JP5640191B2 - 無機骨格を有する高分子修飾ハイブリッドナノ粒子及びその合成方法 - Google Patents
無機骨格を有する高分子修飾ハイブリッドナノ粒子及びその合成方法 Download PDFInfo
- Publication number
- JP5640191B2 JP5640191B2 JP2008214245A JP2008214245A JP5640191B2 JP 5640191 B2 JP5640191 B2 JP 5640191B2 JP 2008214245 A JP2008214245 A JP 2008214245A JP 2008214245 A JP2008214245 A JP 2008214245A JP 5640191 B2 JP5640191 B2 JP 5640191B2
- Authority
- JP
- Japan
- Prior art keywords
- polymer
- tio
- group
- nanoparticles
- modified hybrid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Landscapes
- Oxygen, Ozone, And Oxides In General (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
- Graft Or Block Polymers (AREA)
Description
こうしたナノ粒子として、金属酸化物などを含めた無機ナノ粒子が様々な優れた性状・特性・機能から注目されている。ナノ粒子は、多くの場合、表面エネルギーが極めて高いために凝集しやすく、そのためナノ粒子本来の機能が発現されないことが多い。一度凝集したナノ粒子は再分散させることはできず、その段階で界面活性剤等を用いても、ナノ粒子を分散させることはできない。
こうした状況下、阿尻らは、超臨界水熱合成場が、有機修飾剤と原料水溶液との均一相を形成することに着目し、超臨界水中で反応を行って、有機修飾を行いつつナノ粒子合成に成功している。本手法によれば、高温安定相も合成でき、また単に有機修飾剤が吸着しているのではなく、高温反応のため化学結合も生じている〔特許第3925932号(特許文献1)及び特許第3925936号(特許文献2)〕。
また、ソルゲル法によるハイブリッド化では、高分子が熱的に損傷を受けないような比較的低い温度での合成のため、また、それに使用する無機前駆体として入手できる系も限られるため、極めて限られた無機ナノ粒子にしか適用できないものである。
極めて汎用性の高い、無機材料からなるナノ粒子と高分子とをハイブリッド化する技術及び高濃度で無機ナノ粒子を高分子にハイブリッド化する技術の開発が求められている。
本発明では、次なる態様が提供されている。
〔1〕無機ナノ粒子のコアの表面にアンカーを介して修飾剤由来の修飾基が結合し、該修飾基と(a)高分子及び(b)キャッピング剤とがリンカーを介して結合しており、該ナノ粒子の表面に(a)高分子及び(b)キャッピング剤が担持された構造を有することを特徴とする高分子修飾ハイブリッドナノ粒子。
〔2〕単一の高分子修飾ハイブリッドナノ粒子において、無機ナノ粒子-修飾基-高分子の構造と無機ナノ粒子-修飾基-キャッピング剤の構造の両方を担持し、無機ナノ粒子-修飾基間の結合は、修飾剤の沸点よりも高い温度で安定なものであり、無機ナノ粒子-修飾基-高分子間の結合が高分子のガラス遷移点以上の温度で安定であることを特徴とする上記〔1〕に記載の高分子修飾ハイブリッドナノ粒子。
〔3〕単一の高分子修飾ハイブリッドナノ粒子において、無機ナノ粒子の重量分率が20wt%以上、好ましくは45 wt%以上であることを特徴とする上記〔1〕又は〔2〕に記載の高分子修飾ハイブリッドナノ粒子。
〔4〕無機ナノ粒子が、金属酸化物ナノ粒子であり、アンカーが-0-P-結合であることを特徴とする上記〔1〕〜〔3〕のいずれか一に記載の高分子修飾ハイブリッドナノ粒子。
〔5〕修飾剤がホスホン酸ジエステルであり、そのP原子結合残基が11-カルボアルコキシウンデカニル基で、無機ナノ粒子に結合する修飾基が該修飾剤に由来するものであることを特徴とする上記〔1〕〜〔4〕のいずれか一に記載の高分子修飾ハイブリッドナノ粒子。
〔6〕リンカーが、-(C=O)-O-結合であることを特徴とする上記〔1〕〜〔5〕のいずれか一に記載の高分子修飾ハイブリッドナノ粒子。
〔7〕高分子が、ポリメチルメタクリレートであり、キャッピング剤が低級アルコール由来のものであることを特徴とする上記〔1〕〜〔6〕のいずれか一に記載の高分子修飾ハイブリッドナノ粒子。
〔8〕高分子が、Grafting from法で高分子修飾ハイブリッドナノ粒子中に導入されたものであることを特徴とする上記〔1〕〜〔7〕のいずれか一に記載の高分子修飾ハイブリッドナノ粒子。
〔9〕高分子用モノマーとキャッピング剤とを使用して濡れ性を制御して高分子修飾ハイブリッドナノ粒子中に高分子が導入されたものであることを特徴とする上記〔1〕〜〔8〕のいずれか一に記載の高分子修飾ハイブリッドナノ粒子。
〔10〕無機ナノ粒子のコアの表面にアンカーを介して修飾剤由来の修飾基が結合し、該修飾基に遊離のリンカー部とキャッピング剤が担持された構造の該無機ナノ粒子に高分子を導入し、請求項1に記載の高分子修飾ハイブリッドナノ粒子を合成することを特徴とする高分子修飾ハイブリッドナノ粒子の合成方法。
〔11〕
高分子用モノマーとキャッピング剤とを使用して濡れ性を制御して高分子修飾ハイブリッドナノ粒子中に高分子が導入することを特徴とする上記〔10〕に記載の高分子修飾ハイブリッドナノ粒子の合成方法。
本発明のその他の目的、特徴、優秀性及びその有する観点は、以下の記載より当業者にとっては明白であろう。しかしながら、以下の記載及び具体的な実施例等の記載を含めた本件明細書の記載は本発明の好ましい態様を示すものであり、説明のためにのみ示されているものであることを理解されたい。本明細書に開示した本発明の意図及び範囲内で、種々の変化及び/又は改変(あるいは修飾)をなすことは、以下の記載及び本明細書のその他の部分からの知識により、当業者には容易に明らかであろう。本明細書で引用されている全ての特許文献及び参考文献は、説明の目的で引用されているもので、それらは本明細書の一部としてその内容はここに含めて解釈されるべきものである。
該無機ナノ粒子は、高温高圧条件下、例えば、亜臨界又は超臨界水条件下の反応場でナノ粒子前駆体からナノ粒子を合成する技術により得ることができる。当該技術としては、例えば、特許第3925932号、特許第3925936号などが挙げられる。該ナノ粒子合成法では、亜臨界又は超臨界水を反応場としてナノ粒子合成を行っているが、その反応場に有機修飾剤を共存させることにより、媒質への分散性に優れた無機ナノ粒子を、極めて簡単な手法で効率よく合成できる。
