WO2013010446A2 - 一种有机物表面修饰的金属和金属氧化物材料及其制造方法 - Google Patents

一种有机物表面修饰的金属和金属氧化物材料及其制造方法 Download PDF

Info

Publication number
WO2013010446A2
WO2013010446A2 PCT/CN2012/078462 CN2012078462W WO2013010446A2 WO 2013010446 A2 WO2013010446 A2 WO 2013010446A2 CN 2012078462 W CN2012078462 W CN 2012078462W WO 2013010446 A2 WO2013010446 A2 WO 2013010446A2
Authority
WO
WIPO (PCT)
Prior art keywords
metal
organic
functional group
amine functional
amine
Prior art date
Application number
PCT/CN2012/078462
Other languages
English (en)
French (fr)
Inventor
郭伯良
Original Assignee
北京格加纳米技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN2011101976008A external-priority patent/CN102881392A/zh
Priority claimed from CN201110305517.8A external-priority patent/CN103045161B/zh
Application filed by 北京格加纳米技术有限公司 filed Critical 北京格加纳米技术有限公司
Priority to EP12815401.0A priority Critical patent/EP2736052B1/en
Publication of WO2013010446A2 publication Critical patent/WO2013010446A2/zh
Priority to US14/155,352 priority patent/US9548147B2/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/34Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites
    • H01F1/342Oxides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/06Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations
    • A61K49/18Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes
    • A61K49/1818Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles
    • A61K49/1821Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles
    • A61K49/1824Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles coated or functionalised nanoparticles
    • A61K49/1827Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles coated or functionalised nanoparticles having a (super)(para)magnetic core, being a solid MRI-active material, e.g. magnetite, or composed of a plurality of MRI-active, organic agents, e.g. Gd-chelates, or nuclei, e.g. Eu3+, encapsulated or entrapped in the core of the coated or functionalised nanoparticle
    • A61K49/1833Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles coated or functionalised nanoparticles having a (super)(para)magnetic core, being a solid MRI-active material, e.g. magnetite, or composed of a plurality of MRI-active, organic agents, e.g. Gd-chelates, or nuclei, e.g. Eu3+, encapsulated or entrapped in the core of the coated or functionalised nanoparticle having a (super)(para)magnetic core coated or functionalised with a small organic molecule
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/06Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations
    • A61K49/18Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes
    • A61K49/1818Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles
    • A61K49/1821Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles
    • A61K49/1824Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles coated or functionalised nanoparticles
    • A61K49/1827Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles coated or functionalised nanoparticles having a (super)(para)magnetic core, being a solid MRI-active material, e.g. magnetite, or composed of a plurality of MRI-active, organic agents, e.g. Gd-chelates, or nuclei, e.g. Eu3+, encapsulated or entrapped in the core of the coated or functionalised nanoparticle
    • A61K49/1851Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles coated or functionalised nanoparticles having a (super)(para)magnetic core, being a solid MRI-active material, e.g. magnetite, or composed of a plurality of MRI-active, organic agents, e.g. Gd-chelates, or nuclei, e.g. Eu3+, encapsulated or entrapped in the core of the coated or functionalised nanoparticle having a (super)(para)magnetic core coated or functionalised with an organic macromolecular compound, i.e. oligomeric, polymeric, dendrimeric organic molecule
    • A61K49/1857Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles coated or functionalised nanoparticles having a (super)(para)magnetic core, being a solid MRI-active material, e.g. magnetite, or composed of a plurality of MRI-active, organic agents, e.g. Gd-chelates, or nuclei, e.g. Eu3+, encapsulated or entrapped in the core of the coated or functionalised nanoparticle having a (super)(para)magnetic core coated or functionalised with an organic macromolecular compound, i.e. oligomeric, polymeric, dendrimeric organic molecule the organic macromolecular compound being obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. PLGA
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/10Metallic powder containing lubricating or binding agents; Metallic powder containing organic material
    • B22F1/102Metallic powder coated with organic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B13/00Oxygen; Ozone; Oxides or hydroxides in general
    • C01B13/14Methods for preparing oxides or hydroxides in general
    • C01B13/145After-treatment of oxides or hydroxides, e.g. pulverising, drying, decreasing the acidity
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/04Compounds of zinc
    • C09C1/043Zinc oxide
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/22Compounds of iron
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/22Compounds of iron
    • C09C1/24Oxides of iron
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/34Compounds of chromium
    • C09C1/346Chromium oxides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/36Compounds of titanium
    • C09C1/3607Titanium dioxide
    • C09C1/3669Treatment with low-molecular organic compounds
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • G01N33/54313Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals the carrier being characterised by its particulate form
    • G01N33/54326Magnetic particles
    • G01N33/5434Magnetic particles using magnetic particle immunoreagent carriers which constitute new materials per se
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y5/00Nanobiotechnology or nanomedicine, e.g. protein engineering or drug delivery
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/42Magnetic properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/0036Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties showing low dimensional magnetism, i.e. spin rearrangements due to a restriction of dimensions, e.g. showing giant magnetoresistivity
    • H01F1/0045Zero dimensional, e.g. nanoparticles, soft nanoparticles for medical/biological use
    • H01F1/0054Coated nanoparticles, e.g. nanoparticles coated with organic surfactant

