JP7264133B2 - インダクタ部品 - Google Patents

インダクタ部品 Download PDF

Info

Publication number
JP7264133B2
JP7264133B2 JP2020142765A JP2020142765A JP7264133B2 JP 7264133 B2 JP7264133 B2 JP 7264133B2 JP 2020142765 A JP2020142765 A JP 2020142765A JP 2020142765 A JP2020142765 A JP 2020142765A JP 7264133 B2 JP7264133 B2 JP 7264133B2
Authority
JP
Japan
Prior art keywords
wiring
inductor
layer
support
dimension
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020142765A
Other languages
English (en)
Other versions
JP2022038327A (ja
Inventor
由雅 吉岡
諒 工藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP2020142765A priority Critical patent/JP7264133B2/ja
Priority to US17/410,812 priority patent/US20220068550A1/en
Priority to CN202110987528.2A priority patent/CN114121412A/zh
Publication of JP2022038327A publication Critical patent/JP2022038327A/ja
Application granted granted Critical
Publication of JP7264133B2 publication Critical patent/JP7264133B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F17/00Fixed inductances of the signal type 
    • H01F17/0006Printed inductances
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/2804Printed windings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F17/00Fixed inductances of the signal type 
    • H01F17/0006Printed inductances
    • H01F17/0013Printed inductances with stacked layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F5/00Coils
    • H01F5/003Printed circuit coils
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/11Printed elements for providing electric connections to or between printed circuits
    • H05K1/111Pads for surface mounting, e.g. lay-out
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F17/00Fixed inductances of the signal type 
    • H01F17/04Fixed inductances of the signal type  with magnetic core
    • H01F2017/048Fixed inductances of the signal type  with magnetic core with encapsulating core, e.g. made of resin and magnetic powder
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/29Terminals; Tapping arrangements for signal inductances
    • H01F27/292Surface mounted devices

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Coils Or Transformers For Communication (AREA)