オートクレーブ内などの反応場の圧力範囲は、使用原料により適切な値を選択できるが、例えば、通常は、液体状の反応混合物をリアクターに収容後オートクレーブに入れて密封した後、上記所定の温度に昇温することで得られるものが挙げられる。オートクレーブ内などの反応場の圧力範囲は、例えば、約4MPa〜600MPaの範囲の圧力に保持することができ、例えば、下限として通常5MPa、好ましくは7MPa、特に好ましくは10MPa、上限として通常500MPa、好ましくは400MPa、特に好ましくは200MPaに保持することができるが、これらに限定されるものではなく、上記密封条件下で所定の温度に昇温することで得られるものであり且つ目的の反応が生起するものであれば特に限定されない。
反応用出発混合物中のナノ粒子前駆体:有機修飾剤との比率は、所望のナノ粒子生成物が得られるよう、適宜、実験を行うなどして決定でき、特には限定されないが、例えば、そのナノ粒子前駆体: 有機修飾剤の比率を、モル比で、約1:1,000〜約1,000:1としたり、約1:100〜約100:1としたり、約1:50〜約50:1としたり、約1:25〜約25:1としたり、約1:10〜約10:1としたり、約1:5〜約5:1としたり、約1:2〜約2:1としたりしてもよい。
所定の温度に達した後の反応時間については、目的とするナノ粒子の種類、用いる原料、有機修飾剤の種類、製造するナノ粒子の大きさや量によっても異なるが、通常、数分間から数ヶ月とすることができる。反応中、反応温度は一定にしてもよいし、徐々に昇温または降温させることもできる。所望のナノ粒子を生成させるための反応時間を経た後、降温させる。降温方法は特に限定されないが、ヒーターの加熱を停止してそのまま炉内にオートクレーブを設置したまま放冷してもかまわないし、オートクレーブを電気炉から取り外して空冷してもかまわない。必要であれば、冷媒を用いて急冷することもできる。本発明の方法では、反応時間、前駆体:修飾剤の比率、修飾基に存在する炭素鎖の長さ、反応温度などのパラメーターを変えることで、100nm以下の粒子サイズのナノ粒子を、それぞれ得ることができる。5〜50 nmの幅を有する棒状ナノ粒子やワイアー状ナノ粒子を得ることもでき、さらに、均一な大きさのキューブ状ナノ粒子を取得することもできる。
ナノ粒子の表面を修飾するのに使用される修飾剤としては、有機修飾剤が利用でき、該有機修飾剤としては、微粒子の表面に有機分子残基を結合せしめることのできるもので、好ましくはリンカーを提供するものであれば特には限定されず、好適には、微粒子の表面に有機分子残基を化学結合せしめることのできるもので、有機化学の分野、無機材料分野、高分子化学の分野を含めてナノ粒子の応用が期待されている分野で広く知られている有機物質(又は有機分子)から選択することができる。該有機修飾剤としては、ナノ粒子の表面にアンカーを形成するもの、すなわち、例えば、エーテル結合、エステル結合などを含むO原子を介した結合、アミノ結合又はアミド結合を含むN原子を介した結合、S原子を介した結合、金属-C-を介した結合、金属-C=を介した結合、金属-(C=O)-を介した結合、P原子を介した結合、-O-P-を介した結合、リン酸エステル結合、亜リン酸結合、ホスホン酸結合、亜ホスホン酸結合、ホスフィン酸結合、亜ホスフィン酸結合などの化学結合を形成することを許容するものが挙げられる。好ましいものとしては、亜リン酸エステルを使用して形成される結合をナノ粒子表面に形成するものが挙げられる。有機残基(有機分子残基)としては、リンカーを提供するものであれば特には限定されず、当該分野で知られたもの、及び/又は、有機合成の分野で知られたものが挙げられ、例えば、官能基を有する炭化水素基、あるいはそれを含有する基などが挙げられる。
有機修飾剤としては、例えば、アミン類、アルコール類、アルデヒド類、ケトン類、カルボン酸類、エステル類、アミド類、オキシム類、ホスゲン、エナミン類、アミノ酸類、ペプチド類、糖類、リン酸エステル、亜リン酸エステル、ホスホン酸エステル、亜ホスホン酸エステル、ホスフィン酸エステル、亜ホスフィン酸エステル、ホスフィン、ホスフィンオキシドなどの有機リン化合物類、チオール類、チオカルボン酸などのそれらの硫黄類縁体などが挙げられる。とりわけ、カルボキシル基を有する炭化水素基をエステルとして少なくとも一つ含有する亜リン酸エステル、高価カルボン酸などは好ましく使用される。
該カルボン酸類としては、例えば、有機カルボン酸類あるいはそれらの硫黄類縁体などが挙げられる。有機カルボン酸類としては、本発明の目的効果を著しく損なわない限り特に限定されないが、例えば、脂肪族カルボン酸類、脂環式カルボン酸類、芳香族カルボン酸類などが挙げられ、好適には脂肪族カルボン酸類から選択されて使用でき、好適には分子の一旦に2価のカルボン酸構造を有し、別の端に官能基を有するものが挙げられる。カルボン酸類の炭素数は、本発明の目的効果を著しく損なわない限り任意であるが、通常5以上、ある場合には8以上、あるいは14以上、別の場合には16以上、また、通常24以下、好ましくは20以下、より好ましくは18以下であってよい。カルボン酸類としては、例えば、ヘキサン酸、オレイン酸、リノール酸、リノレン酸、カプリル酸(オクタン酸)、カプリン酸、ラウリン酸、ベヘン酸、ステアリン酸、ミリスチン酸、パルミチン酸、アラキジン酸、リグノセリン酸、ミリストレイン酸、パルミトレイン酸、バクセン酸、エイコセン酸、ステアリドン酸、エイコサペンタエン酸、ドコサヘキサエン酸、アラキドン酸、エルカ酸などの誘導体が挙げられる。
該有機リン化合物類としては、例えば、リン酸エステル類、ホスフィン類、ホスフィンオキシド類、トリアルキルホスフィン類、亜リン酸エステル類、ホスホン酸エステル類、亜ホスホン酸エステル類、ホスフィン酸エステル類、亜ホスフィン酸エステルなどを包含していてよい。当該有機リン化合物類としては、上記した炭化水素基から選択されたものを有機基として含有しているものが挙げられる。有機リン化合物類としては、分子中に炭素−リン単結合を有する化合物を、好適に使用することもできる。亜リン酸エステルとしては、P原子に結合する基が、上記カルボン酸類の残基に相当するものが挙げられる。当該基としては、例えば、カルボキシ置換オレイル基、カルボキシ置換ラウリル基、カルボキシ置換ミリスチル基、カルボキシ置換パルミチル基、カルボキシ置換ステアリル基、カルボキシ置換オクチル基、カルボキシ置換デシル基、カルボキシ置換ドデシル基、カルボキシ置換テトラデシル基、カルボキシ置換ヘキサデシル基、カルボキシ置換オクタデシル基、カルボキシ置換ジオクチル等のカルボキシ置換アルキル基などが挙げられる。
上記サイズは、ナノ粒子の形状が、棒体、円柱体、直方体、楕円柱体などの場合は、短軸のサイズが上記粒子サイズの小さな値とし、長軸のサイズをその短軸のサイズより大きな値としものであってよい。ナノ粒子は、球体、立方体、六面体、八面体などの多角形立方体、棒体、円柱体、卵形状体、正方晶、六方晶、三方晶、斜方晶、単斜晶、三斜晶、ウルツ鉱型結晶、単一壁または複数壁ナノチューブの形状、あるいはその他のナノスケールの形状であってもよい。それらは、非常に興味深い磁気的・電気的・光学的特性を現わすものである。
粒子径の測定は当該分野で知られた方法によりそれを行うことができ、例えば、TEM、吸着法、光散乱法(DLSを含む)、SAXSなどにより測定できる。TEMでは電子顕微鏡で観察するが、粒子径分布が広い場合には、視野内に入った粒子が全粒子を代表しているか否かに注意を払う必要がある。吸着法は、N2吸着などによりBET 表面積を評価するものである。