Definitions

  • the invention relates to an organic surface-modified metal and metal oxide material and a manufacturing method thereof, which are mainly applied to the fields of biology, medicine, medicine, energy, chemical industry and environment.
  • the inorganic-organic interface problem is a challenge faced by current science and technology.
  • the combination of inorganic materials and organic materials can produce new high-performance materials, and the key is to effectively solve the problem of organic-inorganic interfaces.
  • the success of metal titanium and its alloy materials implanted in living bones, scaffold materials, etc. depends on the biocompatibility of the surface; in the field of nanotechnology, titanium oxide nanoparticles do
  • solar cell semiconductor materials, photocatalytic materials, super-double sparse materials, antibacterial materials, dye coating additives, etc. it is necessary to organically modify the surface to improve the properties of the material.
  • the prior art solves the organic-machine interface problem mostly by adopting a physical interface method, such as various spraying technologies, and the physical interface has a poor combination and is easy to fall off.
  • Some methods that use chemical interfaces to solve organic-machine interface problems such as surfactant methods, silicon germanium coupling agents, etc., mainly through the combination of coordination bonds, hydrogen bonds, electrostatic interactions, and van der Waals forces, -
  • the inorganic interface is unstable. Therefore, the problem of the organic-inorganic interface between metal and metal oxide materials and organic matter remains a huge challenge for current science and technology.
  • An object of the present invention is to provide a metal and metal oxide material having an organic surface modification and a method for producing the same, which are directed to the problems of the above-described methods for modifying organic substances on metal and metal oxide materials.
  • the purpose is to achieve a strong covalent bond between metal and metal oxide materials and organic molecules coated on the outer surface thereof to solve the problem of organic-inorganic interface instability.
  • Magnetic particles with functional groups on the surface due to their special magnetic effects, can be accurately positioned, moved, manipulated and separated under the control of an external magnetic field.
  • magnetic particles with functional groups on the surface especially nanometer-sized magnetic particles, have a large specific surface area and have important application prospects in the fields of chemical catalysis, environmental wastewater treatment, and heavy metal recovery.
  • the main path of the prior art to solve this problem is a scheme of forming a composite material by using inorganic magnetic particles and organic substances, including a method of forming a core-shell structured magnetic particle with an organic molecule, such as a surfactant coating method, a silicon germanium method, or the like. And a method of forming a magnetic polymer particle by compounding with a polymer, such as a blending embedding method, an interfacial deposition method, a monomer polymerization method, or the like.
  • these methods all have such shortcomings and disadvantages.
  • the magnetic particles with small size controllability, narrow particle size distribution, strong magnetic properties, high surface functional group capacity, simple synthesis process and their synthesis methods have yet to be further explored.
  • Another object of the present invention is to provide a magnetic particle having a controllable size, a narrow particle size distribution, a stronger saturation magnetization, and a higher surface functional group capacity, and a process thereof, in view of the problems of the above functionalized magnetic particles and their synthesis methods. Simple synthesis method.
  • the main contents of the present invention are:
  • An organic surface-modified metal and metal oxide material consisting of a metal and metal oxide material and an organic shell coated on an outer surface thereof, the metal and metal oxide material being bonded to the organic shell by strong chemical bonds.
  • the metal and metal oxide material is a pure metal, or metal alloy, or metal oxide, or metal alloy oxide material, such as iron, titanium, indium, vanadium, manganese, tungsten, cobalt, nickel, zinc, zirconium, a pure metal such as magnesium, aluminum, or silicon, and a metal alloy thereof, or a metal oxide, or a metal alloy oxide material.
  • the organic shell coated on the outer surface of the metal and metal oxide material is an organic compound containing an amine functional group, including fatty amines, alcohol amines, amides, alicyclic amines, aromatic amines and naphthalenes.
  • An amine or the like; or an organic polymer containing an amine functional group, including a polymer containing an amine monomer or a natural polymer such as polyethyleneimine; or an amine-containing functional group A mixture of two or more of an organic compound of a group and an organic polymer containing an amine functional group.
  • a method for producing an organic surface-modified metal and a metal oxide material by using a metal and a metal oxide material and an organic compound containing an amine functional group and/or a polymer having an amine functional group in an organic phase After mixing, it is directly synthesized by high temperature chemical reaction.
  • the metal and metal oxide material is a pure metal, or metal alloy, or metal oxide, or metal alloy oxide material, such as iron, titanium, indium, vanadium, manganese, tungsten, cobalt, nickel, zinc, zirconium, a pure metal such as magnesium, aluminum, or silicon, and a metal alloy thereof, or a metal oxide, or a metal alloy oxide material.
  • the organic shell coated on the outer surface of the metal and metal oxide material is an organic compound containing an amine functional group, including fatty amines, alcohol amines, amides, alicyclic amines, aromatic amines and naphthalenes.
  • An amine or the like; or an organic polymer containing an amine functional group, including a polymer containing an amine monomer or a natural polymer such as polyethyleneimine; or an amine-containing functional group A mixture of two or more of an organic compound of a group and an organic polymer containing an amine functional group.
  • the organic phase is a solution of an organic compound containing an amine functional group; or a solution of an organic compound containing an amine functional group and an organic solvent; or an organic polymer and an organic solvent containing an amine functional group; a solution formed by mixing; or a solution formed by mixing an organic compound containing an amine functional group with an organic polymer containing an amine functional group; or an organic compound containing an amine functional group, and having an amine functional group A solution formed by mixing an organic polymer with an organic solvent.
  • the reaction temperature of the high temperature chemical reaction is 50-300 degrees Celsius.
  • the present invention directly and simply coats the surface of metal and metal oxide materials with a single chemical reaction in the manufacturing process to make metals and metals.
  • the surface of the oxide material is directly covered with a layer of organic matter containing functional groups, which solves the problem of interface between metal and metal oxide materials and organic compounds or polymers.
  • This organic surface modification metal and metal oxide material technology Not only is the manufacturing process very simple, it is easy to be industrially produced on a large scale, and the resulting metal-modified metal and metal oxide materials have excellent performance, which are manifested in the following aspects:
  • the size and shape of the metal and metal oxide materials are not limited, and the surface of the shaped device processed by the granular, needle, sheet, block or various methods can be organically modified;
  • the surface organic functional group has a high capacity and can be further surface chemically or biologically modified by surface functional groups;
  • the main contents of the present invention are:
  • a functional magnetic particle consisting of an inner core of an inorganic magnetic particle and an outer shell of an organic material coated on an outer surface thereof, and an inner core of the inorganic magnetic particle and the outer shell of the organic substance are bonded by a strong chemical bond, and have a core-shell structure, wherein the core particle diameter of the inorganic magnetic particle is 2 nanometers to 20 micrometers.
  • the core of the inorganic magnetic particle is a ferrite particle having a molecular formula of XFe 2 0 4 , wherein X is a divalent iron ion (Fe 2+ ) or a divalent ionic radius similar to that of the divalent iron ion (Fe 2+ ).
  • Metal ions such as Mn 2+ , Zn 2+ , Cu 2+ , Ni 2+ , Mg 2+ , Co 2+ , etc.
  • a plurality of metal ion groups such as Ni-Zn, Mn- whose average chemical valence is divalent.
  • Mg-Zn or the like or a ferric oxide particle; or an iron nitride particle; or a metal iron particle; or a ferrite particle, a ferric oxide particle, a metal iron particle, a mixture of two or more of the iron nitride particles;
  • the organic material shell coated on the outer surface of the inorganic magnetic particles is an organic amine compound, that is, an organic compound containing an amine functional group, including aliphatic amines such as diamine (ethylenediamine, hexamethylene diammonium, etc.), alcoholamine Classes, amides, alicyclic amines, aromatic amines, and naphthalene amines; Instruction manual
  • an organic polymer containing an amine functional group including a polymer containing an amine monomer or a natural polymer such as polyethyleneimine; or an organic compound containing an amine functional group and an amine group-containing function a mixture of two or more kinds of organic polymers of a group; a method of synthesizing functional magnetic particles, which is an inorganic magnetic particle and an organic compound containing an amine functional group and/or an amine group-containing function The polymer of the group is directly synthesized in the organic phase and then synthesized by a high temperature chemical reaction;
  • the core of the inorganic magnetic particle is a ferrite particle having a molecular formula of XFe 2 0 4 , wherein X is a divalent iron ion (Fe 2+ ) or a divalent ionic radius similar to that of the divalent iron ion (Fe 2+ ).
  • Metal ions such as Mn 2+ , Zn 2+ , Cu 2+ , Ni 2+ , Mg 2+ , Co 2+ , etc.
  • a plurality of metal ion groups such as Ni-Zn, Mn- whose average chemical valence is divalent.
