 2020-01-27 2024-02-14 Magic Leap Inc LOOK TIMER BASED EXPANSION OF THE FUNCTIONALITY OF A USER INPUT DEVICE
USD949200S1 (en) 2020-01-27 2022-04-19 Magic Leap, Inc. Portion of a display screen with a set of avatars
EP4097711A4 (en) 2020-01-27 2024-01-24 Magic Leap Inc CURATION OF AN AUGMENTED REALITY MAP
JP2023511083A (ja) 2020-01-27 2023-03-16 マジック リープ, インコーポレイテッド アンカベースのクロスリアリティアプリケーションのための向上された状態制御
USD936704S1 (en) 2020-01-27 2021-11-23 Magic Leap, Inc. Portion of a display screen with avatar
USD948574S1 (en) 2020-01-27 2022-04-12 Magic Leap, Inc. Portion of a display screen with a set of avatars
USD948562S1 (en) 2020-01-27 2022-04-12 Magic Leap, Inc. Portion of a display screen with avatar
US20230072559A1 (en) * 2020-01-31 2023-03-09 University Of Virginia Patent Foundation System and method for visual field rapid assessment
US10856253B1 (en) 2020-01-31 2020-12-01 Dell Products, Lp System and method for beamsteering acquisition and optimization in an enhanced reality environment
EP4097532A4 (en) 2020-01-31 2024-02-21 Magic Leap Inc AUGMENTED REALITY AND VIRTUAL REALITY DISPLAY SYSTEMS FOR OCULOMETRICAL ASSESSMENTS
EP4104034A4 (en) 2020-02-10 2024-02-21 Magic Leap Inc POSITIONING BODY-CENTRIC CONTENT RELATIVE TO A THREE-DIMENSIONAL CONTAINER IN A MIXED REALITY ENVIRONMENT
US11709363B1 (en) 2020-02-10 2023-07-25 Avegant Corp. Waveguide illumination of a spatial light modulator
CN115398484A (zh) * 2020-02-13 2022-11-25 奇跃公司 具有用于定位的地理定位信息优先级的交叉现实系统
US11410395B2 (en) 2020-02-13 2022-08-09 Magic Leap, Inc. Cross reality system with accurate shared maps
JP2023514208A (ja) 2020-02-13 2023-04-05 マジック リープ, インコーポレイテッド マルチ分解能フレーム記述子を使用したマップ処理を伴うクロスリアリティシステム
JP2023517281A (ja) 2020-02-14 2023-04-25 マジック リープ, インコーポレイテッド 仮想および拡張現実ディスプレイシステムのための仮想オブジェクト移動速度曲線
WO2021168481A1 (en) 2020-02-21 2021-08-26 Acucela Inc. Charging case for electronic contact lens
CN115151784A (zh) 2020-02-26 2022-10-04 奇跃公司 程序电子束光刻
WO2021173779A1 (en) 2020-02-26 2021-09-02 Magic Leap, Inc. Cross reality system with fast localization
US11187858B2 (en) * 2020-02-28 2021-11-30 International Business Machines Corporation Electrically-controlled fiber-optic switching system
WO2021174062A1 (en) 2020-02-28 2021-09-02 Magic Leap, Inc. Method of fabricating molds for forming eyepieces with integrated spacers
WO2021178727A1 (en) * 2020-03-04 2021-09-10 The Regents Of The University Of California Evanescent coupler mode converters
WO2021178908A1 (en) 2020-03-06 2021-09-10 Magic Leap, Inc. Angularly selective attenuation of light transmission artifacts in wearable displays
US11262588B2 (en) 2020-03-10 2022-03-01 Magic Leap, Inc. Spectator view of virtual and physical objects
CN111476104B (zh) * 2020-03-17 2022-07-01 重庆邮电大学 动态眼位下ar-hud图像畸变矫正方法、装置、系统
EP4121813A4 (en) 2020-03-20 2024-01-17 Magic Leap Inc SYSTEMS AND METHODS FOR RETINA IMAGING AND TRACKING
IL295694B2 (en) 2020-03-23 2023-06-01 Lumus Ltd Optical devices to reduce ghosting
WO2021195283A1 (en) 2020-03-25 2021-09-30 Magic Leap, Inc. Optical device with one-way mirror
EP4127822A1 (en) 2020-04-03 2023-02-08 Magic Leap, Inc. Wearable display systems with nanowire led micro-displays
CN115769174A (zh) 2020-04-03 2023-03-07 奇跃公司 用于最佳注视辨别的化身定制
JP2023524446A (ja) 2020-04-29 2023-06-12 マジック リープ, インコーポレイテッド 大規模環境のためのクロスリアリティシステム
CN111474813B (zh) * 2020-04-29 2021-09-28 Oppo广东移动通信有限公司 投影光机及电子设备
TW202206896A (zh) * 2020-05-13 2022-02-16 美商艾尤席拉有限公司 用於治療近視之可電子切換的眼鏡
US20210356754A1 (en) * 2020-05-13 2021-11-18 President And Fellows Of Harvard College Meta-optics for virtual reality and augmented reality systems
US11536972B2 (en) 2020-05-22 2022-12-27 Magic Leap, Inc. Method and system for dual projector waveguide displays with wide field of view using a combined pupil expander-extractor (CPE)
EP4154050A1 (en) 2020-05-22 2023-03-29 Magic Leap, Inc. Augmented and virtual reality display systems with correlated in-coupling and out-coupling optical regions
AU2021279462B2 (en) 2020-05-24 2023-06-08 Lumus Ltd. Method of fabrication of compound light-guide optical elements
US11195490B1 (en) 2020-05-29 2021-12-07 International Business Machines Corporation Smart contact lens with adjustable light transmittance
US11514649B2 (en) 2020-05-29 2022-11-29 Microsoft Technology Licensing, Llc Camera for augmented reality display
EP4162343A1 (en) 2020-06-05 2023-04-12 Magic Leap, Inc. Enhanced eye tracking techniques based on neural network analysis of images
EP4161636A1 (en) 2020-06-08 2023-04-12 Acucela Inc. Projection of defocused images on the peripheral retina to treat refractive error
EP4162316A1 (en) 2020-06-08 2023-04-12 Acucela Inc. Stick on devices using peripheral defocus to treat progressive refractive error
EP4162317A1 (en) 2020-06-08 2023-04-12 Acucela Inc. Lens with asymmetric projection to treat astigmatism
US11281022B2 (en) 2020-06-10 2022-03-22 Acucela Inc. Apparatus and methods for the treatment of refractive error using active stimulation
AU2021292215A1 (en) * 2020-06-16 2023-02-09 Marsupial Holdings, Inc. Diffractive optic reflex sight
US20220004148A1 (en) * 2020-07-06 2022-01-06 Grimaldi, Inc. Apparatus and method of reproduction of a diffractive pattern
KR102489272B1 (ko) * 2020-07-07 2023-01-17 한국과학기술연구원 근안 디스플레이 장치
US11360310B2 (en) * 2020-07-09 2022-06-14 Trimble Inc. Augmented reality technology as a controller for a total station
US11512956B2 (en) 2020-07-09 2022-11-29 Trimble Inc. Construction layout using augmented reality