高い結晶性は、電子回折法、透過型電子顕微鏡(Transmission Electron Microscope: TEM)、電界放射型透過電子顕微鏡(FE-TEM)、走査型電子顕微鏡(Scanning Electron Microscope: SEM)、走査型透過電子顕微鏡(Scanning Transmission Electron Microscope: STEM)などの電子顕微鏡写真の解析、エックス線回折(XRD)、熱重量分析などにより確認できる。例えば、電子回折では、単結晶であれば回折干渉像としてドットが得られ、多結晶ではリング、そしてアモルファスではハローが得られる。電子顕微鏡写真では、単結晶であれば結晶面がしっかり出ており、粒子の上からさらに結晶が現れるような形状であれば、多結晶である。多結晶の一次粒子が小さく多くの粒子が凝集して二次粒子をつくっている場合球状になる。アモルファスであれば必ず球状である。エックス線回折では単結晶であればシャープなピークが得られる。Sherreの式を利用してX 線のピークの1/2 高さの幅から結晶子サイズを評価できる。該評価により得られた結晶子サイズが電子顕微鏡像から評価される粒子径と同一であれば、単結晶と評価される。
該キャッピング剤としては、当該分野で知られたものから選択して使用でき、所定の結合を達成できれば、特に限定されることはない。例えば、リンカー部が、カルボキシル基の場合、該キャッピング剤としては、メタノール、エタノールなどの低級アルコール類が挙げられる。
高分子を修飾されたナノ粒子に導入するには、Grafting to法、Grafting from法などを利用できる。
典型的には、コア粒子の修飾基に存在するリンカー部に重合開始剤を結合し、重合開始剤から高分子鎖を伸張することができる。該重合開始剤としては、当該分野で知られたものあるいはそれから誘導されたものから選択して使用でき、所定の結合を達成できれば、特に限定されることはない。好ましいものとしては、2-ヒドロキシエチル2-ブロモイソブチレートが挙げられる。
高分子鎖の伸張は、当該分野で知られたものあるいはその改変法を使用でき、所定の目的を達成できれば、特に限定されることはないが、例えば、Grafting from 法を適用でき、原子移動ラジカル重合(ATRP)を利用できる。また、高分子の合成は、当該分野で知られた手法を適用でき、例えば、ラジカル重合、アニオン重合、カチオン重合などを使用できる。
また、本発明の高分子修飾ハイブリッドナノ粒子は、例えば、無機ナノ粒子が重量分率で15wt%以上、ある場合には40wt%以上、典型的な場合では45wt%以上であるもの、さらには50wt%以上であるもの、高分子鎖の数平均分子量(Mn)が、例えば、3,000〜300,000、ある場合には30,000〜150,000、典型的な場合では35,000〜100,000であるものなどが包含される。
本発明の無機骨格を有する高分子修飾ハイブリッドナノ粒子は、優れた性状・機能を有しており、特異な利点を有しているから、セラミックスのナノ構造改質材、光機能コーティング材、電磁波遮蔽材料、二次電池用材料、蛍光材料、電子部品材料、磁気記録材料、研摩材料などの産業・工業材料、医薬品・化粧品材料などの高機能・高性能・高密度・高度精密化を可能にするものとして有用である。本発明の高分子修飾ハイブリッドナノ粒子は、ナノ粒子の量子サイズ効果による超高機能性や新しい物性の発現などに有用である。
以下に実施例等を掲げ、本発明を具体的に説明するが、この実施例等は単に本発明の説明のため、その具体的な態様の参考のために提供されているものである。これらの例示は本発明の特定の具体的な態様を説明するためのものであるが、本願で開示する発明の範囲を限定したり、あるいは制限することを表すものではない。本発明では、本明細書の思想に基づく様々な実施形態が可能であることは理解されるべきである。
全ての実施例等は、他に詳細に記載するもの以外は、標準的な技術を用いて実施したもの、又は実施することのできるものであり、これは当業者にとり周知で慣用的なものである。
〔A.水溶性チタン錯体TiGe21の合成〕
水溶性Ti錯体の合成はKakihanaらの方法(K. Tomita, V. Petrykin, M. Kobayashi, M. Shiro, M. Yoshimura, M. Kakihana: Angew. Chem. Int. Ed., 2006, 45, 2378; M. Kakihana, M, Tada, M, Shiro, V. Petrykin, M. Osada, Y, Nakamura|: Inorg. Chem., 2001, 40, 891; M. Kakihana, K. Tomita, V. Petrykin, M. Tada, S. Sasaki, Y. Nakamura: Inorg. Chem., 2004, 43, 4546)に準じた。簡単に工程を示すと次の通りである。
200 mLナスフラスコにTiパウダー250 mg(5.21 mmol)を入れ、0℃で30%NH4OH水溶液5 mL、30%H2O2水溶液20 mLを加え攪拌した後、室温まで昇温し、さらに撹拌する。Tiパウダーが全て溶けた後、0℃で5.2 Mグリセリン酸水溶液を0.5mL(2.6 mmol, 0.5 eq.)加え、10 min撹拌する。次に、50℃に昇温してゆっくりと水を留去し、得られた黄色透明の固体を水で再溶解して、これをTi錯体ストック溶液とした。得られたTi錯体は、チタンに対して0.5等量となっているチタングリセリン酸錯体(Titaniym:glyceric acid=2:1)で、「TiGe21」と称する。チタンに対するグリセリン酸の量は、1等量、1.5等量、さらには3等量などにでき、対応するTi錯体を得ることができる。
他の錯体、例えば、シュウ酸、グリオキサル酸、グリコール酸などとのTi錯体の合成は添加する配位子の種類、量を変化させることで、同様に合成できる。
EDPUは、Michaelis-Arbuzou反応により合成した。100 mLのナスフラスコにエチル11-ブロモウンデカネート(ethyl 11-bromoundecanate) 10 g(34.1 mmol)と亜リン酸トリエチル(triethyl phosphite) 14.2 g(85.3 mmol)を加え、150℃で16時間加熱還流を行った。反応液を90℃で減圧乾燥後、カラムクロマトグラフィー (ヘキサン:酢酸エチル = 2:1)により、EDPUを90%の収率で得た。純度は1H-NMRにより確認した (up to 98%)。
1H-NMR (400 MHz, CDCl3) δ 1.25 (t, J = 7.08, 3H), 1.32 (t, J = 7.08, 6H),
1.20-1.40 (m, 12H), 1.52-1.77 (m, 6H), 2.28 (t, J = 7.56, 2H), 4.12 (q, J = 7.08, 2H), 4.01-4.16 (m, 4H).
