EP1689670A1 - VERFAHREN ZUR KONTROLLIERTEN SPEICHERUNG UND ABGABE VON GASEN UNTER EINSATZ EINES ELEKTROCHEMISCH HERGESTELLTEN KRISTALLINEN PORÖSEN METALLORGANISCHEN GER STMATERIALS - Google Patents

VERFAHREN ZUR KONTROLLIERTEN SPEICHERUNG UND ABGABE VON GASEN UNTER EINSATZ EINES ELEKTROCHEMISCH HERGESTELLTEN KRISTALLINEN PORÖSEN METALLORGANISCHEN GER STMATERIALS

Info

Publication number
EP1689670A1
EP1689670A1 EP04803253A EP04803253A EP1689670A1 EP 1689670 A1 EP1689670 A1 EP 1689670A1 EP 04803253 A EP04803253 A EP 04803253A EP 04803253 A EP04803253 A EP 04803253A EP 1689670 A1 EP1689670 A1 EP 1689670A1
Authority
EP
European Patent Office
Prior art keywords
acid
gas
metal
gases
dicarboxylic acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP04803253A
Other languages
English (en)
French (fr)
Inventor
Ulrich Müller
Hermann Puetter
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Original Assignee
BASF SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BASF SE filed Critical BASF SE
Publication of EP1689670A1 publication Critical patent/EP1689670A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B3/00Electrolytic production of organic compounds
    • C25B3/01Products
    • C25B3/13Organo-metallic compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/223Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material containing metals, e.g. organo-metallic compounds, coordination complexes
    • B01J20/226Coordination polymers, e.g. metal-organic frameworks [MOF], zeolitic imidazolate frameworks [ZIF]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28042Shaped bodies; Monolithic structures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/1691Coordination polymers, e.g. metal-organic frameworks [MOF]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/18Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms
    • B01J31/1805Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms the ligands containing nitrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/18Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms
    • B01J31/1805Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms the ligands containing nitrogen
    • B01J31/181Cyclic ligands, including e.g. non-condensed polycyclic ligands, comprising at least one complexing nitrogen atom as ring member, e.g. pyridine
    • B01J31/1815Cyclic ligands, including e.g. non-condensed polycyclic ligands, comprising at least one complexing nitrogen atom as ring member, e.g. pyridine with more than one complexing nitrogen atom, e.g. bipyridyl, 2-aminopyridine
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/22Organic complexes
    • B01J31/2204Organic complexes the ligands containing oxygen or sulfur as complexing atoms
    • B01J31/2208Oxygen, e.g. acetylacetonates
    • B01J31/2226Anionic ligands, i.e. the overall ligand carries at least one formal negative charge
    • B01J31/223At least two oxygen atoms present in one at least bidentate or bridging ligand
    • B01J31/2239Bridging ligands, e.g. OAc in Cr2(OAc)4, Pt4(OAc)8 or dicarboxylate ligands
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/22Organic complexes
    • B01J31/2204Organic complexes the ligands containing oxygen or sulfur as complexing atoms
    • B01J31/226Sulfur, e.g. thiocarbamates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/04Purification or separation of nitrogen
    • C01B21/0405Purification or separation processes
    • C01B21/0433Physical processing only
    • C01B21/045Physical processing only by adsorption in solids
    • C01B21/0455Physical processing only by adsorption in solids characterised by the adsorbent
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B23/00Noble gases; Compounds thereof
    • C01B23/001Purification or separation processes of noble gases
    • C01B23/0036Physical processing only
    • C01B23/0052Physical processing only by adsorption in solids
    • C01B23/0057Physical processing only by adsorption in solids characterised by the adsorbent
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/0005Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes
    • C01B3/001Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes characterised by the uptaking medium; Treatment thereof
    • C01B3/0015Organic compounds; Solutions thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C11/00Use of gas-solvents or gas-sorbents in vessels
    • F17C11/005Use of gas-solvents or gas-sorbents in vessels for hydrogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04201Reactant storage and supply, e.g. means for feeding, pipes
    • H01M8/04216Reactant storage and supply, e.g. means for feeding, pipes characterised by the choice for a specific material, e.g. carbon, hydride, absorbent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/20Organic adsorbents
    • B01D2253/204Metal organic frameworks (MOF's)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/10Complexes comprising metals of Group I (IA or IB) as the central metal
    • B01J2531/16Copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/20Complexes comprising metals of Group II (IIA or IIB) as the central metal
    • B01J2531/26Zinc
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/80Complexes comprising metals of Group VIII as the central metal
    • B01J2531/84Metals of the iron group
    • B01J2531/842Iron
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/133Renewable energy sources, e.g. sunlight
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S502/00Catalyst, solid sorbent, or support therefor: product or process of making
    • Y10S502/526Sorbent for fluid storage, other than an alloy for hydrogen storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S95/00Gas separation: processes
    • Y10S95/90Solid sorbent

Definitions

  • the present invention relates to a method for the controlled storage and / or release of gases using an electrochemically produced crystalline, porous metal-organic framework material.
  • the metal ion contained in the framework material is at least partially provided by anodic oxidation.
  • the electrochemically produced scaffolding material is ideal as a storage medium for gases.
  • Metal-Organic Frameworks Crystalline porous metal-organic framework materials, so-called “Metal-Organic Frameworks” (MOF) with specific pores or pore distributions and large specific surfaces have been the target of extensive research activities in recent times.
  • MOF Metal-Organic Frameworks
  • US Pat. No. 5,648,508 describes microporous organometallic materials which are produced under mild reaction conditions from a metal ion and a ligand in the presence of a template compound.
  • WO 02/088148 discloses the production of a series of compounds which have the same scaffold topology.
  • IMOF Interleukin-Organic Framework
  • These so-called IMOF (Isoreticular Metal-Organic Framework) structures represent monocrystalline and mesoporous framework materials that have a very high storage capacity for gases.
  • MOF-5 which is based on a zinc salt, i.e. Zinc nitrate, for the synthesis of the MOF this salt and 1,4-benzenedicarboxylic acid (BDC) are dissolved in N, N'-diethylformamide (DEF).
  • BDC 1,4-benzenedicarboxylic acid
  • MOF-14 which is based on a copper salt, ie copper nitrate, using this salt to synthesize the MOF and 4,4 ', 4 "- benzene-1,3,5-triyltribenzoeklare (H 3 BTC) in N ⁇ ' -dimethylformamide (DMF) and water are dissolved.
  • the method described therein is based on a completely different approach, in which the metal ion to which the ligand of the framework material is coordinated is not provided via a metal salt, but rather by an electrochemical route.
  • the at least one metal ion in the metal-organic framework material is therefore at least partially introduced into the reaction system via anodic oxidation.
  • the abovementioned application relates to a process for the electrochemical production of a crystalline, porous, organometallic framework material, comprising at least one, at least one coordinatively bound to at least one metal ion bidentate organic compound in a reaction medium containing the at least one bidentate organic compound, characterized in that at least one metal ion is provided in the reaction medium by oxidation of at least one anode containing the corresponding metal.
  • organometallic framework materials (MOF's)
  • H 2 , CH 4 , noble gases and the like are described using organometallic framework materials. Due to their high internal surface area, organometallic framework materials are well suited to absorb gases, and the gases can also be released.
  • the method according to the above-mentioned application using conventional organometallic framework materials has the disadvantage that the anions originating from the starting materials, such as NO 3 " or CI ", are still in the framework of the MOF material and the storage properties are thereby negatively influenced, through interactions. In particular, this reduces the storage capacity of the materials because free storage spaces are occupied.
  • the object of the present invention is therefore to provide a method in which the disadvantages mentioned above are avoided. It should preferably be possible to improve the method according to WO 03/064030 in such a way that there are no interactions between the stored gases and the anions.
  • the storage capacity of the MOF materials is to be optimized, ie a storage method with maximum storage capacity is to be provided.