  • Mg-Zn or the like or a ferric oxide particle; or an iron nitride particle; or a metal iron particle; or a ferrite particle, a ferric oxide particle, a metal iron particle, a mixture of two or more of the iron nitride particles; having a particle size between 2 nm and 20 microns;
  • An organic compound containing an amine functional group including aliphatic amines such as diamines (ethylenediamine, hexamethylenediamine, etc.), alcohol amines, amides, alicyclic amines, aromatic amines such as anilines, and Naphthalene amines, etc.;
  • An organic polymer containing an amine functional group including a polymer containing an amine monomer or a natural polymer such as polyethyleneimine; wherein the organic phase is an organic compound solution containing an amine functional group, or a solution formed by mixing an organic compound containing an amine functional group with an organic solvent, or a solution in which an organic polymer containing an amine functional group is mixed with an organic solvent; or an organic compound containing an amine functional group and a solution formed by mixing an organic polymer containing an amine functional group, or a solution containing an organic compound containing an amine functional group, an organic polymer containing an amine functional group, and an organic solvent;
  • the reaction temperature of the high temperature chemical reaction is 50-300 degrees Celsius.
  • the present invention directly and directly coats the surface of the magnetic iron oxide particles by a one-step chemical reaction on the synthesis process, so that the surface of the inorganic magnetic particles is directly covered.
  • the organic shell of the functional group has a good solution to the interface problem between the inorganic magnetic iron oxide particles and the organic compound or polymer.
  • the functionalized magnetic particles are not only simple in synthesis process, but also easy to be industrially produced on a large scale.
  • the performance of the functionalized magnetic particles is excellent in the following aspects: 1
  • the magnetic particle size and particle size distribution are highly selective, and various methods of synthetic or commercial inorganic magnetic particles (including ferrite particles, trioxide)
  • the two iron particles, the metal iron particles and the iron nitride particles, etc. can all be surface functionalized; 2 the specific saturation magnetization is high and the magnetic properties are uniform, because the organic matter accounts for a small mass ratio of the functionalized magnetic particles, and the ratio of the functionalized magnetic particles is small.
  • the saturation magnetization is close to the maximum value of the inorganic magnetic particles; Magnetic separation operation and control; 3 surface functional group capacity is high, reaching the level of ion exchange resin, further surface chemical or biological modification through surface functional groups; 4 chemical and physical properties are stable, inorganic magnetic particles and organic material shell are chemically bonded , the combination is firm, does not fall off under various chemical reactions and multiple cycles of use; 5 ethylenediamine modified functionalized magnetic particles have strong surface hydrophilicity and low non-specific binding with biomolecules; 6 easy to be in solution Repeated operation in dispersion, magnetic separation and redispersion.
  • the titanium dioxide particles having an amine functional group on the surface have a core/shell structure, the core is titanium oxide particles having an average diameter of 50 nm, the shell is an ethylenediamine monolayer, and the core and the shell are bonded by strong chemical bonds.
  • the zinc oxide particles having an amine functional group on the surface have a core/shell structure, the core is zinc oxide particles having an average diameter of 100 nm, the shell is an ethylenediamine monolayer, and the core and the shell are bonded by strong chemical bonds.
  • chromium oxide particles having an average diameter of 200 nm were added, and reacted under stirring for 8 hours to remove the reaction.
  • the remaining p-phenylenediamine is repeatedly washed with ethanol at least 5 times by centrifugation to obtain chromium oxide particles having an amine functional group on the surface.
  • the above-mentioned surface-containing functional group-containing chromium oxide particles have a core/shell structure, the core is a chromium oxide granule having an average diameter of 200 nm, the shell is a p-phenylenediamine monolayer, and the core and the shell pass strong. Chemical bond bonding.
  • the surface of the titanium alloy sheet having the hydroxyl group-containing functional group on the surface is covered with a monoamine shell of monoethanolamine, and the titanium alloy sheet substrate is bonded to the monomolecular shell of the monoethanolamine by strong chemical bonds.
  • the surface of the stainless steel rod having the amine functional group on the surface is covered with a layer of naphthalene diamine monomolecular shell, and the stainless steel rod matrix and the naphthalene diamine monomer shell are bonded by strong chemical bonds.
  • the surface of the cobalt-chromium alloy wire mesh containing the amine functional group on the surface is covered with a layer of polyethyleneimine molecular shell, and the cobalt mesh alloy wire mesh matrix and the polyethyleneimine molecular single molecule shell are bonded by strong chemical bonds.
  • octadecylamine 500 g was added to a 1 liter stirred heating reactor, 100 g of a nickel-titanium alloy metal plate having a size of 20 mm x 10 mm x 3 mm was added, the temperature was raised to 250 Torr, and the reaction was carried out for 12 hours under stirring.
  • the octadecylamine supernatant is washed repeatedly with ethanol for at least 3 times to obtain a nickel-titanium alloy metal sheet having a surface hydrophobic property.
  • the surface of the above-mentioned surface hydrophobic nickel-titanium alloy metal plate is covered with a layer of octadecylamine monomolecular shell, and the nickel-titanium alloy metal plate substrate and the octadecylamine monomolecular shell are bonded by strong chemical bonds.
  • the surface of the magnesium alloy strip containing the amine functional group on the surface is covered with a mixture of polyethyleneimine and ethylenediamine, and the magnesium alloy strip matrix is combined with the polyethyleneimine and ethylenediamine mixture to form a strong chemical bond. .
  • the magnetic ferroferric oxide nanoparticles having an amine functional group on the surface have a core/shell structure, the core is a magnetic ferroferric oxide particle having an average diameter of 20 nm, and the shell is an ethylenediamine monolayer, a core and a shell. Bonded by strong chemical bonds.
  • the magnetic ferroferric oxide nanoparticles having an amine functional group on the surface have a core/shell structure, the core is magnetic ferroferric oxide particles having an average diameter of 60 nm, the shell is a hexamethylenediamine monolayer, and the core and the shell Bonded by strong chemical bonds.
  • the magnetic ferroferric oxide nanoparticles having an amine functional group on the surface have a core/shell structure, the core is a magnetic ferroferric oxide particle having an average diameter of 100 nm, and the shell is a p-phenylenediamine monolayer, and the core The shell is bonded by strong chemical bonds.
  • the magnetic cobalt ferrite nanoparticles having hydroxyl functional groups on the surface have a core/shell structure, the core is magnetic cobalt ferrite particles having an average diameter of 5 nm, the shell is a monoamine layer of monoethanolamine, and the core and the shell pass strong. Chemical bond bonding.
  • the magnetic manganese-zinc ferrite particles having an amine functional group on the surface have a core/shell structure, the core is a magnetic manganese-zinc ferrite particle having an average diameter of 1 ⁇ m, and the shell is a naphthalene diamine monolayer, and the core The shell is bonded by strong chemical bonds.
  • the above-mentioned magnetic ferric oxide particles having an amine functional group have a core/shell structure, the core is magnetic ferroferric oxide particles having an average diameter of 5 ⁇ m, the shell is a polyethyleneimine molecular layer, and the core and the shell pass. Strong chemical bond bonding.
  • octadecylamine 500 g was added to a 1 liter stirred heating reactor, 100 g of metal iron particles having an average diameter of 10 ⁇ m were added, the temperature was raised to 250 ° C, and the reaction was carried out for 20 hours under stirring, and the mixture was decanted by magnetic separation.
  • the octadecylamine supernatant is washed repeatedly with ethanol at least 3 times to obtain magnetic metal iron particles having surface hydrophobic properties.
  • the above surface hydrophobic metal iron particles have a core/shell structure, the core is metal iron particles having an average diameter of 10 ⁇ m, the shell is a monomethylamine group, and the core and the shell are bonded by strong chemical bonds.
  • the magnetic iron nitride particles having an amine functional group on the surface have a core/shell structure, the core is magnetic iron nitride particles having an average diameter of 500 nm, the shell is an ethylenediamine monolayer, and the core and the shell pass strong chemical bonds. Combine.
  • the magnetic ferroferric oxide nanoparticles having an amine functional group on the surface have a core/shell structure, the core is a magnetic ferroferric oxide particle having an average diameter of 10 nm, and the shell is a mixed molecule of polyethyleneimine and ethylenediamine.
  • the layer, the core and the shell are bonded by strong chemical bonds.
  • the magnetic particles having an amine functional group on the surface have a core/shell structure, and the core is a mixed particle having an average diameter of 200 nm and consisting of magnetic ferroferric oxide, metallic iron and iron nitride from the inside to the outside, and the shell is B.
  • the diamine monolayer, the core and the shell are bonded by strong chemical bonds.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Urology & Nephrology (AREA)
  • Biomedical Technology (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Epidemiology (AREA)
  • Physics & Mathematics (AREA)
  • Radiology & Medical Imaging (AREA)
  • Veterinary Medicine (AREA)
  • General Physics & Mathematics (AREA)
  • Hematology (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Analytical Chemistry (AREA)
  • Biotechnology (AREA)
  • Cell Biology (AREA)
  • Materials Engineering (AREA)
  • Microbiology (AREA)
  • Composite Materials (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Biochemistry (AREA)
  • Pathology (AREA)
  • Dispersion Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Soft Magnetic Materials (AREA)
  • Hard Magnetic Materials (AREA)
  • Pigments, Carbon Blacks, Or Wood Stains (AREA)