EDPUを表面修飾剤とするTiO粒子をTiO2-PU(TiO2-PhosphonoUndecanic acid)と称する。
TiO2-PU の合成は次のように行った。内容量5 mLのオートクレーブに0.025 M Ti錯体ストック溶液2 mL(水密度0.4 g/mL 到達時CTi = 0.01M)とEDPU 175.2 mg(0.5 mmol、CEDPU = 0.1M、10 equiv.)を入れ、加熱震盪機を用いて400℃で5 min反応を行った。反応後、純水で粒子を回収し遠心分離を行った。さらに、酢酸を5v%含む純水/MeOH = 2/1の溶液を加え粒子以外の固形物を溶解する(この時点で300 rpmで10 min程度遠心分離し、上清をパスツールピペット等で慎重に回収すると不純物 (MoS、磁性黒色粉末)をある程度除くことができる)。酢酸を5v%含む純水/MeOH = 2/1の溶液で洗浄、遠心分離(12000 rpm, 20 min, 15℃)を3サイクル、さらに純水で洗浄、遠心分離を3サイクル行った。得られた粒子は純水に再分散させた後凍結乾燥した。
得られた粒子の解析は、Transmission Electron Microscope (TEM)、High Resolution Transmission Electron Microscope (HRTEM) 、X-Ray Diffraction (XRD)、Fourier Transform Infrared Absorption Spectrometry (FT-IR)、Thermo-Gravimetry (TG)を用いて行った。得られた粒子の粒径及び分散度は、同条件で3度粒子を合成し、それぞれのTEM 画像から200粒子づつ粒径を測定、計600粒子の粒径から求めた。TiO2-PU のXRD スペクトルを図2に示す。TiO2-PUはTiO2アナターゼ単相であった。TiO2-PUのTEM像と粒形分布を図3に示す。TiO2-PU は平均粒形6.7 nm程度の比較的単分散な粒子であった。また、TiO2-PU を高分解能投下型電子顕微鏡(HR-TEM)により観察した像を図4に示す。観察の結果、TiO2-PU が高い結晶性を有していることが明らかとなった。図4中ではTiO2アナターゼの(101)面(格子面間隔 3.5Å)(図4の左上方)及び(200)面(格子面間隔 1.9Å)(図4の左下方)に対応する結晶格子が確認できる。
TiO2-PUにつきそのゼータ電位を測定した。TiO2-PUのゼータ電位のpH依存性を測定することでその表面状態に関する情報が得られると考えられる。そこでTiO2-PU 及び比較として修飾剤を添加せずに合成したTiO2のゼータ電位のpH 依存性を測定した。未修飾の粒子は、0.01M HCl、0.01M KOH でそれぞれpH2、pH12 から通常通り測定した。TiO2-PUは酸性溶液中における分散性が著しく低いため、酸性側から測定することが叶わなかった。よって、TiO2-PU 5mgを10 mLの0.01M KOH水溶液に分散させ、一晩震盪した後、塩基性側からのみ測定した。結果を図7に示す。未修飾TiO2のゼータ電位のpH依存性を測定した結果、pH 2から測定した場合(□)とpH 12から測定した場合(△)で差異は見られたものの、pH2.5で+30 mV前後、pH11.5で-30 mV前後のζ電位を有しており、その等電点はpH6付近であった。これはこれまで報告されている実測値とほぼ一致する。また、懸濁状態の安定性については既存の報告にあるように、pH 2及び12付近では比較的安定な懸濁状態を保っていたものの中性付近では速やかに凝集体を形成し沈降する様子が観察された。
また、ホスホン酸のpka1およびpka2に対応するpH(2.5〜3及び8.5〜9)ではとくに表面電位の変化は見られなかったことから、ホスホン酸が外側に配向している可能性は否定される。
以上の結果はホスホン酸がアンカーとして粒子表面と結合し、カルボン酸が外部に向かって配向しているというIR測定の結果を支持するものであると共に、粒子表面が修飾剤によりほぼ完全に被覆されていることを示唆している。TiO2-PUはpH変化による度重なる凝集分散や、pH12の水中で長時間震盪し続けても分散状態、ゼータ電位に目に見える影響を受けなかった。これは、TiO2-ホスホン酸系のpH変化に対する耐性の高さを裏付けるものであり、TiO2-PUの安定性を示している。
熱重量測定(TG)によりTiO2-PU の表面被服率を評価した。TiO2-PU(1)、未修飾TiO2(2)及び11-(ホスホノ)ウンデカン酸(3)の空気中におけるTG チャートを図9に示す。TiO2-PUでは未修飾のチタニアと差し引きで16.0%の重量減が測定された。被覆率を、ホスホン酸の占有面積を0.24 nm2)として、粒子の平均粒径 (6.7 nm2)より求めた面積との比較により算出した。計算の結果、修飾量311本/粒子、被覆率50.0%、修飾密度2.08分子/nm2であることが明らかとなった。しかしながら、修飾剤のみのTGチャートでは図中破線で示した450〜750℃で大きな重量減がある一方で、粒子ではこの温度領域ではほとんど重量減は見られなかった。これは、粒子と修飾剤の相互作用の結果、修飾剤の一部が粒子表面に残存していることが考えられる。これを確かめるためにTG測定後のサンプルのFTIR 測定を行った(図10)。TG測定後の粒子(図10、中段)とTiO2-PU(図10、最上段)を比較した場合、C-H結合やC=O結合に由来する吸収がTG測定後には観察されない(1500 cm-1付近のピークは表面吸着水に由来)のに対し、P-Oに由来する1000 cm-1付近の吸収は残存している。このピークは未修飾のTiO2(図10、最下段)には見られない。これらの結果は粒子表面の修飾剤の一部が高温の空気中でC-P結合が切断され、粒子表面にアンカー部のみを残して側鎖が揮発または燃焼していることを示唆している。また、ホスホン酸の耐酸化性を考えると粒子表面に残っているのはホスホン酸ではなくリン酸であると考えるのが妥当であると考えられる。
0.01M KOHエタノール溶液にTiO2-PUを投入し、3 h攪拌した後遠心分離で粒子を回収、純水で3回洗浄を行った粒子をTiO2-PU-N(TiO2-PhosphonoUndecanic acid-Neutralization)と呼ぶ。TiO2-PU、TiO2-PU-NそれぞれのIR スペクトルを図11に示す。
TiO2-PU-N の判別可能なピークの帰属を以下に示す。
TiO2-PU-N: 3300〜2500 cm-1(δs OH)、2922 cm-1(νas CH2)、2852 cm-1(νs CH2)、1738 cm-1(ν カルボン酸単量体C=O)、1705 cm-1(ν カルボン酸二量体C=O)、1635 cm-1(TiO2, O-H、または水)、1561 cm-1(νas COO-)、1464 cm-1(δs CH2)、1407 cm-1(νas COO-)、1155〜925 cm-1(1090 cm-1(νas PO3 2-)、1020 cm-1(νs PO3 2-))、900 cm-1以降 (TiO2).
