EP2082875A1 - Lithographiedruckplattenvorläufer und Plattenherstellungsverfahren dafür - Google Patents

Lithographiedruckplattenvorläufer und Plattenherstellungsverfahren dafür Download PDF

Info

Publication number
EP2082875A1
EP2082875A1 EP09000874A EP09000874A EP2082875A1 EP 2082875 A1 EP2082875 A1 EP 2082875A1 EP 09000874 A EP09000874 A EP 09000874A EP 09000874 A EP09000874 A EP 09000874A EP 2082875 A1 EP2082875 A1 EP 2082875A1
Authority
EP
European Patent Office
Prior art keywords
group
image
recording layer
lithographic printing
printing plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP09000874A
Other languages
English (en)
French (fr)
Other versions
EP2082875B1 (de
Inventor
Koji Sonokawa
Norio Aoshima
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Publication of EP2082875A1 publication Critical patent/EP2082875A1/de
Application granted granted Critical
Publication of EP2082875B1 publication Critical patent/EP2082875B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41CPROCESSES FOR THE MANUFACTURE OR REPRODUCTION OF PRINTING SURFACES
    • B41C1/00Forme preparation
    • B41C1/10Forme preparation for lithographic printing; Master sheets for transferring a lithographic image to the forme
    • B41C1/1008Forme preparation for lithographic printing; Master sheets for transferring a lithographic image to the forme by removal or destruction of lithographic material on the lithographic support, e.g. by laser or spark ablation; by the use of materials rendered soluble or insoluble by heat exposure, e.g. by heat produced from a light to heat transforming system; by on-the-press exposure or on-the-press development, e.g. by the fountain of photolithographic materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41NPRINTING PLATES OR FOILS; MATERIALS FOR SURFACES USED IN PRINTING MACHINES FOR PRINTING, INKING, DAMPING, OR THE LIKE; PREPARING SUCH SURFACES FOR USE AND CONSERVING THEM
    • B41N3/00Preparing for use and conserving printing surfaces
    • B41N3/08Damping; Neutralising or similar differentiation treatments for lithographic printing formes; Gumming or finishing solutions, fountain solutions, correction or deletion fluids, or on-press development
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41CPROCESSES FOR THE MANUFACTURE OR REPRODUCTION OF PRINTING SURFACES
    • B41C1/00Forme preparation
    • B41C1/10Forme preparation for lithographic printing; Master sheets for transferring a lithographic image to the forme
    • B41C1/1008Forme preparation for lithographic printing; Master sheets for transferring a lithographic image to the forme by removal or destruction of lithographic material on the lithographic support, e.g. by laser or spark ablation; by the use of materials rendered soluble or insoluble by heat exposure, e.g. by heat produced from a light to heat transforming system; by on-the-press exposure or on-the-press development, e.g. by the fountain of photolithographic materials
    • B41C1/1016Forme preparation for lithographic printing; Master sheets for transferring a lithographic image to the forme by removal or destruction of lithographic material on the lithographic support, e.g. by laser or spark ablation; by the use of materials rendered soluble or insoluble by heat exposure, e.g. by heat produced from a light to heat transforming system; by on-the-press exposure or on-the-press development, e.g. by the fountain of photolithographic materials characterised by structural details, e.g. protective layers, backcoat layers or several imaging layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41CPROCESSES FOR THE MANUFACTURE OR REPRODUCTION OF PRINTING SURFACES
    • B41C2201/00Location, type or constituents of the non-imaging layers in lithographic printing formes
    • B41C2201/02Cover layers; Protective layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41CPROCESSES FOR THE MANUFACTURE OR REPRODUCTION OF PRINTING SURFACES
    • B41C2201/00Location, type or constituents of the non-imaging layers in lithographic printing formes
    • B41C2201/06Backcoats; Back layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41CPROCESSES FOR THE MANUFACTURE OR REPRODUCTION OF PRINTING SURFACES
    • B41C2201/00Location, type or constituents of the non-imaging layers in lithographic printing formes
    • B41C2201/10Location, type or constituents of the non-imaging layers in lithographic printing formes characterised by inorganic compounds, e.g. pigments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41CPROCESSES FOR THE MANUFACTURE OR REPRODUCTION OF PRINTING SURFACES
    • B41C2201/00Location, type or constituents of the non-imaging layers in lithographic printing formes
    • B41C2201/12Location, type or constituents of the non-imaging layers in lithographic printing formes characterised by non-macromolecular organic compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41CPROCESSES FOR THE MANUFACTURE OR REPRODUCTION OF PRINTING SURFACES
    • B41C2201/00Location, type or constituents of the non-imaging layers in lithographic printing formes
    • B41C2201/14Location, type or constituents of the non-imaging layers in lithographic printing formes characterised by macromolecular organic compounds, e.g. binder, adhesives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41CPROCESSES FOR THE MANUFACTURE OR REPRODUCTION OF PRINTING SURFACES
    • B41C2210/00Preparation or type or constituents of the imaging layers, in relation to lithographic printing forme preparation
    • B41C2210/04Negative working, i.e. the non-exposed (non-imaged) areas are removed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41CPROCESSES FOR THE MANUFACTURE OR REPRODUCTION OF PRINTING SURFACES
    • B41C2210/00Preparation or type or constituents of the imaging layers, in relation to lithographic printing forme preparation
    • B41C2210/08Developable by water or the fountain solution
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41CPROCESSES FOR THE MANUFACTURE OR REPRODUCTION OF PRINTING SURFACES
    • B41C2210/00Preparation or type or constituents of the imaging layers, in relation to lithographic printing forme preparation
    • B41C2210/20Preparation or type or constituents of the imaging layers, in relation to lithographic printing forme preparation characterised by inorganic additives, e.g. pigments, salts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41CPROCESSES FOR THE MANUFACTURE OR REPRODUCTION OF PRINTING SURFACES
    • B41C2210/00Preparation or type or constituents of the imaging layers, in relation to lithographic printing forme preparation
    • B41C2210/22Preparation or type or constituents of the imaging layers, in relation to lithographic printing forme preparation characterised by organic non-macromolecular additives, e.g. dyes, UV-absorbers, plasticisers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41CPROCESSES FOR THE MANUFACTURE OR REPRODUCTION OF PRINTING SURFACES
    • B41C2210/00Preparation or type or constituents of the imaging layers, in relation to lithographic printing forme preparation
    • B41C2210/24Preparation or type or constituents of the imaging layers, in relation to lithographic printing forme preparation characterised by a macromolecular compound or binder obtained by reactions involving carbon-to-carbon unsaturated bonds, e.g. acrylics, vinyl polymers

