JP2018046051A - インダクタ部品およびインダクタ部品内蔵基板 - Google Patents

インダクタ部品およびインダクタ部品内蔵基板 Download PDF

Info

Publication number
JP2018046051A
JP2018046051A JP2016177627A JP2016177627A JP2018046051A JP 2018046051 A JP2018046051 A JP 2018046051A JP 2016177627 A JP2016177627 A JP 2016177627A JP 2016177627 A JP2016177627 A JP 2016177627A JP 2018046051 A JP2018046051 A JP 2018046051A
Authority
JP
Japan
Prior art keywords
wiring
inductor component
magnetic layer
spiral
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016177627A
Other languages
English (en)
Other versions
JP6520875B2 (ja
Inventor
由雅 吉岡
Yoshimasa Yoshioka
由雅 吉岡
顕徳 ▲濱▼田
顕徳 ▲濱▼田
Akinori Hamada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP2016177627A priority Critical patent/JP6520875B2/ja
Priority to CN201710666141.0A priority patent/CN107818864B/zh
Priority to US15/682,976 priority patent/US10453602B2/en
Publication of JP2018046051A publication Critical patent/JP2018046051A/ja
Application granted granted Critical
Publication of JP6520875B2 publication Critical patent/JP6520875B2/ja
Priority to US16/572,208 priority patent/US10784039B2/en
Priority to US16/991,974 priority patent/US11328858B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/32Insulating of coils, windings, or parts thereof
    • H01F27/327Encapsulating or impregnating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/2804Printed windings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F17/00Fixed inductances of the signal type 
    • H01F17/0006Printed inductances
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F17/00Fixed inductances of the signal type 
    • H01F17/04Fixed inductances of the signal type  with magnetic core
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/2823Wires
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/2823Wires
    • H01F27/2828Construction of conductive connections, of leads
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/29Terminals; Tapping arrangements for signal inductances
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/29Terminals; Tapping arrangements for signal inductances
    • H01F27/292Surface mounted devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/32Insulating of coils, windings, or parts thereof
    • H01F27/323Insulation between winding turns, between winding layers
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/16Printed circuits incorporating printed electric components, e.g. printed resistor, capacitor, inductor
    • H05K1/165Printed circuits incorporating printed electric components, e.g. printed resistor, capacitor, inductor incorporating printed inductors
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/18Printed circuits structurally associated with non-printed electric components
    • H05K1/182Printed circuits structurally associated with non-printed electric components associated with components mounted in the printed circuit board, e.g. insert mounted components [IMC]
    • H05K1/185Components encapsulated in the insulating substrate of the printed circuit or incorporated in internal layers of a multilayer circuit
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F17/00Fixed inductances of the signal type 
    • H01F17/0006Printed inductances
    • H01F2017/0066Printed inductances with a magnetic layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F17/00Fixed inductances of the signal type 
    • H01F17/0006Printed inductances
    • H01F2017/0073Printed inductances with a special conductive pattern, e.g. flat spiral
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F17/00Fixed inductances of the signal type 
    • H01F17/04Fixed inductances of the signal type  with magnetic core
    • H01F2017/048Fixed inductances of the signal type  with magnetic core with encapsulating core, e.g. made of resin and magnetic powder
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/2804Printed windings
    • H01F2027/2809Printed windings on stacked layers
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/11Printed elements for providing electric connections to or between printed circuits
    • H05K1/111Pads for surface mounting, e.g. lay-out
    • H05K1/112Pads for surface mounting, e.g. lay-out directly combined with via connections
    • H05K1/113Via provided in pad; Pad over filled via
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/08Magnetic details
    • H05K2201/083Magnetic materials
    • H05K2201/086Magnetic materials for inductive purposes, e.g. printed inductor with ferrite core
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/09Shape and layout
    • H05K2201/09209Shape and layout details of conductors
    • H05K2201/09654Shape and layout details of conductors covering at least two types of conductors provided for in H05K2201/09218 - H05K2201/095
    • H05K2201/09781Dummy conductors, i.e. not used for normal transport of current; Dummy electrodes of components
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/10Details of components or other objects attached to or integrated in a printed circuit board
    • H05K2201/10007Types of components
    • H05K2201/1003Non-printed inductor

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Coils Or Transformers For Communication (AREA)

Abstract

【課題】回路設計の自由度を向上できるインダクタ部品を提供する。
【解決手段】インダクタ部品は、平面状に巻回されたスパイラル配線と、スパイラル配線が巻回された平面に対する法線方向両側からスパイラル配線を挟む位置にある第1磁性層および第2磁性層と、スパイラル配線から法線方向に延在し、第1磁性層または第2磁性層の内部を貫通する垂直配線とを有する。
【選択図】図1