US11852817B2 (en) * 2020-07-14 2023-12-26 Mercury Mission Systems, Llc Curved waveguide for slim head up displays
KR102423857B1 (ko) * 2020-07-17 2022-07-21 주식회사 레티널 전반사를 이용한 컴팩트형 증강 현실용 광학 장치
US11662511B2 (en) 2020-07-22 2023-05-30 Samsung Electronics Co., Ltd. Beam expander and method of operating the same
CN111650745B (zh) * 2020-07-24 2022-07-19 中国科学院光电技术研究所 一种基于微透镜阵列组和自适应光纤准直器的扫描系统
JP2023537486A (ja) 2020-08-07 2023-09-01 マジック リープ, インコーポレイテッド 調整可能円柱レンズおよびそれを含む頭部搭載型ディスプレイ
CN112087575B (zh) * 2020-08-24 2022-03-08 广州启量信息科技有限公司 一种虚拟相机控制方法
WO2022045707A1 (en) 2020-08-25 2022-03-03 Samsung Electronics Co., Ltd. Augmented reality device based on waveguide with holographic diffractive grating structure and apparatus for recording the holographic diffractive grating structure
WO2022051123A1 (en) * 2020-09-02 2022-03-10 The Board Of Trustees Of The Leland Stanford Junior University Doubly resonant micromechanical beam scanners
CN116438479A (zh) 2020-09-29 2023-07-14 阿维甘特公司 用于对显示面板照明的架构
KR102425375B1 (ko) * 2020-10-15 2022-07-27 주식회사 레티널 직선 배치 광학 구조를 갖는 컴팩트형 증강 현실용 광학 장치 및 광학 수단의 제조 방법
US20220128756A1 (en) * 2020-10-27 2022-04-28 Lightspace Technologies, SIA Display system for generating three-dimensional image and method therefor
US11747621B2 (en) * 2020-11-07 2023-09-05 Microsoft Technology Licensing, Llc Dichroic coatings to improve display uniformity and light security in an optical combiner
CN114545624A (zh) * 2020-11-25 2022-05-27 华为技术有限公司 近眼显示系统及近眼显示方法
TWI793912B (zh) * 2020-12-14 2023-02-21 瑞士商艾姆微體電子 馬林公司 用於感測指向裝置之位移的方法
CN112702537B (zh) * 2020-12-25 2022-06-28 上海科技大学 基于反照率差的高动态范围环境光动态采集系统
CN112817117B (zh) * 2020-12-28 2022-10-21 西南技术物理研究所 一种带自准直调节功能的抛物面反射镜辅助装置
CN116685893A (zh) * 2021-01-11 2023-09-01 奇跃公司 用于头戴式显示系统的致动瞳孔转向
US11323691B1 (en) * 2021-01-14 2022-05-03 Lightspace Technologies, SIA Display system for displaying three-dimensional image and method therefor
KR102591589B1 (ko) * 2021-01-30 2023-10-20 주식회사 피앤씨솔루션 외부 연산 장치를 이용한 ar 글래스의 착용형 연산 시스템
WO2022181346A1 (ja) * 2021-02-25 2022-09-01 株式会社小糸製作所 画像投影装置
EP4162314A4 (en) 2021-02-25 2023-11-22 Lumus Ltd. MULTIPLER WITH OPTICAL APERTURE AND RECTANGULAR WAVEGUIDE
USD962290S1 (en) * 2021-03-03 2022-08-30 Johnson & Johnson Consumer Inc. Display screen or portion thereof with icon
KR102470650B1 (ko) * 2021-03-04 2022-11-25 주식회사 레티널 곡선 배치 반사 구조를 갖는 컴팩트형 증강 현실용 광학 장치
WO2022201822A1 (ja) * 2021-03-22 2022-09-29 ソニーセミコンダクタソリューションズ株式会社 光源装置及び画像表示装置
JP7093591B1 (ja) * 2021-03-24 2022-06-30 株式会社Qdレーザ 画像投影装置
CN115128737B (zh) * 2021-03-24 2023-04-18 华为技术有限公司 衍射光波导及电子设备
WO2022213190A1 (en) * 2021-04-06 2022-10-13 Vuereal Inc. Ar system with hybrid display
US11209672B1 (en) 2021-04-06 2021-12-28 Acucela Inc. Supporting pillars for encapsulating a flexible PCB within a soft hydrogel contact lens
US11868531B1 (en) 2021-04-08 2024-01-09 Meta Platforms Technologies, Llc Wearable device providing for thumb-to-finger-based input gestures detected based on neuromuscular signals, and systems and methods of use thereof
US11741863B2 (en) 2021-04-16 2023-08-29 Tectus Corporation Eyeglass-integrated display device using multiple embedded projectors and display windows
KR20220145668A (ko) 2021-04-22 2022-10-31 삼성전자주식회사 자유형상 곡면을 포함하는 디스플레이 장치 및 그 동작 방법
US11366341B1 (en) 2021-05-04 2022-06-21 Acucela Inc. Electronic case for electronic spectacles
CN114675418A (zh) * 2021-05-08 2022-06-28 胡大文 超轻巧的穿戴显示装置和用于显示装置的方法
IL309966B1 (en) 2021-07-04 2024-03-01 Lumus Ltd Display with stacked light guide elements providing different parts of the field of view
TW202309570A (zh) 2021-08-23 2023-03-01 以色列商魯姆斯有限公司 具有嵌入式耦入反射器的複合光導光學元件的製造方法
US11592899B1 (en) 2021-10-28 2023-02-28 Tectus Corporation Button activation within an eye-controlled user interface
US11863730B2 (en) 2021-12-07 2024-01-02 Snap Inc. Optical waveguide combiner systems and methods
TWI806293B (zh) * 2021-12-17 2023-06-21 宏碁股份有限公司 擴增實境眼鏡
WO2023121290A1 (ko) * 2021-12-24 2023-06-29 삼성전자 주식회사 홀로그래픽 광학 소자를 이용한 프로젝터 및 디스플레이 장치
KR20230103379A (ko) 2021-12-31 2023-07-07 삼성전자주식회사 Ar 처리 방법 및 장치
US11619994B1 (en) 2022-01-14 2023-04-04 Tectus Corporation Control of an electronic contact lens using pitch-based eye gestures
US20230236415A1 (en) * 2022-01-26 2023-07-27 Meta Platforms Technologies, Llc Image generation and delivery in a display system utilizing a two-dimensional (2d) field of view expander
US11741861B1 (en) 2022-02-08 2023-08-29 Lumus Ltd. Optical system including selectively activatable facets
WO2023172449A2 (en) * 2022-03-07 2023-09-14 The Uab Research Foundation An anti-myopia visual display therapy using simulated myopic blur
US11556010B1 (en) * 2022-04-01 2023-01-17 Wen-Tsun Wu Mini display device
US20230350203A1 (en) * 2022-04-29 2023-11-02 Snap Inc. Ar/vr enabled contact lens
US11874961B2 (en) 2022-05-09 2024-01-16 Tectus Corporation Managing display of an icon in an eye tracking augmented reality device
TWI828150B (zh) * 2022-05-20 2024-01-01 宇力電通數位整合有限公司 立體視覺眼鏡
WO2023239417A1 (en) * 2022-06-10 2023-12-14 Magic Leap, Inc. Compensating thickness variations in substrates for optical devices
WO2023244811A1 (en) * 2022-06-17 2023-12-21 Magic Leap, Inc. Method and system for performing eye tracking in augmented reality devices
CN115128829B (zh) * 2022-08-25 2023-01-31 惠科股份有限公司 显示装置
KR102474532B1 (ko) * 2022-09-13 2022-12-06 한국광기술원 광도파로 구조의 콘택트 렌즈형 홀로그래픽 디스플레이 장치 및 시스템
CN115840295B (zh) * 2023-02-23 2023-05-02 北京数字光芯集成电路设计有限公司 一种线阵MicroLED扫描AR设备