Description

本開示は、インダクタ部品に関する。
特許文献1に記載されているインダクタ部品は、主面を有する素体を備えている。素体の内部ではインダクタ配線が主面に沿った方向に渦巻状に延びている。主面に直交する方向から視たときに、素体は、四角形状となっており、長手方向に延びる辺と幅方向に延びる辺とで構成されている。そして、素体の長手方向の寸法と幅方向の寸法とは、略同じである。
特開2020-053636号公報
例えば、パワーインダクタのような大電流が必要なインダクタ部品において、インダクタンス値よりも直流電気抵抗が優先される場合、インダクタ配線を直線形状やミアンダ形状とすることがある。しかし、特許文献1に記載されているインダクタ部品において、直線形状やミアンダ形状のインダクタ配線を配置し、直流電気抵抗の増大を抑制しつつ配線長を長くするには、限界がある。
本発明の一態様は、長方形状の主面を有する直方体状の素体と、前記素体の内部において前記主面と平行に延び、ターン数が0.5ターン以下のインダクタ配線と、前記インダクタ配線から前記主面に直交する厚さ方向に延び、前記主面から露出している第1垂直配線及び第2垂直配線と、を備え、前記主面の長辺に平行な方向を第1方向、前記主面に平行な方向であって前記第1方向に直交する方向を第2方向としたとき、前記インダクタ配線は、第1端が第2端よりも前記第1方向の一方側に位置する配線本体と、前記配線本体の第1端に設けられ前記第1垂直配線が接続されている第1パッドと、前記配線本体の第2端に設けられ前記第2垂直配線が接続されている第2パッドとを有し、前記第1方向に平行な第1辺と前記第2方向に平行な第2辺とで、前記厚さ方向から視て前記配線本体の全体を囲う最小の長方形状の領域をインダクタ領域としたとき、前記主面の前記第1方向の寸法は、前記主面の前記第2方向の寸法の2.5倍以上であり、且つ、前記第1辺の寸法は、前記第2辺の寸法の3倍以上であるインダクタ部品である。
上記構成によれば、素体は、第1方向に相応に長い。そのため、インダクタ領域が第1方向に長くなるように確保できる。よって、インダクタ配線の配線本体の配線長を充分に確保することができる。
インダクタ配線の配線長を充分に確保できる。
第1実施形態のインダクタ部品の分解斜視図。 第1実施形態のインダクタ部品の第5層を除く透過上面図。 図2における3-3線に沿うインダクタ部品の断面図。 図2における4-4線に沿うインダクタ部品の断面図。 第1実施形態のインダクタ部品の第1側面を示す側面図。 第1実施形態のインダクタ部品の第1層の上面図。 第1実施形態のインダクタ部品の製造方法の説明図。 第1実施形態のインダクタ部品の製造方法の説明図。 第1実施形態のインダクタ部品の製造方法の説明図。 第1実施形態のインダクタ部品の製造方法の説明図。 第1実施形態のインダクタ部品の製造方法の説明図。 第1実施形態のインダクタ部品の製造方法の説明図。 第1実施形態のインダクタ部品の製造方法の説明図。 第1実施形態のインダクタ部品の製造方法の説明図。 第1実施形態のインダクタ部品の製造方法の説明図。 第1実施形態のインダクタ部品の製造方法の説明図。 第1実施形態のインダクタ部品の製造方法の説明図。 第1実施形態のインダクタ部品の製造方法の説明図。 第1実施形態のインダクタ部品の製造方法の説明図。 第1実施形態のインダクタ部品の製造方法の説明図。 第2実施形態のインダクタ部品の分解斜視図。 第2実施形態のインダクタ部品の透過上面図。 図22における5-5線に沿うインダクタ部品の断面図。 第2実施形態のインダクタ部品の第1側面を示す側面図。 第2実施形態のインダクタ部品の第1層の上面図。 第2実施形態のインダクタ部品の製造方法の説明図。 変更例のインダクタ部品の透過上面図。 変更例のインダクタ部品の透過上面図。 変更例のインダクタ部品の透過上面図。
<第1実施形態>
以下、インダクタ部品の第1実施形態について説明する。なお、図面は理解を容易にするために構成要素を拡大して示している場合がある。構成要素の寸法比率は実際のものと、又は別の図中のものとは異なる場合がある。
図1に示すように、インダクタ部品10は、全体として、厚さ方向Tdに5つの層が積層されたような構造になっている。なお、以下の説明では、厚さ方向Tdの一方側を上側とし、その反対側を下側とする。
第1層L1は、2つのインダクタ配線20と、各インダクタ配線20から延びる第1支持配線41及び第2支持配線42と、内磁路部51と、外磁路部52と、によって構成されている。なお、以下の説明において、2つのインダクタ配線20を区別する必要がある場合には、一方のインダクタ配線20を第1インダクタ配線20R、他方のインダクタ配線20を第2インダクタ配線20Lと呼称する。
第1層L1は、厚さ方向Tdから視ると、長方形状となっている。なお、この長方形状の長辺に平行な方向を長手方向Ld、短辺に平行な方向を短手方向Wdとする。
インダクタ配線20は、直線状に延びる配線本体21と、配線本体21の端部に設けられた第1パッド22及び第2パッド23と、によって構成されている。
配線本体21は、第1層L1の長手方向Ldに延びている。そのため、配線本体21の第1端は、配線本体21の第2端よりも、長手方向Ldの第1端側に位置している。配線本体21において長手方向Ldの第1端側の第1端部には、第1パッド22が接続されている。なお、配線本体21における長手方向Ldの第1端側の第1端部は、配線本体21における長手方向Ldの中央部に比べ広がるように大きくなっていてもよい。
第1パッド22の短手方向Wdの寸法は、配線本体21の短手方向Wdの寸法よりも大きくなっている。第1パッド22は、厚さ方向Tdから視たときに、略正方形状になっている。
また、配線本体21において長手方向Ldの第2端側の第2端部には第2パッド23が接続されている。なお、配線本体21における長手方向Ldの第2端側の第2端部は、配線本体21における長手方向Ldの中央部に比べ広がるように大きくなっていてもよい。
第2パッド23の短手方向Wdの寸法は、配線本体21の短手方向Wdの寸法よりも大きくなっている。第2パッド23は、厚さ方向Tdから視たときに、第1パッド22と同じ略正方形状になっている。
インダクタ配線20は、導電性材料からなっている。本実施形態において、インダクタ配線20の組成は、銅の比率が99wt%以上で硫黄の比率が0.1wt%以上1.0wt%以下とすることができる。
第1層L1において、配線本体21に対して第1パッド22を挟んだ反対側からは、第1支持配線41が延びている。すなわち、第1支持配線41は、第1パッド22における長手方向Ldの第1端側の縁から延びている。第1支持配線41は、長手方向Ldと平行に直線状に延びている。第1支持配線41は、第1層L1の長手方向Ldの第1端側の第1側面91まで延びていて、第1側面91に露出している。なお、第1支持配線41は、インダクタ配線20の数に対応して、2つ存在し、2つとも第1側面91に露出している。
また、同様に、第1層L1において、配線本体21に対して第2パッド23を挟んだ反対側からは、第2支持配線42が延びている。すなわち、第2支持配線42は、第2パッド23における長手方向Ldの第2端側の縁から延びている。第2支持配線42は、長手方向Ldと平行に直線状に延びている。第2支持配線42は、第1層L1の長手方向Ldの第2端側の第2側面92まで延びていて、第2側面92に露出している。なお、第2支持配線42は、インダクタ配線20の数に対応して、2つ存在し、2つとも第2側面92に露出している。
第1支持配線41及び第2支持配線42の材質は、インダクタ配線20と同じ導電性材料である。ただし、第1支持配線41のうち、第1側面91に露出している露出面41Aを含む一部分は、Cu酸化物になっている。同様に、第2支持配線42のうち第2側面92に露出している露出面42Aを含む一部分は、Cu酸化物になっている。
図2に示すように、第1層L1の短手方向Wdの中央を通り、且つ長手方向Ldに延びる直線を対称軸AXとしたとき、2つのインダクタ配線20、各インダクタ配線から延びる第1支持配線41、及び第2支持配線42は、対称軸AXを基準として線対称に、配置されている。すなわち、2つのインダクタ配線20は、同一平面上に存在している。この実施形態では、第1インダクタ配線20Rから延びる第1支持配線41、及び第1インダクタ配線20Rから延びる第2支持配線42が、対称軸AXよりも短手方向Wdの第2端側に位置している。そして、第2インダクタ配線20Lから延びる第1支持配線41、及び第2インダクタ配線20Lから延びる第2支持配線42が、対称軸AXよりも短手方向Wdの第1端側に位置している。
このように、第1インダクタ配線20Rと第2インダクタ配線20Lは、第1層L1内において、互いに離れて短手方向Wdに2個設けられている。また、第1層L1を短手方向Wdについて仮想的に2個の範囲に等間隔に分割したときに、短手方向Wdの第1端側の範囲には、第1インダクタ配線20Rが配置されている。さらに、短手方向Wdの第2端側の範囲には、第2インダクタ配線20Lが配置されている。よって、第1層L1を短手方向Wdに仮想的に2個の範囲に等間隔に分割したときに、1つの範囲には、1つのインダクタ配線20が配置されている。
図1に示すように、第1層L1において、第1インダクタ配線20Rと第2インダクタ配線20Lとの間の領域は、内磁路部51となっている。内磁路部51の材質は、磁性材料となっている。具体的には、内磁路部51の材質は、金属磁性粉を含有する樹脂となっている。この実施形態では、金属磁性粉は、Fe系合金又はアモルファス合金からなる金属磁性粉を含有する有機樹脂となっている。より具体的には、金属磁性粉は、鉄を含むFeSiCr系金属粉である。また、金属磁性粉の平均粒子径は、約5マイクロメートルとすることができる。
なお、この実施形態において、金属磁性粉の粒子径とは、内磁路部51を切断した断面で現れる金属磁性粉の断面形状において、その断面形状の縁から縁までに引ける線分のうち最も長い長さである。そして、平均粒子径とは、内磁路部51を切断した断面で現れる金属磁性粉のうち、ランダムな3点以上の金属磁性粉の粒子径の平均である。
第1層L1において、厚さ方向Tdから視たときに、第1インダクタ配線20Rよりも短手方向Wdの第2端側の領域、及び第2インダクタ配線20Lよりも短手方向Wdの第1端側の領域は、外磁路部52となっている。外磁路部52の材質は、内磁路部51と同じ磁性材料となっている。
本実施形態において、第1層L1の厚さ方向Tdの寸法、すなわち、インダクタ配線20、第1支持配線41、及び第2支持配線42の厚さ方向Tdの寸法は、およそ40マイクロメートルとすることができる。
第1層L1の厚さ方向Tdの下側の面である下面には、厚さ方向Tdから視たときに第1層L1と同じ長方形状の第2層L2が積層されている。第2層L2は、2つの絶縁樹脂61と、絶縁樹脂磁性層53と、によって構成されている。
絶縁樹脂61は、インダクタ配線20と、第1支持配線41と、第2支持配線42とを、厚さ方向Tdの下側から覆っている。絶縁樹脂61は、厚さ方向Tdから視ると、インダクタ配線20と、第1支持配線41と、第2支持配線42との外縁より僅かに広い範囲を覆うような形状となっている。その結果、絶縁樹脂61は、全体として第2層L2の長手方向Ldに延びる帯状となっている。絶縁樹脂61の材質は、絶縁性の樹脂であり、この実施形態では例えばポリイミド系樹脂とすることができる。絶縁樹脂61はインダクタ配線20よりも絶縁性が高くなっている。絶縁樹脂61は、インダクタ配線20の数及び配置に対応して、短手方向Wdに2つ並んで設けられている。
第2層L2において、2つの絶縁樹脂61を除く部分は、絶縁樹脂磁性層53となっている。絶縁樹脂磁性層53の材質は、上述した内磁路部51や外磁路部52と同じ磁性材料となっている。
第2層L2の厚さ方向Tdの下側の面である下面には、厚さ方向Tdから視たときに第2層L2と同じ長方形状の第3層L3が積層されている。第3層L3は、第1磁性層54となっている。そのため、第1磁性層54は、インダクタ配線20よりも下側に配置されている。第1磁性層54の材質は、上述した内磁路部51や外磁路部52、絶縁樹脂磁性層53と同じ金属磁性粉を含有する有機樹脂となっている。
一方、第1層L1の厚さ方向Tdの上側の面である上面には、厚さ方向Tdから視たときに第1層L1と同じ長方形状の第4層L4が積層されている。第4層L4は、2つの第1垂直配線71と、2つの第2垂直配線72と、第2磁性層55とによって構成されている。
第1垂直配線71は、インダクタ配線20における第1パッド22の上面に、他の層を介することなく直接接続されている。すなわち、第1パッド22には、第1垂直配線71、配線本体21の第1端部及び第1支持配線41が接続されている。
第1垂直配線71の材質は、インダクタ配線20と同じ材質となっている。第1垂直配線71は、正四角柱状となっており、正四角柱の軸線方向が厚さ方向Tdと一致している。
図2に示すように、厚さ方向Tdから視たときに、正方形状の第1垂直配線71の各辺の寸法は、正方形状の第1パッド22の各辺の寸法よりも僅かに小さくなっている。そのため、第1パッド22の面積は、第1パッド22との接続箇所における第1垂直配線71の面積よりも大きくなっている。なお、厚さ方向Tdの上側から視たときに、第1垂直配線71の中心軸線CV1は、略正方形状の第1パッド22の幾何中心と一致している。第1垂直配線71は、インダクタ配線20の数に対応して2つ設けられている。
図1に示すように、第2垂直配線72は、インダクタ配線20における第2パッド23の上面に、他の層を介することなく直接接続されている。すなわち、第2パッド23には、第2垂直配線72、配線本体21の第2端部及び第2支持配線42が接続されている。
第2垂直配線72の材質は、インダクタ配線20と同じ材質となっている。第2垂直配線72は、正四角柱状となっており、正四角柱の軸線方向が厚さ方向Tdと一致している。
図2に示すように、厚さ方向Tdから視たときに、正方形状の第2垂直配線72の各辺の寸法は、正方形状の第2パッド23の各辺の寸法よりも僅かに小さくなっている。そのため、第2パッド23の面積は、第2パッド23との接続箇所における第2垂直配線72の面積よりも大きくなっている。なお、厚さ方向Tdの上側から視たときに、第2垂直配線72の中心軸線CV2は、略正方形状の第2パッド23の幾何中心と一致している。第2垂直配線72は、インダクタ配線20の数に対応して2つ設けられている。
図1に示すように、第4層L4において、2つの第1垂直配線71と2つの第2垂直配線72とを除く部分は、第2磁性層55となっている。そのため、第2磁性層55は、各インダクタ配線20及び各支持配線41、42の上面に積層されている。すなわち、各支持配線41、42が、第2磁性層55と直接接している。第2磁性層55の材質は、上述した第1磁性層54と同じ磁性材料となっている。
インダクタ部品10において、内磁路部51と、外磁路部52と、絶縁樹脂磁性層53と、第1磁性層54と、第2磁性層55と、によって、磁性層50が構成されている。内磁路部51と、外磁路部52と、絶縁樹脂磁性層53と、第1磁性層54と、第2磁性層55とは、接続されており、各インダクタ配線20を取り囲んでいる。このように、磁性層50は各インダクタ配線20に対して閉磁路を構成している。そのため、各インダクタ配線20は、磁性層50の内部で延びている。なお、内磁路部51と、外磁路部52と、絶縁樹脂磁性層53と、第1磁性層54と、第2磁性層55とは、区別して図示しているが、磁性層50として一体化されていて境界が確認できないこともある。
第4層L4の厚さ方向Tdの上側の面である上面には、厚さ方向Tdから視たときに第4層L4と同じ長方形状の第5層L5が積層されている。第5層L5は、2つの第1外部端子81と、2つの第2外部端子82と、絶縁層90と、によって構成されている。
第1外部端子81は、第1垂直配線71の上面に、他の層を介することなく直接接続されている。第1外部端子81は、厚さ方向Tdから視たときに、長方形状となっており、第2磁性層55上にも位置している。第1外部端子81の長方形の長辺は、第5層L5の長手方向Ldと平行に延びており、短辺は、第5層L5の短手方向Wdと平行に延びている。第1外部端子81は、インダクタ配線20の数に対応して2つ設けられている。
第2外部端子82は、第2垂直配線72の上面に、他の層を介することなく直接接続されている。第2外部端子82は、厚さ方向Tdから視たときに、長方形状となっており、第2磁性層55上にも位置している。第2外部端子82の長方形の長辺は、第5層L5の長手方向Ldと平行に延びており、短辺は、第5層L5の短手方向Wdと平行に延びている。
第5層L5において、2つの第1外部端子81と、2つの第2外部端子82とを除く部分は、絶縁層90となっている。換言すると、第4層L4の上面のうち、2つの第1外部端子81と、2つの第2外部端子82と、によって覆われていない範囲は、第5層L5の絶縁層90によって覆われている。絶縁層90は、磁性層50よりも絶縁性が高く、本実施形態では、絶縁層90はソルダーレジストとなっている。絶縁層90の厚さ方向Tdの寸法は、第1外部端子81及び、第2外部端子82のいずれの厚さ方向Tdの寸法よりも小さくなっている。
本実施形態においては、磁性層50と、絶縁樹脂61と、絶縁層90とによって、素体BDが構成されている。そのため、素体BDは、直方体状である。本実施形態において、素体BDの厚さ方向Tdの寸法は、例えば、約0.2ミリメートルである。素体BDとは、インダクタ部品10のうち、導電性を有する配線及び端子を除いた部分であり、絶縁性を有する部分である。また、素体BDの形状は、上述したとおり、直方体状であり、部分的に突出する部材は除く。なお、素体BDの形状が直方体状であれば、積層されている部分は素体BDに含まれる。
素体BDの表面のうち、絶縁層90における厚さ方向Tdの上側の面が主面MFとなっている。したがって、インダクタ配線20は、素体BDの主面MFと平行に延びている。そして、インダクタ配線20の第1パッド22から主面MFに向かって第1垂直配線71が厚さ方向Tdに延びている。第1垂直配線71は主面MFから露出している。インダクタ配線20の第2パッド23からは主面MFに向かって第2垂直配線72が厚さ方向Tdに延びている。第2垂直配線72は主面MFから露出している。なお、本実施形態のように、第1垂直配線71及び第2垂直配線72における主面MFから露出している面の少なくとも一部が、第1外部端子81及び第2外部端子82に覆われていることもある。
素体BDは主面MFに垂直な第1側面93を有している。なお、第1層L1の第1側面91は、素体BDの第1側面93の一部である。また、素体BDは主面MFに垂直な側面であって第1側面93と平行な第2側面94を有している。なお、第1層L1の第2側面92は、素体BDの第2側面94の一部である。すなわち、第1支持配線41は、インダクタ配線20から主面MFと平行に延び、端部が素体BDの第1側面93に露出している。同様に、第2支持配線42は、インダクタ配線20から主面MFと平行に延び、端部が素体BDの第2側面94に露出している。
主面MFは、絶縁層90の外縁形状を反映して、厚さ方向Tdから視たときに、長方形状となっている。ここで、厚さ方向Tdから視たときに、長方形状の一辺に平行な方向を第1方向とし、主面MFに平行な方向であって第1方向に直交する方向を第2方向とする。本実施形態においては、第1方向は、長手方向Ldと一致しており、第2方向は、短手方向Wdと一致している。そのため、主面MFの第1方向の寸法は、主面MFの第2方向の寸法よりも大きくなっている。
具体的には、主面MFの長手方向Ldの寸法は、例えば1.5ミリメートルである。主面MFの短手方向Wdの寸法は、例えば0.6ミリメートルである。そのため、主面MFの長手方向Ldの寸法は、主面MFの短手方向Wdの寸法の2.5倍である。
本実施形態においては、短手方向Wdに並ぶ2つのインダクタ配線20は、厚さ方向Tdから視たときに、主面MFを短手方向Wdに同寸法となるように仮想的に2つに分割した範囲に、それぞれ配置されている。主面MFの短手方向Wdの寸法を、短手方向Wdに並ぶインダクタ配線20の数である「2」で除した値は、0.3ミリメートルである。そのため、主面MFの長手方向Ldの寸法は、主面MFの短手方向の寸法を短手方向に並ぶインダクタ配線20の数で除した値の5倍である。また、素体BDの厚さ方向Tdの寸法は、主面MFの短手方向Wdの寸法を、短手方向Wdに並ぶインダクタ配線20の数である「2」で除した値よりも小さくなっている。
次に、各配線について詳述する。
図2に示すように、厚さ方向Tdから視たとき、2つの配線本体21の中心軸線C1は、互いに平行に、長手方向Ldに延びている。なお、配線本体21の中心軸線C1は、配線本体21が延びる方向と直交する方向、すなわち短手方向Wdにおいて配線本体21の中間点を辿った線である。各配線本体21の線幅、すなわち、短手方向Wdの寸法は、50マイクロメートルとすることができる。以下の説明では、短手方向Wdにおける、第1インダクタ配線20Rの配線本体21の中心軸線C1と、第2インダクタ配線20Lの配線本体21の中心軸線C1との距離を配線本体21の間のピッチとする。そして、本実施形態では、配線本体21の間のピッチは、例えば、およそ250マイクロメートルになっている。また、隣り合う配線本体21の間隔、すなわち、図2の第1インダクタ配線20Rの配線本体21の短手方向Wdの第1端側と第2インダクタ配線20Lの配線本体21の短手方向Wdの第2端側との間の距離は、例えば、およそ200マイクロメートルになっている。なお、本実施形態では、隣り合うインダクタ配線20の最小の間隔は、第1パッド22間の間隔及び第2パッド23間の間隔であり、いずれも50マイクロメートル以上になっている。例えば、第1パッド22間の間隔及び第2パッド23間の間隔は、およそ110マイクロメートルとしてもよい。
第1支持配線41の中心軸線A1は、長手方向Ldに延びている。なお、第1支持配線41の中心軸線A1は、第1支持配線41が延びる方向と直交する方向、すなわち短手方向Wdにおいて第1支持配線41の中間点を辿った線である。
第1支持配線41の中心軸線A1は、配線本体21の中心軸線C1よりも短手方向Wdの外側に位置している。すなわち、第1支持配線41の中心軸線A1と配線本体21の中心軸線C1とは一致していない。そのため、第1支持配線41の中心軸線A1と配線本体21の中心軸線C1とは、異なる直線上に位置している。また、第1支持配線41の中心軸線A1の延長線は、第1垂直配線71の中心軸線CV1と交差している。
また、第2支持配線42の中心軸線A2は、長手方向Ldに延びている。なお、第2支持配線42の中心軸線A2は、第2支持配線42が延びる方向と直交する方向、すなわち短手方向Wdにおいて第2支持配線42の中間点を辿った線である。
第2支持配線42の中心軸線A2は、配線本体21の中心軸線C1よりも短手方向Wdの外側に位置している。すなわち、第2支持配線42の中心軸線A2と配線本体21の中心軸線C1とは一致していない。そのため、第2支持配線42の中心軸線A2と配線本体21の中心軸線C1とは、異なる直線上に位置している。また、第2支持配線42の中心軸線A2の延長線は、第2垂直配線72の中心軸線CV2と交差している。
同一のインダクタ配線20から延びている第1支持配線41及び第2支持配線42は、短手方向Wdにおいて同じ位置に配置されている。すなわち、第1支持配線41の中心軸線A1と第2支持配線42の中心軸線A2とは同一直線上に位置している。なお、本願において、インダクタ配線20の最小線幅を基準に、10%以内のずれであれば、同一直線上にある、とみなす。具体的には、本実施形態におけるインダクタ配線20の最小線幅は、配線本体21の線幅である50マイクロメートルとすることができる。したがって、本実施形態における「同一直線上」とは、2つの軸線の最短距離が5マイクロメートル以内の場合であり、「異なる直線上」とは、2つの軸線の最短距離が5マイクロメートルを超える場合である。
上述したように、第1層L1において、各インダクタ配線20、各第1支持配線41、及び各第2支持配線42は、対称軸AXを基準として、線対称に配置されている。したがって、図2に示すように、素体BDの短手方向Wdの第2端側の端から、第1インダクタ配線20Rから延びる第1支持配線41の中心軸線A1までの距離Q1は、素体BDの短手方向Wdの第1端側の端から、第2インダクタ配線20Lから延びる第1支持配線41の中心軸線A1までの距離Q1と同じである。
同様に、素体BDの短手方向Wdの第2端側の端から、第1インダクタ配線20Rから延びる第2支持配線42の中心軸線A2までの距離Q2は、素体BDの短手方向Wdの第1端側の端から、第2インダクタ配線20Lから延びる第2支持配線42の中心軸線A2までの距離Q2と同じである。そして、第1支持配線41の中心軸線A1と第2支持配線42の中心軸線A2とは同一直線状にあることから、距離Q1と距離Q2は等しくなっている。
一方、本実施形態において、短手方向Wdにおける第1インダクタ配線20Rから延びる第1支持配線41の中心軸線A1から、第2インダクタ配線20Lから延びる第1支持配線41の中心軸線A1までのピッチP1は、上述の距離Q1及び距離Q2よりも大きくなっている。具体的には、ピッチP1は、距離Q1及び距離Q2のおよそ2倍の長さである。
図3及び図4に示すように、第1支持配線41の短手方向Wdの配線幅W1は、インダクタ配線20における配線本体21の短手方向Wdの配線幅H1よりも小さくなっている。ここで、第1支持配線41とインダクタ配線20の配線本体21とは同一の第1層L1に設けられており、厚さ方向Tdの長さは略同じである。したがって、配線幅の違いを反映して各第1支持配線41の断面積は、各配線本体21の断面積よりも小さくなっている。同様に、図2及び図3に示すように各第2支持配線42の短手方向Wdの配線幅W2は、インダクタ配線20における配線本体21の短手方向Wdの配線幅H1よりも小さくなっている。したがって、配線幅の違いを反映して、各第2支持配線42の断面積は、各配線本体21の断面積よりも小さくなっている。
図5に示すように、素体BDにおける長手方向Ldの第1端側の第1側面93からは、2つの第1支持配線41の端が露出している。各第1支持配線41において第1側面93に露出している露出面41Aの形状は、中心軸線A1と直交する第1支持配線41の断面形状を若干引き延ばしたような形状になっている。その結果として、第1支持配線41の露出面41Aの面積は、中心軸線A1と直交する断面における、素体BDの内部での第1支持配線41の断面積よりも大きくなっている。同様に、図1に示すように、2つの第2支持配線42は、いずれも素体BDの長手方向Ldの第2端側の第2側面94に露出している。第2支持配線42において第2側面92に露出している露出面42Aの面積は、中心軸線A2と直交する断面における、素体BDの内部での第2支持配線42の断面積よりも大きくなっている。これにより、第1支持配線41は、素体BDの第1側面93との接触面積が大きくなり、第2支持配線42は素体BDの第2側面94との接触面積が大きくなり、支持配線41、42と素体BDと互いの密着性が向上する。なお、あくまで断面積の大小が上記関係を満たせばよく、例えば、露出面41Aは、一方に引き延ばされつつ、他方が素体BDの引き延ばされた部分に覆われた形状であってもよい。
なお、第1層L1の第1側面91は、主面MFに直交する素体BDの側面の一部である。また、第1層L1の第2側面92は、主面MFに直交する素体BDの側面の一部であって、上記第1側面91と平行な側面である。
ここで、厚さ方向Tdから視たときに、インダクタ配線20の配線本体21の全体を囲う最小の領域であるインダクタ領域IAについて詳述する。図6に示すように、インダクタ領域IAは、長手方向Ldに延びる第1辺LSと短手方向Wdに延びる第2辺SSとで区域される長方形状の領域である。また、1つのインダクタ領域IAは、1つの配線本体21の全体を囲う最小の長方形状の領域である。本実施形態では、第1インダクタ配線20Rについてのインダクタ領域IAの第1辺LSの寸法は、インダクタ領域IAの第2辺SSの寸法の約9倍である。なお、第2インダクタ配線20Lについてのインダクタ領域IAは、第1インダクタ配線20Rについてのインダクタ領域IAと同じ大きさである。
また、厚さ方向Tdから視たときに、第1インダクタ配線20Rの第1パッド22の幾何中心と、第2インダクタ配線20Lの第1パッド22の幾何中心と、の距離は、ピッチP1と等しくなっており、素体BDの短手方向Wdの寸法の約2分の1である。そのため、第1インダクタ配線20Rの第1パッド22の幾何中心と、第2インダクタ配線20Lの第1パッド22の幾何中心との距離は、インダクタ領域IAの第1辺LSの3分の1である。
次に、第1実施形態のインダクタ部品10の製造方法を説明する。
図7に示すように、先ず、ベース部材準備工程を行う。具体的には、板状のベース部材101を準備する。ベース部材101の材質は、セラミックスである。ベース部材101は、厚さ方向Tdから視ると、四角形状となっている。各辺の寸法は、インダクタ部品10が複数個収容される寸法となっている。以下の説明では、ベース部材101の面方向に直交する方向を厚さ方向Tdとして説明する。
次に、図8に示すように、ベース部材101の上面全体にダミー絶縁層102を塗布する。次に、厚さ方向Tdから視たときに、インダクタ配線20が配置される範囲より僅かに広い範囲に、フォトリソグラフィによって、絶縁樹脂61をパターニングする。
次に、シード層103を形成するシード層形成工程を行う。具体的には、ベース部材101の上面側から、スパッタリングによって、絶縁樹脂61及びダミー絶縁層102の上面に銅のシード層103を形成する。なお、図面において、シード層103は、太線で図示する。
次に、図9に示すように、シード層103の上面のうち、インダクタ配線20と、第1支持配線41と、第2支持配線42とを形成しない部分を被覆する第1被覆部104を形成する第1被覆工程を行う。具体的には、先ず、シード層103の上面全体に感光性のドライフィルムレジストを塗布する。次に、ダミー絶縁層102の上面の範囲全てと、絶縁樹脂61の上面のうち、絶縁樹脂61が覆う範囲の外縁部の上面とについて、露光することで硬化させる。その後、塗布したドライフィルムレジストのうち硬化していない部分を、薬液により剥離除去する。これにより、塗布したドライフィルムレジストのうち、硬化している部分が、第1被覆部104として形成される。一方で、塗布したドライフィルムレジストのうち、薬液に除去されて第1被覆部104に被覆されていない部分には、シード層103が露出している。第1被覆部104の厚さ方向Tdの寸法である第1被覆部104の厚みは、図3に示すインダクタ部品10のインダクタ配線20の厚みよりも僅かに大きくなっている。なお、後述する他の工程におけるフォトリソグラフィも、同様の工程であるので詳細な説明は省略する。
次に、図10に示すように、絶縁樹脂61の上面のうちの、第1被覆部104に被覆されていない部分に、インダクタ配線20と、第1支持配線41と、第2支持配線42と、を電解めっきで形成する配線加工工程を行う。具体的には、電解銅めっきを行い、絶縁樹脂61の上面において、シード層103が露出している部分から、銅を成長させる。これにより、インダクタ配線20と、第1支持配線41と、第2支持配線42と、が形成される。したがって、この実施形態では、複数のインダクタ配線20を形成する工程と、異なるインダクタ配線20のパッド間を接続する複数の第1支持配線41及び第2支持配線42を形成する工程とが同一工程である。また、インダクタ配線20と第1支持配線41及び第2支持配線42とは、同一平面上に形成される。なお、図10では、インダクタ配線20が図示されていて、各支持配線は図示されていない。
次に、図11に示すように、第2被覆部105を形成する第2被覆工程を行う。第2被覆部105を形成する範囲は、第1被覆部104の上面全体と、各支持配線の上面全体と、インダクタ配線20の上面のうち第1垂直配線71及び第2垂直配線72を形成しない範囲である。この範囲に、第1被覆部104を形成した方法と同一のフォトリソグラフィによって、第2被覆部105を形成する。また、第2被覆部105の厚さ方向Tdの寸法は、第1被覆部104と同一となっている。
次に、各垂直配線を形成する垂直配線加工工程を行う。具体的には、インダクタ配線20のうち、第2被覆部105に被覆されていない部分に、電解銅めっきによって第1垂直配線71と、第2垂直配線72と、を形成する。これにより、第1垂直配線71及び第2垂直配線72は、上述の複数のインダクタ配線20と、第1支持配線41及び第2支持配線42とが形成された平面と垂直な厚さ方向Tdに形成される。また、垂直配線加工工程においては、成長する銅の上端が第2被覆部105の上面より僅かに低い位置となるように設定している。具体的には、後述する切削前の各垂直配線の厚さ方向Tdの寸法が、各インダクタ配線の厚さ方向Tdの寸法と同一になるように設定している。
次に、図12に示すように、第1被覆部104及び第2被覆部105を取り除く被覆部除去工程を行う。具体的には、薬品によって第1被覆部104及び第2被覆部105をウェットエッチングすることにより、第1被覆部104及び第2被覆部105を剥離する。なお、図12においては、第1垂直配線71が図示されていて、第2垂直配線72は図示されていない。
次に、シード層103をエッチングするシード層エッチング工程を行う。シード層103についてエッチングを行うことで、露出しているシード層103を除去する。このように、各インダクタ配線と、各支持配線と、はSAP(Semi Additive Process:セミアディティブ工法)で形成される。
次に、図13に示すように、内磁路部51と、外磁路部52と、絶縁樹脂磁性層53と、第2磁性層55を積層する第2磁性層加工工程を行う。具体的には、先ず、ベース部材101の上面側に、磁性層50の材質である磁性粉を含む樹脂を塗布する。このとき、各垂直配線の上面も覆うように磁性粉を含む樹脂を塗布する。次に、プレス加工して磁性粉を含む樹脂を固めることで、ベース部材101の上面側に内磁路部51と、外磁路部52と、絶縁樹脂磁性層53と、第2磁性層55を形成する。
次に、図14に示すように、第2磁性層55の上側部分を、各垂直配線の上面が露出するまで削る。なお、内磁路部51と、外磁路部52と、絶縁樹脂磁性層53と、第2磁性層55とは、一体的に形成されるが、図面においては、内磁路部51と、外磁路部52と、絶縁樹脂磁性層53と、第2磁性層55とも区別して図示している。
次に、図15に示すように、絶縁層加工工程を行う。具体的には、第2磁性層55の上面と、各垂直配線の上面とのうち、各外部端子を形成しない部分に、フォトリソグラフィによって、絶縁層90として機能するソルダーレジストをパターニングする。なお、本実施形態において、絶縁層90の上面すなわち素体BDの主面MFに直交する方向は、厚さ方向Tdとなっている。
次に、図16に示すように、ベース部材切削工程を行う。具体的には、ベース部材101及びダミー絶縁層102を全て切削によって除去する。なお、ダミー絶縁層102を全て切削する結果、各絶縁樹脂の下側部分についても、一部切削により除去されるが、各インダクタ配線は除去されない。
次に、図17に示すように、第1磁性層54を積層する第1磁性層加工工程を行う。具体的には、先ず、ベース部材101の下側面に、第1磁性層54の材質である磁性粉を含む樹脂を塗布する。次に、プレス加工することで、磁性粉を含む樹脂を固めることで、ベース部材101の下側面に第1磁性層54を形成する。
次に、第1磁性層54の下端部分を削る。例えば、各外部端子の上面から第1磁性層54の下面までの寸法が、所望の値となるように、第1磁性層54の下端部分を削る。
次に、図18に示すように、端子部加工工程を行う。具体的には、第2磁性層55の上面と、各垂直配線の上面と、のうち、絶縁層90に覆われていない部分に、第1外部端子81と、第2外部端子82とを形成する。これらの金属層は、銅、ニッケル、金のそれぞれについて、無電解めっきによって形成される。また、銅とニッケルとの間にパラジウムなどの触媒層があってもよい。これにより3層構造の第1外部端子81と、第2外部端子82とが形成される。なお、図18においては、第1外部端子81が図示されていて、第2外部端子82は、図示されていない。
次に、図19に示すように、個片化加工工程を行う。具体的には、破断線DLにてダイシングにより個片化する。これにより、インダクタ部品10を得ることができる。
なお、ダイシングする前の状態では、例えば、図20に示すように、複数のインダクタ部品が、長手方向Ldと短手方向Wdとに並設され、素体BDや第1支持配線41及び、第2支持配線42で個々のインダクタ部品は繋がっている。破断線DL上に含まれる、第1支持配線41及び第2支持配線42が厚さ方向Tdで切断されることで、第1支持配線41の切断面を第1側面93に露出面41Aとして露出させる。また、第2支持配線42の切断面を第2側面94に露出面42Aとして露出させる。なお、図20では、第5層L5の図示を省略している。
なお、個片化加工工程の後、各インダクタ部品10は、酸素存在下で一定期間放置される。これにより、第1支持配線41の露出面41Aを含む一部、及び第2支持配線42の露出面42Aを含む一部が酸化され、Cu酸化物となる。
上述したように、個片化加工工程では、破断線DL上に含まれる第1支持配線41及び第2支持配線42が切断される。第1支持配線41及び第2支持配線42を切断する際に、第1支持配線41及び第2支持配線42にはせん断応力が加わる。当該応力により、各支持配線が変形する。そのため、図5に示すように、第1支持配線41の第1側面93上の断面、すなわち露出面41Aは歪な形状になる。同様に、第2支持配線42の第2側面94上の断面、すなわち露出面42Aは歪な形状になる。
次に、第1実施形態の作用を説明する。
上記第1実施形態において、直方体状の素体BDを厚さ方向Tdから視たときに、主面MFは、長手方向Ldに長い長方形状である。そして、インダクタ配線20の配線本体21は、長手方向Ld、すなわち主面MFの長辺方向に直線状に延びている。
次に、第1実施形態の効果について説明する。
(1-1)上記第1実施形態によれば、インダクタ配線20について、細長い直線状の配線本体21を採用している。そして、主面MFの長手方向Ldの寸法は、主面MFの短手方向Wdの寸法の2.5倍である。また、インダクタ領域IAの第1辺LSの寸法は、インダクタ領域IAの第2辺SSの寸法の約9倍である。よって、上記第1実施形態のインダクタ配線20の配線本体21は直線状であるため、例えば同じ配線長の渦巻き形状のインダクタ配線に比べて、直流電気抵抗を低減できる。また、素体BDの長手方向Ldに長いインダクタ領域IAを確保することで、配線本体21の配線長を確保できる。
(1-2)上記第1実施形態によれば、素体BDの厚さ方向Tdの寸法は、素体BDの短手方向Wdの寸法よりも小さい。そのため、インダクタ部品10全体を薄型化できる。
(1-3)上記第1実施形態では、インダクタ配線20が同一平面上において短手方向Wdに2つ並んでいる。そのため、1本あたりのインダクタ配線20が配置できる素体BDの最大の短手方向Wdの範囲は、素体BDの短手方向Wdの寸法を短手方向Wdに並ぶインダクタ配線20の数である「2」で除した値の範囲である。上記第1実施形態によれば、主面MFの長手方向Ldの寸法は、主面MFの短手方向Wdの寸法を短手方向Wdに並ぶインダクタ配線20の数で除した値の5倍である。そのため、インダクタ配線20が同一平面上に2つ設けられていても、各インダクタ配線20の長手方向Ldの寸法を、確保できる。
(1-4)上記第1実施形態によれば、インダクタ部品10において、短手方向Wdに均等に2つのインダクタ配線20が配置されている。そのため、インダクタ部品10の強度、重量などのいずれかに関して、短手方向Wdで偏りが生じることを抑制できる。また、不均等に2つのインダクタ配線20が配置されていることに起因して、2つのインダクタ配線20の電気的特性の相違を抑制することができる。
(1-5)上記第1実施形態によれば、素体BDの厚さ方向Tdの寸法は、主面MFの短手方向Wdの寸法を短手方向Wdに並ぶインダクタ配線20の数である「2」で除した値よりも小さい。換言すれば、複数のインダクタ配線20は、厚さ方向Tdに積層されているのではなく、同一平面上に存在している。そのため、インダクタ配線20が複数存在していても、インダクタ部品10を薄型化できる。
(1-6)上記第1実施形態では、厚さ方向Tdから視たときに、第1インダクタ配線20Rの第1パッド22の幾何中心と、第2インダクタ配線20Lの第1パッド22の幾何中心との短手方向Wdにおける距離は、インダクタ領域IAの第1辺LSの寸法の3分の1である。つまり、第1インダクタ配線20Rと第2インダクタ配線20Lとは、相応に近い距離で配置されている。そのため、素体BDの短手方向Wdの寸法が過度に大きくなることを抑制できる。
(1-7)上記第1実施形態において、インダクタ配線20の配線本体21は直線状である。配線本体21が直線状の場合、曲線状の場合と比べて、配線本体21の配線長が短くなる。配線長が短いため、第1層L1に配置された内磁路部51及び外磁路部52の体積を確保しやすい。また、配線本体21が直線状であるため、配線本体21の直流抵抗は小さい。上記のことから、インダクタ部品10のインダクタンス値の取得率が低下しにくくなる。また、配線本体21が直線状であると、本実施形態のように同一平面上に並列に配線本体21配置してもインダクタ部品10の寸法が大きくなりにくく、小型のインダクタ部品を形成しやすい。
(1-8)上記第1実施形態において、インダクタ配線20の配線本体21の延び方向は、素体BDの長手方向Ldと一致している。そのため、素体BDの長手方向Ldの寸法を、配線本体21の配線長を確保する上で好適である。
(1-9)上記第1実施形態において、素体BDの厚さ方向Tdの寸法は、約0.2ミリメートルである。素体BDの厚さ方向Tdの寸法が小さいほど、インダクタ部品10を基板に実装した際に、基板から突出する寸法が小さくなる。したがって、第1実施形態のインダクタ部品10は、厚さ方向Tdの寸法が大きい場合には実装できなかったようなところにも実装が可能である。
(1-10)上記第1実施形態において、第1層L1に、インダクタ配線20と、第1支持配線41と、第2支持配線42とが存在する。複数のインダクタ部品10が並列している状態、つまりダイシングする前の状態では、複数のインダクタ配線の間を、第1支持配線41及び第2支持配線42で繋ぐ構成を採用できる。複数のインダクタ配線20の間を第1支持配線41及び第2支持配線42で繋いでおけば、インダクタ配線20を支持するための基板等を要さずとも、これらインダクタ配線20を支持し、位置決めできる。したがって、インダクタ配線20を支持するための基板等が不要という点で、インダクタ部品10の薄型化に寄与できる。
(1-11)仮に、第1支持配線41の中心軸線A1と、配線本体21の中心軸線C1とが一致し、第2支持配線42の中心軸線A2と、配線本体21の中心軸線C1とが一致していたとする。当該状態において、インダクタ部品10にねじれの力がかかると、インダクタ配線20、第1支持配線41及び第2支持配線42が、ねじれの中心軸として機能し得るため、素体BD全体としてねじれの力に抗しにくい。
一方、上記第1実施形態では、第1支持配線41の中心軸線A1と配線本体21の中心軸線C1とが一致しておらず、第2支持配線42の中心軸線A2と配線本体21の中心軸線C1についても一致していない。そのため、インダクタ配線20、第1支持配線41及び第2支持配線42の全体が、ねじれの中心軸として機能することはなく、ねじれの力に対する強度を向上し得る。
(1-12)上記第1実施形態において、インダクタ配線20の全体は、磁性層50に覆われている。そして、第1磁性層54及び第2磁性層55は、金属磁性粉を含有する有機樹脂となっている。当該金属磁性粉は、鉄を含む合金であり、金属磁性粉の平均粒子径は、約5マイクロメートルである。このように10マイクロメートル以下の粒径の小さい磁性粉を使用することで、第1磁性層54及び第2磁性層55の比透磁率を確保しつつ鉄損を低減できる。
(1-13)上記第1実施形態において、第1インダクタ配線20Rの配線本体21の中心軸線C1から第2インダクタ配線20Lの配線本体21の中心軸線C1までの短手方向Wdのピッチは、およそ250マイクロメートルになっている。これは、第1支持配線41から第1側面91における短手方向Wdの端までの距離、及び第2支持配線42から第2側面92における短手方向Wdの端までの距離のうち最小距離の2倍以上である。これにより、当該ピッチが相対的に大きく、比較的磁束密度が高い配線本体21間を大きくとれるため、インダクタンス値の取得効率を向上できる。
また、第1実施形態において、隣り合うインダクタ配線20の最小の間隔である第1パッド22間の間隔及び第2パッド23間の間隔が、およそ50マイクロメートル以上である。これによれば、インダクタ配線20間の絶縁性を確保する上で好適である。さらに、およそ100マイクロメートル以上であればなお好適である。
<第2実施形態>
以下、インダクタ部品の第2実施形態について説明する。なお、図面は理解を容易にするために構成要素を拡大して示している場合がある。構成要素の寸法比率は実際のものと、又は別の図中のものとは異なる場合がある。また、第1実施形態と同様の構成については、説明を簡略化又は省略していることがある。
図21に示すように、インダクタ部品10は、全体として、厚さ方向Tdに5つの層が積層されたような構造になっている。なお、以下の説明では、厚さ方向Tdの一方側を上側とし、その反対側を下側とする。
第1層L1は、第1インダクタ配線20Rと、第2インダクタ配線20Lと、第1支持配線41と、第2支持配線42と、内磁路部51と、外磁路部52と、によって構成されている。
第1層L1は、厚さ方向Tdから視ると、長方形状となっている。なお、この長方形状の長辺に平行な方向を長手方向Ld、短辺に平行な方向を短手方向Wdとする。
第1インダクタ配線20Rは、第1配線本体21Rと、第1配線本体21Rの第1端部に設けられた第1パッド22Rと、第1配線本体21Rの第2端部に設けられた第2パッド23Rと、によって構成されている。第1配線本体21Rは、第1層L1の長手方向Ldに直線状に延びている。そのため、第1配線本体21Rの第1端は、第1配線本体21Rの第2端よりも、長手方向Ldの第1端側に位置している。第1配線本体21Rにおいて長手方向Ldの第1端側の第1端部には、第1パッド22Rが接続されている。なお、配線本体21における長手方向Ldの第1端側の第1端部は、配線本体21における長手方向Ldの中央部に比べ広がるように大きくなっていてもよい。
第1パッド22Rの短手方向Wdの寸法は、第1配線本体21Rの短手方向Wdの寸法よりも大きくなっている。第1パッド22Rは、厚さ方向Tdから視たときに、略正方形状になっている。
また、第1配線本体21Rにおいて長手方向Ldの第2端側の第2端部には第2パッド23Rが接続されている。なお、配線本体21における長手方向Ldの第2端側の第2端部は、配線本体21における長手方向Ldの中央部に比べ広がるように大きくなっていてもよい。
第2パッド23Rの短手方向Wdの寸法は、第1配線本体21Rの短手方向Wdの寸法よりも大きくなっている。第2パッド23Rは、厚さ方向Tdから視たときに、第1パッド22Rと同じ略正方形状になっている。なお、第1インダクタ配線20Rは、第1層L1の短手方向Wdの第2端側に寄って配置されている。
第2インダクタ配線20Lは、第2配線本体21Lと、第2配線本体21Lの第1端部に設けられた第1パッド22Lと、第2配線本体21Lの第2端部に設けられた第2パッド23Rと、によって構成されている。
第2配線本体21Lは、2つの直線部とこれらを繋ぐ部分とを有していて、全体としてL字状に延びている。そのため、第2配線本体21Lの第1端は、第2配線本体21Lの第2端よりも、長手方向Ldの第1端側に位置している。具体的には、第2配線本体21Lは、長手方向Ldに延びる長直線部31と、短手方向Wdに延びる短直線部32と、これらを繋ぐ接続部33とからなる。
図22に示すように、第1層L1の短手方向Wdの中央を通り、且つ長手方向Ldに延びる直線を対称軸AXとしたとき、長直線部31は、対称軸AXに対して第1配線本体21Rと線対称の位置に配置されている。また、長直線部31が長手方向Ldに延びる長さは、第1配線本体21Rが長手方向Ldに延びる長さよりもやや長くなっている。また、長直線部31の短手方向Wdの寸法は、第1配線本体21Rの短手方向Wdの寸法と等しくなっている。長直線部31の長手方向Ldの第1端側の第1端は、第1パッド22Rに接続されている。長直線部31の長手方向Ldの第2端側の端は、接続部33の第1端に接続されている。
接続部33のうち、長直線部31と繋がっていない第2端は、短手方向Wdの第2端側を向いている。すなわち、接続部33は、第2配線本体21Lにおいて、長手方向Ldの第1方向から短手方向Wdの第2端側に向かって90度に湾曲している。
接続部33の短手方向Wdの第2端側を向いている第2端は、短直線部32の第1端に接続されている。なお、短直線部32の短手方向Wdの第2端側の第2端部は、短直線部32における短手方向Wdの中央部に比べ広がるように大きくなっていてもよい。
短直線部32の長手方向Ldの寸法は、長直線部31の短手方向Wdの寸法と等しくなっている。短直線部32のうち、短手方向Wdの第2端側を向く第2端は、第1配線本体21Rに接続された第2パッド23Rに接続されている。すなわち、第1インダクタ配線20Rにおける第2パッド23Rが、第2インダクタ配線20Lにおける第2パッド23Rと同一のパッドである。
上記、第2インダクタ配線20Lのターン数は、仮想ベクトルに基づいて定められている。仮想ベクトルの始点は、第2配線本体21Lの配線幅の中央を通って第2配線本体21Lの延設方向に延びる中心軸線C2上に配置されている。そして、仮想ベクトルは、厚さ方向Tdから視たときに第2配線本体21Lの始点を第1端に配置した状態から中心軸線C2の第2端まで移動させたときに、仮想ベクトルの向きが回転した角度が360度のときに、ターン数は1.0ターンとして定められる。ただし、仮想ベクトルの向きが、複数回巻回する場合、連続する同一方向の巻回である場合にターン数が増加するものとする。仮想ベクトルの向きが、1回前に巻回した方向と異なる方向に巻回した場合、ターン数は再度0ターンからカウントする。例えば、時計回りに180度巻回し、その後反時計回りに180度巻回した場合は0.5ターンとなる。したがって、例えば180度巻回されると、ターン数は0.5ターンとなる。本実施形態では、第2配線本体21L上に仮想的に配置された仮想ベクトルの向きは、接続部33で90度回転される。そのため、第2配線本体21Lが巻回されているターン数は、0.25ターンとなっている。なお、第2配線本体21Lの中心軸線C2は、第2配線本体21Lが延びる方向と直交する方向において第2配線本体21Lの中間点を辿った線である。すなわち、第2配線本体21Lの中心軸線C2は、厚さ方向Tdから視たときに、略L字状になっている。
図22に示すように、第2配線本体21Lの長直線部31の長手方向Ldの第1端側の端には、第1パッド22Lが接続されている。当該第1パッド22Lは、第1配線本体21Rに接続された第1パッド22Rと、同一の形状である。すなわち、第1パッド22Lは、厚さ方向Tdから視たときに、略正方形状である。また、当該第1パッド22Lは対称軸AXに対して、第1配線本体21Rに接続された第1パッド22Rに線対称に配置されている。
第1層L1において、第1配線本体21Rに対して第1パッド22Rを挟んだ反対側からは、第1支持配線41が延びている。すなわち、第1支持配線41は、第1パッド22Rにおける長手方向Ldの第1端側の縁から延びている。第1支持配線41は、長手方向Ldと平行に直線状に延びている。第1支持配線41は、第1層L1の長手方向Ldの第1端側の第1側面91まで延びていて、第1側面91に露出している。同様に、第1層L1において、第2配線本体21Lに対して第1パッド22Lを挟んだ反対側からも、第1支持配線41が延びている。
第1層L1において、第1配線本体21Rに対して第2パッド23Rを挟んだ反対側からは、第2支持配線42が延びている。すなわち、第2支持配線42は、第2パッド23Rにおける長手方向Ldの第2端側の縁から延びている。第2支持配線42は、長手方向Ldと平行に直線状に延びている。第2支持配線42は、第1層L1の長手方向Ldの第2端側の第2側面92まで延びていて、第2側面92に露出している。なお、本実施形態では、第2配線本体21Lの短直線部32に対して第2パッド23Rを挟んだ反対側には、支持配線は設けられていない。
第1インダクタ配線20R及び第2インダクタ配線20Lは、導電性材料からなっている。本実施形態において、第1インダクタ配線20R及び第2インダクタ配線20Lの組成は、銅の比率が99wt%以上で硫黄の比率が0.1wt%以上1.0wt%以下とすることができる。
第1支持配線41及び第2支持配線42の材質は、第1インダクタ配線20R及び第2インダクタ配線20Lと同じ導電性材料である。ただし、第1支持配線41のうち、第1側面91に露出している露出面41Aを含む一部分は、Cu酸化物になっている。同様に、第2支持配線42のうち第2側面92に露出している露出面42Aを含む一部分は、Cu酸化物になっている。
図21に示すように、第1層L1において、第1インダクタ配線20Rと第2インダクタ配線20Lとの間の領域は、内磁路部51となっている。内磁路部51の材質は、磁性材料となっている。具体的には、内磁路部51の材質は、鉄シリカ系合金又はそれらのアモルファス合金からなる金属磁性粉を含有する有機樹脂となっている。金属磁性粉は、鉄を含む合金であり、金属磁性粉の平均粒子径は、約5マイクロメートルとすることができる。なお、平均粒子径の扱いについては、第1実施形態と同じである。
第1層L1において、厚さ方向Tdから視たときに、第1インダクタ配線20Rよりも短手方向Wdの第2端側の領域、及び第2インダクタ配線20Lよりも短手方向Wdの第1端側の領域は、外磁路部52となっている。外磁路部52の材質は、内磁路部51と同じ磁性材料となっている。
本実施形態において、第1層L1の厚さ方向Tdの寸法、すなわち、インダクタ配線20、第1支持配線41、及び第2支持配線42の厚さ方向Tdの寸法は、およそ40マイクロメートルとすることができる。
第1層L1の厚さ方向Tdの下側の面である下面には、厚さ方向Tdから視たときに第1層L1と同じ長方形状の第2層L2が積層されている。第2層L2は、2つの絶縁樹脂61と、絶縁樹脂磁性層53と、によって構成されている。
絶縁樹脂61は、第1インダクタ配線20Rと、第2インダクタ配線20Lと、第1支持配線41と、第2支持配線42とを、厚さ方向Tdの下側から覆っている。絶縁樹脂61は、厚さ方向Tdから視ると、第1インダクタ配線20Rと、第2インダクタ配線20Lと、第1支持配線41と、第2支持配線42との外縁より僅かに広い範囲を覆うような形状となっている。その結果、一方の絶縁樹脂61は、直線の帯状となっている。他方の絶縁樹脂61は、略L字状に延びる帯状となっている。絶縁樹脂61の材質は、絶縁性の樹脂であり、この実施形態では例えばポリイミド系樹脂とすることができる。絶縁樹脂61はインダクタ配線20よりも絶縁性が高くなっている。絶縁樹脂61は、インダクタ配線20の数及び配置に対応して、短手方向Wdに2つ並んで設けられているとともに、端部において互いに接続されている。
第2層L2において、2つの絶縁樹脂61を除く部分は、絶縁樹脂磁性層53となっている。絶縁樹脂磁性層53の材質は、上述した内磁路部51や外磁路部52と同じ磁性材料となっている。
第2層L2の厚さ方向Tdの下側の面である下面には、厚さ方向Tdから視たときに第2層L2と同じ長方形状の第3層L3が積層されている。第3層L3は、第1磁性層54となっている。そのため、第1磁性層54は、インダクタ配線20よりも下側に配置されている。第1磁性層54の材質は、上述した内磁路部51や外磁路部52、絶縁樹脂磁性層53と同じ金属磁性粉を含有する有機樹脂となっている。
一方、第1層L1の厚さ方向Tdの上側の面である上面には、厚さ方向Tdから視たときに第1層L1と同じ長方形状の第4層L4が積層されている。第4層L4は、2つの第1垂直配線71と、1つの第2垂直配線72と、第2磁性層55とによって構成されている。