Description

従来、インダクタ部品内蔵基板としては、特開2004−319875号公報(特許文献1)に記載されたものがある。このインダクタ部品内蔵基板は、巻線構造のインダクタ部品と、インダクタ部品が埋め込まれた基板とを備える。該インダクタ部品の巻線のコイル径は基板の厚み方向と平行である。
また、特開2014−197590号公報(特許文献2)には、平面状に巻回されたスパイラル配線と、スパイラル配線が巻回された平面の法線方向両側からスパイラル配線を挟む位置にある第1磁性層および第2磁性層とを備えるインダクタ部品が記載されている。このインダクタ部品の外形は、直方体であり、上記法線方向と垂直な上面および下面と、上記法線方向と平行な4つの側面を有している。該インダクタは、表面実装型のチップ部品であり、スパイラル配線は、その外周端に接続された引出部(端子電極+引出電極)を介して、外部電極に接続されている。引出部は上記側面から、外部電極は上記上面からそれぞれ外部に露出し、L字状の外部端子を構成している。
特開2004−319875号公報 特開2014−197590号公報
インダクタ部品の小型・低背化に伴い、従来の表面実装だけでなく、SiP(System in Package)技術やPoP(Package on Package)技術などを適用したインダクタ部品の3次元実装が検討されている。例えば、インダクタ部品を基板に埋め込むことにより、システム全体を小型・薄型化することができる。しかしながら、特許文献1のインダクタ内蔵基板では、インダクタ部品が巻線構造であることや、巻線のコイル径が基板の厚み方向と平行であることから、基板を薄くした場合に、インダクタ部品の特性を維持することが難しい。
そこで、特許文献2のインダクタ部品を、スパイラル配線が巻回された平面と基板の厚み方向とが直交するように基板に埋め込むことが考えられる。これにより、基板の薄型化によるインダクタ部品の特性への影響を小さくすることができる。
一方で、特許文献2のインダクタ部品は、表面実装を想定しており、3次元実装に対応した構成となっているとは言い難い。例えば、特許文献2のインダクタ部品では、スパイラル配線は、引出部により、一旦インダクタ部品の側面側(スパイラル配線が巻回された平面に沿った方向=基板の主面方向)に引き出されてから外部端子に接続されている。これは、表面実装では、基板の配線パターンは基板の主面に沿って、側面側からインダクタ部品に接続されることを想定したものである。一方で、3次元実装ではインダクタ部品に対して上面側または下面側から基板の配線パターンが接続されるが、特許文献2のインダクタ部品のように、スパイラル配線が一旦側面側に引き出されていると、配線パターンは、一旦インダクタ部品の側面側に迂回してからスパイラル配線と接続することになり、不要な配線引き回しが発生する。
また、特許文献2のインダクタ部品のようにL字状の外部端子だけではなく、上面または下面のみから外部端子を露出させた底面電極型のインダクタ部品なども含めた表面実装型のインダクタ部品では、外部端子は、基本的に側面側に寄せて配置される。これは、表面実装では、インダクタ部品は基板にはんだ実装されるため、はんだの濡れ広がりによる電極間ショートを防ぐよう、なるべく外部端子間の間隔を広く取るためである。一方で、3次元実装においては、インダクタ部品と基板の配線パターンとの接続ははんだ実装とは限らない。よって、広い外部端子間の間隔は、不要な配線引き回しに繋がるおそれがある。
そこで、本開示の課題は、3次元実装にも対応することで、回路設計の自由度を向上できるインダクタ部品および該インダクタを備えるインダクタ内蔵基板を提供することにある。
前記課題を解決するため、本開示の一態様であるインダクタ部品は、
平面状に巻回されたスパイラル配線と、
前記スパイラル配線が巻回された平面に対する法線方向両側から前記スパイラル配線を挟む位置にある第1磁性層および第2磁性層と、
前記スパイラル配線から前記法線方向に延在し、前記第1磁性層または前記第2磁性層の内部を貫通する垂直配線と
を備える。
また、インダクタ部品の一実施形態では、前記第1磁性層と前記第2磁性層との間に配置され、前記スパイラル配線が埋め込まれた絶縁層をさらに備え、前記垂直配線は、前記スパイラル配線から前記法線方向に延在し、前記絶縁層の内部を貫通するビア導体と、前記ビア導体から前記法線方向に延在し、前記第1磁性層または前記第2磁性層の内部を貫通する柱状配線と、を含む。
ここで、「内部を貫通する」とは、延在方向(前記法線方向)からみたときに、貫通する物体(垂直配線、柱状配線、ビア導体)の周囲が貫通する対象(磁性層、絶縁層)に囲まれている状態をいい、延在方向からみたときに、貫通する物体の側面が貫通する対象から露出している状態は含まない。
前記インダクタ部品によれば、3次元実装にも対応し、回路設計の自由度を向上できる。
また、インダクタ部品の一実施形態では、前記垂直配線は、前記スパイラル配線を挟んだ前記法線方向の両側のそれぞれに位置する。
前記実施形態によれば、回路設計の自由度を一層向上できる。
また、インダクタ部品の一実施形態では、
前記スパイラル配線は、前記垂直配線と接続される接続部分を含み、
前記第1磁性層側の前記垂直配線と前記第2磁性層側の前記垂直配線は、前記スパイラル配線の共通の接続部分に、接続される。
前記実施形態によれば、回路設計の自由度を向上できる。
また、インダクタ部品の一実施形態では、前記第1磁性層または前記第2磁性層の表面に設けられ、前記スパイラル配線と電気的に接続されていない導電性のダミー端子をさらに備える。
前記実施形態によれば、放熱性が向上し、信頼性の高いインダクタ部品を提供できる。また、ダミー端子が接地されている場合、静電気が外部回路に伝搬することを抑制でき、ノイズによる誤作動などを防ぐことができる。また、インダクタ部品を表面実装する場合、ダミー端子をインダクタ部品の姿勢の安定に利用できる。
また、インダクタ部品の一実施形態では、前記垂直配線の前記第1磁性層または前記第2磁性層の表面から露出する端面には、防錆処理が施されていない。
前記実施形態によれば、基板に埋め込まれる場合などにおいて、薄型化を実現できる。
また、インダクタ部品の一実施形態では、
前記第1磁性層または前記第2磁性層の表面から露出する前記垂直配線の端面を覆う外部端子をさらに備え、
前記法線方向からみて、前記外部端子の面積は、前記垂直配線の面積よりも大きい。
前記実施形態によれば、インダクタ部品の実装信頼性が向上する。また、インダクタ部品を実装基板に埋め込む際、歩留まりを向上できる。
また、インダクタ部品の一実施形態では、前記外部端子の表面は、前記第1磁性層または前記第2磁性層の前記表面よりも、前記法線方向の外側に位置する。
前記実施形態によれば、例えば、インダクタ部品が基板に埋め込まれた場合に、基板の製造効率を向上できる。
また、インダクタ部品の一実施形態では、前記外部端子は、前記スパイラル配線を挟んだ前記法線方向の両側のそれぞれに位置する。
前記実施形態によれば、回路設計の自由度を向上できる。
また、インダクタ部品の一実施形態では、前記第1磁性層または前記第2磁性層の表面を覆い、前記垂直配線の端面の少なくとも一部を露出させる被覆膜をさらに備える。
前記実施形態によれば、インダクタ部品の信頼性や外部端子の配置の自由度を上げることができる。
また、インダクタ部品の一実施形態では、前記垂直配線の前記被覆膜から露出する端面は、前記法線方向からみて、該垂直配線と前記スパイラル配線との接触面に対してずれた位置にある。
前記実施形態によれば、外部端子の配置の自由度が向上する。
また、インダクタ部品の一実施形態では、前記第1磁性層の厚みは、前記第2磁性層の厚みと異なる。
前記実施形態によれば、回路設計の自由度を上げることができる。
また、インダクタ部品の一実施形態では、前記垂直配線は、前記第1磁性層および前記第2磁性層のうち厚みの厚い側の内部を貫通する。
前記実施形態によれば、外部回路へのノイズ伝播が抑制できる。
また、インダクタ部品の一実施形態では、
前記第1磁性層または前記第2磁性層の表面に設けられ、前記スパイラル配線と電気的に接続されていないダミー端子をさらに備え、
前記ダミー端子は、前記第1磁性層および前記第2磁性層のうちの厚みの薄い側の表面に、設けられている。
前記実施形態によれば、放熱効果を向上できる。
また、インダクタ部品の一実施形態では、前記スパイラル配線は、複数あり、前記複数個のスパイラル配線間を直列に接続する第2ビア導体をさらに備える。
前記実施形態によれば、インダクタンス値を向上できる。
また、インダクタ部品の一実施形態では、前記スパイラル配線は、第1スパイラル配線と第2スパイラル配線とを含み、前記第1スパイラル配線および前記第2スパイラル配線は、共通の前記垂直配線に電気的に接続されている。
前記実施形態によれば、配線引き回し量を低減できる。
また、インダクタ部品の一実施形態では、前記第1スパイラル配線と前記第2スパイラル配線は、前記法線方向に積層されている。
前記実施形態によれば、インダクタ部品の小型化が実現できる。
また、本開示の一態様に係るインダクタ部品内蔵基板は、
前記インダクタ部品と、
前記インダクタ部品が埋め込まれた基板と、
前記基板の主面に沿った方向に延在するパターン部と、前記基板の厚み方向に延在するビア部とを含む基板配線と
を備え、
前記基板配線は前記ビア部において、前記インダクタ部品と接続している。
前記インダクタ部品内蔵基板によれば、回路設計の自由度を向上できる。
また、インダクタ部品内蔵基板の一実施形態では、前記ビア部は、前記法線方向の一方側から前記インダクタ部品に接続する第1ビア部と、前記法線方向の他方側から前記インダクタ部品に接続する第2ビア部とを含む。
前記実施形態によれば、回路設計の自由度を向上できる。
また、インダクタ部品内蔵基板の一実施形態では、
前記スパイラル配線は、前記垂直配線と接続される接続部分を含み、
前記第1ビア部と、前記第2ビア部とは、前記スパイラル配線の共通の前記接続部分に電気的に接続される。
前記実施形態によれば、回路設計の自由度を向上できる。
また、インダクタ部品内蔵基板の一実施形態では、
前記インダクタ部品は、前記第1磁性層または前記第2磁性層の表面に設けられ、前記スパイラル配線と電気的に接続されていないダミー端子を有し、
前記ダミー端子は、前記基板配線に接続される。
前記実施形態によれば、放熱性を向上できる。
また、インダクタ部品内蔵基板の一実施形態では、前記ダミー端子は、前記基板配線の接地線に接続される。
前記実施形態によれば、静電気が外部回路に伝搬することを抑制でき、ノイズによる誤動作などを防ぐことができる。
本開示の一態様であるインダクタ部品およびインダクタ部品内蔵基板によれば、回路設計の自由度を向上できる。
第1実施形態に係るインダクタ部品を示す分解透視斜視図である。 第1実施形態に係るインダクタ部品を示す平面図である。 第1実施形態に係るインダクタ部品を示す断面図である。 第1実施形態に係るインダクタ部品の製法を説明する説明図である。 第1実施形態に係るインダクタ部品の製法を説明する説明図である。 第1実施形態に係るインダクタ部品の製法を説明する説明図である。 第1実施形態に係るインダクタ部品の製法を説明する説明図である。 第1実施形態に係るインダクタ部品の製法を説明する説明図である。 第1実施形態に係るインダクタ部品の製法を説明する説明図である。 第1実施形態に係るインダクタ部品の製法を説明する説明図である。 第1実施形態に係るインダクタ部品の製法を説明する説明図である。 第1実施形態に係るインダクタ部品の製法を説明する説明図である。 第1実施形態に係るインダクタ部品の製法を説明する説明図である。 第1実施形態に係るインダクタ部品の製法を説明する説明図である。 第1実施形態に係るインダクタ部品の製法を説明する説明図である。 第1実施形態に係るインダクタ部品の製法を説明する説明図である。 第2実施形態に係るインダクタ部品を示す透視平面図である。 第2実施形態に係るインダクタ部品を示す断面図である。 第3実施形態に係るインダクタ部品を示す透視斜視図である。 第3実施形態に係るインダクタ部品を示す断面図である。 第4実施形態に係るインダクタ部品を示す分解透視斜視図である。 第4実施形態に係るインダクタ部品を示す断面図である。 第4実施形態に係るインダクタ部品の製法を説明する説明図である。 第4実施形態に係るインダクタ部品の製法を説明する説明図である。 第4実施形態に係るインダクタ部品の製法を説明する説明図である。 第4実施形態に係るインダクタ部品の製法を説明する説明図である。 第4実施形態に係るインダクタ部品の製法を説明する説明図である。 第4実施形態に係るインダクタ部品の製法を説明する説明図である。 第4実施形態に係るインダクタ部品の製法を説明する説明図である。 第4実施形態に係るインダクタ部品の製法を説明する説明図である。 第4実施形態に係るインダクタ部品の製法を説明する説明図である。 第4実施形態に係るインダクタ部品の製法を説明する説明図である。 第4実施形態に係るインダクタ部品の製法を説明する説明図である。 第4実施形態に係るインダクタ部品の製法を説明する説明図である。 第5実施形態に係るインダクタ部品を示す分解透視斜視図である。 第5実施形態に係るインダクタ部品を示す断面図である。 インダクタ部品内蔵基板の一実施形態を示す断面図である。 LCリップルフィルタを示す簡略構成図である。 一実施形態に係るインダクタ部品内蔵基板の製法を説明する説明図である。 一実施形態に係るインダクタ部品内蔵基板の製法を説明する説明図である。 一実施形態に係るインダクタ部品内蔵基板の製法を説明する説明図である。 一実施形態に係るインダクタ部品内蔵基板の製法を説明する説明図である。 一実施形態に係るインダクタ部品内蔵基板の製法を説明する説明図である。
以下、本開示の一態様を図示の実施の形態により詳細に説明する。
(第1実施形態)
(構成)
図1は、インダクタ部品の第1実施形態を示す分解透視斜視図である。図2は、インダクタ部品を示す透視平面図である。図3は、図2のX−X断面図である。
インダクタ部品1は、例えば、パソコン、DVDプレーヤー、デジカメ、TV、携帯電話、カーエレクトロニクスなどの電子機器に搭載され、例えば全体として直方体形状の部品である。ただし、インダクタ部品1の形状は、特に限定されず、円柱状や多角形柱状、円錐台形状、多角形錐台形状であってもよい。
図1から図3に示すように、インダクタ部品1は、磁性層10と、絶縁層15と、スパイラル配線21,22と、垂直配線51〜53と、外部端子41〜43と、ダミー端子45と、被覆膜50とを有する。
第1スパイラル配線21は、導電性材料からなり、平面状に巻回されている。第1スパイラル配線21が巻回された平面に対する法線方向を、図中、Z方向(上下方向)とし、以下では、順Z方向を上側、逆Z方向を下側とする。なお、Z方向は他の実施形態、実施例においても同様とする。第1スパイラル配線21は、上側からみて、内周端21aから外周端21bに向かって時計回り方向に渦巻状に巻回されている。第2スパイラル配線22は、第1スパイラル配線21と同様の構成であり、内周端22aから外周端22bに向かって時計回り方向に渦巻状に巻回されている。第1スパイラル配線21と第2スパイラル配線22は、同一平面上に並列に配置されている。
磁性層10は、磁性材料からなり、第1磁性層11と、第2磁性層12と、内磁路部13と、外磁路部14とによって構成される。第1磁性層11および第2磁性層12は、Z方向(スパイラル配線21,22が巻回された平面に対する法線方向)両側からスパイラル配線21,22を挟む位置にある。具体的には、第1磁性層11はスパイラル配線21,22の上側、第2磁性層12はスパイラル配線21,22の下側に位置している。内磁路部13、外磁路部14は、図2に示すように、それぞれスパイラル配線21,22の内側、外側に配置され、かつ図3に示すように第1磁性層11および第2磁性層12に接続されている。このように、磁性層10はスパイラル配線21,22に対して閉磁路を構成している。なお、図では、第1磁性層11、第2磁性層12、内磁路部13、外磁路部14は、区別して描かれているが、磁性層10として一体化していてもよい。
絶縁層15は、絶縁性材料からなり、第1磁性層11と第2磁性層12との間に配置され、該絶縁層15には、第1スパイラル配線21および第2スパイラル配線22が埋め込まれている。なお、図1では、磁性層10および絶縁層15を透明にした図で示しているが、磁性層10および絶縁層15は透明、半透明、不透明のいずれであってもよいし、着色されていてもよい。
垂直配線51〜53は、導電性材料からなり、スパイラル配線21,22からZ方向に延在し、第1磁性層11または第2磁性層12の内部を貫通している。垂直配線51〜53は、スパイラル配線21,22からZ方向に延在し、絶縁層15の内部を貫通するビア導体25と、ビア導体25からZ方向に延在し、第1磁性層11または第2磁性層12の内部を貫通する柱状配線31〜33とを含む。
第1垂直配線51は、第1スパイラル配線21の内周端21aの上面から上側に延在するビア導体25と、該ビア導体25から上側に延在し、第1磁性層11の内部を貫通する第1柱状配線31とを含む。第2垂直配線52および第3垂直配線53は、第1スパイラル配線21を挟んだZ方向の両側のそれぞれに存在する。第2垂直配線52は、第1スパイラル配線21の外周端21bの上面から上側に延在するビア導体25と、該ビア導体25から上側に延在し、第1磁性層11の内部を貫通する第2柱状配線32とを含む。第3垂直配線53は、第1スパイラル配線21の外周端21bの下面から下側に延在するビア導体25と、該ビア導体25から下側に延在し、第2磁性層12の内部を貫通する第3柱状配線33とを含む。第2スパイラル配線22側の垂直配線51〜53についても同様である。
外部端子41〜43は、導電性材料からなり、第1磁性層11または第2磁性層12の表面から露出する垂直配線51〜53の端面を覆っている。なお、「表面」とは、インダクタ部品1の外側を向く面であり、第1磁性層11の表面は上面であり、第2磁性層12の表面は下面である。第1外部端子41は、第1磁性層11の上面に設けられ、該上面から露出する垂直配線51(第1柱状配線31)の端面を覆っている。第2外部端子42および第3外部端子43は、第1スパイラル配線21を挟んだZ方向の両側のそれぞれに存在する。第2外部端子42は、第1磁性層11の上面に設けられ、該上面から露出する垂直配線52(第2柱状配線32)の端面を覆っている。第3外部端子43は、第2磁性層12の下面に設けられ、該下面から露出する垂直配線53(第3柱状配線33)の端面を覆っている。第2スパイラル配線22側の外部端子41〜43についても同様である。