Family Cites Families (282)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3466021A (en) * 1967-09-14 1969-09-09 Falconbridge Nickel Mines Ltd Thermal treatments in fluidized beds
US3566021A (en) 1968-11-29 1971-02-23 Bell Telephone Labor Inc Real time three dimensional television system
US4173391A (en) * 1978-04-06 1979-11-06 New York Institute Of Technology Three dimensional display
JPS56153315A (en) * 1980-04-30 1981-11-27 Nippon Telegr & Teleph Corp <Ntt> Light beam deflector
US5061049A (en) 1984-08-31 1991-10-29 Texas Instruments Incorporated Spatial light modulator and method
US4786150A (en) 1985-09-19 1988-11-22 Canon Kabushiki Kaisha Zoom lens with beam splitter
JPS6388529A (ja) * 1986-10-01 1988-04-19 Univ Osaka 多機能光信号処理システム構成可能の光偏向器
US4848884A (en) 1987-02-05 1989-07-18 Ricoh Company, Ltd. Variable focusing lens barrel
JPS63254884A (ja) * 1987-04-10 1988-10-21 Toshio Hiji 画像の撮像・伝送・再生装置
US5003300A (en) * 1987-07-27 1991-03-26 Reflection Technology, Inc. Head mounted display for miniature video display system
GB8727212D0 (en) 1987-11-20 1987-12-23 Secr Defence Optical beam steering device
EP0365406B1 (fr) 1988-10-21 1993-09-29 Thomson-Csf Système optique de collimation notamment pour visuel de casque
US5081615A (en) 1988-12-16 1992-01-14 Fuji Photo Film Co., Ltd. Method of coupling external light into an optical waveguide and a guided wave from an optical waveguide and optical pickup employing an optical waveguide
JPH0384516A (ja) * 1989-08-29 1991-04-10 Fujitsu Ltd 3次元表示装置
JP2874208B2 (ja) 1989-09-08 1999-03-24 ブラザー工業株式会社 画像表示装置
US8730129B2 (en) 1990-12-07 2014-05-20 Dennis J Solomon Advanced immersive visual display system
US5334333A (en) 1990-12-17 1994-08-02 Elf Atochem North America, Inc. Electroactive compounds, compositions and devices and methods of making the same
JPH04336523A (ja) * 1991-05-14 1992-11-24 Sumitomo Electric Ind Ltd 多心型光アイソレータ
JP2971626B2 (ja) * 1991-07-10 1999-11-08 旭化成工業株式会社 イメージファイバ
JP3438732B2 (ja) 1991-07-19 2003-08-18 セイコーエプソン株式会社 光学装置および表示装置
JPH0546161A (ja) 1991-08-12 1993-02-26 Casio Comput Co Ltd 仮想現実表示装置
US5233673A (en) 1991-10-09 1993-08-03 Hughes Aircraft Company Output steerable optical phased array
US5493426A (en) * 1991-11-14 1996-02-20 University Of Colorado Foundation, Inc. Lateral electrode smectic liquid crystal devices
US5377287A (en) 1991-12-19 1994-12-27 Hughes Aircraft Company Fiber optic corporate power divider/combiner and method
US5596339A (en) * 1992-10-22 1997-01-21 University Of Washington Virtual retinal display with fiber optic point source
US6008781A (en) 1992-10-22 1999-12-28 Board Of Regents Of The University Of Washington Virtual retinal display
US5285509A (en) * 1992-12-18 1994-02-08 Hughes Aircraft Company Coupler for waveguides of differing cross section
US5564959A (en) 1993-09-08 1996-10-15 Silicon Video Corporation Use of charged-particle tracks in fabricating gated electron-emitting devices
JPH0795622A (ja) * 1993-09-21 1995-04-07 Olympus Optical Co Ltd 立体画像撮影装置、立体画像表示装置および立体画像記録および/または再生装置
JP3341795B2 (ja) * 1994-01-13 2002-11-05 富士写真フイルム株式会社 レーザ走査発振装置
US5416876A (en) * 1994-01-28 1995-05-16 Hughes Training, Inc. Fiber optic ribbon subminiature display for head/helmet mounted display
JPH07261112A (ja) * 1994-03-22 1995-10-13 Hitachi Ltd 頭部搭載型ディスプレイ装置
JP3335248B2 (ja) * 1994-03-31 2002-10-15 セントラル硝子株式会社 ホログラフィック表示装置
JP3847799B2 (ja) * 1994-08-05 2006-11-22 キヤノン株式会社 視線検出系を有した表示装置
JP3298082B2 (ja) * 1994-12-13 2002-07-02 日本電信電話株式会社 ヘッドマウントディスプレィ装置
US5768025A (en) 1995-08-21 1998-06-16 Olympus Optical Co., Ltd. Optical system and image display apparatus
EP1072934A3 (en) * 1995-08-25 2002-05-29 Massachusetts Institute Of Technology VLSI visual display
JP3556389B2 (ja) * 1996-05-01 2004-08-18 日本電信電話株式会社 ヘッドマウントディスプレイ装置
JPH09211374A (ja) * 1996-01-31 1997-08-15 Nikon Corp ヘッドマウントディスプレイ装置
JPH09219832A (ja) 1996-02-13 1997-08-19 Olympus Optical Co Ltd 画像表示装置
JPH09243955A (ja) * 1996-03-11 1997-09-19 Seiko Epson Corp 頭部装着型液晶表示装置
US5701132A (en) 1996-03-29 1997-12-23 University Of Washington Virtual retinal display with expanded exit pupil
US6243350B1 (en) * 1996-05-01 2001-06-05 Terastor Corporation Optical storage systems with flying optical heads for near-field recording and reading
US5885822A (en) 1996-08-20 1999-03-23 David A. Paslin Method and system for growing molluscum contagiosum in xenografts to immunocompromised hosts
US5886822A (en) * 1996-10-08 1999-03-23 The Microoptical Corporation Image combining system for eyeglasses and face masks
US6204974B1 (en) 1996-10-08 2001-03-20 The Microoptical Corporation Compact image display system for eyeglasses or other head-borne frames
JPH10257411A (ja) * 1997-03-14 1998-09-25 Minolta Co Ltd 映像観察装置
US6046720A (en) 1997-05-07 2000-04-04 University Of Washington Point source scanning apparatus and method
US6415087B1 (en) 1997-06-04 2002-07-02 Corning Laserton, Inc. Polished fused optical fiber endface
JP3865906B2 (ja) 1997-06-27 2007-01-10 オリンパス株式会社 画像表示装置
CN1142451C (zh) * 1997-12-16 2004-03-17 “尼奥匹克”俄罗斯联邦全国科技中心 偏振片和液晶显示元件
US6043799A (en) 1998-02-20 2000-03-28 University Of Washington Virtual retinal display with scanner array for generating multiple exit pupils
JP3279265B2 (ja) 1998-03-26 2002-04-30 株式会社エム・アール・システム研究所 画像表示装置
FR2777359B1 (fr) * 1998-04-09 2000-07-07 Corning Inc Connexion d'une fibre optique et d'un guide d'ondes optique par fusion
JP3583613B2 (ja) * 1998-04-15 2004-11-04 日本電信電話株式会社 立体表示方法及び装置
US6100862A (en) 1998-04-20 2000-08-08 Dimensional Media Associates, Inc. Multi-planar volumetric display system and method of operation