Description

说 明 书 一种有机物表面修饰的金属和金属氧化物材料及其制造方法 技术领域:
本发明涉及一种有机物表面修饰的金属和金属氧化物材料及其制造方法, 主要应用于生物、 医学、 药 物、 能源、 化工、 环境等领域。
背景技术- 无机 -有机界面问题是当前科学与技术面临的挑战,无机材料与有机材料的复合可以产生新型的高性能 材料, 其关键是有效解决有机 -无机界面的问题。 例如, 在生物医学领域, 金属钛及其合金材料植入生物体 内的骨骼固定材料、 支架材料等, 其成功与否取决于表面的生物相容性问题; 在纳米技术领域, 氧化钛纳 米颗粒做为太阳能电池半导体材料、 光催化材料、 超双疏材料、 抗菌材料、 染料涂料添加剂等, 都需要对 其表面有机修饰以提高材料的性能。
现有技术解决有机-机界面问题大部分采用物理界面的方法,如各种喷涂技术,这种物理界面的结合牢 固性较差,容易脱落。一些采用化学界面解决有机-机界面问题的方法,如表面活性剂法、硅垸偶联剂法等, 主要通过配位键、 氢键、 静电作用和范德华力等弱相互作用结合, 形成的有机 -无机界面不稳定。 因此, 金 属和金属氧化物材料与有机物的有机-无机界面问题仍然是当前科学和技术面临的巨大挑战。
本发明的一个目的就是针对上述金属和金属氧化物材料表面有机物修饰方法存在的问题, 提供一种有 机物表面修饰的金属和金属氧化物材料及其制造方法。 目的是实现金属和金属氧化物材料与包覆在其外表 面的有机物分子形成强共价结合, 解决有机-无机界面不稳定性的问题。
表面含有功能基团的磁性颗粒, 由于具有特殊的磁学效应, 在外加磁场控制下, 能够精确地对其进行 定位、 移动、 操纵和分离, 作为一种磁性载体和磁性标记物, 它可以携带各种药物、 偶联各种生物配基, 形成各种生物磁性组装系统, 在生物科学研究、 医学诊断和治疗、 药物筛选、 生化产品分离、 食品和环境 微生物检测等领域已经开辟了非常广泛的应用方向。 与此同时, 表面含有功能基团的磁性颗粒, 特别是纳 米尺寸的磁性颗粒, 具有巨大的比表面积, 在化工催化、 环境废水处理、 重金属回收等领域也有着重要的 应用前景。
合成无机磁性颗粒的方法很多, 但是, 这些无机磁性颗粒不具有表面有机活性功能基团, 难以实际应 用。 现有技术解决这一问题的主要路径是采用无机磁性颗粒与有机物形成复合材料的方案, 包括和有机分 子复合形成核壳结构磁性颗粒的方法, 如表面活性剂包覆法、 硅垸化法等, 以及和聚合物复合形成磁性聚 合物颗粒的方法, 如共混包埋法、 界面沉积法、 单体聚合法等。 但是, 这些方法都存在这样或那样的缺点 和不足, 尺寸可控、 粒度分布窄、 磁性强、 表面功能基团容量高、 合成工艺简单的磁性颗粒及其合成方法 尚有待进一步探索。
本发明的另外一个目的就是针对上述功能化磁性颗粒及其合成方法存在的问题, 提供一种尺寸可控、 粒度分布窄、 比饱和磁化强度强、 表面功能基团容量高的磁性颗粒及其工艺简单的合成方法。
发明内容- 为实现上述第一个目的, 本发明的主要内容是:
一种有机物表面修饰的金属和金属氧化物材料, 由金属和金属氧化物材料与包覆在其外表面的有机物 外壳组成, 金属和金属氧化物材料与有机物外壳通过强化学键结合。
其中金属和金属氧化物材料是一种纯金属、 或金属合金、 或金属氧化物、 或金属合金氧化物材料, 如 铁、 钛、 铭、 钒、 锰、 钨、 钴、 镍、 锌、 锆、 镁、 铝、 硅等纯金属及其形成的金属合金、 或金属氧化物、 或金属合金氧化物材料。 说 明 书
其中包覆在金属和金属氧化物材料外表面的有机物外壳是一种含有胺基功能基团的有机化合物, 包括 脂肪胺类、 醇胺类、 酰胺类、 脂环胺类、 芳香胺类和萘系胺类等; 或者是一种含有胺基功能基团的有机高 分子, 包括含胺类单体的聚合物或天然聚合物, 如聚乙烯亚胺等; 或者是一种含有胺基功能基团的有机化 合物和含有胺基功能基团的有机高分子中的两种或多种组成的混合物。
一种有机物表面修饰金属和金属氧化物材料的制造方法, 是将金属和金属氧化物材料和含有胺基功能 基团的有机化合物和 (或) 含有胺基功能基团的高分子在有机相中混合后直接高温化学反应合成。
其中金属和金属氧化物材料是一种纯金属、 或金属合金、 或金属氧化物、 或金属合金氧化物材料, 如 铁、 钛、 铭、 钒、 锰、 钨、 钴、 镍、 锌、 锆、 镁、 铝、 硅等纯金属及其形成的金属合金、 或金属氧化物、 或金属合金氧化物材料。
其中包覆在金属和金属氧化物材料外表面的有机物外壳是一种含有胺基功能基团的有机化合物, 包括 脂肪胺类、 醇胺类、 酰胺类、 脂环胺类、 芳香胺类和萘系胺类等; 或者是一种含有胺基功能基团的有机高 分子, 包括含胺类单体的聚合物或天然聚合物, 如聚乙烯亚胺等; 或者是一种含有胺基功能基团的有机化 合物和含有胺基功能基团的有机高分子中的两种或多种组成的混合物。
其中的有机相是含有胺基功能基团的有机化合物溶液; 或者是含有胺基功能基团的有机化合物与有机 溶剂混合形成的溶液; 或者是含有胺基功能基团的有机高分子与有机溶剂混合形成的溶液; 或者是含有胺 基功能基团的有机化合物与含有胺基功能基团的有机高分子混合形成的溶液; 或者是含有胺基功能基团的 有机化合物、 含有胺基功能基团的有机高分子与有机溶剂混合形成的溶液。
其中高温化学反应的反应温度在 50-300摄氏度。
同现有有机物表面修饰金属和金属氧化物材料的方法相比, 本发明在制造工艺上通过一步化学反应直 接对金属和金属氧化物材料表面进行了简单而有效的有机物包覆, 使金属和金属氧化物材料表面直接覆盖 了一层含功能基团的有机物外壳, 很好地解决了金属和金属氧化物材料与有机化合物或聚合物的界面问 题, 这种有机物表面修饰金属和金属氧化物材料技术不仅制造工艺非常简单, 易于大规模工业化生产, 而 且产生的有机物表面修饰的金属和金属氧化物材料性能优异, 具体表现在以下几个方面:
①金属和金属氧化物材料尺寸和形状不受限制, 颗粒状、 针状、 片状、 块状或各种方法加工制作的异 形器件表面都可以有机物修饰;
②表面有机功能基团容量高, 可以通过表面功能基团进一步表面化学或生物修饰;
③化学和物理性质稳定, 金属和金属氧化物材料与有机物外壳通过化学键连接, 结合牢固, 在各种化 学反应和多次循环使用条件下不会脱落。
上述金属和金属氧化物材料性能符合生物、 医学、 制药、 能源、 化工、 环境等领域的应用需要。 为实现上述第二个目的, 本发明的主要内容是:
一种功能化磁性颗粒, 由无机磁性颗粒内核和包覆在其外表面的有机物外壳组成, 无机磁性颗粒内核 与有机物外壳通过强化学键结合, 具有核-壳结构, 其中无机磁性颗粒内核粒径在 2纳米一 20微米之间。