TiO2-PU-N ではカルボン酸のC=O 伸縮に由来する吸収 (1705 cm-1)が減少し、1561 cm-1、及び1407 cm-1にカルボン酸アニオンの吸収が新規に生じているのが分かる。カルボン酸のC=O 伸縮が完全に消滅しないのは純水で洗浄によりイオン交換が起こっているためと思われる。また、TiO2-PU-N では1300〜1200 cm-1付近の吸収がTiO2-PU と比較すると弱いが、TiO2-PU ではこの付近にC-O 伸縮吸収帯があり、中和によりこれが消失したと考えるのが妥当である。
TiO2-PUに対してアルコールを触媒量の無機酸の存在下加熱するという古典的なエステル合成法を適用した。アルコールとしてメタノール、無機酸として濃硫酸を使用し、3h還流した。反応の進行をFTIRで確認した(図12)。反応前(図12、下段)と比較して、反応後(図12、上段)ではC=O 伸縮振動が低端数側に、移動しており、エステル化が進行しているのが分かる。また、TiO2のピークやホスホン酸のピークはそのまま残っているのでホスホン酸はTiO2に担持されたままであることが分かる。この結果は、粒子表面のカルボン酸が反応性を維持したままであることを示すと共に、この粒子が激しい反応条件にも耐えうる安定性を有していることを示している。
PMMA-TiO2ナノ粒子ハイブリッド中の無機材料の割合をTiO2 50wt%となるよう設定して高分子修飾ハイブリッドナノ粒子の作製を図った。尚、これには表面修飾剤を含まない。
コアとなる粒子が直径6.7 nm程度のTiO2ナノ粒子で表面に3.3分子/nm2程度の11-(phosphono)undecanic acidを有するものであることが明らかとなっている。これを元に導入するPMMAの分子量を計算すると、高分子鎖の分子量60,000とした場合、1粒子当りの導入量を5本程度に制限することにより50wt%を達成できる。これはもちろん分子量30,000を10本でも、分子量300,000を1本でも構わないが、ある程度粒子の全方位を高分子が覆う方がよいと思われるので、ここでは分子量50,000程度高分子鎖を5〜6本導入することを目標とした。
Grafting to法は高密度のグラフトが困難である一方で、手順の簡便さと自由な高分子設計が可能であることを特徴とするグラフト法である。本新規高分子修飾ハイブリッドナノ粒子複合体は、自由に設計可能な高分子を比較的容易に低密度でグラフトすることを得意とするGrafting to法が向いていると考えられる。Grafting to法による高分子-ナノ結晶複合体の作成の手順は以下に示す通りである。
1) Grafting to 法に利用可能なナノ粒子及び高分子の作成
2)粒子表面への高分子のグラフト
3)ナノ粒子表面の濡れ性制御
Grafting to法を用いた高分子のグラフトには粒子と高分子にそれぞれ対応した官能基を導入することが求められる。ナノ粒子については既にカルボキシル基を導入することに成功している。よって、高分子にはカルボキシル基と反応し結合を生じる官能基を導入すればよい。カルボキシル基と反応する官能基はいくつかあり、またカルボキシル基を他の官能基に変換することもできるため高分子に導入する官能基としては様々な選択肢があるが、ここでは高分子にヒドロキシル基を導入し、脱水縮合剤を用いた脱水エステル化反応を利用することとした。この反応は非常に温和な条件下(室温、ほぼ中性、多少の水、空気は可)で高収率を得られ、医療用ナノ粒子の合成などにもしばしば利用されている。作成すべき高分子は、一方の末端に選択的にヒドロキシル基を有する高分子である。
このような高分子を作成するために有効であると考えられる合成法の一つに、原子移動ラジカル重合法(Atom Transfer Radical Polymerization, ATRP)がある。ATRPにより主となる高分子と2、3のヒドロキシル基を有する残基からなるブロック共重合体を合成する。本実施例では主となる高分子はポリメチルメタクリレート(polymethyl methacrylate: PMMA)を使用した。また、ヒドロキシル基を有するポリマーには2-ヒドロキシエチルメチルメタクリレート(2-hydroxyethyl methylmethacrylate: HEMA)を用いた。
PHEMA-b-PMMA合成の概略は次式で示される。
PMMA-b-PHEMAの合成は次のように行った。グローブボックス中で重合禁止剤を除去したMMA、Cu(I)Cl、4,4’-dinonyl-2,2’-bipyridine (DNBPy) (溶液5 mL につき、Cu(I)Cl 15 mg、DNBPy 131 mg程度が目安)を任意の割合で混合し、Cu(I)Cl が溶けきるまで攪拌する。濃茶色の反応混合物にエチル2-ブロモイソブチレート(ethyl 2-bromoisobutylate: EBIB)を添加しよく攪拌した後、70℃で3 h 重合を行った。1H NMR によりメチルエステルの面積比で重合度を算出した。反応終了後2 mL 程度のCH2Cl2に反応物を溶解し、さらに3mL のCH2Cl2で洗い込みをしつつ、MeOH 50 mL に強攪拌下滴下する。しばらく静置した後上澄みを捨てMeOH で洗浄する。これを一度乾燥させ再びCH2Cl2に溶解し、同様に再沈を計3 サイクル行う。こうして銅錯体を完全に除去し乾燥させた。得られたPMMA 500 mg をグローブボックス内でトルエン5 mL に再溶解し、Cu(I)Cl 30 mg、DNBPy 272 mg、HEMA 20μLを加え、室温で12h 反応を行った。反応終了後2 mL 程度のCH2Cl2に反応物を溶解し、さらに3 mLのCH2Cl2で洗い込みをしつつ、MeOH 50 mLに強攪拌下滴下する。しばらく静置した後上澄みを捨てMeOHで洗浄する。これを一度乾燥させ再びCH2Cl2に溶解し、同様に再沈を計3サイクル行う。こうして銅錯体を完全に除去し乾燥させたものを次の反応に利用した。
本実施例では何種類か大きさの違うものを合成し、1H NMRにより収率を求め分子量を見積もった。また、末端のPHEMAブロックは主鎖と比較して非常に小さく、FT-IR、1H NMRのいずれでも確認することはできなかった。