JPH11352325A (ja) * 1998-06-05 1999-12-24 Shimadzu Corp 光干渉フイルタ及び光干渉フイルタを使用するヘッドアップディスプレイ
JP2000105348A (ja) * 1998-07-27 2000-04-11 Mr System Kenkyusho:Kk 画像観察装置
US6215532B1 (en) 1998-07-27 2001-04-10 Mixed Reality Systems Laboratory Inc. Image observing apparatus for observing outside information superposed with a display image
JP4232231B2 (ja) * 1998-09-30 2009-03-04 ソニー株式会社 情報処理装置および方法、並びに記録媒体
JP2000131640A (ja) * 1998-10-23 2000-05-12 Sony Corp 画像表示装置
US6281862B1 (en) 1998-11-09 2001-08-28 University Of Washington Scanned beam display with adjustable accommodation
EP1157537A4 (en) * 1999-02-05 2002-07-17 Imaging Diagnostic Systems Inc CCD-ARRAY AS A MULTIPLE DETECTOR IN A DEVICE FOR OPTICAL IMAGING
WO2000049804A1 (en) * 1999-02-17 2000-08-24 University Of Washington A halo display system generating a panoramic virtual image surrounding the use
JP2000249974A (ja) * 1999-03-02 2000-09-14 Canon Inc 表示装置及び立体表示装置
JP3891723B2 (ja) * 1999-03-04 2007-03-14 富士フイルム株式会社 レーザー偏向走査装置
US6480337B2 (en) 1999-03-04 2002-11-12 Mixed Reality Systems Laboratory Inc. Image display apparatus
JP2000249969A (ja) * 1999-03-04 2000-09-14 Mr System Kenkyusho:Kk 画像表示光学系及びそれを用いた画像表示装置
JP2000295637A (ja) * 1999-04-12 2000-10-20 Mr System Kenkyusho:Kk 立体画像表示装置
JP3453086B2 (ja) * 1999-05-18 2003-10-06 日本電信電話株式会社 三次元表示方法およびヘッドマウントディスプレイ装置
JP4372891B2 (ja) 1999-06-22 2009-11-25 オリンパス株式会社 映像表示装置
JP2001021831A (ja) * 1999-07-09 2001-01-26 Shimadzu Corp 頭部装着型表示装置
JP2001066504A (ja) * 1999-08-30 2001-03-16 Canon Inc 光学素子及びそれを用いた撮像装置
JP3854763B2 (ja) * 1999-11-19 2006-12-06 キヤノン株式会社 画像表示装置
JP4921634B2 (ja) 2000-01-31 2012-04-25 グーグル インコーポレイテッド 表示装置
JP5059937B2 (ja) * 2000-01-31 2012-10-31 グーグル インコーポレイテッド 表示装置
US6987911B2 (en) 2000-03-16 2006-01-17 Lightsmyth Technologies, Inc. Multimode planar waveguide spectral filter
JP2001265314A (ja) * 2000-03-17 2001-09-28 Toshiba Corp 表示システム、データ表示方法、影付き文字フォント生成方法及び記録媒体
JP2001290101A (ja) 2000-04-06 2001-10-19 Tomohiko Hattori 奥行き方向視点調節意志検出と意志駆動方式および遠近自動補正眼鏡
PL209571B1 (pl) * 2000-06-05 2011-09-30 Lumus Ltd Urządzenie optyczne z materiałem o całkowitym wewnętrznym odbiciu światła
WO2001095005A1 (en) * 2000-06-08 2001-12-13 Interactive Imaging Systems, Inc. Two stage optical magnification and image correction system
US6975898B2 (en) 2000-06-19 2005-12-13 University Of Washington Medical imaging, diagnosis, and therapy using a scanning single optical fiber system
JP2002296626A (ja) * 2000-10-23 2002-10-09 Sony Corp 光スイッチおよびディスプレイ装置
US6856712B2 (en) 2000-11-27 2005-02-15 University Of Washington Micro-fabricated optical waveguide for use in scanning fiber displays and scanned fiber image acquisition
TW522256B (en) * 2000-12-15 2003-03-01 Samsung Electronics Co Ltd Wearable display system
US7405884B2 (en) 2000-12-21 2008-07-29 Olympus Corporation Optical apparatus
JP2002214545A (ja) * 2001-01-18 2002-07-31 Olympus Optical Co Ltd 光学装置
US6542665B2 (en) 2001-02-17 2003-04-01 Lucent Technologies Inc. GRIN fiber lenses
US6654070B1 (en) 2001-03-23 2003-11-25 Michael Edward Rofe Interactive heads up display (IHUD)
GB0108838D0 (en) * 2001-04-07 2001-05-30 Cambridge 3D Display Ltd Far field display
KR20020083737A (ko) * 2001-04-30 2002-11-04 삼성전자 주식회사 착용형 디스플레이 시스템
US7616986B2 (en) * 2001-05-07 2009-11-10 University Of Washington Optical fiber scanner for performing multimodal optical imaging
US6574043B2 (en) 2001-11-07 2003-06-03 Eastman Kodak Company Method for enhanced bit depth in an imaging apparatus using a spatial light modulator
US7012756B2 (en) 2001-11-14 2006-03-14 Canon Kabushiki Kaisha Display optical system, image display apparatus, image taking optical system, and image taking apparatus
WO2003063086A1 (fr) * 2002-01-23 2003-07-31 Michihiko Shouji Systeme de traitement d'images, appareil de traitement d'images, et appareil d'affichage
JP4107102B2 (ja) * 2002-02-20 2008-06-25 ブラザー工業株式会社 画像表示装置
US7497574B2 (en) 2002-02-20 2009-03-03 Brother Kogyo Kabushiki Kaisha Retinal image display device
US6702442B2 (en) * 2002-03-08 2004-03-09 Eastman Kodak Company Monocentric autostereoscopic optical apparatus using resonant fiber-optic image generation
US7428001B2 (en) * 2002-03-15 2008-09-23 University Of Washington Materials and methods for simulating focal shifts in viewers using large depth of focus displays
KR20030088218A (ko) * 2002-05-13 2003-11-19 삼성전자주식회사 착용형 컬러 디스플레이 시스템
DE10392754T5 (de) 2002-06-17 2005-08-25 Zygo Corp., Middlefield Interferometrisches optisches System und Verfahren, die eine optische Pfadlänge und einen Fokus bzw. Brennpunkt liefern, die gleichzeitig abgetastet werden
US7031579B2 (en) * 2002-06-26 2006-04-18 L-3 Communications Corporation High resolution display component, system and method
JP2004038012A (ja) * 2002-07-05 2004-02-05 Minolta Co Ltd 映像表示装置
US7463783B1 (en) 2002-09-20 2008-12-09 Lockheed Martin Corporation Constant magnification imaging method and system
GB0222244D0 (en) 2002-09-25 2002-10-30 Sau Anthony L T Improved 3D imaging system using reflectors
JP2004289108A (ja) * 2002-09-27 2004-10-14 Mitsubishi Electric Corp 半導体光素子
EP1590698A4 (en) 2003-01-24 2009-07-22 Univ Montana State VARIABLE OUTSIDE FOCUSING AND BREATHING CONTROL MIRRORS AND METHOD
US7068878B2 (en) * 2003-01-24 2006-06-27 University Of Washington Optical beam scanning system for compact image display or image acquisition
CN2611927Y (zh) * 2003-02-09 2004-04-14 广辉电子股份有限公司 光纤显示器
CN101311772A (zh) * 2003-04-25 2008-11-26 微型光学公司 双目镜观察系统
US7146084B2 (en) * 2003-06-16 2006-12-05 Cmc Electronics, Inc. Fiber optic light source for display devices