ダミー端子45は、導電性材料からなり、第2磁性層12の下面に、2つ設けられている。ダミー端子45は、第1スパイラル配線21および第2スパイラル配線22と電気的に接続されていない。一方のダミー端子45は、第1スパイラル配線21の下側に重なるように、第2磁性層12の下面に設けられている。他方のダミー端子45は、第2スパイラル配線22の下側に重なるように、第2磁性層12の下面に設けられている。
外部端子41〜43およびダミー端子45の少なくとも一方には、好ましくは、防錆処理が施されている。ここで、防錆処理とは、NiおよびAu、または、NiおよびSnなどで被膜することである。これにより、はんだによる銅喰われや、錆びを抑制することができ、実装信頼性の高いインダクタ部品1を提供できる。
被覆膜50は、絶縁性材料からなり、図3に示すように、第1磁性層11の上面および第2磁性層12の下面を覆い、垂直配線51〜53、外部端子41〜43およびダミー端子45の端面を露出させている。なお、図1と図2では、被覆膜50を省略して描いている。
前記インダクタ部品1によれば、垂直配線51〜53が、スパイラル配線21,22からZ方向に延在し、第1磁性層11または第2磁性層12の内部を貫通する。より具体的には、垂直配線51〜53は、スパイラル配線21,22からZ方向に延在し、絶縁層15の内部を貫通するビア導体25と、ビア導体25からZ方向に延在し、第1磁性層11または第2磁性層12の内部を貫通する柱状配線31〜33と、を含む。
すなわち、インダクタ部品1では、スパイラル配線21,22から直接Z方向に配線が引き出されている。これは、スパイラル配線21,22が、インダクタ部品の上面側または下面側に最短距離で引き出されていることを意味し、基板配線がインダクタ部品1の上面側または下面側から接続される3次元実装において、不要な配線引き回しを低減できることを意味する。したがって、インダクタ部品1は、3次元実装に十分に対応できる構成を有しており、回路設計の自由度を向上できる。
また、インダクタ部品1では、スパイラル配線21,22から側面方向に配線が引き出されないため、Z方向から見たインダクタ部品1の面積、すなわち実装面積の低減を実現することができる。したがって、インダクタ部品1は、表面実装および3次元実装のいずれにおいても求められる実装面積の低減も実現でき、回路設計の自由度を向上できる。
また、インダクタ部品1では、柱状配線31〜33は、磁性層10の内部を貫通し、スパイラル配線21,22が巻回された平面に対して法線方向に延在する。この場合、柱状配線31〜33においては、電流はスパイラル配線21,22が巻回された平面に沿った方向に流れず、Z方向に流れる。
ここで、インダクタ部品1のサイズが小さくなると、相対的に磁性層10も小さくなるが、特に内磁路部13では磁束密度が高くなり、磁気飽和しやすくなる。しかし、柱状配線31〜33に流れるZ方向の電流による磁束は、内磁路部13を通らないので、磁気飽和特性、すなわち直流重畳特性への影響を低減できる。一方で、従来技術のように、スパイラル配線から引出部によって側面側(スパイラル配線が巻回された平面に沿った方向側)に配線を引き出した場合は、引出部に流れる電流により発生する磁束の一部は内磁路部や外磁路部を通過してしまうため、磁気飽和特性、直流重畳特性への影響を避けることができない。
なお、柱状配線31〜33が第1磁性層11または第2磁性層12の内部を貫通するため、スパイラル配線21,22から配線を引き出す際に磁性層10の開口箇所を小さくすることができ、容易に閉磁路構造を取ることができる。これにより、基板側へのノイズ伝播を抑制することができる。
さらに、インダクタ部品1では、垂直配線51〜53は、スパイラル配線21,22を挟んだZ方向の両側のそれぞれに位置するので、スパイラル配線21,22を挟んだZ方向の両側のそれぞれに配線を引き出すことができる。具体的には、例えば、インダクタ部品1では、外部端子41〜43は、スパイラル配線21,22を挟んだZ方向の両側のそれぞれに位置する。この場合、例えば、インダクタ部品1の上下面側から基板配線が接続することができる3次元実装に対して、基板配線の接続方法の選択肢を広げることができ、好適となる。
なお、外部端子41〜43は、インダクタ部品1の必須構成ではなく、例えば、垂直配線51〜53(柱状配線31〜33)の第1磁性層11または第2磁性層12の表面(被覆膜50)から露出する端面に直接基板配線を接続してもよい。また、この際、垂直配線51〜53の第1磁性層11または第2磁性層12の表面から露出する端面には、防錆処理が施されていなくてもよい。インダクタ部品1を基板に埋め込む際、インダクタ部品1を外気に触れさせないようにすれば、防錆処理を施さなくても接続信頼性が低下することがなく、また、防錆処理の被膜分、インダクタ部品1をさらに低背化することができる。また、垂直配線51〜53、外部端子41〜43は、スパイラル配線21,22からZ方向の一方(上側または下側)のみに形成してもよい。
さらに、スパイラル配線21,22は磁性層10に沿った平面状に巻回されているため、薄型化に対しても内磁路部13を大きく取ることができ、磁気飽和特性の高い薄型のインダクタ部品1を提供できる。これに対して、従来のように巻線のコイル径が基板の厚み方向と平行であるインダクタ部品を用いると、インダクタ部品の更なる薄型化、すなわち基板の厚み方向の薄型化に対し、コイル径=磁性層の面積が縮小する。これにより、磁気飽和特性が悪化して、インダクタへの十分な通電ができない。また、線径に限界のある巻線にてインダクタを形成しているため、そもそも基板埋込なども考慮した小型・薄型化が困難である。また、巻き線の一部を外部端子とし、実装基板とはんだ付けで電気的に接続するため、はんだの厚みにより薄型化が阻害される。また、マルチフェーズ電源対応のためのインダクタアレイ化が困難となる。
さらに、前記インダクタ部品1は、第1磁性層11または第2磁性層12の表面に設けられ、スパイラル配線21,22と電気的に接続されていない導電性のダミー端子45を備える。ダミー端子45は導電性であり、すなわち熱伝導率が高いため、放熱性が向上して、信頼性の高い(高環境耐性の)インダクタ部品1を提供できる。例えば、ダミー端子45が、基板(埋め込み型の基板を含む)の基板配線に接続された場合は、ダミー端子45から基板配線を通る放熱経路が構成されるため、さらに放熱性が向上する。
また、ダミー端子45が接地されている場合、例えば、ダミー端子45が、基板配線の接地線に接続されている場合、ダミー端子45が静電シールドを構成することで、静電気が外部回路に伝搬することを抑制でき、ノイズによる誤動作などを防ぐことができる。
また、インダクタ部品1を表面実装する場合、ダミー端子45をインダクタ部品1の姿勢の安定に利用できる。
さらに、インダクタ部品1は、図3に示すように、第1磁性層11または第2磁性層12の表面を覆い、垂直配線51〜53の端面を露出させる被覆膜50を備えている。ここで、上記「露出」には、インダクタ部品1の外方への露出だけでなく、他の部材への露出も含めている。
具体的に述べると、第1磁性層11の上面において、被覆膜50は、外部端子41,42を除く領域を覆っている。第2磁性層12の下面において、被覆膜50は、外部端子43およびダミー端子45を除く領域を覆っている。このように、外部端子41〜43と接続する垂直配線51〜53の端面は、被覆膜50から露出している。したがって、隣り合う外部端子41,42(垂直配線51,52)の間および外部端子43(垂直配線53)とダミー端子45の間の絶縁を確実にとることができる。これにより、インダクタ部品1の耐圧性や耐環境性を確保することができる。また、被覆膜50の形状によって、磁性層10の表面に形成される外部端子41〜43やダミー端子45の形成領域を任意に設定できるようになることから、実装時の自由度を上げることができるとともに、外部端子41〜43、ダミー端子45を容易に形成できる。
なお、インダクタ部品1では、図3に示すように、外部端子41〜43の表面は、第1磁性層11または第2磁性層12の表面よりも、Z方向の外側に位置する。具体的には、外部端子41〜43は、被覆膜50に埋め込まれており、外部端子41〜43の表面は、第1磁性層11または第2磁性層12の表面と同一平面となっていない。このとき、磁性層10の表面と外部端子41〜43の表面との位置関係を独立に設定することができ、外部端子41〜43の厚みの自由度を上げることができる。ダミー端子45についても、外部端子41〜43と同様である。この構成によれば、インダクタ部品1における外部端子41〜43の表面の高さ位置を調整することができ、例えば、インダクタ部品1が基板に埋め込まれた際に、他の埋め込み部品の外部端子の高さ位置と合わせ込むことが可能となる。よって、インダクタ部品1を用いることにより、基板のビア形成時のレーザの焦点合わせ工程を合理化することができ、基板の製造効率を向上できる。
さらに、インダクタ部品1では、図2に示すように、Z方向からみて、垂直配線51〜53(柱状配線31〜33)の端面を覆う外部端子41〜43の面積は、垂直配線51〜53(柱状配線31〜33)の面積よりも大きい。したがって、実装時の接合面積が大きくなり、インダクタ部品1の実装信頼性が向上する。また、基板に実装する時に基板配線とインダクタ部品1との接合位置について、アライメントマージンを確保することができ、実装信頼性を高めることができる。なお、このとき、柱状配線31〜33の体積に関わらず、実装信頼性を向上できるため、柱状配線31〜33のZ方向から見た断面積を小さくすることにより、第1磁性層11または第2磁性層12の体積の減少を抑制し、インダクタ部品1の特性低下を抑制することができる。
また、インダクタ部品1では、図2、図3に示すように、スパイラル配線21,22は、垂直配線51〜53(ビア導体25)と接続される接続部分210を含み、第1磁性層11側の垂直配線52と第2磁性層12側の垂直配線53は、スパイラル配線21,22の共通の接続部分210に、接続される。したがって、垂直配線52と垂直配線53とがスパイラル配線21,22における電気回路上の同じ位置(接続部分210)に接続され、接続部分210に対して、インダクタ部品1の上面側、下面側のどちらからも基板配線が接続することが可能となる。
スパイラル配線21,22、垂直配線51〜53(ビア導体25、柱状配線31〜33)、外部端子41〜43およびダミー端子45は、好ましくは、銅を主体とする材料により構成されている。これにより、安価で低抵抗なインダクタ部品1を提供できる。また、銅を主体とすることで、スパイラル配線21,22、垂直配線51〜53、外部端子41〜43およびダミー端子45間の接合力や導電性の向上を図ることもできる。
なお、磁性層10について、第1磁性層11の厚みは、第2磁性層12の厚みと異なっていてもよい。この場合、第1磁性層11側と第2磁性層12側とで、スパイラル配線21,22からの放熱性やノイズ伝播性を変えることができ、インダクタ部品1の設計自由度を上げることができる。また、このとき、垂直配線51〜53は、第1磁性層11および第2磁性層12のうち、厚みの厚い側の内部を貫通する構成であってもよい。これにより、インダクタ部品1の基板への実装後、垂直配線51〜53を介して接続された基板の外部回路とスパイラル配線21,22との間に、厚みの厚い磁性層を配置でき、外部回路へのノイズ伝播が抑制できる。また、第1磁性層11の厚みが第2磁性層12の厚みと異なる場合に、ダミー端子45は、第1磁性層11および第2磁性層12のうち、厚みの薄い側の表面に、設けられていてもよい。これにより、放熱効果を向上できる。
ただし、インダクタ部品1では、第1磁性層11の厚みと第2磁性層12の厚みが略同じであってもよい。この場合、インダクタの磁気抵抗を最も下げることができるので、インダクタンス値を高くできる。
なお、インダクタ部品1では、第1磁性層11と第2磁性層12との間に配置され、スパイラル配線21,22が埋め込まれた絶縁層15を備える。これにより、インダクタ部品1では、配線間のスペースが非常に狭い場合であっても、配線間において金属磁性体などの磁性材料を介した電気的な短絡経路ができる可能性を除くことができるので信頼性の高いインダクタ部品を提供することができる。ただし、絶縁層15が、磁性材料からなることで、磁性層10の一部となっていてもよい。絶縁層15が磁性層10の一部である場合は、同じチップサイズで考えると、磁性層10のボリュームが増えることから、インダクタンス値を高くすることができる。なお、この場合、垂直配線51〜53は、ビア導体25と柱状配線31〜33とが一体化され、区別されない構成であってもよい。
インダクタ部品1は、同一平面上に巻回された2つのスパイラル配線21,22を備えるが、この構成に限られず、1つのスパイラル配線21,22のみを備えていてもよいし、3つ以上のスパイラル配線が配置されていてもよい。
ただし、インダクタ部品1では外部端子41〜43の形成自由度が高いため、外部端子の数が多いインダクタ部品において、その効果はより一層顕著となる。
(実施例)
次に、インダクタ部品1の実施例について説明する。
スパイラル配線21,22、垂直配線51〜53(ビア導体25、柱状配線31〜33)、外部端子41〜43、ダミー端子45は、例えばCu、Ag、Auなどの低抵抗な金属によって構成される。好ましくは、SAP(Semi Additive Process;セミアディティブ工法)によって形成される銅めっきを用いることで、低抵抗でかつ狭ピッチなスパイラル配線21,22を安価に形成できる。なお、スパイラル配線21,22、垂直配線51〜53、外部端子41〜43、ダミー端子45は、SAP以外のめっき工法、スパッタリング法や蒸着法、塗布法などで形成してもよい。
本実施例においては、スパイラル配線21,22、垂直配線51〜53は、SAPによる銅めっきで形成され、外部端子41〜43及びダミー端子45は、無電解Cuめっきで形成される。なお、スパイラル配線21,22、垂直配線51〜53(ビア導体25、柱状配線31〜33)、外部端子41〜43、ダミー端子45を全て同じ工法で形成してもよい。
磁性層10(第1磁性層11、第2磁性層12、内磁路部13および外磁路部14)は、例えば、磁性材料の粉末を含有する樹脂からなり、好ましくは、略球形の金属磁性材料を含む。したがって、磁性材料の磁路の充填性を良くできる。これにより、磁路を小さくでき、小型なインダクタ部品1を提供することができる。ただし、磁性層は、フェライトなどの磁性材料の粉末を含有する樹脂であってもよいし、フェライト基板や磁性材料のグリーンシートを焼結したものであってもよい。
本実施例においては、磁性層10を構成する樹脂は、例えば、エポキシ系樹脂、ビスマレイミド、液晶ポリマ、ポリイミドからなる有機絶縁材料である。また、磁性層10の磁性材料の粉末は、平均粒径5μm以下の金属磁性体である。金属磁性体は、例えば、FeSiCrなどのFeSi系合金、FeCo系合金、NiFeなどのFe系合金、または、それらのアモルファス合金である。磁性材料の含有率は、好ましくは、磁性層10全体に対して50vol%以上85vol%以下である。
上記のように、平均粒径が5μm以下と粒径の小さい磁性材料を使うことで、金属磁性体に発生する渦電流を抑制することができ、数十MHzといった高周波でも損失の小さいインダクタ部品1を得ることができる。
また、Fe系の磁性材料を使うことで、フェライトなどよりも大きな磁気飽和特性を得ることができる。
また、磁性材料の充填量を50vol%以上にすることで透磁率を高くすることができ、所望のインダクタンス値の取得に必要なスパイラル配線のターン数を低減できるため、直流抵抗と近接効果による高周波でのロスを低減できる。さらに、充填量が85vol%以下の場合、磁性材料に対して有機絶縁樹脂のボリュームが十分大きく、磁性材料の流動性を確保できるため、充填性が向上し、実効透磁率や、磁性材料自体の強度を向上できる。
本実施例においては、被覆膜50は、ポリイミド、フェノール、エポキシ樹脂などの有機絶縁樹脂からなる感光性レジストやソルダーレジストで形成されている。
また、外部端子41〜43およびダミー端子45の表面に施される防錆処理は、Ni、Au、Snなどのめっきである。
絶縁層15は、本実施例では、例えば、平均粒径0.5μm以下のSiOフィラーを含有する樹脂からなる。ただし、絶縁層15において、フィラーは必須構成ではない。
本実施例において、スパイラル配線21,22の配線幅は50μm、配線間スペースは10μm、配線厚みは45μmである。
なお、配線間スペースは20μm以下3μm以上が好ましい。配線間スペースを20μm以下にすることで配線幅を大きくとることができるので、直流抵抗を下げることができる。配線間スペースを3μm以上にすることで配線間の絶縁性が十分に保てる。
また、配線厚みは40μm以上120μm以下が好ましい。配線厚みを40μm以上にすることで直流抵抗を十分に下げることができる。配線厚みを120μm以下にすることで配線アスペクトを極端に大きくすることがなくなり、プロセスばらつきを抑制することができる。
スパイラル配線21,22と第1磁性層11との間、スパイラル配線21,22と第2磁性層12との間にある絶縁層15の厚みは10μmであり、内磁路部13とスパイラル配線21,22との間にある絶縁層15の厚みは、35μmである。
なお、スパイラル配線21,22と第1磁性層11、第2磁性層12との間にある絶縁層15の幅は3μm以上20μm以下が好ましい。3μm以上距離をとることでスパイラル配線21,22と第1磁性層11、第2磁性層12が接触することを確実に防ぐことができ、20μm以下にすることでインダクタ部品1の薄型化が実現できる。
内磁路部13とスパイラル配線21,22との間にある絶縁層15の幅は3μm以上45μm以下が好ましい。3μm以上距離をとることでスパイラル配線21,22と内磁路部13が接触することを確実に防ぐことができ、45μm以下にすることで内磁路部13あるいは外磁路部14を広くとることができるので磁気飽和特性を向上し、インダクタンス値を高くとることができる。
スパイラル配線21,22のターン数は本実施形態では、2.5ターンである。ターン数は5ターン以下が好ましい。ターン数が5ターン以下であれば50MHzから150MHzといった高周波スイッチング動作に対して近接効果のロスを小さくすることできる。