第1垂直配線71は、第1インダクタ配線20Rにおける第1パッド22Rの上面に、他の層を介することなく直接接続されている。すなわち、第1パッド22Rには、第1垂直配線71、第1配線本体21Rの第1端部及び第1支持配線41が接続されている。同様に、別の第1垂直配線71は、第2インダクタ配線20Lにおける第1パッド22Lの上面に、他の層を介することなく直接接続されている。第1パッド22Lには、第1垂直配線71、第2配線本体21Lの第1端部及び第1支持配線41が接続されている。2つの第1垂直配線71は、対称軸AXに対して線対称となる位置に配置されている。第1垂直配線71の材質は、第1インダクタ配線20R及び第2インダクタ配線20Lと同じ材質となっている。第1垂直配線71は、正四角柱状となっており、正四角柱の軸線方向が厚さ方向Tdと一致している。
図22に示すように、厚さ方向Tdから視たときに、正方形状の第1垂直配線71の各辺の寸法は、正方形状の第1パッド22Rの各辺の寸法よりも僅かに小さくなっている。そのため、第1パッド22Rの面積は、第1パッド22Rとの接続箇所における第1垂直配線71の面積よりも大きくなっている。なお、厚さ方向Tdの上側から視たときに、第1垂直配線71の中心軸線CV1は、略正方形状の第1パッド22Rの幾何中心と一致している。第1垂直配線71は、第1パッド22Rの数に対応して2つ設けられている。
図21に示すように、第2垂直配線72は、第1インダクタ配線20Rにおける第2パッド23Rの上面に、他の層を介することなく直接接続されている。すなわち、第2パッド23Rには、第2垂直配線72、第1配線本体21Rの第2端部、第2配線本体21Lの第2端部及び第2支持配線42が接続されている。第2垂直配線72の材質は、第1インダクタ配線20Rと同じ材質となっている。第2垂直配線72は、正四角柱状となっており、正四角柱の軸線方向が厚さ方向Tdと一致している。
図22に示すように、厚さ方向Tdから視たときに、正方形状の第2垂直配線72の各辺の寸法は、正方形状の第2パッド23Rの各辺の寸法よりも僅かに小さくなっている。そのため、第2パッド23Rの面積は、第2パッド23Rとの接続箇所における第2垂直配線72の面積よりも大きくなっている。なお、厚さ方向Tdの上側から視たときに、第2垂直配線72の中心軸線CV2は、略正方形状第2パッド23Rの幾何中心と一致している。第2垂直配線72は、第2パッド23Rの数に対応して1つ設けられている。
図21に示すように、第4層L4において、2つの第1垂直配線71と2つの第2垂直配線72とを除く部分は、第2磁性層55となっている。そのため、第2磁性層55は、各インダクタ配線20及び各支持配線41、42の上面に積層されている。すなわち、各支持配線41、42が、第2磁性層55と直接接している。第2磁性層55の材質は、上述した第1磁性層54と同じ磁性材料となっている。
インダクタ部品10において、内磁路部51と、外磁路部52と、絶縁樹脂磁性層53と、第1磁性層54と、第2磁性層55と、によって、磁性層50が構成されている。内磁路部51と、外磁路部52と、絶縁樹脂磁性層53と、第1磁性層54と、第2磁性層55とは、接続されており、第1インダクタ配線20R及び第2インダクタ配線20Lを取り囲んでいる。このように、磁性層50は第1インダクタ配線20R及び第2インダクタ配線20Lに対して閉磁路を構成している。そのため、第1インダクタ配線20R及び第2インダクタ配線20Lは、磁性層50の内部で延びている。なお、内磁路部51と、外磁路部52と、絶縁樹脂磁性層53と、第1磁性層54と、第2磁性層55と、は、区別して図示しているが、磁性層50として一体化されていて境界が確認できないこともある。
第4層L4の厚さ方向Tdの上側の面である上面には、厚さ方向Tdから視たときに第4層L4と同じ長方形状の第5層L5が積層されている。第5層L5は、4つの端子部80と、絶縁層90と、によって構成されている。4つの端子部80のうち2つは、第1垂直配線71に電気的に接続された第1外部端子81である。また、4つの端子部80のうち1つは、第2垂直配線72に電気的に接続された第2外部端子82である。4つの端子部80のうち、第1外部端子81及び第2外部端子82を除く残りの1つは、第1インダクタ配線20R及び第2インダクタ配線20Lのいずれにも電気的に接続されていないダミー部83である。
図22に示すように、第5層L5の長手方向Ldの中央を通り、短手方向Wdに平行な仮想直線BXを引いたとき、上述の対称軸AXと仮想直線BXとが交差する第5層L5の上面上の点が第5層L5の幾何中心Gである。4つの端子部80は、厚さ方向Tdから視たときに、第5層L5の幾何中心Gに対して2回対称位置に配置されている。
第1外部端子81は、第1垂直配線71の上面に、他の層を介することなく直接接続されている。第1外部端子81は、厚さ方向Tdから視たときに、長方形状となっており、第2磁性層55上にも位置している。第1外部端子81が第1垂直配線71と接触している面積は、第1外部端子81の全体の面積に対して半分以下である。第1外部端子81の長方形の長辺は、第5層L5の長手方向Ldと平行に延びており、短辺は、第5層L5の短手方向Wdと平行に延びている。第1外部端子81は、第1垂直配線71の数に対応して2つ設けられている。
第2外部端子82は、第2垂直配線72の上面に、他の層を介することなく直接接続されている。第2外部端子82が第2垂直配線72と接触している面積は、第2外部端子82の全体の面積に対して半分以下である。第2外部端子82は、厚さ方向Tdから視たときに、長方形状となっており、第2磁性層55上にも位置している。第2外部端子82の長方形の長辺は、第5層L5の長手方向Ldと平行に延びており、短辺は、第5層L5の短手方向Wdと平行に延びている。
図21に示すように、4つの端子部80のうち1つはダミー部83となっている。図23に示すように、ダミー部83は、第4層L4の第2磁性層55の上面に、他の層を介すことなく直接接続されている。図22に示すように、ダミー部83は、厚さ方向Tdから視たときに、第1外部端子81及び第2外部端子82と、異なる形状をしている。本実施形態では、ダミー部83は、厚さ方向Tdから視たときに楕円形状になっている。一方で、ダミー部83の形状はこれに限らず、例えば、第1外部端子81及び第2外部端子82と異なる長方形状、円形状であってもよい。ダミー部83の楕円の長軸は、第5層L5の長手方向Ldと平行に延びており、短軸は第5層L5の短手方向Wdと平行に延びている。
厚さ方向Tdから視たときに、ダミー部83の大半の部分は、第2インダクタ配線20Lと重なっている。より具体的には、厚さ方向Tdから視たときに、ダミー部83は、第2インダクタ配線20Lにおける接続部33と重なる位置に配置されている。また、厚さ方向Tdから視たときに、ダミー部83の面積は、第1外部端子81及び第2外部端子82の面積と同じである。なお、本実施形態において、「面積が同じ」とは、製造上の誤差を許容するものである。したがって、ダミー部83と第1外部端子81及び第2外部端子82との面積の差が±10%以内であれば、面積が同じであるとみなせる。
4つの端子部80は、導電性を有する複数の層で構成されている。具体的には、銅、ニッケル、金の3層構造となっている。なお、厚さ方向Tdから視たときに、第1外部端子81において、厚さ方向の下側に備えられた第2磁性層55及び第1垂直配線71が透けて見えることがある。第1外部端子81から第1垂直配線71が透けて見える領域は、厚さ方向Tdから視たときに、第1外部端子81の半分以下の領域である。
同様に、第2外部端子82において、厚さ方向の下側に備えられた第2磁性層55及び第2垂直配線72が透けて見えることがある。第2外部端子82から第2垂直配線72が透けて見える領域は、厚さ方向Tdから視たときに、第2外部端子82の半分以下の領域である。
ダミー部83においては、厚さ方向Tdの下側に備えられた第2磁性層55が透けて見えることがある。一方、第1外部端子81から透けて見える第2磁性層55の領域は、第1外部端子81の半分以上の領域である。第2外部端子82から透けて見える第2磁性層55の領域は、第2外部端子82の半分以上の領域である。すなわち、厚さ方向Tdから視たときに、ダミー部83の全体と、第1外部端子81及び第2外部端子82の半分以上の領域とが、光学的に同じ色である。ここでの同じ色とは、例えば、色差計を用いたときに、RGBを示す数値の差異が、所定の範囲内であるときに同じ色とみなす。なお、所定の範囲は例えば、10%等である。
第5層L5において、端子部80を除く部分は、絶縁層90となっている。換言すると、第4層L4の上面のうち、2つの第1外部端子81と、1つの第2外部端子82と、1つのダミー部83とによって覆われていない範囲は、第5層L5の絶縁層90によって覆われている。絶縁層90は、磁性層50よりも絶縁性が高く、本実施形態では、絶縁層90はソルダーレジストとなっている。絶縁層90の厚さ方向Tdの寸法は、端子部80のいずれの厚さ方向Tdの寸法よりも小さくなっている。
本実施形態においては、磁性層50と、絶縁樹脂61と、絶縁層90とによって、素体BDが構成されている。すなわち、素体BDは、厚さ方向Tdから視たとき、長方形状になっている。本実施形態において、素体BDの厚さ方向Tdの寸法は、例えば、約0.2ミリメートルとすることができる。素体BDとは、インダクタ部品10のうち、導電性を有する配線及び端子を除いた部分であり、絶縁性を有する部分である。また、素体BDの形状は、直方体状であり、部分的に突出する部材は除く。なお、素体BDの形状が直方体状であれば、積層されている部分は素体BDに含まれる。
素体BDの表面のうち、絶縁層90における厚さ方向Tdの上側の面が主面MFとなっている。したがって、インダクタ配線20は、素体BDの主面MFと平行に延びている。そして、インダクタ配線20の第1パッド22Rから主面MFに向かって第1垂直配線71が厚さ方向Tdに延びている。同様に、別の第1垂直配線71は、インダクタ配線20の第1パッド22Lから主面MFに向かって第1垂直配線71が厚さ方向Tdに延びている。第1垂直配線71は主面MFから露出している。インダクタ配線20の第2パッド23Rからは主面MFに向かって第2垂直配線72が厚さ方向Tdに延びている。第2垂直配線72は主面MFから露出している。端子部80の上面は、主面MFから露出し、主面MFよりも厚さ方向Tdの上側に位置している。すなわち、ダミー部83を含む各端子部80の外縁は、絶縁層90に接触している。なお、本実施形態のように、第1垂直配線71及び第2垂直配線72における主面MFから露出している面の少なくとも一部が、第1外部端子81及び第2外部端子82に覆われていることもある。
素体BDは主面MFに垂直な第1側面93を有している。なお、第1層L1の第1側面91は、素体BDの第1側面93の一部である。また、素体BDは主面MFに垂直な側面であって第1側面93と平行な第2側面94を有している。なお、第1層L1の第2側面92は、素体BDの第2側面94の一部である。すなわち、第1支持配線41は、第1インダクタ配線20Rから主面MFと平行に延び、端部が素体BDの第1側面93に露出している。同様に、第2支持配線42は、第1インダクタ配線20Rから主面MFと平行に延び、端部が素体BDの第2側面94に露出している。
主面MFは、厚さ方向Tdから視たときに、長方形状となっている。そして、厚さ方向Tdから視たときに、長方形状の一辺に平行な方向を第1方向とし、主面MFに平行な方向であって第1方向に直交する方向を第2方向とする。本実施形態においては、第1方向は、長手方向Ldと一致しており、第2方向は、短手方向Wdと一致している。そのため、主面MFの第1方向の寸法は、主面MFの第2方向の寸法よりも大きくなっている。
具体的には、主面MFの長手方向Ldの寸法は、例えば1.5ミリメートルである。主面MFの短手方向Wdの寸法は、例えば0.6ミリメートルである。そのため、本実施形態では、主面MFの長手方向Ldの寸法は、主面MFの短手方向Wdの寸法の2.5倍である。
本実施形態では、第5層L5の幾何中心Gは、主面MFの幾何中心と一致する。また、厚さ方向Tdから視たときに、主面MFの幾何中心と素体BDの幾何中心とは一致している。
図22に示すように、主面MFの幾何中心Gをとおり、主面MFの短手方向Wdの一辺に平行な仮想直線BXにおいて、主面MFを第1領域と第2領域とに仮想的に分割したとする。仮想直線BXよりも長手方向Ldの第1端側を第1領域としたとき、第1領域にはダミー部83が設けられていない。また、仮想直線BXよりも長手方向Ldの第2端側を第2領域としたとき、第2領域には、第2領域に設けられた第2外部端子82の数と同じ数のダミー部83が設けられている。
次に、各配線について詳述する。
図22に示すように、厚さ方向Tdから視たとき、第1配線本体21Rの中心軸線C1は、長手方向Ldに延びている。なお、第1配線本体21Rの中心軸線C1は、第1配線本体21Rが延びる方向と直交する方向、すなわち短手方向Wdにおいて第1配線本体21Rの中間点を辿った線である。本実施形態において、各配線本体21の線幅は、例えば50マイクロメートルになっている。
上述したように、第2インダクタ配線20Lの第2配線本体21Lの中心軸線C2は略L字状に延びている。ここで、第2配線本体21Lの長直線部31の配線長は、第1配線本体21Rの配線長よりも長くなっている。加えて、第2配線本体21Lは、接続部33および短直線部32を有している。したがって、第2配線本体21Lの配線長の方が、第1配線本体21Rの配線長よりも、長くなっている。具体的には、第2配線本体21Lの配線長は、第1配線本体21Rの配線長の1.2倍以上である。
上記の配線長の違いを反映して、第2インダクタ配線20Lのインダクタンス値は、第1インダクタ配線20Rのインダクタンス値の1.1倍以上になっている。また、本実施形態では、第1インダクタ配線20Rのインダクタンス値は、例えば、およそ2.5nHである。
第1インダクタ配線20Rの第1配線本体21Rは、素体BDにおける長手方向Ldの外縁の一辺に沿って延びている。厚さ方向Tdから視たときに、第2インダクタ配線20Lの第1パッド22L及び第2パッド23Rは、幾何中心Gに対して対称的な位置に配置されている。本実施形態では、第2インダクタ配線20Lの第1パッド22Lと第2パッド23Rとは、幾何中心Gに対して2回対称の位置に配置されている。
第1インダクタ配線20Rは、第2インダクタ配線20Lと互いに平行に延びる平行部分を有している。具体的には、第1配線本体21Rと、第2配線本体21Lの長直線部31とが平行部分に該当する。これら第1配線本体21R及び長直線部31は、第1層L1において短手方向Wdに並設されている。なお、平行部分は、実質的に平行であればよく、製造誤差を許容する。
以下の説明では、短手方向Wdにおける第1配線本体21Rの中心軸線C1と、第2配線本体21Lの長直線部31における中心軸線C2との距離を配線本体間のピッチX1とする。配線本体間のピッチは、隣り合う平行部分のピッチである。また、隣り合うインダクタ配線の平行部分の間隔、すなわち、図22の第1配線本体21Rの短手方向Wdの第1端側と第2配線本体21Lの長直線部31の短手方向Wdの第2端側との間の距離は、例えば、およそ200マイクロメートルになっている。
図22に示すように、第1配線本体21Rの中心軸線C1から、第1配線本体21Rに最も近い短手方向Wdの素体の端、すなわち第2端側の端までの距離を、第1距離Y1とする。第2インダクタ配線20Lの平行部分である長直線部31の中心軸線C2から、長直線部31に最も近い短手方向Wdの素体BDの端、すなわち第1端側の端までの距離を第2距離Y2とする。本実施形態において、第1距離Y1は、第2距離Y2と同じ寸法である。
短手方向Wdにおいて、配線本体間のピッチX1は、第1距離Y1及び第2距離Y2と寸法が異なっている。具体的には、配線本体間のピッチX1は、およそ「250マイクロメートル」とすることができる。第1距離Y1、第2距離Y2は、およそ「175マイクロメートル」とすることができる。このように、第1距離Y1及び第2距離Y2は、ピッチX1の2分の1よりもやや大きいことが好ましい。
厚さ方向Tdから視て、第1インダクタ配線20Rの第1パッド22Rに接続している第1支持配線41の中心軸線A1は、長手方向Ldに延びている。第1支持配線41の中心軸線A1は、第1配線本体21Rの中心軸線C1よりも短手方向Wdの外側に位置している。すなわち、第1インダクタ配線20Rに接続している第1支持配線41の中心軸線A1の延長線と第1配線本体21Rの中心軸線C1とは一致していない。そのため、第1支持配線41の中心軸線A1と第1配線本体21Rの中心軸線C1とは、異なる直線上に位置している。また、第1支持配線41の中心軸線A1の延長線は、第1垂直配線71の中心軸線CV1と交差している。
第2インダクタ配線20Lの第1パッド22Lに接続している第1支持配線41の中心軸線A1は、長手方向Ldに延びている。第1支持配線41の中心軸線A1は、第2配線本体21Lの中心軸線C2、より詳細には長直線部31の中心軸線C2よりも短手方向Wdの外側に位置している。すなわち、第2インダクタ配線20Lに接続している第1支持配線41の中心軸線A1の延長線と第2配線本体21Lの中心軸線C2とは一致していない。そのため、第1支持配線41の中心軸線A1と第2配線本体21Lの中心軸線C2とは、異なる直線上に位置している。また、第1支持配線41の中心軸線A1の延長線は、第1垂直配線71の中心軸線CV1と交差している。なお、第1インダクタ配線20Rに接続している第1支持配線41と、第2インダクタ配線20Lに接続している第1支持配線41とは、対称軸AXを基準に線対称の位置に配置されている。
また、厚さ方向Tdから視て、第2支持配線42の中心軸線A2は、長手方向Ldに延びている。第2支持配線42の中心軸線A2は、第1配線本体21Rの中心軸線C1よりも短手方向Wdの外側に位置している。すなわち、第2支持配線42の中心軸線A2の延長線と第1配線本体21Rの中心軸線C1とは一致していない。そのため、第2支持配線42の中心軸線A2と第1配線本体21Rの中心軸線C1とは、異なる直線上に位置している。また、第2支持配線42の中心軸線A2の延長線上には、第2垂直配線72が配置されている。そして、第2支持配線42の中心軸線A2の延長線は、第2垂直配線72の中心軸線CV2と交差している。
第1インダクタ配線20Rから延びている第1支持配線41及び第2支持配線42は、短手方向Wdにおいて同じ位置に配置されている。すなわち、第1支持配線41の中心軸線A1と第2支持配線42の中心軸線A2とは同一直線上に位置している。なお、第1実施形態と同様に、第1インダクタ配線20R及び第2インダクタ配線20Lの最小線幅を基準に、10%以内のずれであれば、同一直線上にある、とみなす。具体的には、本実施形態におけるインダクタ配線20の最小線幅は、第1配線本体21R及び第2配線本体21Lの線幅である50マイクロメートルである。したがって、本実施形態における「同一直線上」とは、2つの軸線の最短距離が5マイクロメートル以内の場合であり、「異なる直線上」とは、2つの軸線の最短距離が5マイクロメートルを超える場合である。
上述したように、第1層L1において、各第1支持配線41は、対称軸AXを基準として、線対称に配置されている。したがって、図22に示すように、素体BDの短手方向Wdの第2端側の端から、第1インダクタ配線20Rから延びる第1支持配線41の中心軸線A1までの距離Q1は、素体BDの短手方向Wdの第1端側の端から、第2インダクタ配線20Lから延びる第1支持配線41の中心軸線A1までの距離Q2と同じである。
一方、短手方向Wdにおいて、第1インダクタ配線20Rから延びる第1支持配線41の中心軸線A1から、第2インダクタ配線20Lから延びる第1支持配線41の中心軸線A1までのピッチP1は、上述の距離Q1及び距離Q2よりも大きくなっている。具体的には、ピッチP1は、距離Q1及び距離Q2のおよそ2倍の長さである。
本実施形態において、第1配線本体21Rの中心軸線C1に直交する断面における第1配線本体21Rの断面積は、第2配線本体21Lの断面積と等しくなっている。なお、本願において、第1配線本体21Rと第2配線本体21Lの断面積のずれが10%以内であれば、等しい、とみなす。
また、第1支持配線41の中心軸線A1に直交する断面における第1支持配線41の断面積は、上述の第1配線本体21R及び第2配線本体21Lの断面積よりも小さくなっている。第2支持配線42の中心軸線A2に直交する断面における第2支持配線42の断面積も、上述の第1配線本体21R及び第2配線本体21Lの断面積よりも小さくなっている。
図24に示すように、素体BDにおける長手方向Ldの第1端側の第1側面91からは、2つの第1支持配線41の端が露出している。各第1支持配線41において第1側面91に露出している露出面41Aの形状は、中心軸線A1と直交する第1支持配線41の断面形状を短手方向Wdに若干引き延ばしたような形状になっている。その結果として、第1支持配線41の露出面41Aの面積は、中心軸線A1と直交する断面における、素体BDの内部での第1支持配線41の断面積よりも大きくなっている。同様に、図21に示すように、第2支持配線42において第2側面92に露出している露出面42Aの面積は、中心軸線A2と直交する断面における、素体BDの内部での第2支持配線42の断面積よりも大きくなっている。これにより、第1支持配線41、第2支持配線42の素体BDの第1側面93及び第2側面94との接触面積が大きくなり、互いの密着性が向上する。なお、あくまで断面積の大小が上記関係を満たせばよく、例えば、露出面41Aは、一方に引き延ばされつつ、他方が素体BDの引き延ばされた部分に覆われた形状であってもよい。
なお、第1側面93において露出している第1支持配線41は2つであり、第2側面94において露出している第2支持配線42は1つであり、露出している支持配線の数が異なっている。
ここで、厚さ方向Tdから視たときに、インダクタ配線20の配線本体21の全体を囲う最小の領域であるインダクタ領域IAについて詳述する。図25に示すように、インダクタ領域IAは、長手方向Ldに延びる第1辺LSと短手方向Wdに延びる第2辺SSとで区域される長方形状の領域である。また、1つのインダクタ領域IAは、1つの配線本体21の全体を囲う最小の長方形状の領域である。そして、第1インダクタ配線20Rについての第1インダクタ領域IARの第1辺LSRの寸法は、第1インダクタ領域IARの第2辺SSRの寸法の約9倍である。また、第2インダクタ配線20Lについての第2インダクタ領域IALの第1辺LSLの寸法は、第2インダクタ領域IALの第2辺SSLの寸法の約4.5倍である。さらに、第2インダクタ領域IALの第1辺LSLの寸法は、第1インダクタ領域IARの第1辺LSRの寸法より大きい。
また、図22に示すように、厚さ方向Tdから視たときに、第1インダクタ配線20Rの第1パッド22Rの幾何中心と、第2インダクタ配線20Lの第1パッド22Lの幾何中心と、の距離は、ピッチP1と等しくなっており、素体BDの短手方向Wdの寸法の約2分の1である。そのため、第1インダクタ配線20Rの第1パッド22Rの幾何中心と、第2インダクタ配線20Lの第1パッド22Lの幾何中心との距離は、第1インダクタ領域IARの第1辺LSRの3分の1である。
第2実施形態のインダクタ部品10の製造方法を説明する。なお、以下では、第2実施形態のインダクタ部品10の製造方法のうち、上記第1実施形態のインダクタ部品10の製造方法とは異なる点について説明する。
第2実施形態における絶縁層加工工程では、第2磁性層55の上面と、各垂直配線の上面とのうち、端子部80を形成しない部分に、フォトリソグラフィによって、絶縁層90として機能するソルダーレジストをパターニングする。なお、本実施形態において、絶縁層90の上面すなわち素体BDの主面MFに直交する方向は、厚さ方向Tdとなっている。
第2実施形態における端子部加工工程では、第2磁性層55の上面と、各垂直配線の上面と、のうち、絶縁層90に覆われていない部分に、第1外部端子81と、第2外部端子82と、ダミー部83とを形成する。これらの金属層は、銅、ニッケル、金のそれぞれについて、無電解めっきによって形成される。これにより3層構造の第1外部端子81と、第2外部端子82とダミー部83とが形成される。
第2実施形態における個片化加工工程では、図26に示すように、破断線DLにてダイシングにより個片化する。これにより、インダクタ部品10を得ることができる。
ダイシングする前の状態では、例えば、図26に示すように、複数のインダクタ部品が、長手方向Ldと短手方向Wdとに並列され、素体BDや第1支持配線41及び、第2支持配線42で個々のインダクタ部品は繋がっている。具体的には、第1支持配線41は、第1支持配線41同士で繋がっており、第2支持配線42は第2支持配線42同士で繋がっている。破断線DL上に含まれる、第1支持配線41及び第2支持配線42が厚さ方向Tdで切断されることで、第1支持配線41の切断面を第1側面93に露出面41Aとして露出させる。また、第2支持配線42の切断面を第2側面94に42Aとして露出させる。
次に、第2実施形態の効果を説明する。第2実施形態のインダクタ部品10は、上述した第1実施形態の効果(1-1)、(1-2)、(1-7)~(1-13)に加え、さらに以下の効果を奏する。
(2-1)上記第2実施形態では、第1インダクタ配線20Rと第2インダクタ配線20Lとは、同一平面上において接している。この場合に、第1インダクタ配線20Rについての第1インダクタ領域IARの第1辺LSRの寸法が、第1インダクタ領域IARの第2辺SSRの寸法の3倍以上である。且つ、第2インダクタ配線20Lについての第2インダクタ領域IALの第1辺LSLの寸法が、第2インダクタ領域IALの第2辺SSLの寸法の3倍以上である。そのため、いずれの配線本体21についても、長手方向Ldに相応に延びている。よって、いずれのインダクタ配線20に電流が流れた場合にも得られるインダクタンス値を高めることができる。
(2-2)上記第2実施形態では、第1インダクタ領域IARの第1辺LSRは、第2インダクタ領域IALの第1辺LSLよりも小さい。そして、上記第2実施形態によれば、第1インダクタ配線20Rの第1パッド22Rの幾何中心と、第2インダクタ配線20Lの第1パッド22Lの幾何中心との距離は、第1インダクタ領域IARの第1辺LSRの3分の1である。そのため、第1インダクタ配線20Rと第2インダクタ配線20Lを、短手方向Wdにおいて、過度に離れて配置されていない。よって、素体BDの短手方向Wdの寸法が過度に大きくなることを抑制できる。
(2-3)上記第2実施形態では、第1配線本体21Rの配線長と第2配線本体21Lの配線長とが異なっている。そのため、第1パッド22R及び第1パッド22Lのどちらに電流を流すかによって、異なるインダクタンス値に切り替えることができる。
(2-4)上記第2実施形態において、第5層L5には、ダミー部83が設けられている。厚さ方向Tdから視たときに、ダミー部83の面積は、第1外部端子81及び第2外部端子82と等しくなっている。そのため、第1外部端子81及び第2外部端子82と同じようにダミー部83を、基板等に対してはんだ付けする際に、これら4つの端子部80上に塗布されるはんだの量を均一化できる。したがって、インダクタ部品10が傾いて基板等に実装されるといったことが抑制できる。
上記各実施形態は、以下のように変更して実施することができる。上記各実施形態及び以下の変更例は、技術的に矛盾しない範囲で互いに組み合わせて実施することができる。
・インダクタ領域IAの第1辺LSの寸法は、インダクタ領域IAの第2辺SSの寸法の3倍以上であればよい。インダクタ領域IAの第1辺LSの寸法は、インダクタ領域IAの第2辺SSの寸法より大きいほど、インダクタ配線20を第1方向に延ばしやすい。このような観点からは、インダクタ領域IAの第1辺LSの寸法は、インダクタ領域IAの第2辺SSの寸法の5倍以上であるとさらに望ましい。
・インダクタ配線20を複数備えており、インダクタ領域IAが複数ある場合には、少なくともいずれか1つのインダクタ領域IAにおいて、第1辺LSの寸法が、第2辺SSの寸法の3倍以上であればよい。
・上記各実施形態において、インダクタ配線とは、電流が流れた場合に磁性層に磁束を発生させることによって、インダクタ部品10にインダクタンスを付与できるものであればよい。上記各実施形態において、各インダクタ配線は、同じ配線長の渦巻き形状のインダクタ配線に比べて、必ずしも直流電気抵抗を低減しなくてもよい。
・インダクタ配線20の形状は、上記各実施形態の例に限られない。例えば、図27に示す例では、第1インダクタ配線20R及び第2インダクタ配線20Lは、ミアンダ形状である。この場合であっても、第1インダクタ配線20Rについての第1インダクタ領域IARの第1辺LSRが、第1インダクタ領域IARの第2辺SSRの3倍以上であれば、第1インダクタ配線20Rの配線長を確保できる。この点、第2インダクタ配線20Lについても同様である。なお、図27に示す例では、厚さ方向Tdから視たときに、主面MFの長手方向Ldの寸法は、主面MFの短手方向Wdの寸法の3倍未満である。しかし、短手方向Wdに2つインダクタ配線20が並んでいる。そして、主面MFの長手方向Ldの寸法は、主面MFの短手方向Wdの寸法を短手方向Wdに並んでいるインダクタ配線20の数である「2」で除した値の2.5倍以上である。
また例えば、第1実施形態において、インダクタ配線20が直線状でなくてもよい。使用時に好適なインダクタンス値を取得するため、湾曲した接続部が設けられていてもよい。なお、インダクタ配線20に接続部が複数設けられていてもよい。また、第2実施形態においても、第1インダクタ配線20Rが直線状でなくてもよいし、第2インダクタ配線20Lに複数の接続部が設けられていてもよい。
また例えば、複数のインダクタ配線20を備える場合に、複数のインダクタ配線20の形状は、異なっていてもよい。この場合であっても、各インダクタ配線20のターン数は、0.5ターン以下であればよい。
・上記各実施形態において、配線本体21の延び方向は、長手方向Ldと一致していなくてもよい。例えば、配線本体21の延び方向は、長手方向Ldに対して、傾いていてもよい。ただし、配線本体21の延び方向が長手方向Ldに対して傾いている場合でも、インダクタ領域IAの第1辺LSの延びる方向は、長手方向Ldと同一の方向である。そのため、配線本体21の長さが同じでも、配線本体21の延び方向によって、インダクタ領域IAの大きさが変わる。
・インダクタ配線20の数は、3つ以上であってもよいし、1つであってもよい。例えば、図28に示す例では、インダクタ配線20を8つ備えている。そして、8つのインダクタ配線20は、同一平面上において互いに離れており、第1方向に2個並んだインダクタ配線20の列が、第2方向に4個設けられている。また例えば、図29に示す例では、インダクタ配線20の数は、1つである。
・インダクタ配線20を複数備え、N及びMを正の整数とする。そして、複数のインダクタ配線20は、同一平面上において互いに離れており、第1方向にN個並んだインダクタ配線20の列が、第2方向にM個設けられている場合、主面MFの長手方向Ld寸法は、主面MFの短手方向Wdの寸法の3倍以上でなくてもよい。この場合、主面MFは、厚さ方向Tdから視たときに四角形状であり、厚さ方向Tdから視たときに、四角形の一辺に平行な方向を第1方向とし、主面MFに平行な方向であって第1方向に直交する方向を第2方向とする。第1方向は、長方形状のインダクタ領域IAの長辺の延びる方向と一致する。この場合、主面MFの第1方向の寸法をNで除した値が、主面MFの第2方向の寸法をMで除した値の2.5倍以上であればよい。例えば、図28に示す例では、Nが「2」、Mが「4」である。そして、主面MFの第1方向の寸法を「2」で除した値が、主面MFの第2方向の寸法を「4」で除した値の4.6倍である。
・第2実施形態において、第1インダクタ配線20Rの第1パッド22Rの幾何中心と、第2インダクタ配線20Lの第1パッド22Lの幾何中心との距離は、第1インダクタ領域IARの第1辺LSRの3分の1より大きくてもよい。インダクタ配線20の形状や素体BDの大きさに併せて適宜変更されればよい。
・上記各実施形態において、素体BDの厚さ方向Tdの寸法は、上記各実施形態の例に限定されない。例えば、素体BDの厚さ方向Tdの寸法が、素体BDの短手方向Wdの寸法より大きくてもよい。ただし、上述のように素体BDの厚さ方向Tdの寸法が小さいほど、インダクタ部品10を基板に実装した際に、基板から突出する寸法が小さくなり好ましい。具体的には、0.25ミリメートル以下であるとよい。
・上記各実施形態について、第1支持配線41の位置は、上記各実施形態の例に限られない。例えば、第1支持配線41の中心軸線A1の短手方向Wdの位置が、接続されているインダクタ配線20の配線本体21の中心軸線C1の短手方向Wdの位置と同じであってもよい。なお、配線本体21が湾曲している部分を備えている場合、配線本体21のパッド側の端部が直線状であれば、当該直線状の部分の中心軸線に対して、第1支持配線の中心軸線A1がずれていてもよい。
・上記各実施形態において、第1側面93及び第2側面94に露出している支持配線の数は、インダクタ配線の数に伴って、3つ以上になってもよいし、全て省略してもよい。なお、図28に示す例では、支持配線は、全て省略している。
・上記各実施形態において、磁性層50に含まれる金属磁性粉の平均粒子径は、上記各実施形態の例に限定されない。ただし、比透磁率を確保するためには、金属磁性粉の平均粒子径が、1マイクロメートル以上かつ、10マイクロメートル以下であると好ましい。
・上記各実施形態において、第1磁性層54及び第2磁性層55に含まれる金属磁性粉は、Feを含む金属粉でなくてもよい。例えば、NiやCrを含む金属粉であってもよい。
・上記各実施形態において、隣り合うインダクタ配線の最小の間隔は、パッド間でなくてもよく、配線本体21間であってもよい。ただし、インダクタ配線20間の絶縁という観点では、最小の間隔は、50マイクロメートル以上であることが好ましい。さらに、およそ100マイクロメートル以上あればなお好適である。
・上記各実施形態において、各インダクタ配線20の組成は、上記各実施形態の例に限られない。例えば、銀や金であってもよい。
・上記各実施形態において、磁性層50の組成は、上記各実施形態の例に限られない。例えば、磁性層50の材質は、フェライト粉であってもよいし、フェライト粉と金属磁性粉との混合物であってもよい。
・上記各実施形態において、各支持配線41、42と磁性層50との間に別の層が介在していてもよい。例えば、各支持配線41、42と磁性層50との間に絶縁層が介在していてもよい。
・上記各実施形態において、第1垂直配線71及び第2垂直配線72は、主面MFと直交する方向にのみ延びていなくてもよい。例えば、第1垂直配線71及び第2垂直配線72が厚さ方向Tdに対して傾斜していても、第2磁性層55を貫通していればよい。
・上記各実施形態において、厚さ方向Tdから視たときに、第1パッド及び第2パッドの面積が第1垂直配線71及び第2垂直配線72の面積と等しくてもよい。また、配線本体の延伸方向と直交する方向における第1パッド及び第2パッドの長さ寸法が、配線本体と同じであってもよい。
・上記各実施形態において、第1外部端子81、第2外部端子82、を省略してもよい。第1垂直配線71及び第2垂直配線72が主面MFから露出していれば、第1垂直配線71及び第2垂直配線72から直接的にインダクタ配線20に電流を流すことができる。この場合、第1垂直配線71における主面MFから露出している部分、第2垂直配線72における主面MFから露出している部分が、外部端子として機能する。
・第1外部端子81、第2外部端子82の金属層はニッケル、金であってもよいし、ニッケル、スズであってもよい。また、触媒層を必要に応じて設けてもよい。例えば、ニッケルはエレクトロマイグレーションを抑制したり、金やスズははんだの濡れ性を確保したり、各外部端子の金属層を各機能に応じて適切に設定することができる。
・上記各実施形態において、第1外部端子81及び第2外部端子82の外面が絶縁層によって覆われていてもよい。この場合、基板等に実装する前のインダクタ部品10を保管している状態で、インダクタ部品10の内部に各外部端子を介して意図せず電流が流れることを抑制できる。なお、この変更例の場合、インダクタ部品10を基板等に実装する前に、洗浄等を行って第1外部端子81及び第2外部端子82を覆う絶縁層を取り除けばよい。
・第2実施形態において、ダミー部83は第1外部端子81及び第2外部端子82と同じ積層構造でなくてもよい。例えば、ダミー部83は導電性を有した物質ではなくてもよい。また、例えば、ダミー部83は第2磁性層55が絶縁層90から露出している部分であってもよい。
・第2実施形態において、厚さ方向Tdから視たときのダミー部83の面積が、第1外部端子81及び第2外部端子82の面積と異なっていてもよい。
・第2実施形態において、ダミー部83が設けられていなくてもよい。
・上記各実施形態において、インダクタ部品10の製造方法は、上記各実施形態の例に限られない。例えば、第1実施形態及び第2実施形態において、インダクタ配線20を形成する工程と第1支持配線41及び第2支持配線とが形成する工程とが別の工程でもよい。例えば、インダクタ配線20を形成した後に、インダクタ配線20とは異なる材質で各支持配線41、42を形成してもよい。
10…インダクタ部品
20…インダクタ配線
21…配線本体
22…第1パッド
23…第2パッド
41…第1支持配線
42…第2支持配線
71…第1垂直配線
72…第2垂直配線
90…絶縁層
BD…素体
IA…インダクタ領域
LS…第1辺
MF…主面
SS…第2辺

Claims (7)

  1. 長方形状の主面を有する直方体状の素体と、
    前記素体の内部において前記主面と平行に延び、ターン数が0.5ターン以下のインダクタ配線と、
    前記インダクタ配線から前記主面に直交する厚さ方向に延び、前記主面から露出している第1垂直配線及び第2垂直配線と、を備え、
    前記主面の長辺に平行な方向を第1方向、前記主面に平行な方向であって前記第1方向に直交する方向を第2方向としたとき、
    前記インダクタ配線は、第1端が第2端よりも前記第1方向の一方側に位置する配線本体と、前記配線本体の第1端に設けられ前記第1垂直配線が接続されている第1パッドと、前記配線本体の第2端に設けられ前記第2垂直配線が接続されている第2パッドとを有し、
    前記第1方向に平行な第1辺と前記第2方向に平行な第2辺とで、前記厚さ方向から視て前記配線本体の全体を囲う最小の長方形状の領域をインダクタ領域としたとき、
    前記主面の前記第1方向の寸法は、前記主面の前記第2方向の寸法の2.5倍以上であり、且つ、前記第1辺の寸法は、前記第2辺の寸法の3倍以上であり、
    前記インダクタ配線として、第1インダクタ配線及び第2インダクタ配線を備え、
    前記第1インダクタ配線の前記第2パッドと、前記第2インダクタ配線の前記第2パッドとが同一のパッドである
    インダクタ部品。
  2. 前記素体の前記厚さ方向の寸法は、前記素体の前記第2方向の寸法よりも小さい
    請求項1に記載のインダクタ部品。
  3. 前記第1辺の寸法は、前記第2辺の寸法の5倍以上である
    請求項1又は請求項2に記載のインダクタ部品。
  4. 前記配線本体は、直線状である
    請求項1~請求項3のいずれか1項に記載のインダクタ部品。
  5. 前記配線本体の延び方向は、前記第1方向と一致している
    請求項4に記載のインダクタ部品。
  6. 前記素体の前記厚さ方向の寸法は、0.25ミリメートル以下である
    請求項1~請求項5のいずれか1項に記載のインダクタ部品。
  7. 前記素体は、磁性層を含んでおり、
    前記インダクタ配線の少なくとも一部は、前記磁性層に覆われている
    請求項1~請求項6のいずれか1項に記載のインダクタ部品。
JP2020142765A 2020-08-26 2020-08-26 インダクタ部品 Active JP7264133B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2020142765A JP7264133B2 (ja) 2020-08-26 2020-08-26 インダクタ部品
US17/410,812 US20220068550A1 (en) 2020-08-26 2021-08-24 Inductor component
CN202110987528.2A CN114121412A (zh) 2020-08-26 2021-08-26 电感器部件

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020142765A JP7264133B2 (ja) 2020-08-26 2020-08-26 インダクタ部品

Publications (2)

Publication Number Publication Date
JP2022038327A JP2022038327A (ja) 2022-03-10
JP7264133B2 true JP7264133B2 (ja) 2023-04-25

Family

ID=80355890

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020142765A Active JP7264133B2 (ja) 2020-08-26 2020-08-26 インダクタ部品

Country Status (3)

Country Link
US (1) US20220068550A1 (ja)
JP (1) JP7264133B2 (ja)
CN (1) CN114121412A (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7276283B2 (ja) * 2020-08-26 2023-05-18 株式会社村田製作所 インダクタ部品

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000306751A (ja) 1999-04-22 2000-11-02 Matsushita Electric Ind Co Ltd チョークコイル
JP2000323336A (ja) 1999-03-11 2000-11-24 Taiyo Yuden Co Ltd インダクタ及びその製造方法
JP2019121780A (ja) 2017-12-28 2019-07-22 新光電気工業株式会社 インダクタ、及びインダクタの製造方法
JP2019176109A (ja) 2018-03-29 2019-10-10 太陽誘電株式会社 受動部品及び電子機器
JP2021068837A (ja) 2019-10-25 2021-04-30 株式会社村田製作所 インダクタ部品及びインダクタ部品実装基板

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4110740Y1 (ja) * 1964-09-30 1966-05-20
JP6551305B2 (ja) * 2015-10-07 2019-07-31 株式会社村田製作所 積層インダクタ
JP6520801B2 (ja) * 2016-04-19 2019-05-29 株式会社村田製作所 電子部品
KR101868026B1 (ko) * 2016-09-30 2018-06-18 주식회사 모다이노칩 파워 인덕터
JP7345253B2 (ja) * 2018-12-28 2023-09-15 新科實業有限公司 薄膜インダクタ、コイル部品および薄膜インダクタの製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000323336A (ja) 1999-03-11 2000-11-24 Taiyo Yuden Co Ltd インダクタ及びその製造方法
JP2000306751A (ja) 1999-04-22 2000-11-02 Matsushita Electric Ind Co Ltd チョークコイル
JP2019121780A (ja) 2017-12-28 2019-07-22 新光電気工業株式会社 インダクタ、及びインダクタの製造方法
JP2019176109A (ja) 2018-03-29 2019-10-10 太陽誘電株式会社 受動部品及び電子機器
JP2021068837A (ja) 2019-10-25 2021-04-30 株式会社村田製作所 インダクタ部品及びインダクタ部品実装基板

Also Published As

Publication number Publication date
US20220068550A1 (en) 2022-03-03
CN114121412A (zh) 2022-03-01
JP2022038327A (ja) 2022-03-10

Similar Documents

Publication Publication Date Title
US11557427B2 (en) Coil component
US11605484B2 (en) Multilayer seed pattern inductor and manufacturing method thereof
JP6958525B2 (ja) インダクタ部品
JP7172113B2 (ja) コイル部品及びその製造方法
US9812247B2 (en) Electronic component
US10607769B2 (en) Electronic component including a spacer part
CN112908611B (zh) 线圈部件
US11527342B2 (en) Coil component and electronic device
US11705272B2 (en) Coil component and electronic device
CN108695038A (zh) 电子部件
US20160217903A1 (en) Electronic component
JP7150579B2 (ja) インダクタンス素子及び電子機器
US20160211071A1 (en) Electronic component
JP7264133B2 (ja) インダクタ部品
CN114121411B (zh) 电感器部件
JP7475809B2 (ja) 積層コイル部品
JP2023054822A (ja) Dc/dcコンバータ部品
JP7235023B2 (ja) インダクタ部品、及びインダクタ部品の製造方法
JP7276283B2 (ja) インダクタ部品
JP2022014637A (ja) 積層コイル部品
JP2022152044A (ja) コイル部品及びその製造方法
US20210104353A1 (en) Inductor component
CN114121407A (zh) 电感器部件

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220309

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230303

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230314

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230327

R150 Certificate of patent or registration of utility model

Ref document number: 7264133

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150