IL157837A (en) * 2003-09-10 2012-12-31 Yaakov Amitai Substrate-guided optical device particularly for three-dimensional displays
US20050073471A1 (en) * 2003-10-03 2005-04-07 Uni-Pixel Displays, Inc. Z-axis redundant display/multilayer display
JP2005227324A (ja) 2004-02-10 2005-08-25 Matsushita Electric Ind Co Ltd 表示素子および表示装置
US7077523B2 (en) 2004-02-13 2006-07-18 Angstorm Inc. Three-dimensional display using variable focusing lens
US7274835B2 (en) 2004-02-18 2007-09-25 Cornell Research Foundation, Inc. Optical waveguide displacement sensor
US7088743B2 (en) 2004-03-15 2006-08-08 Northrop Grumman Corp. Laser source comprising amplifier and adaptive wavefront/polarization driver
US7418170B2 (en) * 2004-03-29 2008-08-26 Sony Corporation Optical device and virtual image display device
JP4138690B2 (ja) * 2004-03-31 2008-08-27 株式会社東芝 表示装置
JP4636808B2 (ja) 2004-03-31 2011-02-23 キヤノン株式会社 画像表示装置
JP4766913B2 (ja) 2004-05-17 2011-09-07 オリンパス株式会社 頭部装着型画像表示装置
WO2005111693A1 (ja) 2004-05-17 2005-11-24 Olympus Corporation 頭部装着型画像表示装置
JP4609160B2 (ja) * 2004-05-17 2011-01-12 株式会社ニコン 光学素子、コンバイナ光学系、及び情報表示装置
CN100565274C (zh) * 2004-06-23 2009-12-02 株式会社尼康 光学元件、光学系统及波导
WO2006017771A1 (en) 2004-08-06 2006-02-16 University Of Washington Variable fixation viewing distance scanned light displays
JP4637532B2 (ja) * 2004-08-30 2011-02-23 オリンパス株式会社 偏心光学系とそれを用いた光学システム
CN100359362C (zh) * 2004-09-13 2008-01-02 宋义 Led光纤显示器
WO2006054518A1 (ja) * 2004-11-18 2006-05-26 Pioneer Corporation 立体表示装置
JP2006154041A (ja) 2004-11-26 2006-06-15 Konica Minolta Opto Inc プロジェクション光学系
JP2006154437A (ja) * 2004-11-30 2006-06-15 Konica Minolta Photo Imaging Inc 映像表示装置
WO2006064301A1 (en) * 2004-12-13 2006-06-22 Nokia Corporation System and method for beam expansion with near focus in a display device
US7206107B2 (en) * 2004-12-13 2007-04-17 Nokia Corporation Method and system for beam expansion in a display device
US7499174B2 (en) 2005-01-12 2009-03-03 John Farah Lensless imaging with reduced aperture
JP2006195084A (ja) 2005-01-12 2006-07-27 Sharp Corp 表示装置
EP1861745A2 (en) * 2005-03-22 2007-12-05 MYVU Corporation Optical system using total internal reflection images
BRPI0610706B8 (pt) * 2005-05-18 2021-06-22 Nanoventions Holdings Llc sistema de imagem ótica sintética, dispositivo de segurança de documentos, sistema de apresentação de imagem e dispositivo de segurança ou sistema de autenticação
JP4655771B2 (ja) * 2005-06-17 2011-03-23 ソニー株式会社 光学装置及び虚像表示装置
JP2007010830A (ja) * 2005-06-29 2007-01-18 Nikon Corp 画像表示光学系及び画像表示装置
JP4776285B2 (ja) 2005-07-01 2011-09-21 ソニー株式会社 照明光学装置及びこれを用いた虚像表示装置
JP4662256B2 (ja) 2005-08-03 2011-03-30 サミー株式会社 表示装置及び表示プログラム
JP4768367B2 (ja) * 2005-09-02 2011-09-07 日本放送協会 立体画像撮像装置及び立体画像表示装置
KR100725895B1 (ko) * 2005-09-15 2007-06-08 주식회사 아이캔텍 광섬유를 이용하는 광학 데이터 입력 장치
US7324732B2 (en) 2005-10-21 2008-01-29 Fanasys, Llc Lithium niobate coated optical fiber apparatus and method
US7710655B2 (en) * 2005-11-21 2010-05-04 Microvision, Inc. Display with image-guiding substrate
WO2007067163A1 (en) 2005-11-23 2007-06-14 University Of Washington Scanning beam with variable sequential framing using interrupted scanning resonance
US8526096B2 (en) 2006-02-23 2013-09-03 Pixtronix, Inc. Mechanical light modulators with stressed beams
US20080144174A1 (en) * 2006-03-15 2008-06-19 Zebra Imaging, Inc. Dynamic autostereoscopic displays
DE102006047777A1 (de) * 2006-03-17 2007-09-20 Daimlerchrysler Ag Virtuelles Spotlight zur Kennzeichnung von interessierenden Objekten in Bilddaten
WO2007111888A1 (en) 2006-03-22 2007-10-04 The Procter & Gamble Company Liquid treatment unitized dose composition
KR101041635B1 (ko) 2006-04-19 2011-06-15 세트레드 에이에스 3차원 디스플레이 대역폭 개선을 위한 복합시차지각 방식의디스플레이 장치 및 상기 디스플레이 장치의 동작방법
CN101086608A (zh) * 2006-06-05 2007-12-12 中国科学院物理研究所 一种投影显示装置
KR101258584B1 (ko) 2006-06-21 2013-05-02 엘지디스플레이 주식회사 부피표현방식 3차원 영상표시장치
FR2903786B1 (fr) * 2006-07-11 2008-09-05 Thales Sa Systeme de visualisation de casque a modules optiques interchangeables
JP2008046253A (ja) * 2006-08-11 2008-02-28 Canon Inc 画像表示装置
EP2059838A4 (en) * 2006-08-21 2009-12-30 Univ Washington TEST DEVICE FOR OPTICAL FIBERS BOTH WITH NON-RESONANT LIGHTING AS WELL AS RESONANTS COLLECTION / IMAGING FOR SEVERAL OPERATING MODES
JP2008070604A (ja) 2006-09-14 2008-03-27 Canon Inc 画像表示装置
JP5023632B2 (ja) * 2006-09-15 2012-09-12 ブラザー工業株式会社 ヘッドマウントディスプレイ
JP4893200B2 (ja) * 2006-09-28 2012-03-07 ブラザー工業株式会社 光束転送用の光学系、及び、これを用いた網膜走査型ディスプレイ
DE102007024237B4 (de) * 2007-05-21 2009-01-29 Seereal Technologies S.A. Holographisches Rekonstruktionssystem mit einer optischen Wellennachführung
JP2008197242A (ja) * 2007-02-09 2008-08-28 Sony Corp 画像再生方法及び画像再生装置、並びに、3次元像表示装置
BRPI0807560A2 (pt) * 2007-02-23 2014-07-01 Pixeloptics Inc Abertura oftálmica dinâmica
JP2008268846A (ja) 2007-03-22 2008-11-06 Citizen Holdings Co Ltd 電子像表示機能付き眼鏡
JP2008304580A (ja) 2007-06-06 2008-12-18 Sharp Corp 画像表示装置
US7700908B2 (en) * 2007-06-08 2010-04-20 University Of Washington Two dimensional optical scanning image system
CN101796443A (zh) * 2007-09-06 2010-08-04 3M创新有限公司 具有提供输出光区域控制的光提取结构的光导装置
US8251521B2 (en) * 2007-09-14 2012-08-28 Panasonic Corporation Projector having a projection angle adjusting mechanism
JP2010541001A (ja) * 2007-09-25 2010-12-24 エクスプレイ エルティーディー. マイクロプロジェクタ
JP4739304B2 (ja) 2007-09-28 2011-08-03 株式会社エヌ・ティ・ティ・ドコモ 光波面表示装置及び光波面表示方法
JP2009092810A (ja) * 2007-10-05 2009-04-30 Nikon Corp ヘッドマウントディスプレイ装置
CN101414425B (zh) * 2007-10-16 2013-07-17 宋学锋 显示装置及其显示方法
WO2009066465A1 (ja) * 2007-11-20 2009-05-28 Panasonic Corporation 画像表示装置、その表示方法、プログラム、集積回路、眼鏡型ヘッドマウントディスプレイ、自動車、双眼鏡、及び卓上型ディスプレイ