Definitions

  • the present invention relates to a lithographic printing plate precursor and a plate making method thereof. More particularly, it relates to a lithographic printing plate precursor capable of being subjected to image recording with laser and capable of being subjected to on-press development or gum development, and a plate making method thereof.
  • a lithographic printing plate is composed of an oleophilic image area accepting ink and a hydrophilic non-image area accepting dampening water in the process of printing.
  • Lithographic printing is a printing method utilizing the nature of water and oily ink to repel with each other and comprising rendering the oleophilic image area of the lithographic printing plate to an ink-receptive area and the hydrophilic non-image area thereof to a dampening water-receptive area (ink-unreceptive area), thereby making a difference in adherence of the ink on the surface of the lithographic printing plate, depositing the ink only to the image area, and then transferring the ink to a printing material, for example, paper.
  • a printing material for example, paper.
  • a lithographic printing plate precursor comprising a hydrophilic support having provided thereon an oleophilic photosensitive resin layer (image-recording layer)
  • PS plate lithographic printing plate precursor
  • image-recording layer oleophilic photosensitive resin layer
  • the lithographic printing plate is obtained by conducting plate making according to a method of exposing the lithographic printing plate precursor through an original, for example, a lith film, and then while leaving the image-recording layer corresponding to the image area, removing the unnecessary image-recording layer corresponding to the non-image area by dissolving with an alkaline developer or a developer containing an organic solvent thereby revealing the hydrophilic surface of support.
  • a method referred to as on-press development has been proposed wherein a lithographic printing plate precursor having an image-recording layer capable of being removed in its unnecessary areas during a conventional printing process is used and after exposure, the unnecessary area of the image-recording layer is removed on a printing machine to prepare a lithographic printing plate.
  • Specific methods of the on-press development include, for example, a method of using a lithographic printing plate precursor having an image-recording layer that can be dissolved or dispersed in dampening water, an ink solvent or an emulsion of dampening water and ink, a method of mechanically removing an image-recording layer by contact with rollers or a blanket cylinder of a printing machine, and a method of lowering cohesion of an image-recording layer or adhesion between an image-recording layer and a support upon penetration of dampening water, ink solvent or the like and then mechanically removing the image-recording layer by contact with rollers or a blanket cylinder of a printing machine.
  • gum development As another method for simple development, a method referred to as gum development has been proposed wherein removal of the unnecessary area of the image-recording layer is performed with a gum solution, which has been used as a finisher conducting after conventional alkali development, without using a conventional highly alkaline developer.
  • development processing step means a step of using an apparatus (ordinarily, an automatic developing machine) other than a printing machine and removing an unexposed area in an image-recording layer of a lithographic printing plate precursor upon contact with liquid (ordinarily, an alkaline developer) thereby revealing a hydrophilic surface of support.
  • on-press development means a method or a step of removing an unexposed area in an image-recording layer of a lithographic printing plate precursor upon contact with liquid (ordinarily, printing ink and/or dampening water) by using a printing machine thereby revealing a hydrophilic surface of support.
  • a system using an image-recording layer capable of being handled in a bright room or under a yellow lump and a light source is preferable from the standpoint of workability.
  • a semiconductor laser emitting an infrared ray having a wavelength of 760 to 1,200 and a solid laser, for example, YAG laser, are extremely useful because these lasers having a large output and a small size are inexpensively available.
  • An UV laser can also be used.
  • a lithographic printing plate precursor of on-press development type capable of conducting image-recording with an infrared laser for example, a lithographic printing plate precursor having provided on a hydrophilic support, an image-forming layer in which hydrophobic thermoplastic polymer particles are dispersed in a hydrophilic binder is described in Japanese Patent 2,938,397 (corresponding to U.S. Patent 6,030,750 ). It is described in Japanese Patent 2,938,397 (corresponding to U.S.
  • Patent 6,030,750 that the lithographic printing plate precursor is exposed to an infrared laser to agglomerate the hydrophobic thermoplastic polymer particles by heat thereby forming an image and mounted on a plate cylinder of a printing machine to be able to carry out on-press development by supplying dampening water and/or ink.
  • JP-A-2001-277740 the term "JP-A” as used herein means an "unexamined published Japanese patent application”
  • JP-A-2001-277742 corresponding to US 2001/0018159 A1 .
  • lithographic printing plate precursor having provided on a support, a photosensitive layer containing an infrared absorbing agent, a radical polymerization initiator and a polymerizable compound is described in JP-A-2002-287334 (corresponding to US 2002/0177074 A1 )
  • a lithographic printing plate precursor containing a sulfonate or an alkylsulfuric acid ester salt in its photosensitive layer is described in JP-A-2007-276454 (corresponding to US 2007/0214987 A1 ), and a lithographic printing plate precursor containing an amino acid or a betaine in its protective layer is described in EP-A-1862301 .
  • compatibility of the on-press development property and printing durability is still insufficient.
  • a surfactant in order to improve the on-press development property and state of coated surface, a surfactant can be added to an image-recording layer and examples of the surfactant include a carboxybetaine and a sulfobetaine.
  • the object of improving the on-press development property or gum development property while maintaining the printing durability can be achieved by using the specific betaine compound which has a small hydrophobic portion and almost no surface active function as the compound represented by formula (I) or (II).
  • the description on the surfactant in the above described patents neither discloses nor suggests how to achieve the object of the invention.
  • a lithographic printing plate precursor of on-press developing type providing good on-press development property while maintaining sufficient printing durability
  • a plate making method of a lithographic printing plate precursor excellent in the on-press development property or gum development property and printing durability can be provided.
  • the lithographic printing plate precursor according to the invention comprises a support and an image-recording layer which is, after imagewise exposure, on-press developable by supplying printing ink and/or dampening water or gum developable by supplying a gum solution and contains the betaine compound represented by formula (I) or (II).
  • the lithographic printing plate precursor according to the invention comprises a support, an image-recording layer which is, after imagewise exposure, on-press developable by supplying printing ink and/or dampening water or gum developable by supplying a gum solution after imagewise exposure and a layer containing the betaine compound represented by formula (I) or (II) between the support and the image-recording layer.
  • R 1 to R 3 each independently represents an alkyl group having from 1 to 5 carbon atoms, an alkenyl group, an alkynyl group, a cycloalkyl group or an aryl group, each of which groups may be substituted with a hydroxy group or an amino group
  • Z represents an alkylene group having from 1 to 4 carbon atoms, which may be substituted with a hydroxy group, or at least two of R 1 to R 3 and Z may be combined with each other to form a heterocyclic ring.
  • R 1 to R 3 each independently represents an alkyl group having from 1 to 3 carbon atoms or two of R 1 to R 3 and Z are combined with each other to form a 5-membered or 6-membered heterocyclic ring.
  • the compound represented by formula (I) or (II) has a small structure of hydrophobic portion and almost no surface active function, when dampening water or a gum solution penetrates into the exposed area (image area) of the image-recording layer, degradations of the hydrophobicity and film strength of the image area are prevented and thus, the ink receptivity and printing durability of the image-recording layer can be preferably maintained.
  • the amount of the compound represented by formula (I) or (II) added to the image-recording layer is preferably from 0.1 to 10% by weight, more preferably from 0.2 to 5% by weight, still more preferably from 0.4 to 2% by weight, based on the total solid content of the image-recording layer.
  • the amount of the compound represented by formula (I) or (II) added to the undercoat layer is preferably from 5 to 50% by weight, more preferably from 8 to 30% by weight, still more preferably from 10 to 20% by weight, based on the total solid content of the undercoat layer.
  • the compound represented by formula (I) or (II) can also be added to a protective layer as well as the image-recording layer and/or undercoat layer.
  • the amount of the compound added to the protective layer is preferably 10% by weight or less based on the total solid content of the protective layer.
  • the image-recording layer for use in the invention is an image-recording layer capable of forming an image by supplying printing ink and dampening water on a printing machine after image exposure to remove the unexposed area or by treating with a gum solution after image exposure.
  • the representative image-forming mechanism enabling the on-press development or gum development included in the image-recording layer includes (1) an embodiment wherein (A) an infrared absorbing agent, (B) a radical polymerization initiator and (C) a polymerizable compound are included and an image area is hardened utilizing a polymerization reaction and (2) an embodiment wherein (A) an infrared absorbing agent and (D) a hydrophobilizing precursor are included and a hydrophobic region (image area) is formed utilizing heat fusion or heat reaction of the hydrophobilizing precursor. A mixture of these two embodiments may also used.
  • the hydrophobilizing precursor (D) may be incorporated into the image-recording layer of polymerization type (1) or the polymerizable compound or the like may be incorporated into the image-recording layer of hydrophobilizing precursor type (2).
  • the embodiment of polymerization type including the infrared absorbing agent (A), radical polymerization initiator (B) and polymerizable compound (C) is preferable.
  • the lithographic printing plate precursor according to the invention is subjected to the image formation using as a light source, a laser emitting an infrared ray of 760 to 1,200 nm or the like, it is preferred to incorporate an infrared absorbing agent into the image-recording layer thereof.
  • the infrared absorbing agent has a function of converting the infrared ray absorbed to heat and a function of being excited by the infrared ray to perform electron transfer/energy transfer to a radical polymerization initiator described hereinafter.
  • the infrared absorbing agent for use in the invention includes a dye and pigment each having an absorption maximum in a wavelength range of 760 to 1,200 nm.
  • the dye includes azo dyes, metal complex azo dyes, pyrazolone azo dyes, naphthoquinone dyes, anthraquinone dyes, phthalocyanine dyes, carbonium dyes, quinoneimine dyes, methine dyes, cyanine dyes, squarylium dyes, pyrylium salts and metal thiolate complexes.
  • preferable dye examples include cyanine dyes described, for example, in JP-A-58-125246 , JP-A-59-84356 and JP-A-60-78787 , methine dyes described, for example, in JP-A-58-173696 , JP-A-58-181690 and JP-A-58-194595 , naphthoquinone dyes described, for example, in JP-A-58-112793 , JP-A-58-224793 , JP-A-59-48187 , JP-A-59-73996 , JP-A-60-52940 and JP-A-60-63744 , squarylium dyes described, for example, in JP-A-58-112792 , and cyanine dyes described, for example, in British Patent 434,875 .
  • near infrared absorbing sensitizers described in U.S. Patent 5,156,938 are preferably used.
  • substituted arylbenzo(thio)pyrylium salts described in U.S. Patent 3,881,924 are substituted arylbenzo(thio)pyrylium salts described in U.S. Patent 3,881,924 , trimethinethiapyrylium salts described in JP-A-57-142645 (corresponding to U.S.
  • Patent 4,327,169 pyrylium compounds described in JP-A-58-181051 , JP-A-58-220143 , JP-A-59-41363 , JP-A-59-84248 , JP-A-59-84249 , JP-A-59-146063 and JP-A-59-146061 , cyanine dyes described in JP-A-59-216146 , pentamethinethiopyrylium salts described in U.S. Patent 4,283,475 , and pyrylium compounds described in JP-B-5-13514 (the term "JP-B" as used herein means an "examine Japanese patent publication") and JP-B-5-19702 are also preferably used.
  • Other preferable examples of the dye include near infrared absorbing dyes represented by formulae (I) and (II) in U.S. Patent 4,756,993 .
  • infrared absorbing dye according to the invention include specific indolenine cyanine dyes described in JP-A-2002-278057 as illustrated below.
  • cyanine dyes cyanine dyes, squarylium dyes, pyrylium dyes, nickel thiolate complexes and indolenine cyanine dyes are preferred. Further, cyanine dyes and indolenine cyanine dyes are more preferred. As a particularly preferable example of the dye, a cyanine dye represented by formula (1) shown below is exemplified.
  • X 1 represents a hydrogen atom, a halogen atom, -NPh 2 , X 2 -L 1 or a group represented by the structural formula shown below.
  • X 2 represents an oxygen atom, a nitrogen atom or a sulfur atom
  • L 1 represents a hydrocarbon group having from 1 to 12 carbon atoms, an aromatic ring containing a hetero atom or a hydrocarbon group having from 1 to 12 carbon atoms and containing a hetero atom.
  • the hetero atom used herein indicates a nitrogen atom, a sulfur atom, an oxygen atom, a halogen atom and a selenium atom.
  • R a represents a substituent selected from a hydrogen atom, an alkyl group, an aryl group, a substituted or unsubstituted amino group and a halogen atom, and Xa - has the same meaning as Za - defined hereinafter.
  • R 1 and R 2 each independently represents a hydrocarbon group having from 1 to 12 carbon atoms.
  • R 1 and R 2 each represents a hydrocarbon group having two or more carbon atoms, and it is particularly preferred that R 1 and R 2 are combined with each other to form a 5-membered or 6-membered ring.
  • Ar 1 and Ar 2 which may be the same or different, each represents an aromatic hydrocarbon group which may have a substituent
  • the aromatic hydrocarbon group include a benzene ring and a naphthalene ring.
  • preferable examples of the substituent include a hydrocarbon group having 12 or less carbon atoms, a halogen atom and an alkoxy group having 12 or less carbon atoms, and a hydrocarbon group having 12 or less carbon atoms and an alkoxy group having 12 or less carbon atoms are most preferable.
  • Y 1 and Y 2 which may be the same or different, each represents a sulfur atom or a dialkylmethylene group having 12 or less carbon atoms.
  • R 3 and R 4 which may be the same or different, each represents a hydrocarbon group having 20 or less carbon atoms, which may have a substituent.
  • the substituent include an alkoxy group having 12 or less carbon atoms, a carboxyl group and a sulfo group, and an alkoxy group having 12 or less carbon atoms is most preferable.
  • R 5 , R 6 , R 7 and R 8 which may be the same or different, each represents a hydrogen atom or a hydrocarbon group having 12 or less carbon atoms. In view of the availability of raw materials, a hydrogen atom is preferred.
  • Za - represents a counter anion.
  • Za - is not necessary when the cyanine dye represented by formula (1) has an anionic substituent in the structure thereof and neutralization of charge is not needed.
  • preferable examples of the counter ion for Za - include a halogen ion, a perchlorate ion, a tetrafluoroborate ion, a hexafluorophosphate ion and a sulfonate ion, and particularly preferable examples thereof include a perchlorate ion, a tetrafluoroborate ion, a hexafluorophosphate ion and an arylsulfonate ion.
  • cyanine dye represented by formula (1) which can be preferably used in the invention, include those described in paragraph Nos. [0017] to [0019] of JP-A-2001-133969 .
  • Examples of the pigment for use in the invention include commercially available pigments and pigments described in Colour Index (C.I.), Saishin Ganryo Binran (Handbook of the Newest Pigments) compiled by Pigment Technology Society of Japan (1977 ), Saishin Ganryo Oyou Gijutsu (Newest Application on Technologies for Pigments), CMC Publishing Co., Ltd. (1986 ) and Insatsu Ink Gijutsu (printing Ink Technology), CMC Publishing Co., Ltd. (1984 ).
  • the pigment examples include black pigments, yellow pigments, orange pigments, brown pigments, red pigments, purple pigments, blue pigments, green pigments, fluorescent pigments, metal powder pigments and polymer-bonded dyes.
  • Specific examples of usable pigment include insoluble azo pigments, azo lake pigments, condensed azo pigments, chelated azo pigments, phthalocyanine pigments, anthraquinone pigments, perylene and perynone pigments, thioindigo pigments, quinacridone pigments, dioxazine pigments, isoindolinone pigments, quinophthalone pigments, dying lake pigments, azine pigments, nitroso pigments, nitro pigments, natural pigments, fluorescent pigments, inorganic pigments and carbon black.
  • carbon black is preferred.
  • the pigment may be used without undergoing surface treatment or may be used after the surface treatment.
  • a method of coating a resin or wax on the surface a method of attaching a surfactant and a method of bonding a reactive substance (for example, a silane coupling agent, an epoxy compound or polyisocyanate) to the pigment surface.
  • a reactive substance for example, a silane coupling agent, an epoxy compound or polyisocyanate
  • the surface treatment methods are described in Kinzoku Sekken no Seishitsu to Oyo (Properties and Applications of Metal Soap), Saiwai Shobo, Insatsu Ink Gijutsu (Printing Ink Technology), CMC Publishing Co., Ltd. (1984), and Saishin Ganryo Oyo Gijutsu (Newest Application on Technologies for Pigments), CMC Publishing Co., Ltd. (1986).
  • the pigment has a particle size of preferably from 0.01 to 10 ⁇ m more preferably from 0.05 to 1 ⁇ m, particularly preferably from 0.1 to 1 ⁇ m. In the range described above, good stability of the pigment dispersion in the coating solution for image-recording layer and good uniformity of the image-recording layer can be obtained.
  • dispersing the pigment For dispersing the pigment, a known dispersion technique for use in the production of ink or toner may be used.
  • the dispersing machine include an ultrasonic dispersing machine, a sand mill, an attritor, a pearl mill, a super-mill, a ball mill, an impeller, a disperser, a KD mill, a colloid mill, a dynatron, a three roll mill and a pressure kneader.
  • the dispersing machines are described in detail in Saishin Ganryo Oyo Gijutsu (Newest Application on Technologies for Pigments), CMC Publishing Co., Ltd. (1986).
  • the infrared absorbing agent may be added together with other components to the same image-recording layer or may be added to a different image-recording layer separately provided.
  • the amount of the infrared absorbing agent added in the case of preparing a lithographic printing plate precursor, the amount is so controlled that absorbance of the image-recording layer at the maximum absorption wavelength in the wavelength region of 760 to 1,200 nm measured by reflection measurement is in a range of 0.3 to 1.2, preferably in a range of 0.4 to 1.1.
  • the polymerization reaction proceeds uniformly in the thickness direction of the image-recording layer and good film strength of the image area and good adhesion property of the image area to the support are achieved.
  • the absorbance of the image-recording layer can be controlled depending on the amount of the infrared absorbing agent added to the image-recording layer and the thickness of the image-recording layer.
  • the measurement of the absorbance can be carried out in a conventional manner.
  • the method for measurement includes, for example, a method of forming an image-recording layer having a thickness determined appropriately in the range necessary for a coating amount after drying of the lithographic printing plate precursor on a reflective support, for example, an aluminum plate, and measuring reflection density of the image-recording layer by an optical densitometer or a spectrophotometer according to a reflection method using an integrating sphere.
  • the content of the infrared absorbing agent (A) in the image-recording layer according to the invention is preferably from 0.1 to 10.0% by weight, more preferably from 0.5 to 5.0% by weight, based on the total solid content of the image-recording layer.
  • the radical polymerization initiator (B) for use in the invention is a compound that generates a radical with light energy, heat energy or both energies to initiate or accelerate polymerization of polymerizable compound (C).
  • the radical polymerization initiator for use in the invention includes, for example, known thermal polymerization initiators, compounds containing a bond having small bond dissociation energy and photopolymerization initiators.
  • the radical polymerization initiators in the invention include, for example, (a) organic halides, (b) carbonyl compounds, (c) azo compounds, (d) organic peroxides, (e) metallocene compounds, (f) azido compounds, (g) hexaarylbiimidazole compounds, (h) organic borate compounds, (i) disulfone compounds, (j) oxime ester compounds and (k) onium salt compounds.
  • the organic halides (a) specifically include, for example, compounds described in Wakabayashi et al., Bull. Chem. Soc. Japan, 42, 2924 (1969 ), U.S. Patent 3,905,815 , JP-B-46-4605 , JP-A-48-35281 , JP-A-55-32070 , JP-A-60-239736 , JP-A-61-169835 , JP-A-61-169837 , JP-A-62-58241 , JP-A-62-212401 , JP-A-63-70243 , JP-A-63-298339 and M. P. Hutt, Journal of Heterocyclic Chemistry, 1, No. 3 (1970 ). Particularly, oxazole compounds and s-triazine compounds each substituted with a trihalomethyl group are preferably exemplified.
  • s-triazine derivatives and oxadiazole derivatives each of which has at least one of mono-, di- and tri-halogen substituted methyl groups connected are exemplified.
  • Specific examples thereof include 2,4,6-tris(monochloromethyl)-s-triazine, 2,4,6-tris(dichloromethyl)-s-triazine, 2,4,6-tris(trichloromethyl)-s-triazine, 2-methyl-4,6-bis(trichloromethyl)-s-triazine, 2-n-propyl-4,6-bis(trichloromethyl)-s-triazine, 2-( ⁇ , ⁇ , ⁇ -trichloroethyl)-4,6-bis(trichloromethyl)-s-triazine, 2-phenyl-4,6-bis(trichloromethyl)-s-triazine, 2-(p-methoxyphenyl)-4,6-bis(trichloromethyl)-s-s
  • the carbonyl compounds (b) include, for example, benzophenone derivatives, e.g., benzophenone, Michler's ketone, 2-methylbenzophenone, 3-methylbenzophenone, 4-methylbenzophenone, 2-chlorobenzophenone, 4-bromobenzophenone or 2-carboxybenzophenone, acetophenone derivatives, e.g., 2,2-dimethoxy-2-phenylacetophenone, 2,2-diethoxyacetophenone, 1-hydroxycyclohexylphenylketone, ⁇ -hydroxy-2-methylphenylpropanone, 1-hydroxy-1-methylethyl-(p-isopropylphenyl)ketone, 1-hydroxy-1-(p-dodecylphenyl)ketone, 2-methyl-(4'-(methylthio)phenyl)-2-morpholino-1-propanone or 1,1,1,-trichloromethyl-(p-butylphenyl)ketone, thioxant
  • the azo compounds (c) include, for example, azo compounds described in JP-A-8-108621 .
  • the organic peroxides (d) include, for example, trimethylcyclohexanone peroxide, acetylacetone peroxide, 1,1-bis(tert-butylperoxy)-3,3,5-trimethylcyclohexane, 1,1-bis(tert-butylperoxy)cyclohexane, 2,2-bis(tert-butylperoxy)butane, tert-butylhydroperoxide, cumene hydroperoxide, diisopropylbenzene hydroperoxide, 2,5-dimethylhexane-2,5-dihydroperoxide, 1,1,3,3-tetramethylbutyl hydroperoxide, tert-butylcumyl peroxide, dicumyl peroxide, 2,5-dimethyl-2,5-di(tert-butylperoxy)hexane, 2,5-oxanoyl peroxide, succinic peroxide, benzoyl peroxide, 2,
  • the metallocene compounds (e) include, for example, various titanocene compounds described in JP-A-59-152396 , JP-A-61-151197 , JP-A-63-41484 , JP-A-2-249 , JP-A-2-4705 and JP-A-5-83588 , for example, dicyclopentadienyl-Ti-bisphenyl, dicyclopentadienyl-Ti-bis-2,6-difluorophen-1-yl, dicyclopentadienyl-Ti-bis-2,4-difluorophen-1-yl, dicyclopentadienyl-Ti-bis-2,4,6-trifluorophen-1-yl, dicyclopentadienyl-Ti-bis-2,3,5,6-tetrafluorophen-1-yl, dicyclopentadienyl-Ti-bis-2,3,4,5,6-pentafluorophen-1-
  • the azido compounds (f) include, for example, 2,6-bis(4-azidobenzylidene)-4-methylcyclohexanone.
  • the hexaarylbiimidazole compounds (g) include, for example, various compounds described in JP-B-6-29285 and U.S. Patents 3,479,185 , 4,311,783 and 4,622,286 , specifically, for example, 2,2'-bis(o-chlorophenyl)-4,4',5,5'-tetraphenylbiimidazole, 2,2'-bis(o-bromophenyl)-4,4',5,5'-tetraphenylbiimidazole, 2,2'-bis(o,p-dichlorophenyl)-4,4',5,5'-tetraphenylbiimidazole, 2,2'-bis(o-chlorophenyl)-4,4',5,5'-tetrakis(m-methoxyphenyl)biimidazole, 2,2'-bis(o,o'-dichlorophenyl)-4,4',5,5'-
  • the organic borate compounds (h) include, for example, organic borates described in JP-A-62-143044 , JP-A-62-150242 , JP-A-9-188685 , JP-A-9-188686 , JP-A-9-188710 , JP-A-2000-131837 , JP-A-2002-107916 , Japanese Patent 2,764,769 , JP-A-2002-116539 and Martin Kunz, Rad Tech '98, Proceeding.
  • the disulfone compounds (i) include, for example, compounds described in JP-A-61-166544 and JP-A-2002-328465 .
  • the oxime ester compounds (j) include, for example, compounds described in J. C. S. Perkin II, 1653-1660 (1979 ), J. C. S. Perkin II, 156-162 (1979 ), Journal of Photopolymer Science and Technology, 202-232 (1995 ) and JP-A-2000-66385 , and compounds described in JP-A-2000-80068 . Specific examples thereof include compounds represented by the following structural formulae:
  • the onium salt compounds (k) include, for example, diazonium salts described in S. I. Schlesinger, Photogr. Sci. Eng., 18, 387 (1974 ) and T. S. Bal et al., Polymer, 21, 423 (1980 ), ammonium salts described in U.S. Patent 4,069,055 and JP-A-4-365049 , phosphonium salts described in U.S. Patents 4,069,055 and 4,069,056 , iodonium salts described in European Patent 104,143 , U.S.
  • the oxime ester compounds and diazonium salts, iodonium salts and sulfonium salts described above are preferably exemplified.
  • the onium salt functions not as an acid generator but as an ionic radical polymerization initiator.
  • the onium salts preferably used in the invention include onium salts represented by the following formulae (RI-I) to (RI-III):
  • Ar 11 represents an aryl group having 20 or less carbon atoms, which may have 1 to 6 substituents.
  • the substituent includes an alkyl group having from 1 to 12 carbon atoms, an alkenyl group having from 1 to 12 carbon atoms, an alkynyl group having from 1 to 12 carbon atoms, an aryl group having from 1 to 12 carbon atoms, an alkoxy group having from 1 to 12 carbon atoms, an aryloxy group having from 1 to 12 carbon atoms, a halogen atom, an alkylamino group having from 1 to 12 carbon atoms, a dialkylimino group having from 1 to 12 carbon atoms, an alkylamido group or arylamido group having from 1 to 12 carbon atoms, a carbonyl group, a carboxyl group, a cyano group, a sulfonyl group, an thioalkyl group having from 1 to 12 carbon atoms and an alkyl group having from 1 to 12
  • Z 11- represents a monovalent anion and specifically includes a halogen ion, a perchlorate ion, a hexafluorophosphate ion, a tetrafluoroborate ion, a sulfonate ion, a sulfinate ion, a thiosulfonate ion and a sulfate ion.
  • a perchlorate ion, a hexafluorophosphate ion, a tetrafluoroborate ion, a sulfonate ion or a sulfinate ion is preferable.
  • Ar 21 and Ar 22 each independently represents an aryl group having 20 or less carbon atoms, which may have 1 to 6 substituents.
  • the substituent includes an alkyl group having from 1 to 12 carbon atoms, an alkenyl group having from 1 to 12 carbon atoms, an alkynyl group having from 1 to 12 carbon atoms, an aryl group having from 1 to 12 carbon atoms, an alkoxy group having from 1 to 12 carbon atoms, an aryloxy group having from 1 to 12 carbon atoms, a halogen atom, an alkylamino group having from 1 to 12 carbon atoms, a dialkylimino group having from 1 to 12 carbon atoms, an alkylamido group or arylamido group having from 1 to 12 carbon atoms, a carbonyl group, a carboxyl group, a cyano group, a sulfonyl group, an thioalkyl group having from 1 to
  • Z 21- represents a monovalent anion and specifically includes a halogen ion, a perchlorate ion, a hexafluorophosphate ion, a tetrafluoroborate ion, a sulfonate ion, a sulfinate ion, a thiosulfonate ion, a sulfate ion and a carboxylate ion.
  • a perchlorate ion, a hexafluorophosphate ion, a tetrafluoroborate ion, a sulfonate ion, a sulfinate ion or a carboxylate ion is preferable.
  • R 31 , R 32 and R 33 each independently represents an aryl group having 20 or less carbon atoms, which may have 1 to 6 substituents, an alkyl group, an alkenyl group or an alkynyl group and is preferably an aryl group from the standpoint of reactivity and stability.
  • the substituent includes an alkyl group having from 1 to 12 carbon atoms, an alkenyl group having from 1 to 12 carbon atoms, an alkynyl group having from 1 to 12 carbon atoms, an aryl group having from 1 to 12 carbon atoms, an alkoxy group having from 1 to 12 carbon atoms, an aryloxy group having from 1 to 12 carbon atoms, a halogen atom, an alkylamino group having from 1 to 12 carbon atoms, a dialkylimino group having from 1 to 12 carbon atoms, an alkylamido group or arylamido group having from 1 to 12 carbon atoms, a carbonyl group, a carboxyl group, a cyano group, a sulfonyl group, an thioalkyl group having from 1 to 12 carbon atoms and an thioaryl group having from 1 to 12 carbon atoms.
  • Z 31- represents a monovalent anion and specifically includes a halogen ion, a perchlorate ion, a hexafluorophosphate ion, a tetrafluoroborate ion, a sulfonate ion, a sulfinate ion, a thiosulfonate ion, a sulfate ion and a carboxylate ion.
  • a perchlorate ion, a hexafluorophosphate ion, a tetrafluoroborate ion, a sulfonate ion, a sulfinate ion or a carboxylate ion is preferable.
  • Carboxylate ions described in JP-A-2001-343742 are more preferable, and carboxylate ions described in JP-A-2002-148790 are particularly preferable.
  • the radical polymerization initiator (B) is not limited to those described above.
  • the organic halides (a), particularly the triazine type initiators included therein, the oxime ester compounds (j), the diazonium salts, iodonium salts and sulfonium salts included in the onium salt compounds (k) are more preferable from the standpoint of reactivity and stability.
  • onium salt compounds including as a counter ion an inorganic anion, for example, PF 6 - or BF 4 - are preferable in combination with the infrared absorbing agent from the standpoint of improvement in the visibility of print-out image.
  • a diaryl iodonium is preferable as the onium salt.
  • the radical polymerization initiators (B) may be used individually or in combination of two or more thereof.
  • the radical polymerization initiator (B) can be added preferably in an amount from 0.1 to 50% by weight, more preferably from 0.5 to 30% by weight, particularly preferably from 0.8 to 20% by weight, based on the total solid content constituting the image-recording layer. In the range described above, good sensitivity and good stain resistance in the non-image area at the time of printing are obtained.
  • radical polymerization initiator (B) may be added together with other components to the same layer or may be added to an image-recording layer or a different layer provided adjacent thereto.
  • the polymerizable compound (C) for use in the invention is an addition-polymerizable compound having at least one ethylenically unsaturated double bond, and it is selected from compounds having at least one, preferably two or more, terminal ethylenically unsaturated double bonds.
  • Such compounds are widely known in the field of art and they can be used in the invention without any particular limitation.
  • the compound has a chemical form, for example, a monomer, a prepolymer, specifically, a dimer, a trimer or an oligomer, or a (co)polymer thereof, or a mixture thereof.
  • Examples of the monomer and copolymer thereof include unsaturated carboxylic acids (for example, acrylic acid, methacrylic acid, itaconic acid, crotonic acid, isocrotonic acid or maleic acid) and esters or amides thereof
  • unsaturated carboxylic acids for example, acrylic acid, methacrylic acid, itaconic acid, crotonic acid, isocrotonic acid or maleic acid
  • esters or amides thereof Preferably, esters of an unsaturated carboxylic acid with an aliphatic polyhydric alcohol compound and amides of an unsaturated carboxylic acid with an aliphatic polyvalent amine compound are used.
  • An addition reaction product of an unsaturated carboxylic acid ester or amide having a nucleophilic substituent, for example, a hydroxy group, an amino group or a mercapto group, with a monofunctional or polyfunctional isocyanate or epoxy, or a dehydration condensation reaction product of the unsaturated carboxylic acid ester or amide with a monofunctional or polyfunctional carboxylic acid is also preferably used.
  • an addition reaction product of an unsaturated carboxylic acid ester or amide having an electrophilic substituent for example, an isocyanato group or an epoxy group with a monofunctional or polyfunctional alcohol, amine or thiol, or a substitution reaction product of an unsaturated carboxylic acid ester or amide having a releasable substituent, for example, a halogen atom or a tosyloxy group with a monofunctional or polyfunctional alcohol, amine or thiol is also preferably used.
  • compounds in which the unsaturated carboxylic acid described above is replaced by an unsaturated phosphonic acid, styrene, vinyl ether or the like can also be used.
  • the monomer which is an ester of an aliphatic polyhydric alcohol compound with an unsaturated carboxylic acid
  • an acrylic acid ester for example, ethylene glycol diacrylate, triethylene glycol diacrylate, 1,3-butanediol diacrylate, tetramethylene glycol diacrylate, propylene glycol diacrylate, neopentyl glycol diacrylate, trimethylolpropane triacrylate, trimethylolpropane tri(acryloyloxypropyl) ether, trimethylolethane triacrylate, hexanediol diacrylate, 1,4-cyclohexanediol diacrylate, tetraethylene glycol diacrylate, pentaerythritol diacrylate, pentaerythritol triacrylate, pentaerythritol tetraacrylate, dipentaerythritol diacrylate, dipentaerythritol diacrylate, dip
  • methacrylic acid ester for example, tetramethylene glycol dimethacrylate, triethylene glycol dimethacrylate, neopentyl glycol dimethacrylate, trimethylolpropane trimethacrylate, trimethylolethane trimethacrylate, ethylene glycol dimethacrylate, 1,3-butanediol dimethacrylate, hexanediol dimethacrylate, pentaerythritol dimethacrylate, pentaerythritol trimethacrylate, pentaerythritol tetramethacrylate, dipentaerythritol dimethacrylate, dipentaerythritol hexamethacrylate, sorbitol trimethacrylate, sorbitol tetramethacrylate, bis[p-(3-methacryloxy-2-hydroxypropoxy)phenyl]dimethylmethane or bis[
  • an itaconic acid ester for example, ethylene glycol diitaconate, propylene glycol diitaconate, 1,3-butanediol diitaconate, 1,4-butanediol diitaconate, tetramethylene glycol diitaconate, pentaerythritol diitaconate or sorbitol tetraitaconate is exemplified.
  • a crotonic acid ester for example, ethylene glycol dicrotonate, tetramethylene glycol dicrotonate, pentaerythritol dicrotonate and sorbitol tetracrotonate is exemplified.
  • isocrotonic acid ester for example, ethylene glycol diisocrotonate, pentaerythritol diisocrotonate and sorbitol tetraisocrotonate is exemplified.
  • maleic acid ester for example, ethylene glycol dimaleate, triethylene glycol dimaleate, pentaerythritol dimaleate or sorbitol tetramaleate is exemplified.
  • ester which can be preferably used, include aliphatic alcohol esters described in JP-B-51-47334 and JP-A-57-196231 , esters having an aromatic skeleton described in JP-A-59-5240 , JP-A-59-5241 and JP-A-2-226149 , and esters containing an amino group described in JP-A-1-165613 .
  • ester monomers can also be used as a mixture.
  • the monomer which is an amide of an aliphatic polyvalent amine compound with an unsaturated carboxylic acid
  • the monomer which is an amide of an aliphatic polyvalent amine compound with an unsaturated carboxylic acid
  • examples of the monomer include methylene bisacrylamide, methylene bismethacrylamide, 1,6-hexamethylene bisacrylamide, 1,6-hexamethylene bismethacrylamide, diethylenetriamine trisacrylamide, xylylene bisacrylamide and xylylene bismethacrylamide.
  • Other preferable examples of the amide monomer include amides having a cyclohexylene structure described in JP-B-54-21726 .
  • Urethane type addition polymerizable compounds produced using an addition reaction between an isocyanate and a hydroxy group are also preferably used, and specific examples thereof include vinylurethane compounds having two or more polymerizable vinyl groups per molecule obtained by adding a vinyl monomer containing a hydroxy group represented by formula (2) shown below to a polyisocyanate compound having two or more isocyanate groups per molecule, described in JP-B-48-41708 . wherein R 4 and R 5 each independently represents H or CH 3 .
  • urethane acrylates described in JP-A-51-37193 , JP-B-2-32293 and JP-B-2-16765 and urethane compounds having an ethylene oxide skeleton described in JP-B-58-49860 , JP-B-56-17654 , JP-B-62-39417 and JP-B-62-39418 are preferably used.
  • a photopolymerizable composition having remarkably excellent photosensitive speed can be obtained by using an addition polymerizable compound having an amino structure or a sulfide structure in its molecule, described in JP-A-63-277653 , JP-A-63-260909 and JP-A-1-105238 .
  • polyfunctional acrylates and methacrylates for example, polyester acrylates and epoxy acrylates obtained by reacting an epoxy resin with acrylic acid or methacrylic acid, described in JP-A-48-64183 , JP-B-49-43191 and JP-B-52-30490 .
  • Specific unsaturated compounds described in JP-B-46-43946 , JP-B-1-40337 and JP-B-1-40336 , and vinylphosphonic acid type compounds described in JP-A-2-25493 can also be exemplified.
  • structure containing a perfluoroalkyl group described in JP-A-61-22048 can be preferably used.
  • photocurable monomers or oligomers described in Nippon Secchaku Kyokaishi Journal of Japan Adhesion Society
  • Vol. 20, No. 7, pages 300 to 308 (1984 ) can also be used.
  • the method of using the polymerizable compound for example, selection of the structure, individual or combination use, or an amount added, can be appropriately arranged depending on the characteristic design of the final lithographic printing plate precursor.
  • the compound is selected from the following standpoints.
  • a structure having a large content of unsaturated groups per molecule is preferred and in many cases, a bifunctional or more functional compound is preferred.
  • a trifunctional or more functional compound is preferred.
  • a combination use of compounds different in the functional number or in the kind of polymerizable group is an effective method for controlling both the sensitivity and the strength.
  • the selection and use method of the polymerizable compound are also important factors for the compatibility and dispersibility with other components (for example, a binder polymer, a radical polymerization initiator or a coloring agent) in the image-recording layer.
  • the compatibility may be improved in some cases by using the compound of low purity or using two or more kinds of the compounds in combination.
  • a specific structure may be selected for the purpose of improving an adhesion property to a support or a protective layer described hereinafter.
  • the polymerizable compound (C) is preferably used in an amount from 5 to 80% by weight, more preferably from 25 to 75% by weight, based on the nonvolatile component of the image-recording layer.
  • the structure, blend and amount added can be appropriately selected by taking account of the extent of polymerization inhibition due to oxygen, resolution, fogging property, change in refractive index, surface tackiness and the like. Further, depending on the case, a layer construction, for example, an undercoat layer or an overcoat layer, and a coating method, may also be considered.
  • the image-recording layer according to the invention may contain the component described below, if desired.
  • the hydrophobilizing precursor for use in the invention includes a fine particle capable of converting the image-recording layer to be hydrophobic when heat is applied.
  • the fine particle is preferably at least one particle selected from hydrophobic thermoplastic polymer fine particles and thermo-reactive polymer fine particles.
  • hydrophobic thermoplastic polymer fine particles for use in the image-recording layer hydrophobic thermoplastic polymer fine particles described, for example, in Research Disclosure , No. 33303, January (1992), JP-A-9-123387 , JP-A-9-131850 , JP-A-9-171249 , JP-A-9-171250 and European Patent 931,647 are preferably exemplified.
  • the polymer constituting the polymer fine particle include a homopolymer or copolymer of a monomer, for example, ethylene, styrene, vinyl chloride, methyl acrylate, ethyl acrylate, methyl methacrylate, ethyl methacrylate, vinylidene chloride, acrylonitrile or vinyl carbazole, and a mixture thereof.
  • a monomer for example, ethylene, styrene, vinyl chloride, methyl acrylate, ethyl acrylate, methyl methacrylate, ethyl methacrylate, vinylidene chloride, acrylonitrile or vinyl carbazole, and a mixture thereof.
  • polystyrene and polymethyl methacrylate are more preferable.
  • the average particle size of the hydrophobic thermoplastic polymer fine particle for use in the invention is preferably from 0.01 to 2.0 ⁇ m.
  • Synthesis methods of the hydrophobic thermoplastic polymer fine particle having the particle size described above which can be used as the hydrophobilizing precursor include an emulsion polymerization method and a suspension polymerization method and in addition, a method (dissolution dispersion method) of dissolving the above compound in a water-insoluble organic solvent, mixing and emulsifying the solution with an aqueous solution containing a dispersant, and applying heat to the emulsion thereby solidifying the emulsion to a fine particle state while volatizing the organic solvent.
  • thermo-reactive polymer fine particle which can be used as the hydrophobilizing precursor in the invention includes a thermosetting polymer fine particle and a polymer fine particle having a thermo-reactive group and they form a hydrophobilized region by crosslinkage due to thermal reaction and change in the functional group involved therein.
  • thermosetting polymer a resin having a phenolic skeleton, a urea resin (for example, a resin obtained by resinification of urea or a urea derivative, for example, methoxymethylated urea, with an aldehyde, for example, formaldehyde), a melamine resin (for example, a resin obtained by resinification of melamine or a melamine derivative with an aldehyde, for example, formaldehyde), an alkyd resin, an unsaturated polyester resin, a polyurethane resin and an epoxy resin are exemplified.
  • a resin having a phenolic skeleton, a melamine resin, a urea resin and an epoxy resin are especially preferable.
  • the resin having a phenolic skeleton include a phenolic resin obtained by resinification of phenol or cresol with an aldehyde, for example, formaldehyde, a hydroxystyrene resin and a polymer or copolymer of methacrylamide, acrylamide, methacrylate or acrylate having a phenolic skeleton, for example, N-(p-hydroxyphenyl)methacrylamide or p-hydroxyphenyl methacrylate.
  • an aldehyde for example, formaldehyde, a hydroxystyrene resin
  • methacrylamide, acrylamide, methacrylate or acrylate having a phenolic skeleton for example, N-(p-hydroxyphenyl)methacrylamide or p-hydroxyphenyl methacrylate.
  • the average particle size of the thermosetting polymer fine particle for use in the invention is preferably from 0.01 to 2.0 ⁇ m.
  • thermosetting polymer fine particle can be easily obtained by a known dissolution dispersion method, it can also be produced by making the state of fine particle when the thermosetting polymer is synthesized.
  • the method of producing the thermosetting polymer fine particle is not limited to these methods and known methods can be appropriately adopted.
  • thermo-reactive group in the polymer fine particle having a thermo-reactive group for use in the invention a functional group performing any reaction can be used as long as a chemical bond is formed.
  • an ethylenically unsaturated group for example, an acryloyl group, a methacryloyl group, a vinyl group or an allyl group
  • a cationic polymerizable group for example, a vinyl group or a vinyloxy group
  • an isocyanate group performing an addition reaction or a blocked form thereof
  • an epoxy group, a vinyloxy group and a functional group having an active hydrogen atom for example, an amino group, a hydroxy group or a carboxyl group
  • a carboxyl group performing a condensation reaction and a hydroxyl group or an amino group of the reaction partner and an acid anhydride performing a ring opening addition reaction and an amino group or a hydroxyl group of the reaction partner
  • an acid anhydride performing a ring opening addition reaction and an amino group or a hydroxy
  • the introduction of the functional group into polymer fine particle may be conducted at the polymerization or by utilizing a polymer reaction after the polymerization.
  • the monomer having the functional group is subjected to emulsion polymerization or suspension polymerization.
  • the monomer having the functional group include allyl methacrylate, allyl acrylate, vinyl methacrylate, vinyl acrylate, 2-(vinyloxy)ethyl methacrylate, p-vinyloxystyrene, p-[2-(vinyloxy)ethyl]styrene, glycidyl methacrylate, glycidyl acrylate, 2-isocyanatoethyl methacrylate or a blocked isocyanato thereof, for example, with an alcohol, 2-isocyanatoethyl acrylate or a blocked isocyanato thereof, for example, with an alcohol, 2-aminoethyl methacrylate, 2-aminoethyl acrylate, 2-hydroxyethyl methacrylate, 2-hydroxyethyl methacrylate, 2-hydroxyethyl
  • a copolymer of the monomer having the functional group and a monomer having no thermo-reactive group copolymerizable with the monomer can also be used.
  • the copolymerizable monomer having no thermo-reactive group include styrene, an alkyl acrylate, an alkyl methacrylate, acrylonitrile and vinyl acetate, but the copolymerizable monomer having no thermo-reactive group should not be construed as being limited thereto.
  • thermo-reactive group As the polymer reaction used in the case where the thermo-reactive group is introduced after the polymerization, polymer reactions described, for example, in WO 96/34316 can be exemplified.
  • polymer fine particles having a thermo-reactive group polymer fine particles which are coalesced with each other by heat are preferable, and those having a hydrophilic surface and dispersible in water are particularly preferable. It is preferred that the contact angle (water droplet in air) of a film prepared by coating only the polymer fine particle and drying the particle at temperature lower than the solidification temperature is lower than the contact angle (water droplet in air) of a film prepared by coating only the polymer fine particle and drying at temperature higher than the solidification temperature.
  • hydrophilic polymer or oligomer for example, polyvinyl alcohol or polyethylene glycol, or a hydrophilic low molecular weight compound adsorb on the surface of the polymer fine particle.
  • a hydrophilic polymer or oligomer for example, polyvinyl alcohol or polyethylene glycol
  • a hydrophilic low molecular weight compound adsorb on the surface of the polymer fine particle.
  • the method for hydrophilizing the surface of polymer fine particle should not be construed as being limited thereto.
  • the solidification temperature of the polymer fine particle having a thermo-reactive group is preferably 70°C or higher, more preferably 100°C or higher in consideration of the time-lapse stability.
  • the average particle size of the polymer fine particle is preferably from 0.01 to 2.0 ⁇ m, more preferably from 0.05 to 2.0 ⁇ m, particularly preferably from 0.1 to 1.0 ⁇ m. In the range described above, good resolution and good time-lapse stability can be achieved.
  • the content of the hydrophobilizing precursor is preferably in a range of 5 to 90% by weight in terms of a solid content concentration.
  • a binder polymer can be used for the purpose of improving film strength of the image-recording layer.
  • the binder polymer for use in the invention can be selected from those heretofore known without restriction, and a polymer having a film-forming property is preferable.
  • the binder polymer include acrylic resins, polyvinyl acetal resins, polyurethane resins, polyurea resins, polyimide resins, polyamide resins, epoxy resins, methacrylic resins, polystyrene resins, novolac type phenolic resins, polyester resins, synthesis rubbers and natural rubbers.
  • the binder polymer may have a crosslinkable property in order to improve the film strength of the image area.
  • a crosslinkable functional group for example, an ethylenically unsaturated bond is introduced into a main chain or side chain of the polymer.
  • the crosslinkable functional group may be introduced by copolymerization.
  • Examples of the polymer having an ethylenically unsaturated bond in the main chain thereof include poly-1,4-butadiene and poly-1,4-isoprene.
  • Examples of the polymer having an ethylenically unsaturated bond in the side chain thereof include a polymer of an ester or amide of acrylic acid or methacrylic acid, which is a polymer wherein the ester or amide residue (R in -COOR or -CONHR) has an ethylenically unsaturated bond.
  • R 1 to R 3 each represents a hydrogen atom, a halogen atom or an alkyl group having from 1 to 20 carbon atoms, an aryl group, alkoxy group or aryloxy group, or R 1 and R 2 or R 1 and R 3 may be combined with each other to form a ring.
  • n represents an integer of 1 to 10.
  • X represents a dicyclopentadienyl residue).
  • the binder polymer having crosslinkable property is cured, for example, by addition of a free radical (a polymerization initiating radical or a growing radical of a polymerizable compound during polymerization) to the crosslinkable functional group of the polymer and undergoing addition polymerization between the polymers directly or through a polymerization chain of the polymerizable compound to form crosslinkage between the polymer molecules.
  • a free radical a polymerization initiating radical or a growing radical of a polymerizable compound during polymerization
  • it is cured by generation of a polymer radical upon extraction of an atom (for example, a hydrogen atom on a carbon atom adjacent to the functional crosslinkable group) in the polymer by a free radial and connecting the polymer radicals with each other to form cross-linkage between the polymer molecules.
  • the content of the crosslinkable group in the binder polymer is preferably from 0.1 to 10.0 mmol, more preferably from 1.0 to 7.0 mmol, most preferably from 2.0 to 5.5 mmol, based on 1 g of the binder polymer. In the range described above, good sensitivity and good preservation stability can be obtained.
  • the binder polymer has high solubility or high dispersibility in ink and/or dampening water.
  • the binder polymer is preferably oleophilic and in order to increase the solubility or dispersibility in the dampening water, the binder polymer is preferably hydrophilic. Therefore, it is effective in the invention that an oleophilic binder polymer and a hydrophilic binder polymer are used in combination.
  • the hydrophilic binder polymer preferably includes, for example, a polymer having a hydrophilic group, for example, a hydroxy group, a carboxyl group, a carboxylate group, a hydroxyethyl group, a polyoxyethyl group, a hydroxypropyl group, a polyoxypropyl group, an amino group, an aminoethyl group, an aminopropyl group, an ammonium group, an amido group, a carboxymethyl group, a sulfo group or a phosphoric acid group.
  • a polymer having a hydrophilic group for example, a hydroxy group, a carboxyl group, a carboxylate group, a hydroxyethyl group, a polyoxyethyl group, a hydroxypropyl group, a polyoxypropyl group, an amino group, an aminoethyl group, an aminopropyl group, an ammonium group, an amido group, a carboxymethyl group,
  • hydrophilic binder polymer examples include gum arabic, casein, gelatin, a starch derivative, carboxy methyl cellulose and a sodium salt thereof, cellulose acetate, sodium alginate, a vinyl acetate-maleic acid copolymer, a styrene-maleic acid copolymer, polyacrylic acid and a salt thereof, polymethacrylic acid and a salt thereof, a homopolymer or copolymer of hydroxyethyl methacrylate, a homopolymer or copolymer of hydroxyethyl acrylate, a homopolymer or copolymer of hydroxypropyl methacrylate, a homopolymer or copolymer of hydroxypropyl acrylate, a homopolymer or copolymer of hydroxybutyl methacrylate, a homopolymer or copolymer of hydroxybutyl acrylate, a polyethylene glycol, a hydroxypropylene polymer, polyvin
  • the weight average molecular weight of the binder polymer is preferably 5,000 or more, more preferably from 10,000 to 300,000.
  • the number average molecular weight of the binder polymer is preferably 1,000 or more, more preferably from 2,000 to 250,000.
  • the polydispersity (weight average molecular weight/number average molecular weight) thereof is preferably from 1.1 to 10.
  • the binder polymer is available by purchasing a commercial product or synthesizing according to a known method.
  • the content of the binder polymer is ordinarily from 5 to 90% by weight, preferably from 5 to 80% by weight, more preferably from 10 to 70% by weight, based on the total solid content of the image-recording layer. In the range described above, good strength of the image area and good image-forming property can be obtained.
  • the polymerizable compound (C) and the binder polymer (E) are used preferably in a weight ratio of 0.4/1 to 1.8/1, more preferably in a weight ratio of 0.7/1 to 1.5/1. In the range described above, the effect of the invention of increasing the on-press development property or gum development property while maintaining the printing durability can be remarkably achieved.
  • the image-recording layer according to the invention preferably has an embodiment of containing a microcapsule and/or microgel, from the standpoint of obtaining good on-press development property.
  • the embodiment of incorporating the above-described constituting components (A) to (C) of the image-recording layer and other constituting components described hereinafter into a microcapsule and/or microgel is preferable.
  • the microcapsule for use in the invention contains all or part of the constituting components (constituting components (A) to (C) described above) of the image-recording layer encapsulated as described, for example, in JP-A-2001-277740 and JP-A-2001-277742 .
  • the constituting components of the image-recording layer may be present outside the microcapsules. It is a more preferable embodiment of the image-recording layer containing microcapsule that hydrophobic constituting components are encapsulated in microcapsules and hydrophilic constituting components are present outside the microcapsules.
  • the image-recording layer may have an embodiment containing a crosslinked resin particle, that is, a microgel.
  • the microgel can contain a part of the constituting components (A) to (C) inside and/or on the surface thereof.
  • a reactive microgel containing the polymerizable compound (C) on the surface thereof is preferable in view of the image-forming sensitivity and printing durability.
  • Methods of producing the microcapsule include, for example, a method of utilizing coacervation described in U.S. Patents 2,800,457 and 2,800,458 , a method of using interfacial polymerization described in U.S. Patent 3,287,154 , JP-B-38-19574 and JP-B-42-446 , a method of using deposition of polymer described in U.S. Patents 3,418,250 and 3,660,304 , a method of using an isocyanate polyol wall material described in U.S. Patent 3,796,669 , a method of using an isocyanate wall material described in U.S.
  • Patent 3,914,511 a method of using a urea-formaldehyde-type or urea-formaldehyde-resorcinol-type wall-forming material described in U.S. Patens 4,001,140 , 4,087,376 and 4,089,802 , a method of using a wall material, for example, a melamine-formaldehyde resin or hydroxycellulose described in U.S. Patent 4,025,445 , an in-situ method by monomer polymerization described in JP-B-36-9163 and JP-B-51-9079 , a spray drying method described in British Patent 930,422 and U.S. Patent 3,111,407 , and an electrolytic dispersion cooling method described in British Patents 952,807 and 967,074 , but the invention should not be construed as being limited thereto.
  • a preferable microcapsule wall used in the invention has three-dimensional crosslinking and has a solvent-swellable property.
  • a preferable wall material of the microcapsule includes polyurea, polyurethane, polyester, polycarbonate, polyamide and a mixture thereof, and polyurea and polyurethane are particularly preferred.
  • a compound having a crosslinkable functional group, for example, an ethylenically unsaturated bond, capable of being introduced into the binder polymer described hereinafter may be introduced into the microcapsule wall.
  • methods of preparing the microgel include, for example, a method of utilizing granulation by interfacial polymerization described in JP-B-38-19574 and JP-B-42-446 and a method of utilizing granulation by dispersion polymerization in a non-aqueous system described in JP-A-5-61214 , but the invention should not be construed as being limited thereto.
  • microgel preferably used in the invention is granulated by interfacial polymerization and has three-dimensional crosslinking.
  • a preferable material to be used includes polyurea, polyurethane, polyester, polycarbonate, polyamide and a mixture thereof, and polyurea and polyurethane are particularly preferred.
  • the average particle size of the microcapsule or microgel is preferably from 0.01 to 3.0 ⁇ m, more preferably from 0.05 to 2.0 ⁇ m, particularly preferably from 0.10 to 1.0 ⁇ m. In the range described above, good resolution and good time-lapse stability can be achieved.
  • the image-recording layer according to the invention may further contain other components, if desired.
  • Other components constituting the image-recording layer according to the invention will be described blow.
  • a reduced specific viscosity value (unit: cSt/g/ml) obtained according to the measuring method described below is preferably from 5 to 120, more preferably from 10 to 110, particularly preferably from 15 to 100.
  • the content of the ammonium group-containing polymer is preferably from 0.0005 to 30.0% by weight, more preferably from 0.001 to 20.0% by weight, most preferably from 0.002 to 15.0% by weight, based on the total solid content of the image-recording layer. In the range described above, good ink-receptive property is obtained.
  • the ammonium group-containing polymer may further be incorporated into a protective layer.
  • ammonium group-containing polymer Specific examples of the ammonium group-containing polymer are set forth below.
  • the image-recording layer according to the invention is formed by dispersing or dissolving each of the necessary constituting components described above in a solvent to prepare a coating solution and coating the solution on a support and drying.
  • the solvent used include, for example, ethylene dichloride, cyclohexanone, methyl ethyl ketone, methanol, ethanol, propanol, ethylene glycol monomethyl ether, 1-methoxy-2-propanol, 2-methoxyethyl acetate, 1-methoxy-2-propyl acetate, dimethoxyethane, methyl lactate, ethyl lactate, N,N-dimethylacetamide, N,N-dimethylformamide, tetramethylurea, N-methylpyrrolidone, dimethylsulfoxide, sulfolane, ⁇ -butyrolactone, toluene and water, but the invention should not be construed as being limited thereto.
  • the solvents may be used individually or as a mixture.
  • the solid content concentration of the coating solution is preferably from 1 to 50% by weight.
  • the image-recording layer it is also possible to form the image-recording layer of multilayer structure by preparing plural coating solutions by dispersing or dissolving the same or different constituting components described above into the same or different solvents and conducting repeatedly the coating and drying plural times.
  • the coating amount (solid content) of the image-recording layer formed on a support after coating and drying may be varied according to the intended purpose but is ordinarily preferably from 0.3 to 3.0 g/m 2 . In the range described above, good sensitivity and good film property of the image-recording layer can be achieved.
  • the coating method examples include bar coater coating, spin coating, spray coating, curtain coating, dip coating, air knife coating, blade coating and roll coating. (Undercoat layer)
  • an undercoat layer (also referred to as an intermediate layer) is provided between the support and the image-recording layer, if desired.
  • the invention includes the embodiment wherein the undercoat layer contains the compound represented by formula (I) or (II).
  • the undercoat layer makes removal of the image-recording layer from the support in the unexposed area easy and thus the developing property can be improved. Further, it is advantageous that in the case of infrared laser exposure, since the undercoat layer acts as a heat insulating layer, heat generated upon the exposure does not diffuse into the support and is efficiently utilized and as a result, the increase in sensitivity can be achieved.
  • a silane coupling agent having an addition-polymerizable ethylenic double bond reactive group described in JP-A-10-282679 and a phosphorus compound having an ethylenic double bond reactive group described in JP-A-2-304441 are preferably exemplified.
  • a polymer resin having an adsorbing group, a hydrophilic group and a crosslinkable group is exemplified.
  • the polymer resin is preferably obtained by copolymerization of a monomer having an adsorbing group, a monomer having a hydrophilic group and a monomer having a crosslinkable group.
  • the polymer resin for undercoat layer preferably has an adsorbing group to the hydrophilic surface of support. Whether adsorptivity to the hydrophilic surface of support is present or not can be judged, for example, by the following method.
  • a test compound is dissolved in an easily soluble solvent to prepare a coating solution, and the coating solution is coated and dried on a support so as to have the coating amount after drying of 30 mg/m 2 .
  • the residual amount of the test compound that has not been removed by the washing is measured to calculate the adsorption amount of the test compound to the support.
  • the residual amount of the test compound may be directly determined, or may be calculated by determining the amount of the test compound dissolved in the washing solution.
  • the determination for the test compound can be performed, for example, by X-ray fluorescence spectrometry measurement, reflection absorption spectrometry measurement or liquid chromatography measurement.
  • the compound having the adsorptivity to support is a compound that remains by 1 mg/m 2 or more even after conducting the washing treatment described above.
  • the adsorbing group to the hydrophilic surface of support is a functional group capable of forming a chemical bond (for example, an ionic bond, a hydrogen bond, a coordinate bond or a bond with intermolecular force) with a substance (for example, metal or metal oxide) or a functional group (for example, a hydroxy group) present on the hydrophilic surface of support.
  • the adsorbing group is preferably an acid group or a cationic group.
  • the acid group preferably has an acid dissociation constant (pKa) of 7 or less.
  • Examples of the acid group include a phenolic hydroxy group, a carboxyl group, -SO 3 H, -OSO 3 H, -PO 3 H 2 , -OPO 3 H 2 , -CONHSO 2 -, -SO 2 NHSO 2 - and -COCH 2 COCH 3 .
  • -OPO 3 H 2 and -PO 3 H 2 are particularly preferred.
  • the acid group may be the form of a metal salt.
  • the cationic group is preferably an onium group.
  • the onium group include an ammonium group, a phosphonium group, an arsonium group, a stibonium group, an oxonium group, a sulfonium group, a selenonium group, a stannonium group and iodonium group.
  • the ammonium group, phosphonium group and sulfonium group are preferred, the ammonium group and phosphonium group are more preferred, and the ammonium group is most preferred.
  • Particularly preferable examples of the monomer having the adsorbing group which can be used in synthesis of the polymer resin suitable for the compound for undercoat layer include a compound represented by the following formula (U1) or (U2):
  • R 1 , R 2 and R 3 each independently represents a hydrogen atom, halogen atom or an alkyl group having from 1 to 6 carbon atoms.
  • R 1 , R 2 and R 3 each independently represents preferably a hydrogen atom or an alkyl group having from 1 to 6 carbon atoms, more preferably a hydrogen atom or an alkyl group having from 1 to 3 carbon atoms, most preferably a hydrogen atom or a methyl group. It is particularly preferred that R 2 and R 3 each represents a hydrogen atom.
  • Z represents a functional group adsorbing to the hydrophilic surface of support.
  • L represents a single bond or a divalent connecting group. It is preferred that L represents a divalent aliphatic group (for example, an alkylene group, a substituted alkylene group, an alkenylene group, a substituted alkenylene group, an alkinylene group or a substituted alkinylene group), a divalent aromatic group (for example, an arylene group or a substituted arylene group), a divalent heterocyclic group or a combination of each of these groups with an oxygen atom (-O-), a sulfur atom (-S-), an imino group (-NH-), a substituted imino group (-NR-, where R represents an aliphatic group, an aromatic group or a heterocyclic group) or a carbonyl group (-CO-).
  • a divalent aliphatic group for example, an alkylene group, a substituted alkylene group, an alkenylene group, a substituted alkenylene group, an alkinylene group or
  • the divalent aliphatic group may have a cyclic structure or a branched structure.
  • the number of carbon atoms of the divalent aliphatic group is preferably from 1 to 20, more preferably from 1 to 15, most preferably from 1 to 10. It is preferred that the divalent aliphatic group is a saturated aliphatic group rather than an unsaturated aliphatic group.
  • the divalent aliphatic group may have a substituent. Examples of the substituent include a halogen atom, a hydroxy group, an aromatic group and a heterocyclic group.
  • the number of carbon atoms of the divalent aromatic group is preferably from 6 to 20, more preferably from 6 to 15, most preferably from 6 to 10.
  • the divalent aromatic group may have a substituent. Examples of the substituent include a halogen atom, a hydroxy group, an aliphatic group, an aromatic group and a heterocyclic group.
  • the divalent heterocyclic group has a 5-membered or 6-membered ring as the hetero ring.
  • Other heterocyclic ring, an aliphatic ring or an aromatic ring may be condensed to the heterocyclic ring.
  • L represents a divalent connecting group containing a plurality of polyoxyalkylene structures in the invention. It is more preferred that the polyoxyalkylene structure is a polyoxyethylene structure. Specifically, it is preferred that L contains - (OCH 2 CH 2 ) n - (n is an integer of 2 or more).
  • X represents an oxygen atom (-O-) or imino group (-NH-).
  • X represents an oxygen atom.
  • Y represents a carbon atom or a nitrogen atom.
  • Z is not mandatory and may represents a hydrogen atom because the quaternary pyridinium group itself exhibits the adsorptivity.
  • the polymer resin suitable for the compound for undercoat layer preferably has a hydrophilic group.
  • the hydrophilic group preferably includes, for example, a hydroxy group, a carboxyl group, a carboxylate group, a hydroxyethyl group, a polyoxyethyl group, a hydroxypropyl group, a polyoxypropyl group, an amino group, an aminoethyl group, an aminopropyl group, an ammonium group, an amido group, a carboxymethyl group, a sulfo group and a phosphoric acid group.
  • a sulfo group exhibiting a highly hydrophilic property is preferable.
  • the monomer having a sulfo group include a sodium salt or amine salt of methallyloxybenzenesulfonic acid, allyloxybenzenesulfonic acid, allylsulfonic acid, vinylsulfonic acid, p-styrenesulfonic acid, methallylsulfonic acid, acrylamido-tert-butylsulfonic acid, 2-acrylamido-2-methylpropanesulfonic acid or (3-acryloyloxypropyl)buthylsulfonic acid.
  • sodium salt of 2-acrylamido-2-methylpropanesulfonic acid is preferable.
  • Such a monomer is preferably used in the synthesis of the polymer resin suitable for the compound for undercoat layer.
  • the polymer resin for undercoat layer according to the invention preferably has a crosslinkable group.
  • the crosslinkable group acts to improve the adhesion property to the image area.
  • introduction of a crosslinkable functional group for example, an ethylenically unsaturated bond into the side chain of the polymer or introduction by formation of a salt structure between a polar substituent of the polymer resin and a compound containing a substituent having a counter charge to the polar substituent of the polymer resin and an ethylenically unsaturated bond is used.
  • Examples of the polymer having the ethylenically unsaturated bond in the side chain thereof include a polymer of an ester or amide of acrylic acid or methacrylic acid, wherein the ester or amide residue (R in -COOR or -CONHR) has the ethylenically unsaturated bond.
  • X represents a dicyclopentadien
  • an ester or amide of acrylic acid or methacrylic acid having the crosslinkable group described above is preferably used.
  • the content of the crosslinkable group (content of the radical polymerizable unsaturated double bond determined by iodine titration) in the polymer resin for undercoat layer is preferably from 0.1 to 10.0 mmol, more preferably from 1.0 to 7.0 mmol, most preferably from 2.0 to 5.5 mmol, based on 1 g of the polymer resin. In the range described above, preferable compatibility between the sensitivity and stain resistance and good preservation stability can be achieved.
  • the weight average molecular weight of the polymer resin for undercoat layer is preferably 5,000 or more, more preferably from 10,000 to 300,000.
  • the number average molecular weight of the polymer resin is preferably 1,000 or more, more preferably from 2,000 to 250,000.
  • the polydispersity (weight average molecular weight/number average molecular weight) thereof is preferably from 1.1 to 10.
  • the polymer resin for undercoat layer may be any of a random polymer, a block polymer, a graft polymer and the like, and is preferably a random polymer.
  • the polymer resins for undercoat layer may be used individually or in a mixture of two or more thereof.
  • the undercoat layer according to the invention may include a secondary or a tertiary amine or a polymerization inhibitor in order to prevent the occurrence of stain due to preservation of the lithographic printing plate precursor.
  • the secondary or tertiary amine include imidazole, 4-dimethylaminopyridine, 4-dimethylaminobenzaldehyde, tris(2-hydroxy-1-methyl)amine, 1,4-diazobicyclo[2,2,2]octane (DABCO), 1,5,7-triazabicyclo[4,4,0]deca-5-ene, 1,8-diazobicyclo[5,4,0]undeca-7-ene, 1,10-phenanthroline, 1,8-bis(dimethylamino)naphthalene, 4,4'-bis(dimethylamino)biphenyl, diphenylamine, 1,3-diphenylguanidine, 4-phenylpyridine and N,N'-ethylenebis(2,2,5,
  • the polymerization inhibitor includes known thermal polymerization inhibitors.
  • the polymerization inhibitor include compounds selected from the group consisting of a phenolic hydroxy group-containing compound, a quinone compound, an N-oxide compound, a pyridine-1-oxyl free radical compound, a pyrrolidine-1-oxyl free radical compound, an N-nitrosophenylhydroxylamine compound, a diazonium compound, a cationic dye, a sulfido group-containing compound, a nitro group-containing compound and a transition metal compound, for example, FeCl 3 or CuCl 2 .
  • the quinone compound is particularly preferable.
  • quinone compound examples include 1,4-benzoquinine, 2,3,5,6-tetrahydroxy-1,4-benzoquinine, 2,5-dihydroxy-1,4-benzoquinine, chloranil, 2,3-dichloro-5,6-dicyano-1,4-benzoquinine, naphthoquinone, 2-fluoro-1,4-naphthoquinone, 2-hydroxyethyl-1,4-naphthoquinone, anthraquinone, 1,2,4-trihydroxyanthraquinone and 2,6-dihydroxyanthraquinone.
  • the amount of such a compound added to the undercoat layer is preferably from 10 to 90% by weight, more preferably from 20 to 80% by weight, most preferably from 30 to 70% by weight, to the constituting component of the undercoat layer.
  • a compound having an amino group or a functional group having a polymerization inhibiting function and a group capable of interacting with the surface of aluminum support can also be used.
  • the group capable of interacting with the surface of aluminum support include a trialkoxysilyl group, an onium group and an acid group selected from a phenolic hydroxy group, a carboxyl group, -SO 3 H, -OSO 3 H, -PO 3 H 2 , -OPO 3 H 2 , -CONHSO 2 -, -SO 2 NHSO 2 - and -COCH 2 CO-and a metal salt thereof
  • Examples of the compound having an amino group and a group capable of interacting with the surface of aluminum support include a salt of 1,4-diazobicyclo[2,2,2]octane and an acid, a compound containing at least one 4-aza-1-azoniabicyclo[2,2,2]octane structure (for example, 1-methyl-4-aza-1-azoniabicyclo[2,2,2]octane p-toluenesulfonate), ethylenediaminetetraacetic acid, hydroxyenediaminetriacetic acid, dihydroxyenediaminediacetic acid, 1,3-propanediaminetetraacetic acid, diethylenetriaminepentaacetic acid, triethylenetetraminehexaacetic acid and hydroxyethyliminodiacetic acid.
  • a salt of 1,4-diazobicyclo[2,2,2]octane and an acid a compound containing at least one 4-aza-1-azoniabicyclo[2,2,2
  • Examples of the compound having a functional group having a polymerization inhibiting function and a group capable of interacting with the surface of aluminum support include 2-trimethoxysilylpropylthio-1,4-benzoquinone, 2,5-bis(trimethoxysilylpropylthio)-1,4-benzoquinone, 2-carboxyanthraquinone and 2-trimethylammonioanthraquinone chloride.
  • a coating solution for undercoat layer is obtained by dissolving the polymer resin for undercoat layer and necessary additives in an organic solvent (for example, methanol, ethanol, acetone or methyl ethyl ketone) and/or water.
  • the coating solution for undercoat layer may contain an infrared absorbing agent.
  • the coating solution for undercoat layer on the support various known methods can be used. Examples of the method include bar coater coating, spin coating, spray coating, curtain coating, dip coating, air knife coating, blade coating and roll coating.
  • the coating amount (solid content) of the undercoat layer is preferably from 0.1 to 100 mg/m 2 , more preferably from 1 to 30 mg/m 2 .
  • the support for use in the lithographic printing plate precursor according to the invention is not particularly restricted as long as it is a dimensionally stable plate-like material.
  • the support includes, for example, paper, paper laminated with plastic (for example, polyethylene, polypropylene or polystyrene), a metal plate (for example, aluminum, zinc or copper plate), a plastic film (for example, cellulose diacetate, cellulose triacetate, cellulose propionate, cellulose butyrate, cellulose acetate butyrate, cellulose nitrate, polyethylene terephthalate, polyethylene, polystyrene, polypropylene, polycarbonate or polyvinyl acetal film) and paper or a plastic film laminated or deposited with the metal described above.
  • Preferable examples of the support include a polyester film and an aluminum plate. Among them, the aluminum plate is preferred since it has good dimensional stability and is relatively inexpensive.
  • the aluminum plate includes a pure aluminum plate, an alloy plate comprising aluminum as a main component and containing a trace amount of hetero elements and a thin film of aluminum or aluminum alloy laminated with plastic.
  • the hetero element contained in the aluminum alloy includes, for example, silicon, iron, manganese, copper, magnesium, chromium, zinc, bismuth, nickel and titanium.
  • the content of the hetero element in the aluminum alloy is preferably 10% by weight or less.
  • the thickness of the support is preferably from 0.1 to 0.6 mm, more preferably from 0.15 to 0.4 mm.
  • a surface treatment for example, roughening treatment or anodizing treatment is preferably performed.
  • the surface treatment facilitates improvement in the hydrophilic property and ensure for adhesion property between the image-recording layer and the support.
  • a degreasing treatment for example, with a surfactant, an organic solvent or an aqueous alkaline solution is conducted for removing rolling oil on the surface thereof, if desired.
  • the roughening treatment of the surface of the aluminum plate is conducted by various methods and includes, for example, mechanical roughening treatment, electrochemical roughening treatment (roughening treatment of electrochemically dissolving the surface) and chemical roughening treatment (roughening treatment of chemically dissolving the surface selectively).
  • a known method for example, ball graining, brush graining, blast graining or buff graining can be used.
  • a transfer method can be employed wherein using a roll having concavo-convex shape the concavo-convex shape is transferred to the surface of aluminum plate during a rolling step of the aluminum plate.
  • the electrochemical roughening treatment method includes, for example, a method of conducting by passing alternating current or direct current in an electrolytic solution containing an acid, for example, hydrochloric acid or nitric acid. Also, a method of using a mixed acid described in JP-A-54-63902 can be exemplified.
  • the aluminum plate subjected to the roughening treatment is subjected, if desired, to an alkali etching treatment using an aqueous solution, for example, of potassium hydroxide or sodium hydroxide and further subjected to a neutralizing treatment, and then subjected to an anodizing treatment for improving the abrasion resistance, if desired.
  • an alkali etching treatment using an aqueous solution, for example, of potassium hydroxide or sodium hydroxide and further subjected to a neutralizing treatment, and then subjected to an anodizing treatment for improving the abrasion resistance, if desired.
  • electrolyte used for the anodizing treatment of the aluminum plate various electrolytes capable of forming porous oxide film can be used. Ordinarily, sulfuric acid, hydrochloric acid, oxalic acid, chromic acid or a mixed acid thereof is used. The concentration of the electrolyte can be appropriately determined depending on the kind of the electrolyte used.
  • electrolyte concentration in the solution is from 1 to 80% by weight
  • liquid temperature is from 5 to 70°C
  • current density is from 5 to 60 A/dm 2
  • voltage is from 1 to 100 V
  • electrolysis time is from 10 seconds to 5 minutes.
  • the amount of the anodized film formed is preferably from 1.0 to 5.0 g/m 2 , more preferably from 1.5 to 4.0 g/m 2 . In the range described above, good printing durability and good scratch resistance in the non-image area of lithographic printing plate can be achieved.
  • the aluminum plate subjected to the surface treatment and having the anodized film as described above is used as it is as the support in the invention.
  • other treatment for example, an enlarging treatment of micropores or a sealing treatment of micropores of the anodized film described in JP-A-2001-253181 and JP-A-2001-322365 , or a surface hydrophilizing treatment by immersing in an aqueous solution containing a hydrophilic compound may be appropriately conducted.
  • the enlarging treatment and sealing treatment are not limited to those described in the above-described patents and any conventionally known method may be employed.
  • a sealing treatment with fluorozirconic acid alone a sealing treatment with sodium fluoride or a sealing treatment with steam having added thereto lithium chloride may be employed.
  • the sealing treatment for use in the invention is not particularly limited and conventionally known methods can be employed. Among them, a sealing treatment with an aqueous solution containing an inorganic fluorine compound, a sealing treatment with water vapor and a sealing treatment with hot water are preferred. The sealing treatments will be described in more detail below, respectively.
  • Sealing treatment with aqueous solution containing inorganic fluorine compound As the inorganic fluorine compound used in the sealing treatment with an aqueous solution containing an inorganic fluorine compound, a metal fluoride is preferably exemplified.
  • Specific examples thereof include sodium fluoride, potassium fluoride, calcium fluoride, magnesium fluoride, sodium fluorozirconate, potassium fluorozirconate, sodium fluorotitanate, potassium fluorotitanate, ammonium fluorozirconate, ammonium fluorotitanate, potassium fluorotitanate, fluorozirconic acid, fluorotitanic acid, hexafluorosilicic acid, nickel fluoride, iron fluoride, fluorophosphoric acid and ammonium fluorophosphate.
  • sodium fluorozirconate, sodium fluorotitanate, fluorozirconic acid and fluorotitanic acid are preferred.
  • the concentration of the inorganic fluorine compound in the aqueous solution is preferably 0.01% by weight or more, more preferably 0.05% by weight or more, in view of performing satisfactory sealing of micropores of the anodized film, and it is preferably 1% by weight or less, more preferably 0.5% by weight or less, in view of the stain resistance.
  • the aqueous solution containing an inorganic fluorine compound preferably further contains a phosphate compound. When the phosphate compound is contained, the hydrophilicity on the anodized film surface is increased and thus, the on-press development property and stain resistance can be improved.
  • the phosphate compound include phosphates of metal, for example, an alkali metal or an alkaline earth metal.
  • the phosphate compound include zinc phosphate, aluminum phosphate, ammonium phosphate, diammonium hydrogen phosphate, ammonium dihydrogen phosphate, monoammonium phosphate, monopotassium phosphate, monosodium phosphate, potassium dihydrogen phosphate, dipotassium hydrogen phosphate, calcium phosphate, sodium ammonium hydrogen phosphate, magnesium hydrogen phosphate, magnesium phosphate, ferrous phosphate, ferric phosphate, sodium dihydrogen phosphate, sodium phosphate, disodium hydrogen phosphate, lead phosphate, diammonium phosphate, calcium dihydrogen phosphate, lithium phosphate, phosphotungstic acid, ammonium phosphotungstate, sodium phosphotungstate, ammonium phosphomolybdate, sodium phosphomolybdate, sodium phosphite, sodium tripolyphosphate and sodium pyrophosphate.
  • the aqueous solution contains at least sodium fluorozirconate as the inorganic fluorine compound and at least sodium dihydrogen phosphate as the phosphate compound.
  • the concentration of the phosphate compound in the aqueous solution is preferably 0.01% by weight or more, more preferably 0.1% by weight or more, in view of improvement in the on-press development property and stain resistance, and it is preferably 20% by weight or less, more preferably 5% by weight or less, in view of solubility.
  • the ratio of respective compounds in the aqueous solution is not particularly limited, and the weight ratio between the inorganic fluorine compound and the phosphate compound is preferably from 1/200 to 10/1, more preferably from 1/30 to 2/1.
  • the temperature of the aqueous solution is preferably 20°C or more, more preferably 40°C or more, and it is preferably 100°C or less, more preferably 80°C or less.
  • the pH of the aqueous solution is preferably 1 or more, more preferably 2 or more, and it is preferably 11 or less, more preferably 5 or less.
  • a method of the sealing treatment with the aqueous solution containing an inorganic fluorine compound is not particularly limited and examples thereof include a dipping method and a spray method.
  • the treatments may be used alone once or multiple times, or two or more thereof may be used in combination.
  • the dipping method is preferred.
  • the treating time is preferably one second or more, more preferably 3 seconds or more, and it is preferably 100 seconds or less, more preferably 20 seconds or less.
  • Examples of the sealing treatment with water vapor include a method of continuously or discontinuously bringing water vapor under applied pressure or normal pressure into contact with the anodized film.
  • the temperature of the water vapor is preferably 80°C or more, more preferably 95°C or more, and it is preferably 105°C or less.
  • the pressure of the water vapor is preferably in a range from (atmospheric pressure - 50 mmAg) to (atmospheric pressure + 300 mmAg) (from 1.008 ⁇ 10 5 to 1.043 ⁇ 10 5 Pa).
  • the time period for which water vapor is contacted is preferably one second or more, more preferably 3 seconds or more, and it is preferably 100 seconds or less, more preferably 20 seconds or less.
  • Examples of the sealing treatment with hot water include a method of dipping the aluminum plate having formed thereon the anodized film in hot water.
  • the hot water may contain an inorganic salt (for example, a phosphate) or an organic salt.
  • an inorganic salt for example, a phosphate
  • organic salt for example, a phosphate
  • the temperature of the hot water is preferably 80°C or more, more preferably 95°C or more, and it is preferably 100°C or less.
  • the time period for which the aluminum plate is dipped in the hot water is preferably one second or more, more preferably 3 seconds or more, and it is preferably 100 seconds or less, more preferably 20 seconds or less.
  • the hydrophilizing treatment includes an alkali metal silicate method described in U.S. Patents 2,714,066 , 3,181,461 , 3,280,734 and 3,902,734 .
  • the support is subjected to immersion treatment or electrolytic treatment in an aqueous solution containing, for example, sodium silicate.
  • the hydrophilizing treatment includes, for example, a method of treating with potassium fluorozirconate described in JP-B-36-22063 and a method of treating with polyvinyl phosphonic acid described in U.S. Patents 3,276,868 , 4,153,461 and 4,689,272 .
  • the hydrophilic layer preferably includes a hydrophilic layer formed by coating a coating solution containing a colloid of oxide or hydroxide of at least one element selected from beryllium, magnesium, aluminum, silicon, titanium, boron, germanium, tin, zirconium, iron, vanadium, antimony and a transition metal described in JP-A-2001-199175 , a hydrophilic layer containing an organic hydrophilic matrix obtained by crosslinking or pseudo-crosslinking of an organic hydrophilic polymer described in JP-A-2002-79772 , a hydrophilic layer containing an inorganic hydrophilic matrix obtained by sol-gel conversion comprising hydrolysis and condensation reaction of polyalkoxysilane and titanate, zirconate or aluminate, and a hydrophilic
  • an antistatic layer on the hydrophilic layer side, opposite side to the hydrophilic layer or both sides.
  • the antistatic layer a polymer layer having fine particles of metal oxide or a matting agent dispersed therein described in JP-A-2002-79772 can be used.
  • the support preferably has a center line average roughness of 0.10 to 12 ⁇ m. In the range described above, good adhesion property to the image-recording layer, good printing durability and good stain resistance can be achieved. (Protective layer)
  • a protective layer on the image-recording layer.
  • the protective layer has a function for preventing, for example, occurrence of scratch in the image-recording layer or ablation caused by exposure with a high illuminance laser beam, in addition to the function for restraining an inhibition reaction against the image formation by means of oxygen blocking.
  • the exposure process of a lithographic printing plate precursor is performed in the air.
  • the image-forming reaction occurred upon the exposure process in the image-recording layer may be inhibited by a low molecular weight compound, for example, oxygen or a basic substance present in the air.
  • the protective layer prevents the low molecular weight compound, for example, oxygen or the basic substance from penetrating into the image-recording layer and as a result, the inhibition of image-forming reaction at the exposure process in the air can be avoided. Accordingly, the property required of the protective layer is to reduce permeability of the low molecular compound, for example, oxygen.
  • the protective layer preferably has good transparency to light used for the exposure, is excellent in an adhesion property to the image-recording layer, and can be easily removed during the on-press development processing step after the exposure.
  • the protective layer having such properties there are described, for example, in U.S. Patent 3,458,311 and JP-B-55-49729 .
  • any water-soluble polymer and water-insoluble polymer can be appropriately selected to use.
  • a water-soluble polymer for example, polyvinyl alcohol, a modified polyvinyl alcohol, polyvinyl pyrrolidone, polyvinyl imidazole, polyacrylic acid, polyacrylamide, a partially saponified product of polyvinyl acetate, an ethylene-vinyl alcohol copolymer, a water-soluble cellulose derivative, gelatin, a starch derivative or gum arabic
  • a polymer for example, polyvinylidene chloride, poly(meth)acrylonitrile, polysulfone, polyvinyl chloride, polyethylene, polycarbonate, polystyrene, polyamide or cellophane are exemplified.
  • the polymers may be used in combination of two or more thereof, if desired.
  • a water-soluble polymer compound excellent in crystallinity is exemplified.
  • polyvinyl alcohol, polyvinyl pyrrolidone, polyvinyl imidazole, a water-soluble acrylic resin, for example, polyacrylic acid, gelatin or gum arabic is preferably used.
  • polyvinyl alcohol, polyvinyl pyrrolidone and polyvinyl imidazole are more preferably used from the standpoint of capability of coating with water as a solvent and easiness of removal with dampening water at the printing.
  • polyvinyl alcohol (PVA) provides most preferable results on the fundamental properties, for example, oxygen blocking property or removability with development.
  • the polyvinyl alcohol for use in the protective layer may be partially substituted with ester, ether or acetal as long as it contains a substantial amount of unsubstituted vinyl alcohol units necessary for maintaining water solubility. Also, the polyvinyl alcohol may partially contain other copolymerization components.
  • polyvinyl alcohols of various polymerization degrees having at random a various kind of hydrophilic modified cites for example, an anion-modified cite modified with an anion, e.g., a carboxyl group or a sulfo group, a cation-modified cite modified with a cation, e.g., an amino group or an ammonium group, a silanol-modified cite or a thiol-modified cite, and polyvinyl alcohols of various polymerization degrees having at the terminal of the polymer chain a various kind of modified cites, for example, the above-described anion-modified cite, cation modified cite, silanol-modified cite or thiol-modified cite, an alkoxy-modified cite, a sulfide-modified cite, an ester modified cite of vinyl alcohol with a various kind of organic acids, an ester modified cite of the above-de
  • Preferable examples of the polyvinyl alcohol include those having a hydrolysis degree of 71 to 100% by mole and a polymerization degree of 300 to 2,400.
  • Specific examples of the polyvinyl alcohol include PVA-105, PVA-110, PVA-117, PVA-117H, PVA-120, PVA-124, PVA-124H, PVA-CS, PVA-CST, PVA-HC, PVA-203, PVA-204, PVA-205, PVA-210, PVA-217, PVA-220, PVA-224, PVA-217EE, PVA-217E, PVA-220E, PVA-224E, PVA-405, PVA-420, PVA-613 and L-8, produced by Kuraray Co., Ltd.
  • modified polyvinyl alcohol examples include that having an anion-modified cite, for example, KL-318, KL-118, KM-618, KM-118 or SK-5102, that having a cation-modified cite, for example, C-318, C-118 or CM-318, that having a terminal thiol-modified cite, for example, M-205 or M-115, that having a terminal sulfide-modified cite, for example, MP-103, MP-203, MP-102 or MP-202, that having an ester-modified cite with a higher fatty acid at the terminal, for example, HL-12E or HL-1203 and that having a reactive silane-modified cite, for example, R-1130, R-2105 or R-2130.
  • anion-modified cite for example, KL-318, KL-118, KM-618, KM-118 or SK-5102
  • a cation-modified cite for example, C-318,
  • the protective layer contains an inorganic stratiform compound, that is, an inorganic compound having a stratiform structure and a tabular shape.
  • an inorganic stratiform compound that is, an inorganic compound having a stratiform structure and a tabular shape.
  • the stratiform compound includes, for instance, mica, for example, natural mica represented by the following formula: A (B, C) 2-5 D 4 O 10 (OH, F, O) 2 , (wherein A represents any one of Li, K, Na, Ca, Mg and an organic cation, B and C each represents any one of Fe (II), Fe(III), Mn, Al, Mg and V, and D represents Si or Al) or synthetic mica, talc represented by the following formula: 3MgO ⁇ 4SiO ⁇ H 2 O, teniolite, montmorillonite, saponite, hectolite and zirconium phosphate.
  • A represents any one of Li, K, Na, Ca, Mg and an organic cation
  • B and C each represents any one of Fe (II), Fe(III), Mn, Al, Mg and V
  • D represents Si or Al
  • talc represented by the following formula: 3MgO ⁇ 4SiO ⁇ H 2 O, teniolite, montmorillon
  • examples of the natural mica include muscovite, paragonite, phlogopite, biotite and lepidolite.
  • examples of the synthetic mica include non-swellable mica, for example, fluorphlogopite KMg 3 (AlSi 3 O 10 )F 2 or potassium tetrasilic mica KMg 2.5 (Si 4 O 10 )F 2 , and swellable mica, for example, Na tetrasilic mica NaMg 2.5 (Si 4 O 10 )F 2 , Na or Li teniolite (Na, Li)Mg 2 Li(Si 4 O 10 )F 2 , or montmorillonite based Na or Li hectolite (Na, Li) 1/8 Mg 2/5 Li 1/8 (Si 4 O 10 )F 2 . Synthetic smectite is also useful.
  • fluorine-based swellable mica which is a synthetic stratiform compound
  • the mica and an swellable clay mineral for example, montmorillonite, saponite, hectolite or bentonite have a stratiform structure comprising a unit crystal lattice layer having thickness of approximately 10 to 15 angstroms, and metallic atom substitution in the lattices thereof is remarkably large in comparison with other clay minerals.
  • the lattice layer results in lack of positive charge and to compensate it, a cation, for example, Li + , Na + , Ca 2+ , Mg 2+ or an organic cation, e.g., an amine salt, a quaternary ammonium salt, a phosphonium salt or a sulfonium salt is adsorbed between the lattice layers.
  • a cation for example, Li + , Na + , Ca 2+ , Mg 2+ or an organic cation, e.g., an amine salt, a quaternary ammonium salt, a phosphonium salt or a sulfonium salt is adsorbed between the lattice layers.
  • the stratiform compound swells upon contact with water. When share is applied under such condition, the stratiform crystal lattices are easily cleaved to form a stable sol in water. Since the bentnite and swellable synthetic mica have strongly such tendency, they are
  • an aspect ratio of the stratiform compound is ordinarily 20 or more, preferably 100 or more, particularly preferably 200 or more.
  • the aspect ratio is a ratio of thickness to major axis of particle and can be determined, for example, from a projection drawing of particle by a microphotography. The larger the aspect ratio, the greater the effect obtained.
  • an average diameter is ordinarily from 0.3 to 20 ⁇ m, preferably from 0.5 to 10 ⁇ m, particularly preferably from 1 to 5 ⁇ m.
  • the particle diameter is less than 0.3 ⁇ m, the inhibition of permeation of oxygen or moisture is insufficient and the effect of the stratiform compound can not be satisfactorily achieved.
  • An average thickness of the particle is ordinarily 0.1 ⁇ m or less, preferably 0.05 ⁇ m or less, particularly preferably 0.01 ⁇ m or less.
  • the thickness is approximately from 1 to 50 nm and the plain size is approximately from 1 to 20 ⁇ m.
  • the protective layer When such an inorganic stratiform compound particle having a large aspect ratio is incorporated into the protective layer, strength of the coated layer increases and penetration of oxygen or moisture can be effectively inhibited and thus, the protective layer can be prevented from deterioration due to deformation, and even when the lithographic printing plate precursor is preserved for a long period of time under a high humidity condition, it is prevented from decrease in the image-forming property thereof due to the change of humidity and exhibits excellent preservation stability.
  • a swellable stratiform compound which is exemplified as a preferable stratiform compound is added to 100 parts by weight of water to adapt the compound to water and to be swollen, followed by dispersing using a dispersing machine.
  • the dispersing machine used include, for example, a variety of mills conducting dispersion by directly applying mechanical power, a high-speed agitation type dispersing machine providing a large shear force and a dispersion machine providing ultrasonic energy of high intensity.
  • a dispersion containing from 5 to 10% by weight of the inorganic stratiform compound thus prepared is highly viscous or gelled and exhibits extremely good preservation stability.
  • the dispersion is diluted with water, sufficiently stirred and then mixed with a binder solution.
  • the content of the inorganic stratiform compound in the protective layer is ordinarily from 5/1 to 1/100 in terms of a weight ratio of the inorganic stratiform compound to the amount of a binder used in the protective layer.
  • the total amount of the inorganic stratiform compounds is in the range of weight ratio described above.
  • glycerin, dipropylene glycol, propionamide, cyclohexane diol, sorbitol or the like can be added in an amount corresponding to several % by weight of the water-soluble or water-insoluble polymer to impart flexibility.
  • a known additive for example, a water-soluble (meth)acrylic polymer or a water-soluble plasticizer can be added in order to improve the physical property of the protective layer.
  • the protective layer according to the invention is formed using a coating solution for protective layer as described below and to the coating solution for protective layer may be added known additives for increasing an adhesion property to the image-recording layer or for improving time-lapse stability of the coating solution.
  • an anionic surfactant, a nonionic surfactant, a cationic surfactant or a fluorine-based surfactant can be added to the coating solution of protective layer in order to improve the coating property.
  • an anionic surfactant for example, sodium alkyl sulfate or sodium alkyl sulfonate; an amphoteric surfactant, for example, alkylamino carboxylic acid salt or alkylamino dicarboxylic acid salt; or a non-ionic surfactant, for example, polyoxyethylene alkyl phenyl ether can be added.
  • the amount of the surfactant added is from 0.1 to 100% by weight of the water-soluble or water-insoluble polymer.
  • JP-A-49-70702 and BP-A-1,303,578 for the purpose of improving the adhesion property to the image-recording layer, for example, it is described in JP-A-49-70702 and BP-A-1,303,578 that sufficient adhesion can be obtained by mixing from 20 to 60% by weight of an acrylic emulsion, a water-insoluble vinyl pyrrolidone-vinyl acetate copolymer or the like in a hydrophilic polymer mainly comprising polyvinyl alcohol and coating the mixture on the image-recording layer.
  • any of such known techniques can be used.
  • the oil-sensitizing agent for example, the nitrogen-containing low molecular weight compound, ammonium group-containing polymer as described above may be added to the protective layer.
  • the amount thereof added is preferably in a range of 0.5 to 30% by weight.
  • a coloring agent for example, a water-soluble dye
  • a spherical fine inorganic particle as described above with respect to the image-recording layer may be incorporated into the protective layer.
  • the fine inorganic particle preferably includes, for example, silica, alumina, magnesium oxide, titanium oxide, magnesium carbonate, calcium alginate and a mixture thereof.
  • the fine inorganic particle preferably has an average particle size from 5 nm to 10 ⁇ m, more preferably from 50 nm to 3 ⁇ m.
  • the fine inorganic particle described above is easily available as a commercial product, for example, colloidal silica dispersion.
  • the content of the fine inorganic particle is preferably 40% by weight or less, more preferably 20% by weight or less, based on the total solid content of the protective layer.
  • protective layer is formed by coating a coating solution for protective layer prepared by dispersing or dissolving the components of protective layer in a solvent on the image-recording layer, followed by drying.
  • the coating solvent may be appropriately selected in view of the binder used, and when a water-soluble polymer is used, distilled water or purified water is preferably used as the solvent.
  • a coating method of the protective layer is not particularly limited, and known methods, for example, methods described in U.S. Patent 3,458,311 and JP-B-55-49729 can be utilized.
  • protective layer for example, a blade coating method, an air knife coating method, a gravure coating method, a roll coating method, a spray coating method, a dip coating method or a bar coating method is used.
  • the coating amount of the protective layer is preferably in a range from 0.01 to 10 g/m 2 , more preferably in a range from 0.02 to 3 g/m 2 , most preferably in a range from 0.02 to 1 g/m 2 , in terms of the coating amount after drying. (Backcoat layer)
  • a backcoat layer can be provided on the back surface of the support, if desired.
  • the backcoat layer preferably includes, for example, a coating layer comprising an organic polymer compound described in JP-A-5-45885 and a coating layer comprising a metal oxide obtained by hydrolysis and polycondensation of an organic metal compound or an inorganic metal compound described in JP-A-6-34174 .
  • a coating layer comprising an organic polymer compound described in JP-A-5-45885 and a coating layer comprising a metal oxide obtained by hydrolysis and polycondensation of an organic metal compound or an inorganic metal compound described in JP-A-6-34174 .
  • an alkoxy compound of silicon for example, Si(OCH 3 ) 4 , Si(OC 2 H 5 ) 4 , Si(OC 3 H 7 ) 4 or Si(OC 4 H 9 ) 4 is preferred since the starting materials are inexpensive and easily available.
  • the plate making method of the lithographic printing plate precursor according to the invention includes two embodiments.
  • the first embodiment is on-press development and the second embodiment is gum development
  • the on-press development method includes a step in which the lithographic printing plate precursor is imagewise exposed and a printing step in which oily ink and an aqueous component are supplied to the exposed lithographic printing plate precursor without undergoing any development processing to perform printing, and it is characterized in that the unexposed area of the image-recording layer is removed in the course of the printing step.
  • the imagewise exposure may be performed after the lithographic printing plate precursor is mounted on a printing machine or after the imagewise exposure the exposed lithographic printing plate precursor is mounted on a printing machine.
  • the printing operation is initiated using the printing machine with supplying printing ink and dampening water and at an early stage of the printing the on-press development is performed. Specifically, the image recording layer in the unexposed area is removed and the hydrophilic surface of support is revealed therewith to form the dampening water-receptive area and thus, the printing can be carried out.
  • the on-press development method is described in more detail below.
  • a laser is preferable.
  • the laser for use in the invention is not particularly restricted and includes, for example, a solid laser or semiconductor laser emitting an infrared ray having a wavelength of 760 to 1,200 nm.
  • the output is preferably 100 mW or more, the exposure time per pixel is preferably within 20 microseconds, and the irradiation energy is preferably from 10 to 300 mJ/cm 2 .
  • the laser exposure in order to shorten the exposure time, it is preferred to use a multibeam laser device.
  • the exposed lithographic printing plate precursor is mounted on a plate cylinder of a printing machine.
  • the lithographic printing plate precursor is mounted on a plate cylinder of the printing machine and then subjected to the imagewise exposure.
  • the image-recording layer cured by the exposure forms the printing ink receptive area having the oleophilic surface.
  • the uncured image-recording layer is removed by dissolution or dispersion with the dampening water and/or printing ink supplied to reveal the hydrophilic surface in the area.
  • dampening water or printing ink may be supplied at first on the surface of lithographic printing plate precursor, it is preferred to supply the printing ink at first in view of preventing the dampening water from contamination with the component of the image-recording layer removed.
  • dampening water and printing ink dampening water and printing ink for conventional lithographic printing are used respectively.
  • the lithographic printing plate precursor is subjected to the on-press development on an offset printing machine and used as it is for printing a large number of sheets. (Gum development method)
  • the exposed lithographic printing plate precursor may be subjected to removal of the image-recording layer in the non-image area using a gum solution. After that, the resulting lithographic printing plate is used for printing.
  • the term "gum solution” as used in the invention means an aqueous solution containing a hydrophilic resin. The incorporation of hydrophilic resin makes it possible to protect the hydrophilic support revealed by the removal of the image-recording layer in the non-image area and to protect the image area.
  • gum arabic which has a strong oil-desensitizing function is ordinarily used and an aqueous solution containing from about 15 to about 20% by weight of gum arabic is often used as the gum solution.
  • Various water-soluble resins are used as the oil-desensitizing agent other than the gum arabic.
  • dextrin, sterabic, stractan, alginic acid salt, polyacrylic acid salt, hydroxyethyl cellulose, polyvinyl pyrrolidone, polyacrylamide, methyl cellulose, hydroxypropyl cellulose, hydroxymethyl cellulose, carboxyalkyl cellulose salt and water-soluble polysaccharide extracted from soybean curd refuse are preferable, and pullulan, a derivative thereof and polyvinyl alcohol are also preferable.
  • roast starch for example, British gum
  • an enzymatically modified dextrin for example, enzyme dextrin or Shardinger dextrin
  • oxidized starch for example, solubilized starch
  • alphalized starch for example, modified alphalized starch or unmodified alphalized starch
  • esterified starch for example, starch phosphate, starch of fatty acid, starch sulfate, starch nitrate, starch xanthate or starch carbamate
  • etherified starch for example, carboxyalkyl starch, hydroxyalkyl starch, sulfoalkyl starch, cyanoethyl starch, allyl starch, benzyl starch, carbamylethyl starch or dialkylamino starch
  • cross-linked starch for example, methylol cross-linked starch, hydroxyalkyl cross-linked starch, phosphoric acid cross-linked
  • starch for example, sweet potato starch, potato starch, tapioca starch, wheat starch or corn starch, a polymer obtained from seaweed, for example, carrageenan, laminaran, seaweed mannan, funori, Irish moss, agar or sodium alginate, plant mucilage, for example, of tororoaoi, mannan, quince seed, pectin, tragacanth gum, karaya gum, xanthine gum, guar bean gum, locust bean gum, carob gum or benzoin gum, bacteria mucilage, for example, of homopolysaccharide, e.g., dextran, glucan or levan or of heteropolysaccharide, e.g., succinoglucan or xanthan gum, or protein, for example, glue, gelatin, casein or collagen is preferably used.
  • seaweed for example, carrageenan, laminaran, seaweed mannan, funori, Irish
  • the water-soluble resins may be used in combination of two or more thereof.
  • the water-soluble resin may be preferably contained in a range of 1 to 50% by weight, more preferably in a range of 3 to 30% by weight in the gum solution.
  • the gum solution for use in the invention may contain, for example, a pH adjusting agent, a surfactant, an antiseptic agent, an antimold, an oleophilic substance, a wetting agent, a chelating agent or a defoaming agent, in addition to the oil-desensitizing agent described above.
  • the gum solution is advantageously used in a pH range of 3 to 12 and thus, a pH adjusting agent is ordinarily added to the gum solution.
  • a mineral acid, an organic acid, an inorganic salt or the like is ordinarily added thereto.
  • the amount thereof is from 0.01 to 2 % by weight.
  • the mineral acid include nitric acid, sulfuric acid, phosphoric acid and metaphosphoric acid.
  • Examples of the organic acid include acetic acid, oxalic acid, malonic acid, p-toluenesulfonic acid, levulinic acid, phytic acid, an organic phosphonic acid and an amino acid, for example, glycine, ⁇ -alanine, ⁇ -alanine.
  • Examples of the inorganic salt include magnesium nitrate, sodium dihydrogen phosphate, disodium hydrogen phosphate, nickel sulfate, sodium hexametaphosphate or sodium tripolyphosphate.
  • the mineral acid, organic acid, inorganic salt or the like may be used individually or in combination of two or more thereof.
  • the surfactant for use in the gum solution examples include an anionic surfactant, a cationic surfactant, an amphoteric surfactant and a nonionic surfactant.
  • an anionic surfactant a fatty acid salt, an abietic acid salt, a hydroxyalkanesulfonic acid salt, an alkanesulfonic acid salt, an ⁇ -olefinsulfonic acid salt, a dialkylsulfosuccinic acid salt, an alkyldiphenyl ether disulfonaic acid salt, a straight-chain alkylbenzenesulfonic acid salt, a branched alkylbenzenesulfonic acid salt, an alkylnaphthalenesulfonic acid salt, an alkylphenoxypolyoxyethylenepropylsulfonic acid salt, a polyoxyethylene alkyl sulfophenyl ether salt, N-methyl-N-oleyltaurin sodium salt, an N-alky
  • a dialkylsulfosuccinic acid salt, an alkylsulfuric acid ester salt, an alkylnaphthalenesulfonic acid salt, an ⁇ -olefinsulfonic acid salt and an alkyldiphenyl ether disulfonaic acid salt are particularly preferably used.
  • an alkylamine salt and a quaternary ammonium salt are used as the cationic surfactant.
  • amphoteric surfactant an alkylcarboxy betaine, an alkylimidazoline and an alkylaminocarboxylic acid are used.
  • a polyoxyethylene alkyl ether As the nonionic surfactant, a polyoxyethylene alkyl ether, a polyoxyethylene alkyl phenyl ether, a polyoxyethylene polystyryl phenyl ether, a polyoxyethylene polyoxypropylene alkyl ether, a glycerin fatty acid partial ester, a sorbitan fatty acid partial ester, a pentaerythritol fatty acid partial ester, a propylene glycol monofatty acid ester, a sucrose fatty acid partial ester, a polyoxyethylenesorbitan fatty acid partial esters, polyoxyethylenesorbitol fatty acid partial ester, a polyethylene glycol fatty acid ester, a polyglycerin fatty acid partial ester, a polyoxyethylenized castor oil, a polyoxyethyleneglycerin fatty acid partial ester, a fatty acid diethanolamide, an N,N-bis-2-hydroxyalkylamine
  • the surfactants may be used in combination of two or more thereof.
  • the amount of the surfactant used is not particularly restricted and is preferably from 0.01 to 20% by weight, more preferably from 0.05 to 10% by weight, based on the total weight of the gum solution.
  • antiseptic agents used in the fields, for example, of fiber, wood processing, food, medicine, cosmetic and agriculture can be employed.
  • known antiseptic agents for example, a quaternary ammonium salt, a monovalent phenol derivative, a divalent phenol derivative, a polyvalent phenol derivative, an imidazole derivative, a pyrazolopyrimidine derivative, a monovalent naphthol, a carbonate, a sulfone derivative, an organic tin compound, a cyclopentane derivative, a phenyl derivative, a phenol ether derivative, a phenol ester derivative, a hydroxylamine derivative, a nitrile derivative, a naphthaline, a pyrrole derivative, a quinoline derivative, a benzothiazole derivative, a secondary amine, a 1,3,5-triazine derivative, a thiadiazole derivative, an anilide derivative, a pyrrole derivative, a
  • antiseptic agent include salt of pyridinethiol-1-oxide, salicylic acid and a salt thereof, 1,3,5-trishydroxyethylhexahydro-S-triazine, 1,3,5-trishydroxymethylhexahydro-S-triazine, 1,2-benzisothiazolin-3-one, 5-chloro-2-methyl-4-isothiazolin-3-one and 2-bromo-2-nitro-1,3-propanediol.
  • the amount of the antiseptic agent preferably added is determined so as for the antiseptic agent to work in a stable and effective manner against a bacterium, mold, yeast or the like, and it is preferably from 0.01 to 4% by weight based on the gum solution at the use while it may be varied depending on the kind of bacterium, mold, yeast or the like. It is also preferred to use two or more kinds of antiseptic agents in order to effectively work against various kinds of molds and bacteria.
  • the oleophilic substance may be incorporated.
  • the oleophilic substance include an organic carboxylic acid having from 5 to 25 carbon atoms, for example, oleic acid, lanolic acid, valeric acid, nonylic acid, capric acid, myristic acid or palmitic acid and castor oil.
  • the oleophilic substances may be used individually or in combination of two or more thereof.
  • the content of the oleophilic substance in the gum solution is preferably in a range from 0.005 to 10% by weight, more preferably from 0.05 to 5% by weight, based on the total weight of the gum solution.
  • the wetting agent glycerin, ethylene glycol, propylene glycol, triethylene glycol, butylenes glycol, hexylene glycol, diethylene glycol, dipropylene glycol, glycerin, trimethylol propane or diglycerin, if desired.
  • the wetting agents may be used individually or in combination of two or more thereof.
  • the wetting agent is preferably used in an amount of 0.1 to 5% by weight.
  • the chelating compound may be added to the gum solution.
  • the gum solution is ordinarily marketed as a concentrated solution and is diluted by addition of tap water, well water or the like to use. Calcium ion or the like included in the tap water or well water used for the dilution adversely affects printing and may be apt to cause stain on the printed material. In such a case, the problem can be solved by adding the chelating compound.
  • the chelating compound include ethylenediaminetetraacetic acid, potassium salt thereof, sodium salt thereof, diethylenetriaminepentaacetic acid, potassium salt thereof, sodium salt thereof, triethylenetetraminehexaacetic acid, potassium salt thereof, sodium salt thereof, hydroxyethylethylenediaminetriacetic acid, potassium salt thereof, sodium salt thereof, nitrilotriacetic acid or sodium salt thereof, an organic phosphonic acid, e.g., 1-hydroxyethane-1,1-chphosphonic acid, potassium salt thereof, sodium salt thereof, aminotri(methylenephosphonic acid), potassium salt thereof or sodium salt thereof and a phosphonoalkane tricarboxylic acid.
  • organic phosphonic acid e.g., 1-hydroxyethane-1,1-chphosphonic acid, potassium salt thereof, sodium salt thereof, aminotri(methylenephosphonic acid), potassium salt thereof or sodium salt thereof and a phosphonoalkane tricarboxylic acid.
  • An organic amine salt is also effectively used in place of the sodium salt or potassium salt of the above-described chelating compound.
  • the chelating compound which is stably present in the gum solution and does not disturb printing is preferably used.
  • the amount of the chelating compound added is suitably from 0.001 to 1.0% by weight of the gum solution at the use.
  • the defoaming agent may be added to the gum solution.
  • a silicon defoaming agent is preferably used. Any silicone defoaming agent of emulsion dispersion type and solubilization type can be used.
  • the amount of the defoaming agent added is optimally in a range of 0.001 to 1.0% by weight of the gum solution at the use.
  • the reminder of the gum solution is water. It is advantageous in view of transportation that the gum solution is stored in the form of a concentrated solution in which the content of water is reduced in comparison with the time of use and the concentrated solution is diluted with water at the use. In such a case, the concentration degree is suitably in a level that each component of the gum solution does not cause separation or deposition.
  • the gum solution may also be prepared as an emulsion dispersion type. In the gum solution of emulsion dispersion type, an organic solvent is used as the oil phase thereof. Also, the gum solution may be in the form of solubilization type (emulsification type) by the aid of the surfactant described above.
  • the organic solvent preferably has solubility in water of 5% by weight or less at 20°C and a boiling point of 160°C or more.
  • the organic solvent includes a plasticizer having a solidification point of 15°C or less and a boiling point of 300°C or more under 1 atmospheric pressure, for instance, a phthalic acid diester, for example, dibutyl phthalate, diheptyl phthalate, di-n-octyl phthalate, di(2-ethylhexyl) phthalate, dinonyl phthalate, didecyl phthalate, dilauryl phthalate or butyl benzyl phthalate, an aliphatic dibasic acid ester, for example, dioctyl adipate, butyl glycol adipate, dioctyl azelate, dibutyl sebacate, di(2-ethylhexyl) sebacate or dioctyl sebacate, an e
  • an alcohol type organic solvent 2-octanol, 2-ethylhexanol, nonanol, n-decanol, undecanol, n-dodecanol, trimethylnonyl alcohol, tetradecanol or benzyl alcohol is exemplified.
  • a glycol type organic solvent ethylene glycol isoamyl ether, ethylene glycol monophenyl ether, ethylene glycol benzyl ether, ethylene glycol hexyl ether or octylene glycol is exemplified.
  • the amount of the organic solvent used is preferably from 0.1 to 5% by weight, more preferably from 0.5 to 3% by weight, based on the gum solution.
  • the organic solvents may be used individually or in combination of two or more thereof.
  • the gum solution for use in the invention is produced by preparing an aqueous phase while controlling at temperature of 40°C ⁇ 5°C with stirring at a high speed, gradually adding dropwise an oil phase prepared to the aqueous phase, thoroughly stirring and then emulsifying and dispersing by passing through a homogenizer of pressure type.
  • a water washing process or a continuous oil-desensitizing process of the non-image area with a gum solution may be appropriately performed after the removing process of the image-recording layer in the non-image area using the gum solution described above.
  • the gum development processing according to the invention can be preferably carried out by an automatic processor equipped with a supplying means for the gum solution and a rubbing member.
  • an automatic processor there is illustrated an automatic processor in which a lithographic printing plate precursor after image recording is subjected to a rubbing treatment while it is transporting described, for example, in JP-A-2006-235227 .
  • an automatic processor using a rotating brush roll as the rubbing member is preferred.
  • the rotating brush roller which can be preferably used in the invention can be appropriately selected by taking account, for example, of scratch resistance of the image area and nerve strength of the support of lithographic printing plate precursor.
  • a known rotating brush roller produced by implanting a brush material in a plastic or metal roller can be used.
  • a rotating brush roller described in JP-A-58-159533 and JP-A-3-100554 or a brush roller described in JP-UM-B-62-167253 (the term "JP-UM-B” as used herein means an "examined Japanese utility model publication"), in which a metal or plastic groove-type member having implanted therein in rows a brush material is closely radially wound around a plastic or metal roller acting as a core, can be used.
  • a plastic fiber for example, a polyester-based synthetic fiber, e.g., polyethylene terephthalate or polybutylene terephthalate, a polyamide-based synthetic fiber, e.g., nylon 6.6 or nylon 6.10, a polyacrylic synthetic fiber, e.g., polyacrylonitrile or polyalkyl (meth)acrylate, and a polyolefin-based synthetic fiber, e.g., polypropylene or polystyrene
  • a brush material having a fiber bristle diameter of 20 to 400 ⁇ m and a bristle length of 5 to 30 mm can be preferably used.
  • the outer diameter of the rotating brush roller is preferably from 30 to 200 mm, and the peripheral velocity at the tip of the brush rubbing the plate surface is preferably from 0.1 to 5 m/sec.
  • the rotary direction of the rotating brush roller for use in the invention may be the same direction or the opposite direction with respect to the transporting direction of the lithographic printing plate precursor according to the invention, but when two or more rotating brush rollers are used in the automatic processor as shown in Fig. 1 , it is preferred that at least one rotating brush roller rotates in the same direction and at least one rotating brush roller rotates in the opposite direction with respect to the transporting direction.
  • the image-recording layer in the non-image area can be more steadily removed.
  • a technique of rocking the rotating brush roller in the rotation axis direction of the brush roller is also effective.
  • the gum solution in the gum development and water for washing in the post process can be independently used at an appropriate temperature, and is preferably used at temperature of 10 to 50°C.
  • the gum development method according to the invention it is possible to provide a drying process at an appropriate position after the gum development.
  • the drying process is ordinarily carried out by blowing dry wind of appropriate temperature after removing most of the processing solution by a roller nip.
  • An aluminum plate (material: JIS A 1050) having a thickness of 0.3 mm was subjected to a degreasing treatment at 50°C for 30 seconds using a 10% by weight aqueous sodium aluminate solution in order to remove rolling oil on the surface thereof and then grained the surface thereof using three nylon brushes embedded with bundles of nylon bristle having a diameter of 0.3 mm and an aqueous suspension (specific gravity: 1.1 g/cm 3 ) of pumice having a median size of 25 ⁇ m, followed by thorough washing with water.
  • the plate was subjected to etching by immersing in a 25% by weight aqueous sodium hydroxide solution of 45°C for 9 seconds, washed with water, then immersed in a 20% by weight aqueous nitric acid solution at 60°C for 20 seconds, and washed with water.
  • the etching amount of the grained surface was about 3 g/m 2 .
  • the electrolytic solution used was a 1% by weight aqueous nitric acid solution (containing 0.5% by weight of aluminum ion) and the temperature of electrolytic solution was 50°C.
  • the electrochemical roughening treatment was conducted using an alternating current source, which provides a rectangular alternating current having a trapezoidal waveform such that the time TP necessary for the current value to reach the peak from zero was 0.8 msec and the duty ratio was 1:1, and using a carbon electrode as a counter electrode.
  • a ferrite was used as an auxiliary anode.
  • the current density was 30 A/dm 2 in terms of the peak value of the electric current, and 5% of the electric current flowing from the electric source was divided to the auxiliary anode.
  • the quantity of electricity in the nitric acid electrolysis was 175 C/dm 2 in terms of the quantity of electricity when the aluminum plate functioned as an anode. The plate was then washed with water by spraying.
  • the plate was further subjected to an electrochemical roughening treatment in the same manner as in the nitric acid electrolysis above using as an electrolytic solution, a 0.5% by weight aqueous hydrochloric acid solution (containing 0.5% by weight of aluminum ion) having temperature of 50°C and under the condition that the quantity of electricity was 50 C/dm 2 in terms of the quantity of electricity when the aluminum plate functioned as an anode.
  • the plate was then washed with water by spraying.
  • the plate was then subjected to an anodizing treatment using as an electrolytic solution, a 15% by weight aqueous sulfuric acid solution (containing 0.5% by weight of aluminum ion) at a current density of 15 A/dm 2 to form a direct current anodized film of 2.5 g/m 2 , washed with water and dried.
  • the plate was subjected to silicate treatment using a 2.5% by weight aqueous sodium silicate No. 3 solution at 70°C for 12 seconds.
  • the adhesion amount of Si was 10 mg/m 2 .
  • the plate was washed with water to obtain Support (1).
  • the center line average roughness (Ra) of Support (1) was measured using a stylus having a diameter of 2 ⁇ m and found to be 0.51 ⁇ m.
  • Coating solution (1) for undercoat layer shown below was coated on Support (1) so as to have a dry coating amount of 28 mg/m 2 to form Undercoat layer (1).
  • Coating solution (1) for image-recording layer having the composition shown below was coated on the undercoat layer described above by a bar and dried in an oven at 100°C for 60 seconds to form Image-recording layer (1) having a dry coating amount of 1.0 g/m 2 .
  • Coating solution (1) for image-recording layer was prepared by mixing Photosensitive solution (1) shown below with Microgel solution (1) shown below just before the coating, followed by stirring.
  • Binder polymer (1) Infrared absorbing agent (1), Radical polymerization initiator (1), Phosphonium compound (1), Hydrophilic low molecular weight compound (1) and Fluorine-based surfactant (1) are shown below.
  • Binder polymer (1) is a binder polymer
  • Fluorine-based surfactant (1) is a fluorine-based surfactant
  • Microgel (1) described above was prepared in the following manner.
  • An oil phase component was prepared by dissolving 10 g of adduct of trimethylol propane and xylene diisocyanate (Takenate D-110N, produced by Mitsui Takeda Chemical Co., Ltd.), 3.15 g of pentaerythritol triacrylate (SR444, produced by Nippon Kayaku Co., Ltd.) [Component (C)] and 0.1 g of Pionine A-41C (produced by Takemoto Oil and Fat Co., Ltd.) in 17 g of ethyl acetate.
  • As an aqueous phase component 40 g of a 4% by weight aqueous solution of PVA-205 was prepared.
  • the oil phase component and the aqueous phase component were mixed and emulsified using a homogenizer at 12,000 rpm for 10 minutes.
  • the resulting emulsion was added to 25 g of distilled water and stirred at room temperature for 30 minutes and then at 50°C for 3 hours.
  • the microgel liquid thus-obtained was diluted using distilled water so as to have the solid concentration of 15% by weight to prepare Microgel (1).
  • the average particle size of Microgel (1) was measured by a light scattering method and found to be 0.2 ⁇ m.
  • Coating solution (1) for protective layer having the composition shown below was coated on the image-recording layer described above by a bar and dried in an oven at 120°C for 60 seconds to form Protective layer (1) having a dry coating amount of 0.15 g/m 2 , thereby preparing Lithographic printing plate precursors (1) to (26), (51), (53), (55) and (56).
  • Dispersion of inorganic stratiform compound (1) shown below 1.5 g Aqueous 6% by weight solution of polyvinyl alcohol (CKS 50, 0.55 g sulfonic acid-modified, saponification degree: 99% by mole or more, polymerization degree: 300, produced by Nippon Synthetic Chemical Industry Co., Ltd.) Aqueous 6% by weight solution of polyvinyl alcohol (PVA-405, 0.03 g saponification degree: 81.5 % by mole, polymerization degree: 500, produced by Kuraray Co., Ltd.) Aqueous 1% by weight solution of surfactant (Emalex 710, 8.60 g produced by Nihon Emulsion Co., Ltd. Ion-exchanged water 6.0 g
  • Protective layer (2) was formed in the same manner as in the formation of Protective layer (1) except for adding 0.01 g of Compound (C-1) described hereinbefore as the compound represented by formula (I) or (II) to Coating solution (1) for protective layer, thereby preparing Lithographic printing plate precursors (27), (52) and (54).
  • Lithographic printing plate precursors (28) to (36), (57), (59) and (61) were prepared in the same manner as in the preparation of Lithographic printing plate precursor (1) except for changing Coating solution (1) for image-recording layer to Coating solution (2) for image-recording layer shown below, respectively.
  • Lithographic printing plate precursors (37), (58) and (60) were prepared in the same manner as in Lithographic printing plate precursor (28) except for changing Coating solution (1) for protective layer to Coating solution (2) for protective layer, respectively.
  • Coating solution (3) for image-recording layer shown below was coated on the undercoat layer as described above by a bar and dried in an oven at 70°C for 60 seconds to form Image-recording layer (3) having a dry coating amount of 0.6 g/m 2 .
  • a stirrer, a thermometer, a dropping funnel, a nitrogen inlet tube and a reflux condenser were attached to a 1,000 ml four-neck flask and while carrying out deoxygenation by introduction of nitrogen gas, 350 ml of distilled water was charged therein and heated until the internal temperature reached 80°C.
  • To the flask was added 1.5 g of sodium dodecylsufate as a dispersing agent, then was added 0.45 g of ammonium persulfate as an initiator, and thereafter was dropwise added a mixture of 45.0 g of glycidyl methacrylate and 45.0 g of styrene through the dropping funnel over a period of about one hour.
  • the mixture was continued to react as it was for 5 hours, followed by removing the unreacted monomers by steam distillation.
  • the mixture was cooled, adjusted the pH to 6 with aqueous ammonia and finally added pure water thereto so as to have the nonvolatile content of 15% by weight to obtain an aqueous dispersion of polymer fine particle (hydrophobilizing precursor).
  • the particle size distribution of the polymer fine particle had the maximum value at the particle size of 60 nm.
  • the particle size distribution was determined by taking an electron microphotograph of the polymer fine particle, measuring particle sizes of 5,000 fine particles in total on the photograph, and dividing a range from the largest value of the particle size measured to 0 on a logarithmic scale into 50 parts to obtain occurrence frequency of each particle size by plotting.
  • a particle size of a spherical particle having a particle area equivalent to the particle area of the aspherical particle on the photograph was defined as the particle size.
  • Coating solution (3) for protective layer having the composition shown below was coated on the image-recording layer thus-prepared by a bar and dried in an oven at 60°C for 120 seconds to form Protective layer (3) having a dry coating amount of 0.3 g/m 2 , thereby preparing Lithographic printing plate precursors (38) to (48), (62) and (63).
  • Protective layer (4) was formed in the same manner as in the formation of Protective layer (3) except for adding 0.005 g of Compound (C-1) described hereinbefore as the compound represented by formula (I) or (II) to Coating solution (3) for protective layer, thereby preparing Lithographic printing plate precursors (49) and (50).
  • Each of the lithographic printing plate precursors was exposed by Luxel Platesetter T-6000III equipped with an infrared semiconductor laser, produced by Fuji Film Co., Ltd. under the conditions of a rotational number of external drum of 1,000 rpm, laser output of 70% and resolution of 2,400 dpi.
  • the exposed image contained a solid image and a 50% halftone dot chart of a 20 ⁇ m-dot FM screen.
  • the exposed lithographic printing plate precursor was mounted without undergoing development processing on a plate cylinder of a printing machine (Lithrone 26, produced by Komori Corp.).
  • a printing machine Lithrone 26, produced by Komori Corp.
  • Values-G (N) Black Ink produced by Dainippon Ink & Chemicals, Inc.
  • the dampening water and ink were supplied according to the standard automatic printing start method of Lithrone 26 to perform on-press development, followed by printing on 100 sheets of Tokubishi art paper (76.5 kg) at a printing speed of 10,000 sheets per hour.
  • the printing was continued.
  • the image-recording layer was gradually abraded to cause decrease in the ink density on the printing paper.
  • a number of printing papers wherein a value obtained by measuring a halftone dot area rate of the 50% halftone dot of FM screen on the printing paper using a Gretag densitometer decreased by 5% from the value measured on the 100 th paper of the printing was determined to evaluate the
  • M/B ratio indicates a weight ratio of Polymerizable compound (C)/Binder Polymer (E).
  • the weight of Polymerizable compound (C) used to calculate the M/B ratio is with regard to the total of the amount presented inside of the microgel and the amount presented outside of the microgel.
  • TABLE 2 ⁇ Evaluation results of printing in Examples 1 to 27 and Comparative Examples 1 to 6> Lithographic Printing Plate Precursor On-Press Development Property (sheets) Printing Durability (x 10 5 sheets) Example 1 (1) 18 5.0 Example 2 (2) 15 5.0 Example 3 (3) 10 5.0 Example 4 (4) 10 5.0 Example 5 (5) 10 5.0 Example 6 (6) 8 4.5 Example 7 (7) 8 4.0 Example 8 (8) 15 5.0 Example 9 (9) 15 5.0 Example 10 (10) 10 5.0 Example 11 (11) 10 4.5 Example 12 (12) 15 5.0 Example 13 (13) 20 4.5 Example 14 (14)
  • the lithographic printing plate precursor and the plate making method thereof excellent in compatibility of the on-press development property and the printing durability can be provided according to the invention.
  • Lithographic printing plate precursors (1) to (63) was exposed imagewise, subjected to gum development and evaluated on printing in the following manner.
  • the lithographic printing plate precursor and the plate making method thereof excellent in compatibility of the gum development property (reproducibility of fine line) and the printing durability can be provided according to the invention.
  • Protective layer (3) or Protective layer (4) described above was formed as shown in Table 4 in the same manner as described above to prepare Lithographic printing plate precursors (105) to (118) and (122).
  • Lithographic printing plate precursors (64) to (122) were evaluated in the same manner as described above. The results obtained are shown in Table 5.
  • Table 4 ⁇ Lithographic printing plate precursors (64) to (92), (119) and (120)> Lithographic Printing Plate Precursor Undercoat Layer Image-Forming Layer Protective Layer Compound Represented by Formula (I) or (II) Kind of Image-Forming Layer Compound Represented by Formula (I) or (II) Amount of Polymerizable Compound (C) (g) Amount of Binder Polymer (E) (g) M/B Ratio Kind of Compound Amount Added (g) Content in Undercoat Layer (%) Kind of Compound Amount Added (g) (64) C-1 0.01 3.4 (4) None - 0.192 024 1.15 (1) (65) C-1 0.02 6.7 (4) None - 0.192 0.24 1.15 (1) (66) C-1 0.03 9.7 (4) None - 0.192 0.24 1.15 (1) (67) C
  • M/B ratio indicates a weight ratio of Polymerizable compound (C)/Binder Polymer (E).
  • the weight of Polymerizable compound (C) used to calculate the M/B ratio is with regard to the total of the amount presented inside of the microgel and the amount presented outside of the microgel.
  • the lithographic printing plate precursor and the plate making method thereof excellent in compatibility of the on-press development property and the printing durability can be provided according to the invention.
  • the lithographic printing plate precursor and the plate making method thereof excellent in compatibility of the gum development property (reproducibility of fine line) and the printing durability can be provided according to the invention.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Thermal Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials For Photolithography (AREA)
  • Printing Plates And Materials Therefor (AREA)
  • Photosensitive Polymer And Photoresist Processing (AREA)
EP09000874A 2008-01-22 2009-01-22 Lithographiedruckplattenvorläufer und Plattenherstellungsverfahren damit Active EP2082875B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008011706A JP5155677B2 (ja) 2008-01-22 2008-01-22 平版印刷版原版、およびその製版方法

Publications (2)

Publication Number Publication Date
EP2082875A1 true EP2082875A1 (de) 2009-07-29
EP2082875B1 EP2082875B1 (de) 2012-03-07

Family

ID=40470064

Family Applications (1)

Application Number Title Priority Date Filing Date
EP09000874A Active EP2082875B1 (de) 2008-01-22 2009-01-22 Lithographiedruckplattenvorläufer und Plattenherstellungsverfahren damit

Country Status (3)

Country Link
EP (1) EP2082875B1 (de)
JP (1) JP5155677B2 (de)
AT (1) ATE548189T1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100248142A1 (en) * 2009-03-30 2010-09-30 Katsuya Takemasa Lithographic printing plate precursor and plate making method thereof
CN108883650A (zh) * 2016-03-16 2018-11-23 爱克发有限公司 加工平版印刷版的方法和设备

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010060933A (ja) * 2008-09-04 2010-03-18 Fujifilm Corp ネガ型平版印刷版原版及びその製版方法
EP2339402A1 (de) 2009-12-28 2011-06-29 Fujifilm Corporation Lithographiedruckplattevorläufer und Verfahren zur Herstellung einer Lithographiedruckplatte
JP5448882B2 (ja) * 2010-01-27 2014-03-19 富士フイルム株式会社 平版印刷版原版及びその製版方法
JP5588887B2 (ja) * 2010-01-29 2014-09-10 富士フイルム株式会社 平版印刷版の作製方法
JP5690671B2 (ja) * 2010-06-30 2015-03-25 富士フイルム株式会社 新規な重合性組成物及びそれに用いる重合性化合物、並びに新規な重合性組成物を用いた画像形成材料及び平版印刷版原版
JP5745371B2 (ja) * 2011-09-07 2015-07-08 富士フイルム株式会社 平版印刷版原版および平版印刷版の作製方法

Citations (195)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB434875A (en) 1933-02-08 1935-09-05 Bela Gasper An improved method of producing multi-colour photographic images on coloured and differently sensitized multi-layer photographic material
US2714066A (en) 1950-12-06 1955-07-26 Minnesota Mining & Mfg Planographic printing plate
US2800457A (en) 1953-06-30 1957-07-23 Ncr Co Oil-containing microscopic capsules and method of making them
US2800458A (en) 1953-06-30 1957-07-23 Ncr Co Oil-containing microscopic capsules and method of making them
US2833827A (en) 1955-01-17 1958-05-06 Bayer Ag Tri (3, 5-di lower alkyl-4-hydroxy phenyl)-sulfonium chlorides and method of preparing same
JPS369163B1 (de) 1959-09-01 1961-06-30
JPS3622063B1 (de) 1959-12-11 1961-11-15
GB930422A (en) 1958-12-22 1963-07-03 Upjohn Co Process of the encapsulation of particulate material
US3111407A (en) 1960-02-26 1963-11-19 Ibm Methods for making record materials
GB952807A (en) 1961-09-05 1964-03-18 Ncr Co Process for manufacturing minute capsules having waxy material walls
GB967074A (en) 1960-02-23 1964-08-19 Metallurg De Prayon Sa Process and apparatus for the production of zinc by the reduction of zinc oxides in a multiple-retort furnace
US3181461A (en) 1963-05-23 1965-05-04 Howard A Fromson Photographic plate
US3276868A (en) 1960-08-05 1966-10-04 Azoplate Corp Planographic printing plates
US3280734A (en) 1963-10-29 1966-10-25 Howard A Fromson Photographic plate
US3287154A (en) 1963-04-24 1966-11-22 Polaroid Corp Pressure responsive record materials
JPS42446B1 (de) 1963-10-21 1967-01-13
US3418250A (en) 1965-10-23 1968-12-24 Us Plywood Champ Papers Inc Microcapsules, process for their formation and transfer sheet record material coated therewith
US3458311A (en) 1966-06-27 1969-07-29 Du Pont Photopolymerizable elements with solvent removable protective layers
US3479185A (en) 1965-06-03 1969-11-18 Du Pont Photopolymerizable compositions and layers containing 2,4,5-triphenylimidazoyl dimers
JPS4643946B1 (de) 1967-11-09 1971-12-27
US3660304A (en) 1968-06-04 1972-05-02 Fuji Photo Film Co Ltd Method of producing oily liquid-containing microcapsules
JPS4835281A (de) 1971-09-07 1973-05-24
JPS4864183A (de) 1971-12-09 1973-09-05
JPS4841708B1 (de) 1970-01-13 1973-12-07
US3796669A (en) 1970-04-28 1974-03-12 Fuji Photo Film Co Ltd Process for the production of oily liquid-containing microcapsules and the microcapsules produced thereby
JPS4970702A (de) 1972-09-27 1974-07-09
JPS4943191B1 (de) 1969-07-11 1974-11-19
US3881924A (en) 1971-08-25 1975-05-06 Matsushita Electric Ind Co Ltd Organic photoconductive layer sensitized with trimethine compound
US3902734A (en) 1974-03-14 1975-09-02 Twm Mfg Co Frames for axle suspension systems
US3905815A (en) 1971-12-17 1975-09-16 Minnesota Mining & Mfg Photopolymerizable sheet material with diazo resin layer
US3914511A (en) 1973-10-18 1975-10-21 Champion Int Corp Spot printing of color-forming microcapsules and co-reactant therefor
JPS519079B1 (de) 1967-11-29 1976-03-23
JPS5137193A (de) 1974-09-25 1976-03-29 Toyo Boseki
JPS5147334B1 (de) 1970-11-02 1976-12-14
US4001140A (en) 1974-07-10 1977-01-04 Ncr Corporation Capsule manufacture
US4025445A (en) 1975-12-15 1977-05-24 Texaco Inc. Boron amide lubricating oil additive
JPS5230490B2 (de) 1972-03-21 1977-08-09
US4069055A (en) 1974-05-02 1978-01-17 General Electric Company Photocurable epoxy compositions containing group Va onium salts
US4069056A (en) 1974-05-02 1978-01-17 General Electric Company Photopolymerizable composition containing group Va aromatic onium salts
US4153461A (en) 1967-12-04 1979-05-08 Hoechst Aktiengesellschaft Layer support for light-sensitive material adapted to be converted into a planographic printing plate
JPS5463902A (en) 1977-10-31 1979-05-23 Fuji Photo Film Co Ltd Method of making offset printing plate
JPS5421726B2 (de) 1970-12-31 1979-08-01
DE2904626A1 (de) 1978-02-08 1979-08-09 Minnesota Mining & Mfg Triarylsulfoniumkomplexsalze, verfahren zu ihrer herstellung und diese salze enthaltende photopolymerisierbare gemische
JPS5532070A (en) 1978-08-29 1980-03-06 Fuji Photo Film Co Ltd Photosensitive resin composition
JPS5549729B2 (de) 1973-02-07 1980-12-13
JPS5617654B2 (de) 1970-12-28 1981-04-23
US4283475A (en) 1979-08-21 1981-08-11 Fuji Photo Film Co., Ltd. Pentamethine thiopyrylium salts, process for production thereof, and photoconductive compositions containing said salts
US4311783A (en) 1979-08-14 1982-01-19 E. I. Du Pont De Nemours And Company Dimers derived from unsymmetrical 2,4,5,-triphenylimidazole compounds as photoinitiators
US4327169A (en) 1981-01-19 1982-04-27 Eastman Kodak Company Infrared sensitive photoconductive composition, elements and imaging method using trimethine thiopyrylium dye
JPS57196231A (en) 1981-05-20 1982-12-02 Hoechst Ag Mixture able to be polymerized by radiation and copying material mainly composed thereof
JPS58112792A (ja) 1981-12-28 1983-07-05 Ricoh Co Ltd 光情報記録部材
JPS58112793A (ja) 1981-12-28 1983-07-05 Ricoh Co Ltd 光情報記録部材
JPS58125246A (ja) 1982-01-22 1983-07-26 Ricoh Co Ltd レ−ザ記録媒体
JPS58159533A (ja) 1982-02-01 1983-09-21 Toray Ind Inc 異形断面捲縮糸を植毛した現像用ブラシ
JPS58173696A (ja) 1982-04-06 1983-10-12 Canon Inc 光学記録媒体
JPS58181051A (ja) 1982-04-19 1983-10-22 Canon Inc 有機光導電体
JPS58181690A (ja) 1982-04-19 1983-10-24 Canon Inc 光学記録媒体
JPS5849860B2 (ja) 1973-12-07 1983-11-07 ヘキスト アクチェンゲゼルシャフト コウジユウゴウセイフクシヤザイリヨウ
JPS58194595A (ja) 1982-05-10 1983-11-12 Canon Inc 光学記録媒体
JPS58220143A (ja) 1982-06-16 1983-12-21 Canon Inc 有機被膜
JPS58224793A (ja) 1982-06-25 1983-12-27 Nec Corp 光学記録媒体
JPS595241A (ja) 1982-06-21 1984-01-12 ヘキスト・アクチエンゲゼルシヤフト 放射線重合可能な混合物
JPS595240A (ja) 1982-06-21 1984-01-12 ヘキスト・アクチエンゲゼルシヤフト 放射線重合可能な混合物
JPS5941363A (ja) 1982-08-31 1984-03-07 Canon Inc 新規ピリリウム系染料およびその製造方法
JPS5948187A (ja) 1982-09-10 1984-03-19 Nec Corp 光学記録媒体
EP0104143A1 (de) 1982-09-18 1984-03-28 Ciba-Geigy Ag Diaryljodosylsalze enthaltende photopolymerisierbare Zusammensetzungen
JPS5973996A (ja) 1982-10-22 1984-04-26 Nec Corp 光学記録用媒体
JPS5984248A (ja) 1982-11-05 1984-05-15 Canon Inc 有機被膜
JPS5984249A (ja) 1982-11-05 1984-05-15 Canon Inc 有機被膜
JPS5984356A (ja) 1982-11-05 1984-05-16 Ricoh Co Ltd 光デイスク原盤の作成方法
JPS59146063A (ja) 1983-02-09 1984-08-21 Canon Inc 有機被膜
JPS59146061A (ja) 1983-02-09 1984-08-21 Canon Inc 有機被膜
JPS59152396A (ja) 1983-02-11 1984-08-31 チバ−ガイギ− アクチエンゲゼルシヤフト メタロセン,その製造方法およびメタロセンを含む光重合性組成物
JPS59216146A (ja) 1983-05-24 1984-12-06 Sony Corp 電子写真用感光材料
US4491628A (en) 1982-08-23 1985-01-01 International Business Machines Corporation Positive- and negative-working resist compositions with acid generating photoinitiator and polymer with acid labile groups pendant from polymer backbone
JPS6052940A (ja) 1983-09-02 1985-03-26 Nec Corp 光学記録媒体
JPS6063744A (ja) 1983-08-23 1985-04-12 Nec Corp 光学的情報記録媒体
JPS6078787A (ja) 1983-10-07 1985-05-04 Ricoh Co Ltd 光学的情報記録媒体
JPS60168144A (ja) 1984-02-13 1985-08-31 Japan Synthetic Rubber Co Ltd 剥離液組成物
JPS60239736A (ja) 1984-05-14 1985-11-28 Fuji Photo Film Co Ltd 感光性組成物
JPS6122048A (ja) 1984-06-08 1986-01-30 ヘキスト・アクチエンゲゼルシヤフト 重合可能な化合物、その製法、およびこれを含有する放射線感性複写層
JPS61151197A (ja) 1984-12-20 1986-07-09 チバ‐ガイギー アーゲー チタノセン類およびこれらのチタノセン類を含有する照射重合開始剤
JPS61166544A (ja) 1985-01-18 1986-07-28 Fuji Photo Film Co Ltd 光可溶化組成物
JPS61169837A (ja) 1985-01-22 1986-07-31 Fuji Photo Film Co Ltd 光可溶化組成物
JPS61169835A (ja) 1985-01-22 1986-07-31 Fuji Photo Film Co Ltd 光可溶化組成物
US4622286A (en) 1985-09-16 1986-11-11 E. I. Du Pont De Nemours And Company Photoimaging composition containing admixture of leuco dye and 2,4,5-triphenylimidazolyl dimer
JPS6258241A (ja) 1985-09-09 1987-03-13 Fuji Photo Film Co Ltd 感光性組成物
JPS62143044A (ja) 1985-11-20 1987-06-26 サイカラー・インコーポレーテッド 染料−ほう素化合物錯体を含有する光硬化性組成物およびその組成物を使用する感光性材料
JPS62150242A (ja) 1985-11-20 1987-07-04 サイカラー・インコーポレーテッド イオン性染料化合物を開始剤として含む感光性材料
JPS62167253A (ja) 1986-01-17 1987-07-23 昭和電工株式会社 電気比抵抗の高いSiC焼結体
JPS62170950A (ja) 1986-01-23 1987-07-28 Fuji Photo Film Co Ltd 感光性組成物
DE3604581A1 (de) 1986-02-14 1987-08-20 Basf Ag 4-acylbenzylsulfoniumsalze, ihre herstellung sowie sie enthaltende photohaertbare gemische und aufzeichnungsmaterialien
DE3604580A1 (de) 1986-02-14 1987-08-20 Basf Ag Haertbare mischungen, enthaltend n-sulfonylaminosulfoniumsalze als kationisch wirksame katalysatoren
JPS6239418B2 (de) 1978-05-20 1987-08-22 Hoechst Ag
JPS6239417B2 (de) 1978-05-20 1987-08-22 Hoechst Ag
US4689272A (en) 1984-02-21 1987-08-25 Hoechst Aktiengesellschaft Process for a two-stage hydrophilizing post-treatment of aluminum oxide layers with aqueous solutions and use thereof in the manufacture of supports for offset printing plates
JPS62212401A (ja) 1986-03-14 1987-09-18 Fuji Photo Film Co Ltd 光重合性組成物
JPS62226143A (ja) 1986-03-27 1987-10-05 Fuji Photo Film Co Ltd 感光性組成物
JPS62293247A (ja) 1986-06-12 1987-12-19 Fuji Photo Film Co Ltd 感光性印刷版
JPS6341484A (ja) 1986-08-01 1988-02-22 チバ−ガイギ− ア−ゲ− チタノセン、それらの製造法およびそれらを含有する組成物
JPS6370243A (ja) 1986-09-11 1988-03-30 Fuji Photo Film Co Ltd 感光性組成物
US4756993A (en) 1986-01-27 1988-07-12 Fuji Photo Film Co., Ltd. Electrophotographic photoreceptor with light scattering layer or light absorbing layer on support backside
US4760013A (en) 1987-02-17 1988-07-26 International Business Machines Corporation Sulfonium salt photoinitiators
JPS63260909A (ja) 1987-03-28 1988-10-27 ヘキスト・アクチエンゲゼルシヤフト 光重合性混合物及びこの混合物から製造される記録材料
JPS63277653A (ja) 1987-03-28 1988-11-15 ヘキスト・アクチエンゲゼルシヤフト 重合可能な化合物、これを含有する放射線重合可能な混合物及び放射線重合可能な記録材料
JPS63298339A (ja) 1987-05-29 1988-12-06 Fuji Photo Film Co Ltd 感光性組成物
EP0297442A1 (de) 1987-07-01 1989-01-04 BASF Aktiengesellschaft Sulfoniumsalze mit säurelabilen Gruppierungen
EP0297443A2 (de) 1987-07-01 1989-01-04 BASF Aktiengesellschaft Strahlungsempfindliches Gemisch für lichtempfindliche Beschichtungsmaterialien
JPH01105238A (ja) 1987-03-28 1989-04-21 Hoechst Ag 光重合可能な混合物および光重合可能な記録材料
JPH01152109A (ja) 1987-12-09 1989-06-14 Toray Ind Inc 光重合性組成物
JPH01165613A (ja) 1987-11-16 1989-06-29 Hoechst Ag 重合可能な化合物、その放射線重合性混合物および放射線重合記録材料
JPH0140337B2 (de) 1979-12-29 1989-08-28 Hoechst Ag
JPH0140336B2 (de) 1979-12-29 1989-08-28 Hoechst Ag
JPH01304453A (ja) 1988-06-02 1989-12-08 Toyobo Co Ltd 光重合性組成物
JPH02249A (ja) 1987-12-01 1990-01-05 Ciba Geigy Ag チタノセンおよびそれを含有する光重合性組成物
JPH024705A (ja) 1988-03-24 1990-01-09 Dentsply Internatl Inc 光硬化性組成物用チタナート開始剤
JPH0225493A (ja) 1988-05-21 1990-01-26 Hoechst Ag アルケニルホスホン酸エステルおよびアルケニルホスフイン酸エルテル、その製法並びに当該化合物を含有する放射線重合性混合物および記録材料
JPH0216765B2 (de) 1980-09-29 1990-04-18 Hoechst Ag
EP0370693A2 (de) 1988-11-21 1990-05-30 Eastman Kodak Company Oniumsalze und ihre Verwendung als Photoinitiatoren
JPH02150848A (ja) 1988-12-02 1990-06-11 Hitachi Ltd 光退色性放射線感応性組成物およびそれを用いたパターン形成法
US4933377A (en) 1988-02-29 1990-06-12 Saeva Franklin D Novel sulfonium salts and the use thereof as photoinitiators
JPH0232293B2 (de) 1980-12-22 1990-07-19 Hoechst Ag
JPH02226149A (ja) 1988-12-22 1990-09-07 Hoechst Ag 光重合性化合物、それを含む光重合性混合物及びそれから製造された光重合性複写材料
EP0390214A2 (de) 1989-03-31 1990-10-03 E.F. Johnson Company Verfahren und Einrichtung für ein verteilendes Grossraum-Netzwerk für ein land-mobiles Bündelnetzkommunikationssystem
JPH02296514A (ja) 1989-05-12 1990-12-07 Matsushita Electric Ind Co Ltd 車両用サスペンション制御装置
JPH02304441A (ja) 1989-05-18 1990-12-18 Fuji Photo Film Co Ltd 感光性平版印刷版
JPH03100554A (ja) 1989-09-13 1991-04-25 Fuji Photo Film Co Ltd 現像用ブラシ
US5041358A (en) 1989-04-17 1991-08-20 International Business Machines Corporation Negative photoresist and use thereof
US5156938A (en) 1989-03-30 1992-10-20 Graphics Technology International, Inc. Ablation-transfer imaging/recording
JPH04365049A (ja) 1991-06-12 1992-12-17 Fuji Photo Film Co Ltd 感光性組成物
JPH0513514B2 (de) 1985-09-10 1993-02-22 Fuji Photo Film Co Ltd
JPH0545885A (ja) 1991-08-19 1993-02-26 Fuji Photo Film Co Ltd 感光性平版印刷版
JPH0561214A (ja) 1991-09-04 1993-03-12 Fuji Photo Film Co Ltd 平版印刷用原版の製造方法
JPH0519702B2 (de) 1985-09-05 1993-03-17 Fuji Photo Film Co Ltd
JPH0583588A (ja) 1991-09-24 1993-04-02 Omron Corp 画像処理装置
JPH0634174A (ja) 1992-07-15 1994-02-08 Hitachi Ltd 換気装置
JPH0629285B2 (ja) 1983-10-14 1994-04-20 三菱化成株式会社 光重合性組成物
JPH06157623A (ja) 1992-08-14 1994-06-07 Toyo Ink Mfg Co Ltd 重合性組成物および重合方法
JPH06175564A (ja) 1992-12-04 1994-06-24 Toyo Ink Mfg Co Ltd ホログラム記録材料及びそれを用いた体積位相型ホログラムの製造方法
JPH06175554A (ja) 1992-12-03 1994-06-24 Toyo Ink Mfg Co Ltd 体積位相型ホログラムの製造方法
JPH06175553A (ja) 1992-12-03 1994-06-24 Toyo Ink Mfg Co Ltd ホログラム記録媒体及びそれを用いた体積位相型ホログラムの製造方法
JPH06175561A (ja) 1992-12-04 1994-06-24 Toyo Ink Mfg Co Ltd ホログラム記録媒体及びそれを用いた体積位相型ホログラムの製造方法
JPH06348011A (ja) 1993-06-04 1994-12-22 Toyo Ink Mfg Co Ltd 光重合性組成物
JPH0721633B2 (ja) 1987-07-10 1995-03-08 富士写真フイルム株式会社 感光材料
JPH07128785A (ja) 1993-11-02 1995-05-19 Konica Corp 画像形成材料及び画像形成方法
JPH07140589A (ja) 1993-11-19 1995-06-02 Konica Corp 画像形成材料および画像形成方法
JPH07292014A (ja) 1994-04-25 1995-11-07 Nippon Paint Co Ltd 近赤外光重合性組成物
JPH07306527A (ja) 1994-05-11 1995-11-21 Konica Corp 画像形成材料及び画像形成方法
JPH08108621A (ja) 1994-10-06 1996-04-30 Konica Corp 画像記録媒体及びそれを用いる画像形成方法
WO1996034316A1 (en) 1995-04-27 1996-10-31 Minnesota Mining And Manufacturing Company Negative-acting no-process printing plates
JPH09123387A (ja) 1995-10-24 1997-05-13 Agfa Gevaert Nv 印刷機上現像を含む平版印刷版の製造方法
JPH09131850A (ja) 1995-10-24 1997-05-20 Agfa Gevaert Nv 印刷機上現像を含む平版印刷版の製造方法
JPH09171250A (ja) 1995-11-09 1997-06-30 Agfa Gevaert Nv 感熱性像形成要素およびそれらを用いて印刷版を製造する方法
JPH09171249A (ja) 1995-11-09 1997-06-30 Agfa Gevaert Nv 感熱性像形成要素およびそれを用いて印刷版を製造する方法
JPH09188710A (ja) 1995-11-24 1997-07-22 Ciba Geigy Ag モノボランからのボレート光開始剤
JPH09188686A (ja) 1995-11-24 1997-07-22 Ciba Geigy Ag 光重合のための酸安定性硼酸塩
JPH09188685A (ja) 1995-11-24 1997-07-22 Ciba Geigy Ag 光重合のためのボレート補助開始剤
JP2764769B2 (ja) 1991-06-24 1998-06-11 富士写真フイルム株式会社 光重合性組成物
JPH10282679A (ja) 1997-04-08 1998-10-23 Fuji Photo Film Co Ltd ネガ型感光性平版印刷版
EP0931647A1 (de) 1998-01-23 1999-07-28 Agfa-Gevaert N.V. Wärmeempfindliches Aufzeichnungselement und Verfahren zur Herstellung von Flacdruckplatten damit
US6030750A (en) 1995-10-24 2000-02-29 Agfa-Gevaert. N.V. Method for making a lithographic printing plate involving on press development
JP2000066385A (ja) 1998-08-18 2000-03-03 Ciba Specialty Chem Holding Inc 高感度で高レジスト厚さのi線ホトレジスト用スルホニルオキシム類
JP2000080068A (ja) 1998-06-26 2000-03-21 Ciba Specialty Chem Holding Inc 新規o―アシルオキシム光開始剤
JP2000131837A (ja) 1998-08-17 2000-05-12 Mitsubishi Chemicals Corp 光重合性組成物、光重合性平版印刷版及び画像形成方法
JP2001133969A (ja) 1999-11-01 2001-05-18 Fuji Photo Film Co Ltd ネガ型平版印刷版原版
JP2001199175A (ja) 2000-01-19 2001-07-24 Fuji Photo Film Co Ltd 平版印刷版用支持体
US20010018159A1 (en) 2000-01-14 2001-08-30 Kazuo Maemoto Lithographic printing plate precursor
JP2001253181A (ja) 2000-03-09 2001-09-18 Fuji Photo Film Co Ltd ポジ型感熱性平版印刷用原板
JP2001277740A (ja) 2000-01-27 2001-10-10 Fuji Photo Film Co Ltd 平版印刷版用原版
JP2001277742A (ja) 2000-01-27 2001-10-10 Fuji Photo Film Co Ltd 平版印刷版用原版
JP2001322365A (ja) 2000-05-16 2001-11-20 Fuji Photo Film Co Ltd 感熱性平版印刷用原板
JP2001343742A (ja) 2000-05-30 2001-12-14 Fuji Photo Film Co Ltd 感熱性組成物及びそれを用いた平版印刷版原版
JP2002079772A (ja) 2000-09-05 2002-03-19 Fuji Photo Film Co Ltd 平版印刷版用原版及びそれを用いた平版印刷版の製版、印刷方法
JP2002107916A (ja) 2000-09-27 2002-04-10 Fuji Photo Film Co Ltd 平版印刷版原版
JP2002116539A (ja) 2000-10-11 2002-04-19 Fuji Photo Film Co Ltd 平版印刷版原版
JP2002148790A (ja) 2000-09-04 2002-05-22 Fuji Photo Film Co Ltd 感熱性組成物、それを用いた平版印刷版原版及びスルホニウム塩化合物
JP2002278057A (ja) 2001-01-15 2002-09-27 Fuji Photo Film Co Ltd ネガ型画像記録材料及びシアニン色素
JP2002287334A (ja) 2001-03-26 2002-10-03 Fuji Photo Film Co Ltd 平版印刷版原版及び平版印刷方法
JP2002328465A (ja) 2001-04-27 2002-11-15 Fuji Photo Film Co Ltd 平版印刷版原版
US20020197564A1 (en) * 2000-10-17 2002-12-26 Hans-Joachim Timpe Stabilized infrared-sensitive polymerizable systems
WO2003051631A1 (en) * 2001-12-13 2003-06-26 Kodak Polychrome Graphics Company Ltd. Photosensitive composition and photosensitive planographic printing plate
EP1547801A2 (de) * 2003-12-26 2005-06-29 Okamoto Chemical Industry Co., Ltd Aluminiumträger für eine Flackdruckplatte und Grundplatte für eine Flackdruckplatte
EP1577090A2 (de) * 2004-03-19 2005-09-21 Fuji Photo Film Co., Ltd. Lithographisches Druckplattenvorläufer
JP2006235227A (ja) 2005-02-24 2006-09-07 Fuji Photo Film Co Ltd 平版印刷版の処理方法及び自動現像装置
JP3819574B2 (ja) 1997-12-25 2006-09-13 三洋電機株式会社 半導体装置の製造方法
EP1712353A1 (de) * 2005-04-13 2006-10-18 Fuji Photo Film Co., Ltd. Flachdruckplattenvorläufer
JP2006297907A (ja) 2005-02-28 2006-11-02 Fuji Photo Film Co Ltd 平版印刷版原版、平版印刷版原版の製造方法および平版印刷方法
JP2007050660A (ja) 2005-08-19 2007-03-01 Fujifilm Corp 平版印刷版原版および平版印刷方法
WO2007026491A1 (ja) * 2005-08-30 2007-03-08 Mitsui Chemicals, Inc. 平版印刷用原版、および平版印刷用原版の感光層用樹脂組成物
US20070059638A1 (en) * 2005-09-14 2007-03-15 Osamu Namba Photosensitive resin composition
WO2007052470A1 (ja) * 2005-11-01 2007-05-10 Konica Minolta Medical & Graphic, Inc. 平版印刷版材料、平版印刷版、平版印刷版の作製方法及び平版印刷版の印刷方法
EP1834766A2 (de) * 2006-03-14 2007-09-19 FUJIFILM Corporation Lithografiedruckplattenvorläufer
JP2007276454A (ja) 2006-03-14 2007-10-25 Fujifilm Corp 平版印刷版原版
EP1862301A1 (de) 2006-06-02 2007-12-05 FUJIFILM Corporation Bildaufzeichnungsmaterial, Flachdruckplattenvorläufer und Flachdruckverfahren damit
EP1956428A2 (de) * 2007-02-06 2008-08-13 FUJIFILM Corporation Lichtempfindliche Zusammensetzung, Lithographiedruckplattenvorläufer, Lithographiedruckverfahren und Cyaninfarbstoffe

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1097065A (ja) * 1996-09-20 1998-04-14 Nippon Paint Co Ltd 感光性樹脂組成物
US6569597B2 (en) * 2001-01-19 2003-05-27 Eastman Kodak Company Thermal imaging composition and member and methods of imaging and printing
JP4384449B2 (ja) * 2003-06-24 2009-12-16 富士フイルム株式会社 平版印刷版用原版および平版印刷方法
US7008751B2 (en) * 2004-08-04 2006-03-07 Eastman Kodak Company Thermally switchable imageable elements containing betaine-containing co-polymers
US20090022961A1 (en) * 2004-09-01 2009-01-22 Bernd Strehmel Interlayer for lithographic plates
JPWO2007145048A1 (ja) * 2006-06-12 2009-10-29 コニカミノルタエムジー株式会社 平版印刷版、平版印刷版材料、平版印刷版材料用支持体および平版印刷方法

Patent Citations (203)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB434875A (en) 1933-02-08 1935-09-05 Bela Gasper An improved method of producing multi-colour photographic images on coloured and differently sensitized multi-layer photographic material
US2714066A (en) 1950-12-06 1955-07-26 Minnesota Mining & Mfg Planographic printing plate
US2800457A (en) 1953-06-30 1957-07-23 Ncr Co Oil-containing microscopic capsules and method of making them
US2800458A (en) 1953-06-30 1957-07-23 Ncr Co Oil-containing microscopic capsules and method of making them
US2833827A (en) 1955-01-17 1958-05-06 Bayer Ag Tri (3, 5-di lower alkyl-4-hydroxy phenyl)-sulfonium chlorides and method of preparing same
GB930422A (en) 1958-12-22 1963-07-03 Upjohn Co Process of the encapsulation of particulate material
JPS369163B1 (de) 1959-09-01 1961-06-30
JPS3622063B1 (de) 1959-12-11 1961-11-15
GB967074A (en) 1960-02-23 1964-08-19 Metallurg De Prayon Sa Process and apparatus for the production of zinc by the reduction of zinc oxides in a multiple-retort furnace
US3111407A (en) 1960-02-26 1963-11-19 Ibm Methods for making record materials
US3276868A (en) 1960-08-05 1966-10-04 Azoplate Corp Planographic printing plates
GB952807A (en) 1961-09-05 1964-03-18 Ncr Co Process for manufacturing minute capsules having waxy material walls
US3287154A (en) 1963-04-24 1966-11-22 Polaroid Corp Pressure responsive record materials
US3181461A (en) 1963-05-23 1965-05-04 Howard A Fromson Photographic plate
JPS42446B1 (de) 1963-10-21 1967-01-13
US3280734A (en) 1963-10-29 1966-10-25 Howard A Fromson Photographic plate
US3479185A (en) 1965-06-03 1969-11-18 Du Pont Photopolymerizable compositions and layers containing 2,4,5-triphenylimidazoyl dimers
US3418250A (en) 1965-10-23 1968-12-24 Us Plywood Champ Papers Inc Microcapsules, process for their formation and transfer sheet record material coated therewith
US3458311A (en) 1966-06-27 1969-07-29 Du Pont Photopolymerizable elements with solvent removable protective layers
JPS4643946B1 (de) 1967-11-09 1971-12-27
JPS519079B1 (de) 1967-11-29 1976-03-23
US4153461A (en) 1967-12-04 1979-05-08 Hoechst Aktiengesellschaft Layer support for light-sensitive material adapted to be converted into a planographic printing plate
US3660304A (en) 1968-06-04 1972-05-02 Fuji Photo Film Co Ltd Method of producing oily liquid-containing microcapsules
JPS4943191B1 (de) 1969-07-11 1974-11-19
JPS4841708B1 (de) 1970-01-13 1973-12-07
US3796669A (en) 1970-04-28 1974-03-12 Fuji Photo Film Co Ltd Process for the production of oily liquid-containing microcapsules and the microcapsules produced thereby
JPS5147334B1 (de) 1970-11-02 1976-12-14
JPS5617654B2 (de) 1970-12-28 1981-04-23
JPS5421726B2 (de) 1970-12-31 1979-08-01
US3881924A (en) 1971-08-25 1975-05-06 Matsushita Electric Ind Co Ltd Organic photoconductive layer sensitized with trimethine compound
JPS4835281A (de) 1971-09-07 1973-05-24
JPS4864183A (de) 1971-12-09 1973-09-05
US3905815A (en) 1971-12-17 1975-09-16 Minnesota Mining & Mfg Photopolymerizable sheet material with diazo resin layer
JPS5230490B2 (de) 1972-03-21 1977-08-09
JPS4970702A (de) 1972-09-27 1974-07-09
JPS5549729B2 (de) 1973-02-07 1980-12-13
US3914511A (en) 1973-10-18 1975-10-21 Champion Int Corp Spot printing of color-forming microcapsules and co-reactant therefor
JPS5849860B2 (ja) 1973-12-07 1983-11-07 ヘキスト アクチェンゲゼルシャフト コウジユウゴウセイフクシヤザイリヨウ
US3902734A (en) 1974-03-14 1975-09-02 Twm Mfg Co Frames for axle suspension systems
US4069055A (en) 1974-05-02 1978-01-17 General Electric Company Photocurable epoxy compositions containing group Va onium salts
US4069056A (en) 1974-05-02 1978-01-17 General Electric Company Photopolymerizable composition containing group Va aromatic onium salts
US4089802A (en) 1974-07-10 1978-05-16 Ncr Corporation Capsule manufacture
US4087376A (en) 1974-07-10 1978-05-02 Ncr Corporation Capsule manufacture
US4001140A (en) 1974-07-10 1977-01-04 Ncr Corporation Capsule manufacture
JPS5137193A (de) 1974-09-25 1976-03-29 Toyo Boseki
US4025445A (en) 1975-12-15 1977-05-24 Texaco Inc. Boron amide lubricating oil additive
JPS5463902A (en) 1977-10-31 1979-05-23 Fuji Photo Film Co Ltd Method of making offset printing plate
DE2904626A1 (de) 1978-02-08 1979-08-09 Minnesota Mining & Mfg Triarylsulfoniumkomplexsalze, verfahren zu ihrer herstellung und diese salze enthaltende photopolymerisierbare gemische
JPS6239418B2 (de) 1978-05-20 1987-08-22 Hoechst Ag
JPS6239417B2 (de) 1978-05-20 1987-08-22 Hoechst Ag
JPS5532070A (en) 1978-08-29 1980-03-06 Fuji Photo Film Co Ltd Photosensitive resin composition
US4311783A (en) 1979-08-14 1982-01-19 E. I. Du Pont De Nemours And Company Dimers derived from unsymmetrical 2,4,5,-triphenylimidazole compounds as photoinitiators
US4283475A (en) 1979-08-21 1981-08-11 Fuji Photo Film Co., Ltd. Pentamethine thiopyrylium salts, process for production thereof, and photoconductive compositions containing said salts
JPH0140336B2 (de) 1979-12-29 1989-08-28 Hoechst Ag
JPH0140337B2 (de) 1979-12-29 1989-08-28 Hoechst Ag
JPH0216765B2 (de) 1980-09-29 1990-04-18 Hoechst Ag
JPH0232293B2 (de) 1980-12-22 1990-07-19 Hoechst Ag
JPS57142645A (en) 1981-01-19 1982-09-03 Eastman Kodak Co Infrared sensitive photoconductive element
US4327169A (en) 1981-01-19 1982-04-27 Eastman Kodak Company Infrared sensitive photoconductive composition, elements and imaging method using trimethine thiopyrylium dye
JPS57196231A (en) 1981-05-20 1982-12-02 Hoechst Ag Mixture able to be polymerized by radiation and copying material mainly composed thereof
JPS58112793A (ja) 1981-12-28 1983-07-05 Ricoh Co Ltd 光情報記録部材
JPS58112792A (ja) 1981-12-28 1983-07-05 Ricoh Co Ltd 光情報記録部材
JPS58125246A (ja) 1982-01-22 1983-07-26 Ricoh Co Ltd レ−ザ記録媒体
JPS58159533A (ja) 1982-02-01 1983-09-21 Toray Ind Inc 異形断面捲縮糸を植毛した現像用ブラシ
JPS58173696A (ja) 1982-04-06 1983-10-12 Canon Inc 光学記録媒体
JPS58181051A (ja) 1982-04-19 1983-10-22 Canon Inc 有機光導電体
JPS58181690A (ja) 1982-04-19 1983-10-24 Canon Inc 光学記録媒体
JPS58194595A (ja) 1982-05-10 1983-11-12 Canon Inc 光学記録媒体
JPS58220143A (ja) 1982-06-16 1983-12-21 Canon Inc 有機被膜
JPS595240A (ja) 1982-06-21 1984-01-12 ヘキスト・アクチエンゲゼルシヤフト 放射線重合可能な混合物
JPS595241A (ja) 1982-06-21 1984-01-12 ヘキスト・アクチエンゲゼルシヤフト 放射線重合可能な混合物
JPS58224793A (ja) 1982-06-25 1983-12-27 Nec Corp 光学記録媒体
US4491628A (en) 1982-08-23 1985-01-01 International Business Machines Corporation Positive- and negative-working resist compositions with acid generating photoinitiator and polymer with acid labile groups pendant from polymer backbone
JPS5941363A (ja) 1982-08-31 1984-03-07 Canon Inc 新規ピリリウム系染料およびその製造方法
JPS5948187A (ja) 1982-09-10 1984-03-19 Nec Corp 光学記録媒体
EP0104143A1 (de) 1982-09-18 1984-03-28 Ciba-Geigy Ag Diaryljodosylsalze enthaltende photopolymerisierbare Zusammensetzungen
JPS5973996A (ja) 1982-10-22 1984-04-26 Nec Corp 光学記録用媒体
JPS5984248A (ja) 1982-11-05 1984-05-15 Canon Inc 有機被膜
JPS5984249A (ja) 1982-11-05 1984-05-15 Canon Inc 有機被膜
JPS5984356A (ja) 1982-11-05 1984-05-16 Ricoh Co Ltd 光デイスク原盤の作成方法
JPS59146063A (ja) 1983-02-09 1984-08-21 Canon Inc 有機被膜
JPS59146061A (ja) 1983-02-09 1984-08-21 Canon Inc 有機被膜
JPS59152396A (ja) 1983-02-11 1984-08-31 チバ−ガイギ− アクチエンゲゼルシヤフト メタロセン,その製造方法およびメタロセンを含む光重合性組成物
JPS59216146A (ja) 1983-05-24 1984-12-06 Sony Corp 電子写真用感光材料
JPS6063744A (ja) 1983-08-23 1985-04-12 Nec Corp 光学的情報記録媒体
JPS6052940A (ja) 1983-09-02 1985-03-26 Nec Corp 光学記録媒体
JPS6078787A (ja) 1983-10-07 1985-05-04 Ricoh Co Ltd 光学的情報記録媒体
JPH0629285B2 (ja) 1983-10-14 1994-04-20 三菱化成株式会社 光重合性組成物
JPS60168144A (ja) 1984-02-13 1985-08-31 Japan Synthetic Rubber Co Ltd 剥離液組成物
US4689272A (en) 1984-02-21 1987-08-25 Hoechst Aktiengesellschaft Process for a two-stage hydrophilizing post-treatment of aluminum oxide layers with aqueous solutions and use thereof in the manufacture of supports for offset printing plates
JPS60239736A (ja) 1984-05-14 1985-11-28 Fuji Photo Film Co Ltd 感光性組成物
JPS6122048A (ja) 1984-06-08 1986-01-30 ヘキスト・アクチエンゲゼルシヤフト 重合可能な化合物、その製法、およびこれを含有する放射線感性複写層
JPS61151197A (ja) 1984-12-20 1986-07-09 チバ‐ガイギー アーゲー チタノセン類およびこれらのチタノセン類を含有する照射重合開始剤
JPS61166544A (ja) 1985-01-18 1986-07-28 Fuji Photo Film Co Ltd 光可溶化組成物
JPS61169835A (ja) 1985-01-22 1986-07-31 Fuji Photo Film Co Ltd 光可溶化組成物
JPS61169837A (ja) 1985-01-22 1986-07-31 Fuji Photo Film Co Ltd 光可溶化組成物
JPH0519702B2 (de) 1985-09-05 1993-03-17 Fuji Photo Film Co Ltd
JPS6258241A (ja) 1985-09-09 1987-03-13 Fuji Photo Film Co Ltd 感光性組成物
JPH0513514B2 (de) 1985-09-10 1993-02-22 Fuji Photo Film Co Ltd
US4622286A (en) 1985-09-16 1986-11-11 E. I. Du Pont De Nemours And Company Photoimaging composition containing admixture of leuco dye and 2,4,5-triphenylimidazolyl dimer
JPS62150242A (ja) 1985-11-20 1987-07-04 サイカラー・インコーポレーテッド イオン性染料化合物を開始剤として含む感光性材料
JPS62143044A (ja) 1985-11-20 1987-06-26 サイカラー・インコーポレーテッド 染料−ほう素化合物錯体を含有する光硬化性組成物およびその組成物を使用する感光性材料
JPS62167253A (ja) 1986-01-17 1987-07-23 昭和電工株式会社 電気比抵抗の高いSiC焼結体
JPS62170950A (ja) 1986-01-23 1987-07-28 Fuji Photo Film Co Ltd 感光性組成物
US4756993A (en) 1986-01-27 1988-07-12 Fuji Photo Film Co., Ltd. Electrophotographic photoreceptor with light scattering layer or light absorbing layer on support backside
EP0233567A2 (de) 1986-02-14 1987-08-26 BASF Aktiengesellschaft Härtbare Mischungen, enthaltend N-Sulfonylaminosulfoniumsalze als kationisch wirksame Katalysatoren
DE3604580A1 (de) 1986-02-14 1987-08-20 Basf Ag Haertbare mischungen, enthaltend n-sulfonylaminosulfoniumsalze als kationisch wirksame katalysatoren
DE3604581A1 (de) 1986-02-14 1987-08-20 Basf Ag 4-acylbenzylsulfoniumsalze, ihre herstellung sowie sie enthaltende photohaertbare gemische und aufzeichnungsmaterialien
US4734444A (en) 1986-02-14 1988-03-29 Basf Aktiengesellschaft Curable mixtures containing N-sulfonylaminosulfonium salts as cationically active catalysts
JPS62212401A (ja) 1986-03-14 1987-09-18 Fuji Photo Film Co Ltd 光重合性組成物
JPS62226143A (ja) 1986-03-27 1987-10-05 Fuji Photo Film Co Ltd 感光性組成物
JPS62293247A (ja) 1986-06-12 1987-12-19 Fuji Photo Film Co Ltd 感光性印刷版
JPS6341484A (ja) 1986-08-01 1988-02-22 チバ−ガイギ− ア−ゲ− チタノセン、それらの製造法およびそれらを含有する組成物
JPS6370243A (ja) 1986-09-11 1988-03-30 Fuji Photo Film Co Ltd 感光性組成物
US4760013A (en) 1987-02-17 1988-07-26 International Business Machines Corporation Sulfonium salt photoinitiators
JPS63277653A (ja) 1987-03-28 1988-11-15 ヘキスト・アクチエンゲゼルシヤフト 重合可能な化合物、これを含有する放射線重合可能な混合物及び放射線重合可能な記録材料
JPS63260909A (ja) 1987-03-28 1988-10-27 ヘキスト・アクチエンゲゼルシヤフト 光重合性混合物及びこの混合物から製造される記録材料
JPH01105238A (ja) 1987-03-28 1989-04-21 Hoechst Ag 光重合可能な混合物および光重合可能な記録材料
JPS63298339A (ja) 1987-05-29 1988-12-06 Fuji Photo Film Co Ltd 感光性組成物
EP0297442A1 (de) 1987-07-01 1989-01-04 BASF Aktiengesellschaft Sulfoniumsalze mit säurelabilen Gruppierungen
EP0297443A2 (de) 1987-07-01 1989-01-04 BASF Aktiengesellschaft Strahlungsempfindliches Gemisch für lichtempfindliche Beschichtungsmaterialien
JPH0721633B2 (ja) 1987-07-10 1995-03-08 富士写真フイルム株式会社 感光材料
JPH01165613A (ja) 1987-11-16 1989-06-29 Hoechst Ag 重合可能な化合物、その放射線重合性混合物および放射線重合記録材料
JPH02249A (ja) 1987-12-01 1990-01-05 Ciba Geigy Ag チタノセンおよびそれを含有する光重合性組成物
JPH01152109A (ja) 1987-12-09 1989-06-14 Toray Ind Inc 光重合性組成物
US4933377A (en) 1988-02-29 1990-06-12 Saeva Franklin D Novel sulfonium salts and the use thereof as photoinitiators
JPH024705A (ja) 1988-03-24 1990-01-09 Dentsply Internatl Inc 光硬化性組成物用チタナート開始剤
JPH0225493A (ja) 1988-05-21 1990-01-26 Hoechst Ag アルケニルホスホン酸エステルおよびアルケニルホスフイン酸エルテル、その製法並びに当該化合物を含有する放射線重合性混合物および記録材料
JPH01304453A (ja) 1988-06-02 1989-12-08 Toyobo Co Ltd 光重合性組成物
EP0370693A2 (de) 1988-11-21 1990-05-30 Eastman Kodak Company Oniumsalze und ihre Verwendung als Photoinitiatoren
JPH02150848A (ja) 1988-12-02 1990-06-11 Hitachi Ltd 光退色性放射線感応性組成物およびそれを用いたパターン形成法
JPH02226149A (ja) 1988-12-22 1990-09-07 Hoechst Ag 光重合性化合物、それを含む光重合性混合物及びそれから製造された光重合性複写材料
US5156938A (en) 1989-03-30 1992-10-20 Graphics Technology International, Inc. Ablation-transfer imaging/recording
EP0390214A2 (de) 1989-03-31 1990-10-03 E.F. Johnson Company Verfahren und Einrichtung für ein verteilendes Grossraum-Netzwerk für ein land-mobiles Bündelnetzkommunikationssystem
US5041358A (en) 1989-04-17 1991-08-20 International Business Machines Corporation Negative photoresist and use thereof
JPH02296514A (ja) 1989-05-12 1990-12-07 Matsushita Electric Ind Co Ltd 車両用サスペンション制御装置
JPH02304441A (ja) 1989-05-18 1990-12-18 Fuji Photo Film Co Ltd 感光性平版印刷版
JPH03100554A (ja) 1989-09-13 1991-04-25 Fuji Photo Film Co Ltd 現像用ブラシ
JPH04365049A (ja) 1991-06-12 1992-12-17 Fuji Photo Film Co Ltd 感光性組成物
JP2764769B2 (ja) 1991-06-24 1998-06-11 富士写真フイルム株式会社 光重合性組成物
JPH0545885A (ja) 1991-08-19 1993-02-26 Fuji Photo Film Co Ltd 感光性平版印刷版
JPH0561214A (ja) 1991-09-04 1993-03-12 Fuji Photo Film Co Ltd 平版印刷用原版の製造方法
JPH0583588A (ja) 1991-09-24 1993-04-02 Omron Corp 画像処理装置
JPH0634174A (ja) 1992-07-15 1994-02-08 Hitachi Ltd 換気装置
JPH06157623A (ja) 1992-08-14 1994-06-07 Toyo Ink Mfg Co Ltd 重合性組成物および重合方法
JPH06175553A (ja) 1992-12-03 1994-06-24 Toyo Ink Mfg Co Ltd ホログラム記録媒体及びそれを用いた体積位相型ホログラムの製造方法
JPH06175554A (ja) 1992-12-03 1994-06-24 Toyo Ink Mfg Co Ltd 体積位相型ホログラムの製造方法
JPH06175561A (ja) 1992-12-04 1994-06-24 Toyo Ink Mfg Co Ltd ホログラム記録媒体及びそれを用いた体積位相型ホログラムの製造方法
JPH06175564A (ja) 1992-12-04 1994-06-24 Toyo Ink Mfg Co Ltd ホログラム記録材料及びそれを用いた体積位相型ホログラムの製造方法
JPH06348011A (ja) 1993-06-04 1994-12-22 Toyo Ink Mfg Co Ltd 光重合性組成物
JPH07128785A (ja) 1993-11-02 1995-05-19 Konica Corp 画像形成材料及び画像形成方法
JPH07140589A (ja) 1993-11-19 1995-06-02 Konica Corp 画像形成材料および画像形成方法
JPH07292014A (ja) 1994-04-25 1995-11-07 Nippon Paint Co Ltd 近赤外光重合性組成物
JPH07306527A (ja) 1994-05-11 1995-11-21 Konica Corp 画像形成材料及び画像形成方法
JPH08108621A (ja) 1994-10-06 1996-04-30 Konica Corp 画像記録媒体及びそれを用いる画像形成方法
WO1996034316A1 (en) 1995-04-27 1996-10-31 Minnesota Mining And Manufacturing Company Negative-acting no-process printing plates
JPH09131850A (ja) 1995-10-24 1997-05-20 Agfa Gevaert Nv 印刷機上現像を含む平版印刷版の製造方法
JPH09123387A (ja) 1995-10-24 1997-05-13 Agfa Gevaert Nv 印刷機上現像を含む平版印刷版の製造方法
JP2938397B2 (ja) 1995-10-24 1999-08-23 アグフア−ゲヴエルト・ナームローゼ・フエンノートシヤツプ 印刷機上現像を含む平版印刷版の製造方法
US6030750A (en) 1995-10-24 2000-02-29 Agfa-Gevaert. N.V. Method for making a lithographic printing plate involving on press development
JPH09171250A (ja) 1995-11-09 1997-06-30 Agfa Gevaert Nv 感熱性像形成要素およびそれらを用いて印刷版を製造する方法
JPH09171249A (ja) 1995-11-09 1997-06-30 Agfa Gevaert Nv 感熱性像形成要素およびそれを用いて印刷版を製造する方法
JPH09188710A (ja) 1995-11-24 1997-07-22 Ciba Geigy Ag モノボランからのボレート光開始剤
JPH09188686A (ja) 1995-11-24 1997-07-22 Ciba Geigy Ag 光重合のための酸安定性硼酸塩
JPH09188685A (ja) 1995-11-24 1997-07-22 Ciba Geigy Ag 光重合のためのボレート補助開始剤
JPH10282679A (ja) 1997-04-08 1998-10-23 Fuji Photo Film Co Ltd ネガ型感光性平版印刷版
JP3819574B2 (ja) 1997-12-25 2006-09-13 三洋電機株式会社 半導体装置の製造方法
EP0931647A1 (de) 1998-01-23 1999-07-28 Agfa-Gevaert N.V. Wärmeempfindliches Aufzeichnungselement und Verfahren zur Herstellung von Flacdruckplatten damit
JP2000080068A (ja) 1998-06-26 2000-03-21 Ciba Specialty Chem Holding Inc 新規o―アシルオキシム光開始剤
JP2000131837A (ja) 1998-08-17 2000-05-12 Mitsubishi Chemicals Corp 光重合性組成物、光重合性平版印刷版及び画像形成方法
JP2000066385A (ja) 1998-08-18 2000-03-03 Ciba Specialty Chem Holding Inc 高感度で高レジスト厚さのi線ホトレジスト用スルホニルオキシム類
JP2001133969A (ja) 1999-11-01 2001-05-18 Fuji Photo Film Co Ltd ネガ型平版印刷版原版
US20010018159A1 (en) 2000-01-14 2001-08-30 Kazuo Maemoto Lithographic printing plate precursor
JP2001199175A (ja) 2000-01-19 2001-07-24 Fuji Photo Film Co Ltd 平版印刷版用支持体
JP2001277740A (ja) 2000-01-27 2001-10-10 Fuji Photo Film Co Ltd 平版印刷版用原版
JP2001277742A (ja) 2000-01-27 2001-10-10 Fuji Photo Film Co Ltd 平版印刷版用原版
JP2001253181A (ja) 2000-03-09 2001-09-18 Fuji Photo Film Co Ltd ポジ型感熱性平版印刷用原板
JP2001322365A (ja) 2000-05-16 2001-11-20 Fuji Photo Film Co Ltd 感熱性平版印刷用原板
JP2001343742A (ja) 2000-05-30 2001-12-14 Fuji Photo Film Co Ltd 感熱性組成物及びそれを用いた平版印刷版原版
JP2002148790A (ja) 2000-09-04 2002-05-22 Fuji Photo Film Co Ltd 感熱性組成物、それを用いた平版印刷版原版及びスルホニウム塩化合物
JP2002079772A (ja) 2000-09-05 2002-03-19 Fuji Photo Film Co Ltd 平版印刷版用原版及びそれを用いた平版印刷版の製版、印刷方法
JP2002107916A (ja) 2000-09-27 2002-04-10 Fuji Photo Film Co Ltd 平版印刷版原版
JP2002116539A (ja) 2000-10-11 2002-04-19 Fuji Photo Film Co Ltd 平版印刷版原版
US20020197564A1 (en) * 2000-10-17 2002-12-26 Hans-Joachim Timpe Stabilized infrared-sensitive polymerizable systems
JP2002278057A (ja) 2001-01-15 2002-09-27 Fuji Photo Film Co Ltd ネガ型画像記録材料及びシアニン色素
JP2002287334A (ja) 2001-03-26 2002-10-03 Fuji Photo Film Co Ltd 平版印刷版原版及び平版印刷方法
US20020177074A1 (en) 2001-03-26 2002-11-28 Satoshi Hoshi Planographic printing plate precursor and planographic printing method
JP2002328465A (ja) 2001-04-27 2002-11-15 Fuji Photo Film Co Ltd 平版印刷版原版
WO2003051631A1 (en) * 2001-12-13 2003-06-26 Kodak Polychrome Graphics Company Ltd. Photosensitive composition and photosensitive planographic printing plate
EP1547801A2 (de) * 2003-12-26 2005-06-29 Okamoto Chemical Industry Co., Ltd Aluminiumträger für eine Flackdruckplatte und Grundplatte für eine Flackdruckplatte
EP1577090A2 (de) * 2004-03-19 2005-09-21 Fuji Photo Film Co., Ltd. Lithographisches Druckplattenvorläufer
JP2006235227A (ja) 2005-02-24 2006-09-07 Fuji Photo Film Co Ltd 平版印刷版の処理方法及び自動現像装置
JP2006297907A (ja) 2005-02-28 2006-11-02 Fuji Photo Film Co Ltd 平版印刷版原版、平版印刷版原版の製造方法および平版印刷方法
EP1712353A1 (de) * 2005-04-13 2006-10-18 Fuji Photo Film Co., Ltd. Flachdruckplattenvorläufer
JP2007050660A (ja) 2005-08-19 2007-03-01 Fujifilm Corp 平版印刷版原版および平版印刷方法
WO2007026491A1 (ja) * 2005-08-30 2007-03-08 Mitsui Chemicals, Inc. 平版印刷用原版、および平版印刷用原版の感光層用樹脂組成物
US20070059638A1 (en) * 2005-09-14 2007-03-15 Osamu Namba Photosensitive resin composition
WO2007052470A1 (ja) * 2005-11-01 2007-05-10 Konica Minolta Medical & Graphic, Inc. 平版印刷版材料、平版印刷版、平版印刷版の作製方法及び平版印刷版の印刷方法
EP1834766A2 (de) * 2006-03-14 2007-09-19 FUJIFILM Corporation Lithografiedruckplattenvorläufer
US20070214987A1 (en) 2006-03-14 2007-09-20 Fujifilm Corporation Lithographic printing plate precursor
JP2007276454A (ja) 2006-03-14 2007-10-25 Fujifilm Corp 平版印刷版原版
EP1862301A1 (de) 2006-06-02 2007-12-05 FUJIFILM Corporation Bildaufzeichnungsmaterial, Flachdruckplattenvorläufer und Flachdruckverfahren damit
EP1956428A2 (de) * 2007-02-06 2008-08-13 FUJIFILM Corporation Lichtempfindliche Zusammensetzung, Lithographiedruckplattenvorläufer, Lithographiedruckverfahren und Cyaninfarbstoffe

Non-Patent Citations (20)

* Cited by examiner, † Cited by third party
Title
"Nippon Secchaku Kyokaishi", JOURNAL OF JAPAN ADHESION SOCIETV, vol. 20, no. 7, 1984, pages 300 - 308
C.S. WEN ET AL., TEE PROC. CONF RAD. CURING ASIA, October 1988 (1988-10-01), pages 478
INSATSU INK GIJUTSU: "Printing Ink Technology", 1984, CMC PUBLISHING CO., LTD.
J. C. S. PERKIN II, 1979, pages 156 - 162
J. C. S. PERKIN II., 1979, pages 1653 - 1660
J.V. CRIVELLO ET AL., J. POLYMER SCI., POLYMER CHEM. ED., vol. 17, 1979, pages 1047
J.V. CRIVELLO ET AL., MACROMOLECULES, vol. 10, no. 6, 1977, pages 1307
JOURNAL OFPHOTOPOLVMER SCIENCE AND TECHNOLOGY., 1995, pages 202 - 232
M. P. HUTT, JOURNAL OF HETEROCYCLIC CHEMISTRY, vol. 1, no. 3, 1970
MARTIN KUNZ, RAD TECH '98. PROCEEDING, 19 April 1998 (1998-04-19)
RESEARCH DISCLOSURE, no. 33303, January 1992 (1992-01-01)
S. I. SCHLESINGER, PHOTOGR. SCI. ENG., vol. 18, 1974, pages 387
SAISHIN GANRVO BINRAN: "Handbook of the Newest Pigments", 1977, PIGMENT TECHNOLOGY SOCIETY OF JAPAN
SAISHIN GANRVO OVOU GIJUTSU: "Newest Application on Technologies for Pigments", 1986, CMC PUBLISHING CO., LTD.
SAISHIN GANRYO OVO GIJUTSU: "Newest Application on Technologies for Pigments", 1986, CMC PUBLISHING CO., LTD.
SAISHIN GANRYO OYO GIIUTSU: "Newest Application on Technologies for Pigments", 1986, CMC PUBLISHING CO., LTD.
SAIWAI SHOBO; INSATSU INK GIJUTSU: "Printing Ink Technology", 1984, CMC PUBLISHING CO., LTD.
SENRVO BINRAN: "Dye Handbook", 1970, THE SOCIETY OF SYNTHETIC ORGANIC CHEMISTRY
T. S. BAL ET AL., POLYMER., vol. 21, 1980, pages 423
WAKABAYASHI ET AL., BULL. CHEM. SOC. JAPAN, vol. 42, 1969, pages 2924

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100248142A1 (en) * 2009-03-30 2010-09-30 Katsuya Takemasa Lithographic printing plate precursor and plate making method thereof
CN108883650A (zh) * 2016-03-16 2018-11-23 爱克发有限公司 加工平版印刷版的方法和设备

Also Published As

Publication number Publication date
ATE548189T1 (de) 2012-03-15
JP2009172790A (ja) 2009-08-06
EP2082875B1 (de) 2012-03-07
JP5155677B2 (ja) 2013-03-06

Similar Documents

Publication Publication Date Title
EP2055476B1 (de) Lithografiedruckplattenvorläufer
EP1834766B1 (de) Lithografiedruckplattenvorläufer
EP1767353B1 (de) Lithographisches Druckverfahren
US20070056457A1 (en) Lithographic printing plate precursor, lithographic printing method, and novel cyanine dye
US7858291B2 (en) Lithographic printing plate precursor, method for preparation of lithographic printing plate precursor, and lithographic printing method
EP2165829B1 (de) Lithografiedruckplattenvorläufer und Plattenherstellungsverfahren dafür
EP2082875B1 (de) Lithographiedruckplattenvorläufer und Plattenherstellungsverfahren damit
US20090246700A1 (en) Plate-making method of lithographic printing plate precursor
US20100242766A1 (en) Lithographic printing plate precursor and lithographic printing method
EP2006091B1 (de) Lithographiedruckplattenvorläufer und Plattenherstellungsverfahren
EP2048000B1 (de) Plattenherstellungsverfahren einer Lithografiedruckplatte
EP2165830B1 (de) Lithografiedruckplattenvorläufer und Druckverfahren damit
JP2010026006A (ja) 平版印刷版の製版方法
EP1972440B1 (de) Negativ-Lithografiedruckplattenvorläufer und Lithografiedruckverfahren damit
US20100055607A1 (en) Lithographic printing plate precursor and plate making method thereof
EP1795344B1 (de) Lithografiedruckplattenvorläufer und Lithografiedruckverfahren

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA RS

17P Request for examination filed

Effective date: 20100128

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

RTI1 Title (correction)

Free format text: LITHOGRAPHIC PRINTING PLATE PRECURSOR AND PLATE MAKING METHOD USING THE PRECURSOR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 548189

Country of ref document: AT

Kind code of ref document: T

Effective date: 20120315

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602009005691

Country of ref document: DE

Effective date: 20120503

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20120307

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120307

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120307

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120607

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120307

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20120307

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120307

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120608

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120307

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 548189

Country of ref document: AT

Kind code of ref document: T

Effective date: 20120307

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120307

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120707

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120307

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120307

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120307

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120307

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120307

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120307

Ref country code: BE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120307

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120709

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120307

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120307

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120307

26N No opposition filed

Effective date: 20121210

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120307

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602009005691

Country of ref document: DE

Effective date: 20121210

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120618

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120607

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130131

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20130930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130131

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130122

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120307

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120307

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20090122

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130122

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120307

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230515

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231130

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20231128

Year of fee payment: 16