カルボン酸とアルコールからエステルを合成する方法はいくつか選択肢があるが、本実施例では脱水縮合剤を用いる方法を使用した。その反応条件は非常に温和であり、湿気や空気による影響も少なく、さらには高収率である。脱水縮合剤にはカルボジイミド系、アミニウム系、ホスホニウム系、ジヒドロキノン系があるが、エステル合成にもっとも広く使われているカルボジイミド系縮合剤を用いた。この系に属する代表的なものとしては、N,N’-ジシクロへキシルカルボジイミド(N,N’-dicyclohexylcarbodiimide: DCC)とN-エチルN’-(3-ジメチルアミノ)プロピルカルボジイミド塩酸塩(N-ethyl N’-(3-dimethylamino)propylcarbodiimide hydrochloride: EDAC)が挙げられる。TiO2-PU に PHEMA-b-PMMA をグラフトさせるため、脱水縮合EDACと補助剤N,N-ジメチルアミノピリジン(DMAP)を用いてTiO2-PU のカルボキシル基とPHEMA-b-PMMAのヒドロキシル基を脱水エステル化により結合させることを試みた。
粒子表面へのHEBIBの付加は次のように行った。乾燥したナスフラスコに攪拌子、TiO2-PU 5〜10mg、EDAC 1 g、N,N-ジメチルアミノピリジン100 mgを加え、30 min真空引きを行った後、脱水DMF10 mLを0℃で加え攪拌する。10 min後これに、分子量推定30,000のPMMA-b-PHEMAを100 mg加え、さらに10 min攪拌した後室温とし、48 h 反応させる。反応終了後MeOHを1 mL加え固形物を溶かし、1 h 攪拌、粒子を遠心分離(テフロン(登録商標)チューブ、12000 rpm, 20 min, 15℃)で回収した。さらにこの粒子をCH2Cl2で洗浄、遠心分離を3サイクル繰り返し、得られた粒子を回収した。反応後の粒子をTiO2-gt-PMMA(TiO2-grafting to-PMMA)と呼ぶ。反応の進行はFTIR により確認した。
残存カルボキシル基へのメタノールの付加は次のように行った。乾燥したナスフラスコに攪拌子、TiO2-gt-PMMA 5〜10mg、EDAC 1 g、N,N-ジメチルアミノピリジン100 mg、を加え30 min真空引きを行った後、脱水DMF10 mL を0℃で加え攪拌する。10 min 後これに、MeOH を100μL加え、さらに10 min 攪拌した後室温とし48 h反応させる。反応終了後MeOH をさらに1 mL 加え固形物を溶かし、1 h 攪拌、粒子を遠心分離 (テフロン(登録商標)チューブ、12000 rpm, 20 min, 15℃)で回収した。さらにこの粒子をCH2Cl2で洗浄、遠心分離 を3 サイクル繰り返し、得られた粒子を回収した。反応の進行はFTIRにより確認した。
Grafting from 法は「〜からグラフトする」という意味の通り、基盤や粒子表面等に固定化した重合開始剤から高分子鎖を伸張する方法である。重合法には実施例1と同様に原子移動ラジカル重合(ATRP)を利用する。重合された高分子は一端を固定されたものとなる。粒子表面の官能基の数に比べて遥かに少ない量しかグラフトできなかったGrafting to法はとは異なり、高密度のグラフトが可能、つまり、表面に導入した重合開始剤に対する反応の効率が良い。従ってグラフトする高分子鎖の量を導入する重合開始剤の量で調節することが可能である。本合成法においては表面の濡れ性制御はグラフト重合以前に行う。そこで、粒子表面に導入する重合開始剤にヒドロキシル基を導入し、これをメタノールと任意の割合で混合したものをTiO2-PUと脱水縮合することで粒子への重合開始剤導入量の制御と濡れ性制御を一度に行うことを計画した。よって作成の手順は以下に示す通りとなる。
1)ヒドロキシル基を有する重合開始剤の合成
2)粒子表面へ重合開始剤導入及び濡れ性制御
3)MMA のグラフト重合
重合開始剤EBIBはカルボキシル基を有しており、これをエチルエステルから、2-ヒドロキシエチルエステルとすれば、重合開始剤の性質をあまり変化させることなくヒドロキシル基を導入できると考え、商業的に入手可能な2-ブロモイソ酪酸の酸ハロゲン化物、2-ブロモイソブチリルブロマイドにエチレングリコールを求核置換反応させることにより、HEBIBを合成した
HEBIBの合成は以下のように行った。乾燥させた二口フラスコに攪拌子、N,N-ジメチルアミノピリジン(DMAP)、脱水エチレングリコール5mL、CH2Cl2 10mLを加えアイスバスで0℃とした後、2-ブロモイソブタノイルブロマイド5 gを滴下し、0℃で3 h攪拌する。反応終了後0.01M HCl水溶液、CH2Cl2を加え、有機層と水層に分けた後、水相をCH2Cl2で3 回抽出し、合わせた有機層を重曹水、ついで塩水(brine)で洗浄する。Na2SO4で乾燥させた後、溶媒を留去し、フラッシュカラムクロマトグラフィー (Hexane:AcOEt = 5:1)で精製した。副生成物はジアシル化体である。収率は90%、純度は1H NMR により確認した。
1H-NMR (400 MHz, CDCl3) δ 1.91 (t, J = 6.32, 1H O-H), 1.96 (s, 6H CH3), 3.85-3.92 (m, 2H COO-CH2-C), 4.30-4.35 (m, 2H C-CH2-OH).
溶媒には塩化メチレンを用いたが、これは純度、水分含有率等考えてのことで、脱水されたエーテルまたはTHFを用いることもできる。DMAPに代えてジイソプロピルエチルアミンなどを使用することもできる。
重合開始剤導入及び濡れ性制御を行った。合成したHEBIB とMeOH を1:100 〜 100:0 までの割合で混合し、これとTiO2-PU の脱水縮合を行った。HEBIB 導入後の粒子をTiO2-HEBIB と呼ぶ。
判別可能なピークの帰属を以下に示す。
TiO2-HEBIB: 3300〜2500 cm-1(δs 水)、2922 cm-1(νas CH2)、2851 cm-1(νs CH2)、1735 cm-1(ν エステルC=O)、1704 cm-1(ν カルボン酸二量体C=O)、1635 cm-1(TiO2, O-H、または水)、1465 cm-1(δs CH2)、1389 cm-1(δ イソプロピルCH3)、1370 cm-1(δ イソプロピルCH3)、1276 cm-1(C-Br)、1161 cm-1(νas C-(C=O)-O)、1107 cm-1(νas カルボン酸エステルO-C-C)、1155〜925 cm-1(1090 cm-1(νas PO3 2-)、1020 cm-1(νs PO3 2-))、900 cm-1以降 (TiO2).