EP2248233B1 (en) 2008-02-07 2018-04-04 Imra America, Inc. High power parallel fiber arrays
US20100149073A1 (en) * 2008-11-02 2010-06-17 David Chaum Near to Eye Display System and Appliance
US20090295683A1 (en) * 2008-05-27 2009-12-03 Randall Pugh Head mounted display with variable focal length lens
JP5493144B2 (ja) * 2008-05-30 2014-05-14 国立大学法人東北大学 光走査デバイス
RU2427015C2 (ru) * 2008-06-25 2011-08-20 Корпорация "САМСУНГ ЭЛЕКТРОНИКС Ко., Лтд." Компактный виртуальный дисплей
EP2138886A3 (en) 2008-06-25 2011-10-05 Samsung Electronics Co., Ltd. Compact virtual display
GB2461294B (en) * 2008-06-26 2011-04-06 Light Blue Optics Ltd Holographic image display systems
JP2010008948A (ja) * 2008-06-30 2010-01-14 Shinko Electric Ind Co Ltd 走査型光投影装置
JP2010020025A (ja) * 2008-07-09 2010-01-28 Ricoh Co Ltd 光走査装置及び画像形成装置
JP5062432B2 (ja) * 2008-07-22 2012-10-31 大日本印刷株式会社 ヘッドマウントディスプレイ
US8809758B2 (en) * 2008-07-25 2014-08-19 Cornell University Light field image sensor with an angle-sensitive pixel (ASP) device
KR101441175B1 (ko) * 2008-08-08 2014-09-18 톰슨 라이센싱 밴딩 아티팩트 검출을 위한 방법 및 장치
WO2010062479A1 (en) * 2008-11-02 2010-06-03 David Chaum System and apparatus for eyeglass appliance platform
WO2010057219A1 (en) 2008-11-17 2010-05-20 Luminit Llc Holographic substrate-guided wave-based see-through display
GB2465786A (en) * 2008-11-28 2010-06-02 Sharp Kk An optical system for varying the perceived shape of a display surface
JP5491833B2 (ja) * 2008-12-05 2014-05-14 株式会社半導体エネルギー研究所 半導体装置
US8965152B2 (en) * 2008-12-12 2015-02-24 Bae Systems Plc Waveguides
JP4674634B2 (ja) * 2008-12-19 2011-04-20 ソニー株式会社 頭部装着型ディスプレイ
JP5136442B2 (ja) * 2009-01-27 2013-02-06 ブラザー工業株式会社 ヘッドマウントディスプレイ
DE102009000724A1 (de) * 2009-02-09 2010-08-12 Robert Bosch Gmbh Vorrichtung zum Ablenken von Lichtstrahlen
JP5133925B2 (ja) * 2009-03-25 2013-01-30 オリンパス株式会社 頭部装着型画像表示装置
WO2010123934A1 (en) 2009-04-20 2010-10-28 The Arizona Board Of Regents On Behalf Of The University Of Arizona Optical see-through free-form head-mounted display
JP2010271526A (ja) * 2009-05-21 2010-12-02 Konica Minolta Opto Inc 映像表示装置、ヘッドマウントディスプレイおよびヘッドアップディスプレイ
JP2010271565A (ja) * 2009-05-22 2010-12-02 Seiko Epson Corp 頭部装着型表示装置
JP5104820B2 (ja) * 2009-07-10 2012-12-19 株式会社島津製作所 表示装置
JP5104823B2 (ja) * 2009-07-29 2012-12-19 株式会社島津製作所 表示装置
DE102009037835B4 (de) * 2009-08-18 2012-12-06 Metaio Gmbh Verfahren zur Darstellung von virtueller Information in einer realen Umgebung
US20110075257A1 (en) * 2009-09-14 2011-03-31 The Arizona Board Of Regents On Behalf Of The University Of Arizona 3-Dimensional electro-optical see-through displays
CN101661163A (zh) * 2009-09-27 2010-03-03 合肥工业大学 增强现实系统的立体头盔显示器
US20110083741A1 (en) * 2009-10-01 2011-04-14 RNY Solar LLC Multiconverter system comprising spectral separating reflector assembly and methods thereof
CN102648431B (zh) * 2009-10-15 2014-12-31 日本电气株式会社 图像投影设备、图像投影方法、距离测量设备和距离测量方法
JP5370071B2 (ja) * 2009-10-26 2013-12-18 株式会社島津製作所 表示装置
EP2494388B1 (en) * 2009-10-27 2018-11-21 DigiLens Inc. Compact holographic eyeglass display
JP2011145607A (ja) * 2010-01-18 2011-07-28 Sony Corp ヘッドマウントディスプレイ
JP5218438B2 (ja) 2010-01-25 2013-06-26 株式会社島津製作所 表示装置
JP5240214B2 (ja) 2010-02-15 2013-07-17 株式会社島津製作所 表示装置
WO2011106797A1 (en) * 2010-02-28 2011-09-01 Osterhout Group, Inc. Projection triggering through an external marker in an augmented reality eyepiece
US20120194553A1 (en) * 2010-02-28 2012-08-02 Osterhout Group, Inc. Ar glasses with sensor and user action based control of external devices with feedback
US20130278631A1 (en) * 2010-02-28 2013-10-24 Osterhout Group, Inc. 3d positioning of augmented reality information
US8488246B2 (en) * 2010-02-28 2013-07-16 Osterhout Group, Inc. See-through near-eye display glasses including a curved polarizing film in the image source, a partially reflective, partially transmitting optical element and an optically flat film
US9766381B2 (en) * 2010-03-12 2017-09-19 Nokia Technologies Oy Light-guiding structures
KR101772153B1 (ko) * 2010-03-17 2017-08-29 삼성디스플레이 주식회사 회절 렌즈를 이용한 영상 표시 장치
US8134719B2 (en) 2010-03-19 2012-03-13 Carestream Health, Inc. 3-D imaging using telecentric defocus
JP5361800B2 (ja) * 2010-05-21 2013-12-04 三菱電機株式会社 光導波路型qスイッチ素子およびqスイッチレーザ装置
US8649099B2 (en) * 2010-09-13 2014-02-11 Vuzix Corporation Prismatic multiple waveguide for near-eye display
JP5646263B2 (ja) * 2010-09-27 2014-12-24 任天堂株式会社 画像処理プログラム、画像処理装置、画像処理システム、および、画像処理方法
US9223137B2 (en) * 2010-10-08 2015-12-29 Seiko Epson Corporation Virtual image display apparatus
US8884984B2 (en) * 2010-10-15 2014-11-11 Microsoft Corporation Fusing virtual content into real content
CN102033319B (zh) * 2010-10-25 2015-07-15 北京理工大学 一种应用全息元件的视度型显示装置
US8582209B1 (en) * 2010-11-03 2013-11-12 Google Inc. Curved near-to-eye display
US9292973B2 (en) * 2010-11-08 2016-03-22 Microsoft Technology Licensing, Llc Automatic variable virtual focus for augmented reality displays
US9304319B2 (en) * 2010-11-18 2016-04-05 Microsoft Technology Licensing, Llc Automatic focus improvement for augmented reality displays
JP2012119867A (ja) 2010-11-30 2012-06-21 Nintendo Co Ltd 画像処理プログラム、画像処理装置、画像処理システム、および画像処理方法
US8988765B2 (en) * 2010-12-07 2015-03-24 Laser Light Engines, Inc. Laser projection system with improved bit depth
US8988463B2 (en) * 2010-12-08 2015-03-24 Microsoft Technology Licensing, Llc Sympathetic optic adaptation for see-through display
US9690099B2 (en) * 2010-12-17 2017-06-27 Microsoft Technology Licensing, Llc Optimized focal area for augmented reality displays
CN103384854B (zh) * 2010-12-22 2017-03-15 视瑞尔技术公司 用于跟踪使用者的组合光调制装置
KR101997852B1 (ko) 2010-12-24 2019-10-01 매직 립, 인코포레이티드 인체공학적 머리 장착식 디스플레이 장치 및 광학 시스템
CN103261944A (zh) * 2010-12-28 2013-08-21 洛克希德马丁公司 采用一个或多个反射光表面的头戴式显示装置
WO2012096689A1 (en) 2011-01-10 2012-07-19 Emvision Llc Fiber optic probes utilizing grin lenses for spatially precise optical spectroscopy
US8939579B2 (en) * 2011-01-28 2015-01-27 Light Prescriptions Innovators, Llc Autofocusing eyewear, especially for presbyopia correction
US9291830B2 (en) 2011-02-27 2016-03-22 Dolby Laboratories Licensing Corporation Multiview projector system
TWI465768B (zh) * 2011-03-21 2014-12-21 Nat Univ Tsing Hua 抬頭顯示裝置
CN202041739U (zh) * 2011-05-14 2011-11-16 马建栋 一种治疗近视眼的眼镜
US20120306850A1 (en) 2011-06-02 2012-12-06 Microsoft Corporation Distributed asynchronous localization and mapping for augmented reality
JP2013013450A (ja) * 2011-06-30 2013-01-24 Namco Bandai Games Inc プログラム、情報記憶媒体、端末及びサーバ
CA2750287C (en) * 2011-08-29 2012-07-03 Microsoft Corporation Gaze detection in a see-through, near-eye, mixed reality display
US9323325B2 (en) 2011-08-30 2016-04-26 Microsoft Technology Licensing, Llc Enhancing an object of interest in a see-through, mixed reality display device
US9025252B2 (en) * 2011-08-30 2015-05-05 Microsoft Technology Licensing, Llc Adjustment of a mixed reality display for inter-pupillary distance alignment
US8998414B2 (en) * 2011-09-26 2015-04-07 Microsoft Technology Licensing, Llc Integrated eye tracking and display system
US9727220B2 (en) 2011-10-03 2017-08-08 Furuno Electric Co., Ltd. Device having touch panel, radar apparatus, plotter apparatus, ship network system, information displaying method and information displaying program
US20130108229A1 (en) * 2011-10-28 2013-05-02 Google Inc. Heads-up display including ambient light control
US8752963B2 (en) * 2011-11-04 2014-06-17 Microsoft Corporation See-through display brightness control
KR102116697B1 (ko) 2011-11-23 2020-05-29 매직 립, 인코포레이티드 3차원 가상 및 증강 현실 디스플레이 시스템
US20130135359A1 (en) 2011-11-30 2013-05-30 Qualcomm Mems Technologies, Inc. Display systems including illumination and optical touchscreen
CN103135233B (zh) * 2011-12-01 2015-10-14 财团法人车辆研究测试中心 抬头显示装置
US20130147686A1 (en) 2011-12-12 2013-06-13 John Clavin Connecting Head Mounted Displays To External Displays And Other Communication Networks
US9223138B2 (en) * 2011-12-23 2015-12-29 Microsoft Technology Licensing, Llc Pixel opacity for augmented reality
US8917453B2 (en) * 2011-12-23 2014-12-23 Microsoft Corporation Reflective array waveguide
US20130194304A1 (en) * 2012-02-01 2013-08-01 Stephen Latta Coordinate-system sharing for augmented reality
KR20130097429A (ko) 2012-02-24 2013-09-03 삼성전자주식회사 광학 기기의 초점 조절 장치
JP6111635B2 (ja) 2012-02-24 2017-04-12 セイコーエプソン株式会社 虚像表示装置
CN103293675A (zh) * 2012-02-24 2013-09-11 精工爱普生株式会社 虚像显示装置
JP2013178639A (ja) * 2012-02-28 2013-09-09 Seiko Epson Corp 頭部装着型表示装置および画像表示システム
JP5919885B2 (ja) * 2012-02-28 2016-05-18 セイコーエプソン株式会社 虚像表示装置
US20130229712A1 (en) * 2012-03-02 2013-09-05 Google Inc. Sandwiched diffractive optical combiner
JP5957972B2 (ja) * 2012-03-07 2016-07-27 セイコーエプソン株式会社 虚像表示装置
JP5919899B2 (ja) * 2012-03-08 2016-05-18 セイコーエプソン株式会社 虚像表示装置及び虚像表示装置の位置調整方法
JP6035793B2 (ja) * 2012-03-14 2016-11-30 ソニー株式会社 画像表示装置及び画像生成装置
US9578318B2 (en) * 2012-03-14 2017-02-21 Microsoft Technology Licensing, Llc Imaging structure emitter calibration
US8985803B2 (en) * 2012-03-21 2015-03-24 Microsoft Technology Licensing, Llc Freeform-prism eyepiece with illumination waveguide
US8736963B2 (en) * 2012-03-21 2014-05-27 Microsoft Corporation Two-dimensional exit-pupil expansion
US9274338B2 (en) 2012-03-21 2016-03-01 Microsoft Technology Licensing, Llc Increasing field of view of reflective waveguide
US9116337B1 (en) * 2012-03-21 2015-08-25 Google Inc. Increasing effective eyebox size of an HMD
JP2013200474A (ja) * 2012-03-26 2013-10-03 Jvc Kenwood Corp 画像表示装置、および、画像表示装置の制御方法
US20130285885A1 (en) * 2012-04-25 2013-10-31 Andreas G. Nowatzyk Head-mounted light-field display
US20130300635A1 (en) 2012-05-09 2013-11-14 Nokia Corporation Method and apparatus for providing focus correction of displayed information
US20130300634A1 (en) * 2012-05-09 2013-11-14 Nokia Corporation Method and apparatus for determining representations of displayed information based on focus distance
JP6145966B2 (ja) * 2012-05-09 2017-06-14 ソニー株式会社 表示装置
US9594261B2 (en) * 2012-05-18 2017-03-14 Reald Spark, Llc Directionally illuminated waveguide arrangement
US10502876B2 (en) * 2012-05-22 2019-12-10 Microsoft Technology Licensing, Llc Waveguide optics focus elements
US9116666B2 (en) 2012-06-01 2015-08-25 Microsoft Technology Licensing, Llc Gesture based region identification for holograms
US9250445B2 (en) 2012-08-08 2016-02-02 Carol Ann Tosaya Multiple-pixel-beam retinal displays
US9151887B2 (en) 2012-09-04 2015-10-06 Corning Incorporated Multi-core optical fibers with single mode and multimode core elements
US20140118360A1 (en) * 2012-10-30 2014-05-01 Pixtronix, Inc. Thinfilm stacks for light modulating displays
CN202975477U (zh) * 2012-11-28 2013-06-05 联想(北京)有限公司 头戴式电子设备
CN102998799A (zh) * 2012-12-04 2013-03-27 深圳市长江力伟股份有限公司 一种虚境与实境融合近眼显示系统
AU2014207545B2 (en) * 2013-01-15 2018-03-15 Magic Leap, Inc. Ultra-high resolution scanning fiber display
WO2015006784A2 (en) 2013-07-12 2015-01-15 Magic Leap, Inc. Planar waveguide apparatus with diffraction element(s) and system employing same
TWI541543B (zh) * 2013-10-21 2016-07-11 財團法人工業技術研究院 分光模組及應用其之投影裝置
CN109445095B (zh) 2013-11-27 2021-11-23 奇跃公司 虚拟和增强现实系统与方法

Also Published As

Publication number Publication date
KR102493498B1 (ko) 2023-01-27
AU2024201233A1 (en) 2024-03-14
US20150235455A1 (en) 2015-08-20
US20150241698A1 (en) 2015-08-27
JP2018060209A (ja) 2018-04-12
US20150235431A1 (en) 2015-08-20
US20160109705A1 (en) 2016-04-21
AU2017254801A1 (en) 2017-11-16
AU2020204085B2 (en) 2022-07-07
JP6510016B2 (ja) 2019-05-08
US20150235457A1 (en) 2015-08-20
US20150235458A1 (en) 2015-08-20
US20150241703A1 (en) 2015-08-27
US20150234476A1 (en) 2015-08-20
CN113568175B (zh) 2023-06-27
CN110542938B (zh) 2023-04-18
IL260871B (en) 2019-12-31
US20150234205A1 (en) 2015-08-20
US20150243102A1 (en) 2015-08-27
US20150243093A1 (en) 2015-08-27
US20150235465A1 (en) 2015-08-20
US20150235459A1 (en) 2015-08-20
US20150235438A1 (en) 2015-08-20
US20150235439A1 (en) 2015-08-20
AU2017254800A1 (en) 2017-11-16
JP2018060213A (ja) 2018-04-12
US20150248006A1 (en) 2015-09-03
WO2015081313A9 (en) 2016-09-09
CN107315249A (zh) 2017-11-03
US20150243098A1 (en) 2015-08-27
JP6529143B2 (ja) 2019-06-12
US20150248046A1 (en) 2015-09-03
JP2019191611A (ja) 2019-10-31
NZ720610A (en) 2020-04-24
JP2018060212A (ja) 2018-04-12
US20150235463A1 (en) 2015-08-20
US20150235472A1 (en) 2015-08-20
US9791700B2 (en) 2017-10-17
US20150243096A1 (en) 2015-08-27
US20150235420A1 (en) 2015-08-20
CN107219628B (zh) 2020-05-01
AU2017254803B2 (en) 2019-05-02
NZ755269A (en) 2020-10-30
JP2018028703A (ja) 2018-02-22
KR102268462B1 (ko) 2021-06-22
KR20160091402A (ko) 2016-08-02
AU2014354673B2 (en) 2019-04-11
IL280685B (en) 2021-08-31
US20160110912A1 (en) 2016-04-21
US20150241701A1 (en) 2015-08-27
CN113433700A (zh) 2021-09-24
CN109298526A (zh) 2019-02-01
US20150235421A1 (en) 2015-08-20
US20150241697A1 (en) 2015-08-27
IL291010B1 (en) 2023-09-01
US20150241700A1 (en) 2015-08-27
KR102378457B1 (ko) 2022-03-23
AU2017254813B2 (en) 2019-08-22
US20150243099A1 (en) 2015-08-27
JP2023025048A (ja) 2023-02-21
EP3075090B1 (en) 2023-04-05
IL245878A0 (en) 2016-07-31
US20150235471A1 (en) 2015-08-20
IL305162A (en) 2023-10-01
CN107272199A (zh) 2017-10-20
US20150235418A1 (en) 2015-08-20
JP2022009824A (ja) 2022-01-14
US20150248011A1 (en) 2015-09-03
US10529138B2 (en) 2020-01-07
AU2020204085A1 (en) 2020-07-09
IL260867B (en) 2019-12-31
AU2023203920A1 (en) 2023-07-13
US20150241707A1 (en) 2015-08-27
JP2019191612A (ja) 2019-10-31
US20150243097A1 (en) 2015-08-27
US20150235442A1 (en) 2015-08-20
IL245878B (en) 2020-07-30
US20150235456A1 (en) 2015-08-20
US20150248010A1 (en) 2015-09-03
US10629004B2 (en) 2020-04-21
US20150243103A1 (en) 2015-08-27
US20150243101A1 (en) 2015-08-27
KR20210076199A (ko) 2021-06-23
US20150243091A1 (en) 2015-08-27
US20200265650A1 (en) 2020-08-20
US20160109652A1 (en) 2016-04-21
US20150235473A1 (en) 2015-08-20
AU2018250534A1 (en) 2018-11-15
CN107193126A (zh) 2017-09-22
CN107300769B (zh) 2019-12-13
IL260865B (en) 2020-11-30
AU2017254798B2 (en) 2019-11-07
US20230324706A1 (en) 2023-10-12
JP2018032049A (ja) 2018-03-01
JP6600675B2 (ja) 2019-10-30
CN107193126B (zh) 2020-06-05
US20150241696A1 (en) 2015-08-27
US20180045965A1 (en) 2018-02-15
IL260870B (en) 2021-02-28
US20150235437A1 (en) 2015-08-20
NZ755266A (en) 2020-10-30
JP6720368B2 (ja) 2020-07-08
US20150243107A1 (en) 2015-08-27
US20150235461A1 (en) 2015-08-20
US20150248786A1 (en) 2015-09-03
AU2014354673A1 (en) 2016-06-16
CN109298526B (zh) 2021-09-07
KR102651578B1 (ko) 2024-03-25
AU2017254813A1 (en) 2017-11-16
JP6971281B2 (ja) 2021-11-24
EP4220999A3 (en) 2023-08-09
US20150319342A1 (en) 2015-11-05
IL291010A (en) 2022-05-01
JP7432687B2 (ja) 2024-02-16
JP2018032048A (ja) 2018-03-01
US20150235470A1 (en) 2015-08-20
US20160109707A1 (en) 2016-04-21
CN107329260B (zh) 2021-07-16
US9846306B2 (en) 2017-12-19
AU2017254807B2 (en) 2019-11-21
US20150234190A1 (en) 2015-08-20
NZ755270A (en) 2021-06-25
JP2018060211A (ja) 2018-04-12
US20150248012A1 (en) 2015-09-03
AU2022246404A1 (en) 2022-11-03
CN109445095B (zh) 2021-11-23
US20150235454A1 (en) 2015-08-20
US20150235445A1 (en) 2015-08-20
US20150243092A1 (en) 2015-08-27
US10935806B2 (en) 2021-03-02
CN113568175A (zh) 2021-10-29
EP3075090A2 (en) 2016-10-05
US20150243094A1 (en) 2015-08-27
US9846967B2 (en) 2017-12-19
US20150235464A1 (en) 2015-08-20
AU2017254798A1 (en) 2017-11-23
AU2023203920B2 (en) 2023-11-30
CN107329259A (zh) 2017-11-07
US20150243090A1 (en) 2015-08-27
US20160109708A1 (en) 2016-04-21
IL260872B (en) 2022-04-01
CN105934902B (zh) 2018-11-23
CN109597202A (zh) 2019-04-09
CN107203045B (zh) 2023-10-20
US20150248158A1 (en) 2015-09-03
IL291010B2 (en) 2024-01-01
US20160109706A1 (en) 2016-04-21
NZ755267A (en) 2021-06-25
IL260866B (en) 2019-11-28
CN107329259B (zh) 2019-10-11
CN107329260A (zh) 2017-11-07
JP2018060208A (ja) 2018-04-12
US9946071B2 (en) 2018-04-17
JP6514302B2 (ja) 2019-05-15
NZ755273A (en) 2021-04-30
CA2931776A1 (en) 2015-06-04
NZ755265A (en) 2021-06-25
IL260869B (en) 2020-11-30
US20150241704A1 (en) 2015-08-27
WO2015081313A3 (en) 2015-11-12
JP2018032050A (ja) 2018-03-01
EP3075090A4 (en) 2017-08-02
US20150243095A1 (en) 2015-08-27
JP2019109534A (ja) 2019-07-04
US20150248790A1 (en) 2015-09-03
AU2017254807A1 (en) 2017-11-16
US20150241706A1 (en) 2015-08-27
AU2019261725A1 (en) 2019-12-05
KR20220039849A (ko) 2022-03-29
US20210141237A1 (en) 2021-05-13
CN107203045A (zh) 2017-09-26
CN113433700B (zh) 2024-03-22
US20150235468A1 (en) 2015-08-20
US10643392B2 (en) 2020-05-05
US20150309315A1 (en) 2015-10-29
US20150235466A1 (en) 2015-08-20
US20150235436A1 (en) 2015-08-20
US20150235440A1 (en) 2015-08-20
US9804397B2 (en) 2017-10-31
CN107272199B (zh) 2023-04-07
US20180252925A1 (en) 2018-09-06
AU2022246404B2 (en) 2023-03-30
US20150235460A1 (en) 2015-08-20
US20150235469A1 (en) 2015-08-20
JP6510015B2 (ja) 2019-05-08
CN107219628A (zh) 2017-09-29
US20150235419A1 (en) 2015-08-20
US11714291B2 (en) 2023-08-01
US20150235446A1 (en) 2015-08-20
US20160110920A1 (en) 2016-04-21
US20150235467A1 (en) 2015-08-20
EP4220999A2 (en) 2023-08-02
US20150234254A1 (en) 2015-08-20
JP6510013B2 (ja) 2019-05-08
JP6510014B2 (ja) 2019-05-08
CN109445095A (zh) 2019-03-08
JP2018060210A (ja) 2018-04-12
US20150235462A1 (en) 2015-08-20
US20150235444A1 (en) 2015-08-20
CN105934902A (zh) 2016-09-07
US20180039084A1 (en) 2018-02-08
JP7179140B2 (ja) 2022-11-28
US9841601B2 (en) 2017-12-12
US20150234191A1 (en) 2015-08-20
JP6763070B2 (ja) 2020-09-30
NZ755268A (en) 2021-06-25
AU2017254803A1 (en) 2017-11-16
US20150243088A1 (en) 2015-08-27
US11237403B2 (en) 2022-02-01
WO2015081313A2 (en) 2015-06-04
US9915824B2 (en) 2018-03-13
US20150241702A1 (en) 2015-08-27
JP6510012B2 (ja) 2019-05-08
CN109597202B (zh) 2021-08-03
US20150241699A1 (en) 2015-08-27
US20150235443A1 (en) 2015-08-20
CN107300769A (zh) 2017-10-27
AU2017254800B2 (en) 2019-08-15
KR20230016035A (ko) 2023-01-31
AU2017254811A1 (en) 2017-11-16
JP2024040250A (ja) 2024-03-25
JP2017500605A (ja) 2017-01-05
AU2017254811B2 (en) 2019-08-01
US20150205126A1 (en) 2015-07-23
US20150243104A1 (en) 2015-08-27
JP2018060214A (ja) 2018-04-12
NZ755272A (en) 2020-05-29
CN107315249B (zh) 2021-08-17
IL280685A (en) 2021-03-25
CN110542938A (zh) 2019-12-06
US9939643B2 (en) 2018-04-10
AU2019261725B2 (en) 2020-05-07
AU2017254801B2 (en) 2018-11-15
US20220113552A1 (en) 2022-04-14
US20150235448A1 (en) 2015-08-20
US20150243089A1 (en) 2015-08-27

Similar Documents

Publication Publication Date Title
JP6513167B2 (ja) 仮想現実および拡張現実のシステムおよび方法
KR20240042677A (ko) 가상 및 증강 현실 시스템들 및 방법들

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180911

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180925

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20181218

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20190222

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190308

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190408

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190409

R150 Certificate of patent or registration of utility model

Ref document number: 6513167

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250