第1磁性層11、第2磁性層12の厚みは、本実施形態では、それぞれ20μmである。第1、第2磁性層11,12の厚みは10μm以上100μm以下が好ましい。第1、第2磁性層11,12の厚みが薄すぎると第1、第2磁性層11,12の研削時にプロセスばらつきによりスパイラル配線21,22が露出してしまう恐れがある。また、第1、第2磁性層11,12に含まれる磁性材料の平均粒径に対して、第1、第2磁性層11,12の厚みが薄いと脱粒による実効透磁率の低下が大きい。第1、第2磁性層11,12の厚みを100μm以下にするとインダクタ部品の薄膜化が実現できる。
防錆処理を含めた外部端子41〜43およびダミー端子45の厚みは、無電解銅めっき厚5μm、Niめっき厚5μm、Auめっき厚0.1μmである。また、被覆膜50の厚みは10μmである。これらの厚みも適便チップ厚みと実装信頼性の観点から厚み、大きさが選択されてよい。
以上より、本実施例によると、チップサイズ1010(1.0mm x 1.0mm)、厚み0.125mmでありながら、内磁路部13を比較的大きくとれることから(本実施例における内磁路部13の短辺は0.12mmであり金属磁性体の粒径より十分に大きい)、磁気飽和特性が高い薄型インダクタを提供することができる。
(製造方法)
次に、インダクタ部品1の製造方法について説明する。
図4Aに示すようにダミーコア基板61を準備する。ダミーコア基板61の両面には基板銅箔を有する。本実施形態では、ダミーコア基板61はガラスエポキシ基板である。ダミーコア基板61の厚みは、インダクタ部品の厚みに影響を与えないため、加工上のそりなどの理由から適便取り扱いやすい厚さのものを用いればよい。
次に、基板銅箔の面上に銅箔62を接着する。銅箔62は基板銅箔の円滑面に接着される。このため、銅箔62と基板銅箔の接着力を弱くすることでき、後工程において、ダミーコア基板61を銅箔62から容易に剥がすことができる。好ましくはダミーコア基板61とダミー金属層(銅箔62)を接着する接着剤は、低粘着剤とする。また、ダミーコア基板61と銅箔62の接着力を弱くするために、ダミーコア基板61と銅箔62の接着面を光沢面とすることが望ましい。
その後、銅箔62上に絶縁層63を積層する。このとき絶縁層63は、真空ラミネータやプレス機などにより、熱圧着し、熱硬化する。
図4Bに示すように、絶縁層63をレーザ加工などにより開口部63aを形成する。そして、図4Cに示すように、絶縁層63上にダミー銅64aとスパイラル配線64bを形成する。詳しくは、絶縁層63上に無電解めっきやスパッタリング、蒸着などによりSAPのための給電膜(図示せず)を形成する。給電膜の形成後、給電膜上に感光性のレジストを塗布や貼りつけ、フォトリソグラフィによって配線パターンとなる箇所に感光性レジストの開口部を形成する。その後、ダミー銅64a、スパイラル配線64bに相当するメタル配線を感光性レジスト層の開口部に形成する。メタル配線形成後、感光性レジストを薬液により剥離除去し、給電膜をエッチング除去する。その後、さらにこのメタル配線を給電部として、追加の銅電解めっきを施すことで狭スペースな配線を得る。また、SAPにより図4Bに形成された開口部63aには銅が充填される。
そして、図4Dに示すように、ダミー銅64a、スパイラル配線64bを絶縁層65で覆う。絶縁層65は真空ラミネータやプレス機などにより、熱圧着し、熱硬化する。
次に、図4Eに示すように、レーザ加工などにより絶縁層65に開口部65aを形成する。
その後、ダミーコア基板61を銅箔62から剥がす。そして、銅箔62をエッチングなどにより取り除き、ダミー銅64aをエッチングなどにより取り除いて、図4Fに示すように、内磁路部13に対応する孔部66aと外磁路部14に対応する孔部66bを形成する。
その後、図4Gに示すように、絶縁層開口部67aをレーザ加工などにより形成する。そして、図4Hに示すように、SAPにより絶縁層開口部67aを銅により充填し、絶縁層67上に柱状配線68を形成する。
次に、図4Iに示すように、磁性材料(磁性層)69によりスパイラル配線、絶縁層、柱状配線を覆って、インダクタ基板を形成する。磁性材料69は、真空ラミネータやプレス機などにより、熱圧着し、熱硬化する。このとき、磁性材料69は、孔部66a,66bにも充填される。
そして、図4Jに示すように、インダクタ基板の上下の磁性材料69を研削工法により薄層化する。このとき、柱状配線68の一部を露出されることで、磁性材料69の同一平面上に柱状配線68の露出部が形成される。このとき、インダクタンス値が得られるのに十分な厚みまで磁性材料69を研削することで、インダクタ部品の薄型化を図ることができる。
その後、図4Kに示すように、印刷工法により磁性体表面に絶縁樹脂(被覆膜)70を形成する。ここで、絶縁樹脂70の開口部70aを、外部端子の形成部分とする。本実施例では、印刷工法を用いたが、フォトリソグラフィ法によって開口部70aを形成してもよい。
次に、図4Lに示すように、無電解銅めっきや、NiおよびAuなどのめっき被膜し、外部端子71aやダミー端子71bを形成し、図4Mに示すように、破線部Lにてダイシングにより個片化し、図3のインダクタ部品を得る。なお、図4B以降、記載を省略したが、ダミーコア基板61の両面にインダクタ基板を形成してもよい。これにより、高い生産性を得ることができる。
(第2実施形態)
(構成)
図5Aは、インダクタ部品の第2実施形態を示す透視平面図である。図5Bは、図5AのX−X断面図である。第2実施形態は、第1実施形態とは、第1垂直配線(第1柱状配線)の構成が相違する。この相違する構成を以下に説明する。なお、第2実施形態において、第1実施形態と同一の符号は、第1実施形態と同じ構成であるため、その説明を省略する。
図5Aと図5Bに示すように、インダクタ部品1Aは、インダクタ部品1と同様に、スパイラル配線21,22からZ方向に延伸し、第1磁性層11または第2磁性層12の内部を貫通する垂直配線51A,52,53を備える。一方、インダクタ部品1Aにおいて、第1スパイラル配線21の接続部分210と第1外部端子41とは、共通の第1垂直配線51Aに接続されている。ここで、第1垂直配線51Aが含む第1柱状配線31Aは、Z方向に延在しつつ、ビア導体25との接触面から、Z方向に直交する方向にも延在した形状を有している。すなわち、Z方向からみて、第1垂直配線51Aの被覆膜50から露出する端面(第1柱状配線31Aと第1外部端子41との接触面)Z1は、第1垂直配線51Aと第1スパイラル配線21との接触面(ビア導体25と接続部分210との接触面)Z2に対してずれた位置にある。なお、Z方向からみて、端面Z1が接触面Z2に対してずれた位置にある、とは、Z方向からみて、端面Z1と接触面Z2とが完全に重なる場合を除いた位置関係を指し、端面Z1と接触面Z2とは、互いに一部が重なっていてもよく、まったく重なっていなくてもよい。
したがって、インダクタ部品1Aでは、Z方向に延在しつつZ方向に直交する方向にも延在する第1柱状配線31Aにより、ビア導体25のスパイラル配線21の接続部分210との接触面とは独立して、第1外部端子41の位置を自由に設定できる。具体的に述べると、ビア導体25が内周端21aと接続されているとき、インダクタ部品1Aの厚みを厚くすることなく、第1外部端子41の位置を、インダクタ部品1Aの中心に対して、第2外部端子42と対称に配置することができ、実装信頼性を向上できる。なお、上記説明から分かるように、第1垂直配線51Aにおいて、スパイラル配線21との接触面とは独立して、被覆膜50から露出する端面の位置を自由に設定できるため、インダクタ部品1Aにおいて、ビア導体25、第1外部端子41は必須構成ではない。また、上記では、第1スパイラル配線21側のみについて説明したが、第2スパイラル配線22側についても同様である。
特に、ターン数が0.5周より多い奇数層のスパイラル配線21,22の直列接続によって構成されるインダクタの場合、インダクタの一方の端部は外側にあり、もう一方の端部はスパイラル配線の内側に配置される。また、ターン数が増えるとインダクタの最内周部に設置される端部はチップ中心に寄ることになる。その状態でインダクタの内周端部直上に第1外部端子41を形成すると、他の外部端子42,43との間の距離が狭くなりすぎ、耐圧性の低下、実装時のショート、実装時のチップ傾きなどの問題が生じる。
一方、スパイラル配線21,22上に再度配線層を形成し、第1外部端子41までの配線を引き回した場合、配線形成工程が追加されることによるコスト増加や、配線厚みが追加されることにより、チップ薄膜化に対する阻害要因となる。
そこで、第1柱状配線41AをZ方向と直交する方向に延在させることで、配線加工工程及びチップ厚みを増やすことなく、ターン数に寄らず、第1外部端子41をチップ外側に配置でき、自由に外部端子41〜43を形成することができる。
また、第1柱状配線31Aの第1磁性層11の表面に露出した端面のうち、第1外部端子41と接触していない部分は被覆膜50に覆われることで絶縁性が確保される。
また、第1柱状配線31AのZ方向に直交して延在する方向は、スパイラル配線21,22により発生する磁束を妨げない方向であることが好ましい。スパイラル配線21,22により発生する磁束を妨げない方向とは、すなわちスパイラル配線21,22のターン数が実質的に減らないようになる方向である。こうすることで、磁性層の材料のボリュームが減少することによるインダクタンス値の低下を押さえることができる。
具体的には、例えば、例えば、図5Aでは、スパイラル配線21は、外周端21bから時計回りに巻回され、接続部分210(内周端21a)では図5Aの紙面右上に向かっており、第1柱状配線31Aは、接続部分210から、さらに紙面右上に延在している。この場合、第1柱状配線31Aを流れる電流により発生する磁束は、スパイラル配線21,22に流れる電流により発生する磁束を打ち消さず、インダクタンス値の低下は発生しない。一方、図5Aに示す、第1柱状配線31Aを第1スパイラル配線21の接続部分210を基点に時計周りに90度回転させた場合、同じように外部端子41に接続できるがターン数としてはスパイラル配線21に対して逆巻きになる。したがって、第1柱状配線31Aに流れる電流により発生する磁束は、スパイラル配線21に流れる電流により発生する磁束を打ち消し、インダクタンス値が減少する。
(実施例)
次に、インダクタ部品1Aの実施例について説明する。
本実施例におけるチップサイズは、1010(1.0mm x 1.0mm)、厚み0.125mmであり、スパイラル配線L/S/t=50/10/45μm、ターン数は2.5ターンである。
なお、スパイラル配線21,22の接続部分210,220の外径は、ビア導体25の外径よりも20μm以上大きい。こうすることで、レーザ加工時のアライメントズレによりビアホールの踏み外しを抑制することができる。また、柱状配線31AはZ方向に延在しており、かつ外部端子と接触する程度まで柱状配線幅が大きい。ここで、柱状配線31Aの幅は、スパイラル配線21,22が形成される平面方向に沿った幅と定義している。
(第3実施形態)
(構成)
図6Aは、インダクタ部品の第3実施形態を示す透視斜視図である。図6Bは、図6AのX−X断面図である。第3実施形態は、第1実施形態とは、スパイラル配線の構成が相違する。この相違する構成を以下に説明する。なお、第3実施形態において、他の実施形態と同一の符号は、第1実施形態と同じ構成であるため、その説明を省略する。
図6Aと図6Bに示すように、インダクタ部品1Bは、インダクタ部品1と同様に、スパイラル配線21B〜24BからZ方向に延伸し、第1磁性層11または第2磁性層12の内部を貫通する垂直配線51,52を備える。一方、インダクタ部品1Bにおいて、第1スパイラル配線21B、第2スパイラル配線22B、第3スパイラル配線23Bおよび第4スパイラル配線24Bは、Z方向から見たときに、半楕円形の弧状である。すなわち、第1〜第4スパイラル配線21B〜24Bは、約半周分巻回された曲線状の配線である。また、スパイラル配線21B〜24Bは、中間部分で直線部を含んでいる。このように、本開示において、「平面状に巻回されたスパイラル配線」とは、平面状に形成された曲線(2次元曲線)であって、ターン数が1周未満の曲線であってもよく、一部直線部を有していてもよい。
第1、第4スパイラル配線21B,24Bは、その両端が外側に位置する第1垂直配線51および第2垂直配線52に接続され、第1垂直配線51および第2垂直配線52からインダクタ部品1Bの中心側に向かって孤を描く曲線状である。
第2、第3スパイラル配線22B,23Bは、その両端が内側に位置する第1垂直配線51(ビア導体25、第1柱状配線31)および第2垂直配線52(ビア導体25、第2柱状配線32)に接続され、第1垂直配線51および第2垂直配線52からインダクタ部品1Bの縁側に向かって孤を描く曲線状である。
ここで、第1〜第4スパイラル配線21B〜24Bのそれぞれにおいて、スパイラル配線21B〜24Bが描く曲線と、スパイラル配線21B〜24Bの両端を結んだ直線とに囲まれる範囲を内径部分とする。このとき、Z方向からみて、いずれのスパイラル配線21B〜24Bについても、その内径部分同士は重ならない。
一方、第1、第2スパイラル配線21B,22Bはお互いに近接している。すなわち、第1スパイラル配線21Bで発生した磁束は、近接する第2スパイラル配線22Bの周囲を回り込み、第2スパイラル配線22Bで発生した磁束は、近接する第1スパイラル配線21Bの周囲を回り込む。これは、互いに近接している第3、第4スパイラル配線23B,24Bでも同様である。したがって、第1スパイラル配線21Bと第2スパイラル配線22Bとの磁気結合、第3スパイラル配線23Bと第4スパイラル配線24Bとの磁気結合は強くなる。
なお、第1、第2スパイラル配線21B,22Bにおいて、同じ側にある一端からその反対側にある他端に向かって同時に電流が流れた場合、互いの磁束は強めあう。これは、第1スパイラル配線21Bと第2スパイラル配線22Bの同じ側にある各一端を共にパルス信号の入力側、その反対側にある各他端を共にパルス信号の出力側とした場合に、第1スパイラル配線21Bと第2スパイラル配線22Bとは正結合されていることを意味する。一方、例えば、第1スパイラル配線21Bと第2スパイラル配線22Bの一方のスパイラル配線では一端側を入力、他端側を出力とし、他方のスパイラル配線では一端側を出力、他端側を入力とすれば、第1スパイラル配線21Bと第2スパイラル配線22Bとは負結合されている状態とできる。これは第3、第4スパイラル配線23B,24Bについても同様である。
第1、第3スパイラル配線21B,23Bの一端側に接続された第1垂直配線51、および、第2、第4スパイラル配線22B,24Bの他端側に接続された第2垂直配線52は、それぞれ、第1磁性層11の内部を貫通し、上面において露出する。また、第1、第3スパイラル配線21B,23Bの他端側に接続された第2垂直配線52、および、第2、第4スパイラル配線22B,24Bの一端側に接続された第1垂直配線51は、それぞれ、第2磁性層12の内部を貫通し、下面において露出する。
この構成によれば、例えば、インダクタ部品1Bを基板に埋め込むとともに、第1磁性層11の上面側にパルス信号の入力ラインを配置し、第2磁性層12の下面側にパルス信号の出力ラインを配置することにより、第1、第2スパイラル配線21B,22Bの組、第3、第4スパイラル配線23B,24Bの組のそれぞれをより容易に負結合させることができる。
なお、インダクタ部品1Bでは、スパイラル配線21B〜24Bの垂直配線51,52との接続位置からチップの外側に向かってさらに配線が伸びているが、これはSAPにて銅配線を形成後、追加銅電解めっきを行う際の給電配線と接続される配線である。この給電配線によりSAPの給電膜を除去した後で合っても、追加銅電解めっきを容易に行うことができ、配線間距離を狭くすることができる。また、SAP形成後に追加銅電極めっきを行うことで、第1、第2スパイラル配線21B,22Bの配線間距離および第3、第4スパイラル配線23B,24Bの配線間距離を狭くでき、高い磁気結合を得ることができる。
(実施例)
次に、インダクタ部品1Bの実施例について説明する。
本実施例におけるチップサイズは、20125(2.0mm x 1.25mm)、厚み0.285mmであり、スパイラル配線L/S/t=50/10/45μm、磁性層の厚みはそれぞれ上下で100μmである。スパイラル配線のターン数は、0.5ターン以下である。
本実施例では、第1スパイラル配線21B及び第2スパイラル配線22B、または、第3スパイラル配線23B及び第4スパイラル配線24Bの最小配線間距離は、10μmである。第2スパイラル配線22Bと第3スパイラル配線23Bの配線間距離は、これよりも大きい。こうすることで、第1スパイラル配線21B及び第2スパイラル配線22B、第3スパイラル配線23B及び第4スパイラル配線24Bの磁気結合を強くとることできる。本実施例においては第1スパイラル配線21B及び第2スパイラル配線22B、第3スパイラル配線23B及び第4スパイラル配線24Bの磁気結合は第2スパイラル配線22B及び第3スパイラル配線23Bの磁気結合の4倍以上である。
(第4実施形態)
(構成)
図7Aは、インダクタ部品の第4実施形態を示す分解透視斜視図である。図7Bは、インダクタ部品の断面図である。第4実施形態は、第1実施形態とは、スパイラル配線の構成が相違する。この相違する構成を以下に説明する。なお、第4実施形態において、他の実施形態と同一の符号は、第1実施形態と同じ構成であるため、その説明を省略する。
図7Aと図7Bに示すように、インダクタ部品1Cは、インダクタ部品1と同様に、スパイラル配線21〜24からZ方向に延伸し、第1磁性層11または第2磁性層12の内部を貫通する垂直配線51〜53を備える。図7Aでは、図7Bの内磁路部13および外磁路部14を省略して描いている。
一方、インダクタ部品1Cでは、スパイラル配線は第1スパイラル配線21と第2スパイラル配線22の複数あり、第1スパイラル配線21と第2スパイラル配線22との間を直列に接続する第2ビア導体27さらに備える。具体的に述べると、第1スパイラル配線21と第2スパイラル配線22は、Z方向に積層されている。第1スパイラル配線21は、上側からみて、外周端21bから内周端21aに向かって反時計回り方向に渦巻状に巻回されている。第2スパイラル配線22は、上側からみて、内周端22aから外周端22bに向かって反時計回り方向に渦巻状に巻回されている。
第1スパイラル配線21の外周端21bは、その外周端21bの上側の第1垂直配線51(ビア導体25および第1柱状配線31)を介して、第1外部端子41に接続される。第1スパイラル配線21の内周端21aは、その内周端21aの下側の第2ビア導体27を介して、第2スパイラル配線22の内周端22aに接続される。