TiO2-HEBIBではイソプルピル基に由来する1388 cm-1、及び1370 cm-1に由来する吸収や、1276 cm-1のC-Brに由来すると思われる特徴的な吸収が観測され、粒子表面にHEBIBが導入されたことを示している。
高分子のグラフト重合は、TiO2-HEBIBをEBIB・Cu(I)Cl・DNBPyのMMA溶液に分散させ、反応を行った。反応後の粒子をTiO2-gf-PMMA(TiO2-Grafting from-PMMA)と呼ぶ。
図15から、TiO2-gf-PMMAは2993 cm-1のCH3逆対象伸縮に由来する吸収、1330 cm-1〜1090 cm-1のメチルエステルの吸収等PMMA由来の吸収と、2929 cm-1、2851 cm-1のCH2逆対象及び対象伸縮振動、1000 cm-1付近のP-O伸縮振動、900 cm-1より高波数側のTiO2に由来する吸収等のTiO2-PUから引き継がれた吸収の両方が観察される。また、TiO2-gf-PMMAでもHEBIB:MeOH = 5:100で合成されたものと、HEBIB:MeOH = 100:0で合成されたものとでは、PMMA由来の吸収とTiO2-PU(正確にはその表面修飾剤)に由来する吸収の比がまったく異なっており、HEBIBとMeOHの仕込み比を変えることで濡れ性の制御とHEBIB導入量の制御を同時に行うという試みが功を奏していることを示している。
TiO2-gf-PMMAはPMMAの良溶媒、例えばTHF、塩化メチレン、クロロホルム、トルエン等に良好な分散性を示すなど、その挙動はPMMAの影響を色濃く受けたものであった。特筆すべきことには、TiO2-gf-PMMAが単体で形成した集合体は可視光透明である。図16にPMMAグラフト量を変えて作製した三つのTiO2-gf-PMMAのTGチャートを示し、図17にそれぞれを薄膜状にして乾燥させたものの写真を示す。
50wt%、43wt%、12wt%のTiO2-gf-PMMAをここでは便宜上Sample A、Sample B、Sample Cと呼ぶ。重量分率の数値とグラフの最終的な重量減の数値が一致していないのは、粒子表面にホスホン酸部が取り残されているとして計算したためである。また、表1に各TiO2-gf-PMMAの重量分率、体積分率、高分子鎖の数平均分子量Mn、重量平均分子量と数平均分子量の比Mw/Mn、グラフト密度をまとめて示す。
本発明で得られた高分子修飾ハイブリッドナノ粒子により、ハイブリッド中の無機材料の割合を高めることが可能となる。
本発明は、前述の説明及び実施例等に特に記載した以外も、実行できることは明らかである。上述の教示に鑑みて、本発明の多くの改変及び変形が可能であり、従ってそれらも本件添付の請求の範囲の範囲内のものである。
Claims (10)
- TiO2無機ナノ粒子のコアの表面にアンカーを介して修飾剤由来の修飾基が結合し、該修飾基と(a)高分子及び(b)遮蔽キャッピング剤とがリンカーを介して結合しており、該ナノ粒子の表面に(a)高分子-リンカー-修飾基-アンカー及び(b)遮蔽キャッピング剤-リンカー-修飾基-アンカーが担持された構造を有すること、そして、上記修飾剤は、亜リン酸エステル類、ホスホン酸エステル類、亜ホスホン酸エステル類、ホスフィン酸エステル類及び亜ホスフィン酸エステルからなる群から選択されたもので、そのP原子に結合する基がカルボン酸類の残基から選択されたもので、上記修飾基はカルボキシ置換の炭素数3〜30の直鎖又は分岐鎖の炭化水素の残基であり、上記高分子は、ポリメタクリル酸メチル、ポリアクリル酸メチル、ポリアクリロニトリル、ポリアクリルアミド、ポリエチレン、ポリプロピレン、ポリスチレン、スチレン-ブタジエン共重合体、ポリ酢酸ビニル、ポリビニルアルコール、ポリアミド、ポリイミド、ポリカーボネート、ポリウレタン、ポリエステル及びエポキシ樹脂からなる群から選択されたもので、上記遮蔽キャッピング剤は、低級アルコール類から選択されたものであり、上記リンカーは、エステル結合又はアミド結合を含有するものであることを特徴とする高分子修飾ハイブリッドTiO2ナノ粒子。
- 単一の高分子修飾ハイブリッドTiO2ナノ粒子において、無機ナノ粒子-修飾基-高分子の構造と無機ナノ粒子-修飾基-遮蔽キャッピング剤の構造の両方を担持し、無機ナノ粒子-修飾基間の結合は、修飾剤の沸点よりも高い温度で安定なものであり、無機ナノ粒子-修飾基-高分子間の結合が高分子のガラス遷移点以上の温度で安定であることを特徴とする請求項1に記載の高分子修飾ハイブリッドTiO2ナノ粒子。
- アンカーが-0-P-結合であることを特徴とする請求項1又は2に記載の高分子修飾ハイブリッドTiO2ナノ粒子。
- 修飾剤がホスホン酸ジエステルであり、そのP原子結合残基が11-カルボアルコキシウンデカニル基で、TiO2無機ナノ粒子に結合する修飾基が該修飾剤に由来するものであることを特徴とする請求項1〜3のいずれか一に記載の高分子修飾ハイブリッドTiO2ナノ粒子。
- リンカーが、-(C=O)-O-結合であることを特徴とする請求項1〜4のいずれか一に記載の高分子修飾ハイブリッドTiO2ナノ粒子。
- 高分子が、ポリメチルメタクリレートであり、遮蔽キャッピング剤が低級アルコール由来のものであることを特徴とする請求項1〜5のいずれか一に記載の高分子修飾ハイブリッドTiO2ナノ粒子。
- 高分子が、Grafting from法で高分子修飾ハイブリッドナノ粒子中に導入されたものであることを特徴とする請求項1〜6のいずれか一に記載の高分子修飾ハイブリッドTiO2ナノ粒子。
- 高分子用モノマーと遮蔽キャッピング剤とを使用して濡れ性を制御して高分子修飾ハイブリッドナノ粒子中に高分子が導入されたものであることを特徴とする請求項1〜7のいずれか一に記載の高分子修飾ハイブリッドTiO2ナノ粒子。
- TiO2無機ナノ粒子のコアの表面にアンカーを介して修飾剤由来の修飾基が結合し、該修飾基に遊離のリンカー部と遮蔽キャッピング剤が担持された構造の該TiO2無機ナノ粒子に高分子を導入し、請求項1に記載の高分子修飾ハイブリッドTiO2ナノ粒子を合成すること、そして、上記修飾剤は、亜リン酸エステル類、ホスホン酸エステル類、亜ホスホン酸エステル類、ホスフィン酸エステル類及び亜ホスフィン酸エステルからなる群から選択されたもので、そのP原子に結合する基がカルボン酸類の残基から選択されたもので、上記修飾基はカルボキシ置換の炭素数3〜30の直鎖又は分岐鎖の炭化水素の残基であり、上記高分子は、ポリメタクリル酸メチル、ポリアクリル酸メチル、ポリアクリロニトリル、ポリアクリルアミド、ポリエチレン、ポリプロピレン、ポリスチレン、スチレン-ブタジエン共重合体、ポリ酢酸ビニル、ポリビニルアルコール、ポリアミド、ポリイミド、ポリカーボネート、ポリウレタン、ポリエステル及びエポキシ樹脂からなる群から選択されたもので、上記遮蔽キャッピング剤は、低級アルコール類から選択されたものであり、上記リンカーは、エステル結合又はアミド結合を含有するものであることを特徴とする高分子修飾ハイブリッドTiO2ナノ粒子の合成方法。
- 高分子用モノマーと遮蔽キャッピング剤とを使用して濡れ性を制御して高分子修飾ハイブリッドナノ粒子中に高分子が導入することを特徴とする請求項9に記載の高分子修飾ハイブリッドTiO2ナノ粒子の合成方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008214245A JP5640191B2 (ja) | 2008-08-22 | 2008-08-22 | 無機骨格を有する高分子修飾ハイブリッドナノ粒子及びその合成方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008214245A JP5640191B2 (ja) | 2008-08-22 | 2008-08-22 | 無機骨格を有する高分子修飾ハイブリッドナノ粒子及びその合成方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2010047452A JP2010047452A (ja) | 2010-03-04 |
JP5640191B2 true JP5640191B2 (ja) | 2014-12-17 |
Family
ID=42064879
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008214245A Active JP5640191B2 (ja) | 2008-08-22 | 2008-08-22 | 無機骨格を有する高分子修飾ハイブリッドナノ粒子及びその合成方法 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5640191B2 (ja) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2230702A1 (en) * | 2009-03-19 | 2010-09-22 | Ecole Polytechnique Fédérale de Lausanne (EPFL) | Modified surface |
JP2011201740A (ja) * | 2010-03-26 | 2011-10-13 | Sumitomo Osaka Cement Co Ltd | 無機粒子と無機粒子ポリ(メタ)アクリレート複合体及び無機粒子分散液並びに光学部材 |