其中无机磁性颗粒内核是一种铁氧体颗粒, 其分子式为 XFe204, 其中 X是二价铁离子 (Fe2+) 或者离 子半径与二价铁离子 (Fe2+) 相近的二价金属离子 (如 Mn2+、 Zn2+、 Cu2+、 Ni2+、 Mg2+、 Co2+等) 或者平均 化学价为二价的多种金属离子组 (如 Ni-Zn、 Mn-Mg-Zn等); 或者是一种三氧化二铁颗粒; 或者是一种氮 化铁颗粒; 或者是一种金属铁颗粒; 或者是铁氧体颗粒、 三氧化二铁颗粒、 金属铁颗粒、 氮化铁颗粒中的 两种或多种组成的混合物;
其中包覆在无机磁性颗粒外表面的有机物外壳是有机胺类化合物, 即含有胺基功能基团的有机化合 物, 包括脂肪胺类如二元胺 (乙二胺、 己二铵等)、 醇胺类、 酰胺类、 脂环胺类、 芳香胺类和萘系胺类等; 说 明 书
或者是含有胺基功能基团的有机高分子, 包括含胺类单体的聚合物或天然聚合物, 如聚乙烯亚胺等; 或者 是含有胺基功能基团的有机化合物和含有胺基功能基团的有机高分子中的两种或多种组成的混合物; 一种合成功能化磁性颗粒的方法, 是将无机磁性颗粒和含有胺基功能基团的有机化合物和 (或) 含有 胺基功能基团的高分子在有机相中混合后直接高温化学反应合成;
其中无机磁性颗粒内核是一种铁氧体颗粒, 其分子式为 XFe204, 其中 X是二价铁离子 (Fe2+) 或者离 子半径与二价铁离子 (Fe2+) 相近的二价金属离子 (如 Mn2+、 Zn2+、 Cu2+、 Ni2+、 Mg2+、 Co2+等) 或者平均 化学价为二价的多种金属离子组 (如 Ni-Zn、 Mn-Mg-Zn等); 或者是一种三氧化二铁颗粒; 或者是一种氮 化铁颗粒; 或者是一种金属铁颗粒; 或者是铁氧体颗粒、 三氧化二铁颗粒、 金属铁颗粒、 氮化铁颗粒中的 两种或多种组成的混合物; 粒径在 2纳米一 20微米之间;
其中含有胺基功能基团的有机化合物, 包括脂肪胺类如二元胺 (乙二胺、 己二铵等)、 醇胺类、 酰胺 类、 脂环胺类、 芳香胺类如苯胺类, 和萘系胺类等;
其中含有胺基功能基团的有机高分子, 包括含胺类单体的聚合物或天然聚合物, 如聚乙烯亚胺等; 其中的有机相是含有胺基功能基团的有机化合物溶液, 或者是含有胺基功能基团的有机化合物与有机 溶剂混合形成的溶液, 或者是含有胺基功能基团的有机高分子与有机溶剂混合形成的溶液; 或者是含有胺 基功能基团的有机化合物与含有胺基功能基团的有机高分子混合形成的溶液, 或者是含有胺基功能基团的 有机化合物、 含有胺基功能基团的有机高分子与有机溶剂混合形成的溶液;
其中高温化学反应的反应温度在 50-300摄氏度。
同现有功能化磁性颗粒及其合成技术相比, 本发明在合成工艺上通过一步化学反应直接对磁性氧化铁 颗粒表面进行了简单而有效的有机物包覆, 使无机磁性颗粒表面直接覆盖了一层含功能基团的有机物外 壳, 很好地解决了无机磁性氧化铁颗粒与有机化合物或聚合物的界面问题, 这种功能化磁性颗粒不仅合成 工艺非常简单, 易于大规模工业化生产, 而且产生的功能化磁性颗粒性能的优异, 具体表现在以下几个方 面: ①磁性颗粒尺寸和粒度分布的可选择性大, 多种方法合成的或商业化的无机磁性颗粒(包括铁氧体颗 粒、三氧化二铁颗粒、金属铁颗粒和氮化铁颗粒等)都可以表面功能化; ②比饱和磁化强度高和磁性均一, 由于有机物占整个功能化磁性颗粒的质量比很小, 功能化磁性颗粒的比饱和磁化强度接近于无机磁性颗粒 的最大值; 易于磁性分离操作和控制; ③表面功能基团容量高, 达到离子交换树脂的水平, 可以通过表面 功能基团进一步表面化学或生物修饰; ④化学和物理性质稳定, 无机磁性颗粒与有机物外壳通过化学键连 接, 结合牢固, 在各种化学反应和多次循环使用条件下不会脱落; ⑤乙二胺修饰的功能化磁性颗粒的表面 亲水性强, 与生物分子的非特异性结合低; ⑥易于在溶液中分散、 磁性分离和再分散重复操作。
作为一种磁性分离载体或磁性标记物, 上述性能符合生物、 医学、 制药、 化工、 环境等领域的应用需 要。
具体实施方式:
下面通过实施例对本发明作进一步详细说明:
实施例 1.
在盛有 500ml乙二胺的 1升搅拌式加热反应器中, 加入 100克平均直径为 50纳米的二氧化钛颗粒, 升温至 120 °C , 在回流搅拌条件下反应 4小时, 通过离心分离去除乙二胺上清液, 再用普通水反复清洗至 少 3次, 即可得到表面含胺基功能基团的二氧化钛颗粒。
上述表面含胺基功能基团的二氧化钛颗粒具有核 /壳式结构,核为平均直径为 50纳米的二氧化钛颗粒, 壳为乙二胺单分子层, 核与壳通过强化学键结合。
实施例 2. 说 明 书
在盛有 1000ml己二胺的 2升搅拌式加热反应器中, 加入 500克平均直径为 100纳米的氧化锌颗粒, 升温至 150°C, 在搅拌条件下反应 6小时, 通过离心分离去除乙二胺上清液, 再用普通水反复清洗至少 3 次, 即可得到表面含胺基功能基团的氧化锌颗粒。
上述表面含胺基功能基团的氧化锌颗粒具有核 /壳式结构,核为平均直径为 100纳米的氧化锌颗粒, 壳 为乙二胺单分子层, 核与壳通过强化学键结合。
实施例 3.
将 500克对苯二胺加入到 1升搅拌式加热反应器中, 升温至 200 °C, 加入 100克平均直径为 200纳米 的三氧化二铬颗粒, 在搅泮条件下反应 8小时, 去除反应剩余对苯二胺, 再通过离心分离用乙醇反复清洗 至少 5次, 即可得到表面含胺基功能基团的三氧化二铬颗粒。
上述表面含胺基功能基团的三氧化二铬颗粒具有核 /壳式结构,核为平均直径为 200纳米的三氧化二铬 颗粒, 壳为对苯二胺单分子层, 核与壳通过强化学键结合。
实施例 4.
在盛有 1000ml—乙醇胺的 2升搅拌式加热反应器中,加入尺寸为 20毫米 ><20毫米 χ ΐ毫米的钛合金薄 片 (Ti6A14V) 100片, 升温至 150°C, 在搅拌条件下反应 12小时, 倾去一乙醇胺上清液, 再用普通水反 复清洗至少 3次, 即可得到表面含羟基功能基团的钛合金薄片。
上述表面含羟基功能基团的钛合金薄片表面覆盖了一层一乙醇胺单分子外壳, 钛合金薄片基体与一乙 醇胺单分子外壳通过强化学键结合。
实施例 5.
将 500ml溶解有 50%萘二胺的二甲基甲酰胺溶剂加入到 1升搅拌式加热反应器中,加入 100克直径为 1亳米、 长度为 10亳米的不锈钢棒(316L), 升温至 180°C, 在搅拌条件下反应 20小时, 倾去萘二胺上清 液, 再用乙醇反复清洗至少 3次, 即可得到表面含胺基功能基团的不锈钢棒。
上述表面含胺基功能基团的不锈钢棒表面覆盖了一层萘二胺单分子外壳, 不锈钢棒基体与萘二胺单分 子外壳通过强化学键结合。
实施例 6.
将 1000ml溶解有 50%聚乙烯亚胺的二甲基亚砜溶剂加入到 2升搅拌式加热反应器中, 加入 500克丝 直径为 1毫米、 面积为 10毫米 x20毫米的钴铬合金金属丝网, 升温至 200°C, 在回流搅拌条件下反应 15 小时, 倾去聚乙烯亚胺的二甲基亚砜溶剂上清液, 再用普通水反复清洗至少 3次, 即可得到表面含胺基功 能基团的钴铬合金金属丝网。
上述表面含胺基功能基团的钴铬合金金属丝网表面覆盖了一层聚乙烯亚胺分子外壳, 钴格合金金属丝 网基体与聚乙烯亚胺分子单分子外壳通过强化学键结合。
实施例 7.
将 500克对十八胺加入到 1升搅拌式加热反应器中, 加入 100克尺寸为 20毫米 x lO毫米 x3毫米的镍 钛合金金属板, 升温至 250Γ , 在搅拌条件下反应 12小时, 倾去十八胺上清液, 再用乙醇反复清洗至少 3 次, 即可得到表面疏水性质的镍钛合金金属板。
上述表面疏水性质的镍钛合金金属板表面覆盖了一层十八胺单分子外壳, 镍钛合金金属板基体与十八 胺单分子外壳通过强化学键结合。
实施例 8. 说 明 书
将 1000ml溶解有 25%乙二胺、 25%聚乙烯亚胺和 50%二甲基亚砜的有机溶剂加入到 2升搅拌式加热 反应器中, 加入 500克尺寸为 10毫米 χ2毫米 χ2毫米的镁合金条 (AE21 ), 升温至 120°C, 在回流搅拌条 件下反应 8小时, 倾去有机溶剂上清液, 再用普通水反复清洗至少 3次, 即可得到表面含胺基功能基团的 镁合金条。
上述表面含胺基功能基团的的镁合金条表面覆盖了一层聚乙烯亚胺和乙二胺混合分子外壳, 镁合金条 基体与聚乙烯亚胺和乙二胺混合分子外壳通过强化学键结合。
实施例 9.
在盛有 500ml乙二胺的 1升搅拌式加热反应器中, 加入 100克平均直径为 20纳米的商业化磁性四氧 化三铁纳米颗粒, 升温至 120°C, 在回流搅拌条件下反应 10小时, 通过磁性分离倾去乙二胺上清液, 再用 普通水反复清洗至少 3次, 即可得到表面含胺基功能基团的磁性四氧化三铁纳米颗粒。
上述表面含胺基功能基团的磁性四氧化三铁纳米颗粒具有核 /壳式结构, 核为平均直径为 20纳米的磁 性四氧化三铁颗粒, 壳为乙二胺单分子层, 核与壳通过强化学键结合。
实施例 10.
在盛有 1000ml己二胺的 2升搅拌式加热反应器中, 加入 500克平均直径为 60纳米的商业化磁性四氧 化三铁纳米颗粒, 升温至 150°C, 在搅拌条件下反应 12小时, 通过磁性分离倾去己二胺上清液, 再用普通 水反复清洗至少 3次, 即可得到表面含胺基功能基团的磁性四氧化三铁纳米颗粒。
上述表面含胺基功能基团的磁性四氧化三铁纳米颗粒具有核 /壳式结构, 核为平均直径为 60纳米的磁 性四氧化三铁颗粒, 壳为己二胺单分子层, 核与壳通过强化学键结合。
实施例 11.
将 500克对苯二胺加入到 1升搅拌式加热反应器中, 升温至 200Ό , 加入 100克平均直径为 100纳米 的商业化磁性四氧化三铁纳米颗粒, 在搅拌条件下反应 15 小时, 去除反应剩余对苯二胺, 再通过磁性分 离用乙醇反复清洗至少 5次, 即可得到表面含胺基功能基团的磁性四氧化三铁纳米颗粒。
上述表面含胺基功能基团的磁性四氧化三铁纳米颗粒具有核 /壳式结构,核为平均直径为 100纳米的磁 性四氧化三铁颗粒, 壳为对苯二胺单分子层, 核与壳通过强化学键结合。
实施例 12.
在盛有 1000ml—乙醇胺的 2升搅拌式加热反应器中, 加入 500克平均直径为 5纳米的磁性钴铁氧体 颗粒, 升温至 150°C, 在搅拌条件下反应 12小时, 通过磁性分离倾去一乙醇胺上清液, 再用普通水反复清 洗至少 3次, 即可得到表面含羟基功能基团的磁性钴铁氧体纳米颗粒。
上述表面含羟基功能基团的磁性钴铁氧体纳米颗粒具有核 /壳式结构,核为平均直径为 5纳米的磁性钴 铁氧体颗粒, 壳为一乙醇胺单分子层, 核与壳通过强化学键结合。
实施例 13.
将 500ml溶解有 50%萘二胺的二甲基甲酰胺溶剂加入到 1升搅拌式加热反应器中,加入 100克平均直 径为 1微米的磁性锰锌铁氧体颗粒, 升温至 180Ό , 在搅拌条件下反应 20小时, 通过磁性分离倾去萘二胺 上清液, 再用乙醇反复清洗至少 3次, 即可得到表面含胺基功能基团的磁性锰锌铁氧体颗粒。
上述表面含胺基功能基团的磁性锰锌铁氧体颗粒具有核 /壳式结构,核为平均直径为 1微米的磁性锰锌 铁氧体颗粒, 壳为萘二胺单分子层, 核与壳通过强化学键结合。
实施例 14. 说 明 书
将 1000ml溶解有 50%聚乙烯亚胺的二甲基亚砜溶剂加入到 2升搅拌式加热反应器中, 加入 500克平 均直径为 5微米的磁性三氧化二铁颗粒, 升温至 200°C, 在回流搅拌条件下反应 15小时, 通过磁性分离倾 去聚乙烯亚胺的二甲基亚砜溶剂上清液, 再用普通水反复清洗至少 3次, 即可得到表面含胺基功能基团的 磁性三氧化二铁纳米颗粒。
上述表面含胺基功能基团的磁性三氧化二铁颗粒具有核 /壳式结构,核为平均直径为 5微米的磁性三氧 化二铁颗粒, 壳为聚乙烯亚胺分子层, 核与壳通过强化学键结合。
实施例 15.
将 500克对十八胺加入到 1升搅拌式加热反应器中, 加入 100克平均直径为 10微米的金属铁颗粒, 升温至 250°C,在搅拌条件下反应 20小时,通过磁性分离倾去十八胺上清液,再用乙醇反复清洗至少 3次, 即可得到表面疏水性质的磁性金属铁颗粒。
上述表面疏水性质的的金属铁颗粒具有核 /壳式结构, 核为平均直径为 10微米的金属铁颗粒, 壳为十 八胺单分子层, 核与壳通过强化学键结合。
实施例 16.
在盛有 1000ml乙二胺的 1升搅拌式加热反应器中, 加入 500克平均直径为 500纳米的氮化铁颗粒, 升温至 60°C, 在回流搅拌条件下反应 20小时, 通过磁性分离倾去乙二胺上清液, 再用普通水反复清洗至 少 3次, 即可得到表面含胺基功能基团的磁性氮化铁颗粒。
上述表面含胺基功能基团的磁性氮化铁颗粒具有核 /壳式结构,核为平均直径为 500纳米的磁性氮化铁 颗粒, 壳为乙二胺单分子层, 核与壳通过强化学键结合。
实施例 17.
将 1000ml溶解有 25%乙二胺、 25%聚乙烯亚胺和 50%二甲基亚砜的有机溶剂加入到 升搅拌式加热 反应器中, 加入 500克平均直径为 10纳米的磁性四氧化三铁颗粒, 升温至 120°C, 在回流搅拌条件下反应 20小时, 通过磁性分离倾去有机溶剂上清液, 再用普通水反复清洗至少 3次, 即可得到表面含胺基功能基 团的磁性四氧化三铁纳米颗粒。
上述表面含胺基功能基团的磁性四氧化三铁纳米颗粒具有核 /壳式结构, 核为平均直径为 10纳米的磁 性四氧化三铁颗粒, 壳为聚乙烯亚胺和乙二胺混合分子层, 核与壳通过强化学键结合。
实施例 18.
在盛有 1000ml乙二胺的 2升搅拌式加热反应器中, 加入 500克平均直径为 200纳米的磁性四氧化三 铁颗粒, 升温至 150°C, 在回流搅拌条件下反应 20小时, 通过磁性分离倾去乙二胺上清液, 再用普通水反 复清洗至少 3次, 即可得到表面含胺基功能基团的磁性颗粒。
上述表面含胺基功能基团的磁性颗粒具有核 /壳式结构, 核为平均直径为 200纳米、 自内向外由磁性四 氧化三铁、 金属铁和氮化铁构成的混合颗粒, 壳为乙二胺单分子层, 核与壳通过强化学键结合。

Claims

权 利 要 求 书
1. 一种功能化磁性颗粒, 由无机磁性颗粒内核和包覆在其外表面的有机物外壳组成, 无机磁性颗粒内核 与有机物外壳通过强化学键结合, 具有核-壳结构, 其中无机磁性颗粒内核粒径在 2纳米一 20微米之间。
2. 按权利要求 1所述的功能化磁性颗粒,其中无机磁性颗粒内核是一种铁氧体颗粒,其分子式为 XF¾04, 其中 X是二价铁离子(Fe2+)或者离子半径与二价铁离子(Fe2+)相近的二价金属离子(如 Mn2+、 Zn2+、 Cu2+、 Ni2+、 Mg2+、 Co2+等)或者平均化学价为二价的多种金属离子组 (如 Ni-Zn、 Mn-Mg-Zn等); 或者其中无机 磁性颗粒内核是一种三氧化二铁颗粒; 或者其中无机磁性颗粒内核是一种金属铁颗粒; 或者其中无机磁性 颗粒内核是一种氮化铁颗粒; 或者其中无机磁性颗粒内核是铁氧体颗粒、 三氧化二铁颗粒、 金属铁颗粒、 氮化铁颗粒中的两种或多种的混合物。
3. 按权利要求 1所述的功能化磁性颗粒, 其中包覆在无机磁性颗粒外表面的有机物外壳是一种含有胺基 功能基团的有机化合物, 包括脂肪胺类 (如乙二胺、 己二胺等二元胺)、 醇胺类、 酰胺类、 脂环胺类、 芳 香胺类和萘系胺类等; 或者是一种含有胺基功能基团的有机高分子, 包括含胺类单体的聚合物或天然聚合 物, 如聚乙烯亚胺等; 或者是含有胺基功能基团的有机化合物和含有胺基功能基团的有机高分子中的两种 或多种组成的混合物。
4. 一种合成权利要求 1-3所述的功能化磁性颗粒的方法, 是将无机磁性颗粒和含有胺基功能基团的有机 化合物和 (或) 含有胺基功能基团的高分子在有机相中混合后直接高温化学反应合成。
5. 按权利要求 4所述的合成方法, 其中无机磁性颗粒内核是一种铁氧体颗粒, 其分子式为 XFe,204, 其 中 X是二价铁离子 (Fe2+) 或者离子半径与二价铁离子 (Fe2+) 相近的二价金属离子 (如 Mn2+、 Zn2+、 Cu2+、 Ni2+、 Mg2+、 Co2+等) 或者平均化学价为二价的多种金属离子组 (如 Ni-Zn、 Mn-Mg-Zn等); 或 者其中无机磁性颗粒内核是一种三氧化二铁颗粒; 或者其中无机磁性颗粒内核是一种金属铁颗粒; 或者其 中无机磁性颗粒内核是一种氮化铁颗粒。
6. 按权利要求 4所述的合成方法,其中含有胺基功能基团的有机化合物包括脂肪胺类、醇胺类、酰胺类、 脂环胺类、 芳香胺类和萘系胺类等。
7. 按权利要求 4所述的合成方法, 其中含有胺基功能基团的有机高分子, 包括含胺类单体的聚合物或天 然聚合物, 如聚乙烯亚胺等。
8. 按照权利要求 4-7所述的合成方法, 其中的有机相是含有胺基功能基团的有机化合物溶液; 或者是含 有胺基功能基团的有机化合物与有机溶剂混合形成的溶液; 或者是含有胺基功能基团的有机高分子与有机 溶剂混合形成的溶液; 或者是含有胺基功能基团的有机化合物与含有胺基功能基团的有机高分子混合形成 的溶液; 或者是含有胺基功能基团的有机化合物、 含有胺基功能基团的有机高分子与有机溶剂混合形成的 溶液。
9. 按照权利要求 4所述的合成方法, 其中高温化学反应的反应温度在 50-300摄氏度。 权 利 要 求 书
10. 一种有机物表面修饰的金属和金属氧化物材料, 由金属和金属氧化物材料与包覆在其外表面的有机物 外壳组成, 金属和金属氧化物材料与有机物外壳通过强化学键结合。
11. 按权利要求 10所述的有机物表面修饰的金属和金属氧化物材料, 其中金属和金属氧化物材料是一种 纯金属、 或金属合金、 或金属氧化物、 或金属合金氧化物材料, 如铁、 钛、 铬、 钒、 锰、 钨、 钴、 镍、 锌、 锆、 镁、 铝、 硅等纯金属及其形成的金属合金、 或金属氧化物、 或金属合金氧化物材料。
12. 按权利要求 10所述的有机物表面修饰的金属和金属氧化物材料, 其中包覆在金属和金属氧化物材料 外表面的有机物外壳是一种含有胺基功能基团的有机化合物, 包括脂肪胺类、 醇胺类、酰胺类、脂环胺类、 芳香胺类和萘系胺类等; 或者是一种含有胺基功能基团的有机高分子, 包括含胺类单体的聚合物或天然聚 合物, 如聚乙烯亚胺等; 或者是一种含有胺基功能基团的有机化合物和含有胺基功能基团的有机高分子中 的两种或多种组成的混合物。
13. 一种合成权利要求 10- 12所述的有机物表面修饰金属和金属氧化物材料的制造方法, 是将金属和金属 氧化物材料和含有胺基功能基团的有机化合物和 (或)含有胺基功能基团的高分子在有机相中混合后直接 高温化学反应合成。
14. 按权利要求 13 所述的有机物表面修饰金属和金属氧化物材料的制造方法, 其中金属和金属氧化物材 料是一种纯金属、 或金属合金、 或金属氧化物、 或金属合金氧化物材料, 如铁、 钛、 铬、 钒、 锰、 钨、 钴、 镍、 锌、 锆、 镁、 铝、 硅等纯金属及其形成的金属合金、 或金属氧化物、 或金属合金氧化物材料。
15. 按权利要求 13 所述的有机物表面修饰金属和金属氧化物材料的制造方法, 其中包覆在金属和金属氧 化物材料外表面的有机物外壳是一种含有胺基功能基团的有机化合物, 包括脂肪胺类、 醇胺类、 酰胺类、 脂环胺类、 芳香胺类和萘系胺类等; 或者是一种含有胺基功能基团的有机高分子, 包括含胺类单体的聚合 物或天然聚合物, 如聚乙烯亚胺等; 或者是一种含有胺基功能基团的有机化合物和含有胺基功能基团的有 机高分子中的两种或多种组成的混合物。
16. 按权利要求 13- 15所述的有机物表面修饰金属和金属氧化物材料的制造方法, 其中的有机相是含有胺 基功能基团的有机化合物溶液; 或者是含有胺基功能基团的有机化合物与有机溶剂混合形成的溶液; 或者 是含有胺基功能基团的有机高分子与有机溶剂混合形成的溶液; 或者是含有胺基功能基团的有机化合物与 含有胺基功能基团的有机高分子混合形成的溶液; 或者是含有胺基功能基团的有机化合物、 含有胺基功能 基团的有机高分子与有机溶剂混合形成的溶液。
17. 按权利要求 13所述的有机物表面修饰金属和金属氧化物材料的制造方法,其中高温化学反应的反应温 度在 50- 300摄氏度。
PCT/CN2012/078462 2011-07-15 2012-07-11 一种有机物表面修饰的金属和金属氧化物材料及其制造方法 WO2013010446A2 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP12815401.0A EP2736052B1 (en) 2011-07-15 2012-07-11 A metal and metal oxide material having an organic surface modification and manufacturing method therefor
US14/155,352 US9548147B2 (en) 2011-07-15 2014-01-14 Metal or metal oxide comprising a surface-bonded organic shell, and a method for preparing the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN2011101976008A CN102881392A (zh) 2011-07-15 2011-07-15 一种功能化磁性颗粒及其合成方法
CN201110197600.8 2011-07-15
CN201110305517.8 2011-10-11
CN201110305517.8A CN103045161B (zh) 2011-10-11 2011-10-11 一种有机物表面修饰的金属和金属氧化物材料及其制造方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/155,352 Continuation-In-Part US9548147B2 (en) 2011-07-15 2014-01-14 Metal or metal oxide comprising a surface-bonded organic shell, and a method for preparing the same

Publications (1)

Publication Number Publication Date
WO2013010446A2 true WO2013010446A2 (zh) 2013-01-24

Family

ID=47558534

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/078462 WO2013010446A2 (zh) 2011-07-15 2012-07-11 一种有机物表面修饰的金属和金属氧化物材料及其制造方法

Country Status (3)

Country Link
US (1) US9548147B2 (zh)
EP (1) EP2736052B1 (zh)
WO (1) WO2013010446A2 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180100248A (ko) 2010-04-23 2018-09-07 픽셀리전트 테크놀로지스 엘엘씨 나노결정의 합성, 캐핑 및 분산
US8920675B2 (en) 2010-10-27 2014-12-30 Pixelligent Technologies, Llc Synthesis, capping and dispersion of nanocrystals
US9359689B2 (en) 2011-10-26 2016-06-07 Pixelligent Technologies, Llc Synthesis, capping and dispersion of nanocrystals
EP3491057B1 (en) * 2016-07-26 2022-11-09 PPG Industries Ohio, Inc. Particles having surfaces functionalized with 1,1-di-activated vinyl compounds
US10259999B2 (en) * 2016-08-18 2019-04-16 AhuraTech LLC Method for storing and releasing nanoparticles
JP2020183946A (ja) * 2019-04-26 2020-11-12 キヤノン株式会社 粒子、アフィニティー粒子、検査試薬、及び検出方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3514304A (en) * 1964-07-31 1970-05-26 British Titan Products Corrosion-inhibiting titanium dioxide pigments
US4065519A (en) * 1975-07-03 1977-12-27 Rilsan Corporation Process for coating fine powders with a nylon and products made therewith
US6794265B2 (en) * 2001-08-02 2004-09-21 Ultradots, Inc. Methods of forming quantum dots of Group IV semiconductor materials
US20050014851A1 (en) * 2003-07-18 2005-01-20 Eastman Kodak Company Colloidal core-shell assemblies and methods of preparation
US7803347B2 (en) * 2005-07-01 2010-09-28 Tohoku Techno Arch Co., Ltd. Organically modified fine particles
US20050261479A1 (en) * 2004-04-29 2005-11-24 Christian Hoffmann Method for purifying and recovering silk proteins using magnetic affinity separation
JP2007009136A (ja) * 2005-07-04 2007-01-18 Pentax Corp 高分散性無機化合物ナノ粒子及びその製造方法
EP1912564A2 (en) * 2005-08-09 2008-04-23 Board of Supervisors of Louisiana State University and Agricultural and Mechanical College In vivo imaging and therapy with magnetic nanoparticle conjugates
DE102005042768A1 (de) * 2005-09-08 2007-03-15 Ludwig-Maximilian-Universität Magnetfeld-gesteuerter Wirkstofftransfer für die Aerosoltherapie
US20080069887A1 (en) * 2006-09-15 2008-03-20 3M Innovative Properties Company Method for nanoparticle surface modification
US8017031B2 (en) * 2007-01-15 2011-09-13 Institute Of Chemistry, Chinese Academy Of Sciences Biocompatible magnetic nanocrystal, powder of a biocompatible magnetic nanocrystal bearing a surface reactive group and preparations thereof

Also Published As

Publication number Publication date
US9548147B2 (en) 2017-01-17
EP2736052A1 (en) 2014-05-28
EP2736052A4 (en) 2015-09-16
US20140124696A1 (en) 2014-05-08
EP2736052B1 (en) 2018-05-30

Similar Documents

Publication Publication Date Title
Nosrati et al. Green and one‐pot surface coating of iron oxide magnetic nanoparticles with natural amino acids and biocompatibility investigation
Tajabadi et al. An efficient method of SPION synthesis coated with third generation PAMAM dendrimer
WO2013010446A2 (zh) 一种有机物表面修饰的金属和金属氧化物材料及其制造方法
Marcelo et al. Magnetite–polypeptide hybrid materials decorated with gold nanoparticles: study of their catalytic activity in 4-nitrophenol reduction
Wu et al. Magnetic iron oxide nanoparticles: synthesis and surface functionalization strategies
Lee et al. Ni/NiO core/shell nanoparticles for selective binding and magnetic separation of histidine-tagged proteins
Herrmann et al. Synthesis and covalent surface functionalization of nonoxidic iron core− shell nanomagnets
Zhou et al. Robust Fe3O4/SiO2-Pt/Au/Pd magnetic nanocatalysts with multifunctional hyperbranched polyglycerol amplifiers
CN101178961B (zh) 高溶解度的水溶磁性纳米晶体及其制备方法
Arif A tutorial review on bimetallic nanoparticles loaded in smart organic polymer microgels/hydrogels
Gao et al. Specific recognition of bovine serum albumin using superparamagnetic molecularly imprinted nanomaterials prepared by two-stage core–shell sol–gel polymerization
Lu et al. Preparation and protein immobilization of magnetic dialdehyde starch nanoparticles
Kaloti et al. Synthesis of glucose-mediated Ag–γ-Fe 2 O 3 multifunctional nanocomposites in aqueous medium–a kinetic analysis of their catalytic activity for 4-nitrophenol reduction
CN107936505B (zh) 一种聚乳酸抗菌薄膜及其制备方法
Li et al. General surface modification method for nanospheres via tannic acid-Fe layer-by-layer deposition: preparation of a magnetic nanocatalyst
Kumar et al. Hydrophilic polymer coated monodispersed Fe3O4 nanostructures and their cytotoxicity
Haviv et al. Aggregation control of hydrophilic maghemite (γ-Fe2O3) nanoparticles by surface doping using cerium atoms
Shah et al. Synthesis and characterization of magnetite nanoparticles having different cover layer and investigation of cover layer effect on the adsorption of lysozyme and bovine serum albumin
Zandieh et al. Metal-doped polydopamine nanoparticles for highly robust and efficient DNA adsorption and sensing
Salih et al. Facile synthesis of monodisperse maghemite and ferrite nanocrystals from metal powder and octanoic acid
Kannappan et al. Synthesis of structurally enhanced magnetite cored poly (propyleneimine) dendrimer nanohybrid material and evaluation of its functionality in sustainable catalysis of condensation reactions
Cui et al. Construction of polymer-decorated Fe3O4@ Catechol-formaldehyde resin amphiphilic Janus nanospheres for catalytic applications
Chen et al. Platinum-doped TiO2/magnetic poly (methyl methacrylate) microspheres as a novel photocatalyst
CN110507829B (zh) 铁钨复合氧化物纳米晶团簇的制备方法及其应用
Hsiao et al. Preparation of sulfate-and carboxyl-functionalized magnetite/polystyrene spheres for further deposition of gold nanoparticles

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12815401

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2012815401

Country of ref document: EP