第2スパイラル配線22の外周端22bは、その外周端22bの上側の第2垂直配線52(ビア導体25、26および第2柱状配線32)を介して、第2外部端子42に接続される。第2スパイラル配線22の外周端22bは、その外周端22bの下側の第3垂直配線53(ビア導体25および第3柱状配線33)を介して、第3外部端子43に接続される。ビア導体26は、第2スパイラル配線22の外周端22bの上側のビア導体25からZ方向に延在し絶縁層15の内部を貫通する。ビア導体26は、第1スパイラル配線21と同一平面上に形成される。
同様に、第3スパイラル配線23と第4スパイラル配線24は、第2ビア導体27を介して、直列に接続されている。第3スパイラル配線23は、第1スパイラル配線21と同様の構成であり、第4スパイラル配線24は、第2スパイラル配線22と同様の構成である。
したがって、インダクタ部品1Cでは、第2ビア導体27により、第1スパイラル配線21と第2スパイラル配線22とが直列に接続されているので、ターン数を増やすことでインダクタンス値を向上できる。また、第1から第3垂直配線51〜53を第1、第2スパイラル配線21,22の外周から出すことができるので、第1、第2スパイラル配線21,22の内径を大きくとることができ、インダクタンス値を向上できる。また、第3スパイラル配線23と第4スパイラル配線24は、第2ビア導体27を介して、直列に接続されているので、同様の効果を有する。
また、第1スパイラル配線21と第2スパイラル配線22、第3スパイラル配線23と第4スパイラル配線24は、それぞれ法線方向に積層されているので、ターン数に対してZ方向からみたインダクタ部品1Cの面積、すなわち実装面積を低減でき、インダクタ部品1Cの小型化が実現できる。
なお、インダクタ部品1Cでは、直列接続されたスパイラル配線を偶数備える構成であったが、これに限られず、直列接続されたスパイラル配線は奇数であってもよい。垂直配線は、スパイラル配線からZ方向に配線を引き出すため、直列接続されたスパイラル配線が奇数個であって、インダクタの一方の端部が内周側に配置されていても、該端部を外周側に引き出す必要がない。したがって、この場合、薄型化を実現することができる。また、このように、直列接続されるスパイラル配線の数の自由度が向上するため、インダクタンス値の設定範囲の自由度も向上する。
また、インダクタ部品1Cでは、2層のスパイラル配線からなるインダクタを同一平面上に2つ配置しているが、同一平面上にインダクタを1つのみ配置してもよいし、3つ以上配置していてもよい。
(実施例)
次に、インダクタ部品1Cの実施例について説明する。
本実施例におけるチップサイズは、1010(1.0mm x 1.0mm)、厚み0.180mmであり、スパイラル配線L/S/t=50/10/45μm、磁性材料の厚みはそれぞれ上下で20μmである。2層のスパイラル配線が電気的に接続されて1つのインダクタを形成する、1つのインダクタのターン数は、4.5ターンである。
(製造方法)
次に、インダクタ部品1Cの製造方法について説明する。
まず、インダクタ部品1の製造方法の図4Aから図4Cに示す工程を行う。続いて、図8Aに示すように、第1のダミー銅64aおよび第1のスパイラル配線64bを第1の絶縁層65で覆う。絶縁層65は、真空ラミネータやプレス機などにより、熱圧着し、熱硬化する。
そして、図8Bに示すように、レーザ加工などにより、ダミー銅64a上の絶縁層65を開口して開口部65aを形成し、スパイラル配線64bの端部上の絶縁層65を開口して開口部65bを形成する。
次に、図8Cに示すように、図8Cと同じようにSAPとその後の追加銅電極めっきを行って、第2のダミー銅81aと第2のスパイラル配線81bを形成する。なお、スパイラル配線の積層数を増やす場合、図8Aから図8Cを繰り返せばよい。
そして、図8Dに示すように、第2のダミー銅81aおよび第2のスパイラル配線81bを第2の絶縁層82で覆う。絶縁層82は、真空ラミネータやプレス機などにより、熱圧着し、熱硬化する。そして、レーザ加工などにより、第2のダミー銅81a上の絶縁層82の開口部82aを形成する。
その後、ダミーコア基板61を銅箔62から剥がす。そして、銅箔62をエッチングなどにより取り除き、ダミー銅64aをエッチングなどにより取り除いて、図8Eに示すように、内磁路に対応する孔部66aと外磁路に対応する孔部66bを形成する。
その後、図8Fに示すように、絶縁層82に開口部87aをレーザ加工などにより形成する。そして、図8Gに示すように、SAPにより絶縁層82の開口部87aを銅により充填し、絶縁層82上に柱状配線68を形成する。
次に、図8Hに示すように、磁性材料(磁性層)69によりスパイラル配線、絶縁層、柱状配線を覆って、インダクタ基板を形成する。磁性材料69は、真空ラミネータやプレス機などにより、熱圧着し、熱硬化する。このとき、磁性材料69は、孔部66a,66bにも充填される。
そして、図8Iに示すように、インダクタ基板の上下の磁性材料69を研削工法により薄層化する。このとき、柱状配線68の一部を露出されることで、磁性材料69の同一平面上に柱状配線68の露出部が形成される。
その後、図8Jに示すように、印刷工法により磁性体表面に絶縁樹脂(絶縁層)70を形成する。ここで、絶縁樹脂70の開口部70aを、外部端子の形成部分とする。上記では、印刷工法を用いたが、フォトリソグラフィ法によって開口部70aを形成してもよい。
次に、図8Kに示すように、無電解銅めっきや、NiおよびAuなどのめっき被膜し、外部端子71aやダミー端子71bを形成し、図8Lに示すように、破線部Lにてダイシングにより個片化し、図7Bのインダクタ部品1Cを得る。なお、ダミーコア基板61の両面にインダクタ基板を形成してもよい。これにより、高い生産性を得ることができる。
(第5実施形態)
(構成)
図9Aは、インダクタ部品の第5実施形態を示す分解透視斜視図である。図9Bは、インダクタ部品の断面図である。第5実施形態は、第1実施形態とは、スパイラル配線の構成が相違する。この相違する構成を以下に説明する。なお、第5実施形態において、他の実施形態と同一の符号は、第1実施形態と同じ構成であるため、その説明を省略する。
図9Aと図9Bに示すように、インダクタ部品1Dは、インダクタ部品1と同様に、スパイラル配線21,22からZ方向に延伸し、第1磁性層11または第2磁性層12の内部を貫通する垂直配線51a,51b,52,53を備える。図9Aでは、図9Bの内磁路部13および外磁路部14を省略して描いている。
一方、インダクタ部品1Dにおいて、第1スパイラル配線21および第2スパイラル配線22は、共通の垂直配線52,53に電気的に接続されている。また、第1スパイラル配線21と第2スパイラル配線22は、Z方向に積層されている。第1スパイラル配線21は、上側からみて、外周端21bから内周端21aに向かって反時計回り方向に渦巻状に巻回されている。第2スパイラル配線22は、上側からみて、内周端22aから外周端22bに向かって反時計回り方向に渦巻状に巻回されている。
なお、上記において「電気的に接続されている」とは、例えば図9A、図9Bにおいて、第2スパイラル配線22は、垂直配線52とは直接接しておらず、第3ビア導体28および第1スパイラル配線21の内周端21aを介して垂直配線52に接続されている。一方で、電気回路図で考えると、第2スパイラル配線22と垂直配線52との間の第3ビア導体28および内周端21aは回路素子とはならず単なる配線程度の位置づけであり、第2スパイラル配線22と垂直配線52は「接続されている」と言える。この関係は、第1スパイラル配線21と垂直配線53とも同様である。このように、「電気的に接続されている」とは、回路素子に相当しない単なる配線程度の部材を介して接続する態様も含む。
第1垂直配線51a(ビア導体25および第1柱状配線31a)は、第1スパイラル配線21の外周端21bからZ方向の上側に延在し、上方の第1磁性層11の内部を貫通して、第1外部端子41aに接続されている。第1垂直配線51b(ビア導体25および第1柱状配線31b)は、第2スパイラル配線22の外周端22bからZ方向の上側に延在し、上方の第1磁性層11の内部を貫通して、第1外部端子41bに接続されている。
第2垂直配線52(ビア導体25および第2柱状配線32)は、第1スパイラル配線21の内周端21aからZ方向の上側に延在し、上方の第1磁性層11の内部を貫通して、第2外部端子42に接続されている。第3垂直配線53(ビア導体25および第3柱状配線33)は、第2スパイラル配線22の内周端22aからZ方向の下側に延在し、下方の第2磁性層12の内部を貫通して、第3外部端子43に接続されている。ここで、インダクタ部品1Dでは、第1スパイラル配線21と第2スパイラル配線22は、内周端21a,22aにおいて、第3ビア導体28を介して、互いに接続されている。つまり、第1スパイラル配線21と第2スパイラル配線22は、共通の第2垂直配線52に電気的に接続されており、かつ共通の第3垂直配線53に電気的に接続されている。
したがって、例えば共通の垂直配線52,53側を第1、第2スパイラル配線21,22共通の出力とすることで、実装する基板側で基板配線を分岐させる必要が無く、基板配線の引き回し量を低減にできる。なお、共通の柱状配線32,33は出力側に限られず、入力側としてもよく、この点から回路設計の自由度を向上できる。
また、第1スパイラル配線21と第2スパイラル配線22は、法線方向に積層されているので、ターン数に対してZ方向からみたインダクタ部品1Cの面積、すなわち実装面積を低減でき、インダクタ部品1Dの小型化が実現できる。また、この場合、第1スパイラル配線21,22の内磁路部13が非常に近くなるため、第1スパイラル配線21と第2スパイラル配線22とを強く磁気結合させることができる。
また、インダクタ部品1Dは、2つのインダクタ(スパイラル配線)が積層されていたが、3つ以上のインダクタを積層してもよい。また、インダクタ部品1Cと同様に、同一平面上に複数のインダクタを配置してもよい。
(実施例)
次に、インダクタ部品1Dの実施例について説明する。
本実施例におけるチップサイズは、1005(1.0mm x 0.5mm)、厚み0.180mmであり、スパイラル配線L/S/t=50/10/45μm、磁性層の厚みはそれぞれ上下で20μmである。
(第6実施形態)
(構成)
図10は、インダクタ部品内蔵基板の実施形態を示す断面図である。なお、この実施形態において、第1実施形態と同一の符号は、第1実施形態と同じ構成であるため、その説明を省略する。
図10に示すように、インダクタ部品内蔵基板5は、第1実施形態のインダクタ部品1と、インダクタ部品1が埋め込まれた基板6と、基板6の主面に沿った方向に延在するパターン部6a〜6dと基板6の厚み方向に延在するビア部6eとを含む基板配線6fとを備える。基板6は、コア材7と絶縁層8を含む。インダクタ部品1は、コア材7の貫通孔7aに配置され、コア材7とともに絶縁層8で覆われている。なお、インダクタ部品1は、基板6の主面と、磁性層10の主面およびスパイラル配線21,22が巻回された平面とが実質的に平行な状態で、基板6に埋め込まれる。よって、インダクタ部品1におけるZ方向(スパイラル配線21,22が巻回された平面に対する法線方向)は、基板6における厚み方向と実質的に一致し、基板6の主面と実質的に直交する。
基板配線6fはビア部6eにおいて、インダクタ部品1の外部端子41〜43と接続している。また、ビア部6eは、Z方向の上側からインダクタ部品1に接続する第1ビア部と、Z方向の下側からインダクタ部品1に接続する第2ビア部とを含む。具体的に述べると、第1外部端子41は、第1外部端子41の上側のビア部6e(第1ビア部)を介して、第1パターン部6aに接続される。第2外部端子42は、第2外部端子42の上側のビア部6e(第1ビア部)を介して、第2パターン部6bに接続される。第3外部端子43は、第3外部端子43の下側のビア部6e(第2ビア部)を介して、第3パターン部6cに接続される。ダミー端子45は、ダミー端子45の下側のビア部6e(第2ビア部)を介して、第4パターン部6dに接続される。
したがって、インダクタ部品内蔵基板5では、インダクタ部品1のスパイラル配線21,22と、基板配線6fとが、Z方向に延在する垂直配線51〜53およびビア部6eによって、接続されている。これはすなわち、スパイラル配線21,22と基板配線6fとが余分な配線の引き回しなく接続されることを意味する。インダクタ部品内蔵基板5では、この余分な引き回し分の省略によって空いた空間を有効に活用できるため、従来技術のインダクタ部品やインダクタ部品内蔵基板よりも回路設計の自由度を向上できる。
また、インダクタ部品内蔵基板5では、余分な配線の引き回しがないため、配線抵抗を低減できる。さらに、インダクタ部品内蔵基板5では、比較的大きいインダクタ部品1を基板6に埋め込むことで、回路全体を小型化、薄型化できる。
また、ビア部6eは、第1ビア部と第2ビア部とを含み、基板配線6fは、インダクタ部品1のZ方向の両側(上下)から接続されている。この場合、基板配線がインダクタ部品の一方側からしか接続されていない従来のインダクタ部品内蔵基板に比べて、パターン部6a〜6dのレイアウトの選択肢が増え、回路設計の自由度が向上する。
ここで、図11に示すように、例えば、インダクタ部品1をDC−DCコンバータ回路のLCリップルフィルタの一部として使用する場合を考えると、インダクタ部品1の出力側は、平滑コンデンサ9aに接続する経路と、負荷9bに接続する経路の2つの経路が必要である。
そこで、例えば、図10に示すように、上側の第2外部端子42と接続する第2パターン部6bを負荷9bに電気的に接続し、下側の第3外部端子43と接続する第3パターン部6cを平滑コンデンサ9aに電気的に接続することで、配線の引き回し量を低減にでき、容易に小型なDC−DCコンバータ回路を構成することができる。
また、ダミー端子45が、基板配線6fのパターン部6dに接続されることで、インダクタ部品1の放熱経路として、ダミー端子45および基板配線6fを確保できる。特に、基板配線6fは銅からなり、熱伝導率が非常に高いため、インダクタ部品1から発生した熱は、ダミー端子45から基板配線6fを介して効率的に放熱され、放熱性を向上できる。なお、基板配線6fのパターン部6dが接地線である場合は、ダミー端子45を静電シールドとして機能させることができる。
また、第1実施形態で説明したように、インダクタ部品1において、Z方向からみて、外部端子41〜43の面積は、柱状配線31〜33の面積よりも大きいので、外部端子41〜43の面積を大きくできる。したがって、インダクタ部品1を基板6に埋め込む際、インダクタ部品1の外部端子41〜43と接続するビア部6eを基板6に設けるとき、外部端子41〜43に対するビア部6eの形成位置のマージンを大きくとることができて、埋め込み時の歩留まりを向上できる。
なお、図10では、インダクタ部品内蔵基板5には、インダクタ部品1および基板配線6fのみしか記載されていないが、インダクタ部品内蔵基板5には、半導体部品、コンデンサ部品、抵抗部品などの別の電子部品が埋め込まれていてもよい。また、基板6の主面に別の電子部品を表面実装したり、半導体チップを接合したりしてもよい。
(実施例)
次に、インダクタ部品内蔵基板5の実施例について説明する。
本実施例において、外部端子41〜43及びダミー端子45は、無電解銅めっきで形成し、銅めっきの厚みは、5μmである。
外部端子41〜43及びダミー端子45の銅めっきの厚みは、2μm以上20μm以下が好ましい。銅めっきの厚みが、2μm以上あれば、端子をすべて銅めっきで覆うことができる。銅めっきの厚みを20μm以下にすることで、インダクタ部品1を薄くできて、結果として、インダクタ部品1が埋め込まれる基板6を薄型化できる。
また、本実施例の基板配線6fは、サブトラクティブ法で形成された銅配線である。
(製造方法)
次に、インダクタ部品内蔵基板5の製造方法について説明する。
図12Aに示すように、コア材90を準備する。コア材90は,例えば基板6の小型化、薄型化のため、0.33mmや0.18mmなどの薄いものを用いる。
そして、図12Bに示すように、コア材90にドリルやレーザなどによりキャビティ91を形成する。
次に、図12Cに示すように、コア材90の下面に低粘着の仮貼りテープ93を貼りつける。なお、仮貼りテープ93の代わりに、熱発泡シートなどを用いてもよい。そして、キャビティ91にインダクタ部品1を設置する。
そして、図12Dに示すように、ビルドアップシートやプリプレグなどの絶縁層94をコア材90の上面にラミネートし、インダクタ部品1とコア材90を封止して、仮貼りテープ93を除去する。次に、コア材90の下面側を絶縁層94でラミネートし、熱硬化する。
そして、図12Eに示すように、インダクタ部品1の外部端子及びダミー端子と回路の接点となる絶縁層94の部分に、レーザ加工などによりビアホールを形成する。この際、外部端子がレーザのアライメント精度より十分に大きいことが好ましい。インダクタ部品1では、Z方向からみた場合の、外部端子の面積と、柱状配線の面積とを独立して設定できるため、容易に外部端子をレーザのアライメント精度より大きくすることができ、レーザによる加工不良を抑制し、生産性を向上できる。
その後、レーザのスミアを除去し、無電解めっきや電解めっきなどの手法で、回路配線層95、スパイラル配線と電気的に接続されるビア導体95a、および、スパイラル配線と電気的に接続されないビア導体95bを形成する。本実施例においてはサブトラクティブ法を用いた。
そして、図12Eの工程を繰り返すことで、図10に示す多層回路配線層を得ることができる。
なお、本開示は上述の実施形態に限定されず、本開示の要旨を逸脱しない範囲で設計変更可能である。例えば、第1から第6実施形態のそれぞれの特徴点を様々に組み合わせてもよい。
また、第1から第6実施形態において、他の実施形態で説明した作用効果であって、該実施形態では特に言及せず、説明を省略しているものであっても、該実施形態で同様の構成を有する場合は、該実施形態においても基本的に同じ作用効果は発揮される。
1,1A〜1D インダクタ部品
5 電子部品
6 基板
10 磁性層
11 第1磁性層
12 第2磁性層
13 内磁路部
14 外磁路部
15 絶縁層
21,21B 第1スパイラル配線
210 接続部分
22,22B 第2スパイラル配線
220 接続部分
23,23B 第3スパイラル配線
24,24B 第4スパイラル配線
25 ビア導体
31,31A,31a,31b 第1柱状配線
32 第2柱状配線
33 第3柱状配線
41,41a,41b 第1外部端子
42 第2外部端子
43 第3外部端子
45 ダミー端子
50 被覆膜
51,51A,51a,51b 第1垂直配線
52 第2垂直配線
53 第3垂直配線