CN107416764A (zh) * | 2010-10-27 | 2017-12-01 | 皮瑟莱根特科技有限责任公司 | 纳米晶体的合成、盖帽和分散 |
JP6091232B2 (ja) * | 2013-02-06 | 2017-03-08 | 国立研究開発法人物質・材料研究機構 | 開始剤修飾ナノロッド及びその製造方法、グラフト化ナノロッド及びその製造方法、グラフト化ナノロッド分散液晶、グラフト化ナノロッド分散液晶配向膜、偏光光学素子、並びに、キャップ剤修飾ナノロッド |
JP6229989B2 (ja) * | 2014-04-25 | 2017-11-15 | 国立研究開発法人産業技術総合研究所 | 表面改質方法及び表面改質材料 |
JP6526190B2 (ja) * | 2015-05-28 | 2019-06-05 | 富士フイルム株式会社 | 重合性組成物、波長変換部材、バックライトユニット、および液晶表示装置 |
JP2022164407A (ja) * | 2021-04-16 | 2022-10-27 | 東京応化工業株式会社 | 金属含有シリルオキシ化合物、金属含有シリルオキシ基被覆粒子、その製造方法、及び分散組成物 |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4790797B2 (ja) * | 2005-05-04 | 2011-10-12 | エージェンシー フォー サイエンス,テクノロジー アンド リサーチ | ポリマーコーティング試薬を含む新規な水溶性ナノ結晶、およびその調製方法 |
JP4415972B2 (ja) * | 2005-09-22 | 2010-02-17 | ソニー株式会社 | 金属酸化物ナノ粒子の製造方法 |
TW200716698A (en) * | 2005-10-03 | 2007-05-01 | Kaneka Corp | Transparent polymer nanocomposites containing nanoparticles and method of making same |
JP5011695B2 (ja) * | 2005-10-05 | 2012-08-29 | 住友大阪セメント株式会社 | ジルコニア透明分散液及び透明複合体並びに透明複合体の製造方法 |
KR101167733B1 (ko) * | 2005-11-16 | 2012-07-23 | 삼성전기주식회사 | 캡핑 리간드가 표면에 결합되어 있는 나노입자용 분산제, 이를 이용한 나노입자의 분산방법 및 이를 포함하는 나노입자 박막 |
US7470466B2 (en) * | 2005-12-23 | 2008-12-30 | Boston Scientific Scimed, Inc. | Nanoparticle structures and composite materials comprising a silicon-containing compound having a chemical linker that forms a non-covalent bond with a polymer |
JP4961828B2 (ja) * | 2006-05-12 | 2012-06-27 | ソニー株式会社 | ナノ粒子−樹脂複合材料の製造方法 |
US20100184887A1 (en) * | 2007-07-02 | 2010-07-22 | Basf Se | Hybrid nanoparticles |
JP2009040613A (ja) * | 2007-08-06 | 2009-02-26 | Kaneka Corp | ポリマー被覆金属酸化物超微粒子、それを含む硬化性組成物、及びその硬化物 |
JP2011512238A (ja) * | 2008-01-04 | 2011-04-21 | スパルクシス・ビー.ブイ. | 金属酸化物のナノ粒子の表面修飾 |
CN102015124B (zh) * | 2008-05-09 | 2014-07-23 | 罗地亚管理公司 | 杂化的纳米级颗粒 |
-
2008
- 2008-08-22 JP JP2008214245A patent/JP5640191B2/ja active Active
Also Published As
Publication number | Publication date |
---|---|
JP2010047452A (ja) | 2010-03-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5640191B2 (ja) | 無機骨格を有する高分子修飾ハイブリッドナノ粒子及びその合成方法 | |
US20200010685A1 (en) | Organically modified fine particles | |
JP5658141B2 (ja) | ナノ粒子の製造方法 | |
JP3925932B2 (ja) | 有機修飾金属酸化物ナノ粒子の製造法 | |
JP3925936B2 (ja) | 金属酸化物ナノ粒子の回収又は収集法 | |
TWI586428B (zh) | A dispersion containing metal oxide particles | |
JP4336856B2 (ja) | 有機修飾微粒子 | |
JP5804491B2 (ja) | 超臨界水中における金属酸化物表面修飾処理方法 | |
US20080299046A1 (en) | Methods for controlling surface functionality of metal oxide nanoparticles, metal oxide nanoparticles having controlled functionality, and uses thereof | |
EP1739139B1 (en) | Organically modified fine particles | |
JP2011020915A (ja) | 表面修飾ジルコニアナノ結晶粒子およびその製造方法 | |
JP2008518873A (ja) | 二酸化チタンナノ粒子の合成 | |
JP2009522200A (ja) | 機能性ナノ粒子、その製造方法及び使用方法 | |
Iacob et al. | Amorphous iron–chromium oxide nanoparticles with long-term stability | |
Lee et al. | Synthesis of polymer-decorated hydroxyapatite nanoparticles with a dispersed copolymer template | |
JP5038194B2 (ja) | 正方晶酸化ジルコニウムナノ粒子の製造方法 | |
JP7147109B1 (ja) | 有機修飾無機微粒子の製造方法及び有機修飾無機微粒子 | |
KR100457824B1 (ko) | 용액 열분해법에 의한 나노 크기 2가 금속 산화물 분말의제조 | |
US20100197838A1 (en) | Nanoparticle-containing macrocyclic oligoesters | |
JP4642180B2 (ja) | 針状アパタイト粒子の製造方法 | |
PL238480B1 (pl) | Sposób wytwarzania nanocząstek tlenku cynku | |
KR101198631B1 (ko) | 이황화몰리브데늄 나노와이어의 제조방법 | |
JP2002274822A (ja) | 針状アパタイト粒子の製造方法 | |
Mosby | Surface modification of layered zirconium phosphates: A novel pathway to multifunctional nanomaterials |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20110822 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20120824 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130820 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20131016 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20131105 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20131226 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20140826 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20140901 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5640191 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |