JP6203810B2 - ナノ結晶の合成、キャップ形成および分散 - Google Patents

ナノ結晶の合成、キャップ形成および分散 Download PDF

Info

Publication number
JP6203810B2
JP6203810B2 JP2015253283A JP2015253283A JP6203810B2 JP 6203810 B2 JP6203810 B2 JP 6203810B2 JP 2015253283 A JP2015253283 A JP 2015253283A JP 2015253283 A JP2015253283 A JP 2015253283A JP 6203810 B2 JP6203810 B2 JP 6203810B2
Authority
JP
Japan
Prior art keywords
dispersion
nanocrystals
optionally
solvent
present disclosure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
JP2015253283A
Other languages
English (en)
Other versions
JP2016128374A (ja
Inventor
ゴネン・ウィリアムズ,ゼーラ・サーピル
ウォン,イジュン
ウィアチェク,ロバート・ジェイ
バイ,シア
ゴウ,リンフェン
トーマス,セリナ・アイ
シュイ,ウェイ
シュイ,ジュン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pixelligent Technologies LLC
Original Assignee
Pixelligent Technologies LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=45994708&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP6203810(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority claimed from US13/064,905 external-priority patent/US8592511B2/en
Application filed by Pixelligent Technologies LLC filed Critical Pixelligent Technologies LLC
Publication of JP2016128374A publication Critical patent/JP2016128374A/ja
Application granted granted Critical
Publication of JP6203810B2 publication Critical patent/JP6203810B2/ja
Ceased legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/16Oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B1/00Nanostructures formed by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B3/00Manufacture or treatment of nanostructures by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G25/00Compounds of zirconium
    • C01G25/006Compounds containing, besides zirconium, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G25/00Compounds of zirconium
    • C01G25/02Oxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G27/00Compounds of hafnium
    • C01G27/006Compounds containing, besides hafnium, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/16Oxides
    • C30B29/22Complex oxides
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B33/00After-treatment of single crystals or homogeneous polycrystalline material with defined structure
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B7/00Single-crystal growth from solutions using solvents which are liquid at normal temperature, e.g. aqueous solutions
    • C30B7/10Single-crystal growth from solutions using solvents which are liquid at normal temperature, e.g. aqueous solutions by application of pressure, e.g. hydrothermal processes
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B7/00Single-crystal growth from solutions using solvents which are liquid at normal temperature, e.g. aqueous solutions
    • C30B7/14Single-crystal growth from solutions using solvents which are liquid at normal temperature, e.g. aqueous solutions the crystallising materials being formed by chemical reactions in the solution
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02551Group 12/16 materials
    • H01L21/02554Oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02587Structure
    • H01L21/0259Microstructure
    • H01L21/02601Nanoparticles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02623Liquid deposition
    • H01L21/02628Liquid deposition using solutions
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/40Organosilicon compounds, e.g. TIPS pentacene
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/60Optical properties, e.g. expressed in CIELAB-values
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/773Nanoparticle, i.e. structure having three dimensions of 100 nm or less
    • Y10S977/774Exhibiting three-dimensional carrier confinement, e.g. quantum dots
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/84Manufacture, treatment, or detection of nanostructure
    • Y10S977/895Manufacture, treatment, or detection of nanostructure having step or means utilizing chemical property
    • Y10S977/896Chemical synthesis, e.g. chemical bonding or breaking
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/902Specified use of nanostructure
    • Y10S977/932Specified use of nanostructure for electronic or optoelectronic application

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Composite Materials (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)
  • Paints Or Removers (AREA)
  • Colloid Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

キャップされたコロイド状の半導体ナノ結晶の調製およびポリマー溶液とフィルムの中でのそれらの結晶の分散が、本明細書で記述される。このコロイド状の半導体ナノ結晶は、1〜10nmの間のナノ結晶サイズを有する高度に単分散性のものである。これらのナノ結晶を用いて、高い添加密度の均一に分散されキャップされた半導体ナノ結晶が中に含まれるナノ複合材を形成することができる。ナノ結晶の懸濁液を様々な溶媒において形成することができて、その懸濁液から製造されるナノ複合材を、光学的に透過性で散乱がほとんど生じないか、全く生じないものにすることができる。
連邦政府が後援する研究または開発についての陳述
この研究は一部が、商務省協同契約番号70NANB7H7014および70NANB10H012および米国国立科学財団認可番号0724417によって支援された。
ナノ結晶は物質の単結晶であって、結晶の少なくとも一つの寸法が1ミクロン未満のサイズのものである。ナノ結晶はそれらの塊状の相対物の光学的、機械的および物理的な性質を保持していてもよく、あるいは全く異なる性質を示してもよい。ナノ結晶は広範な方法によって製造することができて、そのうちの幾つかとしては、液体合成、溶媒熱合成、気相合成、エーロゾル合成、熱分解、火炎熱分解、レーザー熱分解、ボールミル粉砕、およびレーザーアブレーションがある。
ナノ結晶は、(これらに限定するものではないが)液体、ゲル、ガラス、ポリマーおよび固体を含めた、様々な媒質(media)または媒質の組み合わせの中に分散させることが
できる。分散したナノ結晶は、ナノ結晶の全てまたは幾つかの性質を分散体に付与するか、あるいは個々の成分のいずれの性質とも異なる性質を分散体に付与するだろう。ナノ結晶と媒質との間で形成される分散の質は、最終的な分散体の性質に大きな影響を及ぼすかもしれない。媒質中のナノ結晶の分散の質は、(これらに限定するものではないが)ナノ結晶の表面(あるいは有効なナノ結晶表面)の化学的性質、ナノ結晶の大きさと形状、ナノ結晶の物理的性質、分散媒質の化学的性質、および分散媒質の物理的性質を含めた、ひと組のパラメーターの間の複合した相互作用によって支配されるものとして説明することができる。良好に分散したナノ結晶は、ナノ結晶の凝集体が最小限の量で存在する媒質中の全体にわたって均一に分布しているナノ結晶と定義することができる。ナノ結晶が媒質中に良好に分散していない場合、ナノ結晶の光学的、機械的および物理的な性質は変わるかもしれず、あるいは媒質の性質は悪影響を受けるかもしれない。
ナノ複合材は、ポリマー、セラミックおよびガラスを含めたマトリックス中に分散したナノ結晶からなるナノ結晶分散体である。ナノ複合材は、粉末の形態のナノ結晶または別の媒質中にすでに分散されたナノ結晶のいずれかとマトリックスの先駆物質の成分とを混合することによって製造することができる。ナノ複合材を形成するのに用いるための可能性のあるマトリックス成分の非網羅的なリストとしては、モノマー、オリゴマー、ポリマー、プレポリマー樹脂、セラミック、プレセラミックおよびガラスがある。ナノ複合材は、周知の範囲の複合材料を拡張したものであって、複合材料において用いられるミクロンサイズの充填材またはもっと大きな充填材がナノ結晶で置き換えられたものと考えることができる。複合材料とナノ複合材の両者において、ナノ複合材の光学的、機械的および物理的な性質を充填材料を用いて改変することができるかもしれないが、しかし、ナノ複合材において用いられる充填材のサイズが小さいために、マトリックス中に充填材を含めることによる有害な影響は、比較的小さいか、あるいは強くはないだろう。複合材料におい
て生じるかもしれない、これらの可能性のある有害な影響のリストとしては、構造的結合性の低下、機械的強度の低下、機械的安定性の低下、可撓性の低下、光学的透過性の低下、および熱安定性の低下がある。ミクロンサイズの充填材またはもっと大きな充填材を代替するものとしてナノ結晶を用いる可能性をもっと十分に実現するために、ナノ結晶はマトリックス中で良好に分散し得るものである必要がある。これは、複合材料の中の凝集したナノ結晶は凝集体のサイズの充填材と同等に有害に作用するか、あるいはそれよりももっと悪い作用を及ぼす、という事実によるものである。従って、凝集体のサイズが全ての寸法において1ミクロンよりも大きいような、強く凝集した5nmの粒子で作られた複合材料は、ナノ複合材としては作用しないだろう。
ナノ複合材を製造するための典型的な手段によれば、良好に分散しているとは言えないような、媒質中でのナノ結晶の分布が生じることがしばしばある。ナノ結晶の分布はしばしば不均一であり、大量の凝集体を含むことがある。良好に分散したナノ複合材を製造するための一つの重要なことは、マトリックスまたは媒質との混合を開始する前に凝集していないナノ結晶を用いることである。
文献においてしばしば論じられる二つの主要なタイプの凝集体がある。硬質凝集体はナノ結晶のクラスターであり、これにおいてナノ結晶は互いに比較的強く結合している。硬質凝集体は、形成される間または形成後であって材料がまだ高温にあるときに粒子が接触する結果生じるだろう。他のタイプの凝集体である軟質凝集体は、通常は合成後に形成されるか、あるいは比較的低温で形成される。一般的な知見によれば、軟質凝集体は加工処理の間に容易に破壊して分離することができて、従って、良好に分散したものにすることができるが、一方、硬質凝集体は大きな困難なくしては破壊することができず、従って、良好に分散したナノ結晶の適当な源ではない。ナノ結晶が良好に分散した分散体を形成するためには、両方のタイプの凝集を避けるのが好ましい。
ナノ結晶の凝集はナノ結晶の表面の化学的性質(または有効な表面の化学的性質)によって制御される。分散体においては、ナノ結晶の表面の間の粒子間力(例えば、静電力、ファンデルワールス力およびエントロピー力)により、凝集体が形成される傾向が生じる。これらの粒子間力は、これらの粒子についての体積に対する大きな表面の比率の故に、ナノ結晶において特に重要である。分散において凝集を避けるためには、ナノ結晶の表面が不動態化(または安定化)されていることが望ましい。ナノ結晶の表面を不動態化するために用いることのできる一つの方法には、配位子のイオンまたは分子を導入することが含まれる。これらの配位子(これらはキャッピング剤またはキャップとも呼ばれる)はナノ結晶の表面に付加され、それによりナノ結晶の新しい有効な表面が形成される。この有効な表面は、表面を配位子で完全に(または部分的に)覆うことによって作られるシェル(外殻)の表面である。この有効な表面の化学的性質は、ナノ結晶の実際の表面または最初の表面とは異なる化学的環境を作るために変えることができて、それにより凝集を避けるかまたは減少させて、分散が促進される。これらの不動態化配位子は、様々な手段で凝集を防ぐことを助けることができる。ナノ結晶を反発するような同じ電荷を利用する静電不動態化や、ナノ結晶の表面を物理的に離しておく塊状の分子を用いる立体不動態化は、表面不動態化方法の二つの例である。
エーロゾル合成、熱分解、火炎熱分解、レーザー熱分解、ボールミル粉砕、およびレーザーアブレーションのような大部分の典型的なナノ結晶合成法によれば、ここで述べているタイプの表面不動態化を伴わないナノ結晶が生成する。実際に、これらの方法の多くでは、硬質凝集体として密集したナノ結晶が生成する。合成によって凝集したナノ結晶が生じない場合であっても、表面不動態化を伴わない金属酸化物のナノ結晶は、粒子間力のために凝集する傾向がある。
金属酸化物のコロイド状ナノ結晶の液体合成は、合成が行われる間に少なくとも部分的に表面が不動態化したナノ結晶を生成する方法である。液体合成は、キャッピング剤が存在するか、あるいは存在しない条件下で、溶媒中で行われる。ナノ結晶は、合成を行う間かまたはその後に、キャッピング剤によって少なくとも部分的に凝集に対して保護される。合成が配位溶媒中で行われる場合、溶媒の分子またはその生成物は、表面を不動態化するためのキャッピング剤として作用するかもしれない。液体合成の後、ナノ結晶は、溶媒、溶媒の生成物、添加されたキャッピング剤、および/またはこれらの組み合わせによりナノ結晶が部分的にまたは完全に覆われることによって、凝集体を形成することから保護される。
液体合成によってナノ結晶が合成された後、不動態化されたままの表面を、キャップ交換反応または配位子交換反応として知られるプロセスによって変性することができ、この反応においては、一つの配位子またはキャッピング剤は別のものによって少なくとも部分的に置換される。このプロセスにおいて、ナノ結晶は通常、所望のキャッピング剤とともに溶媒中に分散される。ある場合には、懸濁液の温度は、交換プロセスをさらに進めるために高温にされる。キャップ交換の結果、ナノ結晶の表面のある部分に新たなキャッピング剤が付加されるか、あるいは前の表面不動態化剤の部分が新たなキャッピング剤によって置換されるか、あるいはこれらの何らかの組み合わせのいずれかが行われる。その新たなキャッピング剤は、有効なナノ結晶表面と最終的な分散体または用途のために選択される溶媒またはその他の媒質との間の化学的な適合性を得るために選択されてもよい。
他の方法によって生成されて表面が不動態化されていない合成したままのナノ結晶を、キャッピング剤に曝露することもできる。これによりナノ結晶の表面のある部分がキャッピング剤によって覆われるかもしれないが、このプロセスによって前に形成された(硬質凝集体と軟質凝集体の両者を含めた)いかなる凝集体も破壊して分離することはできないだろう。酸化物のナノ結晶からなるこれらの凝集体は、不動態化剤がナノ結晶の間の多孔質のスペーサーを形成しているような、表面が不動態化されたナノ結晶からなる非常に弱く結合した凝集体とは異なるものである。弱く結合した凝集体においては、表面の不動態化によって付与されるナノ結晶間のスペーサー層は重要である。というのは、凝集を生じさせる表面と表面の間の力の多くは短い範囲の相互作用であり、これはナノ結晶の分離を増大させることによって低下させることができるからである。しかし、表面の不動態化が行われない場合、硬質凝集体が形成されるなどしてナノ結晶の表面が一度結合すると、短範囲の力が支配的となり、ナノ結晶を再び分離させるのは困難である。
表面が不動態化されたナノ結晶の凝集体で、分解することのできるものは、粒子を洗浄する際や粉末を乾燥する際など、分散体の製造における様々な時点の際に形成されるかもしれない。コロイド状のナノ結晶を製造するために液体合成を用いることの利点の一つは、合成から合成後のプロセスまでのナノ結晶の加工処理の全ての段階において硬質凝集体と軟質凝集体の両者が形成されるのを防止または減少させるために、合成したままのナノ結晶の表面の不動態化を用い、それにより最終的に高品質の分散体を形成することができることである。
高品質のナノ複合材を得るために、ナノ結晶の粒子のサイズは少なくとも一つの寸法(一つの次元)において10nm未満とするのが有利であり、好ましくは非常に狭い粒子サイズ分布とし、そしてさらに特定の粒子形状(棒状、球状、その他)のものとする。さらに、ナノ結晶の表面の化学的性質としては十分に不動態化されているのが有利であり、それにより凝集が防止されるかまたは減少し、そして溶媒および/またはマトリックス材料との相溶性が増大または向上し、従って、ナノ複合材またはその他のナノ結晶を含む基材へのナノ結晶の分散が可能になるか、あるいは向上する。
また、ここで開示されるナノ結晶は、例えばナノ粒子、量子ドットおよびコロイド粒子を含むものとして当分野で認識され、そして数百ナノメートルから1nm未満までの範囲のサイズを有する結晶質および/または非晶質の粒子を含んでいてもよい。それらの小さなサイズのために、ナノ結晶は、同様の材料の塊状の形態のものと比較して劇的に異なる物理的性質を備えることができて、それは例えば、量子効果および/または大きな面積対体積比によるものである。ここで開示されるナノ結晶は、例えば冶金から化学センサーまでの範囲の用途や、医薬品から塗料および化粧品の生地までの範囲の産業において有用であろう。マイクロエレクトロニクスや光学の用途も考えられる。
コロイド状の半導体のナノ結晶がナノメートルのスケールで化学的に合成され、これはナノ結晶の表面に配位子またはキャッピング剤を有していて、それにより溶液中での分散性と安定性の両方が付与される。基本的な化学合成の方法において、半導体ナノ結晶の先駆物質は安定化有機キャッピング剤または溶媒の存在下で反応または分解する。ナノ結晶のサイズを変化させることは、反応時間または温度のプロフィールの変更、先駆物質を添加する順序の調整、または化学的先駆物質の濃度の変更、あるいは化学的先駆物質の濃度比率の変更、および/またはキャッピング剤の変更によって達成することができる。
キャッピング剤の化学的性質はナノ結晶および/またはナノ複合材の製造における系の幾つかのパラメーターに影響し、および/または、それらを制御し、そのようなパラメーターとしては例えば、様々な溶媒と固体の中でのナノ結晶の成長速度、形状および分散性、さらにはナノ結晶中の電荷のキャリヤーの励起状態の寿命がある。この化学合成で生じる効果の適応性は、一つのキャッピング剤がその成長を制御する性質の故にしばしば選択され、そのキャッピング剤が、別のキャッピング剤のための合成が行われた後に、部分的または完全に置換される、という事実によって証明される。この置換は様々な理由から行われてもよく、そのような理由としては例えば、(これらに限定するものではないが)ナノ結晶と媒質の界面を所定の用途に対してより適したものにするためか、あるいはナノ結晶の光学的な性質を改変するためである。
酸化亜鉛(ZnO)、酸化イットリウム(Y)、酸化ハフニウム(HfO)、および酸化ジルコニウム(ZrO)、酸化ハフニウム・ジルコニウム(HfO:ZrO)および酸化チタニウム・ジルコニウム(TiO:ZrO)のコロイド状の半導体ナノ結晶を製造するための合成方法、さらにはこれらのナノ結晶のキャッピング(キャップ形成)とキャップ交換、および溶媒とポリマー中でのこれらの物質の分散、およびナノ複合材の生成について以下で説明する。
官能化オルガノシランは、ナノ結晶質の酸化物物質の表面をキャッピング剤として存在させるために用いられる一般的な種類の有機化合物である。これらのオルガノシランは典型的には頭部成分と尾部成分からなる。官能化オルガノシランの頭部は典型的にはトリアルコキシシラン基とトリクロロシラン基のいずれかであるが、しかし二置換および一置換されたアルコキシシランとクロロシランも可能である。頭部は、表面に存在するヒドロキシル基(−OH)または−OR基(Rはアルキル基またはアリール基)との共有結合によって酸化物の表面に固着するが、これによりアルコール、アルキルクロリド、水またはHClは副生物として脱離する。官能化オルガノシランの尾部は、様々な長さのアルキル鎖、アリール基、またはエーテル基、アミン、チオール、またはカルボン酸のうちの一つ以上を含み得る。
図1はアルコール脱離反応によるナノ結晶の表面へのオルガノシランの典型的な付加を示す。この反応において、−OH基(101)を含む極性表面を有するナノ結晶はオルガノシラン(102)と反応して、オルガノシランでキャップされたナノ結晶(103)が
形成される。
酸化物物質の表面を不動態化するためのキャッピング剤として用いられる他の種類の有機化合物としては、オルガノカルボン酸およびオルガノアルコールがある。オルガノカルボン酸の頭部はカルボン酸(−COOH)基であり、オルガノアルコールは−OH基である。頭部は、表面に存在するヒドロキシル基(−OH)または−OR基(Rはアルキルまたはアリール)との共有結合によって酸化物の表面に固着するが、これによりアルコールまたは水は副生物として脱離する。官能化オルガノカルボン酸およびオルガノアルコールの尾部は、様々な長さのアルキル鎖、アリール基、エーテル基、アミン、チオール、またはカルボン酸からなり得る。
コロイド状のナノ結晶に対して官能化オルガノシラン、アルコールまたはカルボン酸などのキャッピング剤を用いることによって、例えば極性媒質や非極性媒質のような様々な分散性溶媒へのナノ結晶の相溶性の制御などの幾つかの所望の特性が付与され、それによりナノ結晶の凝集を低減させることができる。
この開示はさらに、オルガノシラン、オルガノアルコールおよび/またはオルガノカルボン酸を用いてナノ結晶の表面を変性するための方法を含む。その方法は、ナノ結晶を合成する間にキャッピング剤を付着させること、あるいは、合成後に、ナノ結晶の上に最初に存在するキャッピング剤の少なくとも一部を第二のキャッピング剤で配位子交換することによってキャッピング剤を付着させること、を含む。これらの反応は、周囲条件、加熱条件、および/または高温高圧条件の下で行うことができる。
この開示はさらに、マトリックスとナノ結晶を含むナノ複合材料を含み、ナノ結晶は、例えばマトリックスと混合されるか、攪拌されるか、またはその中に分散している。本開示に係るナノ複合材は、例えばナノ結晶とマトリックス材料またはそのマトリックスの先駆物質の溶融混合、現場(in situ)重合、および/または溶媒混合によって製造するこ
とができる。
溶融混合においては、ナノ結晶は溶融状態にあるポリマーと機械的な力を用いて混合される。現場重合において、ナノ結晶はモノマーと混合され、次いでこれらが重合して複合材料を形成する。溶媒混合においては、ナノ結晶とポリマーの両者を分散させるための溶媒が用いられ、そして溶媒を除去することによってポリマーとナノ結晶の均一な分散が達成される。
この開示は、ナノ複合材料のための調製方法を含み、この方法は、ポリマーまたはポリマーの先駆物質と官能化オルガノシラン、有機酸またはオルガノアルコールでキャップされたナノ結晶との溶媒混合、およびキャップされたナノ結晶とポリマーのモノマーとの現場重合を含む。
図1はアルコールの脱離によるナノ結晶の表面へのオルガノシランの付加を説明している。 図2は本明細書で記述されるナノ複合材料を形成するための本開示の加工処理工程をブロック線図で示している。 図3は、ポリマーフィルム中の、シランでキャップされたコロイド状半導体ナノ結晶を例示する。 図4はジルコニウムブトキシドから合成されたナノ結晶のTEM画像を示す。 図5は、1−プロパノールを除去することによってジルコニウムプロポキシドから合成されたZrOナノ結晶の、反応前、反応中または反応後のXRDパターンを示す。 図6は、1−プロパノールをa)反応前およびb)反応後に除去することによってジルコニウムプロポキシドから合成されたZrOナノ結晶のTEM画像を示す。 図7は様々なサイズを有するZrOナノ結晶のTEM画像を示す。 図8は米状の形態を有する合成したままのHfOナノ結晶のTEM画像を示す。 図9は2〜5nmのHfOナノ結晶のTEM画像を示す。 図10はZnOナノ結晶のTEM画像を示す。 図11はZnO/SOGナノ複合材を回転塗布したフィルムの紫外線-可視光スペクトルを示す。 図12はZnO/PMMAナノ複合材のTEM画像を示す。 図13はHfO/SOGナノ複合材のTEM画像を示す。 図14はAFMによって測定されたZrOフィルムの表面の粗さを示す。 図15はHfOナノ結晶のXRDパターンを示す。 図16はキャップされたHfOナノ結晶のTEM画像を示す。 図17はPGMEAの中に分散したキャップされたHfOナノ結晶のDLSプロットを示す。 図18はPGMEAの中に分散したキャップされたHfOナノ結晶のTGAを示す。 図19はPGMEAの中に分散した10重量%のキャップされたHfOナノ結晶の紫外線-可視光スペクトルを示す。 図20はPGMEAの中に分散したキャップされたHfOナノ結晶のGCプロットを示す。 図21はZrOナノ結晶のXRDパターンを示す。 図22はZrOナノ結晶のTEM画像を示す。 図23はPGMEAの中に分散した5重量%のキャップされたZrOナノ結晶のDLSプロットを示す。 図24はPGMEAの中に分散したキャップされたZrOナノ結晶のTGAプロットを示す。 図25はPGMEAの中に分散した52.4重量%のキャップされたZrOナノ結晶の紫外線-可視光スペクトルを示す。 図26はPGMEAの中に分散したキャップされたZrOナノ結晶のGCプロットを示す。 図27は35重量%の添加量でアクリルポリマーの中に分散したほぼ球形のキャップされたZrOナノ結晶のTEM画像を示す。
ここで説明される高品質の半導体金属酸化物のナノ結晶を調製するための合成方法は、金属酸化物の先駆物質を少なくとも1種の溶媒中に混合または溶解し、そして一定の時間にわたって反応させる合成方法を含む。ある場合には、圧力または加熱の使用が必要かもしれない。
少なくともZrOとHfOのナノ結晶の合成の場合、驚くべきことに、実施例で説明しているように、溶媒に水を添加することによって、水を添加しないで実施する反応よりも小さな粒子が生じる。溶媒に添加する水の量を制御することによって、ナノ結晶の平均の粒子サイズを制御することができる。
金属酸化物の先駆物質は、次のようなアルコキシドのうちの1種以上とすることができ
る:ジルコニウムエトキシド(Zr(OCHCH))、ジルコニウムn−プロポキシド(Zr(OCHCHCH))、ジルコニウムイソプロポキシド(Zr(OCH(CH)))、ジルコニウムn−ブトキシド(Zr(OCHCHCHCH))、ジルコニウムt−ブトキシド(Zr(OC(CH)))、ハフニウムエトキシド(Hf(OCHCH))、ハフニウムn−プロポキシド(Hf(OCHCHCH))、ハフニウムイソプロポキシド(Hf(OCH(CH)))、ハフニウムブトキシド(Hf(OCHCHCHCH))、ハフニウムt−ブトキシド(Hf(OC(CH)))、チタニウムエトキシド(Ti(OCHCH))、チタニウムn−プロポキシド(Ti(OCHCHCH))、チタニウムイソプロポキシド(Ti(OCH(CH)))、チタニウムt−ブトキシド(Ti(OC(CH)))、チタニウムn−ブトキシド(Ti(OCHCHCHCH))、亜鉛エトキシド(Zn(OCH
CH))、亜鉛n−プロポキシド(Zn(OCHCHCH))、亜鉛イソプロ
ポキシド(Zn(OCH(CH)))、亜鉛ブトキシド(Zn(OCHCHCH
CH));アセテートまたはアセチルアセトネート、例えば、ジルコニウムアセテー
ト(Zr(OOCCH))、ジルコニウムアセチルアセトネート(Zr(CHCOC
HCOCH))、亜鉛アセテート(Zn(OOCCH))、亜鉛アセチルアセトネ
ート(Zn(CHCOCHCOCH))、ハフニウムアセテート(Hf(OOCCH
));ハリド(ハロゲン化物)、例えば、ジルコニウムクロリド(ZrCl)、ジ
ルコニウムフルオリド(ZrF)、ジルコニウムヨージド(ZrI)、ジルコニウムブロミド(ZrBr)、ハフニウムブロミド(HfBr)、ハフニウムクロリド(HfCl)、ハフニウムヨージド(HfI)、チタニウムクロリド(TiCl)、チタニウムブロミド(TiBr)、チタニウムヨージド(TiI)、チタニウムフルオリド(TiF)、亜鉛クロリド(ZnCl)、亜鉛ブロミド(ZnBr)、亜鉛ヨージド(ZnI)、亜鉛フルオリド(ZnF)、またはその他の有機金属化合物。
本開示において有用な溶媒としては、ベンジルアルコール、フェノール、オレイルアルコール、トルエン、ブタノール、プロパノール、イソプロパノール、エタノール、水、プロピレングリコールモノメチルエーテル(PGME)、プロピレングリコールメチルエーテルアセテート(PGMEA)、エチルラクテート(EL)、および2−プロポキシ−プロパノール(PnP)、アセトン、テトラヒドロフラン、環状ケトン、およびこれらの混合物がある。
場合により、本開示のナノ結晶の表面はオルガノシラン、オルガノアルコールまたはオルガノカルボン酸のような少なくとも1種のキャッピング剤でキャップされる。本開示のオルガノシランの例としては、n−プロピルトリメトキシシラン、n−プロピルトリエトキシシラン、n−オクチルトリメトキシシラン、n−オクチルトリエトキシシラン、フェニルトリメトキシシラン、2−[メトキシ(ポリエチレンオキシ)プロピル]−トリメトキシシラン、メトキシ(トリエチレンオキシ)プロピルトリメトキシシラン、3−アミノプロピルトリメトキシシラン、3−メルカプトプロピルトリメトキシシラン、3−(メタクリロ
イルオキシ)プロピルトリメトキシシラン、3−イソシアナトプロピルトリエトキシシラ
ン、3−イソシアナトプロピルトリメトキシシラン、およびグリシドキシプロピルトリメトキシシランがある。
本開示のオルガノアルコールの例としては、ヘプタノール、ヘキサノール、オクタノール、ベンジルアルコール、フェノール、エタノール、プロパノール、ブタノール、オレイルアルコール、ドデシルアルコール、オクタデカノール、およびトリエチレングリコールモノメチルエーテルがある。
本開示のオルガノカルボン酸の例としては、オクタン酸、酢酸、プロピオン酸、2−[
2−(2−メトキシエトキシ)エトキシ]酢酸、オレイン酸、安息香酸がある。
本開示のキャップされたコロイド状半導体ナノ結晶は、場合により、水、テトラヒドロフラン、エタノール、メタノール、アセトニトリル、PGMEA、PGPE、PGME、環状ケトン、エチルラクテート、アセトン、ナフサ、ヘキサン、ヘプタン、トルエン、またはこれらの混合物のような溶媒から除去され、そしてこのような溶媒の中に再分散される。
半導体ナノ結晶をマトリックスの中に添加して、ナノ複合材を形成することができる。本開示のマトリックス材料としては、ポリ(アクリロニトリル−ブタジエン−スチレン)(ABS)、ポリ(メチルメタクリレート)(PMMA)、セルロイド、セルロースアセテート、ポリ(エチレン−ビニルアセテート)(EVA)、ポリ(エチレン−ビニルアルコール)(EVOH)、フルオロプラスチック、ポリアクリレート(Acrylic)、ポリアクリロニ
トリル(PAN)、ポリアミド(PAまたはNylon)、ポリアミド−イミド(PAI)、
ポリアリールエーテルケトン(PAEK)、ポリブタジエン(PBD)、ポリブチレン(PB)、ポリブチレンテレフタレート(PBT)、ポリカプロラクトン(PCL)、ポリクロロトリフルオロエチレン(PCTFE)、ポリエチレンテレフタレート(PET)、ポリシクロヘキシレンジメチレンテレフタレート(PCT)、ポリカーボネート(PC)、ポリヒドロキシアルカノエート(PHAs)、ポリケトン(PK)、ポリエステル、ポリエチレン(PE)、ポリエーテルエーテルケトン(PEEK)、ポリエーテルケトンケトン(PEKK)、ポリエーテルイミド(PEI)、ポリエーテルスルホン(PES)、ポリエチレンクロリネート(PEC)、ポリイミド(PI)、ポリ乳酸(PLA)、ポリメチルペンテン(PMP)、ポリフェニレンオキシド(PPO)、ポリフェニレンスルフィド(PPS)、ポリフタルアミド(PPA)、ポリプロピレン(PP)、ポリスチレン(PS)、ポリスルホン(PSU)、ポリトリメチレンテレフタレート(PTT)、ポリウレタン(PU)、ポリ酢酸ビニル(PVA)、ポリ塩化ビニル(PVC)、ポリ塩化ビニリデン(PVDC)、ポリ(スチレン−アクリロニトリル)(SAN)、スピンオンガラス(SOG)ポリマー(例えば、エタノール中のシロキサンスピンオンポリマー)、プロピレングリコールメチルエーテルアセテート(PGMEA)、イソプロピルアルコール、またはこれらの溶媒の混合物であるJSRミクロトップコート(4−メチル−2−ペンタノール中のNFCTCX014)、JSRミクロフォトレジスト(ARF1682J−19)、およびシリコーンがある。
本開示はナノ結晶を製造する方法を提供し、この方法は、前記ナノ結晶の先駆物質を少なくとも1種の溶媒中に溶解し、それにより溶液を生成することと、場合により、前記溶液の加熱および圧力の増大のうちの少なくとも一つを行うこと、および前記先駆物質を反応させるか、または先駆物質と溶液の少なくとも1種の溶媒とを反応させ、それによりナノ結晶を形成させること、を含む。
ナノ結晶は少なくとも1種のキャッピング剤でキャップされてもよく、それにより少なくとも1種の溶媒またはその他の媒質、または溶媒とその他の媒質との何らかの組み合わせの中でのナノ結晶の溶解性または分散性を増大させる。
本開示において、キャッピング分子は溶媒の基(group)または先駆物質の基からなる
。本開示において、キャッピング分子はキャッピング剤とは別のものである。ナノ結晶はキャップ交換のプロセスによってキャッピング剤でキャップされ、このとき、溶媒および/または先駆物質の基の幾つかのものを表面に残しながら、キャッピング剤が溶媒および/または先駆物質の基の幾つかのものと置換してもよい。これらの溶媒および/または先駆物質の基は、ナノ結晶の合成を行う間にナノ結晶の表面に付着してもよい。本開示の方法において、ナノ結晶は、少なくとも1種のオルガノシラン、オルガノアルコールまたはオルガノカルボン酸を含むことのできる少なくとも1種の作用剤でキャップされてもよい。これらのキャッピング剤は、尾部の基が媒質と適合する極性を有するキャッピング剤か
らなる全体を覆うシェルまたは部分的なシェルによって形成される有効なナノ結晶表面を生成することによって、疎水性または親水性の媒質のような様々な媒質中でのナノ結晶の均一な分散をもたらすだろう。
本開示のキャッピング方法は、先駆物質の前記反応が行われる前か、その最中またはその後に、溶液中の少なくとも1種のキャッピング剤でナノ結晶をキャップすることを含むだろう。本開示の方法はさらに、本開示のキャッピング方法を実施する前か、またはその後に、ナノ結晶を精製および/または分離することを含む。
本開示の方法は、合成したままのナノ結晶、精製されたナノ結晶、および/または分離されたナノ結晶を少なくとも1種のキャッピング剤でキャップして、それにより少なくとも部分的にキャップされたナノ結晶を製造することを含む。少なくとも部分的に精製された、キャップされたナノ結晶を、本開示の方法に従ってさらに精製および/または分離してもよい。ナノ結晶およびキャップされたナノ結晶は、本開示の方法において、溶媒、ポリマー、またはこれらの何らかの組み合わせのものを含めた物質の中に分散されるだろう。図2はコロイド状の懸濁液を形成することを例示するブロック線図である。この例示される方法において、ナノ結晶が合成され(101)、少なくとも1種のキャッピング剤でキャップまたはキャップ交換され(102)、精製され(103)、そして溶媒またはポリマー溶液と混合される(104)。
本開示はさらに、例証的で非限定的かつ典型的な方法として、ナノ結晶の合成またはその他の前に行われたキャップ交換反応から生じたナノ結晶の表面にすでに存在する有機成分またはその他のキャッピング剤を、キャップ交換反応において官能化オルガノシラン、オルガノアルコールおよびオルガノカルボン酸を用いて完全に、または部分的に交換する方法を含む。
官能化したキャッピング剤は、コロイド状の半導体ナノ結晶を合成する間に、本開示の態様に従ってコロイド状の半導体ナノ結晶に共有結合する。
場合により、半導体ナノ結晶の表面から予め存在する有機成分を酸を用いて除去し、次いで、官能化したキャッピング剤を半導体ナノ結晶の表面に共有結合させることによって、官能化したキャッピング剤は本開示における半導体に共有結合する。予め存在する有機成分を除去するための酸の例としては、例えば、強酸(例えばHCl、HNO、および/またはHSO)、弱酸(例えばHPO)、および/または有機酸(例えば酢酸)がある。
あるいは、ナノ結晶は、共有結合を形成することなくキャッピング剤で官能化される。
本開示は、ここで説明される方法によって製造されたナノ結晶および少なくとも部分的にキャップされたナノ結晶を含む。
本開示の方法はさらに、フィルムまたはコーティングを形成する方法を含み、この方法は、本開示のナノ結晶または少なくとも部分的にキャップされたナノ結晶を別の物質中に分散させることによって分散液を形成し、そしてこの分散液を表面に塗布することを含む。塗布の方法としては、回転塗布、噴霧、浸漬、スクリーン印刷、ロール塗り、塗装、印刷、インクジェット印刷、蒸発による堆積、および/または蒸着がある。
本開示の方法はナノ複合材を形成することを含み、この方法は、本開示のナノ結晶または少なくとも部分的にキャップされたナノ結晶を別の物質と組み合わせ、それによりナノ複合材を形成することを含む。図3はキャッピング剤(101)でキャップされ、ポリマーマトリックス(103)中に分散したナノ結晶(102)を例示する描写である。
本開示の方法はナノ複合材を形成することを含み、この方法は、例えば、硬化、重合、積層、押出し、射出成形、型注入成形、回転塗布、浸漬被覆、はけ塗り、噴霧、および/または印刷によって行われる。
本開示はさらに、ナノ複合材の構成要素の均質な混合物を様々な異なる方法を用いて形成する方法を含み、次いで、その構成要素は所望の用途のために適した最終的な複合材料に組み付けられる。
本開示のナノ結晶または少なくとも部分的にキャップされたナノ結晶は、酸化亜鉛、酸化ハフニウム、酸化ジルコニウム、酸化チタニウム・ジルコニウム、酸化ハフニウム・ジルコニウム、酸化イットリウム、またはその他の半導体材料から形成することができる。
本開示のナノ結晶および生成物は、粉末X線回折分光分析法(XRD)、透過型電子鏡検法(TEM)、動的光散乱法(DLS)、紫外線-可視光分光光度計(UV-Vis)、光学濃度(OD)(吸光度)、熱重量分析法(TGA)、ガスクロマトグラフィー(GC)、およびFT/IR分光分析法(FTIR)(フーリエ変換赤外分光法)のうちのいず
れか、またはこれらの組み合わせによって特徴づけし、そして記述することができる。
ナノ結晶の結晶構造を特徴づけするための一つの一般的な方法は、粉末X線回折分光分析法(XRD)である。XRD法は、サンプルに当たるX線ビームの散乱強度を入射角度と散乱角度の関数として収集することに基づく。典型的なXRDパターンは、散乱X線ビームの強度を角度の関数として示す。XRDパターンにおける各々のピークはひと組の結晶面に対応し、そして材料はそれぞれがそれ自身のピークの組を有する。ピークの相対的な高さと形状は、しばしば、対応する結晶面の結晶化度を示す。ナノ結晶については、塊状のサンプルと比較して、小さなナノ結晶はより広い回折線を有するという事実のために、互いに近接した位置にあるピークを区別できないかもしれない。利用できる様々なXRD分光計があり、それらは全て同じ原理に基づくものであり、適切に操作した場合、それらの結果は置き換え可能である。本開示におけるデータを得るために特に用いられたモデルはRigaku MiniFlex II Tabletop XRDである。
ナノ結晶の結晶構造、サイズ、サイズ分布およびアスペクト比を特徴づけするための一つの一般的な方法は、透過型電子鏡検法(TEM)である。TEMは、薄いサンプルを通して電子ビームを透過させて、結晶の格子構造を観察するのに十分なほどに高い増幅度を有する電子ビームによってカバーされる領域の画像を形成させることによって機能する。ナノ結晶の分散液については、測定サンプルは、適当な濃度の分散液を特別に製作されたメッシュのグリッドの上で乾燥させることによって調製され、一方、ナノ複合材については、サンプルは、そのナノ複合材をミクロトームにかけることによって調製して極薄のスライスを形成するか、あるいはグリッドの上に薄い層を回転塗布または浸漬被覆することによって調製される。ナノ結晶の結晶の質を電子回折パターンによって測定することができ、またナノ結晶のサイズと形状を観察することができる。広視野の画像または異なる位置における同じサンプルの複数の画像の中の個々のナノ結晶のサイズを測定することによって、しばしば画像処理用ソフトウェアを利用して、ナノ結晶のサイズ分布のヒストグラム(度数分布図)を得ることができる。利用できる様々なTEM顕微鏡があり、それらは全て類似の原理に基づくものであり、適切に操作した場合、それらの結果は置き換え可能である。本開示におけるデータを得るために特に用いられたモデルは、Jeol 2100F電界放出透過型電子顕微鏡(FE-TEM)およびJEM 2100 LaB6 TEMである。
本開示において、アスペクト比とは、最も大きな寸法と最も小さな寸法との間の比率として定義される。例えば、6nm×5nm×2nmの長方形の固形物の場合、アスペクト比は3:1である。
分散液の中でのナノ結晶のサイズとサイズ分布を特徴づけするための一つの一般的な方法は、動的光散乱法(DLS)である。DLSにおいては通常、測定波長に対して透過性の液体の中に分散したナノ結晶を測定する。この方法においては、適当な濃度の液体サンプルがプラスチック、ガラスまたは融解石英のキュベットの中に保持され、この液体サンプルからレーザービームが散乱され、そして散乱されたレーザー光の時間依存度(これはナノ結晶のブラウン運動の結果である)が測定されて、そしてナノ結晶のサイズとサイズ分布を計算することができる。その結果は通常、x軸に相当する直径を有するナノ結晶のサイズ分布であり、y軸は散乱強度、散乱ナノ結晶の体積、あるいは散乱ナノ結晶の数に相当し得る。測定されたサイズはしばしば、溶媒の薄い層(溶媒の殻)を伴ったナノ結晶のサイズおよびキャッピング剤および/または溶媒の基および/または先駆物質の基のサイズを含み、従って、実際のナノ結晶のサイズはしばしば、DLSによって測定されたものよりも小さい。本開示において、特に指摘しない限り、ナノ結晶のサイズおよびサイズ分布と言うときは全て、実際のナノ結晶のサイズを意味していて、ナノ結晶のサイズにキャッピング剤および/または溶媒の基および/または先駆物質の基を足したものではないし、あるいはナノ結晶にキャッピング剤および/または溶媒の基および/または先駆物質の基にさらに溶媒の殻を足したものでもない。利用できる様々なDLS分光計があり、それぞれの売り主はしばしば自身の専有の方法論と演算方式を開発しているが、それらの結果は置き換え可能でない場合があり、本開示におけるデータを得るために特に用いられるモデルは、Malvern Zetasizer Nano S DLSである。
DLSまたはTEMによって測定されるものとしての、本開示におけるナノ結晶は、単一のピーク(すなわち、モード)を有するヒストグラム(度数分布図)または分布関数を有し、サイズの変化は半値全幅(FWHM)または半値半幅(HWHM)によって特徴づけることができる。
ナノ結晶のサイズ分布はしばしば、正規分布、対数正規分布、またはローレンツ分布で記述するか、あるいは近似することができる。
正規分布:
Figure 0006203810
ここで、rは平均のナノ結晶サイズであり、そしてσは標準偏差である。
対数正規分布:
Figure 0006203810
ここで、rは幾何学的な平均のナノ結晶サイズであり、そしてσは幾何学的標準偏差である。
ローレンツ分布:
Figure 0006203810
ここで、rは中央値のナノ結晶サイズであって、分布のモードであり、そしてγは分布の半値半幅(HWHM)である。
ポリマーマトリックス中でのナノ結晶の分散体の光透過率と吸収率を特徴づけするための一つの一般的な手段は、紫外線-可視光分光光度計(UV-Vis)である。
紫外線-可視光分光法では、200nm〜900nmの波長範囲でのサンプルの透過光対
入射光を測定する。
所定の波長におけるサンプルの透過率は次のように定義される:
Figure 0006203810
ここで、Iは同じ波長における透過光の強度であり、Iは入射光の強度である。
所定の波長におけるサンプルの吸収率は次のように定義される:
Figure 0006203810
所定の波長におけるサンプルの吸光率、すなわち光学濃度(OD)は次のように定義される:
Figure 0006203810
サンプル中での他の物質からの影響を取り除くために、対照のサンプルがしばしば用いられる。
薄膜のサンプルについては、複数の反映がしばしば含まれ、実際の透過率、吸収率および吸光率を抽出するために、モデル化とアルゴリズムを適用してもよい。
分散体中のナノ結晶を測定するために、分散体は通常、10mmの光路を有するプラスチック、ガラスまたは融解石英のキュベットの中に保持される。サンプルは対照に対して測定される。その対照は、キュベットと溶媒からの影響を取り除くために、同じかまたは同じタイプのキュベットの中に保持された分散体において用いられる同じ溶媒を含んでいる。ナノ結晶とポリマーのナノ複合材を測定するために、ナノ複合材は溶媒または溶媒混合物の中に分散され、ガラスまたは融解石英のウェハの上に回転塗布されて均一な薄膜が形成され、このサンプルは対照に対して測定することができる。その対照は、同じウェハおよび/または同じ溶媒の中に溶解された同じポリマーを含み、そしてウェハとポリマーからの影響を取り除くために、同じ厚さを有するそのウェハの上に回転塗布される。ナノ複合材の正確な透過率、吸収率および吸光率を抽出するために、モデル化とアルゴリズムを適用してもよい。
利用できる様々な紫外線-可視光分光光度計があり、それらは全て同じ原理に基づくも
のであり、適切に操作した場合、それらの結果は置き換え可能である。本開示におけるデータを得るために特に用いられたモデルは、Perkin Elmer Lambda 850である。
ナノ結晶の分散体とナノ複合材の添加量を特徴づけするための一つの一般的な方法は、熱重量分析法(TGA)である。この方法においては、ナノ結晶の分散体またはナノ結晶とポリマーのナノ複合材はるつぼの中に保持され、そして室温から約800℃まで加熱され、その間に重量がモニターされる。有機溶媒、ポリマーおよびキャッピング剤は高温で、そして通常は異なる温度において分解し、無機質のナノ結晶だけが残るだろう。最初のサンプルの中の様々な成分の相対的な重量パーセントを得ることができる。TGAの結果によって通常、x軸としての温度とy軸としての相対的な重量パーセントを伴うプロットが得られる。利用できる様々なTGA装置があり、それらは全て類似の原理に基づくものであり、適切に操作した場合、それらの結果は置き換え可能である。本開示におけるデータを得るために特に用いられたモデルは、TA Instrument TGA Q500である。
ナノ結晶の分散体またはナノ複合材における化合物を分析するための一つの一般的な方法は、ガスクロマトグラフィー(GC)である。GCは、分解することなく蒸発し得る化合物を分離することのできる分離方法である。GCにおいては、ナノ結晶の分散液またはナノ複合材の溶液(1〜5uL)が、高温(150℃未満)に保持されたガラスのチャンバーの中に注入され、これにより化合物は拡張する。次いで、不活性ガス(すなわち、移動相)を用いて分析物を15〜30mの細管カラムの中に押し進める。カラムの内壁は、高い沸点を有する液体のポリマー(すなわち、固定相)で被覆されている。カラムを通って移動する分析物は、ポリマーとのそれらの溶解性または相互作用に基づいて分離される。次いで、分離された分析物は検出器によって検出される。その結果はクロマトグラムの形で得られ、これにおいてy軸は分析物の信号または濃度の強度を表し、そしてx軸は保持時間であり、この保持時間は分析物がカラムの中にどれだけ長く保持されたかを示す。GCは、ナノ結晶の分散体とナノ複合材の中に含まれる化学物質の質的な情報と量的な情報を高い感度で得るために用いることができる。利用できる広範囲のGCと検出器があり、本開示におけるデータを得るために特に用いられたモデルは、フレームイオン化検出器(FID)を備えたAgilent 7890 AモデルGCである。
ナノ結晶とキャッピングを特徴づけするための一つの一般的な方法は、FT/IR分光
分析法(FTIR)(フーリエ変換赤外分光法)である。この方法は、400〜4000cm−1の赤外波長範囲における透過率を得るためにフーリエ変換を行うためのマイケルソン干渉計に基づくものである。その波長範囲における吸収は通常、サンプル中の化学結合の様々な振動モードの結果である。それは特に、キャッピング剤とナノ結晶の表面との間の化学結合を観察するのに有用である。透過スペクトル上のピークは通常、特定のタイプの化学結合の振動モードを表す。利用できる様々なFTIR分光計があり、それらは全て類似の原理に基づくものであり、適切に操作した場合、それらの結果は置き換え可能である。本開示におけるデータを得るために用いられたモデルは、Jasco FT/IR−4100 IRである。
本開示はナノ結晶の分散体を含む。
一つの典型的で例証的かつ非限定的な態様は、溶媒の中の全分散体について1〜85重量%の量のナノ結晶を含むナノ結晶の分散体を提供し、本開示のナノ結晶の数の少なくとも90%は、場合により、少なくとも一つのキャッピング剤によって個々にキャップされている。本開示のナノ結晶の数の少なくとも90%は、場合により、三つの全ての寸法(次元)において10nm未満である。本開示のナノ結晶は、場合により、TEMおよび/またはDLSによって測定して、2nmから9nmまでのサイズの範囲内のピークを有するサイズ分布を有する。本開示のナノ結晶は、場合により、少なくともほぼ球形または米状の形あるいはこれらが混合した形を有する。本開示のナノ結晶は、場合により、3:1
よりも小さなアスペクト比を有する。
本開示のナノ結晶は、場合により、酸化亜鉛、酸化ハフニウム、酸化ジルコニウム、酸化ジルコニウム・チタニウム、酸化チタニウム、酸化イットリウムのうちの少なくとも1種、またはこれらの任意の混合物、合金または同素体を含む(これは、「構成されている」、「から成る」または「から本質的に成る」も意味する)。
本開示のナノ結晶の分散体は、分散体の溶媒または溶媒混合物の中で10重量%で調製された場合、そして同じ溶媒が充填されていて10mmの光路を有する融解石英のキュベットに対して10mmの光路を有する融解石英のキュベットの中で測定された場合、場合により、400nmから750nmまでの波長範囲において15%よりも大きな最小透過率、あるいは20%、または25%、または30%、または40%、または50%、または60%、または70%、または80%、または90%、または99%よりも大きな最小透過率を有する。本開示のナノ結晶の分散体は、場合により、GCによって測定して、5マイクログラム/ml未満の遊離したキャッピング剤の濃度を有し、あるいは10マイク
ログラム/ml未満、20マイクログラム/ml未満、50マイクログラム/ml未満、1
00マイクログラム/ml未満、150マイクログラム/ml未満、250マイクログラム/ml未満、500マイクログラム/ml未満、1000マイクログラム/ml未満、15
00マイクログラム/ml未満、2000マイクログラム/ml未満、4000マイクログラム/ml未満、6000マイクログラム/ml未満、8000マイクログラム/ml未満
、10000マイクログラム/ml未満、25000マイクログラム/ml未満、50000マイクログラム/ml未満、または100000マイクログラム/ml未満の遊離したキャッピング剤の濃度を有する。
本開示のナノ結晶およびナノ結晶の分散体の溶媒には、ベンジルアルコール、フェノール、オレイルアルコール、トルエン、キシレン、ヘプタン、メシチレン、ブタノール、プロパノール、イソプロパノール、エタノール、水、プロピレングリコールモノメチルエーテル(PGME)、プロピレングリコールメチルエーテルアセテート(PGMEA)、エチルラクテート(EL)、および2−プロポキシ−プロパノール(PnP)、アセトン、テトラヒドロフラン(THF)、ケトン、環状ケトン、メチルペンタノール、またはこれらの混合物のうちの少なくとも1種、またはこれらの組み合わせが含まれるだろう。
本開示のナノ結晶およびナノ結晶の分散体のキャッピング剤には、n−プロピルトリメトキシシラン、n−プロピルトリエトキシシラン、n−オクチルトリメトキシシラン、n−オクチルトリエトキシシラン、フェニルトリメトキシシラン、2−[メトキシ(ポリエチレンオキシ)プロピル]−トリメトキシシラン、メトキシトリ(エチレンオキシ)プロピルトリメトキシシラン、3−アミノプロピルトリメトキシシラン、3−メルカプトプロピルトリメトキシシラン、3−(メタクリロイルオキシ)プロピルトリメトキシシラン、3−イソシアナトプロピルトリエトキシシラン、3−イソシアナトプロピルトリメトキシシラン、および/またはグリシドキシプロピルトリメトキシシラン、ヘプタノール、ヘキサノール、オクタノール、ベンジルアルコール、フェノール、エタノール、プロパノール、ブタノール、オレイルアルコール、ドデシルアルコール、オクタデカノール、およびトリエチレングリコールモノメチルエーテル、オクタン酸、酢酸、プロピオン酸、2−[2−(2−メトキシエトキシ)エトキシ]酢酸、オレイン酸、ステアリン酸、安息香酸、またはこれらの異性体および混合物のうちの少なくとも1種、またはこれらの組み合わせが含まれるだろう。
本開示のナノ結晶がキャッピング剤を含む場合の本開示の典型的で例証的かつ非限定的な態様は、機能キャッピング剤に加えて、約1〜50重量%のキャッピング分子としての溶媒の基または先駆物質の基を含んでいてもよく、この場合、その重量パーセントは、キ
ャッピング剤の分子およびナノ結晶をキャッピングする溶媒または先駆物質の基の総重量に基づいてのナノ結晶をキャッピングする溶媒および/または先駆物質の基の重量パーセントである。本開示のナノ結晶の表面は本開示の溶媒を、それ単独で含むか、あるいはここに記載するキャッピング剤に加えて含んでいてもよく、そのような溶媒としては、例えば、酢酸、ベンジルアルコール、ブタノール、エタノール、プロパノール、イソプロパノール、オレイルアルコール、ドデシルアルコール、オクタン酸、オレイン酸、ステアリン酸、およびこれらの組み合わせ、および混合物、および/またはアルコキシ、ブトキシ、エトキシ、イソプロポキシ、プロポキシ、n−ブトキシ、tert−ブトキシ、アセチル、カルボキシル、ニトリル、クロリル、ブロミル、およびこれらの組み合わせ、および混合物のような先駆物質の基がある。
溶媒および先駆物質の基は、場合により、前述したように、またここで説明しているように、本開示のナノ結晶の表面に1〜50重量パーセントの量で存在していてもよく、例えば、2〜40重量パーセントの量で、3〜30重量パーセントの量で、または4〜20重量パーセントの量で、あるいは5〜10重量パーセントの量で存在していてもよい。
典型的で例証的かつ非限定的なものとしての本開示のナノ結晶および/または本開示の分散体のナノ結晶は、場合により、DLSおよび/またはTEMによって測定してあるサイズ分布を有するものとして特徴づけることができ、この場合、ナノ結晶のサイズ分布は2nm〜13nmのサイズ範囲内に位置するピークを有し、また場合により、2nm〜3nm、または3nm〜4nm、または4nm〜5nm、または5nm〜6nm、または6nm〜7nm、または7nm〜8nm、または8nm〜9nm、または9nm〜10nm、または10nm〜11nm、または11nm〜12nm、または12nm〜13nmのいずれかの間に位置するピークを有し、この場合、ナノ結晶のサイズ分布は1nm〜5nmの範囲内の半値全幅(FWHM)を有し、あるいは場合により、1nm〜4nm、または1nm〜3nm、または1nm〜2nm、または2nm〜5nm、または2nm〜4nm、または2nm〜3nm、または3nm〜5nm、または3nm〜4nmの範囲内の半値全幅を有する。
典型的で例証的かつ非限定的なものとしての本開示のナノ結晶および/または本開示の分散体のナノ結晶は、場合により、DLSおよび/またはTEMによって測定して、ナノ結晶のサイズが正規分布に類似するものとして特徴づけることができ、この場合、ナノ結晶のサイズ分布は2nm〜9nmのサイズ範囲内に位置するピークを有し、また場合により、2nm〜3nm、または3nm〜4nm、または4nm〜5nm、または5nm〜6nm、または6nm〜7nm、または7nm〜8nm、または8nm〜9nmのいずれかの間に位置するピークを有し、この場合、ナノ結晶のサイズ分布は1nm〜5nmの範囲内の半値全幅(FWHM)を有し、あるいは場合により、1nm〜4nm、または1nm〜3nm、または1nm〜2nm、または2nm〜5nm、または2nm〜4nm、または2nm〜3nm、または3nm〜5nm、または3nm〜4nmの範囲内の半値全幅を有する。
典型的で例証的かつ非限定的なものとしての本開示のナノ結晶および/または本開示の分散体のナノ結晶は、場合により、DLSおよび/またはTEMによって測定して、ナノ結晶のサイズが対数正規分布に類似するものとして特徴づけることができ、この場合、ナノ結晶のサイズ分布は2nm〜9nmのサイズ範囲内に位置するピークを有し、また場合により、2nm〜3nm、または3nm〜4nm、または4nm〜5nm、または5nm〜6nm、または6nm〜7nm、または7nm〜8nm、または8nm〜9nmのいずれかの間に位置するピークを有し、この場合、ナノ結晶のサイズの対数正規分布は1nm〜5nmの範囲内の半値全幅(FWHM)を有し、あるいは場合により、1nm〜4nm、または1nm〜3nm、または1nm〜2nm、または2nm〜5nm、または2nm
〜4nm、または2nm〜3nm、または3nm〜5nm、または3nm〜4nmの範囲内の半値全幅を有する。
典型的で例証的かつ非限定的なものとしての本開示のナノ結晶および/または本開示の分散体のナノ結晶は、場合により、DLSおよび/またはTEMによって測定して、ナノ結晶のサイズがローレンツ分布に類似するものとして特徴づけることができ、この場合、ナノ結晶のサイズのローレンツ分布は2nm〜9nmのサイズ範囲内に位置するピークを有し、また場合により、2nm〜3nm、または3nm〜4nm、または4nm〜5nm、または5nm〜6nm、または6nm〜7nm、または7nm〜8nm、または8nm〜9nmのいずれかの間に位置するピークを有し、この場合、ナノ結晶のサイズのローレンツ分布は1nm〜5nmの範囲内の半値全幅(FWHM)を有し、あるいは場合により、1nm〜4nm、または1nm〜3nm、または1nm〜2nm、または2nm〜5nm、または2nm〜4nm、または2nm〜3nm、または3nm〜5nm、または3nm〜4nmの範囲内の半値全幅を有する。
典型的で例証的かつ非限定的なものとしての本開示のナノ結晶の分散体は、酸化ハフニウムのナノ結晶を含んでいてもよく、あるいはキャッピング剤、溶媒の基、および/または先駆物質の基のうちの少なくとも1種を含む酸化ハフニウムのナノ結晶を含み(これは、「構成されている」、「から成る」または「から本質的に成る」も意味する)、そのナノ結晶の量は溶媒中の全ての分散体の1〜85重量%であり、場合により1〜80重量%の量、場合により1〜70重量%の量、場合により1〜60重量%の量、場合により1〜50重量%の量、場合により1〜40重量%の量、場合により1〜30重量%の量、場合により1〜20重量%の量、場合により1〜10重量%の量、場合により1〜5重量%の量、場合により1〜2重量%の量、場合により2〜85重量%の量、場合により2〜80重量%の量、場合により2〜70重量%の量、場合により2〜60重量%の量、場合により2〜50重量%の量、場合により2〜40重量%の量、場合により2〜30重量%の量、場合により2〜20重量%の量、場合により2〜10重量%の量、場合により2〜5重量%の量、場合により3〜85重量%の量、場合により3〜80重量%の量、場合により3〜70重量%の量、場合により3〜60重量%の量、場合により3〜50重量%の量、場合により3〜40重量%の量、場合により3〜30重量%の量、場合により3〜20重量%の量、場合により3〜10重量%の量、場合により3〜5重量%の量である。酸化ハフニウムのナノ結晶についての例としてのTGAを示す図18を参照されたい。図18は、10.6重量%の添加量でPGMEAの中に分散したキャップされたHfOナノ結晶のTGAを示す。HfOの重量パーセントは8.6%である。その差は、ナノ結晶の表面上にキャッピングした有機質の基の量である。従って、キャッピングの重量パーセントは、100%×(10.60−8.638)/10.60=18.51%である。
例えば酸化ハフニウムを含む(これは、「構成されている」、「から成る」または「から本質的に成る」も意味する)典型的で例証的かつ非限定的なものとしての本開示のナノ結晶および/または本開示の分散体のナノ結晶は、少なくとも1種のキャッピング剤によって個々にキャップされていてもよい。
本開示の酸化ハフニウムのナノ結晶の集合体のうち、数にして少なくとも90%、あるいは例えば少なくとも91%、例えば少なくとも92%、例えば少なくとも93%、例えば少なくとも94%、例えば少なくとも95%、例えば少なくとも96%、例えば少なくとも97%、例えば少なくとも98%、例えば少なくとも99%、例えば少なくとも99.9%、例えば少なくとも99.99%、例えば少なくとも99.999%は、少なくとも1種のキャッピング剤を有する。
例えば酸化ハフニウムを含む(これは、「構成されている」、「から成る」または「か
ら本質的に成る」も意味する)典型的で例証的かつ非限定的なものとしての本開示のナノ結晶および/または本開示の分散体のナノ結晶は、場合により、三つの寸法(次元)の全てが10nm未満であり、また場合により、(必ずしも同じではないか、あるいは実質的に同じである)10nm未満の寸法、例えば9nm未満、あるいは場合により8nm未満、あるいは7nm未満、あるいは6nm未満、あるいは5nm未満、あるいは4nm未満の三つの全ての寸法を有する。
酸化ハフニウムを含む(これは、「構成されている」、「から成る」または「から本質的に成る」も意味する)典型的で例証的かつ非限定的なものとしての本開示のナノ結晶および/または本開示の分散体のナノ結晶は、場合により、TEMおよび/またはDLSによって測定して、2nm〜9nmのサイズ範囲内のピークを有するサイズ分布を有するものとして特徴づけることができ、また場合により、2nm〜3nm、または3nm〜4nm、または4nm〜5nm、または5nm〜6nm、または6nm〜7nm、または7nm〜8nm、または8nm〜9nmのいずれかの間に位置するピークを有するサイズ分布を有するものとして特徴づけることができる。本開示のナノ結晶は、場合により、少なくともほぼ球形または米状の形あるいはこれらが混合した形を有する。本開示の酸化ハフニウムのナノ結晶は、場合により、3:1よりも小さなアスペクト比を有する。
典型的で例証的かつ非限定的なものとしての本開示のナノ結晶の分散体、例えば酸化ハフニウムのナノ結晶を含むナノ結晶の分散体は、分散体の溶媒または溶媒混合物の中で10重量%で調製された場合、そして同じ溶媒が充填されていて10mmの光路を有する融解石英のキュベットに対して10mmの光路を有する融解石英のキュベットの中で測定された場合、400nmから750nmまでの波長範囲において15%よりも大きな最小透過率、あるいは20%、または25%、または30%、または40%、または50%、または60%、または70%、または80%、または90%、または99%よりも大きな最小透過率を有する。10重量%の添加量でPGMEAの中に分散した酸化ハフニウムのナノ結晶についての紫外線-可視光スペクトルを例示する図19を参照されたい。
例えば酸化ハフニウムのナノ結晶を含む(これは、「構成されている」、「から成る」または「から本質的に成る」も意味する)典型的で例証的かつ非限定的なものとしての本開示のナノ結晶の分散体であって、ここで記述される透過率の特徴を有するものは、ろ過を行うか、あるいはろ過することなく、5gよりも多いか、あるいは10gよりも多い量で製造することができ、この場合、追加の清澄化および/または分離技術は、場合により必要としない。
例えば酸化ハフニウムのナノ結晶を含む(これは、「構成されている」、「から成る」または「から本質的に成る」も意味する)典型的で例証的かつ非限定的なものとしての本開示のナノ結晶の分散体であって、ここで記述される透過率の特徴を有するものは、ろ過を行うか、あるいはろ過することなく、5gよりも多いか、あるいは10gよりも多い量で製造することができ、この場合、追加の清澄化および/または分離技術は、場合により必要とせず、そして室温(すなわち、約18〜22℃)で溶媒の中に貯蔵したとき、この分散体は3週間を超えて清澄度または透過率の特徴を実質的に失うことなく安定であり、あるいは4週間を超えて、あるいは6週間を超えて、あるいは8週間を超えて、あるいは10週間を超えて、あるいは12週間を超えて、あるいは14週間を超えて、あるいは18週間を超えて、あるいは24週間を超えて、あるいは28週間を超えて、あるいは1年を超えて、あるいは2年を超えて、安定である。
典型的で例証的かつ非限定的なものとしての本開示のナノ結晶の分散体、例えば酸化ハフニウムのナノ結晶を含むナノ結晶の分散体は、場合により、GCによって測定して、5マイクログラム/ml未満の遊離したキャッピング剤の濃度を有し、あるいは10マイク
ログラム/ml未満、20マイクログラム/ml未満、50マイクログラム/ml未満、1
00マイクログラム/ml未満、150マイクログラム/ml未満、250マイクログラム/ml未満、500マイクログラム/ml未満、1000マイクログラム/ml未満、15
00マイクログラム/ml未満、2000マイクログラム/ml未満、4000マイクログラム/ml未満、6000マイクログラム/ml未満、8000マイクログラム/ml未満
、10000マイクログラム/ml未満、25000マイクログラム/ml未満、50000マイクログラム/ml未満、または100000マイクログラム/ml未満の遊離したキャッピング剤の濃度を有する。(PGMEAの中に分散したキャップされた酸化ハフニウムのナノ結晶についてのGCを例示する図20を参照されたい(これは顕著なピークのみとしてのPGMEAを示している))。
典型的で例証的かつ非限定的なものとしての本開示のナノ結晶、例えば酸化ハフニウムのナノ結晶を含むナノ結晶は、XRDパターンにおいて、17°と18°の間、24°と25°の間、28°と29°の間、31°と32°の間、35°と36°の間、40°と42°の間、50°と52°の間の範囲内に位置するピークによって特徴づけられるかもしれない。ナノ結晶のサイズと結晶化度によっては、互いに近接したピークは個々に区別できないかもしれない。酸化ハフニウムのナノ結晶についての例としてのXRDパターンを図15に示す。典型的で例証的かつ非限定的なものとしての本開示のナノ結晶の分散体、例えば酸化ハフニウムのナノ結晶を含むナノ結晶の分散体は、ベンジルアルコール、フェノール、オレイルアルコール、トルエン、キシレン、ヘプタン、メシチレン、ブタノール、プロパノール、イソプロパノール、エタノール、水、プロピレングリコールモノメチルエーテル(PGME)、プロピレングリコールメチルエーテルアセテート(PGMEA)、エチルラクテート(EL)、および2−プロポキシ−プロパノール(PnP)、アセトン、テトラヒドロフラン(THF)、ケトン、環状ケトン、メチルペンタノールのうちの少なくとも1種、またはこれらの混合物を含む溶媒または溶媒の混合物を含んでいてもよい(これは、「構成されている」、「から成る」または「から本質的に成る」も意味する)。
例えば酸化ハフニウムを含む(これは、「構成されている」、「から成る」または「から本質的に成る」も意味する)典型的で例証的かつ非限定的なものとしての本開示のナノ結晶および/または分散体のナノ結晶は、n−プロピルトリメトキシシラン、n−プロピルトリエトキシシラン、n−オクチルトリメトキシシラン、n−オクチルトリエトキシシラン、フェニルトリメトキシシラン、2−[メトキシ(ポリエチレンオキシ)プロピル]−トリメトキシシラン、メトキシトリ(エチレンオキシ)プロピルトリメトキシシラン、3−アミノプロピルトリメトキシシラン、3−メルカプトプロピルトリメトキシシラン、3−(
メタクリロイルオキシ)プロピルトリメトキシシラン、3−イソシアナトプロピルトリエ
トキシシラン、3−イソシアナトプロピルトリメトキシシラン、および/またはグリシドキシプロピルトリメトキシシラン、ヘプタノール、ヘキサノール、オクタノール、ベンジルアルコール、フェノール、エタノール、プロパノール、ブタノール、オレイルアルコール、ドデシルアルコール、オクタデカノール、およびトリエチレングリコールモノメチルエーテル、オクタン酸、酢酸、プロピオン酸、2−[2−(2−メトキシエトキシ)エトキ
シ]酢酸、オレイン酸、安息香酸、またはこれらの異性体および混合物のうちの少なくと
も1種のキャッピング剤を含んでいてもよい(これは、「構成されている」、「から成る」または「から本質的に成る」も意味する)。
酸化ハフニウムのナノ結晶の分散体を提供する典型的で例証的かつ非限定的な態様の別の側面においては、DLS(PGMEAの中に分散したキャップされた酸化ハフニウムのナノ結晶についてのDLSを例示していて、5.21nmでのピークを有する、体積によるナノ結晶のサイズ分布を示す図17を参照されたい)および/またはTEM(酸化ハフニウムのナノ結晶についての例としてのTEM画像であって、米状の形のナノ結晶を示す
図16を参照されたい)によって測定して、ナノ結晶のサイズの正規分布、ナノ結晶のサイズの対数正規分布、またはナノ結晶のサイズのローレンツ分布といった、ナノ結晶のサイズ分布が含まれ、この場合、ナノ結晶のサイズ分布は2nm〜9nmのサイズ範囲内に位置するピークを有し、また場合により、2nm〜3nm、または3nm〜4nm、または4nm〜5nm、または5nm〜6nm、または6nm〜7nm、または7nm〜8nm、または8nm〜9nmのいずれかの間に位置するピークを有し、この場合、ナノ結晶のサイズ分布は1nm〜5nmの範囲内の半値全幅(FWHM)を有し、あるいは場合により、1nm〜4nm、または1nm〜3nm、または1nm〜2nm、または2nm〜5nm、または2nm〜4nm、または2nm〜3nm、または3nm〜5nm、または3nm〜4nmの範囲内の半値全幅を有する。
典型的で例証的かつ非限定的なものとしての本開示のナノ結晶および/または本開示の分散体のナノ結晶は、酸化ジルコニウムを含み(これは、「構成されている」、「から成る」または「から本質的に成る」も意味する)、あるいはキャッピング剤、溶媒の基、および/または先駆物質の基のうちの少なくとも1種を含む酸化ジルコニウムを含む。本開示のナノ結晶の分散体は、酸化ジルコニウムのナノ結晶を溶媒中の全ての分散体の1〜85重量%の量で含んでいてもよく(これは、「構成されている」、「から成る」または「から本質的に成る」も意味する)、場合により1〜80重量%の量、場合により1〜70重量%の量、場合により1〜60重量%の量、場合により1〜50重量%の量、場合により1〜40重量%の量、場合により1〜30重量%の量、場合により1〜20重量%の量、場合により1〜10重量%の量、場合により1〜5重量%の量、場合により1〜2重量%の量、場合により2〜85重量%の量、場合により2〜80重量%の量、場合により2〜70重量%の量、場合により2〜60重量%の量、場合により2〜50重量%の量、場合により2〜40重量%の量、場合により2〜30重量%の量、場合により2〜20重量%の量、場合により2〜10重量%の量、場合により2〜5重量%の量、場合により3〜85重量%の量、場合により3〜80重量%の量、場合により3〜70重量%の量、場合により3〜60重量%の量、場合により3〜50重量%の量、場合により3〜40重量%の量、場合により3〜30重量%の量、場合により3〜20重量%の量、場合により3〜10重量%の量、場合により3〜5重量%の量で含む。酸化ジルコニウムのナノ結晶についての例としてのTGAを示す図24を参照されたい。図24は、52.4重量%の添加量でPGMEAの中に分散したキャップされたZrOナノ結晶のTGAを示す。ZrOの重量パーセントは43.6%である。その差は、ナノ結晶の表面上にキャッピングした有機質の基の量である。従って、キャッピングの重量パーセントは、100%×(52.4−43.6)/52.4=16.8%である。
例えば酸化ジルコニウムを含む(これは、「構成されている」、「から成る」または「から本質的に成る」も意味する)典型的で例証的かつ非限定的なものとしての本開示のナノ結晶および/または本開示の分散体のナノ結晶は、少なくとも1種のキャッピング剤によって個々にキャップされていてもよい。
本開示の酸化ジルコニウムのナノ結晶の集合体のうち、数にして少なくとも90%、あるいは例えば少なくとも91%、例えば少なくとも92%、例えば少なくとも93%、例えば少なくとも94%、例えば少なくとも95%、例えば少なくとも96%、例えば少なくとも97%、例えば少なくとも98%、例えば少なくとも99%、例えば少なくとも99.9%、例えば少なくとも99.99%、例えば少なくとも99.999%は、少なくとも1種のキャッピング剤を有する。
例えば酸化ジルコニウムを含む(これは、「構成されている」、「から成る」または「から本質的に成る」も意味する)典型的で例証的かつ非限定的なものとしての本開示のナノ結晶および/または本開示の分散体のナノ結晶は、場合により、三つの寸法(次元)の
全てが10nm未満であり、また場合により、(必ずしも同じではないか、あるいは実質的に同じである)10nm未満の寸法、例えば9nm未満、あるいは場合により8nm未満、あるいは7nm未満、あるいは6nm未満、あるいは5nm未満、あるいは4nm未満の三つの全ての寸法を有する。
酸化ジルコニウムを含む(これは、「構成されている」、「から成る」または「から本質的に成る」も意味する)典型的で例証的かつ非限定的なものとしての本開示のナノ結晶および/または本開示の分散体のナノ結晶は、場合により、TEMおよび/またはDLSによって測定して、2nm〜9nmのサイズ範囲内のピークを有するサイズ分布を有するものとして特徴づけることができ、また場合により、2nm〜3nm、または3nm〜4nm、または4nm〜5nm、または5nm〜6nm、または6nm〜7nm、または7nm〜8nm、または8nm〜9nmのいずれかの間に位置するピークを有するサイズ分布を有するものとして特徴づけることができる。本開示の酸化ジルコニウムのナノ結晶は、場合により、少なくともほぼ球形または米状の形あるいはこれらが混合した形を有する。本開示の酸化ジルコニウムのナノ結晶は、場合により、3:1よりも小さなアスペクト比を有する。
典型的で例証的かつ非限定的なものとしての本開示のナノ結晶の分散体、例えば酸化ジルコニウムのナノ結晶を含むナノ結晶の分散体は、分散体の溶媒または溶媒混合物の中で10重量%で調製された場合、そして同じ溶媒が充填されていて10mmの光路を有する融解石英のキュベットに対して10mmの光路を有する融解石英のキュベットの中で測定された場合、400nmから750nmまでの波長範囲において15%よりも大きな最小透過率、あるいは20%、または25%、または30%、または40%、または50%、または60%、または70%、または80%、または90%、または99%よりも大きな最小透過率を有する。52.4重量%の添加量でPGMEAの中に分散した酸化ジルコニウムのナノ結晶についての紫外線-可視光スペクトルを例示する図25を参照されたい。
例えば酸化ジルコニウムのナノ結晶を含む(これは、「構成されている」、「から成る」または「から本質的に成る」も意味する)典型的で例証的かつ非限定的なものとしての本開示のナノ結晶の分散体であって、ここで記述される透過率の特徴を有するものは、ろ過を行うか、あるいはろ過することなく、5gよりも多いか、あるいは10gよりも多い量で製造することができ、この場合、追加の清澄化および/または分離技術は、場合により必要としない。
例えば酸化ジルコニウムのナノ結晶を含む(これは、「構成されている」、「から成る」または「から本質的に成る」も意味する)典型的で例証的かつ非限定的なものとしての本開示のナノ結晶の分散体であって、ここで記述される透過率の特徴を有するものは、驚くべきことに、ろ過を行うか、あるいはろ過することなく、5gよりも多いか、あるいは10gよりも多い量で製造することができ、この場合、追加の清澄化および/または分離技術は、場合により必要とせず、そして室温(すなわち、約18〜22℃)で溶媒の中に貯蔵したとき、この分散体は3週間を超えて清澄度または透過率の特徴を実質的に失うことなく安定であり、あるいは4週間を超えて、あるいは6週間を超えて、あるいは8週間を超えて、あるいは10週間を超えて、あるいは12週間を超えて、あるいは14週間を超えて、あるいは18週間を超えて、あるいは24週間を超えて、あるいは28週間を超えて、あるいは1年を超えて、あるいは2年を超えて、安定である。
典型的で例証的かつ非限定的なものとしての本開示のナノ結晶の分散体、例えば酸化ジルコニウムのナノ結晶を含むナノ結晶の分散体は、場合により、GCによって測定して、5マイクログラム/ml未満の遊離したキャッピング剤の濃度を有し、あるいは10マイ
クログラム/ml未満、20マイクログラム/ml未満、50マイクログラム/ml未満、
100マイクログラム/ml未満、150マイクログラム/ml未満、250マイクログラム/ml未満、500マイクログラム/ml未満、1000マイクログラム/ml未満、1
500マイクログラム/ml未満、2000マイクログラム/ml未満、4000マイクログラム/ml未満、6000マイクログラム/ml未満、8000マイクログラム/ml未
満、10000マイクログラム/ml未満、25000マイクログラム/ml未満、50000マイクログラム/ml未満、または100000マイクログラム/ml未満の遊離したキャッピング剤の濃度を有する。(PGMEAの中に分散したキャップされた酸化ジルコニウムのナノ結晶についてのGCを例示する図26を参照されたい(これは顕著なピークのみとしてのPGMEAを示している))。
典型的で例証的かつ非限定的なものとしての本開示のナノ結晶、例えば酸化ジルコニウムのナノ結晶を含むナノ結晶は、XRDパターンにおいて、28°と32°の間、32°と36°の間、48°と52°の間、58°と62°の間の範囲内に位置するピークによって特徴づけられるか、あるいは証明されるかもしれない。
典型的で例証的かつ非限定的なものとしての本開示のナノ結晶の分散体、例えば酸化ジルコニウムのナノ結晶を含むナノ結晶の分散体は、ベンジルアルコール、フェノール、オレイルアルコール、トルエン、キシレン、ヘプタン、メシチレン、ブタノール、プロパノール、イソプロパノール、エタノール、水、プロピレングリコールモノメチルエーテル(PGME)、プロピレングリコールメチルエーテルアセテート(PGMEA)、エチルラクテート(EL)、および2−プロポキシ−プロパノール(PnP)、アセトン、テトラヒドロフラン(THF)、ケトン、環状ケトン、メチルペンタノールのうちの少なくとも1種、またはこれらの混合物を含む溶媒または溶媒の混合物を含んでいてもよい(これは、「構成されている」、「から成る」または「から本質的に成る」も意味する)。
例えば酸化ジルコニウムを含む(これは、「構成されている」、「から成る」または「から本質的に成る」も意味する)典型的で例証的かつ非限定的なものとしての本開示のナノ結晶および/または分散体のナノ結晶は、n−プロピルトリメトキシシラン、n−プロピルトリエトキシシラン、n−オクチルトリメトキシシラン、n−オクチルトリエトキシシラン、フェニルトリメトキシシラン、2−[メトキシ(ポリエチレンオキシ)プロピル]−トリメトキシシラン、メトキシトリ(エチレンオキシ)プロピルトリメトキシシラン、3−アミノプロピルトリメトキシシラン、3−メルカプトプロピルトリメトキシシラン、3−(メタクリロイルオキシ)プロピルトリメトキシシラン、3−イソシアナトプロピルトリエトキシシラン、3−イソシアナトプロピルトリメトキシシラン、および/またはグリシドキシプロピルトリメトキシシラン、ヘプタノール、ヘキサノール、オクタノール、ベンジルアルコール、フェノール、エタノール、プロパノール、ブタノール、オレイルアルコール、ドデシルアルコール、オクタデカノール、およびトリエチレングリコールモノメチルエーテル、オクタン酸、酢酸、プロピオン酸、2−[2−(2−メトキシエトキシ)エトキ
シ]酢酸、オレイン酸、安息香酸、またはこれらの異性体および混合物のうちの少なくと
も1種のキャッピング剤を含んでいてもよい(これは、「構成されている」、「から成る」または「から本質的に成る」も意味する)。
酸化ジルコニウムのナノ結晶の分散体を提供する例証的で非限定的かつ典型的な態様の別の側面においては、DLS(PGMEAの中に分散したキャップされた酸化ジルコニウムのナノ結晶についてのDLSを例示していて、6.27nmでのピークを有する、体積によるナノ結晶のサイズ分布を示す図23を参照されたい)および/またはTEM(酸化ジルコニウムのナノ結晶についての例としてのTEM画像であって、ほぼ球形のナノ結晶を示す図22を参照されたい)によって測定して、ナノ結晶のサイズの正規分布、ナノ結晶のサイズの対数正規分布、またはナノ結晶のサイズのローレンツ分布に類似するナノ結晶のサイズ分布が含まれ、この場合、ナノ結晶のサイズ分布は2nm〜9nmのサイズ範
囲内に位置するピークを有し、また場合により、2nm〜3nm、または3nm〜4nm、または4nm〜5nm、または5nm〜6nm、または6nm〜7nm、または7nm〜8nm、または8nm〜9nmのいずれかの間に位置するピークを有し、この場合、ナノ結晶のサイズ分布は1nm〜5nmの範囲内の半値全幅(FWHM)を有し、あるいは場合により、1nm〜4nm、または1nm〜3nm、または1nm〜2nm、または2nm〜5nm、または2nm〜4nm、または2nm〜3nm、または3nm〜5nm、または3nm〜4nmの範囲内の半値全幅を有する。
典型的で例証的かつ非限定的なものとしての本開示のナノ結晶および/または本開示の分散体のナノ結晶は、酸化亜鉛を含み(これは、「構成されている」、「から成る」または「から本質的に成る」も意味する)、あるいはキャッピング剤、溶媒の基、および/または先駆物質の基のうちの少なくとも1種を含む酸化亜鉛を含む。本開示のナノ結晶の分散体は、酸化亜鉛のナノ結晶を溶媒中の全ての分散体の1〜85重量%の量で含んでいてもよく(これは、「構成されている」、「から成る」または「から本質的に成る」も意味する)、場合により1〜80重量%の量、場合により1〜70重量%の量、場合により1〜60重量%の量、場合により1〜50重量%の量、場合により1〜40重量%の量、場合により1〜30重量%の量、場合により1〜20重量%の量、場合により1〜10重量%の量、場合により1〜5重量%の量、場合により1〜2重量%の量、場合により2〜85重量%の量、場合により2〜80重量%の量、場合により2〜70重量%の量、場合により2〜60重量%の量、場合により2〜50重量%の量、場合により2〜40重量%の量、場合により2〜30重量%の量、場合により2〜20重量%の量、場合により2〜10重量%の量、場合により2〜5重量%の量、場合により3〜85重量%の量、場合により3〜80重量%の量、場合により3〜70重量%の量、場合により3〜60重量%の量、場合により3〜50重量%の量、場合により3〜40重量%の量、場合により3〜30重量%の量、場合により3〜20重量%の量、場合により3〜10重量%の量、場合により3〜5重量%の量で含む。
例えば酸化亜鉛を含む(これは、「構成されている」、「から成る」または「から本質的に成る」も意味する)典型的で例証的かつ非限定的なものとしての本開示のナノ結晶および/または本開示の分散体のナノ結晶は、少なくとも1種のキャッピング剤によって個々にキャップされていてもよい。
本開示の酸化亜鉛のナノ結晶の集合体のうち、数にして少なくとも90%、あるいは例えば少なくとも91%、例えば少なくとも92%、例えば少なくとも93%、例えば少なくとも94%、例えば少なくとも95%、例えば少なくとも96%、例えば少なくとも97%、例えば少なくとも98%、例えば少なくとも99%、例えば少なくとも99.9%、例えば少なくとも99.99%、例えば少なくとも99.999%は、少なくとも1種のキャッピング剤を有する。
例えば酸化亜鉛を含む(これは、「構成されている」、「から成る」または「から本質的に成る」も意味する)典型的で例証的かつ非限定的なものとしての本開示のナノ結晶および/または本開示の分散体のナノ結晶は、場合により、三つの寸法(次元)の全てが10nm未満であり、また場合により、(必ずしも同じではないか、あるいは実質的に同じである)10nm未満の寸法、例えば9nm未満、あるいは場合により8nm未満、あるいは7nm未満、あるいは6nm未満、あるいは5nm未満、あるいは4nm未満の三つの全ての寸法を有する。
酸化亜鉛を含む(これは、「構成されている」、「から成る」または「から本質的に成る」も意味する)典型的で例証的かつ非限定的なものとしての本開示のナノ結晶および/または本開示の分散体のナノ結晶は、場合により、TEMおよび/またはDLSによって
測定して、2nm〜9nmのサイズ範囲内のピークを有するサイズ分布を有するものとして特徴づけることができ、また場合により、2nm〜3nm、または3nm〜4nm、または4nm〜5nm、または5nm〜6nm、または6nm〜7nm、または7nm〜8nm、または8nm〜9nmのいずれかの間に位置するピークを有するサイズ分布を有するものとして特徴づけることができる。本開示の酸化亜鉛のナノ結晶は、場合により、少なくともほぼ球形または米状の形あるいはこれらが混合した形を有する。本開示の酸化亜鉛のナノ結晶は、場合により、3:1よりも小さなアスペクト比を有する。
典型的で例証的かつ非限定的なものとしての本開示のナノ結晶の分散体、例えば酸化亜鉛のナノ結晶を含むナノ結晶の分散体は、分散体の溶媒または溶媒混合物の中で10重量%で調製された場合、そして同じ溶媒が充填されていて10mmの光路を有する融解石英のキュベットに対して10mmの光路を有する融解石英のキュベットの中で測定された場合、400nmから750nmまでの波長範囲において15%よりも大きな最小透過率、あるいは20%、または25%、または30%、または40%、または50%、または60%、または70%、または80%、または90%、または99%よりも大きな最小透過率を有する。
例えば酸化亜鉛のナノ結晶を含む(これは、「構成されている」、「から成る」または「から本質的に成る」も意味する)典型的で例証的かつ非限定的なものとしての本開示のナノ結晶の分散体であって、ここで記述される透過率の特徴を有するものは、ろ過を行うか、あるいはろ過することなく、5gよりも多いか、あるいは10gよりも多い量で製造することができ、この場合、追加の清澄化および/または分離技術は、場合により必要としない。
例えば酸化亜鉛のナノ結晶を含む(これは、「構成されている」、「から成る」または「から本質的に成る」も意味する)典型的で例証的かつ非限定的なものとしての本開示のナノ結晶の分散体であって、ここで記述される透過率の特徴を有するものは、ろ過を行うか、あるいはろ過することなく、5gよりも多いか、あるいは10gよりも多い量で製造することができ、この場合、追加の清澄化および/または分離技術は、場合により必要とせず、そして室温(すなわち、約18〜22℃)で溶媒の中に貯蔵したとき、この分散体は3週間を超えて清澄度または透過率の特徴を実質的に失うことなく安定であり、あるいは4週間を超えて、あるいは6週間を超えて、あるいは8週間を超えて、あるいは10週間を超えて、あるいは12週間を超えて、あるいは14週間を超えて、あるいは18週間を超えて、あるいは24週間を超えて、あるいは28週間を超えて、あるいは1年を超えて、あるいは2年を超えて、安定である。
典型的で例証的かつ非限定的なものとしての本開示のナノ結晶の分散体、例えば酸化亜鉛のナノ結晶を含むナノ結晶の分散体は、場合により、GCによって測定して、5マイクログラム/ml未満の遊離したキャッピング剤の濃度を有し、あるいは10マイクログラ
ム/ml未満、20マイクログラム/ml未満、50マイクログラム/ml未満、100マ
イクログラム/ml未満、150マイクログラム/ml未満、250マイクログラム/ml
未満、500マイクログラム/ml未満、1000マイクログラム/ml未満、1500マイクログラム/ml未満、2000マイクログラム/ml未満、4000マイクログラム/
ml未満、6000マイクログラム/ml未満、8000マイクログラム/ml未満、10000マイクログラム/ml未満、25000マイクログラム/ml未満、50000マイクログラム/ml未満、または100000マイクログラム/ml未満の遊離したキャッピング剤の濃度を有する。
典型的で例証的かつ非限定的なものとしての本開示のナノ結晶の分散体、例えば酸化亜鉛のナノ結晶を含むナノ結晶の分散体は、ベンジルアルコール、フェノール、オレイルア
ルコール、トルエン、キシレン、ヘプタン、メシチレン、ブタノール、プロパノール、イソプロパノール、エタノール、水、プロピレングリコールモノメチルエーテル(PGME)、プロピレングリコールメチルエーテルアセテート(PGMEA)、エチルラクテート(EL)、および2−プロポキシ−プロパノール(PnP)、アセトン、テトラヒドロフラン(THF)、ケトン、環状ケトン、メチルペンタノールのうちの少なくとも1種、またはこれらの混合物を含む溶媒または溶媒の混合物を含んでいてもよい(これは、「構成されている」、「から成る」または「から本質的に成る」も意味する)。
例えば酸化亜鉛を含む(これは、「構成されている」、「から成る」または「から本質的に成る」も意味する)典型的で例証的かつ非限定的なものとしての本開示のナノ結晶および/または分散体のナノ結晶は、n−プロピルトリメトキシシラン、n−プロピルトリエトキシシラン、n−オクチルトリメトキシシラン、n−オクチルトリエトキシシラン、フェニルトリメトキシシラン、2−[メトキシ(ポリエチレンオキシ)プロピル]−トリメトキシシラン、メトキシトリ(エチレンオキシ)プロピルトリメトキシシラン、3−アミノプロピルトリメトキシシラン、3−メルカプトプロピルトリメトキシシラン、3−(メタク
リロイルオキシ)プロピルトリメトキシシラン、3−イソシアナトプロピルトリエトキシ
シラン、3−イソシアナトプロピルトリメトキシシラン、および/またはグリシドキシプロピルトリメトキシシラン、ヘプタノール、ヘキサノール、オクタノール、ベンジルアルコール、フェノール、エタノール、プロパノール、ブタノール、オレイルアルコール、ドデシルアルコール、オクタデカノール、およびトリエチレングリコールモノメチルエーテル、オクタン酸、酢酸、プロピオン酸、2−[2−(2−メトキシエトキシ)エトキシ]酢酸、オレイン酸、安息香酸、またはこれらの異性体および混合物のうちの少なくとも1種のキャッピング剤を含んでいてもよい(これは、「構成されている」、「から成る」または「から本質的に成る」も意味する)。
酸化亜鉛のナノ結晶の分散体を提供する非限定的で例証的かつ典型的な態様の別の側面においては、DLSおよび/またはTEMによって測定して、ナノ結晶のサイズの正規分布、ナノ結晶のサイズの対数正規分布、またはナノ結晶のサイズのローレンツ分布に類似するナノ結晶のサイズ分布が含まれ、この場合、ナノ結晶のサイズ分布は2nm〜9nmのサイズ範囲内に位置するピークを有し、また場合により、2nm〜3nm、または3nm〜4nm、または4nm〜5nm、または5nm〜6nm、または6nm〜7nm、または7nm〜8nm、または8nm〜9nmのいずれかの間に位置するピークを有し、この場合、ナノ結晶のサイズ分布は1nm〜5nmの範囲内の半値全幅(FWHM)を有し、あるいは場合により、1nm〜4nm、または1nm〜3nm、または1nm〜2nm、または2nm〜5nm、または2nm〜4nm、または2nm〜3nm、または3nm〜5nm、または3nm〜4nmの範囲内の半値全幅を有する。
典型的で例証的かつ非限定的なものとしての本開示のナノ結晶および/または本開示の分散体のナノ結晶は、酸化ジルコニウム・チタニウムを含み(これは、「構成されている」、「から成る」または「から本質的に成る」も意味する)、あるいはキャッピング剤、溶媒の基、および/または先駆物質の基のうちの少なくとも1種を含む酸化ジルコニウム・チタニウムを含む。本開示のナノ結晶の分散体は、酸化ジルコニウム・チタニウムのナノ結晶を溶媒中の全ての分散体の1〜85重量%の量で含んでいてもよく(これは、「構成されている」、「から成る」または「から本質的に成る」も意味する)、場合により1〜80重量%の量、場合により1〜70重量%の量、場合により1〜60重量%の量、場合により1〜50重量%の量、場合により1〜40重量%の量、場合により1〜30重量%の量、場合により1〜20重量%の量、場合により1〜10重量%の量、場合により1〜5重量%の量、場合により1〜2重量%の量、場合により2〜85重量%の量、場合により2〜80重量%の量、場合により2〜70重量%の量、場合により2〜60重量%の量、場合により2〜50重量%の量、場合により2〜40重量%の量、場合により2〜3
0重量%の量、場合により2〜20重量%の量、場合により2〜10重量%の量、場合により2〜5重量%の量、場合により3〜85重量%の量、場合により3〜80重量%の量、場合により3〜70重量%の量、場合により3〜60重量%の量、場合により3〜50重量%の量、場合により3〜40重量%の量、場合により3〜30重量%の量、場合により3〜20重量%の量、場合により3〜10重量%の量、場合により3〜5重量%の量で含む。
例えば酸化ジルコニウム・チタニウムを含む(これは、「構成されている」、「から成る」または「から本質的に成る」も意味する)典型的で例証的かつ非限定的なものとしての本開示のナノ結晶および/または本開示の分散体のナノ結晶は、少なくとも1種のキャッピング剤によって個々にキャップされていてもよい。
本開示の酸化ジルコニウム・チタニウムのナノ結晶の集合体のうち、数にして少なくとも90%、あるいは例えば少なくとも91%、例えば少なくとも92%、例えば少なくとも93%、例えば少なくとも94%、例えば少なくとも95%、例えば少なくとも96%、例えば少なくとも97%、例えば少なくとも98%、例えば少なくとも99%、例えば少なくとも99.9%、例えば少なくとも99.99%、例えば少なくとも99.999%は、少なくとも1種のキャッピング剤を有する。
例えば酸化ジルコニウム・チタニウムを含む(これは、「構成されている」、「から成る」または「から本質的に成る」も意味する)典型的で例証的かつ非限定的なものとしての本開示のナノ結晶および/または本開示の分散体のナノ結晶は、場合により、三つの寸法(次元)の全てが10nm未満であり、また場合により、(必ずしも同じではないか、あるいは実質的に同じである)10nm未満の寸法、例えば9nm未満、あるいは場合により8nm未満、あるいは7nm未満、あるいは6nm未満、あるいは5nm未満、あるいは4nm未満の三つの全ての寸法を有する。
酸化ジルコニウム・チタニウムを含む(これは、「構成されている」、「から成る」または「から本質的に成る」も意味する)典型的で例証的かつ非限定的なものとしての本開示のナノ結晶および/または本開示の分散体のナノ結晶は、場合により、TEMおよび/またはDLSによって測定して、2nm〜9nmのサイズ範囲内のピークを有するサイズ分布を有するものとして特徴づけることができ、また場合により、2nm〜3nm、または3nm〜4nm、または4nm〜5nm、または5nm〜6nm、または6nm〜7nm、または7nm〜8nm、または8nm〜9nmのいずれかの間に位置するピークを有するサイズ分布を有するものとして特徴づけることができる。本開示の酸化ジルコニウム・チタニウムのナノ結晶は、場合により、少なくともほぼ球形または米状の形あるいはこれらが混合した形を有する。本開示の酸化ジルコニウム・チタニウムのナノ結晶は、場合により、3:1よりも小さなアスペクト比を有する。
典型的で例証的かつ非限定的なものとしての本開示のナノ結晶の分散体、例えば酸化ジルコニウム・チタニウムのナノ結晶を含むナノ結晶の分散体は、分散体の溶媒または溶媒混合物の中で10重量%で調製された場合、そして同じ溶媒が充填されていて10mmの光路を有する融解石英のキュベットに対して10mmの光路を有する融解石英のキュベットの中で測定された場合、400nmから750nmまでの波長範囲において15%よりも大きな最小透過率、あるいは20%、または25%、または30%、または40%、または50%、または60%、または70%、または80%、または90%、または99%よりも大きな最小透過率を有する。
例えば酸化ジルコニウム・チタニウムのナノ結晶を含む(これは、「構成されている」、「から成る」または「から本質的に成る」も意味する)典型的で例証的かつ非限定的な
ものとしての本開示のナノ結晶の分散体であって、ここで記述される透過率の特徴を有するものは、ろ過を行うか、あるいはろ過することなく、5gよりも多いか、あるいは10gよりも多い量で製造することができ、この場合、追加の清澄化および/または分離技術は、場合により必要としない。
例えば酸化ジルコニウム・チタニウムのナノ結晶を含む(これは、「構成されている」、「から成る」または「から本質的に成る」も意味する)典型的で例証的かつ非限定的なものとしての本開示のナノ結晶の分散体であって、ここで記述される透過率の特徴を有するものは、驚くべきことに、ろ過を行うか、あるいはろ過することなく、5gよりも多いか、あるいは10gよりも多い量で製造することができ、この場合、追加の清澄化および/または分離技術は、場合により必要とせず、そして室温(すなわち、約18〜22℃)で溶媒の中に貯蔵したとき、この分散体は3週間を超えて清澄度または透過率の特徴を実質的に失うことなく安定であり、あるいは4週間を超えて、あるいは6週間を超えて、あるいは8週間を超えて、あるいは10週間を超えて、あるいは12週間を超えて、あるいは14週間を超えて、あるいは18週間を超えて、あるいは24週間を超えて、あるいは28週間を超えて、あるいは1年を超えて、あるいは2年を超えて、安定である。
典型的で例証的かつ非限定的なものとしての本開示のナノ結晶の分散体、例えば酸化ジルコニウム・チタニウムのナノ結晶を含むナノ結晶の分散体は、場合により、GCによって測定して、5マイクログラム/ml未満の遊離したキャッピング剤の濃度を有し、ある
いは10マイクログラム/ml未満、20マイクログラム/ml未満、50マイクログラム/ml未満、100マイクログラム/ml未満、150マイクログラム/ml未満、250
マイクログラム/ml未満、500マイクログラム/ml未満、1000マイクログラム/
ml未満、1500マイクログラム/ml未満、2000マイクログラム/ml未満、4000マイクログラム/ml未満、6000マイクログラム/ml未満、8000マイクログラム/ml未満、10000マイクログラム/ml未満、25000マイクログラム/ml
未満、50000マイクログラム/ml未満、または100000マイクログラム/ml未満の遊離したキャッピング剤の濃度を有する。
典型的で例証的かつ非限定的なものとしての本開示のナノ結晶の分散体、例えば酸化ジルコニウム・チタニウムのナノ結晶を含むナノ結晶の分散体は、ベンジルアルコール、フェノール、オレイルアルコール、トルエン、キシレン、ヘプタン、メシチレン、ブタノール、プロパノール、イソプロパノール、エタノール、水、プロピレングリコールモノメチルエーテル(PGME)、プロピレングリコールメチルエーテルアセテート(PGMEA)、エチルラクテート(EL)、および2−プロポキシ−プロパノール(PnP)、アセトン、テトラヒドロフラン(THF)、ケトン、環状ケトン、メチルペンタノールのうちの少なくとも1種、またはこれらの混合物を含む溶媒または溶媒の混合物を含んでいてもよい(これは、「構成されている」、「から成る」または「から本質的に成る」も意味する)。
例えば酸化ジルコニウム・チタニウムを含む(これは、「構成されている」、「から成る」または「から本質的に成る」も意味する)典型的で例証的かつ非限定的なものとしての本開示のナノ結晶および/または分散体のナノ結晶は、n−プロピルトリメトキシシラン、n−プロピルトリエトキシシラン、n−オクチルトリメトキシシラン、n−オクチルトリエトキシシラン、フェニルトリメトキシシラン、2−[メトキシ(ポリエチレンオキシ)プロピル]−トリメトキシシラン、メトキシトリ(エチレンオキシ)プロピルトリメトキシシラン、3−アミノプロピルトリメトキシシラン、3−メルカプトプロピルトリメトキシシラン、3−(メタクリロイルオキシ)プロピルトリメトキシシラン、3−イソシアナトプロピルトリエトキシシラン、3−イソシアナトプロピルトリメトキシシラン、および/またはグリシドキシプロピルトリメトキシシラン、ヘプタノール、ヘキサノール、オクタノ
ール、ベンジルアルコール、フェノール、エタノール、プロパノール、ブタノール、オレイルアルコール、ドデシルアルコール、オクタデカノール、およびトリエチレングリコールモノメチルエーテル、オクタン酸、酢酸、プロピオン酸、2−[2−(2−メトキシエトキシ)エトキシ]酢酸、オレイン酸、安息香酸、またはこれらの異性体および混合物のうちの少なくとも1種のキャッピング剤を含んでいてもよい(これは、「構成されている」、「から成る」または「から本質的に成る」も意味する)。
酸化ジルコニウム・チタニウムのナノ結晶の分散体を提供する例証的で非限定的かつ典型的な態様の別の側面においては、DLSおよび/またはTEMによって測定して、ナノ結晶のサイズの正規分布、ナノ結晶のサイズの対数正規分布、またはナノ結晶のサイズのローレンツ分布に類似するナノ結晶のサイズ分布が含まれ、この場合、ナノ結晶のサイズ分布は2nm〜9nmのサイズ範囲内に位置するピークを有し、また場合により、2nm〜3nm、または3nm〜4nm、または4nm〜5nm、または5nm〜6nm、または6nm〜7nm、または7nm〜8nm、または8nm〜9nmのいずれかの間に位置するピークを有し、この場合、ナノ結晶のサイズ分布は1nm〜5nmの範囲内の半値全幅(FWHM)を有し、あるいは場合により、1nm〜4nm、または1nm〜3nm、または1nm〜2nm、または2nm〜5nm、または2nm〜4nm、または2nm〜3nm、または3nm〜5nm、または3nm〜4nmの範囲内の半値全幅を有する。
典型的で例証的かつ非限定的なものとしての本開示のナノ結晶および/または本開示の分散体のナノ結晶は、酸化イットリウムを含む(これは、「構成されている」、「から成る」または「から本質的に成る」も意味する)。本開示のナノ結晶の分散体は、酸化イットリウムのナノ結晶を含んでいてもよく(これは、「構成されている」、「から成る」または「から本質的に成る」も意味する)、あるいはキャッピング剤、溶媒の基、および/または先駆物質の基のうちの少なくとも1種を含む酸化イットリウムのナノ結晶を含み、そのナノ結晶の量は溶媒中の全ての分散体の1〜85重量%の量であり、場合により1〜80重量%の量、場合により1〜70重量%の量、場合により1〜60重量%の量、場合により1〜50重量%の量、場合により1〜40重量%の量、場合により1〜30重量%の量、場合により1〜20重量%の量、場合により1〜10重量%の量、場合により1〜5重量%の量、場合により1〜2重量%の量、場合により2〜85重量%の量、場合により2〜80重量%の量、場合により2〜70重量%の量、場合により2〜60重量%の量、場合により2〜50重量%の量、場合により2〜40重量%の量、場合により2〜30重量%の量、場合により2〜20重量%の量、場合により2〜10重量%の量、場合により2〜5重量%の量、場合により3〜85重量%の量、場合により3〜80重量%の量、場合により3〜70重量%の量、場合により3〜60重量%の量、場合により3〜50重量%の量、場合により3〜40重量%の量、場合により3〜30重量%の量、場合により3〜20重量%の量、場合により3〜10重量%の量、場合により3〜5重量%の量である。
例えば酸化イットリウムを含む(これは、「構成されている」、「から成る」または「から本質的に成る」も意味する)典型的で例証的かつ非限定的なものとしての本開示のナノ結晶および/または本開示の分散体のナノ結晶は、少なくとも1種のキャッピング剤によって個々にキャップされていてもよい。
本開示の酸化イットリウムのナノ結晶の集合体のうち、数にして少なくとも90%、あるいは例えば少なくとも91%、例えば少なくとも92%、例えば少なくとも93%、例えば少なくとも94%、例えば少なくとも95%、例えば少なくとも96%、例えば少なくとも97%、例えば少なくとも98%、例えば少なくとも99%、例えば少なくとも99.9%、例えば少なくとも99.99%、例えば少なくとも99.999%は、少なくとも1種のキャッピング剤を有する。
例えば酸化イットリウムを含む(これは、「構成されている」、「から成る」または「から本質的に成る」も意味する)典型的で例証的かつ非限定的なものとしての本開示のナノ結晶および/または本開示の分散体のナノ結晶は、場合により、少なくとも一つの寸法(次元)が10nm未満であり、また場合により、(必ずしも同じではないか、あるいは実質的に同じである)10nm未満の寸法、例えば9nm未満、あるいは場合により8nm未満、あるいは7nm未満、あるいは6nm未満、あるいは5nm未満、あるいは4nm未満、あるいは3nm未満、あるいは2nm未満、あるいは1nm未満の少なくとも一つの寸法を有する。
典型的で例証的かつ非限定的なものとしての本開示の酸化イットリウムのナノ結晶は、場合により、ほぼ球状の形、または米状の形、または円盤状の形、またはシート状の形、またはこれらの混合の形のうちの少なくとも一つを有する。
典型的で例証的かつ非限定的なものとしての本開示のナノ結晶の分散体、例えば酸化イットリウムのナノ結晶を含むナノ結晶の分散体は、分散体の溶媒または溶媒混合物の中で10重量%で調製された場合、そして同じ溶媒が充填されていて10mmの光路を有する融解石英のキュベットに対して10mmの光路を有する融解石英のキュベットの中で測定された場合、400nmから750nmまでの波長範囲において15%よりも大きな最小透過率、あるいは20%、または25%、または30%、または40%、または50%、または60%、または70%、または80%、または90%、または99%よりも大きな最小透過率を有する。
例えば酸化イットリウムのナノ結晶を含む(これは、「構成されている」、「から成る」または「から本質的に成る」も意味する)典型的で例証的かつ非限定的なものとしての本開示のナノ結晶の分散体であって、ここで記述される透過率の特徴を有するものは、ろ過を行うか、あるいはろ過することなく、5gよりも多いか、あるいは10gよりも多い量で製造することができ、この場合、追加の清澄化および/または分離技術は、場合により必要としない。
例えば酸化イットリウムのナノ結晶を含む(これは、「構成されている」、「から成る」または「から本質的に成る」も意味する)典型的で例証的かつ非限定的なものとしての本開示のナノ結晶の分散体であって、ここで記述される透過率の特徴を有するものは、ろ過を行うか、あるいはろ過することなく、5gよりも多いか、あるいは10gよりも多い量で製造することができ、この場合、追加の清澄化および/または分離技術は、場合により必要とせず、そして室温(すなわち、約18〜22℃)で溶媒の中に貯蔵したとき、この分散体は3週間を超えて清澄度または透過率の特徴を実質的に失うことなく安定であり、あるいは4週間を超えて、あるいは6週間を超えて、あるいは8週間を超えて、あるいは10週間を超えて、あるいは12週間を超えて、あるいは14週間を超えて、あるいは18週間を超えて、あるいは24週間を超えて、あるいは28週間を超えて、あるいは1年を超えて、あるいは2年を超えて、安定である。
本開示のナノ結晶の分散体、例えば酸化イットリウムのナノ結晶を含むナノ結晶の分散体は、場合により、GCによって測定して、5マイクログラム/ml未満の遊離したキャ
ッピング剤の濃度を有し、あるいは10マイクログラム/ml未満、20マイクログラム/ml未満、50マイクログラム/ml未満、100マイクログラム/ml未満、150マイクログラム/ml未満、250マイクログラム/ml未満、500マイクログラム/ml未
満、1000マイクログラム/ml未満、1500マイクログラム/ml未満、2000マイクログラム/ml未満、4000マイクログラム/ml未満、6000マイクログラム/
ml未満、8000マイクログラム/ml未満、10000マイクログラム/ml未満、2
5000マイクログラム/ml未満、50000マイクログラム/ml未満、または100000マイクログラム/ml未満の遊離したキャッピング剤の濃度を有する。
典型的で例証的かつ非限定的なものとしての本開示のナノ結晶の分散体、例えば酸化イットリウムのナノ結晶を含むナノ結晶の分散体は、ベンジルアルコール、フェノール、オレイルアルコール、トルエン、キシレン、ヘプタン、メシチレン、ブタノール、プロパノール、イソプロパノール、エタノール、水、プロピレングリコールモノメチルエーテル(PGME)、プロピレングリコールメチルエーテルアセテート(PGMEA)、エチルラクテート(EL)、および2−プロポキシ−プロパノール(PnP)、アセトン、テトラヒドロフラン(THF)、ケトン、環状ケトン、メチルペンタノールのうちの少なくとも1種、またはこれらの混合物を含む溶媒または溶媒の混合物を含んでいてもよい(これは、「構成されている」、「から成る」または「から本質的に成る」も意味する)。
例えば酸化イットリウムを含む(これは、「構成されている」、「から成る」または「から本質的に成る」も意味する)典型的で例証的かつ非限定的なものとしての本開示のナノ結晶および/または分散体のナノ結晶は、n−プロピルトリメトキシシラン、n−プロピルトリエトキシシラン、n−オクチルトリメトキシシラン、n−オクチルトリエトキシシラン、フェニルトリメトキシシラン、2−[メトキシ(ポリエチレンオキシ)プロピル]−トリメトキシシラン、メトキシトリ(エチレンオキシ)プロピルトリメトキシシラン、3−アミノプロピルトリメトキシシラン、3−メルカプトプロピルトリメトキシシラン、3−(メタクリロイルオキシ)プロピルトリメトキシシラン、3−イソシアナトプロピルトリエトキシシラン、3−イソシアナトプロピルトリメトキシシラン、および/またはグリシドキシプロピルトリメトキシシラン、ヘプタノール、ヘキサノール、オクタノール、ベンジルアルコール、フェノール、エタノール、プロパノール、ブタノール、オレイルアルコール、ドデシルアルコール、オクタデカノール、およびトリエチレングリコールモノメチルエーテル、オクタン酸、酢酸、プロピオン酸、2−[2−(2−メトキシエトキシ)エトキ
シ]酢酸、オレイン酸、安息香酸、またはこれらの異性体および混合物のうちの少なくと
も1種のキャッピング剤を含んでいてもよい(これは、「構成されている」、「から成る」または「から本質的に成る」も意味する)。
別の例証的で非限定的かつ典型的な態様は、酸化ハフニウムを含むナノ結晶を含んでいる(これは、「構成されている」、「から成る」または「から本質的に成る」も意味する)酸化ハフニウムのナノ結晶の分散体を提供し、この場合、この分散体は、トルエンを含む溶媒中の全ての分散体の5〜85重量パーセントの量でナノ結晶を含む。この態様の分散体のナノ結晶は少なくとも一つのn−オクチルトリメトキシシランの分子によって個々にキャップされていて、酸化ハフニウムのナノ結晶の少なくとも98%は三つの全ての寸法(次元)が10nm未満であり、この場合、それら三つの寸法のそれぞれは実質的に同じであってもよく、あるいは実質的に異なっていてもよい。この態様の分散体の酸化ハフニウムのナノ結晶は、TEMおよび/またはDLSによって測定して、3nmから8nmまでのサイズ範囲内のピークを有するサイズ分布を有し、この場合、ナノ結晶のサイズ分布は1nmから5nmまでの範囲内の半値全幅(FWHM)を有する。この態様の酸化ハフニウムのナノ結晶は、ほぼ球状または米状またはこれらの混合の形を少なくとも有し、そして3:1よりも小さなアスペクト比を有する。本開示のこの態様の酸化ハフニウムのナノ結晶の分散体は、トルエン中で10重量%で調製された場合、そしてトルエンが充填されていて10mmの光路を有する融解石英のキュベットに対して10mmの光路を有する融解石英のキュベットの中で測定された場合、400nmから750nmまでの波長範囲において50%よりも大きな最小透過率を有する。この態様の酸化ハフニウムのナノ結晶の分散体は、GCによって測定して、150マイクログラム/ml未満の遊離したキャ
ッピング剤の濃度を有する。
別の例証的で非限定的かつ典型的な態様は、酸化ハフニウムを含むナノ結晶を含んでいる(これは、「構成されている」、「から成る」または「から本質的に成る」も意味する)酸化ハフニウムのナノ結晶の分散体を提供し、この場合、この分散体は、PGMEAを含む溶媒中の全ての分散体の5〜85重量パーセントの量でナノ結晶を含む。この態様の分散体のナノ結晶は少なくとも一つのメトキシトリ(エチレンオキシ)プロピルトリメトキシシランの分子によって個々にキャップされていて、酸化ハフニウムのナノ結晶の少なくとも98%は三つの全ての寸法(次元)が10nm未満であり、この場合、それら三つの寸法のそれぞれは実質的に同じであってもよく、あるいは実質的に異なっていてもよい。この態様の分散体の酸化ハフニウムのナノ結晶は、TEMおよび/またはDLSによって測定して、3nmから8nmまでのサイズ範囲内のピークを有するサイズ分布を有し、この場合、ナノ結晶のサイズ分布は1nmから5nmまでの範囲内の半値全幅(FWHM)を有する。この態様の酸化ハフニウムのナノ結晶は、ほぼ球状または米状またはこれらの混合の形を少なくとも有し、そして3:1よりも小さなアスペクト比を有する。本開示のこの態様の酸化ハフニウムのナノ結晶の分散体は、PGMEAの中で10重量%で調製された場合、そしてPGMEAが充填されていて10mmの光路を有する融解石英のキュベットに対して10mmの光路を有する融解石英のキュベットの中で測定された場合、400nmから750nmまでの波長範囲において50%よりも大きな最小透過率を有する。この態様の酸化ハフニウムのナノ結晶の分散体は、GCによって測定して、150マイクログラム/ml未満の遊離したキャッピング剤の濃度を有する。
別の例証的で非限定的かつ典型的な態様は、酸化ジルコニウムを含むナノ結晶を含んでいる(これは、「構成されている」、「から成る」または「から本質的に成る」も意味する)酸化ジルコニウムのナノ結晶の分散体を提供し、この場合、この分散体は、トルエンを含む溶媒中の全ての分散体の5〜85重量パーセントの量でナノ結晶を含む。この態様の分散体のナノ結晶は少なくとも一つのn−オクチルトリメトキシシランの分子によって個々にキャップされていて、酸化ジルコニウムのナノ結晶の少なくとも98%は三つの全ての寸法(次元)が13nm未満であり、この場合、それら三つの寸法のそれぞれは実質的に同じであってもよく、あるいは実質的に異なっていてもよい。この態様の分散体の酸化ジルコニウムのナノ結晶は、TEMおよび/またはDLSによって測定して、3nmから10nmまでのサイズ範囲内のピークを有するサイズ分布を有し、この場合、ナノ結晶のサイズ分布は1nmから5nmまでの範囲内の半値全幅(FWHM)を有する。この態様の酸化ジルコニウムのナノ結晶は、3:1よりも小さなアスペクト比を有する。本開示のこの態様の酸化ジルコニウムのナノ結晶の分散体は、トルエン中で10重量%で調製された場合、そしてトルエンが充填されていて10mmの光路を有する融解石英のキュベットに対して10mmの光路を有する融解石英のキュベットの中で測定された場合、400nmから750nmまでの波長範囲において60%よりも大きな最小透過率を有する。この態様の酸化ジルコニウムのナノ結晶の分散体は、GCによって測定して、150マイクログラム/ml未満の遊離したキャッピング剤の濃度を有する。
別の例証的で非限定的かつ典型的な態様は、酸化ジルコニウムを含むナノ結晶を含んでいる(これは、「構成されている」、「から成る」または「から本質的に成る」も意味する)酸化ジルコニウムのナノ結晶の分散体を提供し、この場合、この分散体は、PGMEAを含む溶媒中の全ての分散体の5〜85重量パーセントの量でナノ結晶を含む。この態様の分散体のナノ結晶は少なくとも一つのメトキシトリ(エチレンオキシ)プロピルトリメトキシシランの分子によって個々にキャップされていて、酸化ジルコニウムのナノ結晶の少なくとも98%は三つの全ての寸法(次元)が13nm未満であり、この場合、それら三つの寸法のそれぞれは実質的に同じであってもよく、あるいは実質的に異なっていてもよい。この態様の分散体の酸化ジルコニウムのナノ結晶は、TEMおよび/またはDLSによって測定して、4nmから10nmまでのサイズ範囲内のピークを有するサイズ分布を有し、この場合、ナノ結晶のサイズ分布は2nmから6nmまでの範囲内の半値全幅(
FWHM)を有する。この態様の酸化ジルコニウムのナノ結晶は、3:1よりも小さなアスペクト比を有する。本開示のこの態様の酸化ジルコニウムのナノ結晶の分散体は、PGMEAの中で10重量%で調製された場合、そしてPGMEAが充填されていて10mmの光路を有する融解石英のキュベットに対して10mmの光路を有する融解石英のキュベットの中で測定された場合、400nmから750nmまでの波長範囲において50%よりも大きな最小透過率を有する。この態様の酸化ハフニウムのナノ結晶の分散体は、GCによって測定して、150マイクログラム/ml未満の遊離したキャッピング剤の濃度を
有する。
本開示は、さらなる例証的で非限定的かつ典型的な態様として、ここに記載されたナノ結晶を含む(これは、「構成されている」、「から成る」または「から本質的に成る」も意味する)ナノ結晶ポリマーナノ複合材、あるいはキャッピング剤、溶媒の基、および/または先駆物質の基のうちの少なくとも1種を含むナノ結晶を含むナノ結晶ポリマーナノ複合材をさらに記載し、そのナノ結晶の量はナノ複合材の全体の1〜95重量%の量であり、場合によりナノ複合材の全体の1〜90重量%の量、場合によりナノ複合材の全体の1〜80重量%の量、場合によりナノ複合材の全体の1〜70重量%の量、場合によりナノ複合材の全体の1〜60重量%の量、場合によりナノ複合材の全体の1〜50重量%の量、場合によりナノ複合材の全体の1〜40重量%の量、場合によりナノ複合材の全体の1〜30重量%の量、場合によりナノ複合材の全体の1〜20重量%の量、場合によりナノ複合材の全体の1〜10重量%の量、場合によりナノ複合材の全体の1〜5重量%の量、場合によりナノ複合材の全体の1〜2重量%の量、場合によりナノ複合材の全体の2〜95重量%の量、場合によりナノ複合材の全体の2〜90重量%の量、場合によりナノ複合材の全体の2〜80重量%の量、場合によりナノ複合材の全体の2〜70重量%の量、場合によりナノ複合材の全体の2〜60重量%の量、場合によりナノ複合材の全体の2〜50重量%の量、場合によりナノ複合材の全体の2〜40重量%の量、場合によりナノ複合材の全体の2〜30重量%の量、場合によりナノ複合材の全体の2〜20重量%の量、場合によりナノ複合材の全体の2〜10重量%の量、場合によりナノ複合材の全体の2〜5重量%の量、場合によりナノ複合材の全体の3〜95重量%の量、場合によりナノ複合材の全体の3〜90重量%の量、場合によりナノ複合材の全体の3〜80重量%の量、場合によりナノ複合材の全体の3〜70重量%の量、場合によりナノ複合材の全体の3〜60重量%の量、場合によりナノ複合材の全体の3〜50重量%の量、場合によりナノ複合材の全体の3〜40重量%の量、場合によりナノ複合材の全体の3〜30重量%の量、場合によりナノ複合材の全体の3〜20重量%の量、場合によりナノ複合材の全体の3〜10重量%の量、場合によりナノ複合材の全体の3〜5重量%の量である。図27は35重量%の添加量でアクリルポリマーの中に分散したほぼ球形のキャップされたZrOナノ結晶のTEM画像を示す。
ナノ複合材の典型的で例証的かつ非限定的なナノ結晶は、場合により、ここで説明されているようにして(例えば、少なくとも1種のキャッピング剤によって)個々にキャップされていて、このとき、ナノ結晶の少なくとも95%は三つの全ての寸法(次元)が10nm未満であり、この場合、それら三つの寸法のそれぞれは実質的に同じであってもよく、あるいは実質的に異なっていてもよい。本開示のナノ複合材のナノ結晶は、ここで説明されているようなサイズ分布を有し、例えば、TEMによって測定して2nm〜10nmのサイズ範囲内のピークを有するサイズ分布を有し、また場合により、2nm〜3nm、または3nm〜4nm、または4nm〜5nm、または5nm〜6nm、または6nm〜7nm、または7nm〜8nm、または8nm〜9nm、または9nm〜10nmのいずれかの間に位置するピークを有するサイズ分布を有し、このとき、ナノ結晶は、場合により、ほぼ球状の形、または円盤状の形、またはシート状の形、または米状の形、またはこれらの混合の形のうちの少なくとも一つを有する。この態様に係るナノ複合材のナノ結晶は、3:1よりも小さなアスペクト比を有する。このナノ複合材のナノ結晶は、ここで説
明されているような酸化亜鉛、酸化ハフニウム、酸化ジルコニウム、酸化ジルコニウム・チタニウム、酸化チタニウム、酸化イットリウムのうちの少なくとも1種、またはこれらの任意の混合物、合金または同素体を含む(これは、「構成されている」、「から成る」または「から本質的に成る」も意味する)。
典型的で例証的かつ非限定的なナノ結晶の分散体は、本開示のナノ複合材と同じポリマーの中で10重量%で調製された場合、そして融解石英のウェハの上に1μmの厚さの被覆として塗布され、そしてそのポリマーの1μmの層で被覆された融解石英のウェハに対して測定された場合、400nmから750nmまでの波長範囲において99%よりも大きな最小透過率、あるいは98%、99.5%、99.9%、または99.95%よりも大きな最小透過率を有する。本開示のナノ複合材のナノ結晶の分散体は、GCによって測定して、150マイクログラム/ml未満の遊離したキャッピング剤の濃度を有する。
本開示は、さらなる例証的で非限定的かつ典型的な態様として、ここに記載されたナノ結晶を含む(これは、「構成されている」、「から成る」または「から本質的に成る」も意味する)ナノ結晶の油分散体、あるいはキャッピング剤、溶媒の基、および/または先駆物質の基のうちの少なくとも1種を含むナノ結晶を含むナノ結晶の油分散体をさらに記載し、そのナノ結晶の量は分散体の全体の0.05〜95重量%の量であり、場合により分散体の全体の1〜90重量%の量、場合により分散体の全体の1〜80重量%の量、場合により分散体の全体の1〜70重量%の量、場合により分散体の全体の1〜60重量%の量、場合により分散体の全体の1〜50重量%の量、場合により分散体の全体の1〜40重量%の量、場合により分散体の全体の1〜30重量%の量、場合により分散体の全体の1〜20重量%の量、場合により分散体の全体の1〜10重量%の量、場合により分散体の全体の1〜5重量%の量、場合により分散体の全体の1〜2重量%の量、場合により分散体の全体の2〜95重量%の量、場合により分散体の全体の2〜90重量%の量、場合により分散体の全体の2〜80重量%の量、場合により分散体の全体の2〜70重量%の量、場合により分散体の全体の2〜60重量%の量、場合により分散体の全体の2〜50重量%の量、場合により分散体の全体の2〜40重量%の量、場合により分散体の全体の2〜30重量%の量、場合により分散体の全体の2〜20重量%の量、場合により分散体の全体の2〜10重量%の量、場合により分散体の全体の2〜5重量%の量、場合により分散体の全体の3〜95重量%の量、場合により分散体の全体の3〜90重量%の量、場合により分散体の全体の3〜80重量%の量、場合により分散体の全体の3〜70重量%の量、場合により分散体の全体の3〜60重量%の量、場合により分散体の全体の3〜50重量%の量、場合により分散体の全体の3〜40重量%の量、場合により分散体の全体の3〜30重量%の量、場合により分散体の全体の3〜20重量%の量、場合により分散体の全体の3〜10重量%の量、場合により分散体の全体の3〜5重量%の量、場合により分散体の全体の0.05〜0.1重量%の量、場合により分散体の全体の0.1〜0.25重量%の量、場合により分散体の全体の0.25〜0.5重量%の量、場合により分散体の全体の0.5〜1重量%の量、場合により分散体の全体の1〜1.25重量%の量、場合により分散体の全体の1.25〜2重量%の量である。
典型的で例証的かつ非限定的なものとしての、本開示の油分散体のナノ結晶のキャッピング剤には、n−プロピルトリメトキシシラン、n−プロピルトリエトキシシラン、n−オクチルトリメトキシシラン、n−オクチルトリエトキシシラン、フェニルトリメトキシシラン、3−アミノプロピルトリメトキシシラン、3−(メタクリロイルオキシ)プロピルトリメトキシシラン、および/またはヘプタノール、ヘキサノール、オクタノール、ベンジルアルコール、フェノール、エタノール、プロパノール、ブタノール、オレイルアルコール、ドデシルアルコール、オクタデカノール、オクタン酸、プロピオン酸、オレイン酸、安息香酸、および/またはこれらの異性体および/または混合物のうちの少なくとも1種が含まれる。
典型的で例証的かつ非限定的なものとしての、本開示のナノ結晶の油分散体の油には、PAO4、PAO10、PAO6、PAO8、PAO5、PAO7、PAO9、PAO20、PAO30などのポリアルファオレフィン類(PAO)、RLOP100などの鉱油、Yubase4などのYubase、および/またはこれらの異性体および/または混合物のうちの少なくとも1種が含まれる。
本開示のさらなる典型的で例証的かつ非限定的な態様において、ナノ結晶の集合体には、酸化ハフニウム、酸化ジルコニウム、酸化チタニウム・ジルコニウム、酸化亜鉛、または酸化ハフニウム、酸化ジルコニウム、酸化チタニウム・ジルコニウム、および酸化亜鉛の組み合わせまたは混合物を含むナノ結晶が含まれ(これは、「構成されている」、「から成る」または「から本質的に成る」も意味する)、このとき、酸化ハフニウム、酸化ジルコニウム、酸化チタニウム・ジルコニウム、酸化亜鉛、または酸化ハフニウム、酸化ジルコニウム、酸化チタニウム・ジルコニウム、酸化亜鉛の組み合わせまたは混合物のいずれかは、n−プロピルトリメトキシシラン、n−プロピルトリエトキシシラン、n−オクチルトリメトキシシラン、n−オクチルトリエトキシシラン、フェニルトリメトキシシラン、3−アミノプロピルトリメトキシシラン、3−(メタクリロイルオキシ)プロピルトリメトキシシラン、および/またはヘプタノール、ヘキサノール、オクタノール、ベンジルアルコール、フェノール、エタノール、プロパノール、ブタノール、オレイルアルコール、ドデシルアルコール、オクタデカノール、およびオクタン酸、プロピオン酸、オレイン酸、安息香酸、および/またはこれらの異性体および/または混合物の組み合わせのいずれか1種から選択される少なくとも1種のキャッピング剤を含む。
本開示のさらなる典型的で例証的かつ非限定的な態様において、ナノ結晶の油分散体には、酸化ハフニウム、酸化ジルコニウム、酸化チタニウム・ジルコニウム、酸化亜鉛、または酸化ハフニウム、酸化ジルコニウム、酸化チタニウム・ジルコニウム、および酸化亜鉛の組み合わせまたは混合物を含むナノ結晶が含まれ(これは、「構成されている」、「から成る」または「から本質的に成る」も意味する)、このとき、酸化ハフニウム、酸化ジルコニウム、酸化チタニウム・ジルコニウム、酸化亜鉛、または酸化ハフニウム、酸化ジルコニウム、酸化チタニウム・ジルコニウム、および酸化亜鉛の組み合わせまたは混合物のいずれかは、n−プロピルトリメトキシシラン、n−プロピルトリエトキシシラン、n−オクチルトリメトキシシラン、n−オクチルトリエトキシシラン、フェニルトリメトキシシラン、3−アミノプロピルトリメトキシシラン、3−(メタクリロイルオキシ)プロピルトリメトキシシラン、および/またはヘプタノール、ヘキサノール、オクタノール、ベンジルアルコール、フェノール、エタノール、プロパノール、ブタノール、オレイルアルコール、ドデシルアルコール、オクタデカノール、およびオクタン酸、プロピオン酸、オレイン酸、安息香酸、および/またはこれらの異性体および/または混合物の組み合わせのいずれか1種から選択される少なくとも1種のキャッピング剤を含み、そして分散体には、PAO4、PAO10、PAO6、PAO8、PAO5、PAO7、PAO9、PAO20、PAO30などのポリアルファオレフィン類(PAO)、RLOP100などの鉱油、Yubase4などのYubase、および/またはこれらの異性体および/または混合物から選択される油または油の混合物がさらに含まれる。
典型的で例証的かつ非限定的なものとしての、本開示のナノ結晶の分散体は、この分散体の油または油の混合物の中で10重量%で調製された場合、そして同じ油が充填されていて10mmの光路を有する融解石英のキュベットに対して10mmの光路を有する融解石英のキュベットの中で測定された場合、400nmから750nmまでの波長範囲において15%よりも大きな最小透過率を有し、あるいは20%、または25%、または30%、または40%、または50%、または60%、または70%、または80%、または90%、または99%よりも大きな最小透過率を有する。
典型的で例証的かつ非限定的なものとしての、本開示のナノ結晶の分散体は、室温(すなわち、約18〜22℃)で溶媒の中に貯蔵したとき、3週間を超えて清澄度または透過率の特徴を実質的に失うことなく安定であり、あるいは4週間を超えて、あるいは6週間を超えて、あるいは8週間を超えて、あるいは10週間を超えて、あるいは12週間を超えて、あるいは14週間を超えて、あるいは18週間を超えて、あるいは24週間を超えて、あるいは28週間を超えて、あるいは1年を超えて、あるいは2年を超えて、安定である。
典型的で例証的かつ非限定的なものとしての、本開示のナノ結晶の分散体は、場合により、GCによって測定して、5マイクログラム/ml未満の遊離したキャッピング剤の濃
度を有し、あるいは10マイクログラム/ml未満、20マイクログラム/ml未満、50マイクログラム/ml未満、100マイクログラム/ml未満、150マイクログラム/m
l未満、250マイクログラム/ml未満、500マイクログラム/ml未満、1000マイクログラム/ml未満、1500マイクログラム/ml未満、2000マイクログラム/
ml未満、4000マイクログラム/ml未満、6000マイクログラム/ml未満、8000マイクログラム/ml未満、10000マイクログラム/ml未満、25000マイクログラム/ml未満、50000マイクログラム/ml未満、または100000マイクログラム/ml未満の遊離したキャッピング剤の濃度を有する。
本開示は、さらなる例証的で非限定的かつ典型的な態様として、ここに記載されたナノ結晶を含む(これは、「構成されている」、「から成る」または「から本質的に成る」も意味する)酸化ジルコニウムのナノ結晶の油分散体、あるいはキャッピング剤、溶媒の基、および/または先駆物質の基のうちの少なくとも1種を含むナノ結晶を含む酸化ジルコニウムのナノ結晶の油分散体をさらに記載し、そのナノ結晶の量は分散体の全体の0.05〜95重量%の量であり、場合により分散体の全体の1〜90重量%の量、場合により分散体の全体の1〜80重量%の量、場合により分散体の全体の1〜70重量%の量、場合により分散体の全体の1〜60重量%の量、場合により分散体の全体の1〜50重量%の量、場合により分散体の全体の1〜40重量%の量、場合により分散体の全体の1〜30重量%の量、場合により分散体の全体の1〜20重量%の量、場合により分散体の全体の1〜10重量%の量、場合により分散体の全体の1〜5重量%の量、場合により分散体の全体の1〜2重量%の量、場合により分散体の全体の2〜95重量%の量、場合により分散体の全体の2〜90重量%の量、場合により分散体の全体の2〜80重量%の量、場合により分散体の全体の2〜70重量%の量、場合により分散体の全体の2〜60重量%の量、場合により分散体の全体の2〜50重量%の量、場合により分散体の全体の2〜40重量%の量、場合により分散体の全体の2〜30重量%の量、場合により分散体の全体の2〜20重量%の量、場合により分散体の全体の2〜10重量%の量、場合により分散体の全体の2〜5重量%の量、場合により分散体の全体の3〜95重量%の量、場合により分散体の全体の3〜90重量%の量、場合により分散体の全体の3〜80重量%の量、場合により分散体の全体の3〜70重量%の量、場合により分散体の全体の3〜60重量%の量、場合により分散体の全体の3〜50重量%の量、場合により分散体の全体の3〜40重量%の量、場合により分散体の全体の3〜30重量%の量、場合により分散体の全体の3〜20重量%の量、場合により分散体の全体の3〜10重量%の量、場合により分散体の全体の3〜5重量%の量、場合により分散体の全体の0.05〜0.1重量%の量、場合により分散体の全体の0.1〜0.25重量%の量、場合により分散体の全体の0.25〜0.5重量%の量、場合により分散体の全体の0.5〜1重量%の量、場合により分散体の全体の1〜1.25重量%の量、場合により分散体の全体の1.25〜2重量%の量である。
典型的で例証的かつ非限定的なものとしての、本開示の油分散体の酸化ジルコニウムの
ナノ結晶のキャッピング剤には、n−プロピルトリメトキシシラン、n−プロピルトリエトキシシラン、n−オクチルトリメトキシシラン、n−オクチルトリエトキシシラン、フェニルトリメトキシシラン、3−アミノプロピルトリメトキシシラン、3−(メタクリロ
イルオキシ)プロピルトリメトキシシラン、および/またはヘプタノール、ヘキサノール
、オクタノール、ベンジルアルコール、フェノール、エタノール、プロパノール、ブタノール、オレイルアルコール、ドデシルアルコール、オクタデカノール、および、オクタン酸、プロピオン酸、オレイン酸、安息香酸、および/またはこれらの異性体および/または混合物のうちの少なくとも1種が含まれる。
典型的で例証的かつ非限定的なものとしての、本開示の酸化ジルコニウムのナノ結晶の油分散体の油には、PAO4、PAO10、PAO6、PAO8、PAO5、PAO7、PAO9、PAO20、PAO30などのポリアルファオレフィン類(PAO)、RLOP100などの鉱油、Yubase4などのYubase、および/またはこれらの異性体および/または混合物のうちの少なくとも1種が含まれる。
本開示のさらなる典型的で例証的かつ非限定的な態様において、ナノ結晶の集合体には、酸化ジルコニウムのナノ結晶が含まれ(これは、「構成されている」、「から成る」または「から本質的に成る」も意味する)、このとき、酸化ジルコニウムのナノ結晶は、n−プロピルトリメトキシシラン、n−プロピルトリエトキシシラン、n−オクチルトリメトキシシラン、n−オクチルトリエトキシシラン、フェニルトリメトキシシラン、3−アミノプロピルトリメトキシシラン、3−(メタクリロイルオキシ)プロピルトリメトキシシラン、および/またはヘプタノール、ヘキサノール、オクタノール、ベンジルアルコール、フェノール、エタノール、プロパノール、ブタノール、オレイルアルコール、ドデシルアルコール、オクタデカノール、およびオクタン酸、プロピオン酸、オレイン酸、安息香酸、および/またはこれらの異性体および/または混合物の組み合わせのいずれか1種から選択される少なくとも1種のキャッピング剤を含む。
本開示のさらなる典型的で例証的かつ非限定的な態様において、ナノ結晶の油分散体には、酸化ジルコニウムのナノ結晶が含まれ(これは、「構成されている」、「から成る」または「から本質的に成る」も意味する)、このとき、酸化ジルコニウムのナノ結晶は、n−プロピルトリメトキシシラン、n−プロピルトリエトキシシラン、n−オクチルトリメトキシシラン、n−オクチルトリエトキシシラン、フェニルトリメトキシシラン、3−アミノプロピルトリメトキシシラン、3−(メタクリロイルオキシ)プロピルトリメトキシシラン、および/またはヘプタノール、ヘキサノール、オクタノール、ベンジルアルコール、フェノール、エタノール、プロパノール、ブタノール、オレイルアルコール、ドデシルアルコール、オクタデカノール、およびオクタン酸、プロピオン酸、オレイン酸、安息香酸、および/またはこれらの異性体および/または混合物の組み合わせのいずれか1種から選択される少なくとも1種のキャッピング剤を含み、そして分散体には、PAO4、PAO10、PAO6、PAO8、PAO5、PAO7、PAO9、PAO20、PAO30などのポリアルファオレフィン類(PAO)、RLOP100などの鉱油、Yubase4などのYubase、および/またはこれらの異性体および/または混合物から選択される油または油の混合物がさらに含まれる。
典型的で例証的かつ非限定的なものとしての、本開示の酸化ジルコニウムのナノ結晶の油分散体は、この分散体の油または油の混合物の中で10重量%で調製された場合、そして同じ油が充填されていて10mmの光路を有する融解石英のキュベットに対して10mmの光路を有する融解石英のキュベットの中で測定された場合、400nmから750nmまでの波長範囲において15%よりも大きな最小透過率を有し、あるいは20%、または25%、または30%、または40%、または50%、または60%、または70%、または80%、または90%、または99%よりも大きな最小透過率を有する。
典型的で例証的かつ非限定的なものとしての、本開示の酸化ジルコニウムのナノ結晶の油分散体は、室温(すなわち、約18〜22℃)で油分散体として貯蔵したとき、3週間を超えて清澄度または透過率の特徴を実質的に失うことなく安定であり、あるいは4週間を超えて、あるいは6週間を超えて、あるいは8週間を超えて、あるいは10週間を超えて、あるいは12週間を超えて、あるいは14週間を超えて、あるいは18週間を超えて、あるいは24週間を超えて、あるいは28週間を超えて、あるいは1年を超えて、あるいは2年を超えて、安定である。
典型的で例証的かつ非限定的なものとしての、本開示の酸化ジルコニウムのナノ結晶の油分散体において、遊離したキャッピング剤の濃度は、GCによって測定して、5マイクログラム/ml未満であり、あるいは10マイクログラム/ml未満、20マイクログラム/ml未満、50マイクログラム/ml未満、100マイクログラム/ml未満、150マ
イクログラム/ml未満、250マイクログラム/ml未満、500マイクログラム/ml
未満、1000マイクログラム/ml未満、1500マイクログラム/ml未満、2000マイクログラム/ml未満、4000マイクログラム/ml未満、6000マイクログラム/ml未満、8000マイクログラム/ml未満、10000マイクログラム/ml未満、
25000マイクログラム/ml未満、50000マイクログラム/ml未満、または100000マイクログラム/ml未満である。
本開示は、さらなる例証的で非限定的かつ典型的な態様として、ここに記載されたナノ結晶を含む(これは、「構成されている」、「から成る」または「から本質的に成る」も意味する)酸化亜鉛のナノ結晶の油分散体、あるいはキャッピング剤、溶媒の基、および/または先駆物質の基のうちの少なくとも1種を含むナノ結晶を含む酸化ジルコニウムのナノ結晶の油分散体をさらに記載し、そのナノ結晶の量は分散体の全体の0.05〜95重量%の量であり、場合により分散体の全体の1〜90重量%の量、場合により分散体の全体の1〜80重量%の量、場合により分散体の全体の1〜70重量%の量、場合により分散体の全体の1〜60重量%の量、場合により分散体の全体の1〜50重量%の量、場合により分散体の全体の1〜40重量%の量、場合により分散体の全体の1〜30重量%の量、場合により分散体の全体の1〜20重量%の量、場合により分散体の全体の1〜10重量%の量、場合により分散体の全体の1〜5重量%の量、場合により分散体の全体の1〜2重量%の量、場合により分散体の全体の2〜95重量%の量、場合により分散体の全体の2〜90重量%の量、場合により分散体の全体の2〜80重量%の量、場合により分散体の全体の2〜70重量%の量、場合により分散体の全体の2〜60重量%の量、場合により分散体の全体の2〜50重量%の量、場合により分散体の全体の2〜40重量%の量、場合により分散体の全体の2〜30重量%の量、場合により分散体の全体の2〜20重量%の量、場合により分散体の全体の2〜10重量%の量、場合により分散体の全体の2〜5重量%の量、場合により分散体の全体の3〜95重量%の量、場合により分散体の全体の3〜90重量%の量、場合により分散体の全体の3〜80重量%の量、場合により分散体の全体の3〜70重量%の量、場合により分散体の全体の3〜60重量%の量、場合により分散体の全体の3〜50重量%の量、場合により分散体の全体の3〜40重量%の量、場合により分散体の全体の3〜30重量%の量、場合により分散体の全体の3〜20重量%の量、場合により分散体の全体の3〜10重量%の量、場合により分散体の全体の3〜5重量%の量、場合により分散体の全体の0.05〜0.1重量%の量、場合により分散体の全体の0.1〜0.25重量%の量、場合により分散体の全体の0.25〜0.5重量%の量、場合により分散体の全体の0.5〜1重量%の量、場合により分散体の全体の1〜1.25重量%の量、場合により分散体の全体の1.25〜2重量%の量である。
典型的で例証的かつ非限定的なものとしての、本開示の油分散体の酸化亜鉛のナノ結晶
のキャッピング剤には、n−プロピルトリメトキシシラン、n−プロピルトリエトキシシラン、n−オクチルトリメトキシシラン、n−オクチルトリエトキシシラン、フェニルトリメトキシシラン、3−アミノプロピルトリメトキシシラン、3−(メタクリロイルオキ
シ)プロピルトリメトキシシラン、および/またはヘプタノール、ヘキサノール、オクタ
ノール、ベンジルアルコール、フェノール、エタノール、プロパノール、ブタノール、オレイルアルコール、ドデシルアルコール、オクタデカノール、および、オクタン酸、プロピオン酸、オレイン酸、安息香酸、および/またはこれらの異性体および/または混合物のうちの少なくとも1種が含まれる。
典型的で例証的かつ非限定的なものとしての、本開示の酸化亜鉛のナノ結晶の油分散体の油には、PAO4、PAO10、PAO6、PAO8、PAO5、PAO7、PAO9、PAO20、PAO30などのポリアルファオレフィン類(PAO)、RLOP100などの鉱油、Yubase4などのYubase、および/またはこれらの異性体および/または混合物のうちの少なくとも1種が含まれる。
本開示のさらなる典型的で例証的かつ非限定的な態様において、ナノ結晶の集合体には、酸化亜鉛のナノ結晶が含まれ(これは、「構成されている」、「から成る」または「から本質的に成る」も意味する)、このとき、酸化亜鉛のナノ結晶は、n−プロピルトリメトキシシラン、n−プロピルトリエトキシシラン、n−オクチルトリメトキシシラン、n−オクチルトリエトキシシラン、フェニルトリメトキシシラン、3−アミノプロピルトリメトキシシラン、3−(メタクリロイルオキシ)プロピルトリメトキシシラン、および/またはヘプタノール、ヘキサノール、オクタノール、ベンジルアルコール、フェノール、エタノール、プロパノール、ブタノール、オレイルアルコール、ドデシルアルコール、オクタデカノール、およびオクタン酸、プロピオン酸、オレイン酸、安息香酸、および/またはこれらの異性体および/または混合物の組み合わせのいずれか1種から選択される少なくとも1種のキャッピング剤を含む。
本開示のさらなる典型的で例証的かつ非限定的な態様において、ナノ結晶の油分散体には、酸化亜鉛のナノ結晶が含まれ(これは、「構成されている」、「から成る」または「から本質的に成る」も意味する)、このとき、酸化亜鉛のナノ結晶は、n−プロピルトリメトキシシラン、n−プロピルトリエトキシシラン、n−オクチルトリメトキシシラン、n−オクチルトリエトキシシラン、フェニルトリメトキシシラン、3−アミノプロピルトリメトキシシラン、3−(メタクリロイルオキシ)プロピルトリメトキシシラン、および/またはヘプタノール、ヘキサノール、オクタノール、ベンジルアルコール、フェノール、エタノール、プロパノール、ブタノール、オレイルアルコール、ドデシルアルコール、オクタデカノール、およびオクタン酸、プロピオン酸、オレイン酸、安息香酸、および/またはこれらの異性体および/または混合物の組み合わせのいずれか1種から選択される少なくとも1種のキャッピング剤を含み、そして分散体には、PAO4、PAO10、PAO6、PAO8、PAO5、PAO7、PAO9、PAO20、PAO30などのポリアルファオレフィン類(PAO)、RLOP100などの鉱油、Yubase4などのYubase、および/またはこれらの異性体および/または混合物から選択される油または油の混合物がさらに含まれる。
典型的で例証的かつ非限定的なものとしての、本開示の酸化亜鉛のナノ結晶の油分散体は、この分散体の油または油の混合物の中で10重量%で調製された場合、そして同じ油が充填されていて10mmの光路を有する融解石英のキュベットに対して10mmの光路を有する融解石英のキュベットの中で測定された場合、400nmから750nmまでの波長範囲において15%よりも大きな最小透過率を有し、あるいは20%、または25%、または30%、または40%、または50%、または60%、または70%、または80%、または90%、または99%よりも大きな最小透過率を有する。
典型的で例証的かつ非限定的なものとしての、本開示の酸化亜鉛のナノ結晶の油分散体は、室温(すなわち、約18〜22℃)で油分散体として貯蔵したとき、3週間を超えて清澄度または透過率の特徴を実質的に失うことなく安定であり、あるいは4週間を超えて、あるいは6週間を超えて、あるいは8週間を超えて、あるいは10週間を超えて、あるいは12週間を超えて、あるいは14週間を超えて、あるいは18週間を超えて、あるいは24週間を超えて、あるいは28週間を超えて、あるいは1年を超えて、あるいは2年を超えて、安定である。
典型的で例証的かつ非限定的なものとしての、本開示の酸化亜鉛のナノ結晶の油分散体において、遊離したキャッピング剤の濃度は、GCによって測定して、5マイクログラム/ml未満であり、あるいは10マイクログラム/ml未満、20マイクログラム/ml未
満、50マイクログラム/ml未満、100マイクログラム/ml未満、150マイクログラム/ml未満、250マイクログラム/ml未満、500マイクログラム/ml未満、1
000マイクログラム/ml未満、1500マイクログラム/ml未満、2000マイクログラム/ml未満、4000マイクログラム/ml未満、6000マイクログラム/ml未
満、8000マイクログラム/ml未満、10000マイクログラム/ml未満、25000マイクログラム/ml未満、50000マイクログラム/ml未満、または100000マイクログラム/ml未満である。
典型的で例証的かつ非限定的なものとしての、本開示のナノ複合材のナノ結晶のキャッピング剤は、前述したキャッピング剤およびここで説明するキャッピング剤を含み、それには、n−プロピルトリメトキシシラン、n−プロピルトリエトキシシラン、n−オクチルトリメトキシシラン、n−オクチルトリエトキシシラン、フェニルトリメトキシシラン、2−[メトキシ(ポリエチレンオキシ)プロピル]−トリメトキシシラン、メトキシトリ(
エチレンオキシ)プロピルトリメトキシシラン、3−アミノプロピルトリメトキシシラン
、3−メルカプトプロピルトリメトキシシラン、3−(メタクリロイルオキシ)プロピルトリメトキシシラン、3−イソシアナトプロピルトリエトキシシラン、3−イソシアナトプロピルトリメトキシシラン、および/またはグリシドキシプロピルトリメトキシシラン、ヘプタノール、ヘキサノール、オクタノール、ベンジルアルコール、フェノール、エタノール、プロパノール、ブタノール、オレイルアルコール、ドデシルアルコール、オクタデカノール、およびトリエチレングリコールモノメチルエーテル、オクタン酸、酢酸、プロピオン酸、2−[2−(2−メトキシエトキシ)エトキシ]酢酸、オレイン酸、安息香酸、またはこれらの異性体および混合物のうちの少なくとも1種が含まれる。
典型的で例証的かつ非限定的なものとしての、本開示のナノ複合材のポリマーには、ポリ(アクリロニトリル−ブタジエン−スチレン)(ABS)、ポリ(メチルメタクリレート)(PMMA)、セルロイド、セルロースアセテート、ポリ(エチレン−ビニルアセテート)(EVA)、ポリ(エチレン−ビニルアルコール)(EVOH)、フルオロプラスチック、ポリアクリレート(Acrylic)、ポリアクリロニトリル(PAN)、ポリアミド(PAま
たはNylon)、ポリアミド−イミド(PAI)、ポリアリールエーテルケトン(PAEK
)、ポリブタジエン(PBD)、ポリブチレン(PB)、ポリブチレンテレフタレート(PBT)、ポリカプロラクトン(PCL)、ポリクロロトリフルオロエチレン(PCTFE)、ポリエチレンテレフタレート(PET)、ポリシクロヘキシレンジメチレンテレフタレート(PCT)、ポリカーボネート(PC)、ポリヒドロキシアルカノエート(PHAs)、ポリケトン(PK)、ポリエステル、ポリエチレン(PE)、ポリエーテルエーテルケトン(PEEK)、ポリエーテルケトンケトン(PEKK)、ポリエーテルイミド(PEI)、ポリエーテルスルホン(PES)、ポリエチレンクロリネート(PEC)、ポリイミド(PI)、ポリ乳酸(PLA)、ポリメチルペンテン(PMP)、ポリフェニレンオキシド(PPO)、ポリフェニレンスルフィド(PPS)、ポリフタルアミド(P
PA)、ポリプロピレン(PP)、ポリスチレン(PS)、ポリスルホン(PSU)、ポリトリメチレンテレフタレート(PTT)、ポリウレタン(PU)、ポリ酢酸ビニル(PVA)、ポリ塩化ビニル(PVC)、ポリ塩化ビニリデン(PVDC)、ポリ(スチレン
−アクリロニトリル)(SAN)、スピンオンガラス(SOG)ポリマー、エタノール中
のシロキサンスピンオンポリマー、プロピレングリコールメチルエーテルアセテート(PGMEA)、イソプロピルアルコール、またはこれらの溶媒の混合物であるJSRミクロトップコート(4−メチル−2−ペンタノール中のNFCTCX014)、JSRミクロフォトレジスト(ARF1682J−19)、シリコーン、またはこれらの異性体および混合物のうちの少なくとも1種が含まれる。
本開示のさらなる典型的で例証的かつ非限定的な態様において、ナノ結晶の分散体は、酸化ハフニウム、酸化ジルコニウム、酸化チタニウム・ジルコニウム、酸化亜鉛、酸化イットリウム、または酸化ハフニウム、酸化ジルコニウム、酸化チタニウム・ジルコニウム、酸化亜鉛、および酸化イットリウムの組み合わせまたは混合物を含むナノ結晶を含み(これは、「構成されている」、「から成る」または「から本質的に成る」も意味する)、このとき、酸化ハフニウム、酸化ジルコニウム、酸化チタニウム・ジルコニウム、酸化亜鉛、酸化イットリウム、または酸化ハフニウム、酸化ジルコニウム、酸化チタニウム・ジルコニウム、酸化亜鉛、および酸化イットリウムの組み合わせまたは混合物のいずれかは、メトキシトリ(エチレンオキシ)プロピルトリメトキシシラン、2−[メトキシ(ポリエチレンオキシ)プロピル]−トリメトキシシラン、3−(メタクリロイルオキシ)プロピルトリメトキシシラン、2−[2−(2−メトキシエトキシ)エトキシ]酢酸、酢酸、ベンジルアルコール、ブタノール、エタノール、プロパノール、n−オクチルトリメトキシシラン、n−オクチルトリエトキシシラン、オレイルアルコール、ドデシルアルコール、オクタン酸、オレイン酸、ステアリン酸、およびn−オクタデシルトリメトキシシランの組み合わせのいずれかのものから選択される少なくとも1種のキャッピング剤を含む。
本開示のさらなる典型的で例証的かつ非限定的な態様において、ナノ結晶の分散体は、酸化ハフニウム、酸化ジルコニウム、酸化チタニウム・ジルコニウム、酸化亜鉛、酸化イットリウム、または酸化ハフニウム、酸化ジルコニウム、酸化チタニウム・ジルコニウム、酸化亜鉛、および酸化イットリウムの組み合わせまたは混合物を含むナノ結晶を含み(これは、「構成されている」、「から成る」または「から本質的に成る」も意味する)、このとき、酸化ハフニウム、酸化ジルコニウム、酸化チタニウム・ジルコニウム、酸化亜鉛、酸化イットリウム、または酸化ハフニウム、酸化ジルコニウム、酸化チタニウム・ジルコニウム、酸化亜鉛、および酸化イットリウムの組み合わせまたは混合物のいずれかは、メトキシトリ(エチレンオキシ)プロピルトリメトキシシラン、2−[メトキシ(ポリエチレンオキシ)プロピル]−トリメトキシシラン、3−(メタクリロイルオキシ)プロピルトリメトキシシラン、2−[2−(2−メトキシエトキシ)エトキシ]酢酸、酢酸、ベンジルアルコール、ブタノール、エタノール、プロパノール、n−オクチルトリメトキシシラン、n−オクチルトリエトキシシラン、オレイルアルコール、ドデシルアルコール、オクタン酸、オレイン酸、ステアリン酸、およびn−オクタデシルトリメトキシシランの組み合わせのいずれかのものから選択される少なくとも1種のキャッピング剤を含み、また、この分散体は、ブタノール、プロパノール、イソプロパノール、エタノール、水、プロピレングリコールモノメチルエーテル(PGME)、プロピレングリコールメチルエーテルアセテート(PGMEA)、アセトン、テトラヒドロフラン(THF)、ケトン、環状ケトン、2−ブトキシエタノール、トルエン、キシレン、メシチレンおよびヘプタンから選択される溶媒または溶媒の混合物をさらに含む。
本開示のさらなる典型的で例証的かつ非限定的な態様において、ナノ結晶の分散体は、酸化ハフニウム、酸化ジルコニウム、酸化チタニウム・ジルコニウム、または酸化ハフニウム、酸化ジルコニウム、酸化チタニウム・ジルコニウムの組み合わせまたは混合物を含
むナノ結晶を含み(これは、「構成されている」、「から成る」または「から本質的に成る」も意味する)、このとき、酸化ハフニウム、酸化ジルコニウム、酸化チタニウム・ジルコニウム、または酸化ハフニウム、酸化ジルコニウム、酸化チタニウム・ジルコニウムの組み合わせまたは混合物のいずれかは、メトキシトリ(エチレンオキシ)プロピルトリメトキシシラン、2−[メトキシ(ポリエチレンオキシ)プロピル]−トリメトキシシラン、3−(メタクリロイルオキシ)プロピルトリメトキシシラン、2−[2−(2−メトキシエトキシ)エトキシ]酢酸、酢酸、ベンジルアルコール、ブタノール、エタノール、およびプロパノールの組み合わせのいずれかのものから選択される少なくとも1種のキャッピング剤を含み、また、この分散体は、場合により、ブタノール、プロパノール、イソプロパノール、エタノール、水、プロピレングリコールモノメチルエーテル(PGME)、プロピレングリコールメチルエーテルアセテート(PGMEA)、アセトン、テトラヒドロフラン(THF)、ケトン、環状ケトン、2−ブトキシエタノールから選択される溶媒または溶媒の混合物をさらに含む。
本開示のさらなる典型的で例証的かつ非限定的な態様において、ナノ結晶の分散体は、酸化ハフニウムを含むナノ結晶を含み(これは、「構成されている」、「から成る」または「から本質的に成る」も意味する)、このとき、酸化ハフニウムは、場合により、メトキシトリ(エチレンオキシ)プロピルトリメトキシシラン、2−[メトキシ(ポリエチレンオキシ)プロピル]−トリメトキシシラン、3−(メタクリロイルオキシ)プロピルトリメトキシシラン、2−[2−(2−メトキシエトキシ)エトキシ]酢酸、酢酸、ベンジルアルコール、ブタノール、エタノール、およびプロパノールの組み合わせのいずれかのものから選択される少なくとも1種のキャッピング剤を含み、また、この分散体は、場合により、ブタノール、プロパノール、イソプロパノール、エタノール、水、プロピレングリコールモノメチルエーテル(PGME)、プロピレングリコールメチルエーテルアセテート(PGMEA)、アセトン、テトラヒドロフラン(THF)、ケトン、環状ケトン、2−ブトキシエタノールから選択される溶媒または溶媒の混合物をさらに含む。
本開示のさらなる典型的で例証的かつ非限定的な態様において、ナノ結晶の分散体は、酸化ジルコニウムを含むナノ結晶を含み(これは、「構成されている」、「から成る」または「から本質的に成る」も意味する)、このとき、酸化ジルコニウムは、場合により、メトキシトリ(エチレンオキシ)プロピルトリメトキシシラン、2−[メトキシ(ポリエチレンオキシ)プロピル]−トリメトキシシラン、3−(メタクリロイルオキシ)プロピルトリメトキシシラン、2−[2−(2−メトキシエトキシ)エトキシ]酢酸、酢酸、ベンジルアルコール、ブタノール、エタノール、およびプロパノールの組み合わせのいずれかのものから選択される少なくとも1種のキャッピング剤を含み、また、この分散体は、場合により、ブタノール、プロパノール、イソプロパノール、エタノール、水、プロピレングリコールモノメチルエーテル(PGME)、プロピレングリコールメチルエーテルアセテート(PGMEA)、アセトン、テトラヒドロフラン(THF)、ケトン、環状ケトン、2−ブトキシエタノールから選択される溶媒または溶媒の混合物をさらに含む。
本開示のさらなる典型的で例証的かつ非限定的な態様において、ナノ結晶の分散体は、酸化チタニウム・ジルコニウムを含むナノ結晶を含み(これは、「構成されている」、「から成る」または「から本質的に成る」も意味する)、このとき、酸化チタニウム・ジルコニウムは、場合により、メトキシトリ(エチレンオキシ)プロピルトリメトキシシラン、2−[メトキシ(ポリエチレンオキシ)プロピル]−トリメトキシシラン、3−(メタクリロ
イルオキシ)プロピルトリメトキシシラン、2−[2−(2−メトキシエトキシ)エトキシ]
酢酸、酢酸、ベンジルアルコール、ブタノール、エタノール、およびプロパノールの組み合わせのいずれかのものから選択される少なくとも1種のキャッピング剤をさらに含み、また、この分散体は、場合により、ブタノール、プロパノール、イソプロパノール、エタノール、水、プロピレングリコールモノメチルエーテル(PGME)、プロピレングリコ
ールメチルエーテルアセテート(PGMEA)、アセトン、テトラヒドロフラン(THF)、ケトン、環状ケトン、2−ブトキシエタノールから選択される溶媒または溶媒の混合物をさらに含む。
本開示のさらなる典型的で例証的かつ非限定的な態様において、ナノ結晶の分散体は、酸化ハフニウムを含むナノ結晶を含み(これは、「構成されている」、「から成る」または「から本質的に成る」も意味する)、このとき、酸化ハフニウムは、場合により、メトキシトリ(エチレンオキシ)プロピルトリメトキシシランを少なくとも1種のキャッピング剤として含み、また、この分散体は、場合により、ブタノール、プロパノール、イソプロパノール、エタノール、水、プロピレングリコールモノメチルエーテル(PGME)、プロピレングリコールメチルエーテルアセテート(PGMEA)、アセトン、テトラヒドロフラン(THF)、ケトン、環状ケトン、2−ブトキシエタノールから選択される溶媒または溶媒の混合物をさらに含む。
本開示のさらなる典型的で例証的かつ非限定的な態様において、ナノ結晶の分散体は、酸化ハフニウムを含むナノ結晶を含み(これは、「構成されている」、「から成る」または「から本質的に成る」も意味する)、このとき、酸化ハフニウムは、場合により、2−[メトキシ(ポリエチレンオキシ)プロピル]−トリメトキシシランを少なくとも1種のキャッピング剤として含み、また、この分散体は、場合により、ブタノール、プロパノール、イソプロパノール、エタノール、水、プロピレングリコールモノメチルエーテル(PGME)、プロピレングリコールメチルエーテルアセテート(PGMEA)、アセトン、テトラヒドロフラン(THF)、ケトン、環状ケトン、2−ブトキシエタノールから選択される溶媒または溶媒の混合物をさらに含む。
本開示のさらなる典型的で例証的かつ非限定的な態様において、ナノ結晶の分散体は、酸化ハフニウムを含むナノ結晶を含み(これは、「構成されている」、「から成る」または「から本質的に成る」も意味する)、このとき、酸化ハフニウムは、場合により、3−(メタクリロイルオキシ)プロピルトリメトキシシランを少なくとも1種のキャッピング剤として含み、また、この分散体は、場合により、ブタノール、プロパノール、イソプロパノール、エタノール、水、プロピレングリコールモノメチルエーテル(PGME)、プロピレングリコールメチルエーテルアセテート(PGMEA)、アセトン、テトラヒドロフラン(THF)、ケトン、環状ケトン、2−ブトキシエタノールから選択される溶媒または溶媒の混合物をさらに含む。
本開示のさらなる典型的で例証的かつ非限定的な態様において、ナノ結晶の分散体は、酸化ハフニウムを含むナノ結晶を含み(これは、「構成されている」、「から成る」または「から本質的に成る」も意味する)、このとき、酸化ハフニウムは、2−[2−(2−メトキシエトキシ)エトキシ]酢酸を少なくとも1種のキャッピング剤として含み、また、この分散体は、場合により、ブタノール、プロパノール、イソプロパノール、エタノール、水、プロピレングリコールモノメチルエーテル(PGME)、プロピレングリコールメチルエーテルアセテート(PGMEA)、アセトン、テトラヒドロフラン(THF)、ケトン、環状ケトン、2−ブトキシエタノールから選択される溶媒または溶媒の混合物をさらに含む。
本開示のさらなる典型的で例証的かつ非限定的な態様において、ナノ結晶の分散体は、酸化ハフニウムを含むナノ結晶を含み(これは、「構成されている」、「から成る」または「から本質的に成る」も意味する)、このとき、酸化ハフニウムは、酢酸を少なくとも1種のキャッピング剤として含み、また、この分散体は、場合により、ブタノール、プロパノール、イソプロパノール、エタノール、水、プロピレングリコールモノメチルエーテル(PGME)、プロピレングリコールメチルエーテルアセテート(PGMEA)、アセ
トン、テトラヒドロフラン(THF)、ケトン、環状ケトン、2−ブトキシエタノールから選択される溶媒または溶媒の混合物をさらに含む。
本開示のさらなる典型的で例証的かつ非限定的な態様において、ナノ結晶の分散体は、酸化ハフニウムを含むナノ結晶を含み(これは、「構成されている」、「から成る」または「から本質的に成る」も意味する)、このとき、酸化ハフニウムは、ベンジルアルコールを少なくとも1種のキャッピング剤として含み、また、この分散体は、場合により、ブタノール、プロパノール、イソプロパノール、エタノール、水、プロピレングリコールモノメチルエーテル(PGME)、プロピレングリコールメチルエーテルアセテート(PGMEA)、アセトン、テトラヒドロフラン(THF)、ケトン、環状ケトン、2−ブトキシエタノールから選択される溶媒または溶媒の混合物をさらに含む。
本開示のさらなる典型的で例証的かつ非限定的な態様において、ナノ結晶の分散体は、酸化ハフニウムを含むナノ結晶を含み(これは、「構成されている」、「から成る」または「から本質的に成る」も意味する)、このとき、酸化ハフニウムは、ブタノールを少なくとも1種のキャッピング剤として含み、また、この分散体は、場合により、ブタノール、プロパノール、イソプロパノール、エタノール、水、プロピレングリコールモノメチルエーテル(PGME)、プロピレングリコールメチルエーテルアセテート(PGMEA)、アセトン、テトラヒドロフラン(THF)、ケトン、環状ケトン、2−ブトキシエタノールから選択される溶媒または溶媒の混合物をさらに含む。
本開示のさらなる典型的で例証的かつ非限定的な態様において、ナノ結晶の分散体は、酸化ハフニウムを含むナノ結晶を含み(これは、「構成されている」、「から成る」または「から本質的に成る」も意味する)、このとき、酸化ハフニウムは、エタノールを少なくとも1種のキャッピング剤として含み、また、この分散体は、場合により、ブタノール、プロパノール、イソプロパノール、エタノール、水、プロピレングリコールモノメチルエーテル(PGME)、プロピレングリコールメチルエーテルアセテート(PGMEA)、アセトン、テトラヒドロフラン(THF)、ケトン、環状ケトン、2−ブトキシエタノールから選択される溶媒または溶媒の混合物をさらに含む。
本開示のさらなる典型的で例証的かつ非限定的な態様において、ナノ結晶の分散体は、酸化ハフニウムを含むナノ結晶を含み(これは、「構成されている」、「から成る」または「から本質的に成る」も意味する)、このとき、酸化ハフニウムは、プロパノールを少なくとも1種のキャッピング剤として含み、また、この分散体は、場合により、ブタノール、プロパノール、イソプロパノール、エタノール、水、プロピレングリコールモノメチルエーテル(PGME)、プロピレングリコールメチルエーテルアセテート(PGMEA)、アセトン、テトラヒドロフラン(THF)、ケトン、環状ケトン、2−ブトキシエタノールから選択される溶媒または溶媒の混合物をさらに含む。
本開示のさらなる典型的で例証的かつ非限定的な態様において、ナノ結晶の分散体は、酸化ハフニウムを含むナノ結晶を含み(これは、「構成されている」、「から成る」または「から本質的に成る」も意味する)、このとき、酸化ハフニウムは、場合により、メトキシトリ(エチレンオキシ)プロピルトリメトキシシランを少なくとも1種のキャッピング剤として含み、また、この分散体は、場合により、ブタノール、エタノール、プロピレングリコールメチルエーテルアセテート(PGMEA)、ケトンおよび環状ケトンから選択される溶媒または溶媒の混合物をさらに含む。
本開示のさらなる典型的で例証的かつ非限定的な態様において、ナノ結晶の分散体は、酸化ハフニウムを含むナノ結晶を含み(これは、「構成されている」、「から成る」または「から本質的に成る」も意味する)、このとき、酸化ハフニウムは、場合により、メト
キシトリ(エチレンオキシ)プロピルトリメトキシシランを少なくとも1種のキャッピング剤として含み、また、この分散体は、場合により、ブタノールを含む溶媒または溶媒の混合物をさらに含む。
本開示のさらなる典型的で例証的かつ非限定的な態様において、ナノ結晶の分散体は、酸化ハフニウムを含むナノ結晶を含み(これは、「構成されている」、「から成る」または「から本質的に成る」も意味する)、このとき、酸化ハフニウムは、場合により、メトキシトリ(エチレンオキシ)プロピルトリメトキシシランを少なくとも1種のキャッピング剤として含み、また、この分散体は、場合により、エタノールを含む溶媒または溶媒の混合物をさらに含む。
本開示のさらなる典型的で例証的かつ非限定的な態様において、ナノ結晶の分散体は、酸化ハフニウムを含むナノ結晶を含み(これは、「構成されている」、「から成る」または「から本質的に成る」も意味する)、このとき、酸化ハフニウムは、場合により、メトキシトリ(エチレンオキシ)プロピルトリメトキシシランを少なくとも1種のキャッピング剤として含み、また、この分散体は、場合により、プロピレングリコールメチルエーテルアセテート(PGMEA)を含む溶媒または溶媒の混合物をさらに含む。
本開示のさらなる典型的で例証的かつ非限定的な態様において、ナノ結晶の分散体は、酸化ハフニウムを含むナノ結晶を含み(これは、「構成されている」、「から成る」または「から本質的に成る」も意味する)、このとき、酸化ハフニウムは、場合により、メトキシトリ(エチレンオキシ)プロピルトリメトキシシランを少なくとも1種のキャッピング剤として含み、また、この分散体は、場合により、ケトンを含む溶媒または溶媒の混合物をさらに含む。
本開示のさらなる典型的で例証的かつ非限定的な態様において、ナノ結晶の分散体は、酸化ハフニウムを含むナノ結晶を含み(これは、「構成されている」、「から成る」または「から本質的に成る」も意味する)、このとき、酸化ハフニウムは、場合により、メトキシトリ(エチレンオキシ)プロピルトリメトキシシランを少なくとも1種のキャッピング剤として含み、また、この分散体は、場合により、環状ケトンを含む溶媒または溶媒の混合物をさらに含む。
本開示のさらなる典型的で例証的かつ非限定的な態様において、ナノ結晶の分散体は、酸化ハフニウムを含むナノ結晶を含み(これは、「構成されている」、「から成る」または「から本質的に成る」も意味する)、このとき、酸化ハフニウムは、場合により、2−[メトキシ(ポリエチレンオキシ)プロピル]−トリメトキシシランを少なくとも1種のキャッピング剤として含み、また、この分散体は、場合により、ブタノール、エタノール、プロピレングリコールメチルエーテルアセテート(PGMEA)、ケトンおよび環状ケトンから選択される溶媒または溶媒の混合物をさらに含む。
本開示のさらなる典型的で例証的かつ非限定的な態様において、ナノ結晶の分散体は、酸化ハフニウムを含むナノ結晶を含み(これは、「構成されている」、「から成る」または「から本質的に成る」も意味する)、このとき、酸化ハフニウムは、場合により、2−[メトキシ(ポリエチレンオキシ)プロピル]−トリメトキシシランを少なくとも1種のキャッピング剤として含み、また、この分散体は、場合により、ブタノールを含む溶媒または溶媒の混合物をさらに含む。
本開示のさらなる典型的で例証的かつ非限定的な態様において、ナノ結晶の分散体は、酸化ハフニウムを含むナノ結晶を含み(これは、「構成されている」、「から成る」または「から本質的に成る」も意味する)、このとき、酸化ハフニウムは、場合により、2−
[メトキシ(ポリエチレンオキシ)プロピル]−トリメトキシシランを少なくとも1種のキャッピング剤として含み、また、この分散体は、場合により、エタノールを含む溶媒または溶媒の混合物をさらに含む。
本開示のさらなる典型的で例証的かつ非限定的な態様において、ナノ結晶の分散体は、酸化ハフニウムを含むナノ結晶を含み(これは、「構成されている」、「から成る」または「から本質的に成る」も意味する)、このとき、酸化ハフニウムは、場合により、2−[メトキシ(ポリエチレンオキシ)プロピル]−トリメトキシシランを少なくとも1種のキャッピング剤として含み、また、この分散体は、場合により、プロピレングリコールメチルエーテルアセテート(PGMEA)を含む溶媒または溶媒の混合物をさらに含む。
本開示のさらなる典型的で例証的かつ非限定的な態様において、ナノ結晶の分散体は、酸化ハフニウムを含むナノ結晶を含み(これは、「構成されている」、「から成る」または「から本質的に成る」も意味する)、このとき、酸化ハフニウムは、場合により、2−[メトキシ(ポリエチレンオキシ)プロピル]−トリメトキシシランを少なくとも1種のキャッピング剤として含み、また、この分散体は、場合により、ケトンを含む溶媒または溶媒の混合物をさらに含む。
本開示のさらなる典型的で例証的かつ非限定的な態様において、ナノ結晶の分散体は、酸化ハフニウムを含むナノ結晶を含み(これは、「構成されている」、「から成る」または「から本質的に成る」も意味する)、このとき、酸化ハフニウムは、場合により、2−[メトキシ(ポリエチレンオキシ)プロピル]−トリメトキシシランを少なくとも1種のキャッピング剤として含み、また、この分散体は、場合により、環状ケトンを含む溶媒または溶媒の混合物をさらに含む。
本開示のさらなる典型的で例証的かつ非限定的な態様において、ナノ結晶の分散体は、酸化ハフニウムを含むナノ結晶を含み(これは、「構成されている」、「から成る」または「から本質的に成る」も意味する)、このとき、酸化ハフニウムは、場合により、3−(メタクリロイルオキシ)プロピルトリメトキシシランを少なくとも1種のキャッピング剤として含み、また、この分散体は、場合により、ブタノール、エタノール、プロピレングリコールメチルエーテルアセテート(PGMEA)、ケトンおよび環状ケトンから選択される溶媒または溶媒の混合物をさらに含む。
本開示のさらなる典型的で例証的かつ非限定的な態様において、ナノ結晶の分散体は、酸化ハフニウムを含むナノ結晶を含み(これは、「構成されている」、「から成る」または「から本質的に成る」も意味する)、このとき、酸化ハフニウムは、場合により、3−(メタクリロイルオキシ)プロピルトリメトキシシランを少なくとも1種のキャッピング剤として含み、また、この分散体は、場合により、ブタノールを含む溶媒または溶媒の混合物をさらに含む。
本開示のさらなる典型的で例証的かつ非限定的な態様において、ナノ結晶の分散体は、酸化ハフニウムを含むナノ結晶を含み(これは、「構成されている」、「から成る」または「から本質的に成る」も意味する)、このとき、酸化ハフニウムは、場合により、3−(メタクリロイルオキシ)プロピルトリメトキシシランを少なくとも1種のキャッピング剤として含み、また、この分散体は、場合により、エタノールを含む溶媒または溶媒の混合物をさらに含む。
本開示のさらなる典型的で例証的かつ非限定的な態様において、ナノ結晶の分散体は、酸化ハフニウムを含むナノ結晶を含み(これは、「構成されている」、「から成る」または「から本質的に成る」も意味する)、このとき、酸化ハフニウムは、場合により、3−
(メタクリロイルオキシ)プロピルトリメトキシシランを少なくとも1種のキャッピング剤として含み、また、この分散体は、場合により、プロピレングリコールメチルエーテルアセテート(PGMEA)を含む溶媒または溶媒の混合物をさらに含む。
本開示のさらなる典型的で例証的かつ非限定的な態様において、ナノ結晶の分散体は、酸化ハフニウムを含むナノ結晶を含み(これは、「構成されている」、「から成る」または「から本質的に成る」も意味する)、このとき、酸化ハフニウムは、場合により、3−(メタクリロイルオキシ)プロピルトリメトキシシランを少なくとも1種のキャッピング剤として含み、また、この分散体は、場合により、ケトンを含む溶媒または溶媒の混合物をさらに含む。
本開示のさらなる典型的で例証的かつ非限定的な態様において、ナノ結晶の分散体は、酸化ハフニウムを含むナノ結晶を含み(これは、「構成されている」、「から成る」または「から本質的に成る」も意味する)、このとき、酸化ハフニウムは、場合により、3−(メタクリロイルオキシ)プロピルトリメトキシシランを少なくとも1種のキャッピング剤として含み、また、この分散体は、場合により、環状ケトンを含む溶媒または溶媒の混合物をさらに含む。
本開示のさらなる典型的で例証的かつ非限定的な態様において、ナノ結晶の分散体は、酸化ハフニウムを含むナノ結晶を含み(これは、「構成されている」、「から成る」または「から本質的に成る」も意味する)、このとき、酸化ハフニウムは、場合により、2−[2−(2−メトキシエトキシ)エトキシ]酢酸を少なくとも1種のキャッピング剤として含み、また、この分散体は、場合により、ブタノール、エタノール、プロピレングリコールメチルエーテルアセテート(PGMEA)、ケトンおよび環状ケトンから選択される溶媒または溶媒の混合物をさらに含む。
本開示のさらなる典型的で例証的かつ非限定的な態様において、ナノ結晶の分散体は、酸化ハフニウムを含むナノ結晶を含み(これは、「構成されている」、「から成る」または「から本質的に成る」も意味する)、このとき、酸化ハフニウムは、場合により、2−[2−(2−メトキシエトキシ)エトキシ]酢酸を少なくとも1種のキャッピング剤として含み、また、この分散体は、場合により、ブタノールを含む溶媒または溶媒の混合物をさらに含む。
本開示のさらなる典型的で例証的かつ非限定的な態様において、ナノ結晶の分散体は、酸化ハフニウムを含むナノ結晶を含み(これは、「構成されている」、「から成る」または「から本質的に成る」も意味する)、このとき、酸化ハフニウムは、場合により、2−[2−(2−メトキシエトキシ)エトキシ]酢酸を少なくとも1種のキャッピング剤として含み、また、この分散体は、場合により、エタノールを含む溶媒または溶媒の混合物をさらに含む。
本開示のさらなる典型的で例証的かつ非限定的な態様において、ナノ結晶の分散体は、酸化ハフニウムを含むナノ結晶を含み(これは、「構成されている」、「から成る」または「から本質的に成る」も意味する)、このとき、酸化ハフニウムは、場合により、2−[2−(2−メトキシエトキシ)エトキシ]酢酸を少なくとも1種のキャッピング剤として含み、また、この分散体は、場合により、プロピレングリコールメチルエーテルアセテート(PGMEA)を含む溶媒または溶媒の混合物をさらに含む。
本開示のさらなる典型的で例証的かつ非限定的な態様において、ナノ結晶の分散体は、酸化ハフニウムを含むナノ結晶を含み(これは、「構成されている」、「から成る」または「から本質的に成る」も意味する)、このとき、酸化ハフニウムは、場合により、2−
[2−(2−メトキシエトキシ)エトキシ]酢酸を少なくとも1種のキャッピング剤として含み、また、この分散体は、場合により、ケトンを含む溶媒または溶媒の混合物をさらに含む。
本開示のさらなる典型的で例証的かつ非限定的な態様において、ナノ結晶の分散体は、酸化ハフニウムを含むナノ結晶を含み(これは、「構成されている」、「から成る」または「から本質的に成る」も意味する)、このとき、酸化ハフニウムは、場合により、2−[2−(2−メトキシエトキシ)エトキシ]酢酸を少なくとも1種のキャッピング剤として含み、また、この分散体は、場合により、環状ケトンを含む溶媒または溶媒の混合物をさらに含む。
本開示のさらなる典型的で例証的かつ非限定的な態様において、ナノ複合材が提供され、このとき、このナノ複合材は、ポリ(メチルメタクリレート)、シリコーン、シロキサン、スピンオンガラスポリマー、エポキシポリマー、およびポリ(エチレンビニルアルコー
ル)を含めたアクリルポリマーのうちの少なくとも1種または混合物を含むポリマーを含
み、そしてこのナノ複合材は、酸化ハフニウムを含むナノ結晶を含む(これは、「構成されている」、「から成る」または「から本質的に成る」も意味する)ナノ結晶の分散体から得られた(または、得ることのできる)ナノ結晶生成物を含み、このとき、酸化ハフニウムは、場合により、メトキシトリ(エチレンオキシ)プロピルトリメトキシシランを少なくとも1種のキャッピング剤として含み、また、分散体は、場合により、ブタノール、エタノール、プロピレングリコールメチルエーテルアセテート(PGMEA)、ケトンおよび環状ケトンから選択される溶媒または溶媒の混合物をさらに含む。
本開示のさらなる典型的で例証的かつ非限定的な態様において、ナノ複合材が提供され、このとき、このナノ複合材は、ポリ(メチルメタクリレート)、シリコーン、シロキサン、スピンオンガラスポリマー、エポキシポリマー、およびポリ(エチレンビニルアルコー
ル)を含めたアクリルポリマーのうちの少なくとも1種または混合物を含むポリマーを含
み、そしてこのナノ複合材は、酸化ハフニウムを含むナノ結晶を含む(これは、「構成されている」、「から成る」または「から本質的に成る」も意味する)ナノ結晶の分散体から得られた(または、得ることのできる)ナノ結晶生成物を含み、このとき、酸化ハフニウムは、場合により、メトキシトリ(エチレンオキシ)プロピルトリメトキシシランを少なくとも1種のキャッピング剤として含み、また、分散体は、場合により、ブタノールを含む溶媒または溶媒の混合物をさらに含む。
本開示のさらなる典型的で例証的かつ非限定的な態様において、ナノ複合材が提供され、このとき、このナノ複合材は、ポリ(メチルメタクリレート)、シリコーン、シロキサン、スピンオンガラスポリマー、エポキシポリマー、およびポリ(エチレンビニルアルコー
ル)を含めたアクリルポリマーのうちの少なくとも1種または混合物を含むポリマーを含
み、そしてこのナノ複合材は、酸化ハフニウムを含むナノ結晶を含む(これは、「構成されている」、「から成る」または「から本質的に成る」も意味する)ナノ結晶の分散体から得られた(または、得ることのできる)ナノ結晶生成物を含み、このとき、酸化ハフニウムは、場合により、メトキシトリ(エチレンオキシ)プロピルトリメトキシシランを少なくとも1種のキャッピング剤として含み、また、分散体は、場合により、エタノールを含む溶媒または溶媒の混合物をさらに含む。
本開示のさらなる典型的で例証的かつ非限定的な態様において、ナノ複合材が提供され、このとき、このナノ複合材は、ポリ(メチルメタクリレート)、シリコーン、シロキサン、スピンオンガラスポリマー、エポキシポリマー、およびポリ(エチレンビニルアルコー
ル)を含めたアクリルポリマーのうちの少なくとも1種または混合物を含むポリマーを含
み、そしてこのナノ複合材は、酸化ハフニウムを含むナノ結晶を含む(これは、「構成さ
れている」、「から成る」または「から本質的に成る」も意味する)ナノ結晶の分散体から得られた(または、得ることのできる)ナノ結晶生成物を含み、このとき、酸化ハフニウムは、場合により、メトキシトリ(エチレンオキシ)プロピルトリメトキシシランを少なくとも1種のキャッピング剤として含み、また、分散体は、場合により、プロピレングリコールメチルエーテルアセテート(PGMEA)を含む溶媒または溶媒の混合物をさらに含む。
本開示のさらなる典型的で例証的かつ非限定的な態様において、ナノ複合材が提供され、このとき、このナノ複合材は、ポリ(メチルメタクリレート)、シリコーン、シロキサン、スピンオンガラスポリマー、エポキシポリマー、およびポリ(エチレンビニルアルコー
ル)を含めたアクリルポリマーのうちの少なくとも1種または混合物を含むポリマーを含
み、そしてこのナノ複合材は、酸化ハフニウムを含むナノ結晶を含む(これは、「構成されている」、「から成る」または「から本質的に成る」も意味する)ナノ結晶の分散体から得られた(または、得ることのできる)ナノ結晶生成物を含み、このとき、酸化ハフニウムは、場合により、メトキシトリ(エチレンオキシ)プロピルトリメトキシシランを少なくとも1種のキャッピング剤として含み、また、分散体は、場合により、ケトンを含む溶媒または溶媒の混合物をさらに含む。
本開示のさらなる典型的で例証的かつ非限定的な態様において、ナノ複合材が提供され、このとき、このナノ複合材は、ポリ(メチルメタクリレート)、シリコーン、シロキサン、スピンオンガラスポリマー、エポキシポリマー、およびポリ(エチレンビニルアルコー
ル)を含めたアクリルポリマーのうちの少なくとも1種または混合物を含むポリマーを含
み、そしてこのナノ複合材は、酸化ハフニウムを含むナノ結晶を含む(これは、「構成されている」、「から成る」または「から本質的に成る」も意味する)ナノ結晶の分散体から得られた(または、得ることのできる)ナノ結晶生成物を含み、このとき、酸化ハフニウムは、場合により、メトキシトリ(エチレンオキシ)プロピルトリメトキシシランを少なくとも1種のキャッピング剤として含み、また、分散体は、場合により、環状ケトンを含む溶媒または溶媒の混合物をさらに含む。
本開示のさらなる典型的で例証的かつ非限定的な態様において、ナノ複合材が提供され、このとき、このナノ複合材は、ポリ(メチルメタクリレート)、シリコーン、シロキサン、スピンオンガラスポリマー、エポキシポリマー、およびポリ(エチレンビニルアルコー
ル)を含めたアクリルポリマーのうちの少なくとも1種または混合物を含むポリマーを含
み、そしてこのナノ複合材は、酸化ハフニウムを含むナノ結晶を含む(これは、「構成されている」、「から成る」または「から本質的に成る」も意味する)ナノ結晶の分散体から得られた(または、得ることのできる)ナノ結晶生成物を含み、このとき、酸化ハフニウムは、場合により、2−[メトキシ(ポリエチレンオキシ)プロピル]−トリメトキシシランを少なくとも1種のキャッピング剤として含み、また、分散体は、場合により、ブタノール、エタノール、プロピレングリコールメチルエーテルアセテート(PGMEA)、ケトンおよび環状ケトンから選択される溶媒または溶媒の混合物をさらに含む。
本開示のさらなる典型的で例証的かつ非限定的な態様において、ナノ複合材が提供され、このとき、このナノ複合材は、ポリ(メチルメタクリレート)、シリコーン、シロキサン、スピンオンガラスポリマー、エポキシポリマー、およびポリ(エチレンビニルアルコー
ル)を含めたアクリルポリマーのうちの少なくとも1種または混合物を含むポリマーを含
み、そしてこのナノ複合材は、酸化ハフニウムを含むナノ結晶を含む(これは、「構成されている」、「から成る」または「から本質的に成る」も意味する)ナノ結晶の分散体から得られた(または、得ることのできる)ナノ結晶生成物を含み、このとき、酸化ハフニウムは、場合により、2−[メトキシ(ポリエチレンオキシ)プロピル]−トリメトキシシランを少なくとも1種のキャッピング剤として含み、また、分散体は、場合により、ブタノ
ールを含む溶媒または溶媒の混合物をさらに含む。
本開示のさらなる典型的で例証的かつ非限定的な態様において、ナノ複合材が提供され、このとき、このナノ複合材は、ポリ(メチルメタクリレート)、シリコーン、シロキサン、スピンオンガラスポリマー、エポキシポリマー、およびポリ(エチレンビニルアルコー
ル)を含めたアクリルポリマーのうちの少なくとも1種または混合物を含むポリマーを含
み、そしてこのナノ複合材は、酸化ハフニウムを含むナノ結晶を含む(これは、「構成されている」、「から成る」または「から本質的に成る」も意味する)ナノ結晶の分散体から得られた(または、得ることのできる)ナノ結晶生成物を含み、このとき、酸化ハフニウムは、場合により、2−[メトキシ(ポリエチレンオキシ)プロピル]−トリメトキシシランを少なくとも1種のキャッピング剤として含み、また、分散体は、場合により、エタノールを含む溶媒または溶媒の混合物をさらに含む。
本開示のさらなる典型的で例証的かつ非限定的な態様において、ナノ複合材が提供され、このとき、このナノ複合材は、ポリ(メチルメタクリレート)、シリコーン、シロキサン、スピンオンガラスポリマー、エポキシポリマー、およびポリ(エチレンビニルアルコー
ル)を含めたアクリルポリマーのうちの少なくとも1種または混合物を含むポリマーを含
み、そしてこのナノ複合材は、酸化ハフニウムを含むナノ結晶を含む(これは、「構成されている」、「から成る」または「から本質的に成る」も意味する)ナノ結晶の分散体から得られた(または、得ることのできる)ナノ結晶生成物を含み、このとき、酸化ハフニウムは、場合により、2−[メトキシ(ポリエチレンオキシ)プロピル]−トリメトキシシランを少なくとも1種のキャッピング剤として含み、また、分散体は、場合により、プロピレングリコールメチルエーテルアセテート(PGMEA)を含む溶媒または溶媒の混合物をさらに含む。
本開示のさらなる典型的で例証的かつ非限定的な態様において、ナノ複合材が提供され、このとき、このナノ複合材は、ポリ(メチルメタクリレート)、シリコーン、シロキサン、スピンオンガラスポリマー、エポキシポリマー、およびポリ(エチレンビニルアルコー
ル)を含めたアクリルポリマーのうちの少なくとも1種または混合物を含むポリマーを含
み、そしてこのナノ複合材は、酸化ハフニウムを含むナノ結晶を含む(これは、「構成されている」、「から成る」または「から本質的に成る」も意味する)ナノ結晶の分散体から得られた(または、得ることのできる)ナノ結晶生成物を含み、このとき、酸化ハフニウムは、場合により、2−[メトキシ(ポリエチレンオキシ)プロピル]−トリメトキシシランを少なくとも1種のキャッピング剤として含み、また、分散体は、場合により、ケトンを含む溶媒または溶媒の混合物をさらに含む。
本開示のさらなる典型的で例証的かつ非限定的な態様において、ナノ複合材が提供され、このとき、このナノ複合材は、ポリ(メチルメタクリレート)、シリコーン、シロキサン、スピンオンガラスポリマー、エポキシポリマー、およびポリ(エチレンビニルアルコー
ル)を含めたアクリルポリマーのうちの少なくとも1種または混合物を含むポリマーを含
み、そしてこのナノ複合材は、酸化ハフニウムを含むナノ結晶を含む(これは、「構成されている」、「から成る」または「から本質的に成る」も意味する)ナノ結晶の分散体から得られた(または、得ることのできる)ナノ結晶生成物を含み、このとき、酸化ハフニウムは、場合により、2−[メトキシ(ポリエチレンオキシ)プロピル]−トリメトキシシランを少なくとも1種のキャッピング剤として含み、また、分散体は、場合により、環状ケトンを含む溶媒または溶媒の混合物をさらに含む。
本開示のさらなる典型的で例証的かつ非限定的な態様において、ナノ複合材が提供され、このとき、このナノ複合材は、ポリ(メチルメタクリレート)、シリコーン、シロキサン、スピンオンガラスポリマー、エポキシポリマー、およびポリ(エチレンビニルアルコー
ル)を含めたアクリルポリマーのうちの少なくとも1種または混合物を含むポリマーを含
み、そしてこのナノ複合材は、酸化ハフニウムを含むナノ結晶を含む(これは、「構成されている」、「から成る」または「から本質的に成る」も意味する)ナノ結晶の分散体から得られた(または、得ることのできる)ナノ結晶生成物を含み、このとき、酸化ハフニウムは、場合により、3−(メタクリロイルオキシ)プロピルトリメトキシシランを少なくとも1種のキャッピング剤として含み、また、分散体は、場合により、ブタノール、エタノール、プロピレングリコールメチルエーテルアセテート(PGMEA)、ケトンおよび環状ケトンから選択される溶媒または溶媒の混合物をさらに含む。
本開示のさらなる典型的で例証的かつ非限定的な態様において、ナノ複合材が提供され、このとき、このナノ複合材は、ポリ(メチルメタクリレート)、シリコーン、シロキサン、スピンオンガラスポリマー、エポキシポリマー、およびポリ(エチレンビニルアルコー
ル)を含めたアクリルポリマーのうちの少なくとも1種または混合物を含むポリマーを含
み、そしてこのナノ複合材は、酸化ハフニウムを含むナノ結晶を含む(これは、「構成されている」、「から成る」または「から本質的に成る」も意味する)ナノ結晶の分散体から得られた(または、得ることのできる)ナノ結晶生成物を含み、このとき、酸化ハフニウムは、場合により、3−(メタクリロイルオキシ)プロピルトリメトキシシランを少なくとも1種のキャッピング剤として含み、また、分散体は、場合により、ブタノールを含む溶媒または溶媒の混合物をさらに含む。
本開示のさらなる典型的で例証的かつ非限定的な態様において、ナノ複合材が提供され、このとき、このナノ複合材は、ポリ(メチルメタクリレート)、シリコーン、シロキサン、スピンオンガラスポリマー、エポキシポリマー、およびポリ(エチレンビニルアルコー
ル)を含めたアクリルポリマーのうちの少なくとも1種または混合物を含むポリマーを含
み、そしてこのナノ複合材は、酸化ハフニウムを含むナノ結晶を含む(これは、「構成されている」、「から成る」または「から本質的に成る」も意味する)ナノ結晶の分散体から得られた(または、得ることのできる)ナノ結晶生成物を含み、このとき、酸化ハフニウムは、場合により、3−(メタクリロイルオキシ)プロピルトリメトキシシランを少なくとも1種のキャッピング剤として含み、また、分散体は、場合により、エタノールを含む溶媒または溶媒の混合物をさらに含む。
本開示のさらなる典型的で例証的かつ非限定的な態様において、ナノ複合材が提供され、このとき、このナノ複合材は、ポリ(メチルメタクリレート)、シリコーン、シロキサン、スピンオンガラスポリマー、エポキシポリマー、およびポリ(エチレンビニルアルコー
ル)を含めたアクリルポリマーのうちの少なくとも1種または混合物を含むポリマーを含
み、そしてこのナノ複合材は、酸化ハフニウムを含むナノ結晶を含む(これは、「構成されている」、「から成る」または「から本質的に成る」も意味する)ナノ結晶の分散体から得られた(または、得ることのできる)ナノ結晶生成物を含み、このとき、酸化ハフニウムは、場合により、3−(メタクリロイルオキシ)プロピルトリメトキシシランを少なくとも1種のキャッピング剤として含み、また、分散体は、場合により、プロピレングリコールメチルエーテルアセテート(PGMEA)を含む溶媒または溶媒の混合物をさらに含む。
本開示のさらなる典型的で例証的かつ非限定的な態様において、ナノ複合材が提供され、このとき、このナノ複合材は、ポリ(メチルメタクリレート)、シリコーン、シロキサン、スピンオンガラスポリマー、エポキシポリマー、およびポリ(エチレンビニルアルコー
ル)を含めたアクリルポリマーのうちの少なくとも1種または混合物を含むポリマーを含
み、そしてこのナノ複合材は、酸化ハフニウムを含むナノ結晶を含む(これは、「構成されている」、「から成る」または「から本質的に成る」も意味する)ナノ結晶の分散体から得られた(または、得ることのできる)ナノ結晶生成物を含み、このとき、酸化ハフニ
ウムは、場合により、3−(メタクリロイルオキシ)プロピルトリメトキシシランを少なくとも1種のキャッピング剤として含み、また、分散体は、場合により、ケトンを含む溶媒または溶媒の混合物をさらに含む。
本開示のさらなる典型的で例証的かつ非限定的な態様において、ナノ複合材が提供され、このとき、このナノ複合材は、ポリ(メチルメタクリレート)、シリコーン、シロキサン、スピンオンガラスポリマー、エポキシポリマー、およびポリ(エチレンビニルアルコー
ル)を含めたアクリルポリマーのうちの少なくとも1種または混合物を含むポリマーを含
み、そしてこのナノ複合材は、酸化ハフニウムを含むナノ結晶を含む(これは、「構成されている」、「から成る」または「から本質的に成る」も意味する)ナノ結晶の分散体から得られた(または、得ることのできる)ナノ結晶生成物を含み、このとき、酸化ハフニウムは、場合により、3−(メタクリロイルオキシ)プロピルトリメトキシシランを少なくとも1種のキャッピング剤として含み、また、分散体は、場合により、環状ケトンを含む溶媒または溶媒の混合物をさらに含む。
本開示のさらなる典型的で例証的かつ非限定的な態様において、ナノ複合材が提供され、このとき、このナノ複合材は、ポリ(メチルメタクリレート)、シリコーン、シロキサン、スピンオンガラスポリマー、エポキシポリマー、およびポリ(エチレンビニルアルコー
ル)を含めたアクリルポリマーのうちの少なくとも1種または混合物を含むポリマーを含
み、そしてこのナノ複合材は、酸化ハフニウムを含むナノ結晶を含む(これは、「構成されている」、「から成る」または「から本質的に成る」も意味する)ナノ結晶の分散体から得られた(または、得ることのできる)ナノ結晶生成物を含み、このとき、酸化ハフニウムは、場合により、2−[2−(2−メトキシエトキシ)エトキシ]酢酸を少なくとも1種のキャッピング剤として含み、また、分散体は、場合により、ブタノール、エタノール、プロピレングリコールメチルエーテルアセテート(PGMEA)、ケトンおよび環状ケトンから選択される溶媒または溶媒の混合物をさらに含む。
本開示のさらなる典型的で例証的かつ非限定的な態様において、ナノ複合材が提供され、このとき、このナノ複合材は、ポリ(メチルメタクリレート)、シリコーン、シロキサン、スピンオンガラスポリマー、エポキシポリマー、およびポリ(エチレンビニルアルコー
ル)を含めたアクリルポリマーのうちの少なくとも1種または混合物を含むポリマーを含
み、そしてこのナノ複合材は、酸化ハフニウムを含むナノ結晶を含む(これは、「構成されている」、「から成る」または「から本質的に成る」も意味する)ナノ結晶の分散体から得られた(または、得ることのできる)ナノ結晶生成物を含み、このとき、酸化ハフニウムは、場合により、2−[2−(2−メトキシエトキシ)エトキシ]酢酸を少なくとも1種のキャッピング剤として含み、また、分散体は、場合により、ブタノールを含む溶媒または溶媒の混合物をさらに含む。
本開示のさらなる典型的で例証的かつ非限定的な態様において、ナノ複合材が提供され、このとき、このナノ複合材は、ポリ(メチルメタクリレート)、シリコーン、シロキサン、スピンオンガラスポリマー、エポキシポリマー、およびポリ(エチレンビニルアルコー
ル)を含めたアクリルポリマーのうちの少なくとも1種または混合物を含むポリマーを含
み、そしてこのナノ複合材は、酸化ハフニウムを含むナノ結晶を含む(これは、「構成されている」、「から成る」または「から本質的に成る」も意味する)ナノ結晶の分散体から得られた(または、得ることのできる)ナノ結晶生成物を含み、このとき、酸化ハフニウムは、場合により、2−[2−(2−メトキシエトキシ)エトキシ]酢酸を少なくとも1種のキャッピング剤として含み、また、分散体は、場合により、エタノールを含む溶媒または溶媒の混合物をさらに含む。
本開示のさらなる典型的で例証的かつ非限定的な態様において、ナノ複合材が提供され
、このとき、このナノ複合材は、ポリ(メチルメタクリレート)、シリコーン、シロキサン、スピンオンガラスポリマー、エポキシポリマー、およびポリ(エチレンビニルアルコー
ル)を含めたアクリルポリマーのうちの少なくとも1種または混合物を含むポリマーを含
み、そしてこのナノ複合材は、酸化ハフニウムを含むナノ結晶を含む(これは、「構成されている」、「から成る」または「から本質的に成る」も意味する)ナノ結晶の分散体から得られた(または、得ることのできる)ナノ結晶生成物を含み、このとき、酸化ハフニウムは、場合により、2−[2−(2−メトキシエトキシ)エトキシ]酢酸を少なくとも1種のキャッピング剤として含み、また、分散体は、場合により、プロピレングリコールメチルエーテルアセテート(PGMEA)を含む溶媒または溶媒の混合物をさらに含む。
本開示のさらなる典型的で例証的かつ非限定的な態様において、ナノ複合材が提供され、このとき、このナノ複合材は、ポリ(メチルメタクリレート)、シリコーン、シロキサン、スピンオンガラスポリマー、エポキシポリマー、およびポリ(エチレンビニルアルコー
ル)を含めたアクリルポリマーのうちの少なくとも1種または混合物を含むポリマーを含
み、そしてこのナノ複合材は、酸化ハフニウムを含むナノ結晶を含む(これは、「構成されている」、「から成る」または「から本質的に成る」も意味する)ナノ結晶の分散体から得られた(または、得ることのできる)ナノ結晶生成物を含み、このとき、酸化ハフニウムは、場合により、2−[2−(2−メトキシエトキシ)エトキシ]酢酸を少なくとも1種のキャッピング剤として含み、また、分散体は、場合により、ケトンを含む溶媒または溶媒の混合物をさらに含む。
本開示のさらなる典型的で例証的かつ非限定的な態様において、ナノ複合材が提供され、このとき、このナノ複合材は、ポリ(メチルメタクリレート)、シリコーン、シロキサン、スピンオンガラスポリマー、エポキシポリマー、およびポリ(エチレンビニルアルコー
ル)を含めたアクリルポリマーのうちの少なくとも1種または混合物を含むポリマーを含
み、そしてこのナノ複合材は、酸化ハフニウムを含むナノ結晶を含む(これは、「構成されている」、「から成る」または「から本質的に成る」も意味する)ナノ結晶の分散体から得られた(または、得ることのできる)ナノ結晶生成物を含み、このとき、酸化ハフニウムは、場合により、2−[2−(2−メトキシエトキシ)エトキシ]酢酸を少なくとも1種のキャッピング剤として含み、また、分散体は、場合により、環状ケトンを含む溶媒または溶媒の混合物をさらに含む。
本開示のさらなる典型的で例証的かつ非限定的な態様において、ナノ結晶の分散体は、酸化ジルコニウムを含むナノ結晶を含み(これは、「構成されている」、「から成る」または「から本質的に成る」も意味する)、このとき、酸化ジルコニウムは、場合により、メトキシトリ(エチレンオキシ)プロピルトリメトキシシランを少なくとも1種のキャッピング剤として含み、また、分散体は、場合により、ブタノール、エタノール、プロピレングリコールメチルエーテルアセテート(PGMEA)、ケトンおよび環状ケトンから選択される溶媒または溶媒の混合物をさらに含む。
本開示のさらなる典型的で例証的かつ非限定的な態様において、ナノ結晶の分散体は、酸化ジルコニウムを含むナノ結晶を含み(これは、「構成されている」、「から成る」または「から本質的に成る」も意味する)、このとき、酸化ジルコニウムは、場合により、メトキシトリ(エチレンオキシ)プロピルトリメトキシシランを少なくとも1種のキャッピング剤として含み、また、分散体は、場合により、ブタノールを含む溶媒または溶媒の混合物をさらに含む。
本開示のさらなる典型的で例証的かつ非限定的な態様において、ナノ結晶の分散体は、酸化ジルコニウムを含むナノ結晶を含み(これは、「構成されている」、「から成る」または「から本質的に成る」も意味する)、このとき、酸化ジルコニウムは、場合により、
メトキシトリ(エチレンオキシ)プロピルトリメトキシシランを少なくとも1種のキャッピング剤として含み、また、分散体は、場合により、エタノールを含む溶媒または溶媒の混合物をさらに含む。
本開示のさらなる典型的で例証的かつ非限定的な態様において、ナノ結晶の分散体は、酸化ジルコニウムを含むナノ結晶を含み(これは、「構成されている」、「から成る」または「から本質的に成る」も意味する)、このとき、酸化ジルコニウムは、場合により、メトキシトリ(エチレンオキシ)プロピルトリメトキシシランを少なくとも1種のキャッピング剤として含み、また、分散体は、場合により、プロピレングリコールメチルエーテルアセテート(PGMEA)を含む溶媒または溶媒の混合物をさらに含む。
本開示のさらなる典型的で例証的かつ非限定的な態様において、ナノ結晶の分散体は、酸化ジルコニウムを含むナノ結晶を含み(これは、「構成されている」、「から成る」または「から本質的に成る」も意味する)、このとき、酸化ジルコニウムは、場合により、メトキシトリ(エチレンオキシ)プロピルトリメトキシシランを少なくとも1種のキャッピング剤として含み、また、分散体は、場合により、ケトンを含む溶媒または溶媒の混合物をさらに含む。
本開示のさらなる典型的で例証的かつ非限定的な態様において、ナノ結晶の分散体は、酸化ジルコニウムを含むナノ結晶を含み(これは、「構成されている」、「から成る」または「から本質的に成る」も意味する)、このとき、酸化ジルコニウムは、場合により、メトキシトリ(エチレンオキシ)プロピルトリメトキシシランを少なくとも1種のキャッピング剤として含み、また、分散体は、場合により、環状ケトンを含む溶媒または溶媒の混合物をさらに含む。
本開示のさらなる典型的で例証的かつ非限定的な態様において、ナノ結晶の分散体は、酸化ジルコニウムを含むナノ結晶を含み(これは、「構成されている」、「から成る」または「から本質的に成る」も意味する)、このとき、酸化ジルコニウムは、場合により、2−[メトキシ(ポリエチレンオキシ)プロピル]−トリメトキシシランを少なくとも1種のキャッピング剤として含み、また、分散体は、場合により、ブタノール、エタノール、プロピレングリコールメチルエーテルアセテート(PGMEA)、ケトンおよび環状ケトンから選択される溶媒または溶媒の混合物をさらに含む。
本開示のさらなる典型的で例証的かつ非限定的な態様において、ナノ結晶の分散体は、酸化ジルコニウムを含むナノ結晶を含み(これは、「構成されている」、「から成る」または「から本質的に成る」も意味する)、このとき、酸化ジルコニウムは、場合により、2−[メトキシ(ポリエチレンオキシ)プロピル]−トリメトキシシランを少なくとも1種のキャッピング剤として含み、また、分散体は、場合により、ブタノールを含む溶媒または溶媒の混合物をさらに含む。
本開示のさらなる典型的で例証的かつ非限定的な態様において、ナノ結晶の分散体は、酸化ジルコニウムを含むナノ結晶を含み(これは、「構成されている」、「から成る」または「から本質的に成る」も意味する)、このとき、酸化ジルコニウムは、場合により、2−[メトキシ(ポリエチレンオキシ)プロピル]−トリメトキシシランを少なくとも1種のキャッピング剤として含み、また、分散体は、場合により、エタノールを含む溶媒または溶媒の混合物をさらに含む。
本開示のさらなる典型的で例証的かつ非限定的な態様において、ナノ結晶の分散体は、酸化ジルコニウムを含むナノ結晶を含み(これは、「構成されている」、「から成る」または「から本質的に成る」も意味する)、このとき、酸化ジルコニウムは、場合により、
2−[メトキシ(ポリエチレンオキシ)プロピル]−トリメトキシシランを少なくとも1種のキャッピング剤として含み、また、分散体は、場合により、プロピレングリコールメチルエーテルアセテート(PGMEA)を含む溶媒または溶媒の混合物をさらに含む。
本開示のさらなる典型的で例証的かつ非限定的な態様において、ナノ結晶の分散体は、酸化ジルコニウムを含むナノ結晶を含み(これは、「構成されている」、「から成る」または「から本質的に成る」も意味する)、このとき、酸化ジルコニウムは、場合により、2−[メトキシ(ポリエチレンオキシ)プロピル]−トリメトキシシランを少なくとも1種のキャッピング剤として含み、また、分散体は、場合により、ケトンを含む溶媒または溶媒の混合物をさらに含む。
本開示のさらなる典型的で例証的かつ非限定的な態様において、ナノ結晶の分散体は、酸化ジルコニウムを含むナノ結晶を含み(これは、「構成されている」、「から成る」または「から本質的に成る」も意味する)、このとき、酸化ジルコニウムは、場合により、2−[メトキシ(ポリエチレンオキシ)プロピル]−トリメトキシシランを少なくとも1種のキャッピング剤として含み、また、分散体は、場合により、環状ケトンを含む溶媒または溶媒の混合物をさらに含む。
本開示のさらなる典型的で例証的かつ非限定的な態様において、ナノ結晶の分散体は、酸化ジルコニウムを含むナノ結晶を含み(これは、「構成されている」、「から成る」または「から本質的に成る」も意味する)、このとき、酸化ジルコニウムは、場合により、3−(メタクリロイルオキシ)プロピルトリメトキシシランを少なくとも1種のキャッピング剤として含み、また、分散体は、場合により、ブタノール、エタノール、プロピレングリコールメチルエーテルアセテート(PGMEA)、ケトンおよび環状ケトンから選択される溶媒または溶媒の混合物をさらに含む。
本開示のさらなる典型的で例証的かつ非限定的な態様において、ナノ結晶の分散体は、酸化ジルコニウムを含むナノ結晶を含み(これは、「構成されている」、「から成る」または「から本質的に成る」も意味する)、このとき、酸化ジルコニウムは、場合により、3−(メタクリロイルオキシ)プロピルトリメトキシシランを少なくとも1種のキャッピング剤として含み、また、分散体は、場合により、ブタノールを含む溶媒または溶媒の混合物をさらに含む。
本開示のさらなる典型的で例証的かつ非限定的な態様において、ナノ結晶の分散体は、酸化ジルコニウムを含むナノ結晶を含み(これは、「構成されている」、「から成る」または「から本質的に成る」も意味する)、このとき、酸化ジルコニウムは、場合により、3−(メタクリロイルオキシ)プロピルトリメトキシシランを少なくとも1種のキャッピング剤として含み、また、分散体は、場合により、エタノールを含む溶媒または溶媒の混合物をさらに含む。
本開示のさらなる典型的で例証的かつ非限定的な態様において、ナノ結晶の分散体は、酸化ジルコニウムを含むナノ結晶を含み(これは、「構成されている」、「から成る」または「から本質的に成る」も意味する)、このとき、酸化ジルコニウムは、場合により、3−(メタクリロイルオキシ)プロピルトリメトキシシランを少なくとも1種のキャッピング剤として含み、また、分散体は、場合により、プロピレングリコールメチルエーテルアセテート(PGMEA)を含む溶媒または溶媒の混合物をさらに含む。
本開示のさらなる典型的で例証的かつ非限定的な態様において、ナノ結晶の分散体は、酸化ジルコニウムを含むナノ結晶を含み(これは、「構成されている」、「から成る」または「から本質的に成る」も意味する)、このとき、酸化ジルコニウムは、場合により、
3−(メタクリロイルオキシ)プロピルトリメトキシシランを少なくとも1種のキャッピング剤として含み、また、分散体は、場合により、ケトンを含む溶媒または溶媒の混合物をさらに含む。
本開示のさらなる典型的で例証的かつ非限定的な態様において、ナノ結晶の分散体は、酸化ジルコニウムを含むナノ結晶を含み(これは、「構成されている」、「から成る」または「から本質的に成る」も意味する)、このとき、酸化ジルコニウムは、場合により、3−(メタクリロイルオキシ)プロピルトリメトキシシランを少なくとも1種のキャッピング剤として含み、また、分散体は、場合により、環状ケトンを含む溶媒または溶媒の混合物をさらに含む。
本開示のさらなる典型的で例証的かつ非限定的な態様において、ナノ結晶の分散体は、酸化ジルコニウムを含むナノ結晶を含み(これは、「構成されている」、「から成る」または「から本質的に成る」も意味する)、このとき、酸化ジルコニウムは、場合により、2−[2−(2−メトキシエトキシ)エトキシ]酢酸を少なくとも1種のキャッピング剤として含み、また、分散体は、場合により、ブタノール、エタノール、プロピレングリコールメチルエーテルアセテート(PGMEA)、ケトンおよび環状ケトンから選択される溶媒または溶媒の混合物をさらに含む。
本開示のさらなる典型的で例証的かつ非限定的な態様において、ナノ結晶の分散体は、酸化ジルコニウムを含むナノ結晶を含み(これは、「構成されている」、「から成る」または「から本質的に成る」も意味する)、このとき、酸化ジルコニウムは、場合により、2−[2−(2−メトキシエトキシ)エトキシ]酢酸を少なくとも1種のキャッピング剤として含み、また、分散体は、場合により、ブタノールを含む溶媒または溶媒の混合物をさらに含む。
本開示のさらなる典型的で例証的かつ非限定的な態様において、ナノ結晶の分散体は、酸化ジルコニウムを含むナノ結晶を含み(これは、「構成されている」、「から成る」または「から本質的に成る」も意味する)、このとき、酸化ジルコニウムは、場合により、2−[2−(2−メトキシエトキシ)エトキシ]酢酸を少なくとも1種のキャッピング剤として含み、また、分散体は、場合により、エタノールを含む溶媒または溶媒の混合物をさらに含む。
本開示のさらなる典型的で例証的かつ非限定的な態様において、ナノ結晶の分散体は、酸化ジルコニウムを含むナノ結晶を含み(これは、「構成されている」、「から成る」または「から本質的に成る」も意味する)、このとき、酸化ジルコニウムは、場合により、2−[2−(2−メトキシエトキシ)エトキシ]酢酸を少なくとも1種のキャッピング剤として含み、また、分散体は、場合により、プロピレングリコールメチルエーテルアセテート(PGMEA)を含む溶媒または溶媒の混合物をさらに含む。
本開示のさらなる典型的で例証的かつ非限定的な態様において、ナノ結晶の分散体は、酸化ジルコニウムを含むナノ結晶を含み(これは、「構成されている」、「から成る」または「から本質的に成る」も意味する)、このとき、酸化ジルコニウムは、場合により、2−[2−(2−メトキシエトキシ)エトキシ]酢酸を少なくとも1種のキャッピング剤として含み、また、分散体は、場合により、ケトンを含む溶媒または溶媒の混合物をさらに含む。
本開示のさらなる典型的で例証的かつ非限定的な態様において、ナノ結晶の分散体は、酸化ジルコニウムを含むナノ結晶を含み(これは、「構成されている」、「から成る」または「から本質的に成る」も意味する)、このとき、酸化ジルコニウムは、場合により、
2−[2−(2−メトキシエトキシ)エトキシ]酢酸を少なくとも1種のキャッピング剤として含み、また、分散体は、場合により、環状ケトンを含む溶媒または溶媒の混合物をさらに含む。
本開示のさらなる典型的で例証的かつ非限定的な態様において、ナノ複合材が提供され、このとき、このナノ複合材は、ポリ(メチルメタクリレート)、シリコーン、シロキサン、スピンオンガラスポリマー、エポキシポリマー、およびポリ(エチレンビニルアルコー
ル)を含めたアクリルポリマーのうちの少なくとも1種または混合物を含むポリマーを含
み、そしてこのナノ複合材は、酸化ジルコニウムを含むナノ結晶を含む(これは、「構成されている」、「から成る」または「から本質的に成る」も意味する)ナノ結晶の分散体から得られた(または、得ることのできる)ナノ結晶生成物を含み、このとき、酸化ジルコニウムは、場合により、メトキシトリ(エチレンオキシ)プロピルトリメトキシシランを少なくとも1種のキャッピング剤として含み、また、分散体は、場合により、ブタノール、エタノール、プロピレングリコールメチルエーテルアセテート(PGMEA)、ケトンおよび環状ケトンから選択される溶媒または溶媒の混合物をさらに含む。
本開示のさらなる典型的で例証的かつ非限定的な態様において、ナノ複合材が提供され、このとき、このナノ複合材は、ポリ(メチルメタクリレート)、シリコーン、シロキサン、スピンオンガラスポリマー、エポキシポリマー、およびポリ(エチレンビニルアルコー
ル)を含めたアクリルポリマーのうちの少なくとも1種または混合物を含むポリマーを含
み、そしてこのナノ複合材は、酸化ジルコニウムを含むナノ結晶を含む(これは、「構成されている」、「から成る」または「から本質的に成る」も意味する)ナノ結晶の分散体から得られた(または、得ることのできる)ナノ結晶生成物を含み、このとき、酸化ジルコニウムは、場合により、メトキシトリ(エチレンオキシ)プロピルトリメトキシシランを少なくとも1種のキャッピング剤として含み、また、分散体は、場合により、ブタノールを含む溶媒または溶媒の混合物をさらに含む。
本開示のさらなる典型的で例証的かつ非限定的な態様において、ナノ複合材が提供され、このとき、このナノ複合材は、ポリ(メチルメタクリレート)、シリコーン、シロキサン、スピンオンガラスポリマー、エポキシポリマー、およびポリ(エチレンビニルアルコー
ル)を含めたアクリルポリマーのうちの少なくとも1種または混合物を含むポリマーを含
み、そしてこのナノ複合材は、酸化ジルコニウムを含むナノ結晶を含む(これは、「構成されている」、「から成る」または「から本質的に成る」も意味する)ナノ結晶の分散体から得られた(または、得ることのできる)ナノ結晶生成物を含み、このとき、酸化ジルコニウムは、場合により、メトキシトリ(エチレンオキシ)プロピルトリメトキシシランを少なくとも1種のキャッピング剤として含み、また、分散体は、場合により、エタノールを含む溶媒または溶媒の混合物をさらに含む。
本開示のさらなる典型的で例証的かつ非限定的な態様において、ナノ複合材が提供され、このとき、このナノ複合材は、ポリ(メチルメタクリレート)、シリコーン、シロキサン、スピンオンガラスポリマー、エポキシポリマー、およびポリ(エチレンビニルアルコー
ル)を含めたアクリルポリマーのうちの少なくとも1種または混合物を含むポリマーを含
み、そしてこのナノ複合材は、酸化ジルコニウムを含むナノ結晶を含む(これは、「構成されている」、「から成る」または「から本質的に成る」も意味する)ナノ結晶の分散体から得られた(または、得ることのできる)ナノ結晶生成物を含み、このとき、酸化ジルコニウムは、場合により、メトキシトリ(エチレンオキシ)プロピルトリメトキシシランを少なくとも1種のキャッピング剤として含み、また、分散体は、場合により、プロピレングリコールメチルエーテルアセテート(PGMEA)を含む溶媒または溶媒の混合物をさらに含む。
本開示のさらなる典型的で例証的かつ非限定的な態様において、ナノ複合材が提供され、このとき、このナノ複合材は、ポリ(メチルメタクリレート)、シリコーン、シロキサン、スピンオンガラスポリマー、エポキシポリマー、およびポリ(エチレンビニルアルコー
ル)を含めたアクリルポリマーのうちの少なくとも1種または混合物を含むポリマーを含
み、そしてこのナノ複合材は、酸化ジルコニウムを含むナノ結晶を含む(これは、「構成されている」、「から成る」または「から本質的に成る」も意味する)ナノ結晶の分散体から得られた(または、得ることのできる)ナノ結晶生成物を含み、このとき、酸化ジルコニウムは、場合により、メトキシトリ(エチレンオキシ)プロピルトリメトキシシランを少なくとも1種のキャッピング剤として含み、また、分散体は、場合により、ケトンを含む溶媒または溶媒の混合物をさらに含む。
本開示のさらなる典型的で例証的かつ非限定的な態様において、ナノ複合材が提供され、このとき、このナノ複合材は、ポリ(メチルメタクリレート)、シリコーン、シロキサン、スピンオンガラスポリマー、エポキシポリマー、およびポリ(エチレンビニルアルコー
ル)を含めたアクリルポリマーのうちの少なくとも1種または混合物を含むポリマーを含
み、そしてこのナノ複合材は、酸化ジルコニウムを含むナノ結晶を含む(これは、「構成されている」、「から成る」または「から本質的に成る」も意味する)ナノ結晶の分散体から得られた(または、得ることのできる)ナノ結晶生成物を含み、このとき、酸化ジルコニウムは、場合により、メトキシトリ(エチレンオキシ)プロピルトリメトキシシランを少なくとも1種のキャッピング剤として含み、また、分散体は、場合により、環状ケトンを含む溶媒または溶媒の混合物をさらに含む。
本開示のさらなる典型的で例証的かつ非限定的な態様において、ナノ複合材が提供され、このとき、このナノ複合材は、ポリ(メチルメタクリレート)、シリコーン、シロキサン、スピンオンガラスポリマー、エポキシポリマー、およびポリ(エチレンビニルアルコー
ル)を含めたアクリルポリマーのうちの少なくとも1種または混合物を含むポリマーを含
み、そしてこのナノ複合材は、酸化ジルコニウムを含むナノ結晶を含む(これは、「構成されている」、「から成る」または「から本質的に成る」も意味する)ナノ結晶の分散体から得られた(または、得ることのできる)ナノ結晶生成物を含み、このとき、酸化ジルコニウムは、場合により、2−[メトキシ(ポリエチレンオキシ)プロピル]−トリメトキシシランを少なくとも1種のキャッピング剤として含み、また、分散体は、場合により、ブタノール、エタノール、プロピレングリコールメチルエーテルアセテート(PGMEA)、ケトンおよび環状ケトンから選択される溶媒または溶媒の混合物をさらに含む。
本開示のさらなる典型的で例証的かつ非限定的な態様において、ナノ複合材が提供され、このとき、このナノ複合材は、ポリ(メチルメタクリレート)、シリコーン、シロキサン、スピンオンガラスポリマー、エポキシポリマー、およびポリ(エチレンビニルアルコー
ル)を含めたアクリルポリマーのうちの少なくとも1種または混合物を含むポリマーを含
み、そしてこのナノ複合材は、酸化ジルコニウムを含むナノ結晶を含む(これは、「構成されている」、「から成る」または「から本質的に成る」も意味する)ナノ結晶の分散体から得られた(または、得ることのできる)ナノ結晶生成物を含み、このとき、酸化ジルコニウムは、場合により、2−[メトキシ(ポリエチレンオキシ)プロピル]−トリメトキシシランを少なくとも1種のキャッピング剤として含み、また、分散体は、場合により、ブタノールを含む溶媒または溶媒の混合物をさらに含む。
本開示のさらなる典型的で例証的かつ非限定的な態様において、ナノ複合材が提供され、このとき、このナノ複合材は、ポリ(メチルメタクリレート)、シリコーン、シロキサン、スピンオンガラスポリマー、エポキシポリマー、およびポリ(エチレンビニルアルコー
ル)を含めたアクリルポリマーのうちの少なくとも1種または混合物を含むポリマーを含
み、そしてこのナノ複合材は、酸化ジルコニウムを含むナノ結晶を含む(これは、「構成
されている」、「から成る」または「から本質的に成る」も意味する)ナノ結晶の分散体から得られた(または、得ることのできる)ナノ結晶生成物を含み、このとき、酸化ジルコニウムは、場合により、2−[メトキシ(ポリエチレンオキシ)プロピル]−トリメトキシシランを少なくとも1種のキャッピング剤として含み、また、分散体は、場合により、エタノールを含む溶媒または溶媒の混合物をさらに含む。
本開示のさらなる典型的で例証的かつ非限定的な態様において、ナノ複合材が提供され、このとき、このナノ複合材は、ポリ(メチルメタクリレート)、シリコーン、シロキサン、スピンオンガラスポリマー、エポキシポリマー、およびポリ(エチレンビニルアルコー
ル)を含めたアクリルポリマーのうちの少なくとも1種または混合物を含むポリマーを含
み、そしてこのナノ複合材は、酸化ジルコニウムを含むナノ結晶を含む(これは、「構成されている」、「から成る」または「から本質的に成る」も意味する)ナノ結晶の分散体から得られた(または、得ることのできる)ナノ結晶生成物を含み、このとき、酸化ジルコニウムは、場合により、2−[メトキシ(ポリエチレンオキシ)プロピル]−トリメトキシシランを少なくとも1種のキャッピング剤として含み、また、分散体は、場合により、プロピレングリコールメチルエーテルアセテート(PGMEA)を含む溶媒または溶媒の混合物をさらに含む。
本開示のさらなる典型的で例証的かつ非限定的な態様において、ナノ複合材が提供され、このとき、このナノ複合材は、ポリ(メチルメタクリレート)、シリコーン、シロキサン、スピンオンガラスポリマー、エポキシポリマー、およびポリ(エチレンビニルアルコー
ル)を含めたアクリルポリマーのうちの少なくとも1種または混合物を含むポリマーを含
み、そしてこのナノ複合材は、酸化ジルコニウムを含むナノ結晶を含む(これは、「構成されている」、「から成る」または「から本質的に成る」も意味する)ナノ結晶の分散体から得られた(または、得ることのできる)ナノ結晶生成物を含み、このとき、酸化ジルコニウムは、場合により、2−[メトキシ(ポリエチレンオキシ)プロピル]−トリメトキシシランを少なくとも1種のキャッピング剤として含み、また、分散体は、場合により、ケトンを含む溶媒または溶媒の混合物をさらに含む。
本開示のさらなる典型的で例証的かつ非限定的な態様において、ナノ複合材が提供され、このとき、このナノ複合材は、ポリ(メチルメタクリレート)、シリコーン、シロキサン、スピンオンガラスポリマー、エポキシポリマー、およびポリ(エチレンビニルアルコー
ル)を含めたアクリルポリマーのうちの少なくとも1種または混合物を含むポリマーを含
み、そしてこのナノ複合材は、酸化ジルコニウムを含むナノ結晶を含む(これは、「構成されている」、「から成る」または「から本質的に成る」も意味する)ナノ結晶の分散体から得られた(または、得ることのできる)ナノ結晶生成物を含み、このとき、酸化ジルコニウムは、場合により、2−[メトキシ(ポリエチレンオキシ)プロピル]−トリメトキシシランを少なくとも1種のキャッピング剤として含み、また、分散体は、場合により、環状ケトンを含む溶媒または溶媒の混合物をさらに含む。
本開示のさらなる典型的で例証的かつ非限定的な態様において、ナノ複合材が提供され、このとき、このナノ複合材は、ポリ(メチルメタクリレート)、シリコーン、シロキサン、スピンオンガラスポリマー、エポキシポリマー、およびポリ(エチレンビニルアルコー
ル)を含めたアクリルポリマーのうちの少なくとも1種または混合物を含むポリマーを含
み、そしてこのナノ複合材は、酸化ジルコニウムを含むナノ結晶を含む(これは、「構成されている」、「から成る」または「から本質的に成る」も意味する)ナノ結晶の分散体から得られた(または、得ることのできる)ナノ結晶生成物を含み、このとき、酸化ジルコニウムは、場合により、3−(メタクリロイルオキシ)プロピルトリメトキシシランを少なくとも1種のキャッピング剤として含み、また、分散体は、場合により、ブタノール、エタノール、プロピレングリコールメチルエーテルアセテート(PGMEA)、ケトンお
よび環状ケトンから選択される溶媒または溶媒の混合物をさらに含む。
本開示のさらなる典型的で例証的かつ非限定的な態様において、ナノ複合材が提供され、このとき、このナノ複合材は、ポリ(メチルメタクリレート)、シリコーン、シロキサン、スピンオンガラスポリマー、エポキシポリマー、およびポリ(エチレンビニルアルコー
ル)を含めたアクリルポリマーのうちの少なくとも1種または混合物を含むポリマーを含
み、そしてこのナノ複合材は、酸化ジルコニウムを含むナノ結晶を含む(これは、「構成されている」、「から成る」または「から本質的に成る」も意味する)ナノ結晶の分散体から得られた(または、得ることのできる)ナノ結晶生成物を含み、このとき、酸化ジルコニウムは、場合により、3−(メタクリロイルオキシ)プロピルトリメトキシシランを少なくとも1種のキャッピング剤として含み、また、分散体は、場合により、ブタノールを含む溶媒または溶媒の混合物をさらに含む。
本開示のさらなる典型的で例証的かつ非限定的な態様において、ナノ複合材が提供され、このとき、このナノ複合材は、ポリ(メチルメタクリレート)、シリコーン、シロキサン、スピンオンガラスポリマー、エポキシポリマー、およびポリ(エチレンビニルアルコー
ル)を含めたアクリルポリマーのうちの少なくとも1種または混合物を含むポリマーを含
み、そしてこのナノ複合材は、酸化ジルコニウムを含むナノ結晶を含む(これは、「構成されている」、「から成る」または「から本質的に成る」も意味する)ナノ結晶の分散体から得られた(または、得ることのできる)ナノ結晶生成物を含み、このとき、酸化ジルコニウムは、場合により、3−(メタクリロイルオキシ)プロピルトリメトキシシランを少なくとも1種のキャッピング剤として含み、また、分散体は、場合により、エタノールを含む溶媒または溶媒の混合物をさらに含む。
本開示のさらなる典型的で例証的かつ非限定的な態様において、ナノ複合材が提供され、このとき、このナノ複合材は、ポリ(メチルメタクリレート)、シリコーン、シロキサン、スピンオンガラスポリマー、エポキシポリマー、およびポリ(エチレンビニルアルコー
ル)を含めたアクリルポリマーのうちの少なくとも1種または混合物を含むポリマーを含
み、そしてこのナノ複合材は、酸化ジルコニウムを含むナノ結晶を含む(これは、「構成されている」、「から成る」または「から本質的に成る」も意味する)ナノ結晶の分散体から得られた(または、得ることのできる)ナノ結晶生成物を含み、このとき、酸化ジルコニウムは、場合により、3−(メタクリロイルオキシ)プロピルトリメトキシシランを少なくとも1種のキャッピング剤として含み、また、分散体は、場合により、プロピレングリコールメチルエーテルアセテート(PGMEA)を含む溶媒または溶媒の混合物をさらに含む。
本開示のさらなる典型的で例証的かつ非限定的な態様において、ナノ複合材が提供され、このとき、このナノ複合材は、ポリ(メチルメタクリレート)、シリコーン、シロキサン、スピンオンガラスポリマー、エポキシポリマー、およびポリ(エチレンビニルアルコー
ル)を含めたアクリルポリマーのうちの少なくとも1種または混合物を含むポリマーを含
み、そしてこのナノ複合材は、酸化ジルコニウムを含むナノ結晶を含む(これは、「構成されている」、「から成る」または「から本質的に成る」も意味する)ナノ結晶の分散体から得られた(または、得ることのできる)ナノ結晶生成物を含み、このとき、酸化ジルコニウムは、場合により、3−(メタクリロイルオキシ)プロピルトリメトキシシランを少なくとも1種のキャッピング剤として含み、また、分散体は、場合により、ケトンを含む溶媒または溶媒の混合物をさらに含む。
本開示のさらなる典型的で例証的かつ非限定的な態様において、ナノ複合材が提供され、このとき、このナノ複合材は、ポリ(メチルメタクリレート)、シリコーン、シロキサン、スピンオンガラスポリマー、エポキシポリマー、およびポリ(エチレンビニルアルコー
ル)を含めたアクリルポリマーのうちの少なくとも1種または混合物を含むポリマーを含
み、そしてこのナノ複合材は、酸化ジルコニウムを含むナノ結晶を含む(これは、「構成されている」、「から成る」または「から本質的に成る」も意味する)ナノ結晶の分散体から得られた(または、得ることのできる)ナノ結晶生成物を含み、このとき、酸化ジルコニウムは、場合により、3−(メタクリロイルオキシ)プロピルトリメトキシシランを少なくとも1種のキャッピング剤として含み、また、分散体は、場合により、環状ケトンを含む溶媒または溶媒の混合物をさらに含む。
本開示のさらなる典型的で例証的かつ非限定的な態様において、ナノ複合材が提供され、このとき、このナノ複合材は、ポリ(メチルメタクリレート)、シリコーン、シロキサン、スピンオンガラスポリマー、エポキシポリマー、およびポリ(エチレンビニルアルコー
ル)を含めたアクリルポリマーのうちの少なくとも1種または混合物を含むポリマーを含
み、そしてこのナノ複合材は、酸化ジルコニウムを含むナノ結晶を含む(これは、「構成されている」、「から成る」または「から本質的に成る」も意味する)ナノ結晶の分散体から得られた(または、得ることのできる)ナノ結晶生成物を含み、このとき、酸化ジルコニウムは、場合により、2−[2−(2−メトキシエトキシ)エトキシ]酢酸を少なくとも1種のキャッピング剤として含み、また、分散体は、場合により、ブタノール、エタノール、プロピレングリコールメチルエーテルアセテート(PGMEA)、ケトンおよび環状ケトンから選択される溶媒または溶媒の混合物をさらに含む。
本開示のさらなる典型的で例証的かつ非限定的な態様において、ナノ複合材が提供され、このとき、このナノ複合材は、ポリ(メチルメタクリレート)、シリコーン、シロキサン、スピンオンガラスポリマー、エポキシポリマー、およびポリ(エチレンビニルアルコー
ル)を含めたアクリルポリマーのうちの少なくとも1種または混合物を含むポリマーを含
み、そしてこのナノ複合材は、酸化ジルコニウムを含むナノ結晶を含む(これは、「構成されている」、「から成る」または「から本質的に成る」も意味する)ナノ結晶の分散体から得られた(または、得ることのできる)ナノ結晶生成物を含み、このとき、酸化ジルコニウムは、場合により、2−[2−(2−メトキシエトキシ)エトキシ]酢酸を少なくとも1種のキャッピング剤として含み、また、分散体は、場合により、ブタノールを含む溶媒または溶媒の混合物をさらに含む。
本開示のさらなる典型的で例証的かつ非限定的な態様において、ナノ複合材が提供され、このとき、このナノ複合材は、ポリ(メチルメタクリレート)、シリコーン、シロキサン、スピンオンガラスポリマー、エポキシポリマー、およびポリ(エチレンビニルアルコー
ル)を含めたアクリルポリマーのうちの少なくとも1種または混合物を含むポリマーを含
み、そしてこのナノ複合材は、酸化ジルコニウムを含むナノ結晶を含む(これは、「構成されている」、「から成る」または「から本質的に成る」も意味する)ナノ結晶の分散体から得られた(または、得ることのできる)ナノ結晶生成物を含み、このとき、酸化ジルコニウムは、場合により、2−[2−(2−メトキシエトキシ)エトキシ]酢酸を少なくとも1種のキャッピング剤として含み、また、分散体は、場合により、エタノールを含む溶媒または溶媒の混合物をさらに含む。
本開示のさらなる典型的で例証的かつ非限定的な態様において、ナノ複合材が提供され、このとき、このナノ複合材は、ポリ(メチルメタクリレート)、シリコーン、シロキサン、スピンオンガラスポリマー、エポキシポリマー、およびポリ(エチレンビニルアルコー
ル)を含めたアクリルポリマーのうちの少なくとも1種または混合物を含むポリマーを含
み、そしてこのナノ複合材は、酸化ジルコニウムを含むナノ結晶を含む(これは、「構成されている」、「から成る」または「から本質的に成る」も意味する)ナノ結晶の分散体から得られた(または、得ることのできる)ナノ結晶生成物を含み、このとき、酸化ジルコニウムは、場合により、2−[2−(2−メトキシエトキシ)エトキシ]酢酸を少なくとも
1種のキャッピング剤として含み、また、分散体は、場合により、プロピレングリコールメチルエーテルアセテート(PGMEA)を含む溶媒または溶媒の混合物をさらに含む。
本開示のさらなる典型的で例証的かつ非限定的な態様において、ナノ複合材が提供され、このとき、このナノ複合材は、ポリ(メチルメタクリレート)、シリコーン、シロキサン、スピンオンガラスポリマー、エポキシポリマー、およびポリ(エチレンビニルアルコー
ル)を含めたアクリルポリマーのうちの少なくとも1種または混合物を含むポリマーを含
み、そしてこのナノ複合材は、酸化ジルコニウムを含むナノ結晶を含む(これは、「構成されている」、「から成る」または「から本質的に成る」も意味する)ナノ結晶の分散体から得られた(または、得ることのできる)ナノ結晶生成物を含み、このとき、酸化ジルコニウムは、場合により、2−[2−(2−メトキシエトキシ)エトキシ]酢酸を少なくとも1種のキャッピング剤として含み、また、分散体は、場合により、ケトンを含む溶媒または溶媒の混合物をさらに含む。
本開示のさらなる典型的で例証的かつ非限定的な態様において、ナノ複合材が提供され、このとき、このナノ複合材は、ポリ(メチルメタクリレート)、シリコーン、シロキサン、スピンオンガラスポリマー、エポキシポリマー、およびポリ(エチレンビニルアルコー
ル)を含めたアクリルポリマーのうちの少なくとも1種または混合物を含むポリマーを含
み、そしてこのナノ複合材は、酸化ジルコニウムを含むナノ結晶を含む(これは、「構成されている」、「から成る」または「から本質的に成る」も意味する)ナノ結晶の分散体から得られた(または、得ることのできる)ナノ結晶生成物を含み、このとき、酸化ジルコニウムは、場合により、2−[2−(2−メトキシエトキシ)エトキシ]酢酸を少なくとも1種のキャッピング剤として含み、また、分散体は、場合により、環状ケトンを含む溶媒または溶媒の混合物をさらに含む。
本開示のさらなる典型的で例証的かつ非限定的な態様において、ナノ結晶の分散体は酸化ハフニウムを含むナノ結晶を含み(これは、「構成されている」、「から成る」または「から本質的に成る」も意味する)、このとき、酸化ハフニウムは、場合により、n−オクチルトリメトキシシランを少なくとも1種のキャッピング剤として含み、また、分散体は、場合により、トルエン、キシレンおよびメシチレンから選択される溶媒または溶媒の混合物をさらに含む。
本開示のさらなる典型的で例証的かつ非限定的な態様において、ナノ結晶の分散体は酸化ハフニウムを含むナノ結晶を含み(これは、「構成されている」、「から成る」または「から本質的に成る」も意味する)、このとき、酸化ハフニウムは、場合により、n−オクチルトリメトキシシランを少なくとも1種のキャッピング剤として含み、また、分散体は、場合により、トルエンを含む溶媒または溶媒の混合物をさらに含む。
本開示のさらなる典型的で例証的かつ非限定的な態様において、ナノ結晶の分散体は酸化ハフニウムを含むナノ結晶を含み(これは、「構成されている」、「から成る」または「から本質的に成る」も意味する)、このとき、酸化ハフニウムは、場合により、n−オクチルトリメトキシシランを少なくとも1種のキャッピング剤として含み、また、分散体は、場合により、キシレンを含む溶媒または溶媒の混合物をさらに含む。
本開示のさらなる典型的で例証的かつ非限定的な態様において、ナノ結晶の分散体は酸化ハフニウムを含むナノ結晶を含み(これは、「構成されている」、「から成る」または「から本質的に成る」も意味する)、このとき、酸化ハフニウムは、場合により、n−オクチルトリメトキシシランを少なくとも1種のキャッピング剤として含み、また、分散体は、場合により、メシチレンを含む溶媒または溶媒の混合物をさらに含む。
本開示のさらなる典型的で例証的かつ非限定的な態様において、ナノ結晶の分散体は酸化ハフニウムを含むナノ結晶を含み(これは、「構成されている」、「から成る」または「から本質的に成る」も意味する)、このとき、酸化ハフニウムは、場合により、オクタン酸を少なくとも1種のキャッピング剤として含み、また、分散体は、場合により、トルエン、キシレンおよびメシチレンを含む溶媒または溶媒の混合物をさらに含む。
本開示のさらなる典型的で例証的かつ非限定的な態様において、ナノ結晶の分散体は酸化ハフニウムを含むナノ結晶を含み(これは、「構成されている」、「から成る」または「から本質的に成る」も意味する)、このとき、酸化ハフニウムは、場合により、オクタン酸を少なくとも1種のキャッピング剤として含み、また、分散体は、場合により、トルエンを含む溶媒または溶媒の混合物をさらに含む。
本開示のさらなる典型的で例証的かつ非限定的な態様において、ナノ結晶の分散体は酸化ハフニウムを含むナノ結晶を含み(これは、「構成されている」、「から成る」または「から本質的に成る」も意味する)、このとき、酸化ハフニウムは、場合により、オクタン酸を少なくとも1種のキャッピング剤として含み、また、分散体は、場合により、キシレンを含む溶媒または溶媒の混合物をさらに含む。
本開示のさらなる典型的で例証的かつ非限定的な態様において、ナノ結晶の分散体は酸化ハフニウムを含むナノ結晶を含み(これは、「構成されている」、「から成る」または「から本質的に成る」も意味する)、このとき、酸化ハフニウムは、場合により、オクタン酸を少なくとも1種のキャッピング剤として含み、また、分散体は、場合により、メシチレンを含む溶媒または溶媒の混合物をさらに含む。
本開示のさらなる典型的で例証的かつ非限定的な態様において、ナノ結晶の分散体は酸化ハフニウムを含むナノ結晶を含み(これは、「構成されている」、「から成る」または「から本質的に成る」も意味する)、このとき、酸化ハフニウムは、場合により、オレイン酸を少なくとも1種のキャッピング剤として含み、また、分散体は、場合により、トルエン、キシレンおよびメシチレンを含む溶媒または溶媒の混合物をさらに含む。
本開示のさらなる典型的で例証的かつ非限定的な態様において、ナノ結晶の分散体は酸化ハフニウムを含むナノ結晶を含み(これは、「構成されている」、「から成る」または「から本質的に成る」も意味する)、このとき、酸化ハフニウムは、場合により、オレイン酸を少なくとも1種のキャッピング剤として含み、また、分散体は、場合により、トルエンを含む溶媒または溶媒の混合物をさらに含む。
本開示のさらなる典型的で例証的かつ非限定的な態様において、ナノ結晶の分散体は酸化ハフニウムを含むナノ結晶を含み(これは、「構成されている」、「から成る」または「から本質的に成る」も意味する)、このとき、酸化ハフニウムは、場合により、オレイン酸を少なくとも1種のキャッピング剤として含み、また、分散体は、場合により、キシレンを含む溶媒または溶媒の混合物をさらに含む。
本開示のさらなる典型的で例証的かつ非限定的な態様において、ナノ結晶の分散体は酸化ハフニウムを含むナノ結晶を含み(これは、「構成されている」、「から成る」または「から本質的に成る」も意味する)、このとき、酸化ハフニウムは、場合により、オレイン酸を少なくとも1種のキャッピング剤として含み、また、分散体は、場合により、メシチレンを含む溶媒または溶媒の混合物をさらに含む。
本開示のさらなる典型的で例証的かつ非限定的な態様において、ナノ結晶の分散体は酸化ハフニウムを含むナノ結晶を含み(これは、「構成されている」、「から成る」または
「から本質的に成る」も意味する)、このとき、酸化ハフニウムは、場合により、n−オクタデシルトリメトキシシランを少なくとも1種のキャッピング剤として含み、また、分散体は、場合により、トルエン、キシレンおよびメシチレンを含む溶媒または溶媒の混合物をさらに含む。
本開示のさらなる典型的で例証的かつ非限定的な態様において、ナノ結晶の分散体は酸化ハフニウムを含むナノ結晶を含み(これは、「構成されている」、「から成る」または「から本質的に成る」も意味する)、このとき、酸化ハフニウムは、場合により、n−オクタデシルトリメトキシシランを少なくとも1種のキャッピング剤として含み、また、分散体は、場合により、トルエンを含む溶媒または溶媒の混合物をさらに含む。
本開示のさらなる典型的で例証的かつ非限定的な態様において、ナノ結晶の分散体は酸化ハフニウムを含むナノ結晶を含み(これは、「構成されている」、「から成る」または「から本質的に成る」も意味する)、このとき、酸化ハフニウムは、場合により、n−オクタデシルトリメトキシシランを少なくとも1種のキャッピング剤として含み、また、分散体は、場合により、キシレンを含む溶媒または溶媒の混合物をさらに含む。
本開示のさらなる典型的で例証的かつ非限定的な態様において、ナノ結晶の分散体は酸化ハフニウムを含むナノ結晶を含み(これは、「構成されている」、「から成る」または「から本質的に成る」も意味する)、このとき、酸化ハフニウムは、場合により、n−オクタデシルトリメトキシシランを少なくとも1種のキャッピング剤として含み、また、分散体は、場合により、メシチレンを含む溶媒または溶媒の混合物をさらに含む。
本開示のさらなる典型的で例証的かつ非限定的な態様において、ナノ結晶の分散体は酸化ジルコニウムを含むナノ結晶を含み(これは、「構成されている」、「から成る」または「から本質的に成る」も意味する)、このとき、酸化ジルコニウムは、場合により、n−オクチルトリメトキシシランを少なくとも1種のキャッピング剤として含み、また、分散体は、場合により、トルエン、キシレンおよびメシチレンから選択される溶媒または溶媒の混合物をさらに含む。
本開示のさらなる典型的で例証的かつ非限定的な態様において、ナノ結晶の分散体は酸化ジルコニウムを含むナノ結晶を含み(これは、「構成されている」、「から成る」または「から本質的に成る」も意味する)、このとき、酸化ジルコニウムは、場合により、n−オクチルトリメトキシシランを少なくとも1種のキャッピング剤として含み、また、分散体は、場合により、トルエンを含む溶媒または溶媒の混合物をさらに含む。
本開示のさらなる典型的で例証的かつ非限定的な態様において、ナノ結晶の分散体は酸化ジルコニウムを含むナノ結晶を含み(これは、「構成されている」、「から成る」または「から本質的に成る」も意味する)、このとき、酸化ジルコニウムは、場合により、n−オクチルトリメトキシシランを少なくとも1種のキャッピング剤として含み、また、分散体は、場合により、キシレンを含む溶媒または溶媒の混合物をさらに含む。
本開示のさらなる典型的で例証的かつ非限定的な態様において、ナノ結晶の分散体は酸化ジルコニウムを含むナノ結晶を含み(これは、「構成されている」、「から成る」または「から本質的に成る」も意味する)、このとき、酸化ジルコニウムは、場合により、n−オクチルトリメトキシシランを少なくとも1種のキャッピング剤として含み、また、分散体は、場合により、メシチレンを含む溶媒または溶媒の混合物をさらに含む。
本開示のさらなる典型的で例証的かつ非限定的な態様において、ナノ結晶の分散体は酸化ジルコニウムを含むナノ結晶を含み(これは、「構成されている」、「から成る」また
は「から本質的に成る」も意味する)、このとき、酸化ジルコニウムは、場合により、オクタン酸を少なくとも1種のキャッピング剤として含み、また、分散体は、場合により、トルエン、キシレンおよびメシチレンを含む溶媒または溶媒の混合物をさらに含む。
本開示のさらなる典型的で例証的かつ非限定的な態様において、ナノ結晶の分散体は酸化ジルコニウムを含むナノ結晶を含み(これは、「構成されている」、「から成る」または「から本質的に成る」も意味する)、このとき、酸化ジルコニウムは、場合により、オクタン酸を少なくとも1種のキャッピング剤として含み、また、分散体は、場合により、トルエンを含む溶媒または溶媒の混合物をさらに含む。
本開示のさらなる典型的で例証的かつ非限定的な態様において、ナノ結晶の分散体は酸化ジルコニウムを含むナノ結晶を含み(これは、「構成されている」、「から成る」または「から本質的に成る」も意味する)、このとき、酸化ジルコニウムは、場合により、オクタン酸を少なくとも1種のキャッピング剤として含み、また、分散体は、場合により、キシレンを含む溶媒または溶媒の混合物をさらに含む。
本開示のさらなる典型的で例証的かつ非限定的な態様において、ナノ結晶の分散体は酸化ジルコニウムを含むナノ結晶を含み(これは、「構成されている」、「から成る」または「から本質的に成る」も意味する)、このとき、酸化ジルコニウムは、場合により、オクタン酸を少なくとも1種のキャッピング剤として含み、また、分散体は、場合により、メシチレンを含む溶媒または溶媒の混合物をさらに含む。
本開示のさらなる典型的で例証的かつ非限定的な態様において、ナノ結晶の分散体は酸化ジルコニウムを含むナノ結晶を含み(これは、「構成されている」、「から成る」または「から本質的に成る」も意味する)、このとき、酸化ジルコニウムは、場合により、オレイン酸を少なくとも1種のキャッピング剤として含み、また、分散体は、場合により、トルエン、キシレンおよびメシチレンを含む溶媒または溶媒の混合物をさらに含む。
本開示のさらなる典型的で例証的かつ非限定的な態様において、ナノ結晶の分散体は酸化ジルコニウムを含むナノ結晶を含み(これは、「構成されている」、「から成る」または「から本質的に成る」も意味する)、このとき、酸化ジルコニウムは、場合により、オレイン酸を少なくとも1種のキャッピング剤として含み、また、分散体は、場合により、トルエンを含む溶媒または溶媒の混合物をさらに含む。
本開示のさらなる典型的で例証的かつ非限定的な態様において、ナノ結晶の分散体は酸化ジルコニウムを含むナノ結晶を含み(これは、「構成されている」、「から成る」または「から本質的に成る」も意味する)、このとき、酸化ジルコニウムは、場合により、オレイン酸を少なくとも1種のキャッピング剤として含み、また、分散体は、場合により、キシレンを含む溶媒または溶媒の混合物をさらに含む。
本開示のさらなる典型的で例証的かつ非限定的な態様において、ナノ結晶の分散体は酸化ジルコニウムを含むナノ結晶を含み(これは、「構成されている」、「から成る」または「から本質的に成る」も意味する)、このとき、酸化ジルコニウムは、場合により、オレイン酸を少なくとも1種のキャッピング剤として含み、また、分散体は、場合により、メシチレンを含む溶媒または溶媒の混合物をさらに含む。
本開示のさらなる典型的で例証的かつ非限定的な態様において、ナノ結晶の分散体は酸化ジルコニウムを含むナノ結晶を含み(これは、「構成されている」、「から成る」または「から本質的に成る」も意味する)、このとき、酸化ジルコニウムは、場合により、n−オクタデシルトリメトキシシランを少なくとも1種のキャッピング剤として含み、また
、分散体は、場合により、トルエン、キシレンおよびメシチレンを含む溶媒または溶媒の混合物をさらに含む。
本開示のさらなる典型的で例証的かつ非限定的な態様において、ナノ結晶の分散体は酸化ジルコニウムを含むナノ結晶を含み(これは、「構成されている」、「から成る」または「から本質的に成る」も意味する)、このとき、酸化ジルコニウムは、場合により、n−オクタデシルトリメトキシシランを少なくとも1種のキャッピング剤として含み、また、分散体は、場合により、トルエンを含む溶媒または溶媒の混合物をさらに含む。
本開示のさらなる典型的で例証的かつ非限定的な態様において、ナノ結晶の分散体は酸化ジルコニウムを含むナノ結晶を含み(これは、「構成されている」、「から成る」または「から本質的に成る」も意味する)、このとき、酸化ジルコニウムは、場合により、n−オクタデシルトリメトキシシランを少なくとも1種のキャッピング剤として含み、また、分散体は、場合により、キシレンを含む溶媒または溶媒の混合物をさらに含む。
本開示のさらなる典型的で例証的かつ非限定的な態様において、ナノ結晶の分散体は酸化ジルコニウムを含むナノ結晶を含み(これは、「構成されている」、「から成る」または「から本質的に成る」も意味する)、このとき、酸化ジルコニウムは、場合により、n−オクタデシルトリメトキシシランを少なくとも1種のキャッピング剤として含み、また、分散体は、場合により、メシチレンを含む溶媒または溶媒の混合物をさらに含む。
本開示のさらなる典型的で例証的かつ非限定的な態様において、ナノ複合材が提供され、このとき、このナノ複合材はシリコーンポリマーを含み、そしてこのナノ複合材は、酸化ハフニウムを含むナノ結晶を含む(これは、「構成されている」、「から成る」または「から本質的に成る」も意味する)ナノ結晶の分散体から得られた(または、得ることのできる)ナノ結晶生成物を含み、このとき、酸化ハフニウムは、場合により、n−オクチルトリメトキシシランを少なくとも1種のキャッピング剤として含み、また、分散体は、場合により、トルエン、キシレンおよびメシチレンから選択される溶媒または溶媒の混合物をさらに含む。
本開示のさらなる典型的で例証的かつ非限定的な態様において、ナノ複合材が提供され、このとき、このナノ複合材はシリコーンポリマーを含み、そしてこのナノ複合材は、酸化ハフニウムを含むナノ結晶を含む(これは、「構成されている」、「から成る」または「から本質的に成る」も意味する)ナノ結晶の分散体から得られた(または、得ることのできる)ナノ結晶生成物を含み、このとき、酸化ハフニウムは、場合により、n−オクチルトリメトキシシランを少なくとも1種のキャッピング剤として含み、また、分散体は、場合により、トルエンを含む溶媒または溶媒の混合物をさらに含む。
本開示のさらなる典型的で例証的かつ非限定的な態様において、ナノ複合材が提供され、このとき、このナノ複合材はシリコーンポリマーを含み、そしてこのナノ複合材は、酸化ハフニウムを含むナノ結晶を含む(これは、「構成されている」、「から成る」または「から本質的に成る」も意味する)ナノ結晶の分散体から得られた(または、得ることのできる)ナノ結晶生成物を含み、このとき、酸化ハフニウムは、場合により、n−オクチルトリメトキシシランを少なくとも1種のキャッピング剤として含み、また、分散体は、場合により、キシレンを含む溶媒または溶媒の混合物をさらに含む。
本開示のさらなる典型的で例証的かつ非限定的な態様において、ナノ複合材が提供され、このとき、このナノ複合材はシリコーンポリマーを含み、そしてこのナノ複合材は、酸化ハフニウムを含むナノ結晶を含む(これは、「構成されている」、「から成る」または「から本質的に成る」も意味する)ナノ結晶の分散体から得られた(または、得ることの
できる)ナノ結晶生成物を含み、このとき、酸化ハフニウムは、場合により、n−オクチルトリメトキシシランを少なくとも1種のキャッピング剤として含み、また、分散体は、場合により、メシチレンを含む溶媒または溶媒の混合物をさらに含む。
本開示のさらなる典型的で例証的かつ非限定的な態様において、ナノ複合材が提供され、このとき、このナノ複合材はシリコーンポリマーを含み、そしてこのナノ複合材は、酸化ハフニウムを含むナノ結晶を含む(これは、「構成されている」、「から成る」または「から本質的に成る」も意味する)ナノ結晶の分散体から得られた(または、得ることのできる)ナノ結晶生成物を含み、このとき、酸化ハフニウムは、場合により、オクタン酸を少なくとも1種のキャッピング剤として含み、また、分散体は、場合により、トルエン、キシレンおよびメシチレンを含む溶媒または溶媒の混合物をさらに含む。
本開示のさらなる典型的で例証的かつ非限定的な態様において、ナノ複合材が提供され、このとき、このナノ複合材はシリコーンポリマーを含み、そしてこのナノ複合材は、酸化ハフニウムを含むナノ結晶を含む(これは、「構成されている」、「から成る」または「から本質的に成る」も意味する)ナノ結晶の分散体から得られた(または、得ることのできる)ナノ結晶生成物を含み、このとき、酸化ハフニウムは、場合により、オクタン酸を少なくとも1種のキャッピング剤として含み、また、分散体は、場合により、トルエンを含む溶媒または溶媒の混合物をさらに含む。
本開示のさらなる典型的で例証的かつ非限定的な態様において、ナノ複合材が提供され、このとき、このナノ複合材はシリコーンポリマーを含み、そしてこのナノ複合材は、酸化ハフニウムを含むナノ結晶を含む(これは、「構成されている」、「から成る」または「から本質的に成る」も意味する)ナノ結晶の分散体から得られた(または、得ることのできる)ナノ結晶生成物を含み、このとき、酸化ハフニウムは、場合により、オクタン酸を少なくとも1種のキャッピング剤として含み、また、分散体は、場合により、キシレンを含む溶媒または溶媒の混合物をさらに含む。
本開示のさらなる典型的で例証的かつ非限定的な態様において、ナノ複合材が提供され、このとき、このナノ複合材はシリコーンポリマーを含み、そしてこのナノ複合材は、酸化ハフニウムを含むナノ結晶を含む(これは、「構成されている」、「から成る」または「から本質的に成る」も意味する)ナノ結晶の分散体から得られた(または、得ることのできる)ナノ結晶生成物を含み、このとき、酸化ハフニウムは、場合により、オクタン酸を少なくとも1種のキャッピング剤として含み、また、分散体は、場合により、メシチレンを含む溶媒または溶媒の混合物をさらに含む。
本開示のさらなる典型的で例証的かつ非限定的な態様において、ナノ複合材が提供され、このとき、このナノ複合材はシリコーンポリマーを含み、そしてこのナノ複合材は、酸化ハフニウムを含むナノ結晶を含む(これは、「構成されている」、「から成る」または「から本質的に成る」も意味する)ナノ結晶の分散体から得られた(または、得ることのできる)ナノ結晶生成物を含み、このとき、酸化ハフニウムは、場合により、オレイン酸を少なくとも1種のキャッピング剤として含み、また、分散体は、場合により、トルエン、キシレンおよびメシチレンを含む溶媒または溶媒の混合物をさらに含む。
本開示のさらなる典型的で例証的かつ非限定的な態様において、ナノ複合材が提供され、このとき、このナノ複合材はシリコーンポリマーを含み、そしてこのナノ複合材は、酸化ハフニウムを含むナノ結晶を含む(これは、「構成されている」、「から成る」または「から本質的に成る」も意味する)ナノ結晶の分散体から得られた(または、得ることのできる)ナノ結晶生成物を含み、このとき、酸化ハフニウムは、場合により、オレイン酸を少なくとも1種のキャッピング剤として含み、また、分散体は、場合により、トルエン
を含む溶媒または溶媒の混合物をさらに含む。
本開示のさらなる典型的で例証的かつ非限定的な態様において、ナノ複合材が提供され、このとき、このナノ複合材はシリコーンポリマーを含み、そしてこのナノ複合材は、酸化ハフニウムを含むナノ結晶を含む(これは、「構成されている」、「から成る」または「から本質的に成る」も意味する)ナノ結晶の分散体から得られた(または、得ることのできる)ナノ結晶生成物を含み、このとき、酸化ハフニウムは、場合により、オレイン酸を少なくとも1種のキャッピング剤として含み、また、分散体は、場合により、キシレンを含む溶媒または溶媒の混合物をさらに含む。
本開示のさらなる典型的で例証的かつ非限定的な態様において、ナノ複合材が提供され、このとき、このナノ複合材はシリコーンポリマーを含み、そしてこのナノ複合材は、酸化ハフニウムを含むナノ結晶を含む(これは、「構成されている」、「から成る」または「から本質的に成る」も意味する)ナノ結晶の分散体から得られた(または、得ることのできる)ナノ結晶生成物を含み、このとき、酸化ハフニウムは、場合により、オレイン酸を少なくとも1種のキャッピング剤として含み、また、分散体は、場合により、メシチレンを含む溶媒または溶媒の混合物をさらに含む。
本開示のさらなる典型的で例証的かつ非限定的な態様において、ナノ複合材が提供され、このとき、このナノ複合材はシリコーンポリマーを含み、そしてこのナノ複合材は、酸化ハフニウムを含むナノ結晶を含む(これは、「構成されている」、「から成る」または「から本質的に成る」も意味する)ナノ結晶の分散体から得られた(または、得ることのできる)ナノ結晶生成物を含み、このとき、酸化ハフニウムは、場合により、n−オクタデシルトリメトキシシランを少なくとも1種のキャッピング剤として含み、また、分散体は、場合により、トルエン、キシレンおよびメシチレンを含む溶媒または溶媒の混合物をさらに含む。
本開示のさらなる典型的で例証的かつ非限定的な態様において、ナノ複合材が提供され、このとき、このナノ複合材はシリコーンポリマーを含み、そしてこのナノ複合材は、酸化ハフニウムを含むナノ結晶を含む(これは、「構成されている」、「から成る」または「から本質的に成る」も意味する)ナノ結晶の分散体から得られた(または、得ることのできる)ナノ結晶生成物を含み、このとき、酸化ハフニウムは、場合により、n−オクタデシルトリメトキシシランを少なくとも1種のキャッピング剤として含み、また、分散体は、場合により、トルエンを含む溶媒または溶媒の混合物をさらに含む。
本開示のさらなる典型的で例証的かつ非限定的な態様において、ナノ複合材が提供され、このとき、このナノ複合材はシリコーンポリマーを含み、そしてこのナノ複合材は、酸化ハフニウムを含むナノ結晶を含む(これは、「構成されている」、「から成る」または「から本質的に成る」も意味する)ナノ結晶の分散体から得られた(または、得ることのできる)ナノ結晶生成物を含み、このとき、酸化ハフニウムは、場合により、n−オクタデシルトリメトキシシランを少なくとも1種のキャッピング剤として含み、また、分散体は、場合により、キシレンを含む溶媒または溶媒の混合物をさらに含む。
本開示のさらなる典型的で例証的かつ非限定的な態様において、ナノ複合材が提供され、このとき、このナノ複合材はシリコーンポリマーを含み、そしてこのナノ複合材は、酸化ハフニウムを含むナノ結晶を含む(これは、「構成されている」、「から成る」または「から本質的に成る」も意味する)ナノ結晶の分散体から得られた(または、得ることのできる)ナノ結晶生成物を含み、このとき、酸化ハフニウムは、場合により、n−オクタデシルトリメトキシシランを少なくとも1種のキャッピング剤として含み、また、分散体は、場合により、メシチレンを含む溶媒または溶媒の混合物をさらに含む。
本開示のさらなる典型的で例証的かつ非限定的な態様において、ナノ複合材が提供され、このとき、このナノ複合材はシリコーンポリマーを含み、そしてこのナノ複合材は、酸化ジルコニウムを含むナノ結晶を含む(これは、「構成されている」、「から成る」または「から本質的に成る」も意味する)ナノ結晶の分散体から得られた(または、得ることのできる)ナノ結晶生成物を含み、このとき、酸化ジルコニウムは、場合により、n−オクチルトリメトキシシランを少なくとも1種のキャッピング剤として含み、また、分散体は、場合により、トルエン、キシレンおよびメシチレンから選択される溶媒または溶媒の混合物をさらに含む。
本開示のさらなる典型的で例証的かつ非限定的な態様において、ナノ複合材が提供され、このとき、このナノ複合材はシリコーンポリマーを含み、そしてこのナノ複合材は、酸化ジルコニウムを含むナノ結晶を含む(これは、「構成されている」、「から成る」または「から本質的に成る」も意味する)ナノ結晶の分散体から得られた(または、得ることのできる)ナノ結晶生成物を含み、このとき、酸化ジルコニウムは、場合により、n−オクチルトリメトキシシランを少なくとも1種のキャッピング剤として含み、また、分散体は、場合により、トルエンを含む溶媒または溶媒の混合物をさらに含む。
本開示のさらなる典型的で例証的かつ非限定的な態様において、ナノ複合材が提供され、このとき、このナノ複合材はシリコーンポリマーを含み、そしてこのナノ複合材は、酸化ジルコニウムを含むナノ結晶を含む(これは、「構成されている」、「から成る」または「から本質的に成る」も意味する)ナノ結晶の分散体から得られた(または、得ることのできる)ナノ結晶生成物を含み、このとき、酸化ジルコニウムは、場合により、n−オクチルトリメトキシシランを少なくとも1種のキャッピング剤として含み、また、分散体は、場合により、キシレンを含む溶媒または溶媒の混合物をさらに含む。
本開示のさらなる典型的で例証的かつ非限定的な態様において、ナノ複合材が提供され、このとき、このナノ複合材はシリコーンポリマーを含み、そしてこのナノ複合材は、酸化ジルコニウムを含むナノ結晶を含む(これは、「構成されている」、「から成る」または「から本質的に成る」も意味する)ナノ結晶の分散体から得られた(または、得ることのできる)ナノ結晶生成物を含み、このとき、酸化ジルコニウムは、場合により、n−オクチルトリメトキシシランを少なくとも1種のキャッピング剤として含み、また、分散体は、場合により、メシチレンを含む溶媒または溶媒の混合物をさらに含む。
本開示のさらなる典型的で例証的かつ非限定的な態様において、ナノ複合材が提供され、このとき、このナノ複合材はシリコーンポリマーを含み、そしてこのナノ複合材は、酸化ジルコニウムを含むナノ結晶を含む(これは、「構成されている」、「から成る」または「から本質的に成る」も意味する)ナノ結晶の分散体から得られた(または、得ることのできる)ナノ結晶生成物を含み、このとき、酸化ジルコニウムは、場合により、オクタン酸を少なくとも1種のキャッピング剤として含み、また、分散体は、場合により、トルエン、キシレンおよびメシチレンを含む溶媒または溶媒の混合物をさらに含む。
本開示のさらなる典型的で例証的かつ非限定的な態様において、ナノ複合材が提供され、このとき、このナノ複合材はシリコーンポリマーを含み、そしてこのナノ複合材は、酸化ジルコニウムを含むナノ結晶を含む(これは、「構成されている」、「から成る」または「から本質的に成る」も意味する)ナノ結晶の分散体から得られた(または、得ることのできる)ナノ結晶生成物を含み、このとき、酸化ジルコニウムは、場合により、オクタン酸を少なくとも1種のキャッピング剤として含み、また、分散体は、場合により、トルエンを含む溶媒または溶媒の混合物をさらに含む。
本開示のさらなる典型的で例証的かつ非限定的な態様において、ナノ複合材が提供され、このとき、このナノ複合材はシリコーンポリマーを含み、そしてこのナノ複合材は、酸化ジルコニウムを含むナノ結晶を含む(これは、「構成されている」、「から成る」または「から本質的に成る」も意味する)ナノ結晶の分散体から得られた(または、得ることのできる)ナノ結晶生成物を含み、このとき、酸化ジルコニウムは、場合により、オクタン酸を少なくとも1種のキャッピング剤として含み、また、分散体は、場合により、キシレンを含む溶媒または溶媒の混合物をさらに含む。
本開示のさらなる典型的で例証的かつ非限定的な態様において、ナノ複合材が提供され、このとき、このナノ複合材はシリコーンポリマーを含み、そしてこのナノ複合材は、酸化ジルコニウムを含むナノ結晶を含む(これは、「構成されている」、「から成る」または「から本質的に成る」も意味する)ナノ結晶の分散体から得られた(または、得ることのできる)ナノ結晶生成物を含み、このとき、酸化ジルコニウムは、場合により、オクタン酸を少なくとも1種のキャッピング剤として含み、また、分散体は、場合により、メシチレンを含む溶媒または溶媒の混合物をさらに含む。
本開示のさらなる典型的で例証的かつ非限定的な態様において、ナノ複合材が提供され、このとき、このナノ複合材はシリコーンポリマーを含み、そしてこのナノ複合材は、酸化ジルコニウムを含むナノ結晶を含む(これは、「構成されている」、「から成る」または「から本質的に成る」も意味する)ナノ結晶の分散体から得られた(または、得ることのできる)ナノ結晶生成物を含み、このとき、酸化ジルコニウムは、場合により、オレイン酸を少なくとも1種のキャッピング剤として含み、また、分散体は、場合により、トルエン、キシレンおよびメシチレンを含む溶媒または溶媒の混合物をさらに含む。
本開示のさらなる典型的で例証的かつ非限定的な態様において、ナノ複合材が提供され、このとき、このナノ複合材はシリコーンポリマーを含み、そしてこのナノ複合材は、酸化ジルコニウムを含むナノ結晶を含む(これは、「構成されている」、「から成る」または「から本質的に成る」も意味する)ナノ結晶の分散体から得られた(または、得ることのできる)ナノ結晶生成物を含み、このとき、酸化ジルコニウムは、場合により、オレイン酸を少なくとも1種のキャッピング剤として含み、また、分散体は、場合により、トルエンを含む溶媒または溶媒の混合物をさらに含む。
本開示のさらなる典型的で例証的かつ非限定的な態様において、ナノ複合材が提供され、このとき、このナノ複合材はシリコーンポリマーを含み、そしてこのナノ複合材は、酸化ジルコニウムを含むナノ結晶を含む(これは、「構成されている」、「から成る」または「から本質的に成る」も意味する)ナノ結晶の分散体から得られた(または、得ることのできる)ナノ結晶生成物を含み、このとき、酸化ジルコニウムは、場合により、オレイン酸を少なくとも1種のキャッピング剤として含み、また、分散体は、場合により、キシレンを含む溶媒または溶媒の混合物をさらに含む。
本開示のさらなる典型的で例証的かつ非限定的な態様において、ナノ複合材が提供され、このとき、このナノ複合材はシリコーンポリマーを含み、そしてこのナノ複合材は、酸化ジルコニウムを含むナノ結晶を含む(これは、「構成されている」、「から成る」または「から本質的に成る」も意味する)ナノ結晶の分散体から得られた(または、得ることのできる)ナノ結晶生成物を含み、このとき、酸化ジルコニウムは、場合により、オレイン酸を少なくとも1種のキャッピング剤として含み、また、分散体は、場合により、メシチレンを含む溶媒または溶媒の混合物をさらに含む。
本開示のさらなる典型的で例証的かつ非限定的な態様において、ナノ複合材が提供され、このとき、このナノ複合材はシリコーンポリマーを含み、そしてこのナノ複合材は、酸
化ジルコニウムを含むナノ結晶を含む(これは、「構成されている」、「から成る」または「から本質的に成る」も意味する)ナノ結晶の分散体から得られた(または、得ることのできる)ナノ結晶生成物を含み、このとき、酸化ジルコニウムは、場合により、n−オクタデシルトリメトキシシランを少なくとも1種のキャッピング剤として含み、また、分散体は、場合により、トルエン、キシレンおよびメシチレンを含む溶媒または溶媒の混合物をさらに含む。
本開示のさらなる典型的で例証的かつ非限定的な態様において、ナノ複合材が提供され、このとき、このナノ複合材はシリコーンポリマーを含み、そしてこのナノ複合材は、酸化ジルコニウムを含むナノ結晶を含む(これは、「構成されている」、「から成る」または「から本質的に成る」も意味する)ナノ結晶の分散体から得られた(または、得ることのできる)ナノ結晶生成物を含み、このとき、酸化ジルコニウムは、場合により、n−オクタデシルトリメトキシシランを少なくとも1種のキャッピング剤として含み、また、分散体は、場合により、トルエンを含む溶媒または溶媒の混合物をさらに含む。
本開示のさらなる典型的で例証的かつ非限定的な態様において、ナノ複合材が提供され、このとき、このナノ複合材はシリコーンポリマーを含み、そしてこのナノ複合材は、酸化ジルコニウムを含むナノ結晶を含む(これは、「構成されている」、「から成る」または「から本質的に成る」も意味する)ナノ結晶の分散体から得られた(または、得ることのできる)ナノ結晶生成物を含み、このとき、酸化ジルコニウムは、場合により、n−オクタデシルトリメトキシシランを少なくとも1種のキャッピング剤として含み、また、分散体は、場合により、キシレンを含む溶媒または溶媒の混合物をさらに含む。
本開示のさらなる典型的で例証的かつ非限定的な態様において、ナノ複合材が提供され、このとき、このナノ複合材はシリコーンポリマーを含み、そしてこのナノ複合材は、酸化ジルコニウムを含むナノ結晶を含む(これは、「構成されている」、「から成る」または「から本質的に成る」も意味する)ナノ結晶の分散体から得られた(または、得ることのできる)ナノ結晶生成物を含み、このとき、酸化ジルコニウムは、場合により、n−オクタデシルトリメトキシシランを少なくとも1種のキャッピング剤として含み、また、分散体は、場合により、メシチレンを含む溶媒または溶媒の混合物をさらに含む。
本開示のさらなる典型的で例証的かつ非限定的な態様において、ナノ複合材が提供され、このとき、このナノ複合材はシリコーンポリマーを含み、そしてこのナノ複合材は、酸化ジルコニウムを含むナノ結晶を含む(これは、「構成されている」、「から成る」または「から本質的に成る」も意味する)ナノ結晶の分散体から得られた(または、得ることのできる)ナノ結晶生成物を含み、このとき、酸化ジルコニウムは、場合により、n−オクチルトリメトキシシランを少なくとも1種のキャッピング剤として含み、また、分散体は、場合により、トルエン、キシレンおよびメシチレンから選択される溶媒または溶媒の混合物をさらに含む。
本開示のさらなる典型的で例証的かつ非限定的な態様において、ナノ複合材が提供され、このとき、このナノ複合材はシリコーンポリマーを含み、そしてこのナノ複合材は、酸化ジルコニウムを含むナノ結晶を含む(これは、「構成されている」、「から成る」または「から本質的に成る」も意味する)ナノ結晶の分散体から得られた(または、得ることのできる)ナノ結晶生成物を含み、このとき、酸化ジルコニウムは、場合により、n−オクチルトリメトキシシランを少なくとも1種のキャッピング剤として含み、また、分散体は、場合により、トルエンを含む溶媒または溶媒の混合物をさらに含む。
本開示のさらなる典型的で例証的かつ非限定的な態様において、ナノ複合材が提供され、このとき、このナノ複合材はシリコーンポリマーを含み、そしてこのナノ複合材は、酸
化ジルコニウムを含むナノ結晶を含む(これは、「構成されている」、「から成る」または「から本質的に成る」も意味する)ナノ結晶の分散体から得られた(または、得ることのできる)ナノ結晶生成物を含み、このとき、酸化ジルコニウムは、場合により、n−オクチルトリメトキシシランを少なくとも1種のキャッピング剤として含み、また、分散体は、場合により、キシレンを含む溶媒または溶媒の混合物をさらに含む。
本開示のさらなる典型的で例証的かつ非限定的な態様において、ナノ複合材が提供され、このとき、このナノ複合材はシリコーンポリマーを含み、そしてこのナノ複合材は、酸化ジルコニウムを含むナノ結晶を含む(これは、「構成されている」、「から成る」または「から本質的に成る」も意味する)ナノ結晶の分散体から得られた(または、得ることのできる)ナノ結晶生成物を含み、このとき、酸化ジルコニウムは、場合により、n−オクチルトリメトキシシランを少なくとも1種のキャッピング剤として含み、また、分散体は、場合により、メシチレンを含む溶媒または溶媒の混合物をさらに含む。
本開示のさらなる典型的で例証的かつ非限定的な態様において、ナノ複合材が提供され、このとき、このナノ複合材はシリコーンポリマーを含み、そしてこのナノ複合材は、酸化ジルコニウムを含むナノ結晶を含む(これは、「構成されている」、「から成る」または「から本質的に成る」も意味する)ナノ結晶の分散体から得られた(または、得ることのできる)ナノ結晶生成物を含み、このとき、酸化ジルコニウムは、場合により、オクタン酸を少なくとも1種のキャッピング剤として含み、また、分散体は、場合により、トルエン、キシレンおよびメシチレンを含む溶媒または溶媒の混合物をさらに含む。
本開示のさらなる典型的で例証的かつ非限定的な態様において、ナノ複合材が提供され、このとき、このナノ複合材はシリコーンポリマーを含み、そしてこのナノ複合材は、酸化ジルコニウムを含むナノ結晶を含む(これは、「構成されている」、「から成る」または「から本質的に成る」も意味する)ナノ結晶の分散体から得られた(または、得ることのできる)ナノ結晶生成物を含み、このとき、酸化ジルコニウムは、場合により、オクタン酸を少なくとも1種のキャッピング剤として含み、また、分散体は、場合により、トルエンを含む溶媒または溶媒の混合物をさらに含む。
本開示のさらなる典型的で例証的かつ非限定的な態様において、ナノ複合材が提供され、このとき、このナノ複合材はシリコーンポリマーを含み、そしてこのナノ複合材は、酸化ジルコニウムを含むナノ結晶を含む(これは、「構成されている」、「から成る」または「から本質的に成る」も意味する)ナノ結晶の分散体から得られた(または、得ることのできる)ナノ結晶生成物を含み、このとき、酸化ジルコニウムは、場合により、オクタン酸を少なくとも1種のキャッピング剤として含み、また、分散体は、場合により、キシレンを含む溶媒または溶媒の混合物をさらに含む。
本開示のさらなる典型的で例証的かつ非限定的な態様において、ナノ複合材が提供され、このとき、このナノ複合材はシリコーンポリマーを含み、そしてこのナノ複合材は、酸化ジルコニウムを含むナノ結晶を含む(これは、「構成されている」、「から成る」または「から本質的に成る」も意味する)ナノ結晶の分散体から得られた(または、得ることのできる)ナノ結晶生成物を含み、このとき、酸化ジルコニウムは、場合により、オクタン酸を少なくとも1種のキャッピング剤として含み、また、分散体は、場合により、メシチレンを含む溶媒または溶媒の混合物をさらに含む。
本開示のさらなる典型的で例証的かつ非限定的な態様において、ナノ複合材が提供され、このとき、このナノ複合材はシリコーンポリマーを含み、そしてこのナノ複合材は、酸化ジルコニウムを含むナノ結晶を含む(これは、「構成されている」、「から成る」または「から本質的に成る」も意味する)ナノ結晶の分散体から得られた(または、得ること
のできる)ナノ結晶生成物を含み、このとき、酸化ジルコニウムは、場合により、オレイン酸を少なくとも1種のキャッピング剤として含み、また、分散体は、場合により、トルエン、キシレンおよびメシチレンを含む溶媒または溶媒の混合物をさらに含む。
本開示のさらなる典型的で例証的かつ非限定的な態様において、ナノ複合材が提供され、このとき、このナノ複合材はシリコーンポリマーを含み、そしてこのナノ複合材は、酸化ジルコニウムを含むナノ結晶を含む(これは、「構成されている」、「から成る」または「から本質的に成る」も意味する)ナノ結晶の分散体から得られた(または、得ることのできる)ナノ結晶生成物を含み、このとき、酸化ジルコニウムは、場合により、オレイン酸を少なくとも1種のキャッピング剤として含み、また、分散体は、場合により、トルエンを含む溶媒または溶媒の混合物をさらに含む。
本開示のさらなる典型的で例証的かつ非限定的な態様において、ナノ複合材が提供され、このとき、このナノ複合材はシリコーンポリマーを含み、そしてこのナノ複合材は、酸化ジルコニウムを含むナノ結晶を含む(これは、「構成されている」、「から成る」または「から本質的に成る」も意味する)ナノ結晶の分散体から得られた(または、得ることのできる)ナノ結晶生成物を含み、このとき、酸化ジルコニウムは、場合により、オレイン酸を少なくとも1種のキャッピング剤として含み、また、分散体は、場合により、キシレンを含む溶媒または溶媒の混合物をさらに含む。
本開示のさらなる典型的で例証的かつ非限定的な態様において、ナノ複合材が提供され、このとき、このナノ複合材はシリコーンポリマーを含み、そしてこのナノ複合材は、酸化ジルコニウムを含むナノ結晶を含む(これは、「構成されている」、「から成る」または「から本質的に成る」も意味する)ナノ結晶の分散体から得られた(または、得ることのできる)ナノ結晶生成物を含み、このとき、酸化ジルコニウムは、場合により、オレイン酸を少なくとも1種のキャッピング剤として含み、また、分散体は、場合により、メシチレンを含む溶媒または溶媒の混合物をさらに含む。
本開示のさらなる典型的で例証的かつ非限定的な態様において、ナノ複合材が提供され、このとき、このナノ複合材はシリコーンポリマーを含み、そしてこのナノ複合材は、酸化ジルコニウムを含むナノ結晶を含む(これは、「構成されている」、「から成る」または「から本質的に成る」も意味する)ナノ結晶の分散体から得られた(または、得ることのできる)ナノ結晶生成物を含み、このとき、酸化ジルコニウムは、場合により、n−オクタデシルトリメトキシシランを少なくとも1種のキャッピング剤として含み、また、分散体は、場合により、トルエン、キシレンおよびメシチレンを含む溶媒または溶媒の混合物をさらに含む。
本開示のさらなる典型的で例証的かつ非限定的な態様において、ナノ複合材が提供され、このとき、このナノ複合材はシリコーンポリマーを含み、そしてこのナノ複合材は、酸化ジルコニウムを含むナノ結晶を含む(これは、「構成されている」、「から成る」または「から本質的に成る」も意味する)ナノ結晶の分散体から得られた(または、得ることのできる)ナノ結晶生成物を含み、このとき、酸化ジルコニウムは、場合により、n−オクタデシルトリメトキシシランを少なくとも1種のキャッピング剤として含み、また、分散体は、場合により、トルエンを含む溶媒または溶媒の混合物をさらに含む。
本開示のさらなる典型的で例証的かつ非限定的な態様において、ナノ複合材が提供され、このとき、このナノ複合材はシリコーンポリマーを含み、そしてこのナノ複合材は、酸化ジルコニウムを含むナノ結晶を含む(これは、「構成されている」、「から成る」または「から本質的に成る」も意味する)ナノ結晶の分散体から得られた(または、得ることのできる)ナノ結晶生成物を含み、このとき、酸化ジルコニウムは、場合により、n−オ
クタデシルトリメトキシシランを少なくとも1種のキャッピング剤として含み、また、分散体は、場合により、キシレンを含む溶媒または溶媒の混合物をさらに含む。
本開示のさらなる典型的で例証的かつ非限定的な態様において、ナノ複合材が提供され、このとき、このナノ複合材はシリコーンポリマーを含み、そしてこのナノ複合材は、酸化ジルコニウムを含むナノ結晶を含む(これは、「構成されている」、「から成る」または「から本質的に成る」も意味する)ナノ結晶の分散体から得られた(または、得ることのできる)ナノ結晶生成物を含み、このとき、酸化ジルコニウムは、場合により、n−オクタデシルトリメトキシシランを少なくとも1種のキャッピング剤として含み、また、分散体は、場合により、メシチレンを含む溶媒または溶媒の混合物をさらに含む。
本開示のさらなる典型的で例証的かつ非限定的な態様において、ナノ複合材が提供され、このとき、このナノ複合材はシリコーンポリマーを含み、そしてこのナノ複合材は、酸化ジルコニウムを含むナノ結晶を含む(これは、「構成されている」、「から成る」または「から本質的に成る」も意味する)ナノ結晶の分散体から得られた(または、得ることのできる)ナノ結晶生成物を含み、このとき、酸化ジルコニウムは、場合により、n−オクチルトリメトキシシランを少なくとも1種のキャッピング剤として含み、また、分散体は、場合により、トルエン、キシレンおよびメシチレンから選択される溶媒または溶媒の混合物をさらに含む。
本開示のさらなる典型的で例証的かつ非限定的な態様において、ナノ複合材が提供され、このとき、このナノ複合材はシリコーンポリマーを含み、そしてこのナノ複合材は、酸化ジルコニウムを含むナノ結晶を含む(これは、「構成されている」、「から成る」または「から本質的に成る」も意味する)ナノ結晶の分散体から得られた(または、得ることのできる)ナノ結晶生成物を含み、このとき、酸化ジルコニウムは、場合により、n−オクチルトリメトキシシランを少なくとも1種のキャッピング剤として含み、また、分散体は、場合により、トルエンを含む溶媒または溶媒の混合物をさらに含む。
本開示のさらなる典型的で例証的かつ非限定的な態様において、ナノ複合材が提供され、このとき、このナノ複合材はシリコーンポリマーを含み、そしてこのナノ複合材は、酸化ジルコニウムを含むナノ結晶を含む(これは、「構成されている」、「から成る」または「から本質的に成る」も意味する)ナノ結晶の分散体から得られた(または、得ることのできる)ナノ結晶生成物を含み、このとき、酸化ジルコニウムは、場合により、n−オクチルトリメトキシシランを少なくとも1種のキャッピング剤として含み、また、分散体は、場合により、キシレンを含む溶媒または溶媒の混合物をさらに含む。
本開示のさらなる典型的で例証的かつ非限定的な態様において、ナノ複合材が提供され、このとき、このナノ複合材はシリコーンポリマーを含み、そしてこのナノ複合材は、酸化ジルコニウムを含むナノ結晶を含む(これは、「構成されている」、「から成る」または「から本質的に成る」も意味する)ナノ結晶の分散体から得られた(または、得ることのできる)ナノ結晶生成物を含み、このとき、酸化ジルコニウムは、場合により、n−オクチルトリメトキシシランを少なくとも1種のキャッピング剤として含み、また、分散体は、場合により、メシチレンを含む溶媒または溶媒の混合物をさらに含む。
本開示のさらなる典型的で例証的かつ非限定的な態様において、ナノ複合材が提供され、このとき、このナノ複合材はシリコーンポリマーを含み、そしてこのナノ複合材は、酸化ジルコニウムを含むナノ結晶を含む(これは、「構成されている」、「から成る」または「から本質的に成る」も意味する)ナノ結晶の分散体から得られた(または、得ることのできる)ナノ結晶生成物を含み、このとき、酸化ジルコニウムは、場合により、オクタン酸を少なくとも1種のキャッピング剤として含み、また、分散体は、場合により、トル
エン、キシレンおよびメシチレンを含む溶媒または溶媒の混合物をさらに含む。
本開示のさらなる典型的で例証的かつ非限定的な態様において、ナノ複合材が提供され、このとき、このナノ複合材はシリコーンポリマーを含み、そしてこのナノ複合材は、酸化ジルコニウムを含むナノ結晶を含む(これは、「構成されている」、「から成る」または「から本質的に成る」も意味する)ナノ結晶の分散体から得られた(または、得ることのできる)ナノ結晶生成物を含み、このとき、酸化ジルコニウムは、場合により、オクタン酸を少なくとも1種のキャッピング剤として含み、また、分散体は、場合により、トルエンを含む溶媒または溶媒の混合物をさらに含む。
本開示のさらなる典型的で例証的かつ非限定的な態様において、ナノ複合材が提供され、このとき、このナノ複合材はシリコーンポリマーを含み、そしてこのナノ複合材は、酸化ジルコニウムを含むナノ結晶を含む(これは、「構成されている」、「から成る」または「から本質的に成る」も意味する)ナノ結晶の分散体から得られた(または、得ることのできる)ナノ結晶生成物を含み、このとき、酸化ジルコニウムは、場合により、オクタン酸を少なくとも1種のキャッピング剤として含み、また、分散体は、場合により、キシレンを含む溶媒または溶媒の混合物をさらに含む。
本開示のさらなる典型的で例証的かつ非限定的な態様において、ナノ複合材が提供され、このとき、このナノ複合材はシリコーンポリマーを含み、そしてこのナノ複合材は、酸化ジルコニウムを含むナノ結晶を含む(これは、「構成されている」、「から成る」または「から本質的に成る」も意味する)ナノ結晶の分散体から得られた(または、得ることのできる)ナノ結晶生成物を含み、このとき、酸化ジルコニウムは、場合により、オクタン酸を少なくとも1種のキャッピング剤として含み、また、分散体は、場合により、メシチレンを含む溶媒または溶媒の混合物をさらに含む。
本開示のさらなる典型的で例証的かつ非限定的な態様において、ナノ複合材が提供され、このとき、このナノ複合材はシリコーンポリマーを含み、そしてこのナノ複合材は、酸化ジルコニウムを含むナノ結晶を含む(これは、「構成されている」、「から成る」または「から本質的に成る」も意味する)ナノ結晶の分散体から得られた(または、得ることのできる)ナノ結晶生成物を含み、このとき、酸化ジルコニウムは、場合により、オレイン酸を少なくとも1種のキャッピング剤として含み、また、分散体は、場合により、トルエン、キシレンおよびメシチレンを含む溶媒または溶媒の混合物をさらに含む。
本開示のさらなる典型的で例証的かつ非限定的な態様において、ナノ複合材が提供され、このとき、このナノ複合材はシリコーンポリマーを含み、そしてこのナノ複合材は、酸化ジルコニウムを含むナノ結晶を含む(これは、「構成されている」、「から成る」または「から本質的に成る」も意味する)ナノ結晶の分散体から得られた(または、得ることのできる)ナノ結晶生成物を含み、このとき、酸化ジルコニウムは、場合により、オレイン酸を少なくとも1種のキャッピング剤として含み、また、分散体は、場合により、トルエンを含む溶媒または溶媒の混合物をさらに含む。
本開示のさらなる典型的で例証的かつ非限定的な態様において、ナノ複合材が提供され、このとき、このナノ複合材はシリコーンポリマーを含み、そしてこのナノ複合材は、酸化ジルコニウムを含むナノ結晶を含む(これは、「構成されている」、「から成る」または「から本質的に成る」も意味する)ナノ結晶の分散体から得られた(または、得ることのできる)ナノ結晶生成物を含み、このとき、酸化ジルコニウムは、場合により、オレイン酸を少なくとも1種のキャッピング剤として含み、また、分散体は、場合により、キシレンを含む溶媒または溶媒の混合物をさらに含む。
本開示のさらなる典型的で例証的かつ非限定的な態様において、ナノ複合材が提供され、このとき、このナノ複合材はシリコーンポリマーを含み、そしてこのナノ複合材は、酸化ジルコニウムを含むナノ結晶を含む(これは、「構成されている」、「から成る」または「から本質的に成る」も意味する)ナノ結晶の分散体から得られた(または、得ることのできる)ナノ結晶生成物を含み、このとき、酸化ジルコニウムは、場合により、オレイン酸を少なくとも1種のキャッピング剤として含み、また、分散体は、場合により、メシチレンを含む溶媒または溶媒の混合物をさらに含む。
本開示のさらなる典型的で例証的かつ非限定的な態様において、ナノ複合材が提供され、このとき、このナノ複合材はシリコーンポリマーを含み、そしてこのナノ複合材は、酸化ジルコニウムを含むナノ結晶を含む(これは、「構成されている」、「から成る」または「から本質的に成る」も意味する)ナノ結晶の分散体から得られた(または、得ることのできる)ナノ結晶生成物を含み、このとき、酸化ジルコニウムは、場合により、n−オクタデシルトリメトキシシランを少なくとも1種のキャッピング剤として含み、また、分散体は、場合により、トルエン、キシレンおよびメシチレンを含む溶媒または溶媒の混合物をさらに含む。
本開示のさらなる典型的で例証的かつ非限定的な態様において、ナノ複合材が提供され、このとき、このナノ複合材はシリコーンポリマーを含み、そしてこのナノ複合材は、酸化ジルコニウムを含むナノ結晶を含む(これは、「構成されている」、「から成る」または「から本質的に成る」も意味する)ナノ結晶の分散体から得られた(または、得ることのできる)ナノ結晶生成物を含み、このとき、酸化ジルコニウムは、場合により、n−オクタデシルトリメトキシシランを少なくとも1種のキャッピング剤として含み、また、分散体は、場合により、トルエンを含む溶媒または溶媒の混合物をさらに含む。
本開示のさらなる典型的で例証的かつ非限定的な態様において、ナノ複合材が提供され、このとき、このナノ複合材はシリコーンポリマーを含み、そしてこのナノ複合材は、酸化ジルコニウムを含むナノ結晶を含む(これは、「構成されている」、「から成る」または「から本質的に成る」も意味する)ナノ結晶の分散体から得られた(または、得ることのできる)ナノ結晶生成物を含み、このとき、酸化ジルコニウムは、場合により、n−オクタデシルトリメトキシシランを少なくとも1種のキャッピング剤として含み、また、分散体は、場合により、キシレンを含む溶媒または溶媒の混合物をさらに含む。
本開示のさらなる典型的で例証的かつ非限定的な態様において、ナノ複合材が提供され、このとき、このナノ複合材はシリコーンポリマーを含み、そしてこのナノ複合材は、酸化ジルコニウムを含むナノ結晶を含む(これは、「構成されている」、「から成る」または「から本質的に成る」も意味する)ナノ結晶の分散体から得られた(または、得ることのできる)ナノ結晶生成物を含み、このとき、酸化ジルコニウムは、場合により、n−オクタデシルトリメトキシシランを少なくとも1種のキャッピング剤として含み、また、分散体は、場合により、メシチレンを含む溶媒または溶媒の混合物をさらに含む。
本開示のさらなる典型的で例証的かつ非限定的な態様において、ナノ結晶の分散体は、酸化ジルコニウムを含むナノ結晶を含み(これは、「構成されている」、「から成る」または「から本質的に成る」も意味する)、このとき、酸化ジルコニウムは、場合により、メトキシトリ(エチレンオキシ)プロピルトリメトキシシランを少なくとも1種のキャッピング剤として含み、また、分散体は、場合により、ブタノール、プロパノール、イソプロパノール、エタノール、水、プロピレングリコールモノメチルエーテル(PGME)、プロピレングリコールメチルエーテルアセテート(PGMEA)、アセトン、テトラヒドロフラン(THF)、ケトン、環状ケトン、2−ブトキシエタノールから選択される溶媒または溶媒の混合物をさらに含む。
本開示のさらなる典型的で例証的かつ非限定的な態様において、ナノ結晶の分散体は、酸化ジルコニウムを含むナノ結晶を含み(これは、「構成されている」、「から成る」または「から本質的に成る」も意味する)、このとき、酸化ジルコニウムは、場合により、2−[メトキシ(ポリエチレンオキシ)プロピル]−トリメトキシシランを少なくとも1種のキャッピング剤として含み、また、分散体は、場合により、ブタノール、プロパノール、イソプロパノール、エタノール、水、プロピレングリコールモノメチルエーテル(PGME)、プロピレングリコールメチルエーテルアセテート(PGMEA)、アセトン、テトラヒドロフラン(THF)、ケトン、環状ケトン、2−ブトキシエタノールから選択される溶媒または溶媒の混合物をさらに含む。
本開示のさらなる典型的で例証的かつ非限定的な態様において、ナノ結晶の分散体は、酸化ジルコニウムを含むナノ結晶を含み(これは、「構成されている」、「から成る」または「から本質的に成る」も意味する)、このとき、酸化ジルコニウムは、場合により、3−(メタクリロイルオキシ)プロピルトリメトキシシランを少なくとも1種のキャッピング剤として含み、また、分散体は、場合により、ブタノール、プロパノール、イソプロパノール、エタノール、水、プロピレングリコールモノメチルエーテル(PGME)、プロピレングリコールメチルエーテルアセテート(PGMEA)、アセトン、テトラヒドロフラン(THF)、ケトン、環状ケトン、2−ブトキシエタノールから選択される溶媒または溶媒の混合物をさらに含む。
本開示のさらなる典型的で例証的かつ非限定的な態様において、ナノ結晶の分散体は、酸化ジルコニウムを含むナノ結晶を含み(これは、「構成されている」、「から成る」または「から本質的に成る」も意味する)、このとき、酸化ジルコニウムは、2−[2−(2−メトキシエトキシ)エトキシ]酢酸を少なくとも1種のキャッピング剤として含み、また、分散体は、場合により、ブタノール、プロパノール、イソプロパノール、エタノール、水、プロピレングリコールモノメチルエーテル(PGME)、プロピレングリコールメチルエーテルアセテート(PGMEA)、アセトン、テトラヒドロフラン(THF)、ケトン、環状ケトン、2−ブトキシエタノールから選択される溶媒または溶媒の混合物をさらに含む。
本開示のさらなる典型的で例証的かつ非限定的な態様において、ナノ結晶の分散体は、酸化ジルコニウムを含むナノ結晶を含み(これは、「構成されている」、「から成る」または「から本質的に成る」も意味する)、このとき、酸化ジルコニウムは、酢酸を少なくとも1種のキャッピング剤として含み、また、分散体は、場合により、ブタノール、プロパノール、イソプロパノール、エタノール、水、プロピレングリコールモノメチルエーテル(PGME)、プロピレングリコールメチルエーテルアセテート(PGMEA)、アセトン、テトラヒドロフラン(THF)、ケトン、環状ケトン、2−ブトキシエタノールから選択される溶媒または溶媒の混合物をさらに含む。
本開示のさらなる典型的で例証的かつ非限定的な態様において、ナノ結晶の分散体は、酸化ジルコニウムを含むナノ結晶を含み(これは、「構成されている」、「から成る」または「から本質的に成る」も意味する)、このとき、酸化ジルコニウムは、ベンジルアルコールを少なくとも1種のキャッピング剤として含み、また、分散体は、場合により、ブタノール、プロパノール、イソプロパノール、エタノール、水、プロピレングリコールモノメチルエーテル(PGME)、プロピレングリコールメチルエーテルアセテート(PGMEA)、アセトン、テトラヒドロフラン(THF)、ケトン、環状ケトン、2−ブトキシエタノールから選択される溶媒または溶媒の混合物をさらに含む。
本開示のさらなる典型的で例証的かつ非限定的な態様において、ナノ結晶の分散体は、
酸化ジルコニウムを含むナノ結晶を含み(これは、「構成されている」、「から成る」または「から本質的に成る」も意味する)、このとき、酸化ジルコニウムは、ブタノールを少なくとも1種のキャッピング剤として含み、また、分散体は、場合により、ブタノール、プロパノール、イソプロパノール、エタノール、水、プロピレングリコールモノメチルエーテル(PGME)、プロピレングリコールメチルエーテルアセテート(PGMEA)、アセトン、テトラヒドロフラン(THF)、ケトン、環状ケトン、2−ブトキシエタノールから選択される溶媒または溶媒の混合物をさらに含む。
本開示のさらなる典型的で例証的かつ非限定的な態様において、ナノ結晶の分散体は、酸化ジルコニウムを含むナノ結晶を含み(これは、「構成されている」、「から成る」または「から本質的に成る」も意味する)、このとき、酸化ジルコニウムは、エタノールを少なくとも1種のキャッピング剤として含み、また、分散体は、場合により、ブタノール、プロパノール、イソプロパノール、エタノール、水、プロピレングリコールモノメチルエーテル(PGME)、プロピレングリコールメチルエーテルアセテート(PGMEA)、アセトン、テトラヒドロフラン(THF)、ケトン、環状ケトン、2−ブトキシエタノールから選択される溶媒または溶媒の混合物をさらに含む。
本開示のさらなる典型的で例証的かつ非限定的な態様において、ナノ結晶の分散体は、酸化ジルコニウムを含むナノ結晶を含み(これは、「構成されている」、「から成る」または「から本質的に成る」も意味する)、このとき、酸化ジルコニウムは、プロパノールを少なくとも1種のキャッピング剤として含み、また、分散体は、場合により、ブタノール、プロパノール、イソプロパノール、エタノール、水、プロピレングリコールモノメチルエーテル(PGME)、プロピレングリコールメチルエーテルアセテート(PGMEA)、アセトン、テトラヒドロフラン(THF)、ケトン、環状ケトン、2−ブトキシエタノールから選択される溶媒または溶媒の混合物をさらに含む。
本開示のさらなる典型的で例証的かつ非限定的な態様において、ナノ結晶の分散体は、酸化チタニウム・ジルコニウムを含むナノ結晶を含み(これは、「構成されている」、「から成る」または「から本質的に成る」も意味する)、このとき、酸化チタニウム・ジルコニウムは、場合により、メトキシトリ(エチレンオキシ)プロピルトリメトキシシランを少なくとも1種のキャッピング剤として含み、また、分散体は、場合により、ブタノール、プロパノール、イソプロパノール、エタノール、水、プロピレングリコールモノメチルエーテル(PGME)、プロピレングリコールメチルエーテルアセテート(PGMEA)、アセトン、テトラヒドロフラン(THF)、ケトン、環状ケトン、2−ブトキシエタノールから選択される溶媒または溶媒の混合物をさらに含む。
本開示のさらなる典型的で例証的かつ非限定的な態様において、ナノ結晶の分散体は、酸化チタニウム・ジルコニウムを含むナノ結晶を含み(これは、「構成されている」、「から成る」または「から本質的に成る」も意味する)、このとき、酸化チタニウム・ジルコニウムは、場合により、2−[メトキシ(ポリエチレンオキシ)プロピル]−トリメトキシシランを少なくとも1種のキャッピング剤として含み、また、分散体は、場合により、ブタノール、プロパノール、イソプロパノール、エタノール、水、プロピレングリコールモノメチルエーテル(PGME)、プロピレングリコールメチルエーテルアセテート(PGMEA)、アセトン、テトラヒドロフラン(THF)、ケトン、環状ケトン、2−ブトキシエタノールから選択される溶媒または溶媒の混合物をさらに含む。
本開示のさらなる典型的で例証的かつ非限定的な態様において、ナノ結晶の分散体は、酸化チタニウム・ジルコニウムを含むナノ結晶を含み(これは、「構成されている」、「から成る」または「から本質的に成る」も意味する)、このとき、酸化チタニウム・ジルコニウムは、場合により、3−(メタクリロイルオキシ)プロピルトリメトキシシランを少
なくとも1種のキャッピング剤として含み、また、分散体は、場合により、ブタノール、プロパノール、イソプロパノール、エタノール、水、プロピレングリコールモノメチルエーテル(PGME)、プロピレングリコールメチルエーテルアセテート(PGMEA)、アセトン、テトラヒドロフラン(THF)、ケトン、環状ケトン、2−ブトキシエタノールから選択される溶媒または溶媒の混合物をさらに含む。
本開示のさらなる典型的で例証的かつ非限定的な態様において、ナノ結晶の分散体は、酸化チタニウム・ジルコニウムを含むナノ結晶を含み(これは、「構成されている」、「から成る」または「から本質的に成る」も意味する)、このとき、酸化チタニウム・ジルコニウムは、2−[2−(2−メトキシエトキシ)エトキシ]酢酸を少なくとも1種のキャッピング剤として含み、また、分散体は、場合により、ブタノール、プロパノール、イソプロパノール、エタノール、水、プロピレングリコールモノメチルエーテル(PGME)、プロピレングリコールメチルエーテルアセテート(PGMEA)、アセトン、テトラヒドロフラン(THF)、ケトン、環状ケトン、2−ブトキシエタノールから選択される溶媒または溶媒の混合物をさらに含む。
本開示のさらなる典型的で例証的かつ非限定的な態様において、ナノ結晶の分散体は、酸化チタニウム・ジルコニウムを含むナノ結晶を含み(これは、「構成されている」、「から成る」または「から本質的に成る」も意味する)、このとき、酸化チタニウム・ジルコニウムは、酢酸を少なくとも1種のキャッピング剤として含み、また、分散体は、場合により、ブタノール、プロパノール、イソプロパノール、エタノール、水、プロピレングリコールモノメチルエーテル(PGME)、プロピレングリコールメチルエーテルアセテート(PGMEA)、アセトン、テトラヒドロフラン(THF)、ケトン、環状ケトン、2−ブトキシエタノールから選択される溶媒または溶媒の混合物をさらに含む。
本開示のさらなる典型的で例証的かつ非限定的な態様において、ナノ結晶の分散体は、酸化チタニウム・ジルコニウムを含むナノ結晶を含み(これは、「構成されている」、「から成る」または「から本質的に成る」も意味する)、このとき、酸化チタニウム・ジルコニウムは、ベンジルアルコールを少なくとも1種のキャッピング剤として含み、また、分散体は、場合により、ブタノール、プロパノール、イソプロパノール、エタノール、水、プロピレングリコールモノメチルエーテル(PGME)、プロピレングリコールメチルエーテルアセテート(PGMEA)、アセトン、テトラヒドロフラン(THF)、ケトン、環状ケトン、2−ブトキシエタノールから選択される溶媒または溶媒の混合物をさらに含む。
本開示のさらなる典型的で例証的かつ非限定的な態様において、ナノ結晶の分散体は、酸化チタニウム・ジルコニウムを含むナノ結晶を含み(これは、「構成されている」、「から成る」または「から本質的に成る」も意味する)、このとき、酸化チタニウム・ジルコニウムは、ブタノールを少なくとも1種のキャッピング剤として含み、また、分散体は、場合により、ブタノール、プロパノール、イソプロパノール、エタノール、水、プロピレングリコールモノメチルエーテル(PGME)、プロピレングリコールメチルエーテルアセテート(PGMEA)、アセトン、テトラヒドロフラン(THF)、ケトン、環状ケトン、2−ブトキシエタノールから選択される溶媒または溶媒の混合物をさらに含む。
本開示のさらなる典型的で例証的かつ非限定的な態様において、ナノ結晶の分散体は、酸化チタニウム・ジルコニウムを含むナノ結晶を含み(これは、「構成されている」、「から成る」または「から本質的に成る」も意味する)、このとき、酸化チタニウム・ジルコニウムは、エタノールを少なくとも1種のキャッピング剤として含み、また、分散体は、場合により、ブタノール、プロパノール、イソプロパノール、エタノール、水、プロピレングリコールモノメチルエーテル(PGME)、プロピレングリコールメチルエーテル
アセテート(PGMEA)、アセトン、テトラヒドロフラン(THF)、ケトン、環状ケトン、2−ブトキシエタノールから選択される溶媒または溶媒の混合物をさらに含む。
本開示のさらなる典型的で例証的かつ非限定的な態様において、ナノ結晶の分散体は、酸化チタニウム・ジルコニウムを含むナノ結晶を含み(これは、「構成されている」、「から成る」または「から本質的に成る」も意味する)、このとき、酸化チタニウム・ジルコニウムは、プロパノールを少なくとも1種のキャッピング剤として含み、また、分散体は、場合により、ブタノール、プロパノール、イソプロパノール、エタノール、水、プロピレングリコールモノメチルエーテル(PGME)、プロピレングリコールメチルエーテルアセテート(PGMEA)、アセトン、テトラヒドロフラン(THF)、ケトン、環状ケトン、2−ブトキシエタノールから選択される溶媒または溶媒の混合物をさらに含む。
本開示のさらなる典型的で例証的かつ非限定的な態様において、ナノ結晶の分散体は、酸化ハフニウムを含むナノ結晶を含み(これは、「構成されている」、「から成る」または「から本質的に成る」も意味する)、このとき、酸化ハフニウムは、場合により、n−オクチルトリメトキシシランを少なくとも1種のキャッピング剤として含み、また、分散体は、場合により、トルエン、キシレン、メシチレンおよびヘプタンから選択される溶媒または溶媒の混合物をさらに含む。
本開示のさらなる典型的で例証的かつ非限定的な態様において、ナノ結晶の分散体は、酸化ハフニウムを含むナノ結晶を含み(これは、「構成されている」、「から成る」または「から本質的に成る」も意味する)、このとき、酸化ハフニウムは、場合により、n−オクチルトリエトキシシランを少なくとも1種のキャッピング剤として含み、また、分散体は、場合により、トルエン、キシレン、メシチレンおよびヘプタンから選択される溶媒または溶媒の混合物をさらに含む。
本開示のさらなる典型的で例証的かつ非限定的な態様において、ナノ結晶の分散体は、酸化ハフニウムを含むナノ結晶を含み(これは、「構成されている」、「から成る」または「から本質的に成る」も意味する)、このとき、酸化ハフニウムは、場合により、オレイルアルコールを少なくとも1種のキャッピング剤として含み、また、分散体は、場合により、トルエン、キシレン、メシチレンおよびヘプタンから選択される溶媒または溶媒の混合物をさらに含む。
本開示のさらなる典型的で例証的かつ非限定的な態様において、ナノ結晶の分散体は、酸化ハフニウムを含むナノ結晶を含み(これは、「構成されている」、「から成る」または「から本質的に成る」も意味する)、このとき、酸化ハフニウムはドデシルアルコールを少なくとも1種のキャッピング剤として含み、また、分散体は、場合により、トルエン、キシレン、メシチレンおよびヘプタンから選択される溶媒または溶媒の混合物をさらに含む。
本開示のさらなる典型的で例証的かつ非限定的な態様において、ナノ結晶の分散体は、酸化ハフニウムを含むナノ結晶を含み(これは、「構成されている」、「から成る」または「から本質的に成る」も意味する)、このとき、酸化ハフニウムはオクタン酸を少なくとも1種のキャッピング剤として含み、また、分散体は、場合により、トルエン、キシレン、メシチレンおよびヘプタンから選択される溶媒または溶媒の混合物をさらに含む。
本開示のさらなる典型的で例証的かつ非限定的な態様において、ナノ結晶の分散体は、酸化ハフニウムを含むナノ結晶を含み(これは、「構成されている」、「から成る」または「から本質的に成る」も意味する)、このとき、酸化ハフニウムはオレイン酸を少なくとも1種のキャッピング剤として含み、また、分散体は、場合により、トルエン、キシレ
ン、メシチレンおよびヘプタンから選択される溶媒または溶媒の混合物をさらに含む。
本開示のさらなる典型的で例証的かつ非限定的な態様において、ナノ結晶の分散体は、酸化ハフニウムを含むナノ結晶を含み(これは、「構成されている」、「から成る」または「から本質的に成る」も意味する)、このとき、酸化ハフニウムはステアリン酸を少なくとも1種のキャッピング剤として含み、また、分散体は、場合により、トルエン、キシレン、メシチレンおよびヘプタンから選択される溶媒または溶媒の混合物をさらに含む。
本開示のさらなる典型的で例証的かつ非限定的な態様において、ナノ結晶の分散体は、酸化ハフニウムを含むナノ結晶を含み(これは、「構成されている」、「から成る」または「から本質的に成る」も意味する)、このとき、酸化ハフニウムはn−オクタデシルトリメトキシシランを少なくとも1種のキャッピング剤として含み、また、分散体は、場合により、トルエン、キシレン、メシチレンおよびヘプタンから選択される溶媒または溶媒の混合物をさらに含む。
本開示のさらなる典型的で例証的かつ非限定的な態様において、ナノ結晶の分散体は、酸化ジルコニウムを含むナノ結晶を含み(これは、「構成されている」、「から成る」または「から本質的に成る」も意味する)、このとき、酸化ジルコニウムは、場合により、n−オクチルトリメトキシシランを少なくとも1種のキャッピング剤として含み、また、分散体は、場合により、トルエン、キシレン、メシチレンおよびヘプタンから選択される溶媒または溶媒の混合物をさらに含む。
本開示のさらなる典型的で例証的かつ非限定的な態様において、ナノ結晶の分散体は、酸化ジルコニウムを含むナノ結晶を含み(これは、「構成されている」、「から成る」または「から本質的に成る」も意味する)、このとき、酸化ジルコニウムは、場合により、n−オクチルトリエトキシシランを少なくとも1種のキャッピング剤として含み、また、分散体は、場合により、トルエン、キシレン、メシチレンおよびヘプタンから選択される溶媒または溶媒の混合物をさらに含む。
本開示のさらなる典型的で例証的かつ非限定的な態様において、ナノ結晶の分散体は、酸化ジルコニウムを含むナノ結晶を含み(これは、「構成されている」、「から成る」または「から本質的に成る」も意味する)、このとき、酸化ジルコニウムは、場合により、オレイルアルコールを少なくとも1種のキャッピング剤として含み、また、分散体は、場合により、トルエン、キシレン、メシチレンおよびヘプタンから選択される溶媒または溶媒の混合物をさらに含む。
本開示のさらなる典型的で例証的かつ非限定的な態様において、ナノ結晶の分散体は、酸化ジルコニウムを含むナノ結晶を含み(これは、「構成されている」、「から成る」または「から本質的に成る」も意味する)、このとき、酸化ジルコニウムはドデシルアルコールを少なくとも1種のキャッピング剤として含み、また、分散体は、場合により、トルエン、キシレン、メシチレンおよびヘプタンから選択される溶媒または溶媒の混合物をさらに含む。
本開示のさらなる典型的で例証的かつ非限定的な態様において、ナノ結晶の分散体は、酸化ジルコニウムを含むナノ結晶を含み(これは、「構成されている」、「から成る」または「から本質的に成る」も意味する)、このとき、酸化ジルコニウムはオクタン酸を少なくとも1種のキャッピング剤として含み、また、分散体は、場合により、トルエン、キシレン、メシチレンおよびヘプタンから選択される溶媒または溶媒の混合物をさらに含む。
本開示のさらなる典型的で例証的かつ非限定的な態様において、ナノ結晶の分散体は、酸化ジルコニウムを含むナノ結晶を含み(これは、「構成されている」、「から成る」または「から本質的に成る」も意味する)、このとき、酸化ジルコニウムはオレイン酸を少なくとも1種のキャッピング剤として含み、また、分散体は、場合により、トルエン、キシレン、メシチレンおよびヘプタンから選択される溶媒または溶媒の混合物をさらに含む。
本開示のさらなる典型的で例証的かつ非限定的な態様において、ナノ結晶の分散体は、酸化ジルコニウムを含むナノ結晶を含み(これは、「構成されている」、「から成る」または「から本質的に成る」も意味する)、このとき、酸化ジルコニウムはステアリン酸を少なくとも1種のキャッピング剤として含み、また、分散体は、場合により、トルエン、キシレン、メシチレンおよびヘプタンから選択される溶媒または溶媒の混合物をさらに含む。
本開示のさらなる典型的で例証的かつ非限定的な態様において、ナノ結晶の分散体は、酸化ジルコニウムを含むナノ結晶を含み(これは、「構成されている」、「から成る」または「から本質的に成る」も意味する)、このとき、酸化ジルコニウムはn−オクタデシルトリメトキシシランを少なくとも1種のキャッピング剤として含み、また、分散体は、場合により、トルエン、キシレン、メシチレンおよびヘプタンから選択される溶媒または溶媒の混合物をさらに含む。
本開示のさらなる典型的で例証的かつ非限定的な態様において、ナノ結晶の分散体は、酸化チタニウム・ジルコニウムを含むナノ結晶を含み(これは、「構成されている」、「から成る」または「から本質的に成る」も意味する)、このとき、酸化チタニウム・ジルコニウムは、場合により、n−オクチルトリメトキシシランを少なくとも1種のキャッピング剤として含み、また、分散体は、場合により、トルエン、キシレン、メシチレンおよびヘプタンから選択される溶媒または溶媒の混合物をさらに含む。
本開示のさらなる典型的で例証的かつ非限定的な態様において、ナノ結晶の分散体は、酸化チタニウム・ジルコニウムを含むナノ結晶を含み(これは、「構成されている」、「から成る」または「から本質的に成る」も意味する)、このとき、酸化チタニウム・ジルコニウムは、場合により、n−オクチルトリエトキシシランを少なくとも1種のキャッピング剤として含み、また、分散体は、場合により、トルエン、キシレン、メシチレンおよびヘプタンから選択される溶媒または溶媒の混合物をさらに含む。
本開示のさらなる典型的で例証的かつ非限定的な態様において、ナノ結晶の分散体は、酸化チタニウム・ジルコニウムを含むナノ結晶を含み(これは、「構成されている」、「から成る」または「から本質的に成る」も意味する)、このとき、酸化チタニウム・ジルコニウムは、場合により、オレイルアルコールを少なくとも1種のキャッピング剤として含み、また、分散体は、場合により、トルエン、キシレン、メシチレンおよびヘプタンから選択される溶媒または溶媒の混合物をさらに含む。
本開示のさらなる典型的で例証的かつ非限定的な態様において、ナノ結晶の分散体は、酸化チタニウム・ジルコニウムを含むナノ結晶を含み(これは、「構成されている」、「から成る」または「から本質的に成る」も意味する)、このとき、酸化チタニウム・ジルコニウムはドデシルアルコールを少なくとも1種のキャッピング剤として含み、また、分散体は、場合により、トルエン、キシレン、メシチレンおよびヘプタンから選択される溶媒または溶媒の混合物をさらに含む。
本開示のさらなる典型的で例証的かつ非限定的な態様において、ナノ結晶の分散体は、
酸化チタニウム・ジルコニウムを含むナノ結晶を含み(これは、「構成されている」、「から成る」または「から本質的に成る」も意味する)、このとき、酸化チタニウム・ジルコニウムはオクタン酸を少なくとも1種のキャッピング剤として含み、また、分散体は、場合により、トルエン、キシレン、メシチレンおよびヘプタンから選択される溶媒または溶媒の混合物をさらに含む。
本開示のさらなる典型的で例証的かつ非限定的な態様において、ナノ結晶の分散体は、酸化チタニウム・ジルコニウムを含むナノ結晶を含み(これは、「構成されている」、「から成る」または「から本質的に成る」も意味する)、このとき、酸化チタニウム・ジルコニウムはオレイン酸を少なくとも1種のキャッピング剤として含み、また、分散体は、場合により、トルエン、キシレン、メシチレンおよびヘプタンから選択される溶媒または溶媒の混合物をさらに含む。
本開示のさらなる典型的で例証的かつ非限定的な態様において、ナノ結晶の分散体は、酸化チタニウム・ジルコニウムを含むナノ結晶を含み(これは、「構成されている」、「から成る」または「から本質的に成る」も意味する)、このとき、酸化チタニウム・ジルコニウムはステアリン酸を少なくとも1種のキャッピング剤として含み、また、分散体は、場合により、トルエン、キシレン、メシチレンおよびヘプタンから選択される溶媒または溶媒の混合物をさらに含む。
本開示のさらなる典型的で例証的かつ非限定的な態様において、ナノ結晶の分散体は、酸化チタニウム・ジルコニウムを含むナノ結晶を含み(これは、「構成されている」、「から成る」または「から本質的に成る」も意味する)、このとき、酸化チタニウム・ジルコニウムはn−オクタデシルトリメトキシシランを少なくとも1種のキャッピング剤として含み、また、分散体は、場合により、トルエン、キシレン、メシチレンおよびヘプタンから選択される溶媒または溶媒の混合物をさらに含む。
本開示のさらなる典型的で例証的かつ非限定的な態様において、ナノ結晶の分散体は、酸化亜鉛を含むナノ結晶を含み(これは、「構成されている」、「から成る」または「から本質的に成る」も意味する)、このとき、酸化亜鉛は、場合により、メトキシトリ(エ
チレンオキシ)プロピルトリメトキシシランを少なくとも1種のキャッピング剤として含
み、また、分散体は、場合により、ブタノール、プロパノール、イソプロパノール、エタノール、水、プロピレングリコールモノメチルエーテル(PGME)、プロピレングリコールメチルエーテルアセテート(PGMEA)、アセトン、テトラヒドロフラン(THF)、ケトン、環状ケトンおよび2−ブトキシエタノールから選択される溶媒または溶媒の混合物をさらに含む。
本開示のさらなる典型的で例証的かつ非限定的な態様において、ナノ結晶の分散体は、酸化亜鉛を含むナノ結晶を含み(これは、「構成されている」、「から成る」または「から本質的に成る」も意味する)、このとき、酸化亜鉛は、場合により、2−[メトキシ(ポリエチレンオキシ)プロピル]−トリメトキシシランを少なくとも1種のキャッピング剤として含み、また、分散体は、場合により、ブタノール、プロパノール、イソプロパノール、エタノール、水、プロピレングリコールモノメチルエーテル(PGME)、プロピレングリコールメチルエーテルアセテート(PGMEA)、アセトン、テトラヒドロフラン(THF)、ケトン、環状ケトンおよび2−ブトキシエタノールから選択される溶媒または溶媒の混合物をさらに含む。
本開示のさらなる典型的で例証的かつ非限定的な態様において、ナノ結晶の分散体は、酸化亜鉛を含むナノ結晶を含み(これは、「構成されている」、「から成る」または「から本質的に成る」も意味する)、このとき、酸化亜鉛は、場合により、3−(メタクリロ
イルオキシ)プロピルトリメトキシシランを少なくとも1種のキャッピング剤として含み
、また、分散体は、場合により、ブタノール、プロパノール、イソプロパノール、エタノール、水、プロピレングリコールモノメチルエーテル(PGME)、プロピレングリコールメチルエーテルアセテート(PGMEA)、アセトン、テトラヒドロフラン(THF)、ケトン、環状ケトンおよび2−ブトキシエタノールから選択される溶媒または溶媒の混合物をさらに含む。
本開示のさらなる典型的で例証的かつ非限定的な態様において、ナノ結晶の分散体は、酸化亜鉛を含むナノ結晶を含み(これは、「構成されている」、「から成る」または「から本質的に成る」も意味する)、このとき、酸化亜鉛は酢酸を少なくとも1種のキャッピング剤として含み、また、分散体は、場合により、ブタノール、プロパノール、イソプロパノール、エタノール、水、プロピレングリコールモノメチルエーテル(PGME)、プロピレングリコールメチルエーテルアセテート(PGMEA)、アセトン、テトラヒドロフラン(THF)、ケトン、環状ケトンおよび2−ブトキシエタノールから選択される溶媒または溶媒の混合物をさらに含む。
本開示のさらなる典型的で例証的かつ非限定的な態様において、ナノ結晶の分散体は、酸化亜鉛を含むナノ結晶を含み(これは、「構成されている」、「から成る」または「から本質的に成る」も意味する)、このとき、酸化亜鉛はn−オクタデシルトリメトキシシランを少なくとも1種のキャッピング剤として含み、また、分散体は、場合により、トルエンとヘプタンから選択される溶媒または溶媒の混合物をさらに含む。
本開示のさらなる典型的で例証的かつ非限定的な態様において、ナノ結晶の分散体は、酸化イットリウムを含むナノ結晶を含み(これは、「構成されている」、「から成る」または「から本質的に成る」も意味する)、このとき、酸化イットリウムはオクタン酸を少なくとも1種のキャッピング剤として含み、また、分散体は、場合により、トルエンとヘプタンから選択される溶媒または溶媒の混合物をさらに含む。
本開示のさらなる典型的で例証的かつ非限定的な態様において、ナノ結晶の分散体は、酸化イットリウムを含むナノ結晶を含み(これは、「構成されている」、「から成る」または「から本質的に成る」も意味する)、このとき、酸化イットリウムはオレイン酸を少なくとも1種のキャッピング剤として含み、また、分散体は、場合により、トルエンとヘプタンから選択される溶媒または溶媒の混合物をさらに含む。
本開示のさらなる典型的で例証的かつ非限定的な態様において、ナノ結晶の分散体は、酸化イットリウムを含むナノ結晶を含み(これは、「構成されている」、「から成る」または「から本質的に成る」も意味する)、このとき、酸化イットリウムはステアリン酸を少なくとも1種のキャッピング剤として含み、また、分散体は、場合により、トルエンとヘプタンから選択される溶媒または溶媒の混合物をさらに含む。
本開示のさらなる典型的で例証的かつ非限定的な態様において、ナノ結晶の分散体は、酸化亜鉛を含むナノ結晶を含み(これは、「構成されている」、「から成る」または「から本質的に成る」も意味する)、このとき、酸化亜鉛は、場合により、メトキシトリ(エ
チレンオキシ)プロピルトリメトキシシランを少なくとも1種のキャッピング剤として含
み、また、分散体は、場合により、ブタノール、エタノール、プロピレングリコールメチルエーテルアセテート(PGMEA)、ケトンおよび環状ケトンから選択される溶媒または溶媒の混合物をさらに含む。
本開示のさらなる典型的で例証的かつ非限定的な態様において、ナノ結晶の分散体は、酸化亜鉛を含むナノ結晶を含み(これは、「構成されている」、「から成る」または「か
ら本質的に成る」も意味する)、このとき、酸化亜鉛は、場合により、メトキシトリ(エ
チレンオキシ)プロピルトリメトキシシランを少なくとも1種のキャッピング剤として含
み、また、分散体は、場合により、ブタノールを含む溶媒または溶媒の混合物をさらに含む。
本開示のさらなる典型的で例証的かつ非限定的な態様において、ナノ結晶の分散体は、酸化亜鉛を含むナノ結晶を含み(これは、「構成されている」、「から成る」または「から本質的に成る」も意味する)、このとき、酸化亜鉛は、場合により、メトキシトリ(エ
チレンオキシ)プロピルトリメトキシシランを少なくとも1種のキャッピング剤として含
み、また、分散体は、場合により、エタノールを含む溶媒または溶媒の混合物をさらに含む。
本開示のさらなる典型的で例証的かつ非限定的な態様において、ナノ結晶の分散体は、酸化亜鉛を含むナノ結晶を含み(これは、「構成されている」、「から成る」または「から本質的に成る」も意味する)、このとき、酸化亜鉛は、場合により、メトキシトリ(エ
チレンオキシ)プロピルトリメトキシシランを少なくとも1種のキャッピング剤として含
み、また、分散体は、場合により、プロピレングリコールメチルエーテルアセテート(PGMEA)を含む溶媒または溶媒の混合物をさらに含む。
本開示のさらなる典型的で例証的かつ非限定的な態様において、ナノ結晶の分散体は、酸化亜鉛を含むナノ結晶を含み(これは、「構成されている」、「から成る」または「から本質的に成る」も意味する)、このとき、酸化亜鉛は、場合により、メトキシトリ(エ
チレンオキシ)プロピルトリメトキシシランを少なくとも1種のキャッピング剤として含
み、また、分散体は、場合により、ケトンを含む溶媒または溶媒の混合物をさらに含む。
本開示のさらなる典型的で例証的かつ非限定的な態様において、ナノ結晶の分散体は、酸化亜鉛を含むナノ結晶を含み(これは、「構成されている」、「から成る」または「から本質的に成る」も意味する)、このとき、酸化亜鉛は、場合により、メトキシトリ(エ
チレンオキシ)プロピルトリメトキシシランを少なくとも1種のキャッピング剤として含
み、また、分散体は、場合により、環状ケトンを含む溶媒または溶媒の混合物をさらに含む。
本開示のさらなる典型的で例証的かつ非限定的な態様において、ナノ結晶の分散体は、酸化亜鉛を含むナノ結晶を含み(これは、「構成されている」、「から成る」または「から本質的に成る」も意味する)、このとき、酸化亜鉛は、場合により、2−[メトキシ(ポリエチレンオキシ)プロピル]−トリメトキシシランを少なくとも1種のキャッピング剤として含み、また、分散体は、場合により、ブタノール、エタノール、プロピレングリコールメチルエーテルアセテート(PGMEA)、ケトンおよび環状ケトンから選択される溶媒または溶媒の混合物をさらに含む。
本開示のさらなる典型的で例証的かつ非限定的な態様において、ナノ結晶の分散体は、酸化亜鉛を含むナノ結晶を含み(これは、「構成されている」、「から成る」または「から本質的に成る」も意味する)、このとき、酸化亜鉛は、場合により、2−[メトキシ(ポリエチレンオキシ)プロピル]−トリメトキシシランを少なくとも1種のキャッピング剤として含み、また、分散体は、場合により、ブタノールを含む溶媒または溶媒の混合物をさらに含む。
本開示のさらなる典型的で例証的かつ非限定的な態様において、ナノ結晶の分散体は、酸化亜鉛を含むナノ結晶を含み(これは、「構成されている」、「から成る」または「から本質的に成る」も意味する)、このとき、酸化亜鉛は、場合により、2−[メトキシ(ポ
リエチレンオキシ)プロピル]−トリメトキシシランを少なくとも1種のキャッピング剤として含み、また、分散体は、場合により、エタノールを含む溶媒または溶媒の混合物をさらに含む。
本開示のさらなる典型的で例証的かつ非限定的な態様において、ナノ結晶の分散体は、酸化亜鉛を含むナノ結晶を含み(これは、「構成されている」、「から成る」または「から本質的に成る」も意味する)、このとき、酸化亜鉛は、場合により、2−[メトキシ(ポリエチレンオキシ)プロピル]−トリメトキシシランを少なくとも1種のキャッピング剤として含み、また、分散体は、場合により、プロピレングリコールメチルエーテルアセテート(PGMEA)を含む溶媒または溶媒の混合物をさらに含む。
本開示のさらなる典型的で例証的かつ非限定的な態様において、ナノ結晶の分散体は、酸化亜鉛を含むナノ結晶を含み(これは、「構成されている」、「から成る」または「から本質的に成る」も意味する)、このとき、酸化亜鉛は、場合により、2−[メトキシ(ポリエチレンオキシ)プロピル]−トリメトキシシランを少なくとも1種のキャッピング剤として含み、また、分散体は、場合により、ケトンを含む溶媒または溶媒の混合物をさらに含む。
本開示のさらなる典型的で例証的かつ非限定的な態様において、ナノ結晶の分散体は、酸化亜鉛を含むナノ結晶を含み(これは、「構成されている」、「から成る」または「から本質的に成る」も意味する)、このとき、酸化亜鉛は、場合により、2−[メトキシ(ポリエチレンオキシ)プロピル]−トリメトキシシランを少なくとも1種のキャッピング剤として含み、また、分散体は、場合により、環状ケトンを含む溶媒または溶媒の混合物をさらに含む。
本開示のさらなる典型的で例証的かつ非限定的な態様において、ナノ結晶の分散体は、酸化亜鉛を含むナノ結晶を含み(これは、「構成されている」、「から成る」または「から本質的に成る」も意味する)、このとき、酸化亜鉛は、場合により、3−(メタクリロ
イルオキシ)プロピルトリメトキシシランを少なくとも1種のキャッピング剤として含み
、また、分散体は、場合により、ブタノール、エタノール、プロピレングリコールメチルエーテルアセテート(PGMEA)、ケトンおよび環状ケトンから選択される溶媒または溶媒の混合物をさらに含む。
本開示のさらなる典型的で例証的かつ非限定的な態様において、ナノ結晶の分散体は、酸化亜鉛を含むナノ結晶を含み(これは、「構成されている」、「から成る」または「から本質的に成る」も意味する)、このとき、酸化亜鉛は、場合により、3−(メタクリロ
イルオキシ)プロピルトリメトキシシランを少なくとも1種のキャッピング剤として含み
、また、分散体は、場合により、ブタノールを含む溶媒または溶媒の混合物をさらに含む。
本開示のさらなる典型的で例証的かつ非限定的な態様において、ナノ結晶の分散体は、酸化亜鉛を含むナノ結晶を含み(これは、「構成されている」、「から成る」または「から本質的に成る」も意味する)、このとき、酸化亜鉛は、場合により、3−(メタクリロ
イルオキシ)プロピルトリメトキシシランを少なくとも1種のキャッピング剤として含み
、また、分散体は、場合により、エタノールを含む溶媒または溶媒の混合物をさらに含む。
本開示のさらなる典型的で例証的かつ非限定的な態様において、ナノ結晶の分散体は、酸化亜鉛を含むナノ結晶を含み(これは、「構成されている」、「から成る」または「から本質的に成る」も意味する)、このとき、酸化亜鉛は、場合により、3−(メタクリロ
イルオキシ)プロピルトリメトキシシランを少なくとも1種のキャッピング剤として含み
、また、分散体は、場合により、プロピレングリコールメチルエーテルアセテート(PGMEA)を含む溶媒または溶媒の混合物をさらに含む。
本開示のさらなる典型的で例証的かつ非限定的な態様において、ナノ結晶の分散体は、酸化亜鉛を含むナノ結晶を含み(これは、「構成されている」、「から成る」または「から本質的に成る」も意味する)、このとき、酸化亜鉛は、場合により、3−(メタクリロ
イルオキシ)プロピルトリメトキシシランを少なくとも1種のキャッピング剤として含み
、また、分散体は、場合により、ケトンを含む溶媒または溶媒の混合物をさらに含む。
本開示のさらなる典型的で例証的かつ非限定的な態様において、ナノ結晶の分散体は、酸化亜鉛を含むナノ結晶を含み(これは、「構成されている」、「から成る」または「から本質的に成る」も意味する)、このとき、酸化亜鉛は、場合により、3−(メタクリロ
イルオキシ)プロピルトリメトキシシランを少なくとも1種のキャッピング剤として含み
、また、分散体は、場合により、環状ケトンを含む溶媒または溶媒の混合物をさらに含む。
本開示のさらなる典型的で例証的かつ非限定的な態様において、ナノ結晶の分散体は、酸化イットリウムを含むナノ結晶を含み(これは、「構成されている」、「から成る」または「から本質的に成る」も意味する)、このとき、酸化イットリウムは、場合により、オクタン酸を少なくとも1種のキャッピング剤として含み、また、分散体は、場合により、トルエンを含む溶媒または溶媒の混合物をさらに含む。
本開示のさらなる典型的で例証的かつ非限定的な態様において、ナノ結晶の分散体は、酸化イットリウムを含むナノ結晶を含み(これは、「構成されている」、「から成る」または「から本質的に成る」も意味する)、このとき、酸化イットリウムは、場合により、オレイン酸を少なくとも1種のキャッピング剤として含み、また、分散体は、場合により、トルエンを含む溶媒または溶媒の混合物をさらに含む。
本開示のさらなる典型的で例証的かつ非限定的な態様において、ナノ結晶の分散体は、酸化イットリウムを含むナノ結晶を含み(これは、「構成されている」、「から成る」または「から本質的に成る」も意味する)、このとき、酸化イットリウムは、場合により、ステアリン酸を少なくとも1種のキャッピング剤として含み、また、分散体は、場合により、トルエンを含む溶媒または溶媒の混合物をさらに含む。
本開示のさらなる典型的で例証的かつ非限定的な態様において、粉末の形態でのナノ結晶の集合体またはナノ結晶を含む生成物が提供され、このとき、ナノ結晶は、酸化ハフニウム、酸化ジルコニウム、酸化チタニウム・ジルコニウム、酸化亜鉛、酸化イットリウム、または酸化ハフニウム、酸化ジルコニウム、酸化チタニウム・ジルコニウム、酸化亜鉛、および酸化イットリウムの組み合わせまたは混合物を含み(これは、「構成されている」、「から成る」または「から本質的に成る」も意味する)、このとき、酸化ハフニウム、酸化ジルコニウム、酸化チタニウム・ジルコニウム、酸化亜鉛、酸化イットリウム、または酸化ハフニウム、酸化ジルコニウム、酸化チタニウム・ジルコニウム、酸化亜鉛、および酸化イットリウムの組み合わせまたは混合物のいずれかは、メトキシトリ(エチレン
オキシ)プロピルトリメトキシシラン、2−[メトキシ(ポリエチレンオキシ)プロピル]−
トリメトキシシラン、3−(メタクリロイルオキシ)プロピルトリメトキシシラン、2−[
2−(2−メトキシエトキシ)エトキシ]酢酸、酢酸、ベンジルアルコール、ブタノール、
エタノール、プロパノール、n−オクチルトリメトキシシラン、n−オクチルトリエトキシシラン、オレイルアルコール、ドデシルアルコール、オクタン酸、オレイン酸、ステアリン酸、およびn−オクタデシルトリメトキシシランの組み合わせのいずれかのものから
選択される少なくとも1種のキャッピング剤を含み、また、それは、場合により、また追加して、ブタノール、プロパノール、イソプロパノール、エタノール、水、プロピレングリコールモノメチルエーテル(PGME)、プロピレングリコールメチルエーテルアセテート(PGMEA)、アセトン、テトラヒドロフラン(THF)、ケトン、環状ケトン、2−ブトキシエタノール、トルエン、キシレン、メシチレンおよびヘプタンから選択される少なくとも1種の追加のキャッピング種を含む。
本開示のさらなる典型的で例証的かつ非限定的な態様において、ナノ複合材が提供され、このとき、ナノ複合材は、酸化ハフニウム、酸化ジルコニウム、酸化チタニウム・ジルコニウム、酸化亜鉛、酸化イットリウム、または酸化ハフニウム、酸化ジルコニウム、酸化チタニウム・ジルコニウム、酸化亜鉛、および酸化イットリウムの組み合わせまたは混合物を含めたナノ結晶を含む(これは、「構成されている」、「から成る」または「から本質的に成る」も意味する)ナノ結晶の分散体から得られた(または、得ることのできる)ナノ結晶を含み、このとき、酸化ハフニウム、酸化ジルコニウム、酸化チタニウム・ジルコニウム、酸化亜鉛、酸化イットリウム、または酸化ハフニウム、酸化ジルコニウム、酸化チタニウム・ジルコニウム、酸化亜鉛、および酸化イットリウムの組み合わせまたは混合物のいずれかは、メトキシトリ(エチレンオキシ)プロピルトリメトキシシラン、2−[メトキシ(ポリエチレンオキシ)プロピル]−トリメトキシシラン、3−(メタクリロイル
オキシ)プロピルトリメトキシシラン、2−[2−(2−メトキシエトキシ)エトキシ]酢酸
、酢酸、ベンジルアルコール、ブタノール、エタノール、プロパノール、n−オクチルトリメトキシシラン、n−オクチルトリエトキシシラン、オレイルアルコール、ドデシルアルコール、オクタン酸、オレイン酸、ステアリン酸、およびn−オクタデシルトリメトキシシランの組み合わせのいずれかのものから選択される少なくとも1種のキャッピング剤を含み、また分散体は、ブタノール、プロパノール、イソプロパノール、エタノール、水、プロピレングリコールモノメチルエーテル(PGME)、プロピレングリコールメチルエーテルアセテート(PGMEA)、アセトン、テトラヒドロフラン(THF)、ケトン、環状ケトン、2−ブトキシエタノール、トルエン、キシレン、メシチレンおよびヘプタンから選択される溶媒または溶媒の混合物をさらに含み、そしてナノ複合材は、ポリ(メ
チルメタクリレート)、シリコーン、シロキサン、スピンオンガラスポリマー、エポキシ
ポリマー、ポリ(エチレンビニルアルコール)、およびエポキシを含めたアクリルポリマーのうちの少なくとも1種または混合物から選択されるポリマーをさらに含む。
別の態様において、本開示は、酸化ハフニウム、酸化ジルコニウム、酸化チタニウム・ジルコニウム、酸化亜鉛、酸化イットリウム、または酸化ハフニウム、酸化ジルコニウム、酸化チタニウム・ジルコニウム、酸化亜鉛、および酸化イットリウムの組み合わせまたは混合物を含めたナノ結晶を含む(これは、「構成されている」、「から成る」または「から本質的に成る」も意味する)ナノ結晶の分散体から得られた(または、得ることのできる)ナノ結晶を含むナノ複合材を提供し、このとき、酸化ハフニウム、酸化ジルコニウム、酸化チタニウム・ジルコニウム、酸化亜鉛、酸化イットリウム、または酸化ハフニウム、酸化ジルコニウム、酸化チタニウム・ジルコニウム、酸化亜鉛、および酸化イットリウムの組み合わせまたは混合物のいずれかは、メトキシトリ(エチレンオキシ)プロピルトリメトキシシラン、2−[メトキシ(ポリエチレンオキシ)プロピル]−トリメトキシシラン、3−(メタクリロイルオキシ)プロピルトリメトキシシラン、2−[2−(2−メトキシエトキシ)エトキシ]酢酸、酢酸、ベンジルアルコール、ブタノール、エタノール、プロパノール、n−オクチルトリメトキシシラン、n−オクチルトリエトキシシラン、オレイルアルコール、ドデシルアルコール、オクタン酸、オレイン酸、ステアリン酸、およびn−オクタデシルトリメトキシシランの組み合わせのいずれかのものから選択される少なくとも1種のキャッピング剤を含み、また分散体は、ブタノール、プロパノール、イソプロパノール、エタノール、水、プロピレングリコールモノメチルエーテル(PGME)、プロピレングリコールメチルエーテルアセテート(PGMEA)、アセトン、テトラヒドロフラ
ン(THF)、ケトン、環状ケトン、2−ブトキシエタノール、トルエン、キシレン、メシチレンおよびヘプタンから選択される溶媒または溶媒の混合物をさらに含み、そしてナノ複合材は、ポリ(メチルメタクリレート)、シリコーン、シロキサン、スピンオンガラスポリマー、エポキシポリマー、ポリ(エチレンビニルアルコール)、およびエポキシを含めたアクリルポリマーのうちの少なくとも1種または混合物から選択されるポリマーをさらに含み、このとき、ナノ複合材のナノ結晶は、溶媒が存在しない状態で、例えばエポキシのようなポリマーの中に分散されている。本開示の生成物と方法を、以下の非限定的な実施例によって例証する。
実施例1
ナノ結晶の合成とキャップ形成
酸化ジルコニウム(ZrO )ナノ結晶の合成
1〜10nmの範囲のサイズを有する酸化ジルコニウムのナノ結晶は、ジルコニウム(IV)n−ブトキシド、ジルコニウムn−プロポキシド、ジルコニウムイソプロポキシドイソプロパノールまたはジルコニウムエトキシドのような先駆物質から調製することができる。所望の最終生成物によっては、ジルコニウムn−ブトキシドまたはジルコニウムn−プロポキシドは先駆物質として有利に用いられるだろう。
典型的な方法において、ジルコニウムアルコキシド先駆物質、例えば(これらに限定するものではないが)ジルコニウムn−ブトキシド、ジルコニウムn−プロポキシド、ジルコニウムイソプロポキシドイソプロパノールまたはジルコニウムエトキシドを、ベンジルアルコール、フェノール、オレイルアルコール、ブタノール、プロパノール、イソプロパノール、水、テトラヒドロフラン、エタノール、メタノール、アセトニトリル、トルエン、PGMEA、PGPE、PGME、2−メチル−1−プロパノール、またはトリエチレングリコールモノメチルエーテルを含む溶媒または溶媒の混合物と混合し、そしてオートクレーブの中に密閉する。反応混合物を250〜350℃の間の温度まで加熱する。反応混合物が設定温度に達したら、一部は溶媒または溶媒の混合物および/または反応の温度に応じて、20分から24時間までの範囲の時間にわたってその温度を維持する。合成したままの酸化ジルコニウムのナノ結晶を乳白色の懸濁液として回収する。
さらなる実施例において、オートクレーブの中に密閉された不活性雰囲気中で、30ミリモルのジルコニウムイソプロポキシドイソプロパノールまたはジルコニウムn−ブトキシドまたはジルコニウムn−プロポキシドまたはジルコニウムtert−ブトキシドまたはジルコニウムアセテートまたはジルコニウムアセチルアセトネートまたはジルコニウムエトキシドと300ミリリットルのベンジルアルコールの混合物から酸化ジルコニウムのナノ結晶を製造した。反応混合物を10℃/分の加熱速度で350℃まで加熱した。反応混合物が350℃に達したときに、その温度を20〜60分間維持した。オートクレーブが室温まで冷却した後、合成したままのZrOのナノ結晶の乳白色の溶液を回収した。
さらなる実施例において、45ミリモルのジルコニウムイソプロポキシドイソプロパノールまたはジルコニウムn−ブトキシドまたはジルコニウムn−プロポキシドまたはジルコニウムtert−ブトキシドまたはジルコニウムアセテートまたはジルコニウムアセチルアセトネートまたはジルコニウムエトキシドと300ミリリットルのベンジルアルコールを混合し、これをオートクレーブに移し、不活性雰囲気中で酸化ジルコニウムのナノ結晶を調製した。反応混合物を10℃/分の加熱速度で300〜350℃まで1〜2時間にわたって加熱した。反応の圧力は100〜500psiに達する。反応が完了して反応器を室温まで戻した後、合成したままの酸化ジルコニウムのナノ結晶の乳白色の溶液を回収した。
先駆物質としてジルコニウムn−ブトキシドを用いる典型的な合成方法は次の通りである:1−ブタノール溶液中の21.58gの80%(w/w)ジルコニウム(IV)n−ブ
トキシド(これは17.26gすなわち45ミリモルのジルコニウム(IV)n−ブトキシドを含有する)をグローブボックスの中で300mlのベンジルアルコールと混合し、次いで、これをガラスの内張りを有するオートクレーブの中に移した。このように構成したものを、酸素と水分による汚染を防ぐためにアルゴン雰囲気の下で密閉した。次いで、オートクレーブを325℃まで加熱し、この温度で1時間保持し、次いで、室温まで冷却した。合成したままの酸化ジルコニウムのナノ結晶の乳白色の溶液を回収した。
ジルコニウムn−ブトキシドは1−ブタノール中の溶液(80%w/w)として用意す
る。1−ブタノールは、真空下での合成および/または(30〜50℃での)加熱下での合成を行う前に、または温度が約100℃に達したときにオートクレーブの圧力を解放することによって合成を行う間に、あるいは反応が完了した後に、先駆物質から除去することができる。図4は1−ブタノールの除去を行わずに実施した反応から得られたナノ結晶のTEM画像である。ナノ結晶は球形であり、直径が約5nmである。
先駆物質としてジルコニウムn−プロポキシドを用いる典型的な合成方法は次の通りである:1−プロパノール溶液中の21.06gの70%(w/w)ジルコニウム(IV)n
−プロポキシド(これは14.74gすなわち45ミリモルのジルコニウム(IV)n−プロポキシドを含有する)をグローブボックスの中で300mlのベンジルアルコールと混合し、次いで、これをオートクレーブの中に移した。このように構成したものを、酸素と水分による汚染を防ぐためにアルゴン雰囲気の下で密閉した。次いで、オートクレーブを325℃まで加熱し、この温度で1時間保持し、次いで、室温まで冷却した。合成したままの酸化ジルコニウムのナノ結晶の乳白色の溶液を回収した。
ジルコニウムn−プロポキシドは1−プロパノール中の溶液(70%w/w)として用
意する。1−プロパノールは、真空下での合成および/または(30〜60℃で)加熱しながらの合成を行う前に、先駆物質から除去することができる。またそれは、温度が約100℃に達したときにオートクレーブの圧力を解放することによって合成を行う間に除去することができ、あるいは合成を行った後に除去することができる。反応の前、反応の間、または反応の後に1−プロパノールを先駆物質から除去する反応から得られたナノ結晶は、約5nmのZrOナノ結晶となった。これらのナノ結晶は、図5に示すそれぞれのナノ結晶のXRDパターンによって示されるように、同じ結晶構造を有している。反応の前に除去を行って得られたナノ結晶についての図6aと1−プロパノールの除去を行っていないものについての図6bに示すTEM画像の比較に基づくと、1−プロパノールを反応の前または反応の間に除去することによって得られたナノ結晶は、より球形であり、また単分散性が高い。
ナノ結晶の質に影響を及ぼすことなく反応の収率を高めるために、用いられる溶媒の量を変えることなく、ジルコニウムイソプロポキシドイソプロパノール、ジルコニウムエトキシド、ジルコニウムn−プロポキシドまたはジルコニウムn−ブトキシドのような先駆物質の濃度を5〜20倍増大させることができる。
ZrOナノ結晶を様々な溶媒および溶媒の混合物の中で合成することができる。合成方法において用いられる溶媒を変化させることによって、ナノ結晶の表面の性質を変化させることができて、そしてある場合には、散乱が最小限になる分散体を得るためのさらなる表面の改質が不必要なほど十分に良好にナノ結晶をキャップすることができる。代替的な溶媒として挙げられるものは、(これらに限定するものではないが)1−ヘキサノール、オレイルアルコール、オレイルアミン、トリオクチルアミン、およびメチルトリエチレングリコールがある。代替的な溶媒混合物として挙げられるものは、(これらに限定する
ものではないが)ベンジルアルコールと1−ヘキサノール、オレイルアルコール、トリエチレングリコールモノメチルエーテルおよびトリオクチルアミンとの混合物がある。
疎水性の表面の化学的性質を有するナノ結晶を調製するために、ZrOを様々な方法で合成してもよい。これは、ナノ結晶の分散体を生成するために疎水性の溶媒を使用することによって利益が得られるような用途のために有用であろう。疎水性の表面を有するZrOナノ結晶を製造するための合成方法の例は次の通りである:ZrOナノ結晶を合成するための溶媒は、様々な容積比のオレイルアルコールとベンジルアルコールの混合物を含有している。反応を行うためのオレイルアルコール対ベンジルアルコールの容積比は、次のような非限定的な比率の例から選択することができる:1:3、1:1、あるいは純オレイルアルコール。典型的な反応において、3ミリモルのジルコニウムイソプロポキシドイソプロパノールを、10mlの無水ベンジルアルコールと10mlのオレイルアルコールを含む20mlの混合物に不活性雰囲気中で添加する。この混合物を約1時間攪拌する。次いで、反応混合物を不活性雰囲気の下でオートクレーブ反応器に添加する。次いで、反応器を325℃まで加熱し、そして攪拌しながら1時間にわたって325℃に維持する。冷却した後、エタノールを用いて溶液からナノ結晶を沈殿させる。
ここで説明している典型的な合成方法はオートクレーブ中で行われ、そのときの温度は用いられる溶媒の幾つかのものの沸点よりも高くてもよい。これは100〜900psiの範囲の圧力、典型的には約250psiの圧力で行うことができる。ZrOナノ結晶の合成において通常存在するであろう高い圧力を排除するために、より高い沸点を有する溶媒または溶媒の混合物を用いてもよい。高い沸点を有する溶媒の非限定的な一つの例は、アルキル化芳香族化合物の混合物であるDowtherm MX(Dow Chemicals社製)である。Dowtherm MXは単独で、またはベンジルアルコールのような他の溶媒と組み合わせて用いることができる。ZrOナノ結晶の合成のために単独で用いる場合、オートクレーブ反応器中の圧力は100psi未満、そして典型的には20psi未満とする。
ベンジルアルコールとDowtherm MXの混合物中で行われるZrOナノ結晶の合成の典型的な例は次の通りである:100mlのDowtherm MX、8.13ミリモルのジルコニウムイソプロポキシドイソプロパノールおよび30mlの無水ベンジルアルコールを、グローブボックス中で250mlのフラスコの中で30分にわたって電磁攪拌機を用いて500rpmで混合する。次いで、混合物を600mlのガラス内張りParrオートクレーブ反応器の中に装填する。次いで、反応器をグローブボックスの中に密閉した。反応混合物を攪拌しながら10℃/分の加熱速度で325℃まで加熱し、攪拌しながら1時間にわたってこの温度で維持する。室温まで冷却した後、ZrOナノ結晶の乳白色の懸濁液を得る。
溶媒としてDowtherm MXだけを用いる、ZrOナノ結晶の合成のための手順の典型的な例は次の通りである:100mlのDowtherm MXと3.15gのジルコニウムイソプロポキシドイソプロパノールを、グローブボックス中で250mlのフラスコの中で30分にわたって電磁攪拌機を用いて500rpmで混合する。次いで、混合物を600mlのガラス内張りParr反応器の中に装填する。次いで、反応に移行する前に、反応器をグローブボックスの中に密閉した。反応混合物を攪拌しながら10℃/分の加熱速度で325℃まで加熱し、攪拌しながら1時間にわたってこの温度で維持する。室温まで冷却した後、ZrOナノ結晶の乳白色の懸濁液を得る。
あるいは、反応温度よりも高い沸点を有する溶媒の中で、あるいはこれらの溶媒とベンジルアルコールとの混合物の中でZrOナノ結晶を合成するために、ジルコニウム(IV)イソプロポキシドイソプロパノール以外の先駆物質を用いてもよい。これらの代替の先
駆物質としては、(これらに限定するものではないが)ジルコニウム(IV)エトキシド、ジルコニウム(IV)n−プロポキシド、およびジルコニウム(IV)n−ブトキシドがある。
1〜5nmのZrO ナノ結晶の合成
溶媒熱合成を行う間に反応混合物中の水の量を制御することによって、1〜5nm、好ましくは1〜3nmの平均直径を有するZrOナノ結晶を合成することができる。これらの(1〜5nmの)小さなサイズのナノ結晶は、(6〜10nmの)大きなナノ結晶よりも増大した比表面積を得たい場合、あるいは、より小さな物理的寸法が有益であるような用途に用いる場合に望ましいかもしれない。これらのナノ結晶を合成するための実験手順の典型的な例は次の通りである:バイアルの中で、30mlのベンジルアルコールと0.08mlの水(4.44ミリモル)を1時間攪拌し、そしてグローブボックスの中へ移した。グローブボックスの中で、4.49ミリモルのジルコニウム(IV)イソプロポキシドイソプロパノール(Zr(OPr)(HOPr))−、(〜1:1の水対先駆物質の比率)をベンジルアルコール溶液とともに4時間攪拌した。先駆物質は溶媒の中に完全に溶解し、そして透明な溶液が得られた。次いで、反応混合物をオートクレーブに移し、その容器の中に密閉した。次いで、反応混合物を攪拌しながら1時間にわたって325℃に加熱した(15分で250℃まで上昇、3分で265℃まで上昇、3分で280℃まで上昇、3分で295℃まで上昇、3分で310℃まで上昇、3分で325℃まで上昇)。室温まで冷却した後、白いスラリーとかすかに黄色い溶液を得た。固体のXRDパターンはZrOのものに適合し、ナノ結晶のTEM画像は粒子のサイズが約3nmであることを示した。図7a、b、cおよびdは、反応混合物中の先駆物質対水のモル比を1:1、1:2、1:3および1:4とした場合のそれぞれから得られたナノ結晶のTEM画像を示す。図7は、水対先駆物質の比率が大きくなると粒子のサイズはいっそう小さくなり、典型的な比率である1:1、1:2、1:3および1:4の中で、1:4の先駆物質対水の比率のときに最も小さな平均粒子サイズ(〜2nm)となることを示している。
ジルコニウムアルコキシド対水の比率は、1:0.1から1:4までの範囲、あるいは、1:0.1から1:0.2まで、1:0.2から1:0.5まで、1:0.5から1:1まで、1:1から1:1.5まで、1:1.5から1:2まで、1:2から1:3まで、または1:3から1:4までの範囲とすることができる。
あるいは、ジルコニウム(IV)イソプロポキシドイソプロパノール以外の先駆物質を用いて、1〜5nm、好ましくは1〜3nmの平均直径を有するZrOナノ結晶を合成することができる。これらの代替の先駆物質には、ジルコニウム(IV)エトキシド、ジルコニウム(IV)n−プロポキシド、およびジルコニウム(IV)n−ブトキシドが含まれるだろう。
ZrOナノ結晶を合成するための、ここで説明している典型的な合成方法の加熱温度と時間については、反応温度を250〜350℃で変化させ、反応時間を20分〜24時間で変化させるように調節することができる。合成を完了させるためには、温度範囲の下限で行われる反応においては比較的長い加熱時間を要し、そしてこの温度範囲の上限で行われる反応においては比較的短い時間を要するだろう。
酸化チタニウム・ジルコニウム(TiO -ZrO )ナノ結晶の合成
ZrOナノ結晶を得るための合成方法を修正することによって、ジルコニウム原子とチタニウム原子の両者を含む金属酸化物ナノ結晶を合成することができる。これらのTiO-ZrO金属酸化物のナノ結晶は、ZrOとTiOの化学的性質、物理的性質
、または光学的性質の合同(またはこれらの何らかの組み合わせ)を必要とする様々な用途において用いることができる。このTiO-ZrOの合成のひと組の比限定的な例
には、ベンジルアルコール中でのジルコニウム先駆物質をチタニウム先駆物質とジルコニウム先駆物質の両者を含む混合物で置き換えることが含まれる。様々なTi/Zr原子比を有するナノ結晶は、チタニウムとジルコニウムの先駆物質の濃度を互いに相対的に調整し、それと同時に金属先駆物質の全体の濃度を一定に維持することによって製造することができる。このやり方で、Ti:Zrの比率を比限定的な例である1:3、1:2、および1:1の値にして、TiO-ZrOナノ結晶を合成することができる。
Ti:Zrの比率を1:1としてTiO-ZrOナノ結晶を合成するための典型的
な手順は次の通りである:15ミリモルのジルコニウムイソプロポキシドイソプロパノールと15ミリモルのチタニウムイソプロポキシドを、不活性雰囲気の下で30mlの無水ベンジルアルコール中に溶解した。次いで、反応混合物を不活性雰囲気の下でオートクレーブ反応器に装填した。反応器を300℃まで加熱し、そして攪拌しながら1時間にわたって300℃で維持した。生じたナノ結晶を、エタノールを用いて溶液から沈殿させた。TEM画像によれば、このTiO-ZrOナノ結晶は約5nmのサイズを有する。元
素分析の結果、サンプル中のTi/Zr原子比は二つの先駆物質の原子比と概ね一致することが確認された。
Ti:Zrの比率を1:2としてTiO-ZrOナノ結晶を合成するための典型的
な手順は次の通りである:20ミリモルのジルコニウムイソプロポキシドイソプロパノールと10ミリモルのチタニウムイソプロポキシドを、不活性雰囲気の下で30mlの無水ベンジルアルコール中に溶解した。次いで、反応混合物を不活性雰囲気の下でオートクレーブ反応器に装填した。反応器を300℃まで加熱し、そして攪拌しながら1時間にわたって300℃で維持した。生じたナノ結晶を、エタノールを用いて溶液から沈殿させた。
あるいは、ジルコニウムイソプロポキシドイソプロパノールとチタニウムイソプロポキシドの混合物ではないチタニウムとジルコニウムの混合物を用いて、様々な値のxを有するTiO-ZrOナノ結晶の合成を行ってもよい。ジルコニウムとチタニウムの先駆
物質の混合物は次のものを含んでいてもよい:非限定的なジルコニウム先駆物質の例としてジルコニウムエトキシド、ジルコニウムn−プロポキシド、およびジルコニウムn−ブトキシド、およびチタニウム先駆物質としてチタニウムエトキシド、チタニウムn−プロポキシド、およびチタニウムn−ブトキシド。
酸化ハフニウム・ジルコニウム(HfO -ZrO )ナノ結晶の合成
一つのナノ結晶の中にジルコニウム原子とハフニウム原子の両者を含む金属酸化物ナノ結晶を合成することができる。2ミリモルのハフニウムイソプロポキシドイソプロパノールと2ミリモルのジルコニウムクロリドを10グラムのトリオクチルホスフィンオキシドと混合することによって、ハフニウム対ジルコニウムの原子比が1:1のHfO-Zr
酸化物のナノ結晶を不活性雰囲気中で製造することができる。次いで、反応混合物を、不活性雰囲気の下で激しく攪拌しながら10℃/分の加熱速度で100℃まで加熱する。100℃で1時間攪拌した後、トリオクチルホスフィンオキシドが溶融し、そして溶融したトリオクチルホスフィンオキシドにハフニウムとジルコニウムの先駆物質が溶解する。次いで、溶液を10℃/分の加熱速度で350℃まで急速に加熱し、そして2時間にわたって350℃で維持する。白い粉末が生じ、そして溶液は乳白色になった。2時間後、反応混合物を冷却させる。反応混合物が70℃に達したとき、アセトンを添加してナノ結晶を沈殿させる。生じた酸化ハフニウム・ジルコニウムのナノ物質は形が棒状である(すなわち「ナノロッド」)。
さらなる実施例において、ハフニウム対ジルコニウムの原子比についてある範囲の値を有する酸化ハフニウム・ジルコニウムのナノ結晶を調製することができる。例えば、1:4のHf:Zr比を有するナノ結晶を次のようにして調製することができる:0.8ミリ
モルのハフニウムイソプロポキシドイソプロパノール、1.2ミリモルのジルコニウムイソプロポキシドイソプロパノール、2ミリモルのジルコニウムクロリド、および10グラムのトリオクチルホスフィンオキシドを不活性雰囲気中で混合する。供給する順序は任意である。反応混合物を、不活性雰囲気の下で激しく攪拌しながら10℃/分の加熱速度で100℃まで加熱する。次いで、溶液を10℃/分の加熱速度で350℃まで急速に加熱し、そして2時間にわたって350℃で維持する。白い粉末が形成され、そして溶液は乳白色になる。2時間後、反応混合物を冷却させる。反応混合物が70℃に達したとき、アセトンを添加してHfO-ZrOナノ結晶を沈殿させる。沈殿物を遠心分離によって
し、そして上澄みをデカントして廃棄する。この再分散−沈殿の手順を4回繰り返す。酸化ハフニウム・ジルコニウムのナノ物質の形状は、球状から棒状までに及ぶ(すなわち「ナノロッド」)。
酸化ハフニウム(HfO )ナノ結晶の合成
1〜10nmの範囲のサイズを有する酸化ハフニウムのナノ結晶は、溶媒熱合成法を用いて不活性雰囲気中で合成される。その合成方法の例は次の通りである:ハフニウムアルコキシド先駆物質(例えば、(これらに限定するものではないが)ハフニウムイソプロポキシドイソプロパノールまたはハフニウムn−ブトキシドまたはハフニウムn−プロポキシドまたはハフニウムtert−ブトキシドまたはハフニウムアセテートまたはハフニウムアセチルアセトネートまたはハフニウムエトキシド)のサンプルを有機アルコール(例えば、(これらに限定するものではないが)ベンジルアルコールまたは2−メチル−1−プロパノール)と混合し、そしてオートクレーブの中に密閉した。反応混合物を250〜350℃まで加熱した。反応混合物が設定温度に達した後、その温度を設定時間にわたって維持した。設定時間は20分から24時間までの範囲とすることができる。合成したままの酸化ハフニウムのナノ結晶を乳白色の懸濁液としてした。図8は合成されたHfOナノ結晶のTEM画像を示し、これは米状の形を有し、サイズが10nm未満である。
本開示の6gの酸化ハフニウムのナノ結晶を製造する方法においては、不活性雰囲気中でハフニウムエトキシドまたはハフニウムn−ブトキシドまたはハフニウムn−プロポキシドまたはハフニウムtert−ブトキシドまたはハフニウムアセテートまたはハフニウムアセチルアセトネートまたはハフニウムイソプロポキシドイソプロパノールの30ミリモルのサンプルを300ミリリットルのベンジルアルコールと混合し、次いで、これをオートクレーブに移す。反応混合物を10℃/分の加熱速度で300〜350℃まで1〜2時間にわたって加熱する。反応の間、オートクレーブ内の圧力を500psi未満(〜35気圧)とする。反応時間が経過して反応器を室温まで戻した後、合成したままの酸化ハフニウムのナノ結晶の乳白色の溶液をした。あるいは、反応温度よりも高い沸点を有する溶媒の中で、あるいはこれらの溶媒とベンジルアルコールとの混合物の中でHfOナノ結晶を合成するために、ハフニウム(IV)イソプロポキシドイソプロパノールまたはハフニウムエトキシド以外の先駆物質を用いてもよい。これらの代替の先駆物質としては、(これらに限定するものではないが)ハフニウム(IV)n−プロポキシド、およびハフニウム(IV)n−ブトキシドがある。
1〜5nmのHfO ナノ結晶の合成
溶媒熱合成を行う間に反応混合物中の水の量を制御することによって、1〜5nm、好ましくは1〜3nmの直径を有するHfOナノ結晶を合成することができる。これらの小さなサイズのナノ結晶は、大きなナノ結晶よりも増大した比表面積を得たい場合、あるいは、より小さな物理的寸法が有益であるような用途に用いる場合に望ましいかもしれない。1〜5nmのサイズ範囲の酸化ハフニウムのナノ結晶を製造するために水を添加する実験手順の典型的な例は、次の通りである:バイアルの中で30mlのベンジルアルコールと0.1mlの水を3時間攪拌し、次いで、これをドライボックスの中へ移す。ドライボックスの中で、4.45ミリモルのHf(OPr)(HOPr)(2.113g)を
水とベンジルアルコールの溶液の中で一晩攪拌し、このとき水対ハフニウムイソプロポキシドのモル比を1:1とする。先駆物質は溶媒混合物の中に完全に溶解する。反応混合物をオートクレーブに移し、その容器の中に密閉する。次いで、反応混合物を攪拌しながら1時間にわたって加熱マントルを用いて325℃に加熱する。室温まで冷却した後、白いスラリーとかすかに黄色い溶液を得る。図9はサイズが2〜5nmのナノ結晶のTEM画像を示す。
あるいは、ハフニウムイソプロポキシドイソプロパノール以外の先駆物質から出発して、1〜5nm、好ましくは1〜3nmの直径を有するHfOナノ結晶を合成することができる。これらの代替の先駆物質には、(これらに限定するものではないが)ハフニウムエトキシド、ハフニウムn−プロポキシド、およびハフニウムn−ブトキシドが含まれるだろう。
水対先駆物質の比率の関数としてZrOナノ結晶のサイズに関して前の図7において証明され、そして前に説明した効果は、HfOナノ結晶の製造においても同様の効果を有し、この場合、先駆物質の量に対して水の量が増大すると、粒子サイズは小さくなる。
ハフニウムアルコキシド対水の比率は、1:1から1:4までの範囲、あるいは、1:0.1から1:0.2まで、1:0.2から1:0.5まで、1:0.5から1:1まで、1:1から1:1.5まで、1:1.5から1:2まで、1:2から1:3まで、または1:3から1:4までの範囲とすることができる。
HfOナノ結晶を合成するための、ここで説明している典型的な合成方法の加熱温度と時間については、反応温度を250〜350℃で変化させ、反応時間を20分〜24時間で変化させるように調節することができる。温度範囲の下限で行われる反応においては比較的長い加熱時間を要し、そしてこの温度範囲の上限で行われる反応においては比較的短い時間を要するだろう。
酸化亜鉛(ZnO)ナノ結晶の合成
オルガノシランでキャップされた酸化亜鉛のナノ結晶を次のようにして製造した。2.7グラムの酢酸亜鉛二水和物を140mlのエタノール中に溶解させ、そして攪拌しながら80℃まで加熱した。酢酸亜鉛が完全に溶解し、そして溶液が透明になった後、反応混合物を氷水浴の中で冷却した。別のフラスコの中で、水酸化リチウム一水和物の0.72グラムのサンプルを60ミリリットルのエタノールと混合し、そして30分にわたって超音波処理した。この水酸化リチウムとエタノールの溶液を、氷水浴中の酢酸亜鉛二水和物とエタノールの溶液に1秒当り3滴の速度で滴状に添加した。水酸化リチウムとエタノールの溶液の全てを添加した後、反応混合物を室温まで温め、そして1時間攪拌した。メトキシ(トリエチレンオキシプロピル)トリメトキシシランの0.25グラムのサンプルを5ミリリットルのエタノールと混合し、次いで、反応混合物に注入した。反応混合物の全体を室温で12時間にわたって攪拌し、これによりオルガノシランでキャップされた酸化亜鉛のナノ結晶が合成した。これらのナノ結晶は球形で、3〜6nmの範囲の直径を有していた。
さらなる実施例において、大きなサイズ(5nm以上で10nm未満)の、オルガノシランでキャップされた酸化亜鉛のナノ結晶を次のようにして製造した。2.7グラムの酢酸亜鉛二水和物を140mlのエタノール中に溶解させ、そして攪拌しながら80℃まで加熱した。酢酸亜鉛が完全に溶解し、そして溶液が透明になった後、反応混合物を氷水浴の中で冷却した。別のフラスコの中で、水酸化リチウム一水和物の0.72グラムのサンプルを60ミリリットルのエタノールと混合し、そして30分にわたって超音波処理した。この溶液を、氷水浴中の酢酸亜鉛二水和物とエタノールの溶液に1秒当り3滴の速度で
滴状に添加した。水酸化リチウムとエタノールの溶液の全てを添加した後、反応混合物を60℃の湯浴の中に置き、そして1時間攪拌した。メトキシトリ(エチレンオキシ)プロピルトリメトキシシランの0.25グラムのサンプルを5ミリリットルのエタノールと混合し、次いで、反応混合物に注入した。反応混合物の全体を60℃で12時間にわたって攪拌し、これにより5nm以上で10nm未満の直径を有する、オルガノシランでキャップされた酸化亜鉛のナノ結晶が合成した。
オルガノシランでキャップされた酸化亜鉛のナノ結晶を製造する方法が提供される。酢酸亜鉛二水和物の21.28グラムのサンプルを1080mlのエタノール中に溶解させ、そして攪拌しながら80℃まで加熱する。酢酸亜鉛が完全に溶解し、そして溶液が透明になった後、反応混合物を氷水浴の中で冷却する。別のフラスコの中で、水酸化リチウム一水和物の5.76グラムのサンプルを480mlのエタノールと混合し、そして30分にわたって超音波処理する。この溶液を、氷水浴中の酢酸亜鉛二水和物とエタノールの溶液に滴状に添加する。水酸化リチウムとエタノールの溶液の全てを添加した後、反応混合物を室温まで温め、そして0.5時間攪拌する。メトキシトリ(エチレンオキシ)プロピルトリメトキシシランの2.0グラムのサンプルを15ミリリットルのエタノールと混合し、次いで、反応混合物に注入する。反応混合物の全体を室温で16時間にわたって攪拌し、これによりオルガノシランでキャップされた酸化亜鉛のナノ結晶が合成する。これらのナノ結晶は球形で、3〜6nmの直径を有する。
あるいは、エタノールに対して4倍濃縮したメトキシトリ(エチレンオキシ)プロピルトリメトキシシランを、3〜6nmおよび5〜10nmのZnOナノ結晶を合成する間に反応混合物に添加し、それにより極性溶媒中でのナノ結晶のキャップ形成度と分散性が増大した。
ZnOのナノ結晶を別の液体合成法によって合成することができる。典型的な合成は次の通りである:50ミリモルの酢酸亜鉛二水和物を、フラスコの中の500mlの無水エタノールに添加した。フラスコを水浴の中で80℃に加熱することによって、酢酸亜鉛は完全に溶解した。これとは別に、200ミリモルの水酸化リチウム一水和物を、125mlのメタノール(またはエタノール)中に室温において激しく攪拌することによって溶解させた。次いで、このLiOH溶液を、環流するZn(Ac)溶液の中に注いだ。添加の後、加熱を止めて、反応混合物を空気中で20分にわたって冷却した。透明な溶液が生じた。次いで、この溶液を30分にわたって80℃に再加熱し、それにより白い沈殿物が形成した。4℃で20分間、4500rpmで遠心分離機にかけることによって沈殿物を溶液から分離し、そしてTHFで洗浄する。生成物のTEM画像を図10に示す。
あるいは、ZnOのナノ結晶を製造するために用いられる上の反応において、水酸化リチウム対亜鉛の塩のモル比を1:1.4から1:4までの範囲で変えることができる。
あるいは、ZnOのナノ結晶を製造するために用いられる上の反応において、水酸化リチウムの代替物としてKOHまたはNaOHを用いることができる。
酸化イットリウム(Y )ナノ結晶の合成
酸化イットリウムのナノ結晶が、1グラムのオレイン酸イットリウムと5.96グラムのドデシルアミンから製造された。これらを混合し、そして不活性ガスで10分間パージした。次いで、不活性雰囲気の下で攪拌しながら反応混合物を20分で70℃まで加熱し、70℃で20分間維持し、次いで、さらに20分で259℃まで加熱し、そして259℃で2時間維持した。次いで、反応混合物を冷却した。70℃において、反応混合物に20mlのエタノールを添加し、それにより酸化イットリウムのナノ結晶が沈殿した。
別の実施例において、20ナノメートルの直径を有する酸化イットリウムのナノディス
ク(ディスク形状のナノ結晶)が、1グラムのオレイン酸イットリウムと5mlのオレイルアミンの混合物から製造された。これらを混合し、そしてアルゴンなどの不活性ガスで10分間パージした。次いで、不活性ガスの雰囲気下で攪拌しながら反応混合物を20分で70℃まで加熱し、70℃で20分間維持し、20分で250℃まで加熱し、そして最後に250℃で2時間維持した。次いで、反応混合物を冷却した。70℃において、反応混合物に20ミリリットルのエタノールを添加し、それにより酸化イットリウムのナノディスクが沈殿した。
別の実施例において、10ナノメートルの直径を有する酸化イットリウムのナノディスクが、2グラムのオレイン酸イットリウムと25mlのオレイルアミンから製造された。これらを混合し、そしてアルゴンで10分間パージした。次いで、アルゴンの保護の下で攪拌しながら反応混合物を20分で70℃まで加熱し、70℃で20分間維持し、20分で280℃まで加熱し、そして最後に280℃で2時間維持した。次いで、反応混合物を冷却した。70℃において、反応混合物に20ミリリットルのエタノールを添加し、それにより酸化イットリウムのナノディスクが沈殿した。
さらなる実施例において、10ナノメートルの直径を有する酸化イットリウムのナノディスクが、2グラムのオレイン酸イットリウムと25mlのオレイルアミンから製造された。これらを混合し、そしてアルゴンで10分間パージした。次いで、アルゴンの保護の下で攪拌しながら反応混合物を20分で70℃まで加熱し、70℃で20分間維持し、20分で230℃まで加熱し、そして最後に230℃で2時間維持した。次いで、反応混合物を冷却した。70℃において、反応混合物に20ミリリットルのエタノールを添加し、それにより酸化イットリウムのナノディスクが沈殿した。
さらなる実施例において、酸化イットリウムのナノ結晶が、2.15グラムのオレイン酸イットリウムと23グラムのドデシルアミンから製造された。これらを混合し、そして不活性ガスで10分間パージした。次いで、不活性雰囲気の下で攪拌しながら反応混合物を20分で70℃まで加熱し、70℃で20分間維持し、次いで20分で259℃まで加熱し、そして259℃で2時間維持した。次いで、反応混合物を冷却した。70℃において、反応混合物に20ミリリットルのエタノールを添加し、それにより酸化イットリウムのナノ結晶が沈殿した。生成物はフレーク(薄片)状の形を有し、そのフレークは2nmの厚さを有する。
実施例2
ナノ結晶の表面からの配位子の除去
何らかのさらなる変性を可能にする前にナノ結晶の表面にある有機成分またはキャッピング剤を除去するために、合成したままのHfOおよびZrOのナノ結晶の表面の塩酸処理が必要であるかもしれない。典型的な方法には、合成したままのナノ結晶または精製されたナノ結晶を水中で攪拌することによって浮遊させること、および、この懸濁液を1Mの塩酸溶液を用いて1のpHに調節することが含まれる。塩酸を添加すると、溶液は乳白色の懸濁液から透明な溶液に変化する。反応をさらに進行させるために、溶液を室温において一晩攪拌してもよい。溶液をテトラヒドロフランに添加すると、白い固形物が沈殿する。遠心分離を行った後、沈殿物を回収することができる。粒子をテトラヒドロフラン中に再浮遊させ、次いで混合物を遠心分離して、そして沈殿物を回収するプロセスは、上澄みのpHが5〜7の範囲になるまで繰り返してもよい。
実施例3
ナノ結晶のキャップ交換
ZrO 、HfO およびTiO -ZrO ナノ結晶のキャップ交換
ZrO、HfOおよびTiO-ZrOナノ結晶を合成した後、キャップ交換を
行うために、合成したままのナノ結晶を丸底フラスコの中へ移す。生成したままのナノ結晶を溶媒によって、または合成の間に存在する反応副生物によってキャップすることができる。ナノ結晶のキャップ形成分子を交換することは、様々な理由から望ましいだろう。そのような理由としては、(これらに限定するものではないが)溶媒または何らかのその他のマトリックスの中での分散性の増大、様々な光学的性質の付与、あるいはナノ結晶の表面での様々な化学的性質の付与がある。キャップ交換のプロセスには、合成したままのナノ結晶を溶媒または反応混合物の中で特定の量のキャッピング剤とともに分散または浮遊させることが含まれてもよい。この反応は、キャップ交換を促進するために、高温において、そして特定の長さの時間にわたって実施されてもよい。合成したままのZrO、HfOおよびTiO-ZrOナノ結晶の上でキャップ交換を行うためのキャッピン
グ剤についての非限定的な選択肢としては、メトキシトリ(エチレンオキシ)プロピルトリメトキシシラン、2−[2−(2−メトキシエトキシ)エトキシ]酢酸、3−(メタクリロイ
ルオキシ)プロピルトリメトキシシラン、およびその他のシラン、カルボン酸およびアル
コールがある。キャップ交換は、ベンジルアルコールまたはその他の溶媒または溶媒の混合物の中で行うことができる。
典型的で例証的かつ非限定的なこととして、合成したままのZrO、HfOおよびTiO-ZrOナノ結晶のキャップ交換は、キャッピング剤としてメトキシトリ(エチレンオキシ)プロピルトリメトキシシランを用いて行うことができる。メトキシトリ(エチレンオキシ)プロピルトリメトキシシランは、合成したままのナノ結晶反応混合物を収容
した反応容器(典型的には丸底フラスコ)の中に注入してもよい。メトキシトリ(エチレ
ンオキシ)プロピルトリメトキシシラン対合成したままのナノ結晶の重量比は1:5から
3:2までの範囲としてよい。次いで、混合物は、短くて10分、長くて3時間の間、80〜150℃まで加熱される。合成したままのナノ結晶の上でのメトキシ(トリエチレン
オキシ)プロピルトリメトキシシランのキャップ交換のための典型的な手順は次の通りで
ある:5gの合成したままのZrO、HfOまたはTiO-ZrOナノ結晶を含
む反応混合物が入った丸底フラスコに、1gのメトキシ(トリエチレンオキシ)プロピルトリメトキシシランキャッピング剤を添加した。キャッピング剤の添加を行う間、混合物を連続して攪拌した。懸濁液を80〜150℃まで加熱し、10分〜1時間にわたって攪拌し続ける間、この温度に維持した。その後、反応混合物を室温まで冷却した。
あるいは、別の典型的で例証的かつ非限定的なこととして、キャッピング剤としてメトキシ(トリエチレンオキシ)プロピルトリメトキシシランを用いるZrO、HfOおよびTiO-ZrOナノ結晶のキャップ交換は、合成したままの反応混合物以外のナノ
結晶の懸濁液について行ってもよい。同様の反応は、(これらに限定するものではないが)前もってキャップ交換されたナノ結晶を含む懸濁液、前もって精製された合成したままのナノ結晶を含む懸濁液、酸処理によってキャッピング剤が除去されたナノ結晶を含む懸濁液、および別の溶媒に移されたナノ結晶を含む懸濁液、を含めたナノ結晶の懸濁液について行うことができる。キャップ交換のための代替の溶媒は、(これらに限定するものではないが)次のものから選択することができる:ベンジルアルコール、プロピレングリコールモノメチルエーテル(PGME)、プロピレングリコールメチルエーテルアセテート(PGMEA)、エチルラクテート(EL)、および2−プロポキシ−プロパノール(PnP)、アセトン、テトラヒドロフラン、フェノール、オレイルアルコール、トルエン、ブタノール、プロパノール、イソプロパノール、エタノール、水、およびこれらの混合物。
典型的で例証的かつ非限定的なこととして、合成したままのZrO、HfOおよびTiO-ZrOナノ結晶のキャップ交換は、キャッピング剤として2−[2−(2−メ
トキシエトキシ)エトキシ]酢酸を用いて行うことができる。2−[2−(2−メトキシエトキシ)エトキシ]酢酸は、合成したままのナノ結晶反応混合物を収容した反応容器(典型的
には丸底フラスコ)の中に注入してもよい。2−[2−(2−メトキシエトキシ)エトキシ]酢酸の量は、合成したままのZrO、HfOまたはTiO-ZrOナノ結晶の1
グラム当り、少なくて0.4g、多くて1.5gとしてよい。次いで、混合物は20℃程度の低い温度に維持されるか、あるいは50℃程度に加熱されてもよく、その時間は短くて30分、長くて3時間の間である。合成したままのナノ結晶の上で行われる2−[2−(2−メトキシエトキシ)エトキシ]酢酸のキャップ交換反応のための典型的な手順は次の通りである:5gの合成したままのナノ結晶を含む反応混合物が入った丸底フラスコに、2gの2−[2−(2−メトキシエトキシ)エトキシ]酢酸を添加する。添加を行う間、混合物を連続して攪拌する。懸濁液を1時間にわたって攪拌し続ける間、室温に維持する。
あるいは、別の典型的で例証的かつ非限定的なこととして、キャッピング剤として2−[2−(2−メトキシエトキシ)エトキシ]酢酸を用いるZrO、HfOおよびTiO-ZrOナノ結晶のキャップ交換は、合成したままの反応混合物以外のナノ結晶の懸濁
液について行ってもよい。同様の反応は、(これらに限定するものではないが)前もってキャップ交換されたナノ結晶を含む懸濁液、前もって精製された合成したままのナノ結晶を含む懸濁液、酸処理によってキャッピング剤が除去されたナノ結晶を含む懸濁液、および別の溶媒に移されたナノ結晶を含む懸濁液、を含めたZrO、HfOまたはTiO-ZrOナノ結晶の懸濁液について行うことができる。キャップ交換反応のための代
替の溶媒は、(これらに限定するものではないが)次のものから選択することができる:ベンジルアルコール、プロピレングリコールモノメチルエーテル(PGME)、プロピレングリコールメチルエーテルアセテート(PGMEA)、エチルラクテート(EL)、および2−プロポキシ−プロパノール(PnP)、アセトン、テトラヒドロフラン、フェノール、オレイルアルコール、トルエン、ブタノール、プロパノール、イソプロパノール、エタノール、水、環状ケトン、およびこれらの混合物。
典型的で例証的かつ非限定的なこととして、合成したままのZrO、HfOおよびTiO-ZrOナノ結晶のキャップ交換は、キャッピング剤として3−(メタクリロイルオキシ)プロピルトリメトキシシランを用いて行うことができる。3−(メタクリロイルオキシ)プロピルトリメトキシシランは、合成したままのナノ結晶反応混合物を収容した
反応容器(典型的には丸底フラスコ)の中に注入してもよい。3−(メタクリロイルオキ
シ)プロピルトリメトキシシランの量は、合成したままのナノ結晶の1グラム当り、少な
くて0.8g、多くて1.5gとしてよい。次いで、混合物は、短くて30分、長くて1時間の間、120℃まで加熱される。合成したままのナノ結晶の上で行われる3−(メタ
クリロイルオキシ)プロピルトリメトキシシランのキャップ交換のための典型的な手順は
次の通りである:5gの合成したままのZrO、HfOまたはTiO-ZrO
ノ結晶を含む反応混合物が入った丸底フラスコに、4gの3−(メタクリロイルオキシ)プロピルトリメトキシシランを添加する。キャッピング剤の添加を行う間、混合物を連続して攪拌する。懸濁液を120℃まで加熱し、1時間にわたって攪拌し続ける間、この温度に維持する。その後、反応混合物を室温まで冷却する。
あるいは、別の典型的で例証的かつ非限定的なこととして、キャッピング剤として3−(メタクリロイルオキシ)プロピルトリメトキシシランを用いるZrO、HfOおよびTiO-ZrOナノ結晶のキャップ交換は、合成したままの反応混合物以外のナノ結
晶の懸濁液について行ってもよい。同様の反応は、(これらに限定するものではないが)前もってキャップ交換されたナノ結晶を含む懸濁液、前もって精製された合成したままのナノ結晶を含む懸濁液、酸処理によってキャッピング剤が除去されたナノ結晶を含む懸濁液、および別の溶媒に移されたナノ結晶を含む懸濁液、を含めたナノ結晶の懸濁液について行うことができる。キャップ交換反応を行う間にナノ結晶を分散させるための代替の溶媒は、(これらに限定するものではないが)次のものから選択することができる:ベンジルアルコール、プロピレングリコールモノメチルエーテル(PGME)、プロピレングリ
コールメチルエーテルアセテート(PGMEA)、エチルラクテート(EL)、および2−プロポキシ−プロパノール(PnP)、アセトン、テトラヒドロフラン、フェノール、オレイルアルコール、トルエン、ブタノール、プロパノール、イソプロパノール、エタノール、水、環状ケトン、およびこれらの混合物。
典型的で例証的かつ非限定的なこととして、合成したままのZrO、HfOおよびTiO-ZrOナノ結晶のキャップ交換は、キャッピング剤として3−(メタクリロイルオキシ)プロピルトリメトキシシランとメトキシ(トリエチレンオキシ)プロピルトリメ
トキシシランを用いて行うことができる。ZrOナノ結晶の典型的なキャップ交換反応は次の通りである:500mgの合成したままのZrOを5mlのPGMEAの中で25mgの3−(メタクリロイルオキシ)プロピルトリメトキシシランと100℃において1時間にわたって混合した。次いで、この懸濁液に150mgのメトキシ(トリエチレンオ
キシ)プロピルトリメトキシシランを添加し、そして混合物を100℃においてさらに1
時間にわたって攪拌した。生成した混合物をヘプタンで洗浄し、そして白い沈殿物を回収した。
ZrO、HfOおよびTiO-ZrOの合成したままのナノ結晶は、疎水性の
溶媒とマトリックス中での分散を促進するためにキャップされてもよい。このキャップ交換プロセスは、合成したままのナノ結晶を、特定の量のキャッピング剤とともに、または比較的疎水性の溶媒中のキャッピング剤とともに分散または浮遊させることを含んでいてもよく、このとき疎水性の溶媒は、(これらに限定するものではないが)ナフサ、トルエン、ヘプタン、ペンタン、デカン、クロロホルムを含めた溶媒から選択される。このキャップ交換反応は、キャップ交換を促進するために、室温または高温において数分から数日の範囲の時間にわたって行ってもよい。合成したままのZrO、HfOおよびTiO-ZrOナノ結晶の表面を疎水性の溶媒および媒質とより適合性にするキャッピング
剤として選択するものとしては、(これらに限定するものではないが)ステアリン酸、オレイン酸、およびオクタデシルトリメトキシシランがある。典型的な反応において、2gのオレイン酸を20mlのトルエンの中の2gの合成したままのナノ結晶を含む懸濁液に添加する。キャッピング剤を添加する間、および添加した後、混合物を連続的に攪拌する。反応混合物を数分から数時間の間にわたって反応させ、次いで、精製を行う。
典型的で例証的かつ非限定的なこととして、合成したままのZrO、HfOおよびTiO-ZrOナノ結晶のキャップ交換は、キャッピング剤としてメトキシポリ(エチレンオキシ)プロピルトリメトキシシランを用いて行ってもよい。あるいは、キャッピン
グ剤としてメトキシポリ(エチレンオキシ)プロピルトリメトキシシランを用いるZrO、HfOおよびTiO-ZrOナノ結晶のキャップ交換は、合成したままの反応混
合物以外のナノ結晶の懸濁液について行ってもよい。同様の反応は、(これらに限定するものではないが)前もってキャップ交換されたナノ結晶を含む懸濁液、前もって精製された合成したままのナノ結晶を含む懸濁液、酸処理によってキャッピング剤が除去されたナノ結晶を含む懸濁液、および別の溶媒に移されたナノ結晶を含む懸濁液、を含めたナノ結晶の懸濁液について行うことができる。キャップ交換反応を行う間にナノ結晶を分散させるための代替の溶媒は、(これらに限定するものではないが)次のものから選択することができる:ベンジルアルコール、プロピレングリコールモノメチルエーテル(PGME)、プロピレングリコールメチルエーテルアセテート(PGMEA)、エチルラクテート(EL)、および2−プロポキシ−プロパノール(PnP)、アセトン、テトラヒドロフラン、フェノール、オレイルアルコール、トルエン、ブタノール、プロパノール、イソプロパノール、エタノール、水、環状ケトン、およびこれらの混合物。
酸化イットリウムのナノ結晶のキャップ交換
典型的で例証的かつ非限定的なこととして、オルガノシランでキャップされた酸化イッ
トリウムのナノ結晶を、合成したままの酸化イットリウムのナノ結晶およびメトキシ(ト
リエチレンオキシ)プロピルトリメトキシシランを用いるキャップ交換プロセスによって
製造することができる。製造したままの酸化イットリウムのナノ結晶とメトキシトリ(エ
チレンオキシ)プロピルトリメトキシシランをテトラヒドロフランの中で混合した。次い
で、この混合物をオートクレーブの中で2〜4時間にわたって200℃まで加熱した。反応時間が経過した後、混合物を室温まで冷却した。
あるいは、このキャップ交換プロセスを、他のオルガノシラン、オルガノカルボン酸およびオルガノアルコールについて行ってもよい。同様の反応は、(これらに限定するものではないが)前もってキャップ交換されたナノ結晶を含む懸濁液、前もって精製された合成したままのナノ結晶を含む懸濁液、酸処理によってキャッピング剤が除去されたナノ結晶を含む懸濁液、および別の溶媒に移されたナノ結晶を含む懸濁液、を含めたナノ結晶の懸濁液について行うことができる。キャップ交換反応を行う間にナノ結晶を分散させるための代替の溶媒は、(これらに限定するものではないが)次のものから選択することができる:ベンジルアルコール、プロピレングリコールモノメチルエーテル(PGME)、プロピレングリコールメチルエーテルアセテート(PGMEA)、エチルラクテート(EL)、および2−プロポキシ−プロパノール(PnP)、アセトン、フェノール、オレイルアルコール、トルエン、ブタノール、プロパノール、イソプロパノール、エタノール、水、環状ケトン、およびこれらの混合物。
ZnOナノ結晶のキャップ交換
合成を行う間にキャッピング剤を添加することなくZnOナノ結晶が合成される場合、合成が完了した後に、3−(メタクリロイルオキシ)プロピルトリメトキシシラン、メトキシトリ(エチレンオキシ)プロピルトリメトキシシラン、2,2,2−メチオキシエチオキシエチオキシ酢酸、またはこれらの物質の組み合わせを用いてナノ結晶をキャップすることができる。2,2,2−メチオキシエチオキシエチオキシ酢酸を用いるキャップ形成は、室温において、または超音波処理の補助を用いて、または懸濁液を80℃まで加熱して、または加熱と超音波処理の両者の組み合わせを用いて、実施することができる。典型的な方法は次の通りである:合成を行った後、4gの合成したままの沈殿物を、丸底フラスコの中でPGMEAの中に再分散させる。この懸濁液に、2gの2,2,2−メチオキシエチオキシエチオキシ酢酸を攪拌しながら添加する。次いで、キャッピング反応を補助するために、懸濁液を短時間(1分未満)の超音波処理にかける。次いで、キャップされたナノ結晶をTHFとヘプタンを用いて沈殿させる(このとき、ナノ結晶:THF:ヘプタンの容積比を1:1:3とする)。6500rpmの遠心分離によって沈殿物を回収する。
実施例4
ナノ結晶の精製
合成したままのZrO 、HfO およびTiO -ZrO ナノ結晶
ZrO、HfOおよびTiO-ZrOナノ結晶のオートクレーブ合成の後に回
収された、合成したままの乳白色のナノ結晶の懸濁液を精製することができる。典型的な方法においては、ナノ結晶の懸濁液をエタノールと混合し、そして遠心分離(8000rpm、30分)を行って、ナノ結晶を分離する。上澄みをデカントして廃棄した後、白い沈殿物を回収する。湿ったナノ結晶を、超音波処理にかけるか、攪拌するか、または振り動かすことによって、追加のエタノール中に浮遊させ、そして懸濁液を再び遠心分離する。エタノールの添加、遠心分離および生じる粉末の回収からなるこれらの再懸濁工程を、さらに4回程度繰り返し、それにより精製されたナノ結晶を得る。
疎水性の表面を有するZrO ナノ結晶
ナノ結晶を精製するために、それらをヘキサン中に分散し、次いで、貧溶媒(antisolvent)としてエタノールを用いて沈殿させる。次いで、生じた混合物を遠心分離にかけ、
そしてナノ結晶を回収する。この精製プロセスを3回繰り返し、それによりナフサやヘプタンのような疎水性の溶媒の中で容易に分散するナノ結晶を得る。
ZrO 、HfO およびTiO -ZrO ナノ結晶
合成、キャップ形成および/またはキャップ交換の後に、ZrO、HfOおよびTiO-ZrOナノ結晶を精製するか、またはさらなる精製を行ってもよい。ベンジル
アルコールまたはベンジルアルコールとその他の溶媒との混合物の中で合成された後の、ナノ結晶の一つの典型的な精製は次の通りである:THFを反応混合物に、THF対反応混合物の容積比を2:1として添加し、次いで、ヘプタンを、ヘプタン対反応混合物の容積比を7〜9対1として添加する。THFとヘプタンに対するナノ結晶懸濁物の反応は、懸濁液中のナノ結晶の濃度に基づいて調節してもよい。これによりナノ結晶が沈殿し、次いで、これを遠心分離にかける。遠心分離と上澄みのデカントを行った後、追加の量のTHFまたはPGMEAを添加してナノ結晶を分散させ、次いで、ヘプタンを添加する。ヘプタン対THFまたはPGMEAの比率は2:1または3:1としてよい。超音波処理、遠心分離およびデカンテーションのサイクルを2〜5回繰り返し、それによりナノ結晶は精製される。
ZnOナノ結晶
合成したままの、キャップおよび/またはキャップ交換された酸化亜鉛のナノ結晶を精製し、あるいはさらに精製することによって、極性溶媒中で光学的に透明な懸濁液を得ることができる。このプロセスにより、合成反応またはキャップ交換反応の副生物の少なくとも一部が除去される。ZnOナノ結晶を精製するための典型的な方法は次の通りである:エタノール中に酸化亜鉛ナノ結晶が存在する200mlの懸濁液(〜1gのZnO)を400〜500ミリリットルのヘプタンと混合して白い沈殿物を形成させ、これを遠心分離によって回収し、次いで、上澄みをデカントして廃棄する。次いで、20〜60ミリリットルのエタノールのサンプルを用い、5分間の超音波処理を行って溶液中に白い沈殿物を再分散させ、そして40〜50ミリリットルのヘプタンのサンプルを再び用いて生成物を沈殿させた。白い沈殿物を遠心分離によって回収した後、上澄みの二回目のデカンテーションと廃棄を行った。エタノールによる再分散とヘプタンによる沈殿の手順をさらに二回繰り返し、それにより精製されたナノ結晶が得られた。
さらなる実施例において、キャップされた酸化亜鉛のナノ結晶を精製することによって、再分散可能な乾燥粉末を得た。エタノール中にオルガノシランでキャップされた酸化亜鉛ナノ結晶が存在する200mlの懸濁液(〜1gのZnO)を400〜500ミリリットルのヘプタンと混合して、白い沈殿物を形成させた。この白い沈殿物を遠心分離によって回収し、次いで、上澄みをデカントして廃棄した。次いで、20mlのエタノールのサンプルを用い、5分間の超音波処理による補助を行って白い固形物を再分散させた。40〜50mlのヘプタンを再び用いて生成物を沈殿させた。白い沈殿物を遠心分離によって回収し、そして上澄みの二回目のデカンテーションと廃棄を行った後、エタノールによる再分散とヘプタンによる沈殿の手順を(好ましくは)さらに二回繰り返した。次いで、この洗浄されたオルガノシランでキャップされたZnOナノ結晶に5mlのペンタンのサンプルを添加し、そして5分にわたって超音波処理を行った。次いで、得られた混合物を再び遠心分離にかけ、沈殿物を再び回収した。上澄みを廃棄した後、固形物を空気中または真空下で乾燥させ、それによりZnOナノ結晶の粉末である乾燥した白い沈殿物を得た。
極性溶媒中で光学的に透明な懸濁液を得るために、合成したままの、オルガノシランでキャップされた酸化亜鉛ナノ結晶を精製する別の方法が提供される。調製された、エタノール中にオルガノシランでキャップされた酸化亜鉛ナノ結晶が存在する1.6Lの懸濁液(8gを超えるZnOを含有)を3.2〜4.0Lのヘプタンと混合させると、白い沈殿物が形成する。この白い沈殿物を遠心分離によって回収し、次いで、上澄みをデカントし
て廃棄する。次いで、60mlのエタノールのサンプルを用い、5分間の超音波処理による補助を行って白い沈殿物を再分散させる。120〜150mlのヘプタンを再び用いて生成物を沈殿させる。白い沈殿物を遠心分離によって回収し、そして上澄みの二回目のデカンテーションと廃棄を行った後、8g以下のオルガノシランでキャップされたZnOナノ結晶を得る。さらに高い純度を達成するために、エタノールによる再分散とヘプタンによる沈殿の手順をさらに二回繰り返すと、白い沈殿物が得られる。
ナノ結晶
合成したままのYナノ結晶の精製は次の通りである:反応混合物に4:1の容量の割合でエタノールを添加して、合成したままの反応混合物を沈殿させた。懸濁液を9000rpmで20分にわたって遠心分離し、その後、上澄みをデカントし廃棄して、沈殿物を回収した。次いで、この沈殿物を2mlのクロロホルム中に(1分を超える)超音波処理によって浮遊させ、そして2mlのエタノールを添加することによって再沈殿させた。懸濁液を9000rpmで30分にわたって遠心分離し、その後、上澄みを再びデカントし廃棄して、沈殿物を回収した。沈殿物を3mlのヘキサン中に(2分を超える)超音波処理によって分散させ、そして2mlのエタノールを用いて再沈殿させ、上澄みをデカントし廃棄して、沈殿物を回収した。ヘキサンとエタノールを用いるこの再分散と沈殿の手順をもう一度繰り返した。この精製の手順の後に、酸化イットリウムのナノ結晶をクロロホルム、ヘキサン、トルエンおよびテトラヒドロフランのような幾つかの溶媒の中に分散させることができる。
キャップ交換反応の後のYナノ結晶の精製は次の通りである:ペンタンを用いてナノ結晶を沈殿させ、そして9000rpmで20分にわたって遠心分離した。沈殿物をテトラヒドロフランの中に再分散させ、ヘキサンを用いて沈殿させ、そして9000rpmで20分にわたって遠心分離し、それにより過剰なキャッピング剤と副生物を除去した。この沈殿物は、テトラヒドロフラン、クロロホルムおよびトルエンのような様々な溶媒、およびヘキサンとエタノールのような溶媒の混合物の中に分散させることができる。
実施例5
ナノ複合材の形成
キャップされたZnOナノ結晶とポリマーからのナノ複合材の懸濁液とナノ複合材層の形成
白色の沈殿物またはナノ結晶の粉末の形態の、キャップされて精製されたZnOナノ結晶を、例えば(これらに限定するものではないが)テトラヒドロフラン、エタノール、メタノール、アセトニトリル、PGMEA、PGME、PGPE、エチルラクテート、環状ケトン、およびアセトンを含めた、多くの極性溶媒の中に分散させ、それにより光学的に透過性の懸濁液を形成することができる。これらの光学的に透過性の懸濁液を様々なポリマー溶液と混合して、溶媒の混合を用いて、均一に分散したZnO/ポリマーのナノ複合材を形成することができる。ナノ結晶のための分散溶媒は、キャッピング剤とポリマーの化学的適合性に基づいて選択してもよい。ナノ結晶とポリマーの両者を分散させるのに適した溶媒系が好ましい。所望のナノ結晶対ポリマーの比率の複合溶液を形成するために、選択された溶媒の中に分散されるナノ結晶は、別個に調製されるポリマーの溶液であって、好ましくは同じ溶媒または異なる溶媒、または選択された溶媒と相溶する溶媒を組み合わせたものの中にポリマーが存在するような溶液と混合される。これらのポリマーとしては、(これらに限定するものではないが)PMMA、JSRトップコート、JSR Micro(
カリフォルニア州)の銘柄のアクリレートをベースとするフォトレジスト、Honeywellス
ピンオンガラスポリマー(Honeywell Electronic Materials社(カリフォルニア州)のシリコンをベースとするポリマー)、PEO(ポリエチレンオキシド)、エポキシ樹脂、シリコーンおよびエポキシ樹脂がある。
ナノ複合材の懸濁液を形成するための典型的な方法は、精製されてキャップされたZnOナノ結晶の粉末の38ミリグラムのサンプルを、0.5グラムのHoneywell Electronic
Material(HEM)社製のスピンオンガラス(SOG)ポリマーとエタノールの溶液(
HWSOG、固体含有量は1〜5重量%)と混合することである。この混合物を30分にわたって超音波処理することによって、光学的に透過性の懸濁液が得られた。
同様に、エポキシポリマーまたはアクリルポリマーまたはスピンオンガラスと5nmの平均サイズを有するZrOナノ結晶とを用いて、高度に透過性のフィルムが得られた。ナノ結晶の重量での添加量は0.01パーセントから90パーセントまで変えることができ、それにより光学的に透過性の懸濁液とフィルムが得られる。
3〜4nmの平均の粒子サイズを有するキャップされたZnOナノ結晶をエタノール中のSOGと混合させた懸濁液を用い、得られるナノ複合材のフィルムの均一性を確認するために、懸濁液を2インチの石英ディスクの上に500rpmの回転速度で回転塗布することによって、ナノ複合材のフィルムを調製した。紫外線〜可視光分光分析を用いて、三つの半径方向に沿う様々な点において、フィルムの光学濃度(OD)(吸光度)を測定した。ディスクの中心を0mmとして、その中心から0、3、5、8、12、16、および20mmの点において測定を行った。励起子ピークは330nmにおいて最大を示し、330nmにおけるODの偏差は全ての測定について2.0%未満であった。
エタノール中でSOGと混合させた、キャップされたZnOナノ結晶の懸濁液も用いて、三つの1インチの石英ディスクの上にそれぞれ300、500および700rpmでフィルムを回転塗布した。残留するエタノールを除去するために、これらのフィルムを80℃で1分にわたって空気中で焼成した。得られたフィルムは目視的に透明であり、明白な霞またはくすみはなかった。SOGポリマーナノ複合材中のZnOナノ結晶の公称の含有量は、ナノ複合材の組成から計算して、72.0重量%と測定された。図11は得られたフィルムの紫外線〜可視光スペクトルを示す。これらのナノ複合材フィルムは全て、最大で約330nmの波長のバンドギャップを有し、これはZnOの励起子ピークに相当する。フィルムを塗布するときの回転速度を300rpmから700rpmに増大させると、フィルムの厚さが減少するために、フィルムの光学濃度(OD)(吸光度)は低下した。ナノ複合材フィルムは可視光の波長において高度に透過性であり、このことは350nm以上で散乱が無いことと、紫外線〜可視光スペクトルにおける先鋭な励起子ピークの存在によって示される。
ナノ複合材を形成する方法は、本開示の精製されてキャップされた酸化亜鉛のナノ結晶をテトラヒドロフランの中でPMMAと溶媒混合することを含む。精製されてキャップされたZnOナノ結晶をテトラヒドロフランの中に分散させ、次いで、PMMAとTHFの溶液と混合させた。図12は、CuTEMグリッドの上に回転塗布したナノ複合材のTEMを示す。TEM画像上のスケールバーは10nmであり、4〜5nmのキャップされたZnOナノ結晶は、何らの凝集物も形成することなくPMMAのマトリックスの中に均一に分散している。挿入写真は、ナノ複合材の中の単一のナノ結晶の接近写真を示す。
PMMAとTHFの溶液の中に分散させた、オルガノシランでキャップされたZnOナノ結晶を用いて、2インチのシリコンウェハの上に500rpmの回転速度で回転塗布することによって、ナノ複合材のフィルムを調製した。フィルムの厚さの測定をDektak側面計によって行った。この測定において、フィルムの厚さを判定するためにフィルム上に間欠的な引掻き傷を作った。1mmの距離を測定し、それにより300nm以下の均一なフィルム厚さと、この範囲での3%未満の厚さの変動が示された。
本開示のナノ複合材を形成する方法の別の例は、本開示の精製されてキャップされた酸
化亜鉛のナノ結晶をテトラヒドロフランの中でエポキシポリマーとともに分散させることを含む。500mgの、精製されてオルガノシランでキャップされたZnOナノ結晶を、2mlのテトラヒドロフランの中に分散させ、そして1.5gのエポキシであるEPON(登録商標)樹脂862(ビスフェノールFのジグリシジルエーテル)(これは低粘度の液体エポキシ樹脂である)および0.3gのEpikure(登録商標)W硬化剤(EpikureWはエポキシ樹脂のための芳香族ジアミン硬化剤である)と混合させた。混合物を型の中に移し、12時間硬化させ、次いで、150℃で3時間にわたって後硬化させた。
本開示のナノ複合材を形成する方法の別の例は、EPON862樹脂を硬化剤W(または硬化剤3295)と、5:1の重量比で手作業で混合させることを含む。次いで、この混合物に、メトキシトリ(エチレンオキシ)プロピルトリメトキシシランでキャップされたZnOまたはZrOを添加する。ナノ結晶対エポキシ混合物の重量比は1:1000から10:1までの範囲とすることができる。ナノ結晶とエポキシ樹脂の混合物の粘度を低下させるために、少量の(複合材混合物の200重量%以下の)THFを添加した。次いで、混合物を、超音波浴の中で、またはHielscher UP200S超音波処理プローブを用いて、5分未満にわたって超音波処理する。超音波処理の後、次いで、(2グラム〜4グラムの)複合材混合物をアルミニウムの皿(直径4cm、これは成形型として機能する)の中に注いだ。次いで、この皿を真空オーブンの中に置いた。THFと気泡を除去するために真空を適用した。次いで、オーブンを真空下で80℃まで一晩(10時間未満)加熱した。得られた複合材を、さらに3時間にわたって150℃で後硬化させ、そして真空オーブンから取り出した。
本開示のナノ複合材を形成する方法の別の例は次の通りである:エポキシ樹脂のEPON862と硬化剤3274を、10:4の重量比で手作業で予備混合した。次いで、3−(メタクリロイルオキシ)プロピルトリメトキシシランでキャップされたZrOナノ結晶をエポキシ樹脂に0.01〜99.99重量%の添加量で添加する。ナノ結晶とエポキシ樹脂の混合物の粘度を低下させるために、少量の(複合材混合物の200重量%以下の)アセトンを添加した。次いで、混合物を、超音波処理浴の中で、またはHielscher UP200S超音波処理プローブを用いて、5分未満にわたって超音波処理する。次いで、(2グラム〜4グラムの)この混合した複合材混合物をアルミニウムの皿(直径4cm、これは成形型として機能する)の中に注いだ。次いで、この皿を真空オーブンの中に置いた。アセトンと気泡を除去するために真空を適用した。得られた複合材を24時間にわたって室温で硬化させ、そして真空オーブンから取り出した。
3−(メタクリロイルオキシ)プロピルトリメトキシシランでキャップされたナノ粒子とエポキシの複合材フィルムを回転塗布するための典型的な手順は次の通りである:エポキシ樹脂のEPON862と硬化剤3274を、10:4の重量比で手作業で予備混合した。次いで、所望の量のキャップされたナノ結晶をエポキシ樹脂に1〜99.99重量%の添加量で添加する。アセトンを添加し、それにより適当な固形分含有量(10重量%から50重量%までの範囲)を有する回転塗布溶液を調製した。次いで、混合物を超音波処理浴の中で5分にわたって超音波処理する。次いで、この溶液を回転塗布のために直接用いることができる。回転速度を変えることによって、数百ナノメートルから数マイクロメートルまでの範囲の様々なフィルム厚さを得ることができる。
本開示のナノ複合材を形成する別の例は、本開示の精製されてキャップされた酸化亜鉛のナノ結晶をJSR Micro Inc. からのフォトレジストと溶媒混合することを含む。精製さ
れてキャップされたZnOナノ結晶をPGMEAの中に分散させて、透明な懸濁液を形成し、そしてこの懸濁液とJSRフォトレジスト溶液を混合した。表面上に回転塗布した後に、得られる懸濁液はナノ複合材フィルムを形成する。
さらなる実施例において、本開示のナノ複合材は、本開示の精製されてキャップされた酸化亜鉛のナノ結晶をJSR Micro Inc. からのトップコートポリマーと溶媒混合すること
によって形成される。精製したままの、オルガノシランでキャップされたZnOナノ結晶を、JSRトップコートポリマー溶液中の溶媒でもある4−メチル−2−ペンタノール中に分散させた。ナノ結晶の懸濁液をそのトップコート溶液と混合することによって分散液を形成した。その分散液は、表面上への回転塗布によってナノ複合材フィルムを形成するために用いることができる。
本開示の方法は、精製されてキャップされた酸化亜鉛のナノ結晶を水中で分散させることを含む。精製した後のZnOの湿潤した沈殿物を水と混合することによって、精製されてキャップされたZnOナノ結晶を水中で分散させ、超音波処理することによって透明な懸濁液を形成した。この懸濁液をJSR水性トップコート溶液と混合した(NFC545−34)。
さらなる実施例において、メトキシトリ(エチレンオキシ)プロピルトリメトキシシランでキャップされたHfOナノ結晶をエタノール中に分散させて懸濁液を形成し、そしてこの懸濁液をSOGとエタノールの溶液と混合することによって、本開示のナノ複合材を形成する。図13は、CuTEMグリッドの上に懸濁液を回転塗布することによって調製されたナノ複合材のTEM画像を示す。この図の挿入図はナノ結晶の接近写真を示す。これらの画像は、4〜5nmの米の形状のHfOナノ結晶がSOGマトリックスの中に均一に分散していて、目視できる凝集物は形成されていないことを示す。
本開示のナノ複合材を形成するためのさらなる実施例は、本開示のメトキシトリ(エチ
レンオキシ)プロピルトリメトキシシランでキャップされたZrOナノ結晶およびアク
リレートをベースとするポリマーを、PGMEAとPGMEの混合物の中で分散させ、それによりナノ複合材の懸濁液を形成することを含む。この懸濁液のフィルムは、石英ディスクとシリコンウェハの上に回転塗布することによって製造される。ポリマーマトリックス中のナノ結晶の含有量は80重量%以下である。フィルムは、ナノ複合材の懸濁液を200nmのフィルターに通してろ過した後に製造される。図14は、懸濁液を石英ディスクの上に回転塗布することによって調製されたナノ複合材フィルムの表面粗さを示すAFM画像を示す。このフィルムについての二乗平均平方根(RMS)の粗さの値は0.521nmであった。
現場(in-situ)重合
メチルメタクリレート(MMA)と3−(メタクリロイルオキシ)プロピルトリメトキシシランで少なくとも部分的にキャップされたナノ結晶の現場重合によって、ZrOナノ結晶とポリメチルメタクリレートのナノ複合材を調製することができる。このナノ複合材の典型的な合成手順は次の通りである:500mgのMMAと2mgのAlBNを9gのトルエン中に溶解させ、その溶液を100℃まで加熱する。3−(メタクリロイルオキシ)プロピルトリメトキシシランとメトキシトリ(エチレンオキシ)プロピルトリメトキシシランの両者の混合物でキャップされた0.5gのZrOナノ結晶を1gのTHFの中に分散させる。この分散液をMMAとトルエンの溶液の中に滴状に添加する。混合物を16時間にわたって100℃に維持する。反応混合物はわずかに不透明である。得られる沈殿物をメタノールを用いて貧溶媒沈殿法によって回収する。次いで、沈殿物をTHFの中に再分散させ、それにより12重量%の分散液を形成する。生成物の熱重量分析(TGA)によれば、この分散液の固形物含有量の約38重量%はキャッピング剤とPMMAからのものである。
ZrOナノ結晶とポリメチルメタクリレートの現場重合によって形成されるナノ複合
材の別の例は次の通りである:9gのトルエンを100℃まで加熱する。3−(メタクリ
ロイルオキシ)プロピルトリメトキシシランとメトキシトリ(エチレンオキシ)プロピルト
リメトキシシランでキャップされた0.5gのZrOナノ結晶、0.5gのMMAおよび2mgのAlBNを1gのTHFに添加する。この混合物を熱くしたトルエンの中に滴状に添加する。混合物を16時間にわたって100℃に維持すると、反応混合物はわずかに不透明となる。得られるナノ複合材をメタノールを用いて貧溶媒沈殿法によって回収する。次いで、沈殿物をTHFの中に再分散させ、それにより5重量%の分散液を形成する。生成物のTGAによれば、この分散液の固形物含有量の約31重量%はキャッピング剤とPMMAによるものである。
米国仮出願61/407063号(2010年10月27日提出)および米国特許出願13/064905号(2011年4月25日提出)の内容は、それらの全てが参考文献として本明細書に取り込まれる。
本開示および本明細書の中で記載および/または証明された開示の態様は、典型的、例証的かつ非限定的なものである。
以下、出願時の特許請求の範囲の内容を記載する。
[請求項1]
ナノ結晶を製造する方法であって、
前記ナノ結晶の先駆物質を少なくとも1種の溶媒中に溶解または混合し、それにより溶液を生成すること、
場合により、前記溶液の加熱および圧力の増大のうちの少なくとも一つを行うこと、および
前記先駆物質を反応させるか、または前記先駆物質と前記溶液の前記少なくとも1種の溶媒とを反応させ、それにより前記ナノ結晶を形成させること、
を含む前記方法。
[請求項2]
前記ナノ結晶は少なくとも1種の作用剤でキャップされ、それにより前記少なくとも1種の溶媒またはその他の物質の中での前記ナノ結晶の溶解性または分散性を増大させる、請求項1に記載の方法。
[請求項3]
前記少なくとも1種の作用剤は、少なくとも1種のオルガノシラン、オルガノカルボン酸またはオルガノアルコールを含む、請求項2に記載の方法。
[請求項4]
前記ナノ結晶をキャップするための前記少なくとも1種の作用剤は溶液の中に含まれる、請求項2に記載の方法。
[請求項5]
前記ナノ結晶をキャップするための前記少なくとも1種の作用剤を、前記反応が行われる前か、その最中またはその後に、前記溶液と接触させる、請求項4に記載の方法。
[請求項6]
前記ナノ結晶を精製および/または分離することをさらに含む、請求項1に記載の方法。
[請求項7]
前記精製および/または分離されたナノ結晶を少なくとも1種のキャッピング剤でキャップして、それにより少なくとも部分的にキャップされたナノ結晶を製造することをさらに含む、請求項6に記載の方法。
[請求項8]
前記少なくとも部分的にキャップされたナノ結晶を精製および/または分離することをさらに含む、請求項7に記載の方法。
[請求項9]
前記ナノ結晶をさらに別の溶媒と接触させることをさらに含む、請求項6に記載の方法。
[請求項10]
前記少なくとも部分的にキャップされたナノ結晶を別の溶媒と接触させることをさらに含む、請求項8に記載の方法。
[請求項11]
前記別の溶媒は請求項1の少なくとも1種の溶媒を含む、請求項9に記載の方法。
[請求項12]
前記別の溶媒は請求項1の少なくとも1種の溶媒を含む、請求項10に記載の方法。
[請求項13]
前記ナノ結晶または少なくとも部分的にキャップされたナノ結晶は、さらに別の物質の中に分散される、請求項6〜12のいずれかに記載の方法。
[請求項14]
前記別の物質はポリマーである、請求項13に記載の方法。
[請求項15]
請求項1〜14のいずれかに記載の方法によって形成されたナノ結晶または少なくとも部分的にキャップされたナノ結晶。
[請求項16]
フィルムまたはコーティングを形成する方法であって、請求項15に記載のナノ結晶または少なくとも部分的にキャップされたナノ結晶をさらに別の物質中に分散させることによって分散液を形成し、そして前記分散液を表面に塗布することを含む方法。
[請求項17]
前記の塗布することは、回転コーティング、噴霧、浸漬、スクリーン印刷、ロール塗り、塗装、印刷、インクジェット印刷、蒸発による堆積、および/または蒸着を含む、請求項16に記載の方法。
[請求項18]
ナノ複合材を形成する方法であって、請求項15に記載のナノ結晶または少なくとも部分的にキャップされたナノ結晶をさらに別の物質と組み合わせて、それによりナノ複合材を形成することを含む方法。
[請求項19]
前記ナノ結晶または前記少なくとも部分的にキャップされたナノ結晶は、酸化亜鉛、酸化ハフニウム、酸化ジルコニウム、酸化ハフニウム・ジルコニウム、酸化チタニウム・ジルコニウムおよび/または酸化イットリウムまたはその他の半導体材料から成る、請求項1〜14または16〜18に記載の方法。
[請求項20]
前記少なくとも1種の溶媒は、ベンジルアルコール、フェノール、オレイルアルコール、トルエン、ブタノール、プロパノール、イソプロパノール、エタノール、メタノール、水、プロピレングリコールモノメチルエーテル(PGME)、プロピレングリコールメチルエーテルアセテート(PGMEA)、エチルラクテート(EL)、および2−プロポキシ−プロパノール(PnP)、アセトニトリル、アセトン、テトラヒドロフラン、環状ケトン、およびこれらの混合物を含む、請求項1〜14または16〜18に記載の方法。
[請求項21]
前記少なくとも1種の作用剤は、n−プロピルトリメトキシシラン、n−プロピルトリエトキシシラン、n−オクチルトリメトキシシラン、n−オクチルトリエトキシシラン、フェニルトリメトキシシラン、2−[メトキシ(ポリエチレンオキシ)プロピル]−トリメトキシシラン、メトキシトリ(エチレンオキシ)プロピルトリメトキシシラン、3−アミノプロピルトリメトキシシラン、3−メルカプトプロピルトリメトキシシラン、3−(メタクリロイルオキシ)プロピルトリメトキシシラン、3−イソシアナトプロピルトリエトキシシラン、3−イソシアナトプロピルトリメトキシシラン、およびグリシドキシプロピルトリメトキシシラン、ヘプタノール、ヘキサノール、オクタノール、ベンジルアルコール、フェノール、エタノール、プロパノール、ブタノール、オレイルアルコール、ドデシルアルコール、オクタデカノール、およびトリエチレングリコールモノメチルエーテル、オクタン酸、酢酸、プロピオン酸、2−[2−(2−メトキシエトキシ)エトキシ]酢酸、オレイン酸、安息香酸、またはこれらの混合物のうちの少なくとも1種を含む、請求項2〜5、7、8、10、12〜14または16〜20のいずれかに記載の方法。
[請求項22]
前記さらに別の物質は、ポリマーであるポリ(アクリロニトリル−ブタジエン−スチレン)(ABS)、ポリ(メチルメタクリレート)(PMMA)、セルロイド、セルロースアセテート、ポリ(エチレン−ビニルアセテート)(EVA)、ポリ(エチレン−ビニルアルコール)(EVOH)、フルオロプラスチック、ポリアクリレート(Acrylic)、ポリアクリロニトリル(PAN)、ポリアミド(PAまたはNylon)、ポリアミド−イミド(PAI)、ポリアリールエーテルケトン(PAEK)、ポリブタジエン(PBD)、ポリブチレン(PB)、ポリブチレンテレフタレート(PBT)、ポリカプロラクトン(PCL)、ポリクロロトリフルオロエチレン(PCTFE)、ポリエチレンテレフタレート(PET)、ポリシクロヘキシレンジメチレンテレフタレート(PCT)、ポリカーボネート(PC)、ポリヒドロキシアルカノエート(PHAs)、ポリケトン(PK)、ポリエステル、ポリエチレン(PE)、ポリエーテルエーテルケトン(PEEK)、ポリエーテルケトンケトン(PEKK)、ポリエーテルイミド(PEI)、ポリエーテルスルホン(PES)、ポリエチレンクロリネート(PEC)、ポリイミド(PI)、ポリ乳酸(PLA)、ポリメチルペンテン(PMP)、ポリフェニレンオキシド(PPO)、ポリフェニレンスルフィド(PPS)、ポリフタルアミド(PPA)、ポリプロピレン(PP)、ポリスチレン(PS)、ポリスルホン(PSU)、ポリトリメチレンテレフタレート(PTT)、ポリウレタン(PU)、ポリ酢酸ビニル(PVA)、ポリ塩化ビニル(PVC)、ポリ塩化ビニリデン(PVDC)、ポリ(スチレン−アクリロニトリル)(SAN)、スピンオンガラス(SOG)ポリマー、エタノール中のシロキサンスピンオンポリマー、プロピレングリコールメチルエーテルアセテート(PGMEA)、イソプロピルアルコール、またはこれらの溶媒の混合物であるJSRミクロトップコート(4−メチル−2−ペンタノール中のNFCTCX014)、JSRミクロフォトレジスト(ARF1682J−19)、シリコーン、またはこれらの混合物のようなマトリックス材料を含む、請求項13〜21のいずれかに記載の方法。
[請求項23]
前記少なくとも1種の溶媒はさらに水を含む、請求項1に記載の方法。
[請求項24]
前記水は1:1から4:1までの範囲の水対先駆物質のモル比で存在する、請求項23に記載の方法。
[請求項25]
前記ナノ結晶は1nm〜5nmの平均のサイズ範囲のものである、請求項24に記載の方法。

Claims (22)

  1. 少なくとも1種のキャッピング剤により少なくとも部分的にキャップされたジルコニアナノ結晶の溶媒中の分散物であって、当該分散物は、該分散物が10重量%のナノ結晶を含有するとき、400nmから750nmまでの波長範囲における10mmの光路を有する融解石英のキュベットの中で測定された場合、15%よりも大きな最小透過率であり、かつ、該分散物の遊離キャッピング剤濃度がGCにより測定して100,000μg/ml以下である、前記分散物。
  2. 前記キャッピング剤が、n−プロピルトリメトキシシラン、n−プロピルトリエトキシシラン、n−オクチルトリメトキシシラン、n−オクチルトリエトキシシラン、フェニルトリメトキシシラン、2−[メトキシ(ポリエチレンオキシ)プロピル]−トリメトキシシラン、メトキシ(トリエチレンオキシ)プロピルトリメトキシシラン、3−アミノプロピルトリメトキシシラン、3−メルカプトプロピルトリメトキシシラン、3−(メタクリロイルオキシ)プロピルトリメトキシシラン、3−イソシアナトプロピルトリエトキシシラン、3−イソシアナトプロピルトリメトキシシラン、グリシドキシプロピルトリメトキシシラン、ヘプタノール、ヘキサノール、オクタノール、ベンジルアルコール、フェノール、エタノール、プロパノール、ブタノール、オレイルアルコール、ドデシルアルコール、オクタデカノール、トリエチレングリコールモノメチルエーテル、オクタン酸、酢酸、プロピオン酸、2−[2−(2−メトキシエトキシ)エトキシ]酢酸、オレイン酸、安息香酸、およびこれらの混合物のうちの少なくとも1種を含む、請求項1に記載の分散物。
  3. ポリ(アクリロニトリル−ブタジエン−スチレン)(ABS)、ポリ(メチルメタクリレート)(PMMA)、セルロイド、セルロースアセテート、ポリ(エチレン−ビニルアセテート)(EVA)、ポリ(エチレン−ビニルアルコール)(EVOH)、フルオロプラスチック、ポリアクリレート(Acrylic)、ポリアクリロニトリル(PAN)、ポリアミド(PAまたはナイロン)、ポリアミドイミド(PAI)、ポリアリールエーテルケトン(PAEK)、ポリブタジエン(PBD)、ポリブチレン(PB)、ポリブチレンテレフタレート(PBT)、ポリカプロラクトン(PCL)、ポリクロロトリフルオロエチレン(PCTFE)、ポリエチレンテレフタレート(PET)、ポリシクロヘキシレンジメチレンテレフタレート(PCT)、ポリカーボネート(PC)、ポリヒドロキシアルカノエート(PHAs)、ポリケトン(PK)、ポリエステル、ポリエチレン(PE)、ポリエーテルエーテルケトン(PEEK)、ポリエーテルケトンケトン(PEKK)、ポリエーテルイミド(PEI)、ポリエーテルスルホン(PES)、ポリエチレンクロリネート(PEC)、ポリイミド(PI)、ポリ乳酸(PLA)、ポリメチルペンテン(PMP)、ポリフェニレンオキシド(PPO)、ポリフェニレンスルフィド(PPS)、ポリフタルアミド(PPA)、ポリプロピレン(PP)、ポリスチレン(PS)、ポリスルホン(PSU)、ポリトリメチレンテレフタレート(PTT)、ポリウレタン(PU)、ポリ酢酸ビニル(PVA)、ポリ塩化ビニル(PVC)、ポリ塩化ビニリデン(PVDC)、ポリ(スチレン−アクリロニトリル)(SAN)、スピンオンガラス(SOG)ポリマー、エタノール中のシロキサンスピンオンポリマー、プロピレングリコールメチルエーテルアセテート(PGMEA)、イソプロピルアルコールまたはこれらの溶媒の混合物、およびその混合物から選択される少なくとも1種のマトリックスポリマーをさらに含む請求項1に記載の分散物。
  4. 前記溶媒は、ベンジルアルコール、フェノール、オレイルアルコール、トルエン、ブタノール、プロパノール、イソプロパノール、エタノール、メタノール、水、プロピレングリコールモノメチルエーテル(PGME)、プロピレングリコールメチルエーテルアセテート(PGMEA)、エチルラクテート(EL)、および2−プロポキシ−プロパノール(PnP)、アセトニトリル、アセトン、テトラヒドロフラン、環状ケトン、およびこれらの混合物を含む、請求項1に記載の分散物。
  5. 前記ジルコニアナノ結晶は、1nm〜5nmの平均サイズ範囲である、請求項1に記載の分散物。
  6. 前記分散物の最小透過率が室温で貯蔵したとき三週間を超えて安定である、請求項1に記載の分散物。
  7. 最小透過率が、該分散物が分散物溶媒中10重量%のナノ結晶を含有するとき、400nmから750nmまでの波長範囲における10mmの光路を有する融解石英のキュベットの中で測定された場合、20%よりも大きい、請求項1に記載の分散物。
  8. 遊離キャッピング剤濃度が、GCにより測定したとき、8000μg/ml以下である、請求項1に記載の分散物。
  9. 最小透過率が、該分散物が分散物溶媒中10重量%のナノ結晶を含有するとき、400nmから750nmまでの波長範囲における10mmの光路を有する融解石英のキュベットの中で測定された場合、25%よりも大きい、請求項1に記載の分散物。
  10. 最小透過率が、該分散物が分散物溶媒中10重量%のナノ結晶を含有するとき、400nmから750nmまでの波長範囲における10mmの光路を有する融解石英のキュベットの中で測定された場合、30%よりも大きい、請求項1に記載の分散物。
  11. 最小透過率が、該分散物が分散物溶媒中10重量%のナノ結晶を含有するとき、400nmから750nmまでの波長範囲における10mmの光路を有する融解石英のキュベットの中で測定された場合、40%よりも大きい、請求項1に記載の分散物。
  12. 最小透過率が、該分散物が分散物溶媒中10重量%のナノ結晶を含有するとき、400nmから750nmまでの波長範囲における10mmの光路を有する融解石英のキュベットの中で測定された場合、50%よりも大きい、請求項1に記載の分散物。
  13. 最小透過率が、該分散物が分散物溶媒中10重量%のナノ結晶を含有するとき、400nmから750nmまでの波長範囲における10mmの光路を有する融解石英のキュベットの中で測定された場合、60%よりも大きい、請求項1に記載の分散物。
  14. 最小透過率が、該分散物が分散物溶媒中10重量%のナノ結晶を含有するとき、400nmから750nmまでの波長範囲における10mmの光路を有する融解石英のキュベットの中で測定された場合、70%よりも大きい、請求項1に記載の分散物。
  15. 最小透過率が、該分散物が分散物溶媒中10重量%のナノ結晶を含有するとき、400nmから750nmまでの波長範囲における10mmの光路を有する融解石英のキュベットの中で測定された場合、80%よりも大きい、請求項1に記載の分散物。
  16. 最小透過率が、該分散物が分散物溶媒中10重量%のナノ結晶を含有するとき、400nmから750nmまでの波長範囲における10mmの光路を有する融解石英のキュベットの中で測定された場合、90%よりも大きい、請求項1に記載の分散物。
  17. 遊離キャッピング剤濃度が、GCにより測定したとき、1500μg/ml以下である、請求項1に記載の分散物。
  18. 遊離キャッピング剤濃度が、GCにより測定したとき、250μg/ml以下である、請求項1に記載の分散物。
  19. 遊離キャッピング剤濃度が、GCにより測定したとき、50μg/ml以下である、請求項1に記載の分散物。
  20. 遊離キャッピング剤濃度が、GCにより測定したとき、10μg/ml以下である、請求項1に記載の分散物。
  21. 遊離キャッピング剤濃度が、GCにより測定したとき、5μg/ml以下である、請求項1に記載の分散物。
  22. 少なくとも1種の共有結合キャッピング剤により少なくとも部分的にキャップされたジルコニアナノ結晶の溶媒中の分散物であって、当該分散物は、該分散物が10重量%のナノ結晶を含有するとき、400nmから750nmまでの波長範囲における10mmの光路を有する融解石英のキュベットの中で測定された場合、15%よりも大きな最小透過率であり、かつ、該分散物の遊離キャッピング剤濃度がGCにより測定して100,000μg/ml以下である、前記分散物。
JP2015253283A 2010-10-27 2015-12-25 ナノ結晶の合成、キャップ形成および分散 Ceased JP6203810B2 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US40706310P 2010-10-27 2010-10-27
US61/407,063 2010-10-27
US13/064,905 US8592511B2 (en) 2010-04-23 2011-04-25 Synthesis, capping and dispersion of nanocrystals
US13/064,905 2011-04-25

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2013536771A Division JP2014503446A (ja) 2010-10-27 2011-10-26 ナノ結晶の合成、キャップ形成および分散

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2017160171A Division JP7019345B2 (ja) 2010-10-27 2017-08-23 ナノ結晶の合成、キャップ形成および分散

Publications (2)

Publication Number Publication Date
JP2016128374A JP2016128374A (ja) 2016-07-14
JP6203810B2 true JP6203810B2 (ja) 2017-09-27

Family

ID=45994708

Family Applications (3)

Application Number Title Priority Date Filing Date
JP2013536771A Pending JP2014503446A (ja) 2010-10-27 2011-10-26 ナノ結晶の合成、キャップ形成および分散
JP2015253283A Ceased JP6203810B2 (ja) 2010-10-27 2015-12-25 ナノ結晶の合成、キャップ形成および分散
JP2017160171A Active JP7019345B2 (ja) 2010-10-27 2017-08-23 ナノ結晶の合成、キャップ形成および分散

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2013536771A Pending JP2014503446A (ja) 2010-10-27 2011-10-26 ナノ結晶の合成、キャップ形成および分散

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2017160171A Active JP7019345B2 (ja) 2010-10-27 2017-08-23 ナノ結晶の合成、キャップ形成および分散

Country Status (6)

Country Link
US (2) US8920675B2 (ja)
EP (2) EP2632849A4 (ja)
JP (3) JP2014503446A (ja)
KR (1) KR101945383B1 (ja)
CN (2) CN103328374B (ja)
WO (1) WO2012058271A2 (ja)

Families Citing this family (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180100248A (ko) 2010-04-23 2018-09-07 픽셀리전트 테크놀로지스 엘엘씨 나노결정의 합성, 캐핑 및 분산
US8920675B2 (en) 2010-10-27 2014-12-30 Pixelligent Technologies, Llc Synthesis, capping and dispersion of nanocrystals
US9359689B2 (en) 2011-10-26 2016-06-07 Pixelligent Technologies, Llc Synthesis, capping and dispersion of nanocrystals
US10273365B2 (en) * 2013-03-15 2019-04-30 Pixelligent Technologies Llc High refractive index nanocomposite
US10033014B2 (en) 2013-03-15 2018-07-24 Pixelligent Technologies Llc. Advanced light extraction structure
US10144842B2 (en) 2013-03-15 2018-12-04 Pixelligent Technologies Llc High refractive index nanocomposite layer
US10050236B2 (en) 2013-07-08 2018-08-14 Pixelligent Technologies Llc Advanced light extraction structure
US9513406B2 (en) 2013-07-17 2016-12-06 University Of Oregon Soluble functionalized nanoparticles for use in optical materials
CN106170872A (zh) 2013-09-23 2016-11-30 皮瑟莱根特科技有限责任公司 高折射率有机硅纳米复合材料
US9751071B2 (en) * 2013-12-27 2017-09-05 State Of Oregon Acting By And Through The State Board Of Higher Education On Behalf Of Oregon State University Continuous microwave-assisted segmented flow reactor for high-quality nanocrystal synthesis
US10647938B2 (en) 2015-05-04 2020-05-12 Pixelligent Technologies, Llc Nano-additives enabled advanced lubricants
JP6903047B2 (ja) 2015-07-20 2021-07-14 モメンティブ パフォーマンス マテリアルズ ゲーエムベーハーMomentive Performance Materials GmbH 改質充填剤粒子およびそれを含むシリコーン組成物
WO2017023642A1 (en) * 2015-07-31 2017-02-09 Pixelligent Technologies Llc Nanocomposite formulations for optical applications
DE102015115549A1 (de) * 2015-09-15 2017-03-16 Leibniz-Institut Für Neue Materialien Gemeinnützige Gmbh Leitfähige Nanokomposite
TWI794143B (zh) 2015-10-14 2023-03-01 美商陶氏全球科技責任有限公司 塗層組成物
US10246634B2 (en) 2015-10-26 2019-04-02 Samsung Electronics Co., Ltd. Quantum dot having polymeric outer layer, photosensitive compositions including the same, and quantum dot polymer composite pattern produced therefrom
WO2017075773A1 (en) * 2015-11-04 2017-05-11 Dow Global Technologies Llc Polycaprolactone-polyurethane microparticles coated with inorganic metal oxides and methods for the preparation thereof
TW201800860A (zh) * 2015-12-17 2018-01-01 陶氏全球科技責任有限公司 具有高介電常數之光可成像薄膜
TW201741766A (zh) 2015-12-17 2017-12-01 陶氏全球科技責任有限公司 具有高介電常數之光可成像薄膜
TW201741765A (zh) 2015-12-17 2017-12-01 陶氏全球科技責任有限公司 具有高介電常數之光可成像薄膜
US11034845B2 (en) 2016-02-04 2021-06-15 Pixelligent Technologies, Llc Nanocomposite formulations for optical applications
SG10201912814PA (en) * 2016-02-12 2020-02-27 Univ Nanyang Tech A composite material with enhanced mechanical properties and a method to fabricate the same
TW201802587A (zh) 2016-03-24 2018-01-16 陶氏全球科技責任有限公司 具有高介電常數之光可成像薄膜
KR102339086B1 (ko) * 2016-03-31 2021-12-14 닛산 가가쿠 가부시키가이샤 양친매성의 유기실란 화합물이 결합한 무기산화물 미립자, 그 유기용매 분산액 및 피막형성용 조성물
FR3053353B1 (fr) 2016-06-30 2018-07-27 Aledia Procede de fabrication de particules photoluminescentes
KR102601102B1 (ko) 2016-08-09 2023-11-10 삼성전자주식회사 조성물, 이로부터 제조된 양자점-폴리머 복합체 및 이를 포함하는 소자
CN106241853B (zh) * 2016-09-12 2018-02-27 渤海大学 一种氧化钇纳米材料的制备方法
WO2018063402A1 (en) * 2016-09-30 2018-04-05 Intel Corporation Metal oxide nanoparticles as fillable hardmask materials
KR20180103341A (ko) * 2017-03-09 2018-09-19 삼성전자주식회사 고분자 조성물, 고분자 복합체 및 광학 필름
CN107162036B (zh) * 2017-05-15 2018-09-21 南京大学 一种纳米晶y2o3及其制作方法
CN107479597A (zh) * 2017-07-18 2017-12-15 深圳爱贝蕊恩国际健康管理有限公司 一种新生儿室内环境中央管理系统
JP7072490B2 (ja) 2017-11-03 2022-05-20 三星電子株式会社 量子ドット組成物、量子ドットポリマー複合体、並びにこれを含む積層構造物及びディスプレイ素子
KR102480348B1 (ko) * 2018-03-15 2022-12-23 삼성전자주식회사 실리콘게르마늄 식각 전의 전처리 조성물 및 이를 이용한 반도체 장치의 제조 방법
CN113227463A (zh) * 2018-11-20 2021-08-06 皮瑟莱根特科技有限责任公司 TiO2纳米晶体的合成、封端和分散
JP2022507821A (ja) * 2018-11-20 2022-01-18 ピクセリジェント・テクノロジーズ,エルエルシー 溶媒フリーの製剤およびナノコンポジット
JP7157932B2 (ja) * 2019-01-11 2022-10-21 株式会社Sumco シリカガラスルツボの製造装置および製造方法
CN114401927A (zh) * 2019-09-17 2022-04-26 巴斯夫欧洲公司 金属氧化物纳米颗粒
US11421141B2 (en) 2020-04-21 2022-08-23 Saudi Arabian Oil Company Nanosheet polymer composite for water shutoff
US11261367B2 (en) 2020-04-21 2022-03-01 Saudi Arabian Oil Company Polymer-sand nanocomposite for water shutoff
US11306159B2 (en) * 2020-04-21 2022-04-19 Saudi Arabian Oil Company Nanosheet polymer composite for water shutoff
US11578543B2 (en) 2020-10-09 2023-02-14 Saudi Arabian Oil Company Polymer-sand nanocomposite lost circulation material
US11993860B2 (en) * 2021-01-29 2024-05-28 Lawrence Livermore National Security, Llc Ligand exchange of nanocrystal films
WO2024162471A1 (ja) * 2023-02-03 2024-08-08 三井金属鉱業株式会社 ハフニウム酸化合物含有物およびその製造方法
CN117512692B (zh) * 2023-11-17 2024-05-03 武汉理工大学 涂层式碱性水电解制氢隔膜

Family Cites Families (183)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5543115A (en) 1978-09-21 1980-03-26 Mitsubishi Petrochem Co Ltd Formed synthetic resin article having improved light transmitting and heat retaining properties
EP0040232B2 (de) 1979-11-22 1993-09-29 ESPE Stiftung & Co Produktions- und Vertriebs KG Verwendung von kieselsäuregranulaten als füllstoffe für dentalmassen
DE3430801A1 (de) 1984-08-22 1986-03-06 Bayer Ag, 5090 Leverkusen Verwendung von poroesen fuellstoffen in polymerisierbaren massen, solche massen und deren verwendung zur herstellung von formkoerpern
JPH0729771B2 (ja) 1986-01-14 1995-04-05 悦朗 加藤 単斜ジルコニア超微結晶の高分散ゾルまたはゲルおよび製造方法
ATE98607T1 (de) 1987-03-13 1994-01-15 Redco Nv Thixotropisches additiv, verfahren zu seiner herstellung und seine benuetzung.
BE1000517A6 (fr) 1987-05-04 1989-01-10 Cie Liegeoise Des Betons De Re Procede de mise en oeuvre de betons de resine luminescents.
US5422489A (en) 1994-01-24 1995-06-06 Bhargava; Rameshwar N. Light emitting device
DE19543205A1 (de) 1995-11-20 1997-05-22 Bayer Ag Zwischenschicht in elektrolumineszierenden Anordnungen enthaltend feinteilige anorganische Partikel
US5929133A (en) 1996-02-16 1999-07-27 Hitachi Chemical Filtec, Inc. Anti-bacterial film suitable for food packaging
EP0792688A1 (en) 1996-03-01 1997-09-03 Dow Corning Corporation Nanoparticles of silicon oxide alloys
US5777433A (en) 1996-07-11 1998-07-07 Hewlett-Packard Company High refractive index package material and a light emitting device encapsulated with such material
US5891548A (en) 1996-10-03 1999-04-06 Dow Corning Corporation Encapsulated silica nanoparticles
EP0917208A1 (en) 1997-11-11 1999-05-19 Universiteit van Utrecht Polymer-nanocrystal photo device and method for making the same
US6337117B1 (en) 1998-07-01 2002-01-08 Mitsubishi Chemical Corporation Optical memory device
AU8761498A (en) 1998-07-30 2000-02-21 Minnesota Mining And Manufacturing Company Nanosize metal oxide particles for producing transparent metal oxide colloids and ceramers
US6329058B1 (en) * 1998-07-30 2001-12-11 3M Innovative Properties Company Nanosize metal oxide particles for producing transparent metal oxide colloids and ceramers
JP2000090489A (ja) 1998-09-16 2000-03-31 Mitsubishi Chemicals Corp 光メモリ素子
US6207077B1 (en) 2000-02-18 2001-03-27 Orion 21 A.D. Pty Ltd Luminescent gel coats and moldable resins
US6096465A (en) 1998-12-04 2000-08-01 Fuji Xerox Co., Ltd. Toner for developing electrostatic latent image, method for manufacturing the same, developer and method for forming image
WO2000044507A1 (en) 1999-01-28 2000-08-03 The Board Of Regents For Oklahoma State University Thin films of core-shell nanoparticles
JP2000281863A (ja) 1999-03-30 2000-10-10 Jsr Corp 樹脂組成物及びその硬化物
JP2000273272A (ja) 1999-03-25 2000-10-03 Jsr Corp 樹脂組成物、その硬化物及び複合体
JP4207293B2 (ja) 1999-03-03 2009-01-14 Jsr株式会社 架橋性粒子、それを含有する樹脂組成物及びその硬化物
JP4690510B2 (ja) 1999-02-15 2011-06-01 Jsr株式会社 樹脂組成物及びその硬化物
JP4120086B2 (ja) 1999-03-08 2008-07-16 Jsr株式会社 樹脂組成物及びその硬化物
EP1165682B1 (en) 1999-02-15 2006-07-05 DSM IP Assets B.V. Resin composition and cured product
US6608716B1 (en) 1999-05-17 2003-08-19 New Mexico State University Technology Transfer Corporation Optical enhancement with nanoparticles and microcavities
AU5718400A (en) 1999-06-25 2001-01-31 Richard Lee Harden Luminescent latex mixture and products
DE19946712A1 (de) 1999-09-29 2001-04-05 Inst Neue Mat Gemein Gmbh Verfahren und Zusammensetzungen zum Bedrucken von Substraten
US6572693B1 (en) 1999-10-28 2003-06-03 3M Innovative Properties Company Aesthetic dental materials
JP4800535B2 (ja) 1999-10-28 2011-10-26 スリーエム イノベイティブ プロパティズ カンパニー ナノサイズシリカ粒子を含有する歯科材料
US6387981B1 (en) 1999-10-28 2002-05-14 3M Innovative Properties Company Radiopaque dental materials with nano-sized particles
US6376590B2 (en) 1999-10-28 2002-04-23 3M Innovative Properties Company Zirconia sol, process of making and composite material
US6730156B1 (en) 1999-10-28 2004-05-04 3M Innovative Properties Company Clustered particle dental fillers
EP1116755A1 (en) 2000-01-10 2001-07-18 Sicpa Holding S.A. Coating composition, preferably printing ink for security applications, method for producing a coating composition and use of glass ceramics
EP1117060A1 (en) 2000-01-10 2001-07-18 Sicpa Holding S.A. Authentication of a security article
DE10010941A1 (de) 2000-03-06 2001-09-13 Bayer Ag Flammwidrige Polycarbonat-Formmassen
US6867542B1 (en) 2000-03-29 2005-03-15 General Electric Company Floating chip photonic device and method of manufacture
US6858158B2 (en) 2002-01-25 2005-02-22 Konarka Technologies, Inc. Low temperature interconnection of nanoparticles
DE10027206A1 (de) 2000-05-31 2001-12-13 Osram Opto Semiconductors Gmbh Alterungsstabile Epoxidharzsysteme, daraus hergestellte Formstoffe und Bauelemente und deren Verwendung
US6465953B1 (en) 2000-06-12 2002-10-15 General Electric Company Plastic substrates with improved barrier properties for devices sensitive to water and/or oxygen, such as organic electroluminescent devices
BR0003430A (pt) 2000-07-28 2004-06-08 Dana Ind S A Conjunto para restrição de um dos movimentos da junta esférica utilizada em veìculos automotores e afins
US6679945B2 (en) 2000-08-21 2004-01-20 Degussa Ag Pyrogenically prepared silicon dioxide
CA2424147A1 (en) 2000-08-28 2002-03-07 Precision Dispensing Systems Limited Pneumatic pinch mechanism for a deformable tube
US6345903B1 (en) 2000-09-01 2002-02-12 Citizen Electronics Co., Ltd. Surface-mount type emitting diode and method of manufacturing same
EP1187226B1 (en) 2000-09-01 2012-12-26 Citizen Electronics Co., Ltd. Surface-mount type light emitting diode and method of manufacturing same
US6649138B2 (en) 2000-10-13 2003-11-18 Quantum Dot Corporation Surface-modified semiconductive and metallic nanoparticles having enhanced dispersibility in aqueous media
US6515314B1 (en) 2000-11-16 2003-02-04 General Electric Company Light-emitting device with organic layer doped with photoluminescent material
US6896958B1 (en) 2000-11-29 2005-05-24 Nanophase Technologies Corporation Substantially transparent, abrasion-resistant films containing surface-treated nanocrystalline particles
US6558575B2 (en) 2001-02-07 2003-05-06 Agfa-Gevaert Perparation of improved ZnS:Mn phosphors
US6737293B2 (en) 2001-02-07 2004-05-18 Agfa-Gevaert Manufacturing of a thin film inorganic light emitting diode
US20020127224A1 (en) 2001-03-02 2002-09-12 James Chen Use of photoluminescent nanoparticles for photodynamic therapy
JP4101468B2 (ja) 2001-04-09 2008-06-18 豊田合成株式会社 発光装置の製造方法
JP2002314143A (ja) 2001-04-09 2002-10-25 Toshiba Corp 発光装置
JP2002314138A (ja) 2001-04-09 2002-10-25 Toshiba Corp 発光装置
DE10118630A1 (de) 2001-04-12 2002-10-17 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Verfahren zur Herstellung eines optoelektronischen Halbleiter-Bauelements
US6686676B2 (en) 2001-04-30 2004-02-03 General Electric Company UV reflectors and UV-based light sources having reduced UV radiation leakage incorporating the same
US20020186921A1 (en) 2001-06-06 2002-12-12 Schumacher Lynn C. Multiwavelength optical fiber devices
US6846565B2 (en) 2001-07-02 2005-01-25 Board Of Regents, The University Of Texas System Light-emitting nanoparticles and method of making same
US6656990B2 (en) 2001-07-11 2003-12-02 Corning Incorporated Curable high refractive index compositions
JP4499962B2 (ja) * 2001-09-04 2010-07-14 三井化学株式会社 金属酸化物超微粒子とポリマーの組成物
US6724141B2 (en) 2001-10-30 2004-04-20 Agfa-Gevaert Particular type of a thin layer inorganic light emitting device
US6734465B1 (en) 2001-11-19 2004-05-11 Nanocrystals Technology Lp Nanocrystalline based phosphors and photonic structures for solid state lighting
US6903505B2 (en) 2001-12-17 2005-06-07 General Electric Company Light-emitting device with organic electroluminescent material and photoluminescent materials
EP1478689A1 (en) 2002-02-19 2004-11-24 Photon-X, Inc. Polymer nanocomposites for optical applications
WO2003070817A1 (en) 2002-02-19 2003-08-28 Photon-X, Inc. Athermal polymer nanocomposites
DE10221007B4 (de) 2002-05-11 2016-10-13 Basf Coatings Gmbh Wässrige Dispersion von anorganischen Nanopartikeln, Verfahren zu ihrer Herstellung und ihre Verwendung
US7288324B1 (en) 2002-09-05 2007-10-30 University Of Central Florida Research Foundation, Inc. Synthesis of tetragonal phase stabilized nano and submicron sized nanoparticles
DE10247359A1 (de) 2002-10-10 2004-04-29 Basf Coatings Ag Nanopartikel, Verfahren zur Modifizierung ihrer Oberfläche, Dispersion der Nanopartikel, Verfahren zu ihrer Herstellung und ihre Verwendung
US20040242729A1 (en) 2003-05-30 2004-12-02 3M Innovative Properties Company Stabilized particle dispersions containing surface-modified inorganic nanoparticles
US7605194B2 (en) 2003-06-24 2009-10-20 Ppg Industries Ohio, Inc. Aqueous dispersions of polymer-enclosed particles, related coating compositions and coated substrates
US7635727B2 (en) 2003-06-24 2009-12-22 Ppg Industries Ohio, Inc. Composite transparencies
US20080112909A1 (en) 2003-06-24 2008-05-15 Ppg Industries Ohio, Inc. Compositions for providing color to animate objects and related methods
CA2530122C (en) 2003-06-24 2010-09-28 Ppg Industries Ohio, Inc. Aqueous dispersions of microparticles having a nanoparticulate phase and coating compositions containing the same
US7723394B2 (en) 2003-11-17 2010-05-25 Los Alamos National Security, Llc Nanocrystal/sol-gel nanocomposites
DE102004003675A1 (de) 2004-01-24 2005-08-11 Degussa Ag Dispersion und Beschichtungszubereitung enthaltend nanoskaliges Zinkoxid
US7910634B2 (en) 2004-03-25 2011-03-22 Ppg Industries Ohio, Inc. Aqueous dispersions of polymer-enclosed particles, related coating compositions and coated substrates
US20100184911A1 (en) 2009-01-22 2010-07-22 Ppg Industries Ohio, Inc. Aqueous dispersions of polymer-enclosed particles, related coating compositions and coated substrates
US20060063911A1 (en) 2004-05-27 2006-03-23 Cayton Roger H Enhanced scratch resistance of articles containing a combination of nano-crystalline metal oxide particles, polymeric dispersing agents, and surface active materials
ES2317278T3 (es) 2004-07-16 2009-04-16 Alberdingk Boley Gmbh Dispersion acuosa de aglutinante con nanoparticulas, procedimiento para su preparacion y su uso.
US20060083694A1 (en) 2004-08-07 2006-04-20 Cabot Corporation Multi-component particles comprising inorganic nanoparticles distributed in an organic matrix and processes for making and using same
KR100852715B1 (ko) 2004-08-13 2008-08-19 이해욱 기능성 피막조성물, 상기 피막조성물 상에 형성된 필름,그리고 상기 피막조성물 및 필름을 형성하는 방법
DE102004048230A1 (de) 2004-10-04 2006-04-06 Institut für Neue Materialien Gemeinnützige GmbH Verfahren zur Herstellung von Nanopartikeln mit maßgeschneiderter Oberflächenchemie und entsprechenden Kolloiden
JP2006238746A (ja) 2005-03-01 2006-09-14 Shimano Inc 釣り用リールのハンドル把手
JP4320448B2 (ja) 2004-10-15 2009-08-26 独立行政法人産業技術総合研究所 金属超微粒子分散複合体及びその製造方法
KR100645649B1 (ko) 2004-11-03 2006-11-15 주식회사 엘지화학 염화비닐 수지 조성물 및 그 제조방법
CN101115459B (zh) 2004-11-16 2012-03-21 3M创新有限公司 包括含磷表面处理的牙科填料
EP1831295A1 (en) 2004-12-30 2007-09-12 3M Innovative Properties Company Polymer blends including surface-modified nanoparticles and methods of making the same
US7491441B2 (en) 2004-12-30 2009-02-17 3M Innovative Properties Company High refractive index, durable hard coats
US7591865B2 (en) 2005-01-28 2009-09-22 Saint-Gobain Abrasives, Inc. Method of forming structured abrasive article
WO2006083688A1 (en) 2005-01-28 2006-08-10 Saint-Gobain Abrasives, Inc. Abrasive articles and methods for making same
BRPI0608177A2 (pt) 2005-04-14 2009-11-17 Saint Gobain Abrasives Inc método de formação de artigo abrasivo estruturado
JP2006299126A (ja) * 2005-04-21 2006-11-02 Nissan Motor Co Ltd ナノフィラーの表面改質方法、ポリマーナノコンポジット及びポリマーナノコンポジットの製造方法
JP2008544936A (ja) 2005-05-12 2008-12-11 ジョージア テック リサーチ コーポレイション コーティングされた金属酸化物ナノ粒子およびその製造方法
US7521492B2 (en) 2005-06-01 2009-04-21 3M Innovative Properties Company Self-extinguishing polymer composition
US8845927B2 (en) 2006-06-02 2014-09-30 Qd Vision, Inc. Functionalized nanoparticles and method
US8187726B2 (en) 2005-08-09 2012-05-29 Sony Corporation Nanoparticle-resin composite material, light emitting device assembly, and filling material for the light-emitting device assembly
JP4961829B2 (ja) 2005-08-09 2012-06-27 ソニー株式会社 ナノ粒子−樹脂複合材料の製造方法
CN101297377A (zh) 2005-08-19 2008-10-29 国立大学法人东京大学 质子导电性杂化材料和使用其的用于燃料电池的催化剂层
US7455886B2 (en) 2005-08-22 2008-11-25 Eastman Kodak Company Nanocomposite materials and an in-situ method of making such materials
JP4415972B2 (ja) * 2005-09-22 2010-02-17 ソニー株式会社 金属酸化物ナノ粒子の製造方法
TW200716698A (en) * 2005-10-03 2007-05-01 Kaneka Corp Transparent polymer nanocomposites containing nanoparticles and method of making same
CN101321816A (zh) * 2005-10-03 2008-12-10 株式会社钟化 含纳米颗粒的透明聚合物纳米复合材料及其制备方法
KR101356870B1 (ko) * 2005-10-08 2014-01-29 재단법인서울대학교산학협력재단 세륨 산화물 나노 입자 제조 방법
JP4850254B2 (ja) 2005-10-27 2012-01-11 ヒューレット−パッカード デベロップメント カンパニー エル.ピー. 導電性基材への印刷
JP5167582B2 (ja) * 2005-10-28 2013-03-21 住友大阪セメント株式会社 ジルコニア透明分散液及び透明複合体並びに透明複合体の製造方法
US7285261B2 (en) * 2005-10-28 2007-10-23 Honeywell International Inc Preparation and application of novel chromium based nanocatalyst for gas-phase fluorination and hydrofluorination reactions
EP1950239B1 (en) 2005-10-28 2017-01-04 Sumitomo Osaka Cement Co., Ltd. Transparent inorganic-oxide dispersion, resin composition containing inorganic oxide particles, composition for encapsulating luminescent element, luminescent element, hard coat, optical functional film, optical part, and process for producing resin composition containing inorganic oxide particles
JP5540458B2 (ja) 2006-02-17 2014-07-02 住友大阪セメント株式会社 無機酸化物透明分散液と樹脂組成物、透明複合体、発光素子封止用組成物及び発光素子並びに透明複合体の製造方法
KR100717514B1 (ko) 2005-12-30 2007-05-11 제일모직주식회사 유기/무기 혼성 나노복합체 및 이를 이용한 열가소성나노복합재 수지 조성물
US20090220792A1 (en) * 2006-01-20 2009-09-03 Singapore Agency For Science, Tech And Research Synthesis of Alloyed Nanocrystals in Aqueous or Water-Soluble Solvents
DE102006012467A1 (de) 2006-03-17 2007-09-20 Merck Patent Gmbh Redispergierbare Nanopartikel
JP5401754B2 (ja) * 2006-03-31 2014-01-29 三菱化学株式会社 金属酸化物ナノ結晶の製造方法
KR20090019781A (ko) 2006-04-12 2009-02-25 나노마스 테크놀러지스, 인코포레이티드 나노입자, 제조 방법 및 용도
KR101342594B1 (ko) * 2006-05-08 2013-12-17 삼성에스디아이 주식회사 금속 나노결정의 제조 방법
KR101252005B1 (ko) 2006-06-22 2013-04-08 삼성전자주식회사 나노결정 입자를 함유하는 박막 및 그의 제조방법
WO2008001518A1 (fr) 2006-06-30 2008-01-03 Mitsubishi Materials Corporation Composition de fabrication d'une électrode dans une cellule solaire, procédé de fabrication de l'électrode, et cellule solaire utilisant une électrode obtenue par le procédé de fabrication
JP5030694B2 (ja) * 2006-07-18 2012-09-19 株式会社日本触媒 酸化ジルコニウムナノ粒子
WO2008010533A1 (en) * 2006-07-18 2008-01-24 Nippon Shokubai Co., Ltd. Metal oxide nanoparticle and method for producing the same
JP5002208B2 (ja) * 2006-07-26 2012-08-15 三菱化学株式会社 金属酸化物ナノ結晶の製造方法
JP4945202B2 (ja) 2006-08-31 2012-06-06 株式会社ノリタケカンパニーリミテド 金属微粒子分散液の製造方法
KR100768632B1 (ko) 2006-10-30 2007-10-18 삼성전자주식회사 나노입자의 분산방법 및 이를 이용한 나노입자 박막의제조방법
US20090297626A1 (en) * 2006-11-03 2009-12-03 The Trustees Of Columbia University In The City Of New York Methods for preparing metal oxides
WO2008058849A1 (en) 2006-11-15 2008-05-22 Cytec Surface Specialties, S.A. Radiation curable hybrid composition and process
JP2008127241A (ja) 2006-11-21 2008-06-05 Fujifilm Corp 水分散性粒子およびその製造方法
KR100818195B1 (ko) * 2006-12-14 2008-03-31 삼성전기주식회사 금속 나노입자의 제조방법 및 이에 따라 제조된 금속나노입자
JPWO2008075784A1 (ja) * 2006-12-20 2010-04-15 Hoya株式会社 金属酸化物系ナノ粒子、その製造方法、ナノ粒子分散樹脂およびその製造方法
US20080153963A1 (en) 2006-12-22 2008-06-26 3M Innovative Properties Company Method for making a dispersion
US7671227B2 (en) 2007-02-28 2010-03-02 Corning Incorporated Asymmetric bis-silanes and methods for making and their use
US20100135937A1 (en) 2007-03-26 2010-06-03 The Trustees Of Columbia University In The City Of New York Metal oxide nanocrystals: preparation and uses
WO2008118422A1 (en) * 2007-03-26 2008-10-02 The Trustees Of Columbia University In The City Of New York Metal oxide nanocrystals: preparation and uses
ATE510800T1 (de) 2007-04-04 2011-06-15 Essilor Int Verfahren zur herstellung einer kolloidalen zirkoniumlösung
US20080264479A1 (en) * 2007-04-25 2008-10-30 Nanoco Technologies Limited Hybrid Photovoltaic Cells and Related Methods
JP2008289985A (ja) 2007-05-23 2008-12-04 Toyota Motor Corp 排ガス浄化触媒担体の製造方法
CN101348240B (zh) 2007-07-18 2011-09-21 中国科学院过程工程研究所 合成纳米晶氧化物粉体的溶胶-溶剂热方法
EP2530108B1 (en) 2007-08-31 2018-02-07 Cabot Corporation Method of preparing a polymer composition
JP2009090272A (ja) 2007-09-20 2009-04-30 Nissan Motor Co Ltd 粒子分散ゾルと粒子分散樹脂組成物の製造方法
US20110033368A1 (en) 2007-10-05 2011-02-10 Agency For Science, Technology And Research Methods of forming a nanocrystal
JP2009114008A (ja) * 2007-11-02 2009-05-28 Sakai Chem Ind Co Ltd 酸化ジルコニウム微粉末とその製造方法とそれを含む樹脂組成物
JP5628685B2 (ja) 2007-12-28 2014-11-19 スリーエム イノベイティブ プロパティズ カンパニー ジルコニア含有ナノ粒子の製造方法
JP5126779B2 (ja) 2007-12-28 2013-01-23 日揮触媒化成株式会社 合成樹脂製レンズ用被膜形成用塗布液の製造方法
JP5445140B2 (ja) * 2008-01-09 2014-03-19 旭硝子株式会社 表面修飾ジルコニア粒子、その製造方法及び樹脂組成物
JP2009191167A (ja) * 2008-02-14 2009-08-27 Sumitomo Osaka Cement Co Ltd 高屈折率金属酸化物透明分散液及び透明樹脂複合体並びに光学レンズ
EP2119736A1 (de) 2008-05-16 2009-11-18 Bayer MaterialScience AG Stabile nanopartikelhaltige Polyisocyanate
KR101421619B1 (ko) 2008-05-30 2014-07-22 삼성전자 주식회사 나노결정-금속산화물-폴리머 복합체 및 그의 제조방법
EP2130553A1 (en) 2008-06-05 2009-12-09 Nanobiotix Inorganic nanoparticles of high density to destroy cells in-vivo
TWI450898B (zh) 2008-07-04 2014-09-01 Sigma Tau Res Switzerland Sa 具有抗腫瘤活性之芳基異唑化合物
JP5350106B2 (ja) 2008-07-28 2013-11-27 キヤノン株式会社 ナノ粒子−分散剤複合体、ナノ粒子分散液およびナノ粒子−マトリックス材料複合体
JP5855055B2 (ja) 2008-07-28 2016-02-09 キヤノン株式会社 化合物、ナノ粒子−分散剤複合体、ナノ粒子分散液およびナノ粒子−マトリックス材料複合体、化合物の製造方法
JP5640191B2 (ja) * 2008-08-22 2014-12-17 国立大学法人東北大学 無機骨格を有する高分子修飾ハイブリッドナノ粒子及びその合成方法
JP5467447B2 (ja) 2008-08-28 2014-04-09 学校法人東京理科大学 表面改質剤、該表面改質剤により改質された被改質体及びナノ粒子の分散液、並びにナノ粒子の製造方法
CN102144004B (zh) 2008-09-04 2014-11-26 巴斯夫欧洲公司 改性颗粒及包含所述颗粒的分散体
JP5397829B2 (ja) * 2008-12-04 2014-01-22 堺化学工業株式会社 酸化ジルコニウム分散液の製造方法
WO2010066768A2 (de) 2008-12-12 2010-06-17 Basf Se Dispersionen enthaltend funktionalisierte oxidische nanopartikel
US8741819B2 (en) 2008-12-30 2014-06-03 3M Innovative Properties Company Composite particles and method of forming
US8829079B2 (en) 2009-01-22 2014-09-09 3M Innovative Properties Company Surface-modified zirconia nanoparticles
US20100240804A1 (en) 2009-03-17 2010-09-23 General Electric Company In-situ polymerized nanocomposites
JP5603582B2 (ja) 2009-06-16 2014-10-08 Hoya株式会社 表面修飾ジルコニアナノ結晶粒子およびその製造方法
KR20120047910A (ko) 2009-06-19 2012-05-14 더블유.알. 그레이스 앤드 캄파니-콘. 전해질 조성물 및 이의 제조 및 사용 방법
CN102471521B (zh) 2009-08-12 2016-08-24 皇家飞利浦电子股份有限公司 光学组成
CN102869604B (zh) 2010-01-27 2014-06-04 伦斯勒理工学院 具有可调折射率的纳米填充的聚合物纳米复合材料
US9759727B2 (en) 2010-03-23 2017-09-12 Massachusetts Institute Of Technology Ligands for semiconductor nanocrystals
KR20180100248A (ko) 2010-04-23 2018-09-07 픽셀리전트 테크놀로지스 엘엘씨 나노결정의 합성, 캐핑 및 분산
JP5359999B2 (ja) 2010-06-18 2013-12-04 三菱電機株式会社 チューブ状梱包部材および半導体装置用梱包体
KR101805873B1 (ko) 2011-08-03 2018-01-10 한화케미칼 주식회사 단당류 인산 또는 그 유도체로 표면이 개질된 친수성 나노입자, 그의 콜로이드 용액 및 그 용도
US8314177B2 (en) 2010-09-09 2012-11-20 Baker Hughes Incorporated Polymer nanocomposite
US8920675B2 (en) 2010-10-27 2014-12-30 Pixelligent Technologies, Llc Synthesis, capping and dispersion of nanocrystals
JP5669066B2 (ja) 2010-11-19 2015-02-12 国立大学法人東北大学 水分散性のステルスナノ粒子
CN103347960A (zh) 2010-12-08 2013-10-09 道康宁东丽株式会社 改性金属氧化物纳米粒子的方法
JP5804491B2 (ja) 2011-03-18 2015-11-04 国立大学法人東北大学 超臨界水中における金属酸化物表面修飾処理方法
KR101304427B1 (ko) 2011-04-12 2013-09-05 한국과학기술연구원 재사용이 용이한 기공체 - 위성 나노입자 복합체 및 그 제조방법
US8796372B2 (en) 2011-04-29 2014-08-05 Rensselaer Polytechnic Institute Self-healing electrical insulation
US20140206822A1 (en) 2011-06-23 2014-07-24 Nanobrick Co., Ltd. Surface treatment method for magnetic particles, magnetic composite prepared thereby, and magnetic composite for labeling target materials
WO2013010446A2 (zh) 2011-07-15 2013-01-24 北京格加纳米技术有限公司 一种有机物表面修饰的金属和金属氧化物材料及其制造方法
FR2981082B1 (fr) 2011-10-05 2015-01-16 Sikemia Procede de traitement de surface de micro/nanoparticules par voie chimique et son application a l'obtention de composition de pigment destinee au domaine de la cosmetique, de la peinture ou des encres
KR101702000B1 (ko) 2011-10-21 2017-02-03 삼성전자 주식회사 반도체 나노결정-고분자 복합입자, 이의 제조방법 및 이를 포함하는 복합체 필름 및 광전자 소자
US9359689B2 (en) 2011-10-26 2016-06-07 Pixelligent Technologies, Llc Synthesis, capping and dispersion of nanocrystals
DE102011085642A1 (de) 2011-11-03 2013-05-08 Bayer Materialscience Aktiengesellschaft Verfahren zur Herstellung einer Metallnanopartikeldispersion, Metallnanopartikeldispersion sowie deren Verwendung
JP5088761B1 (ja) 2011-11-14 2012-12-05 石原薬品株式会社 銅微粒子分散液、導電膜形成方法及び回路基板
US8822023B2 (en) 2012-01-26 2014-09-02 The United States Of America, As Represented By The Secretary Of The Navy Refractory metal ceramics and methods of making thereof
JP6028974B2 (ja) 2012-11-14 2016-11-24 三星電子株式会社Samsung Electronics Co.,Ltd. ナノコンポジット、ナノコンポジットの製造方法、及び面発光素子
DE102013100546B4 (de) 2013-01-18 2022-06-23 Schott Ag Dispersionen von nanoskaligen Dentalglaspartikeln und Verfahren zu deren Herstellung
WO2014127370A1 (en) 2013-02-15 2014-08-21 Goia Dan V Method and composition for dispersions of gold nanoparticles

Also Published As

Publication number Publication date
US8920675B2 (en) 2014-12-30
EP2632849A4 (en) 2014-12-31
JP2018047448A (ja) 2018-03-29
EP3190083A1 (en) 2017-07-12
JP7019345B2 (ja) 2022-02-15
EP2632849A2 (en) 2013-09-04
CN103328374B (zh) 2017-04-26
JP2016128374A (ja) 2016-07-14
CN103328374A (zh) 2013-09-25
KR20130132452A (ko) 2013-12-04
KR101945383B1 (ko) 2019-02-07
US20170044687A1 (en) 2017-02-16
US20130221279A1 (en) 2013-08-29
EP3190083B1 (en) 2020-08-26
WO2012058271A2 (en) 2012-05-03
US10753012B2 (en) 2020-08-25
CN107416764A (zh) 2017-12-01
WO2012058271A3 (en) 2012-08-16
JP2014503446A (ja) 2014-02-13

Similar Documents

Publication Publication Date Title
JP6203810B2 (ja) ナノ結晶の合成、キャップ形成および分散
JP7024006B2 (ja) ナノ結晶の合成、キャップ形成および分散
US9359689B2 (en) Synthesis, capping and dispersion of nanocrystals

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160119

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170117

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170119

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20170412

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20170616

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170718

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170801

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170830

R150 Certificate of patent or registration of utility model

Ref document number: 6203810

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R157 Certificate of patent or utility model (correction)

Free format text: JAPANESE INTERMEDIATE CODE: R157

R157 Certificate of patent or utility model (correction)

Free format text: JAPANESE INTERMEDIATE CODE: R157

RVOP Cancellation by post-grant opposition