Claims (22)

  1. 平面状に巻回されたスパイラル配線と、
    前記スパイラル配線が巻回された平面に対する法線方向両側から前記スパイラル配線を挟む位置にある第1磁性層および第2磁性層と、
    前記スパイラル配線から前記法線方向に延在し、前記第1磁性層または前記第2磁性層の内部を貫通する垂直配線と
    を備える、インダクタ部品。
  2. 前記第1磁性層と前記第2磁性層との間に配置され、前記スパイラル配線が埋め込まれた絶縁層をさらに備え、
    前記垂直配線は、前記スパイラル配線から前記法線方向に延在し、前記絶縁層の内部を貫通するビア導体と、前記ビア導体から前記法線方向に延在し、前記第1磁性層または前記第2磁性層の内部を貫通する柱状配線と、を含む請求項1に記載のインダクタ部品。
  3. 前記垂直配線は、前記スパイラル配線を挟んだ前記法線方向の両側のそれぞれに位置する、請求項1または2に記載のインダクタ部品。
  4. 前記スパイラル配線は、前記垂直配線と接続される接続部分を含み、
    前記第1磁性層側の前記垂直配線と前記第2磁性層側の前記垂直配線は、前記スパイラル配線の共通の接続部分に、接続される、請求項3に記載のインダクタ部品。
  5. 前記第1磁性層または前記第2磁性層の表面に設けられ、前記スパイラル配線と電気的に接続されていない導電性のダミー端子をさらに備える、請求項1から4のいずれかに記載のインダクタ部品。
  6. 前記垂直配線の前記第1磁性層または前記第2磁性層の表面から露出する端面には、防錆処理が施されていない、請求項1から5のいずれかに記載のインダクタ部品。
  7. 前記第1磁性層または前記第2磁性層の表面から露出する前記垂直配線の端面を覆う外部端子をさらに備え、
    前記法線方向からみて、前記外部端子の面積は、前記垂直配線の面積よりも大きい、請求項1から6のいずれかに記載のインダクタ部品。
  8. 前記外部端子の表面は、前記第1磁性層または前記第2磁性層の前記表面よりも、前記法線方向の外側に位置する、請求項7に記載のインダクタ部品。
  9. 前記外部端子は、前記スパイラル配線を挟んだ前記法線方向の両側のそれぞれに位置する、請求項7または8に記載のインダクタ部品。
  10. 前記第1磁性層または前記第2磁性層の表面を覆い、前記垂直配線の端面の少なくとも一部を露出させる被覆膜をさらに備える、請求項1から9のいずれかに記載のインダクタ部品。
  11. 前記垂直配線の前記被覆膜から露出する端面は、前記法線方向からみて、該垂直配線と前記スパイラル配線との接触面に対してずれた位置にある、請求項10に記載のインダクタ部品。
  12. 前記第1磁性層の厚みは、前記第2磁性層の厚みと異なる、請求項1から11のいずれかに記載のインダクタ部品。
  13. 前記垂直配線は、前記第1磁性層および前記第2磁性層のうち厚みの厚い側の内部を貫通する、請求項12に記載のインダクタ部品。
  14. 前記第1磁性層または前記第2磁性層の表面に設けられ、前記スパイラル配線と電気的に接続されていないダミー端子をさらに備え、
    前記ダミー端子は、前記第1磁性層および前記第2磁性層のうちの厚みの薄い側の表面に、設けられている、請求項12または13に記載のインダクタ部品。
  15. 前記スパイラル配線は、複数あり、前記複数個のスパイラル配線間を直列に接続する第2ビア導体をさらに備える、請求項1から14のいずれかに記載のインダクタ部品。
  16. 前記スパイラル配線は、第1スパイラル配線と第2スパイラル配線とを含み、前記第1スパイラル配線および前記第2スパイラル配線は、共通の前記垂直配線に電気的に接続されている、請求項1から15のいずれかに記載のインダクタ部品。
  17. 前記第1スパイラル配線と前記第2スパイラル配線は、前記法線方向に積層されている、請求項16に記載のインダクタ部品。
  18. 請求項1から17のいずれかに記載のインダクタ部品と、
    前記インダクタ部品が埋め込まれた基板と、
    前記基板の主面に沿った方向に延在するパターン部と、前記基板の厚み方向に延在するビア部とを含む基板配線と
    を備え、
    前記基板配線は前記ビア部において、前記インダクタ部品と接続している、インダクタ部品内蔵基板。
  19. 前記ビア部は、前記法線方向の一方側から前記インダクタ部品に接続する第1ビア部と、前記法線方向の他方側から前記インダクタ部品に接続する第2ビア部とを含む、請求項18に記載のインダクタ部品内蔵基板。
  20. 前記スパイラル配線は、前記垂直配線と接続される接続部分を含み、
    前記第1ビア部と、前記第2ビア部とは、前記スパイラル配線の共通の前記接続部分に電気的に接続される、請求項19に記載のインダクタ部品内蔵基板。
  21. 前記インダクタ部品は、前記第1磁性層または前記第2磁性層の表面に設けられ、前記スパイラル配線と電気的に接続されていないダミー端子を有し、
    前記ダミー端子は、前記基板配線に接続される、請求項18から20のいずれかに記載のインダクタ部品内蔵基板。
  22. 前記ダミー端子は、前記基板配線の接地線に接続される、請求項21に記載のインダクタ部品内蔵基板。
JP2016177627A 2016-09-12 2016-09-12 インダクタ部品およびインダクタ部品内蔵基板 Active JP6520875B2 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2016177627A JP6520875B2 (ja) 2016-09-12 2016-09-12 インダクタ部品およびインダクタ部品内蔵基板
CN201710666141.0A CN107818864B (zh) 2016-09-12 2017-08-07 电感部件以及电感部件内置基板
US15/682,976 US10453602B2 (en) 2016-09-12 2017-08-22 Inductor component and inductor-component incorporating substrate
US16/572,208 US10784039B2 (en) 2016-09-12 2019-09-16 Inductor component and inductor-component incorporating substrate
US16/991,974 US11328858B2 (en) 2016-09-12 2020-08-12 Inductor component and inductor-component incorporating substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016177627A JP6520875B2 (ja) 2016-09-12 2016-09-12 インダクタ部品およびインダクタ部品内蔵基板

Publications (2)

Publication Number Publication Date
JP2018046051A true JP2018046051A (ja) 2018-03-22
JP6520875B2 JP6520875B2 (ja) 2019-05-29

Family

ID=61560216

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016177627A Active JP6520875B2 (ja) 2016-09-12 2016-09-12 インダクタ部品およびインダクタ部品内蔵基板

Country Status (3)

Country Link
US (3) US10453602B2 (ja)
JP (1) JP6520875B2 (ja)
CN (1) CN107818864B (ja)

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018186242A (ja) * 2017-04-27 2018-11-22 太陽誘電株式会社 コイル部品及び電子機器
JP2019179842A (ja) * 2018-03-30 2019-10-17 ローム株式会社 チップインダクタ
JP2019207915A (ja) * 2018-05-28 2019-12-05 太陽誘電株式会社 コイル部品及び電子機器
JP2020013854A (ja) * 2018-07-17 2020-01-23 株式会社村田製作所 インダクタ部品
JP2020013853A (ja) * 2018-07-17 2020-01-23 株式会社村田製作所 インダクタ部品
JP2020013855A (ja) * 2018-07-17 2020-01-23 株式会社村田製作所 インダクタ部品
JP2020053483A (ja) * 2018-09-25 2020-04-02 株式会社村田製作所 インダクタ部品
JP2020053636A (ja) * 2018-09-28 2020-04-02 株式会社村田製作所 インダクタ部品およびインダクタ部品の製造方法
JP2020136390A (ja) * 2019-02-15 2020-08-31 株式会社村田製作所 インダクタ部品
JP2021028944A (ja) * 2019-08-09 2021-02-25 株式会社村田製作所 インダクタ部品およびインダクタ部品内蔵基板
JP2021034602A (ja) * 2019-08-27 2021-03-01 株式会社村田製作所 インダクタ部品
JP2021068841A (ja) * 2019-10-25 2021-04-30 株式会社村田製作所 インダクタ部品およびインダクタ部品内蔵基板
JP2021068825A (ja) * 2019-10-24 2021-04-30 株式会社村田製作所 インダクタアレイ部品およびインダクタアレイ部品内蔵基板
JP2021068837A (ja) * 2019-10-25 2021-04-30 株式会社村田製作所 インダクタ部品及びインダクタ部品実装基板
JP2021103703A (ja) * 2019-12-24 2021-07-15 Tdk株式会社 コイル部品
US20210265102A1 (en) * 2020-02-26 2021-08-26 Murata Manufacturing Co., Ltd. Inductor component and resin sealing body
JP2021176166A (ja) * 2020-05-01 2021-11-04 株式会社村田製作所 インダクタ部品及びインダクタ構造体
JP2022002260A (ja) * 2020-06-22 2022-01-06 株式会社村田製作所 表面実装型受動部品
JP2022026745A (ja) * 2020-07-31 2022-02-10 株式会社村田製作所 インダクタ部品、及びdcdcコンバータ
CN114078627A (zh) * 2020-08-19 2022-02-22 株式会社村田制作所 电感器部件
JP2022038326A (ja) * 2020-08-26 2022-03-10 株式会社村田製作所 インダクタ部品、及びインダクタ部品の製造方法
KR20230166198A (ko) 2022-05-30 2023-12-07 삼성전기주식회사 코일 부품
US11881342B2 (en) 2018-10-23 2024-01-23 Samsung Electro-Mechanics Co., Ltd Coil electronic component
JP7494828B2 (ja) 2021-10-21 2024-06-04 株式会社村田製作所 インダクタ部品
KR102678628B1 (ko) * 2018-10-23 2024-06-27 삼성전기주식회사 코일 전자 부품

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI572007B (zh) * 2014-10-06 2017-02-21 瑞昱半導體股份有限公司 積體電感結構
JP6828568B2 (ja) * 2017-04-11 2021-02-10 Tdk株式会社 コイル部品
JP6924084B2 (ja) * 2017-06-26 2021-08-25 新光電気工業株式会社 配線基板
US11610706B2 (en) * 2018-01-12 2023-03-21 Intel Corporation Release layer-assisted selective embedding of magnetic material in cored and coreless organic substrates
US11495555B2 (en) * 2018-03-14 2022-11-08 Intel Corporation Magnetic bilayer structure for a cored or coreless semiconductor package
US11355459B2 (en) * 2018-05-17 2022-06-07 Intel Corpoation Embedding magnetic material, in a cored or coreless semiconductor package
KR102148831B1 (ko) * 2018-10-02 2020-08-27 삼성전기주식회사 코일 부품
JP7455516B2 (ja) * 2019-03-29 2024-03-26 Tdk株式会社 素子内蔵基板およびその製造方法
JP7378227B2 (ja) * 2019-05-27 2023-11-13 株式会社村田製作所 インダクタ部品
KR102178528B1 (ko) * 2019-06-21 2020-11-13 삼성전기주식회사 코일 전자부품
JP7092099B2 (ja) 2019-09-03 2022-06-28 株式会社村田製作所 電子部品およびその製造方法
JP7180582B2 (ja) * 2019-10-03 2022-11-30 株式会社村田製作所 インダクタ部品
JP7180581B2 (ja) * 2019-10-03 2022-11-30 株式会社村田製作所 インダクタ部品及びインダクタ部品の製造方法
JP7211323B2 (ja) * 2019-10-08 2023-01-24 株式会社村田製作所 インダクタ部品、及びインダクタ部品の製造方法
DE102019129260B4 (de) * 2019-10-30 2021-06-10 Infineon Technologies Ag Schaltung mit Transformator und entsprechendes Verfahren
JP7160017B2 (ja) * 2019-11-06 2022-10-25 株式会社村田製作所 インダクタアレイ部品
KR102253471B1 (ko) * 2020-01-21 2021-05-18 삼성전기주식회사 코일 부품
JP2021141089A (ja) * 2020-02-29 2021-09-16 太陽誘電株式会社 コイル部品、回路基板及び電子機器
JP7503401B2 (ja) * 2020-03-19 2024-06-20 太陽誘電株式会社 コイル部品及び電子機器
KR20220009212A (ko) * 2020-07-15 2022-01-24 삼성전기주식회사 코일 부품
JP7222383B2 (ja) * 2020-08-26 2023-02-15 株式会社村田製作所 Dc/dcコンバータ部品
JP7264133B2 (ja) * 2020-08-26 2023-04-25 株式会社村田製作所 インダクタ部品
JP7276283B2 (ja) * 2020-08-26 2023-05-18 株式会社村田製作所 インダクタ部品
CN112053840B (zh) * 2020-09-07 2023-03-17 乐清市君德电气有限公司 一种针脚长度可调的大容量插针式变压器
JP7294300B2 (ja) * 2020-10-28 2023-06-20 株式会社村田製作所 インダクタ部品及びインダクタ部品実装基板
KR20220074109A (ko) * 2020-11-27 2022-06-03 삼성전기주식회사 코일 부품
US11404360B2 (en) * 2020-12-31 2022-08-02 Texas Instruments Incorporated Power module with enhanced heat dissipation
US11594497B2 (en) * 2021-03-31 2023-02-28 Taiwan Semiconductor Manufacturing Company, Ltd. Electromagnetic shielding structure for a semiconductor device and a method for manufacturing the same
US20230116340A1 (en) * 2021-10-08 2023-04-13 Wits Co., Ltd. Method of manufacturing wireless charging coil module coated with magnetic material on surface of coil

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007066973A (ja) * 2005-08-29 2007-03-15 Taiyo Yuden Co Ltd コモンモードチョークコイル
WO2011145490A1 (ja) * 2010-05-17 2011-11-24 太陽誘電株式会社 基板内蔵用電子部品および部品内蔵型基板
JP2013105756A (ja) * 2011-11-10 2013-05-30 Taiyo Yuden Co Ltd 基板内蔵用電子部品および部品内蔵型基板
JP2015088753A (ja) * 2013-10-29 2015-05-07 サムソン エレクトロ−メカニックス カンパニーリミテッド. コイル部品とその製造方法、コイル部品内蔵基板、及びこれを含む電圧調節モジュール
JP2017069523A (ja) * 2015-10-02 2017-04-06 株式会社村田製作所 インダクタ部品、パッケージ部品およびスィッチングレギュレータ

Family Cites Families (71)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR960006848B1 (ko) * 1990-05-31 1996-05-23 가부시끼가이샤 도시바 평면형 자기소자
US6281560B1 (en) * 1995-10-10 2001-08-28 Georgia Tech Research Corp. Microfabricated electromagnetic system and method for forming electromagnets in microfabricated devices
US6377155B1 (en) * 1995-10-10 2002-04-23 Georgia Tech Research Corp. Microfabricated electromagnetic system and method for forming electromagnets in microfabricated devices
US5793272A (en) * 1996-08-23 1998-08-11 International Business Machines Corporation Integrated circuit toroidal inductor
US6073339A (en) * 1996-09-20 2000-06-13 Tdk Corporation Of America Method of making low profile pin-less planar magnetic devices
JP3250503B2 (ja) * 1997-11-11 2002-01-28 株式会社村田製作所 可変インダクタ素子
US6815220B2 (en) * 1999-11-23 2004-11-09 Intel Corporation Magnetic layer processing
US6870456B2 (en) * 1999-11-23 2005-03-22 Intel Corporation Integrated transformer
US6856228B2 (en) * 1999-11-23 2005-02-15 Intel Corporation Integrated inductor
JP2001345212A (ja) * 2000-05-31 2001-12-14 Tdk Corp 積層電子部品
JP2002032903A (ja) * 2000-07-13 2002-01-31 Alps Electric Co Ltd 垂直磁気記録用薄膜磁気ヘッド
JP2002158135A (ja) * 2000-11-16 2002-05-31 Tdk Corp 電子部品
JP2002157707A (ja) * 2000-11-21 2002-05-31 Alps Electric Co Ltd 薄膜磁気ヘッド
JP3526548B2 (ja) * 2000-11-29 2004-05-17 松下電器産業株式会社 半導体装置及びその製造方法
EP1347475A4 (en) * 2000-12-28 2009-07-15 Tdk Corp LAMINATED PCB AND METHOD FOR PRODUCING AN ELECTRONIC PART AND LAMINATED ELECTRONIC PART
JP3835354B2 (ja) * 2001-10-29 2006-10-18 ヤマハ株式会社 磁気センサ
JP4214700B2 (ja) * 2002-01-22 2009-01-28 株式会社村田製作所 コモンモードチョークコイルアレイ
JP2004319875A (ja) 2003-04-18 2004-11-11 Nec Tokin Corp インダクタ内蔵型多層基板およびその製造方法
JP3983199B2 (ja) * 2003-05-26 2007-09-26 沖電気工業株式会社 半導体装置及びその製造方法
JP2005217268A (ja) * 2004-01-30 2005-08-11 Tdk Corp 電子部品
JP4293603B2 (ja) * 2004-02-25 2009-07-08 Tdk株式会社 コイル部品及びその製造方法
US7289329B2 (en) * 2004-06-04 2007-10-30 Siemens Vdo Automotive Corporation Integration of planar transformer and/or planar inductor with power switches in power converter
JP4012526B2 (ja) * 2004-07-01 2007-11-21 Tdk株式会社 薄膜コイルおよびその製造方法、ならびにコイル構造体およびその製造方法
DE602007010747D1 (de) * 2006-03-23 2011-01-05 Philips Intellectual Property Lichtemittierende vorrichtung
US8466764B2 (en) * 2006-09-12 2013-06-18 Cooper Technologies Company Low profile layered coil and cores for magnetic components
US8941457B2 (en) * 2006-09-12 2015-01-27 Cooper Technologies Company Miniature power inductor and methods of manufacture
CN101542826B (zh) * 2007-02-07 2012-10-10 株式会社村田制作所 不可逆电路元件
JP5496445B2 (ja) * 2007-06-08 2014-05-21 ルネサスエレクトロニクス株式会社 半導体装置の製造方法
EP2256861B1 (en) * 2008-03-26 2018-12-05 Murata Manufacturing Co., Ltd. Radio ic device
US9859043B2 (en) * 2008-07-11 2018-01-02 Cooper Technologies Company Magnetic components and methods of manufacturing the same
TW201011788A (en) * 2008-09-04 2010-03-16 Delta Electronics Inc Magnetic element
US8451083B2 (en) * 2010-05-31 2013-05-28 Tdk Corporation Coil component and method of manufacturing the same
TW201201523A (en) * 2010-06-28 2012-01-01 Inpaq Technology Co Ltd Thin type common mode filter and method of manufacturing the same
JP5675504B2 (ja) * 2010-08-06 2015-02-25 ルネサスエレクトロニクス株式会社 半導体装置、電子装置、及び半導体装置の製造方法
WO2012053439A1 (ja) * 2010-10-21 2012-04-26 Tdk株式会社 コイル部品及びその製造方法
JP5195876B2 (ja) * 2010-11-10 2013-05-15 Tdk株式会社 コイル部品及びその製造方法
JP5206775B2 (ja) * 2010-11-26 2013-06-12 Tdk株式会社 電子部品
TW201303920A (zh) * 2011-07-11 2013-01-16 Inpaq Technology Co Ltd 多層螺旋結構之共模濾波器及其製造方法
WO2013031842A1 (ja) * 2011-09-02 2013-03-07 株式会社 村田製作所 フェライト磁器組成物、セラミック電子部品、及びセラミック電子部品の製造方法
FR2979788B1 (fr) * 2011-09-07 2013-10-11 Commissariat Energie Atomique Circuit imprime
TWI441205B (zh) * 2011-09-23 2014-06-11 Inpaq Technology Co Ltd 多層螺旋結構之共模濾波器及其製造方法
KR101629983B1 (ko) * 2011-09-30 2016-06-22 삼성전기주식회사 코일 부품
JP5488567B2 (ja) * 2011-10-28 2014-05-14 Tdk株式会社 複合電子部品
KR101862402B1 (ko) * 2011-12-06 2018-05-30 삼성전기주식회사 도체 패턴 및 이를 포함하는 코일 부품
KR101514491B1 (ko) * 2011-12-08 2015-04-23 삼성전기주식회사 코일 부품 및 그 제조방법
KR101397488B1 (ko) * 2012-07-04 2014-05-20 티디케이가부시기가이샤 코일 부품 및 그의 제조 방법
JP6102420B2 (ja) 2013-03-29 2017-03-29 Tdk株式会社 コイル部品
JPWO2014171140A1 (ja) * 2013-04-18 2017-02-16 パナソニックIpマネジメント株式会社 コモンモードノイズフィルタおよびその製造方法
KR101912270B1 (ko) * 2013-07-26 2018-10-29 삼성전기 주식회사 공통모드필터
JP6393457B2 (ja) * 2013-07-31 2018-09-19 新光電気工業株式会社 コイル基板及びその製造方法、インダクタ
US9906203B2 (en) * 2013-11-26 2018-02-27 Samsung Electro-Mechanics Co., Ltd. Common mode filter and electronic device including the same
JP6160712B2 (ja) * 2014-01-15 2017-07-12 株式会社村田製作所 電気回路
JP6299868B2 (ja) * 2014-06-04 2018-03-28 株式会社村田製作所 電子部品及びその製造方法
KR101686989B1 (ko) * 2014-08-07 2016-12-19 주식회사 모다이노칩 파워 인덕터
KR101662209B1 (ko) * 2014-09-11 2016-10-06 주식회사 모다이노칩 파워 인덕터 및 그 제조 방법
JP6277925B2 (ja) * 2014-09-30 2018-02-14 株式会社村田製作所 電子部品の製造方法
JP2016072556A (ja) * 2014-10-01 2016-05-09 株式会社村田製作所 電子部品
KR101642610B1 (ko) * 2014-12-30 2016-07-25 삼성전기주식회사 코일 부품 및 그 제조 방법
KR102105395B1 (ko) * 2015-01-19 2020-04-28 삼성전기주식회사 칩 전자부품 및 칩 전자부품의 실장 기판
JP2016136556A (ja) * 2015-01-23 2016-07-28 イビデン株式会社 インダクタ部品及びプリント配線板
KR102105392B1 (ko) * 2015-01-28 2020-04-28 삼성전기주식회사 칩 전자부품 및 칩 전자부품의 실장 기판
KR102178531B1 (ko) * 2015-01-28 2020-11-13 삼성전기주식회사 칩 전자부품 및 칩 전자부품의 실장 기판
KR102105396B1 (ko) * 2015-01-28 2020-04-28 삼성전기주식회사 칩 전자부품 및 칩 전자부품의 실장 기판
JP6500635B2 (ja) * 2015-06-24 2019-04-17 株式会社村田製作所 コイル部品の製造方法およびコイル部品
JP6287974B2 (ja) * 2015-06-29 2018-03-07 株式会社村田製作所 コイル部品
KR102145314B1 (ko) * 2015-07-31 2020-08-18 삼성전기주식회사 코일 부품 및 그 제조 방법
JP6551142B2 (ja) * 2015-10-19 2019-07-31 Tdk株式会社 コイル部品及びこれを内蔵した回路基板
KR101762026B1 (ko) * 2015-11-19 2017-07-26 삼성전기주식회사 코일 부품 및 그 실장 기판
JP6668723B2 (ja) * 2015-12-09 2020-03-18 株式会社村田製作所 インダクタ部品
KR102163414B1 (ko) * 2015-12-30 2020-10-08 삼성전기주식회사 코일 전자부품
JP6642030B2 (ja) * 2016-01-20 2020-02-05 株式会社村田製作所 コイル部品

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007066973A (ja) * 2005-08-29 2007-03-15 Taiyo Yuden Co Ltd コモンモードチョークコイル
WO2011145490A1 (ja) * 2010-05-17 2011-11-24 太陽誘電株式会社 基板内蔵用電子部品および部品内蔵型基板
JP2013105756A (ja) * 2011-11-10 2013-05-30 Taiyo Yuden Co Ltd 基板内蔵用電子部品および部品内蔵型基板
JP2015088753A (ja) * 2013-10-29 2015-05-07 サムソン エレクトロ−メカニックス カンパニーリミテッド. コイル部品とその製造方法、コイル部品内蔵基板、及びこれを含む電圧調節モジュール
JP2017069523A (ja) * 2015-10-02 2017-04-06 株式会社村田製作所 インダクタ部品、パッケージ部品およびスィッチングレギュレータ

Cited By (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7075185B2 (ja) 2017-04-27 2022-05-25 太陽誘電株式会社 コイル部品及び電子機器
JP2018186242A (ja) * 2017-04-27 2018-11-22 太陽誘電株式会社 コイル部品及び電子機器
JP2019179842A (ja) * 2018-03-30 2019-10-17 ローム株式会社 チップインダクタ
JP7447212B2 (ja) 2018-03-30 2024-03-11 ローム株式会社 チップインダクタ
JP2019207915A (ja) * 2018-05-28 2019-12-05 太陽誘電株式会社 コイル部品及び電子機器
CN110544577A (zh) * 2018-05-28 2019-12-06 太阳诱电株式会社 线圈部件和电子设备
JP7198000B2 (ja) 2018-05-28 2022-12-28 太陽誘電株式会社 コイル部品及び電子機器
US11527342B2 (en) 2018-05-28 2022-12-13 Taiyo Yuden Co., Ltd. Coil component and electronic device
JP2020013854A (ja) * 2018-07-17 2020-01-23 株式会社村田製作所 インダクタ部品
JP7070188B2 (ja) 2018-07-17 2022-05-18 株式会社村田製作所 インダクタ部品
JP7077835B2 (ja) 2018-07-17 2022-05-31 株式会社村田製作所 インダクタ部品
JP2020013855A (ja) * 2018-07-17 2020-01-23 株式会社村田製作所 インダクタ部品
US11610712B2 (en) 2018-07-17 2023-03-21 Murata Manufacturing Co., Ltd. Inductor component
US11688544B2 (en) 2018-07-17 2023-06-27 Murata Manufacturing Co., Ltd. Inductor component
JP2020013853A (ja) * 2018-07-17 2020-01-23 株式会社村田製作所 インダクタ部品
US11791085B2 (en) 2018-07-17 2023-10-17 Murata Manufacturing Co., Ltd. Inductor component
JP2020053483A (ja) * 2018-09-25 2020-04-02 株式会社村田製作所 インダクタ部品
JP2020053636A (ja) * 2018-09-28 2020-04-02 株式会社村田製作所 インダクタ部品およびインダクタ部品の製造方法
US11881342B2 (en) 2018-10-23 2024-01-23 Samsung Electro-Mechanics Co., Ltd Coil electronic component
KR102678628B1 (ko) * 2018-10-23 2024-06-27 삼성전기주식회사 코일 전자 부품
US11581126B2 (en) 2019-02-15 2023-02-14 Murata Manufacturing Co., Ltd. Inductor component
JP2020136390A (ja) * 2019-02-15 2020-08-31 株式会社村田製作所 インダクタ部品
JP7135923B2 (ja) 2019-02-15 2022-09-13 株式会社村田製作所 インダクタ部品
US12033789B2 (en) 2019-08-09 2024-07-09 Murata Manufacturing Co., Ltd. Inductor component and inductor component embedded substrate
JP2021028944A (ja) * 2019-08-09 2021-02-25 株式会社村田製作所 インダクタ部品およびインダクタ部品内蔵基板
JP7156209B2 (ja) 2019-08-09 2022-10-19 株式会社村田製作所 インダクタ部品およびインダクタ部品内蔵基板
JP7427392B2 (ja) 2019-08-27 2024-02-05 株式会社村田製作所 インダクタ部品
JP7452607B2 (ja) 2019-08-27 2024-03-19 株式会社村田製作所 インダクタ部品
JP2021034602A (ja) * 2019-08-27 2021-03-01 株式会社村田製作所 インダクタ部品
JP7306219B2 (ja) 2019-10-24 2023-07-11 株式会社村田製作所 インダクタアレイ部品およびインダクタアレイ部品内蔵基板
JP2021068825A (ja) * 2019-10-24 2021-04-30 株式会社村田製作所 インダクタアレイ部品およびインダクタアレイ部品内蔵基板
US11783994B2 (en) 2019-10-24 2023-10-10 Murata Manufacturing Co., Ltd. Inductor array component and inductor array component built-in substrate
JP7243569B2 (ja) 2019-10-25 2023-03-22 株式会社村田製作所 インダクタ部品およびインダクタ部品内蔵基板
US11587721B2 (en) 2019-10-25 2023-02-21 Murata Manufacturing Co., Ltd. Inductor component and substrate with built-in inductor component
JP7487811B2 (ja) 2019-10-25 2024-05-21 株式会社村田製作所 インダクタ部品およびインダクタ部品内蔵基板
JP7247860B2 (ja) 2019-10-25 2023-03-29 株式会社村田製作所 インダクタ部品
JP2021068837A (ja) * 2019-10-25 2021-04-30 株式会社村田製作所 インダクタ部品及びインダクタ部品実装基板
JP2021068841A (ja) * 2019-10-25 2021-04-30 株式会社村田製作所 インダクタ部品およびインダクタ部品内蔵基板
JP7467910B2 (ja) 2019-12-24 2024-04-16 Tdk株式会社 コイル部品
JP2021103703A (ja) * 2019-12-24 2021-07-15 Tdk株式会社 コイル部品
US20210265102A1 (en) * 2020-02-26 2021-08-26 Murata Manufacturing Co., Ltd. Inductor component and resin sealing body
CN113394192A (zh) * 2020-02-26 2021-09-14 株式会社村田制作所 电感器部件以及树脂密封体
JP2021136308A (ja) * 2020-02-26 2021-09-13 株式会社村田製作所 インダクタ部品、樹脂封止体及び基板構造
JP2021176166A (ja) * 2020-05-01 2021-11-04 株式会社村田製作所 インダクタ部品及びインダクタ構造体
JP2022002260A (ja) * 2020-06-22 2022-01-06 株式会社村田製作所 表面実装型受動部品
JP2022026745A (ja) * 2020-07-31 2022-02-10 株式会社村田製作所 インダクタ部品、及びdcdcコンバータ
JP7226409B2 (ja) 2020-07-31 2023-02-21 株式会社村田製作所 インダクタ部品、及びdcdcコンバータ
JP7338588B2 (ja) 2020-08-19 2023-09-05 株式会社村田製作所 インダクタ部品
CN114078627A (zh) * 2020-08-19 2022-02-22 株式会社村田制作所 电感器部件
JP2022034930A (ja) * 2020-08-19 2022-03-04 株式会社村田製作所 インダクタ部品
JP2022038326A (ja) * 2020-08-26 2022-03-10 株式会社村田製作所 インダクタ部品、及びインダクタ部品の製造方法
JP7494828B2 (ja) 2021-10-21 2024-06-04 株式会社村田製作所 インダクタ部品
KR20230166198A (ko) 2022-05-30 2023-12-07 삼성전기주식회사 코일 부품

Also Published As

Publication number Publication date
US10784039B2 (en) 2020-09-22
US20200373079A1 (en) 2020-11-26
US11328858B2 (en) 2022-05-10
CN107818864A (zh) 2018-03-20
US20180075965A1 (en) 2018-03-15
JP6520875B2 (ja) 2019-05-29
US10453602B2 (en) 2019-10-22
US20200013544A1 (en) 2020-01-09
CN107818864B (zh) 2019-09-03

Similar Documents

Publication Publication Date Title
JP6520875B2 (ja) インダクタ部品およびインダクタ部品内蔵基板
JP6912976B2 (ja) インダクタ部品
JP6935343B2 (ja) インダクタ部品およびその製造方法
US20170111995A1 (en) Coil component and circuit board in which coil component are embedded
JP7306219B2 (ja) インダクタアレイ部品およびインダクタアレイ部品内蔵基板
JP2018182222A (ja) プリント配線基板およびスイッチングレギュレータ
JP7487811B2 (ja) インダクタ部品およびインダクタ部品内蔵基板
JP5716391B2 (ja) コイル内蔵基板
JP7156209B2 (ja) インダクタ部品およびインダクタ部品内蔵基板
JP2021052105A (ja) インダクタ部品
JP7411590B2 (ja) インダクタ部品およびその製造方法
JP7414082B2 (ja) インダクタ部品
US12033789B2 (en) Inductor component and inductor component embedded substrate
CN118315155A (en) Inductor component and inductor component built-in substrate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180413

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190320

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190402

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190415

R150 Certificate of patent or registration of utility model

Ref document number: 6520875

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150