  • organometallic framework materials produced according to German patent application 103 55 087.5 - which are new as such and differ from the corresponding wet-chemically produced corresponding organometallic framework materials - are outstandingly suitable for storing and / or releasing gases.
  • This object is achieved by a method for taking up and / or storing gases, in which the gas to be stored with an electrochemically produced organometallic framework material under conditions suitable for gas absorption Is brought into contact, the gas being taken up into the organometallic framework material, and then, if necessary, the conditions being changed such that the stored gas is released.
  • the method according to the invention enables an effective storage of large quantities of gases.
  • MOF material used in connection with the present application has the same meaning as the term "organometallic framework material". It is used to denote the polymer which has been freed from impurities after production and which is composed of metal ions and bridging ligands and, if appropriate, may also contain impurities which cannot be removed by purification, for example anions originating from synthesis.
  • the MOF material does not contain any other accompanying or auxiliary substances, such as binders, lubricants and extruding agents, which are used in the processing of the MOF materials into tablets or strands, for example.
  • the method according to the invention is suitable for storing substances which are preferably in gaseous form at room temperature.
  • substances which are preferably in gaseous form at room temperature.
  • the storage process is generally carried out in such a way that, if necessary, the material to be stored is brought into the gas phase and in gaseous state is brought into contact with the MOF material under suitable conditions.
  • the stored gas can then also be stored at temperatures at which it is again present as a liquid. To discharge the stored medium, it may be necessary to reheat to a temperature at which it is gaseous.
  • the method according to the invention is suitable in principle for the storage and / or delivery of all chemical compounds which are present as a gas up to about room temperature, but also above room temperature. It can be a compound or a mixture of two or more compounds. Examples include saturated and unsaturated hydrocarbons, saturated and unsaturated alcohols, oxygen, nitrogen, noble gases (Ne, Ar, Kr, Xe, Rn), CO, CO 2 , synthesis gas (generally CO / H 2 ) and natural gases of all possible compositions.
  • the gas absorbed can also be Trade compounds that generate those gases that are subsequently released by the MOF material.
  • Gases preferred in the context of the present invention include H 2 ; H 2 -containing gas mixtures; H 2 -generating or releasing compounds; Methane, ethane, propane, butanes, ethylene, propylene, acetylene, Ne, Ar, Kr, Xe, CO 2 and CO 2 .
  • H 2 , CH, Kr, Xe, CO 2 , CO are particularly preferred.
  • the storage is generally carried out at a temperature at which the compound to be stored or the compound mixture is in gaseous form.
  • the storage is preferably carried out at a temperature of 0 to 100 ° C., in particular 10 to 30 ° C.
  • the gas or the gas mixture is generally stored at a pressure above atmospheric pressure, preferably from 1 to 300 bar (absolute), in particular from 1 to 150 bar (absolute), more preferably from 1 to 80 bar (abs), more preferably in the range from 45 to 80 bar and in particular in the range from 50 to 80 bar (abs).
  • the MOF material When storing and / or dispensing according to the invention, the MOF material is generally in a gas-tight container. At the end of the storage process, the container holding the MOF material has an internal pressure that corresponds to the previously applied external pressure. This means that the MOF material is also absorbing the gas or gas mixture under an external pressure. To release the gas or gas mixture, the pressure on the MOF material is generally reduced, generally by opening the container to receive the MOF material. To effect the release of the stored gas / gas mixture, it is also possible to heat the MOF material. This can be done in addition to the pressure reduction, but also as the sole measure, especially in cases where the pressure on the MOF material is not higher than atmospheric pressure.
  • the present invention thus also comprises a gas-tight container, receiving an MOF material, an opening through which the gas to be stored can enter, and a closing mechanism, through which the interior of the container can be kept under pressure.
  • Such containers can be used, for example, in the context of a fuel cell which is used to store and deliver energy in devices in which the supply of external energy is not possible or is not desired and is therefore not carried out. This is the case, for example, when operating stationary, mobile and / or portable systems or applications. Power plants, motor vehicles, such as passenger cars, trucks and buses, and wireless applications in electronics, such as mobile telephones or laptops, may be mentioned as such.
  • This container can basically have any suitable geometry. Due to the low pressures possible according to the invention, containers are also preferably possible which deviate from the standard cylinder geometry and can be variably adapted to the respective requirements, for example the specific space requirements in automobile construction. As a result, the variably configurable containers can be fitted into cavities of an automobile that cannot otherwise be used and valuable storage and usable space can be gained.
  • MOF materials are made up of metal ions that are connected to one another via at least bidentate organic compounds in such a way that a three-dimensional structure is created that has internal cavities (pores). The pores are defined by the metal atoms and the organic compounds connecting them.
  • a MOF material can exclusively have the same metal ions, or 2 or more different metal ions.
  • electrochemical production designates a production process in which the formation of at least one reaction product is associated with the migration of electrical charges or the occurrence of electrical potentials.
  • at least one metal ion denotes embodiments according to which at least one ion of a metal or at least one ion of a first metal and at least one ion of at least one second metal different from the first metal are provided by anodic oxidation.
  • electrochemically produced MOF materials also include embodiments in which at least one ion of at least one metal is provided by anodic oxidation and at least one ion of at least one metal via a metal salt, the at least one metal in the metal salt and the at least one metal that via anodic oxidation are provided as a metal ion, may be the same or different.
  • the reaction medium contains one or more different salts of a metal and the metal ion contained in these salts or in these salts is additionally provided by anodic oxidation of at least one anode containing this metal.
  • the reaction medium contains one or more different salts of at least one metal and at least one metal different from these metals is provided as a metal ion in the reaction medium via anodic oxidation.
  • the at least one metal ion is provided by anodic oxidation of at least one of the anodes containing this at least one metal, no further metal being provided via a metal salt.
  • an embodiment is thus encompassed, according to which the at least one anode contains a single or two or more metals, in the case that the anode contains a single metal, this metal is provided by anodic oxidation and in the case that the anode contains two or contains more metals, at least one of these metals is provided by anodic oxidation.
  • an embodiment is included according to which at least two anodes are used, the two being able to be identical or different from one another.
  • Each of the at least two anodes can contain a single or two or more metals.
  • two different anodes can contain the same metals, but in different proportions.
  • a first anode to contain a first metal and a second anode to contain a second Contains metal, wherein the first anode does not contain the second metal and / or the second anode does not contain the first metal.
  • metal encompasses all elements of the periodic table which can be provided by anodic oxidation in an electrochemical way in a reaction medium and which are capable of forming at least one organometallic porous framework material with at least one bidentate organic compound.
  • elements from groups la, Ha, lilac, IVa to Villa and Ib and VIb of the periodic table of the elements are Mg, Ca, Sr, Ba, Sc, Y, Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Mn, Re, Fe, Ru, Os, Co, Rh, Ir, Ni, Pd, Pt, Cu, Ag, Au, Zn, Cd, Hg, AI, Ga, In, TI, Si, Ge, Sn, Pb, As, Sb and Bi preferred.
  • Zn, Cu, Ni, Pd, Pt, Ru, Rh, Fe, Mn, Ag and Co. are further preferred.
  • Cu, Fe, Co, Zn, Mn and Ag are further preferred.
  • Cu, Fe and Zn are particularly preferred.
  • Mg 2+ , Ca 2+ , Sr 2 *, Ba 2+ , Sc 3 ", Y 3 *, Ti 4 *, Zr 4 *, Hf are metal ions which are provided in the reaction medium by anodic oxidation, V 4 *, V 3 , V 2 *, Nb 31 " , Ta 3 ", Cr, Mo 3 ", ⁇ N ⁇ Mn 3 ", Mn 2+ , Re 3 ", Re 2+ , Fe 3 *, Fe 2 *, Ru 3 “, Ru 2 *, Os 3 “, Os 2 *, Co 3 ", Co 2 *, Rh 2 *, Rh *, Ir 2 ", lr + , Ni 2 *, IST, Pd 2 *, Pd *, Pt 2 *, Pf, Cu 2 *, Cu *, Ag *, Au *, Zn 2 *, Cd 2 *, Hg 2 *, AI 3 ", Ga 3 ", In 3 “, 7f", Si 4 *, Si 2 *, Ge 4 *, Ge 2 *, Sn 4
  • Cu 2 *, Cu *, Fe 2 * are particularly preferred.
  • Cu 2 *, Cu *, Fe 2 * are particularly preferred; Fe ⁇ andZn 2 ".
  • a copper and / or an iron and / or a zinc and / or a silver and or a manganese containing anode can be used as the metal ion source.
  • a copper and / or an iron and / or a zinc and / or a manganese-containing anode can be used as the metal ion source.
  • a copper and or an iron and / or a zinc-containing anode are preferably used as the metal ion source.
  • the structure of the anode used can in principle be chosen as long as it is ensured that the at least one by anodic oxidation Metal ion can be provided in the reaction medium to form the porous metal organic framework material.
  • anodes in the form of a rod and / or a ring and / or a disk such as for example an annular disk and / or a plate and / or a tube and / or a bed and / or a cylinder and / or a cone and / or a truncated cone.
  • the MOF material is produced electrochemically using at least one sacrificial anode.
  • sacrificial anode denotes an anode that at least partially dissolves in the course of the process.
  • Embodiments are also recorded in which at least part of the dissolved anode material is replaced in the course of the method. This can be accomplished, for example, by introducing at least one new anode into the reaction system or, in accordance with a preferred embodiment, introducing an anode into the reaction system and feeding it into the reaction system continuously or discontinuously in the course of the process according to the invention.
  • Anodes are preferably used which consist of the at least one metal which serves as a metal ion source or which contain at least one metal applied to at least one suitable carrier material.
  • the geometry of the at least one carrier material is essentially not subject to any restrictions.
  • carrier materials in the form of a fabric and / or a film and / or a felt and / or a sieve and / or rod and / or a candle and / or a cone and / or a truncated cone and / or a ring and / or a disk and / or a plate and / or a tube and / or a bed and / or a cylinder.
  • Suitable carrier materials are, for example, metals such as, for example, at least one of the metals mentioned above, alloys such as, for example, steels or bronzes or brass, graphite, felt or foams.
  • Anodes which consist of the at least one metal which serves as a metal ion source are very particularly preferred.
  • the construction of the cathode used can in principle be chosen as long as it is ensured that the at least one metal ion can be provided in the reaction medium to form the porous metal-organic framework material by anodic oxidation.
  • the electrically conductive electrode material of the at least one cathode is selected such that no disruptive side reaction takes place in the reaction medium.
  • preferred cathode materials include graphite, copper, zinc, tin, manganese, silver, gold, platinum or alloys such as steels, bronzes or brass.
  • Examples of preferred combinations of the anode material serving as the metal ion source and the electrically conductive cathode material include:
  • the geometry of the at least one cathode is essentially not subject to any restrictions.
  • cathodes in the form of a rod and / or a ring and / or a disk and / or a plate and / or a tube.
  • electrolysis cell which is suitable for the use of sacrificial electrodes is very particularly preferred in the method according to the invention.
  • Separation medium between the cell compartments can for example Ion exchange membranes, microporous membranes, diaphragms, filter fabrics made of non-electron-conducting materials, glass frits and / or porous ceramics are used.
  • Ion exchange membranes in particular cation exchange membranes, are preferably used, with those membranes which consist of a copolymer of tetrafluoroethylene and a perfluorinated monomer which contains sulfonic acid groups being preferably used.
  • one or more undivided cells are used.
  • the invention mentioned also relates to a method as described above, which is characterized in that the method is carried out in an undivided electrolysis cell.
  • Combinations of geometries of anode and cathode are very particularly preferred, in which the mutually facing sides of the anode and cathode jointly form a gap of homogeneous thickness.
  • the electrodes are preferably arranged plane-parallel, the electrode gap having a homogeneous thickness, for example in the range from 0.5 mm to 30 mm, preferably in the range from 0.75 mm to 20 mm and particularly preferably in the range from 1 up to 10 mm.
  • a cathode and an anode plane-parallel in such a way that in the resulting cell an electrode gap with a homogeneous thickness in the range from 0.5 to 30 mm, preferably in the range from 1 to 20 mm, further preferably in the range from 5 to 15 mm and particularly preferably in the range from 8 to 12 mm, for example in the range from approximately 10 mm.
  • This type of cell is referred to in the context of the present invention with the term “split cell”.
  • the cell described above is used as a bipolar cell.
  • the electrodes are used in the process according to the invention applied individually or in a stack.
  • these are so-called stack electrodes, which are preferably connected in series bipolar in the so-called plate stack cell.
  • the plate stack cell it is preferred, for example, to arrange disks made of suitable materials such as copper disks in a plane-parallel manner such that a gap with a homogeneous thickness in the range from 0.5 to 30 mm, preferably in the range from 0, is in each case between the individual disks , 6 to 20 mm, more preferably in the range from 0.7 to 10 mm, more preferably in the range from 0.8 to 5 mm and in particular in the range from 0.9 to 2 mm, for example in the range from approximately 1 mm ,
  • the distances between the individual disks can be the same or different, and according to a particularly preferred embodiment, the distances between the disks are essentially the same.
  • the material of one disk of the plate stack cell can differ from the material of another disk of the plate stack cell.
  • a disk can be made of graphite, another disk made of copper, the copper disk preferably being connected as an anode and the graphite disk preferably being connected as a cathode.
  • Pencil sharpener cells, as described, for example, in J. Chaussard et al., J. Appl. Electrochem. 19 (1989) 345-348, the relevant content of which is incorporated by reference in the context of the present application.
  • Pencil-Sharpener electrodes with rod-shaped, trackable electrodes are particularly preferably used in the method according to the invention.
  • the aforementioned invention accordingly also relates to a method as described above, which is characterized in that the method is carried out in a gap cell or plate stack cell.
  • Cells in which the electrode spacing is less than or equal to 1 mm are referred to as capillary gap cells.
  • electrolytic cells with, for example, porous electrodes made of metal fillings or with, for example, porous electrodes made of metal meshes or with, for example, electrodes made of metal fillings and metal meshes can be used.
  • electrolysis cells are used in the method according to the invention which have at least one sacrificial anode with a round disk-shaped cross section and at least one cathode with an annular cross section, the diameter of the preferably cylindrical anode being particularly preferably smaller than the inner diameter of the cathode and the Anode is mounted in the cathode in such a way that a gap of homogeneous thickness is formed between the outer surface of the cylindrical shell of the anode and the inner surface of the cathode at least partially surrounding the anode.
  • the method is preferably carried out continuously in at least one flow cell.
  • the voltages that are applied can be adapted to the respective at least one metal of the at least one anode that serves as a metal ion source for the porous metal-organic framework material and / or to the properties of the at least one bidentate organic compound and / or optionally to the properties of the at least one solvent described below and / or, if appropriate, on the properties of the at least one conductive salt described below and / or on the properties of the below described at least one cathodic depolarization connection are adapted.
  • the voltages per pair of electrodes are in the range from 0.5 to 100 V, preferably in the range from 2 to 40 V and particularly preferably in the range from 4 to 20 V.
  • preferred ranges are approximately 4 to 10 V or 10 to 20 V. or 20 to 25 V or 10 to 25 V or 4 to 20 V or 4 to 25 V.
  • the voltage can be constant during the process according to the invention or can change continuously or discontinuously during the process.
  • the voltages are generally in the range from 3 to 20 V, preferably in the range from 3.5 to 15 V and particularly preferably in the range from 4 to 15 V.
  • the current densities that occur during the production of the porous organic framework materials are generally in the range from 0.01 to 1000 mA / cm 2 , preferably in the range from 0.1 to 1000 mA / cm 2 , more preferably in the range from 0 , 2 to 200 mA / cm 2 , more preferably in the range from 0.3 to 100 mA / cm 2 and particularly preferably in the range from 0.5 to 50 mA / cm 2 .
  • the amounts of electricity (Ah) used in the process are preferably in the range from 30 to 200% of the amount of electricity which is necessary to saturate the amount of the preferably used acid equivalents of the at least one at least bidentate compound.
  • the process is generally carried out at a temperature in the range from 0 ° C. to the boiling point, preferably in the range from 20 ° C. to the boiling point, of the particular reaction medium or of the at least one solvent used, preferably under normal pressure. It is also possible to carry out the process under pressure, pressure and temperature preferably being chosen such that the reaction medium is preferably at least partially liquid.
  • the process is carried out at a pressure in the range from 0.5 to 50 bar, preferably in the range from 1 to 6 bar and particularly preferably at normal pressure.
  • the electrochemical production of the porous metal-organic framework material can also be carried out without an additional solvent. This is particularly the case, for example, when at least one of the at least bidentate compounds acts as a solvent or solvent mixture in the reaction medium.
  • the reaction medium contains at least one suitable solvent in addition to the at least one at least bidentate organic compound and optionally to the at least one conductive salt and optionally to the at least one cathodic depolarization compound.
  • the chemical nature and the amount of this at least one solvent can be adapted to the at least one at least bidentate organic compound and / or to the at least one conductive salt and / or to the at least one cathodic depolarization compound and / or to the at least one metal ion.
  • the stated invention also includes a process as described above, which is characterized in that the reaction medium additionally contains at least one solvent in addition to the at least one at least bidentate organic compound.
  • solvents or all solvent mixtures in which the starting materials used in the process can be at least partially dissolved or suspended under the chosen reaction conditions, such as pressure and temperature are conceivable as solvents.
  • solvents which are preferably used include
  • Alcohols with 1, 2, 3 or 4 carbon atoms such as methanol, ethanol, n-propanol, iso-propanol, n-butanol, iso-butanol, tert-butanol; - Carboxylic acids with 1, 2, 3 or 4 carbon atoms such as formic acid, acetic acid, propionic acid or butanoic acid; Nitriles such as acetonitrile or cyanobenzene; Ketones such as acetone; At least one halogen-substituted lower alkane such as methylene chloride or 1, 2-dichloroethane; Acid amides such as amides of lower carboxylic acids such as carboxylic acids with 1, 2, 3 or 4 carbon atoms such as amides of formic acid, acetic acid, propionic acid or butanoic acid such as formamide, dimethylformamide (DMF), diethylformamide (DEF), t-butylformamide, acet
  • Cyclic ethers such as tetrahydrofuran or dioxane; N-formylamides or N-acetylamides or symmetrical or asymmetrical urea derivatives of primary, secondary or cyclic amines such as, for example, ethylamine, diethylamine, piperidine or morpholine; Amines such as ethanolamine, triethylamine or ethylenediamine; dimethyl sulfoxide; pyridine; Trialkyl phosphites and phosphates;
  • solvent includes both pure solvents and solvents which contain at least one further compound, such as preferably water, in small amounts.
  • the water contents of the abovementioned solvents are in the range from up to 1% by weight, preferably in the range from up to 0.5% by weight, particularly preferably in the range from 0.01 to 0.5% by weight. % and particularly preferably in the range from 0.1 to 0.5% by weight.
  • methanol or “ethanol” or “acetonitrile” or “DMF” or “DEF” is also understood to mean, for example, a solvent which in each case can particularly preferably contain water in the range from 0.1 to 0.5% by weight ,
  • Methanol, ethanol, acetonitrile, DMF and DEF or a mixture of two or more of these compounds are used as preferred solvents. Methanol, ethanol, DMF, DEF and a mixture of two or more of these compounds are very particularly preferred as solvents.
  • at least one protic solvent is used as the solvent. Among other things, this is preferably used if, in order to avoid the redeposition of the at least one metallioin provided by anodic oxidation described below, the cathodic formation of hydrogen is to be achieved.
  • the temperature under normal pressure is generally in the range from 0 to 90 ° C .; preferably in the range from 0 to 65 ° C. and particularly preferably in the range from 25 to 65 ° C.
  • the temperature under normal pressure is generally in the range from 0 to 100 ° C .; preferably in the range from 0 to 78 ° C and particularly preferably in the range from 25 to 78 ° C.
  • the pH of the reaction medium is adjusted so that it is favorable for the synthesis or the stability or preferably for the synthesis and the stability of the framework material.
  • the pH can be adjusted using the at least one conductive salt.
  • the reaction time is generally in the range from up to 30 h, preferably in the range from up to 20 h. more preferably in the range from 1 to 10 h and particularly preferably in the range from 1 to 5 h.
  • At least bidentate organic compound denotes an organic compound which contains at least one functional group which is capable of forming at least two, preferably two coordinative bonds to a given metal ion, and / or to two or more, preferably two, metal atoms in each case develop a coordinative bond.
  • the following functional groups may be mentioned in particular as functional groups via which the above-mentioned coordinative bonds can be formed: -CO 2 H, -CS 2 H, -NO 2 , -B (OH) 2 , -SO 3 H, - Si (OH) 3 , -Ge (OH) 3 , -Sn (OH) 3> -Si (SH) 4 , - Ge (SH) 4 , -Sn (SH) 3 , -PO 3 H, -AsO 3 H , -AsO 4 H, -P (SH) 3 , -As (SH) 3 , -CH (RSH) 2 , -C (RSH) 3> -CH (RNH 2 ) 2> -C (RNH 2 ) 3 , -CH (ROH) 2 , -C (ROH) 3 , -CH (RCN) 2 , -C (RCN) 3> where R, for example, preferably an alky
  • the at least two functional groups can in principle be bound to any suitable organic compound, as long as it is ensured that the organic compound having these functional groups is capable of forming the coordinative bond and of producing the framework material.
  • the organic compounds which contain the at least two functional groups are preferably derived from a saturated or unsaturated aliphatic compound or an aromatic compound or a both aliphatic and aromatic compound.
  • the aliphatic compound or the aliphatic part of the both aliphatic and aromatic compound can be linear and / or branched and / or cyclic, wherein several cycles per compound are also possible.
  • the aliphatic compound or the aliphatic part of the both aliphatic and aromatic compound more preferably contains 1 to 15, more preferably 1 to 14, more preferably 1 to 13, more preferably 1 to 12, more preferably 1 to 11 and particularly preferably 1 to 10 C atoms such as 1, 2, 3, 4, 5, 6, 7, 8, 9 or 10 C atoms. Methane, adamantane, acetylene, ethylene or butadiene are particularly preferred.
  • the aromatic compound or the aromatic part of the both aromatic and aliphatic compound can have one or more nuclei, for example two, three, four or five nuclei, it being possible for the nuclei to be separate from one another and / or at least two nuclei to be in condensed form.
  • the aromatic compound or the aromatic part of the both aliphatic and aromatic compound particularly preferably has one, two or three nuclei , with one or two cores being particularly preferred.
  • each core of the compound mentioned can furthermore contain at least one heteroatom such as, for example, N, O, S, B, P, Si, Al, preferably N, O and / or S.
  • aromatic compound or the aromatic part of the both aromatic and aliphatic compound contains one or two C 6 nuclei, the two being either separate from one another or in condensed form.
  • aromatic compounds are benzene, naphthalene and / or biphenyl and / or bipyridyl and / or pyridyl.
  • Examples include trans-muconic acid or fumaric acid or phenylenebisacrylic acid.
  • dicarboxylic acids such as
  • Octadicarboxylic acid pentane-3,3-carboxylic acid, 4,4'-diamino-1,1'-diphenyl-3,3'-dicarboxylic acid, 4,4'-diaminodiphenyl-3,3 , -dicarboxylic acid, benzidine-3 , 3'-dicarboxylic acid, 1,4-bis (phenylamino) benzene-2,5-dicarboxylic acid, 1 J'-dinaphthyl-S.S'-dicarboxylic acid, 7-chloro-8-methylquinoline-2,3-dicarboxylic acid , 1-anilinoanthraquinone-2,4'-dicarboxylic acid, polytetrahydrofuran-250-dicarboxylic acid, 1, 4-bis (carboxymethyl) piperazine-2,3-dicarboxylic acid, 7-chloroquinoline-3,8-dicarboxylic acid, 1 - (4
  • Tricarboxylic acids such as
  • tetracarboxylic acids such as 1, 1 -dioxide-perylo [1, 12-BCD] thiophene-3,4,9,10-tetracarboxylic acid, peryl ' entetracarboxylic acids such as perylene-3,4,9,10-tetracarboxylic acid or or perylene-1,12 sulfone-3,4,9,10-tetracarboxylic acid, butanetetracarboxylic acids such as 1, 2,3,4-butanetetracarboxylic acid or meso-1,3,4-butanetetracarboxylic acid, decane-2,4,6,8-tetracarboxylic acid, 1st , 4,7,10,13,16-hexaoxacyclooctadecane-2,3,11, 12-tetracarboxylic acid, 1, 2,4,5-benzenetetracarboxylic acid, 1, 2,11, 12-dodecane tetracarboxylic acid
  • At least monosubstituted, di-, tri-, tetra- or higher-nucleus aromatic di-, tri- or tetracarboxylic acids are very particularly preferably used, where each of the nuclei can contain at least one heteroatom, with two or more nuclei having the same or different heteroatoms may contain.
  • mononuclear dicarboxylic acids are preferred.
  • Tricarboxylic acids mononuclear tetracarboxylic acids, dinuclear dicarboxylic acids, dinuclear tricarboxylic acids, dinuclear tetracarboxylic acids, trinuclear dicarboxylic acids, trinuclear tricarboxylic acids, trinuclear tetracarboxylic acids, tetrauclear dicarboxylic acids, tetrauclear tetracarboxylic acids and /. suitable
  • Heteroatoms are, for example, N, O, S, B, P, Si, Al, preferred heteroatoms here are N, S and / or 0.
  • a suitable substituent in this regard is, inter alia, - OH, a nitro group, an amino group or an alkyl or alkoxy group to call.
  • At least bidentate organic compounds are acetylenedicarboxylic acid (ADC), benzenedicarboxylic acids, naphthalenedicarboxylic acids, biphenyldicarboxylic acids such as 4,4'-biphenyldicarboxylic acid (BPDC), bipyridinedicarboxylic acids such as 2,2'-bipyridinedicarboxylic acids such as 2,2'-bipyridine 5'-dicarboxylic acid, benzene tricarboxylic acids such as 1, 2,3-benzene tricarboxylic acid or 1,3,5-benzo-tricarboxylic acid (BTC), adamantane tetracarboxylic acid (ATC), adamantane dibenzoate (ADB), benzene tribenzoate (BTB), methane tetrabenzoate (MTB), adamantane tetrabenzoate or Dihydroxy terephthalic acids such as 2,5-
  • Terephthalic acid 2,5-dihydroxy-terephthalic acid, 1, 2,3-benzenetricarboxylic acid, 1, 3,5-benzenetricarboxylic acid or 2,2-bipyridine-5,5'-dicarboxylic acid are very particularly preferably used.
  • 1,3,5-benzenetricarboxylic acid is used as the at least bidentate organic compound.
  • at least one solvent for example methanol or ethanol or methanol and ethanol are preferably used as solvents. Ethanol is particularly preferred.
  • 1, 2,3-benzenetricarboxylic acid is used as the at least bidentate organic compound.
  • at least one solvent for example methanol or ethanol or methanol and ethanol are preferably used as solvents. Methanol is particularly preferred.
  • terephthalic acid is used as the at least bidentate organic compound.
  • dimethylformamide or diethylformamide or dimethylformamide and diethylformamide are preferably used as solvents, for example. Diethylformamide is particularly preferred.
  • dihydroxy terephthalic acid is used as the at least bidentate organic compound.
  • dimethylformamide or diethylformamide or dimethylformamide and diethylformamide are preferably used as solvents, for example. Diethylformamide is particularly preferred.
  • naphthalene-2,6-dicarboxylic acid is used as the at least bidentate organic compound.
  • at least one solvent for example methanol or ethanol or methanol and ethanol are preferably used as solvents. Methanol is particularly preferred.
  • the at least one at least bidentate compound is used in a concentration which is generally in the range from 0.1 to 30% by weight, preferably in Range of 0.5 to 20 wt .-% and particularly preferably in the range of 2 to 10 wt .-%, each based on the total weight of the reaction system minus the weight of the anode and the cathode. Accordingly, the term “concentration” in this case includes both the amount of the at least one at least bidentate compound dissolved in the reaction system and, for example, the amount optionally suspended in the reaction system.
  • the at least one bidentate compound is added continuously and / or discontinuously depending on the progress of the electrolysis and in particular depending on the decomposition of the anode or release of the at least one metal ion and / or depending on the formation of the organometallic framework material.
  • the reaction medium contains at least one suitable conductive salt.
  • the at least one at least bidentate compound used and / or the solvent optionally used it is also possible in the process according to the invention to carry out the preparation of the organometallic framework material without additional conductive salt.
  • salts of mineral acids, sulfonic acids, phosphonic acids, boronic acids, alkoxysulfonic acids or carboxylic acids or of other acidic compounds such as sulfonic acid amides or imides are preferably used, for example.
  • possible anionic components of the at least one conductive salt include sulfate, nitrate, nitrite, sulfite, disulfite, phosphate, hydrogen phosphate, dihydrogen phosphate, diphosphate, triphosphate, phosphite, chloride, chlorate, bromide, bromate, iodide, iodate, carbonate or hydrogen carbonate.
  • the cation component of the conductive salts that can be used according to the invention include alkali metal ions such as Li + , Na *, K * or Rb *, alkaline earth metal ions such as Mg 2 *, Ca 2 *, Sr 2 * or Ba 2 *, ammonium ions or phosphonium ions.
  • ammonium ions quaternary ammonium ions and protonated mono-, di- and triamines should be mentioned.
  • Examples of preferred quaternary ammonium ions include
  • - Symmetrical ammonium ions such as tetraalkylammonium with preferably -C 4 alkyl, for example methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, tert-butyl, such as tetramethylammonium, tetraethylammonium, tetrapropylammonium, tetrabutylammonium or
  • Unsymmetrical ammonium ions such as unsymmetrical tetraalkylammonium with preferably C r C 4 alkyl, for example methyl, ethyl, n-propyl, iso-propyl, n-butyl, iso-butyl.
  • tert-butyl such as methyltributylammonium or
  • At least one conductive salt which contains a methyltributylammonium ion as at least one cationic component.
  • methyl tributylammonium methyl sulfate is used as the conductive salt.
  • ionic liquids such as methyl ethyl imidazolium chloride or methyl butyl imidazolium chloride are also conductive salts.
  • methanesulfonate is used as the conductive salt.
  • protonated or quaternary heterocycles such as, for example, the imidazolium ion, can also be mentioned as the cation component of the at least one conductive salt.
  • the reaction medium via the cationic and / or anionic component of the at least one conductive salt, compounds which are used for the construction of the organometallic framework material.
  • these compounds are those which influence the structure of the organometallic framework material, but are not contained in the resulting framework material, and also those which are contained in the resulting framework material.
  • at least one compound which is contained in the resulting organometallic framework material can be introduced via at least one conductive salt in the process according to the invention.
  • tetraalkylammonium carboxylate such as a monotetraalkylammonium salt of 1,3,5-benzenetricarboxylic acid.
  • 1,3,5-benzo-tricarboxylic acid together with tetraalkylammonium hydroxide in methanol as the solvent.
  • This procedure offers the advantage, among other things, that tetraalkylammonium hydroxide is generally used as an aqueous solution and water thus automatically becomes an essential component of the reaction medium.
  • the metal ion source in addition to the at least one anode as the metal ion source, to introduce the metal ion into the reaction medium via the cationic component of the at least one conductive salt. It is also possible, via the cationic component of the at least one conductive salt, to introduce at least one metal ion into the reaction medium which is different from the at least one metal ion introduced via anodic oxidation, this difference depending on the valence of the cation and / or the type of metal can relate. It is also possible to use salts as conductive salts, the anion component or anion components of which is a compound which is used for the construction of the organometallic framework material.
  • conducting salts are used, the anion, for example, the monocarboxylate or dicarboxylate or tricarboxylate or tetracarboxylate or monosulfonate or disulfonate or trisulfonate or tetrasulfonate, preferably a dicarboxylate or tricarboxylate or tetracarboxylate and more preferably the dicarboxylate or tricarboxylate or tetracarboxylate the aromatic di- preferably used, Represent tri- or tetracarboxylic acid.
  • the anion for example, the monocarboxylate or dicarboxylate or tricarboxylate or tetracarboxylate or monosulfonate or disulfonate or trisulfonate or tetrasulfonate, preferably a dicarboxylate or tricarboxylate or tetracarboxylate and more preferably the dicarboxylate or tricarboxy
  • the invention mentioned also encompasses the process as described above, which is characterized in that the at least one conductive salt contains a quaternary ammonium ion as the cation component and a carboxylate of the at least one at least bidentate compound as the anion component.
  • the concentration of the at least one conductive salt in the process according to the invention is generally in the range from 0.01 to 10% by weight, preferably in the range from 0.05 to 5% by weight and particularly preferably in the range from 0.1 to 3% by weight, in each case based on the sum of the weights of all the conductive salts present in the reaction system and further based on the total weight of the reaction system without taking into account the anodes and cathodes.
  • reaction medium with the starting materials is generally first provided, then electricity is applied and then pumped over.
  • solids content denotes the amount of separated solids after the reaction, based on the total amount of the reaction mixture.
  • the at least one solvent is completely ready for dissolution and / or suspension, preferably for dissolving the ligand, in the context of the process mentioned.
  • the solids content is at least 0.5% by weight, particularly preferably in the range from 0.5 to 50% by weight.
  • the aforementioned method is carried out in such a way that the redeposition of the metal ion released by anodic oxidation on the cathode is prevented.
  • This redeposition is preferably prevented, for example, by using a cathode which has a suitable hydrogen overvoltage in a given reaction medium.
  • cathodes are, for example, the graphite, copper, zinc, tin, manganese, silver, gold, platinum cathodes or cathodes already mentioned above, which contain alloys such as steels, bronzes or brass.
  • the redeposition is preferably further prevented, for example, by using an electrolyte in the reaction medium which promotes the cathodic formation of hydrogen.
  • an electrolyte is preferred that contains at least one protic solvent.
  • Preferred examples of such solvents are listed above.
  • Alcohols are particularly preferred, particularly preferably methanol and ethanol.
  • the redeposition is preferably prevented, for example, by the fact that the reaction medium contains at least one compound which leads to cathodic depolarization.
  • a compound which leads to cathodic depolarization is understood to mean any compound which is reduced at the cathode under given reaction conditions.
  • cathodic depolarizers Compounds which are hydrodimerized at the cathode are preferred as cathodic depolarizers.
  • particularly preferred in this context are acrylonitrile, acrylic acid ester and maleic acid ester such as, for example, further preferred dimethyl maleate.
  • cathodic depolarizers Compounds which contain at least one carbonyl group, which is reduced at the cathode, are also preferred as cathodic depolarizers.
  • examples of such compounds containing carbonyl groups are, for example, esters such as dialkyl phthalate and ketones such as acetone.
  • Preferred cathodic depolarizers include compounds which have at least one nitrogen-oxygen bond, one nitrogen-nitrogen bond and / or one nitrogen-carbon bond, which are reduced at the cathode.
  • examples of such compounds are, for example, compounds with a nitro group, with an azo group, with an azoxy group, oximes, pyridines, imines, nitriles and / or cyanates.
  • the aforementioned invention also relates to a method as described above, which is characterized in that the cathodic redeposition of the at least one metal ion is at least partially prevented by at least one of the following measures:
  • the aforementioned invention therefore also relates to a method as described above, which is characterized in that the electrolyte according to (i) contains at least one protic solvent, in particular an alcohol, more preferably methanol and / or ethanol.
  • the electrolyte according to (i) contains at least one protic solvent, in particular an alcohol, more preferably methanol and / or ethanol.
  • the aforementioned invention therefore also relates to a process as described above, which is characterized in that the cathodic depolarization is hydrodimerization, in particular hydrodimerization of a maleic acid diester, more preferably of maleic acid dimethyl ester.
  • the invention mentioned comprises a method as described above, which is characterized in that, in order to prevent redeposition, at least one protic solvent, preferably an alcohol, more preferably methanol or ethanol or a mixture of methanol and ethanol, and at least one, Compound capable of hydrodimerization, preferably a maleic diester and more preferably a maleic acid dimethyl ester, can be used.
  • the method according to the invention is operated in a circular mode.
  • this "electrolysis circuit 11" means any process control in which at least part of the reaction system located in the electrolysis cell is discharged from the electrolysis cell, optionally at least one intermediate treatment step such as, for example, at least one temperature treatment or addition and / or removal of at least one component of the discharged current and is returned to the electrolysis cell
  • at least one intermediate treatment step such as, for example, at least one temperature treatment or addition and / or removal of at least one component of the discharged current and is returned to the electrolysis cell
  • such an electrolysis circuit is particularly preferably carried out in combination with a plate stack cell, a tube cell or a pencil sharpener cell.
  • the generally crystalline framework material is in the form of the primary crystals in the mother liquor.
  • the framework material solid is separated from its mother liquor.
  • this separation process can be carried out according to all suitable methods.
  • the framework solid is preferably by solid-liquid separation, centrifugation, extraction, filtration, membrane filtration, crossflow filtration, diafiltration, ultrafiltration, flocculation using flocculation aids such as, for example, non-ionic, cationic and / or anionic aids), pH shift Addition of additives such as salts, acids or bases, flotation, spray drying, spray granulation, or evaporation of the mother liquor at elevated temperatures or in vacuo and concentration of the solid.
  • flocculation aids such as, for example, non-ionic, cationic and / or anionic aids
  • At least one additional washing step is preferably carried out with at least one solvent used in the synthesis.
  • the framework solid becomes at temperatures generally in the range from 20 to 120 ° C., preferably in the range from 40 to 100 ° C. and particularly preferably in the range from 56 to 60 ° C dried.
  • drying in vacuo the temperatures generally being able to be selected such that the at least one detergent is at least partially, preferably essentially completely, removed from the crystalline porous metal-organic framework material and at the same time the framework structure is not destroyed.
  • the drying time is generally in the range from 0.1 to 15 h, preferably in the range from 0.2 to 5 h and particularly preferably in the range from 0.5 to 1 h.
  • the optionally at least one washing step and optionally at least one drying step can be followed by at least one caicination step in which the temperatures are preferably chosen so that the structure of the framework material is not destroyed.
  • the invention also relates to the porous metal-organic framework material itself, which is produced by the process as described above.
  • the crystalline porous organometallic framework material is generally obtained as a fine powder, the crystals having a size in the range from 0.1 to 100 ⁇ m, determined by SEM (Scanning Electron Microscopy).
  • the pore sizes of the electrochemically produced porous organometallic framework materials can be adjusted over a wide range by the type and number of the at least bidentate organic compound and / or the type and optionally oxidation level of the at least one metal ion.
  • the framework material may contain micropores or mesopores or macropores or micro and mesopores or micro and macropores or meso and macropores or micro and meso and macropores.
  • the framework materials produced according to the invention particularly preferably contain micropores or mesopores or micropores and mesopores.
  • micropores 11 designates pores with a diameter of up to 2 nm.
  • mesopores designates pores with a diameter of more as 2 nm up to 50 nm.
  • micropores and / or mesopores can be determined by nitrogen adsorption measurements at 77 K in accordance with DIN 66131 and DIN 66135 and DIN 66134.
  • the specific surface area of the crystalline porous organometallic framework materials produced according to the invention, determined via DIN 66135, is generally at least 5 m 2 / g, in particular more than 5 m 2 / g, more preferably at least 10 m 2 / g, in particular more than 10 m 2 / g, more preferably at least 50 m 2 / g, in particular at more than 50 m 2 / g, more preferably at least 100 m 2 / g, in particular at more than 100 m 2 / g, more preferably at at least 250 m 2 / g, in particular at more than 250 m 2 / g, more preferably at least 500 m 2 / g, in particular at more than 500 m 2 / g, the specific surface area up to more than 1000 m 2 / g g, for example more than 2000 m 2 / g, further for example more than 3000 m 2 / g and in particular for example more than 4000 m 2
  • the porous metal-organic framework material separated from the mother liquor is deformed into one or more shaped bodies.
  • shaped bodies There are essentially no restrictions with regard to the possible geometries of these shaped bodies.
  • pellets such as disc-shaped pellets, pills, spheres, granules, extrudates such as strands, honeycombs, grids or hollow bodies can be mentioned, among others.
  • the framework material to at least one optionally porous carrier material.
  • the material obtained can then be processed further into a shaped body in accordance with the method described above.
  • Kneading and shaping can be carried out according to any suitable method, as described, for example, in Ullmanns Enzyklopadie der Technischen Chemie, 4th edition, volume 2, pp. 313 ff. (1972), the content of which is fully incorporated by reference into the context of the present application ,
  • kneading and / or shaping by means of a piston press, roller press in the presence or absence of at least one binder material, compounding, pelletizing, tableting, extruding, co-extruding, foaming, spinning, coating, granulating, preferably spray granulating, spraying, spray drying or one Combination of two or more of these methods can be done.
  • Pellets and / or tablets are especially produced.
  • Kneading and / or shaping can take place at elevated temperatures such as, for example, in the range from room temperature to 300 ° C. and / or at elevated pressure such as for example in the range from normal pressure up to a few hundred bar and / or in a protective gas atmosphere such as in the presence of at least one noble gas, nitrogen or a mixture of two or more thereof.
  • the kneading and / or shaping is carried out with the addition of at least one binder, it being possible in principle to use any chemical compound which guarantees the viscosity of the mass to be kneaded and / or deformed desired for kneading and / or shaping.
  • binders for the purposes of the present invention can be both viscosity-increasing and viscosity-reducing compounds.
  • binders examples include aluminum oxide or aluminum oxide-containing binders, as described, for example, in WO 94/29408, silicon dioxide, as described, for example, in EP 0 592 050 A1, mixtures of silicon dioxide and aluminum oxide, as described, for example, in WO 94/13584 are described, clay minerals as described for example in JP 03-037156 A, for example montmorillonite, kaolin, bentonite, hallosit, dickite, nacrite and anauxite, alkoxysilanes as described for example in EP 0 102 544 B1 are described, for example tetraalkoxysilanes such as, for example, tetramethoxysilane, tetraethoxysilane, tetrapropoxysilane, tetrabutoxysilane, or for example trialkoxysilanes such as, for example, trimethoxysilane, triethoxysilane, tripropoxysilane,
  • a viscosity-increasing compound for example, an organic compound and / or a hydrophilic polymer such as cellulose or a, for example in addition to the above-mentioned compounds
  • Cellulose derivative such as methyl cellulose and / or a polyacrylate and / or a polymethacrylate and / or a polyvinyl alcohol and / or a polyvinyl pyrrolidone and / or a polyisobutene and / or a polytetrahydrofuran can be used.
  • Preferred pastes include water or at least one alcohol such as, for example, a monoalcohol with 1 to 4 carbon atoms, such as methanol, ethanol, n-propanol, isopropanol, 1-butanol, 2-butanol, 2-methyl-1- propanol or 2-methyl-2-propanol or a mixture of water and at least one of the alcohols mentioned or a polyhydric alcohol such as a glycol, preferably a water-miscible polyhydric alcohol, alone or as a mixture with water and / or at least one of the said monohydric alcohols are used.
  • a monoalcohol with 1 to 4 carbon atoms such as methanol, ethanol, n-propanol, isopropanol, 1-butanol, 2-butanol, 2-methyl-1- propanol or 2-methyl-2-propanol or a mixture of water and at least one of the alcohols mentioned or a polyhydric alcohol such as a glycol,
  • the order of the additives such as the template compound, binder, pasting agent, viscosity-increasing substance during shaping and kneading is in principle not critical.
  • Shaped moldings obtained are subjected to at least one drying which is generally carried out at a temperature in the range from 25 to 300 ° C., preferably in the range from 50 to 300 ° C. and particularly preferably in the range from 100 to 300 ° C. It is also possible to dry in a vacuum or under a protective gas atmosphere or by spray drying.
  • At least one of the compounds added as additives is at least partially removed from the shaped body in the course of this drying process.
  • the framework material is applied to at least one possibly porous material.
  • a porous substrate is preferably used here. This application is particularly preferably carried out by impregnation with a liquid, soaking in a liquid, spraying, deposition from the liquid phase, deposition from the gas phase (vapor deposition), precipitation (precipitation), co-precipitation, coating.
  • Aluminum oxide, silica gel, silicates, diatomaceous earth, kaolin, magnesium oxide, activated carbon, titanium dioxide and / or zeolites are preferably used as the optionally porous substrate.
  • shell structures can be produced by applying the porous metal-organic framework material to a non-porous shaped body, as are known from shell catalysts.
  • pore formers in the production of the moldings.
  • all compounds which provide a specific pore size, a specific pore size distribution and / or specific pore volumes with respect to the finished molded body can be used as pore formers.
  • Preferred pore formers in the process according to the invention include polymeric vinyl compounds such as, for example, polystyrene, polyacrylates, polymethacrylates, polyolefins, polyamides and polyesters.
  • compounds as pore formers which can be at least partially, preferably essentially completely, removed at the calcination temperatures of the process according to the invention.
  • malonic acid may be mentioned.
  • the electrochemically produced porous organometallic framework materials are used in the context of the present invention for receiving and / or storing and / or releasing liquids and / or gases.
  • the organometallic framework materials can be contained in a molded body.
  • the present invention also relates to the use of an electrochemically producible porous metal-organic framework material for cleaning at least one liquid and / or at least one gas or as a storage medium for at least one liquid and / or at least one gas.
  • an electrochemically producible porous metal-organic framework material for cleaning at least one liquid and / or at least one gas or as a storage medium for at least one liquid and / or at least one gas.
  • Methane was adsorbed at 25 ° C on 3 mm strands of the EMOF. The measurement was carried out in a conventional balance. The sample was dried for about 20 hours at 120 ° C. and a pressure ⁇ 1 mbar. The EMOF material had a surface area of 616 m 2 / g.
  • Propene was sorbed at 70 ° C.
  • the sample was dried on the balance at 70 ° C. for about 2.5 hours.
  • the EMOF material was in the form of a powder and had a surface area of 1649 m 2 / g.
  • the molecular sieve 13X was dried for approx. 5 h at 25 ° C. and ⁇ 0.1 mbar.
  • the molecular sieve had a surface area of 730 m 2 / g.
  • Methane was adsorbed at 25 ° C on 3 mm strands of the EMOF. The measurement was carried out in a conventional balance. The sample was dried for approx. 40 h at 120 ° C and a pressure ⁇ 1 mbar. The EMOF material had a surface area of 2380 m 2 / g.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Sustainable Development (AREA)
  • Metallurgy (AREA)
  • Combustion & Propulsion (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • Sustainable Energy (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Health & Medical Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Catalysts (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Inert Electrodes (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Fuel Cell (AREA)

Abstract

Die vorliegende Erfindung betrifft ein Verfahren zur Aufnahme und/oder Speicherung von Gasen, bei dem das zu speichernde Gas mit einem elektrochemisch hergestellten metallorganischen Gerüstmaterial unter zur Gasaufnahme geeigneten Bedingungen in Kontakt gebracht wird, wobei eine Aufnahme des Gases in das metallorganische Gerüstmaterial erfolgt, und anschließend gegebenenfalls die Bedingungen so geändert werden, dass eine Abgabe des gespeicherten Gases erfolgt.

Description

Verfahren zur kontrollierten Speicherung und Abgabe von Gasen unter Einsatz eines elektrochemisch hergestellten kristallinen porösen metallorganischen Gerüstmaterials
Die vorliegende Erfindung betrifft ein Verfahren zur kontrollierten Speicherung und/oder Abgabe von Gasen unter Einsatz eines elektrochemisch hergestellten kristallinen, porösen metallorganischen Gerüstmaterials. Dabei wird das im Gerüstmaterial enthaltene Metallion zumindest teilweise über anodische Oxidation bereitgestellt. Das elektrochemisch hergestellte Gerüstmaterial eignet sich hervorragend als Speichermedium für Gase.
Kristalline poröse metallorganische Gerüstmaterialien, so genannte "Metal-Organic Frameworks" (MOF) mit bestimmten Poren bzw. Porenverteilungen und großen spezifischen Oberflächen sind gerade in jüngster Zeit Ziel umfangreicher Forschungstätigkeiten.
So beschreibt beispielsweise die US 5,648,508 mikroporöse metallorganische Materialien, die unter milden Reaktionsbedingungen aus einem Metallion und einem Liganden in Anwesenheit einer Templatverbindung hergestellt werden.
Die WO 02/088148 offenbart die Herstellung einer Reihe von Verbindungen, die die gleiche Gerüsttopologie aufweisen. Diese so genannten IMOF (Isoreticular Metal- Organic Framework)-Strukturen stellen monokristalline und mesoporöse Gerüstmaterialien dar, die eine sehr hohe Speicherkapazität für Gase aufweisen.
Eddaoudi et al., Science, 295 (2002) S. 469-472, beschreiben beispielsweise die Herstellung eines so genannten MOF-5, bei dem ausgegangen wird von einem Zinksalz, d.h. Zinknitrat, wobei zur Synthese des MOF dieses Salz und 1 ,4- Benzoldicarbonsäure (BDC) in N,N'-Diethylformamid (DEF) gelöst sind.
Chen et al., Science, 291 (2001) S. 1021-1023, beschreiben beispielsweise die Herstellung eines so genannten MOF-14, bei dem ausgegangen wird von einem Kupfersalz, d.h. Kupfernitrat, wobei zur Synthese des MOF dieses Salz und 4,4',4"- Benzol-1,3,5-triyltribenzoesäure (H3BTC) in NΛ'-Dimethylformamid (DMF) und Wasser gelöst sind. Im Stand der Technik werden demgemäß für die Herstellung dieser porösen metallorganischen Gerüstmaterialien stets Verfahren beschrieben, in denen das Metallion, an das die Liganden koordinativ gebunden sind, über eine entsprechende Metallsalzlösungen bereitgestellt wird, wobei in jedem Fall eine Lösung, die das gelöste Metallsalz enthält, mit einem Liganden in Gegenwart einer geeigneten Templatverbindung in Kontakt gebracht wird.
Diese Vorgehensweise weist sicherheitstechnische Probleme auf, da beispielsweise bei der Herstellung von kupferhaltigen metallorganischen Gerüstmaterialien in der Lösung neben Kupferionen in vielen Fällen auch Nitrat-Anionen vorliegen, die über das Kupfersalz in das Reaktionssystem eingebracht werden. Aus der Synthese resultieren dann hochoberflächige Metallkomplexe in konzentrierten, nitrathaltigen Phasen, wobei in den Phasen außerdem organische Lösungsmittel enthalten sind. Solche Phasen können beim Überhitzen zur spontanen Zersetzung neigen.
Verwendet man hingegen statt einer nitrathaltigen Metallsalzlösung eine Lösung auf der Basis von Halogeniden, wie dies im Stand der Technik ebenfalls in vielen Fällen beschrieben ist, so führt dies in der technischen Anwendung zur schnellen Korrosion an Apparatebauteilen, weshalb teure korrosionsbeständige Werkstoffe benötigt werden.
Zur Vermeidung der beschriebenen Nachteile wurde von der Anmelderin ein Verfahren zur elektrochemischen Herstellung von MOF's entwickelt, das Gegenstand der deutschen Patentanmeldung 103 55 087.5 vom 24.11.2003 mit dem Titel "Verfahren zur elektrochemischen Herstellung eines kristallinen porösen metallorganischen Gerüstmaterials" ist.
Das darin beschriebene Verfahren geht von einem völlig andersartigen Ansatz aus, bei dem das Metallion, an dem der Ligand des Gerüstmaterials koordinativ gebunden ist, nicht über ein Metallsalz, sondern auf elektrochemischem Weg bereitgestellt wird. Daher wird das mindestens eine Metallion im metallorganischen Gerüstmaterial zumindest teilweise über anodische Oxidation in das Reaktionssystem eingebracht.
Die vorstehend genannte Anmeldung betrifft ein Verfahren zur elektrochemischen Herstellung eines kristallinen porösen metallorganischen Gerüstmaterials, enthaltend mindestens eine an mindestens ein Metallion koordinativ gebundene, mindestens zweizähnige organische Verbindung, in einem Reaktionsmedium, enthaltend die mindestens eine zweizähnige organische Verbindung, dadurch gekennzeichnet, dass im Reaktionsmedium mindestens ein Metallion durch Oxidation mindestens einer das entsprechende Metall enthaltenden Anode bereitgestellt wird.
Die Speicherung von Gasen mit metallorganischen Gerüstmaterialien (engl.: metallo organic framework materials, MOF's) ist bereits Gegenstand der Patentanmeldung WO 03/064030. In dieser Anmeldung wird die Speicherung verschiedener Gase, u.a. H2, CH4, Edelgase und dergleichen, unter Einsatz von metallorganischen Gerüstmaterialien beschrieben. Metallorganische Gerüstmaterialien sind aufgrund ihrer hohen inneren Oberfläche gut geeignet, Gase aufzunehmen, auch eine Abgabe der Gase ist möglich.
Das Verfahren nach der oben genannten Anmeldung unter Einsatz herkömmlicher metallorganischer Gerüstmaterialien weist jedoch den Nachteil auf, dass die aus den Ausgangsmaterialien stammenden Anionen wie etwa NO3 " oder CI" sich noch im Gerüst des MOF-Materials befinden und dadurch die Speichereigenschaften negativ beeinflusst werden, etwa durch Wechselwirkungen. Insbesondere wird dadurch die Speicherkapazität der Materialien herabgesetzt, da freie Speicherplätze belegt sind.
Die Aufgabe der vorliegenden Erfindung besteht somit darin, ein Verfahren zur Verfügung zu stellen, bei dem die oben genannten Nachteile vermieden werden. Vorzugsweise soll es möglich sein, das Verfahren nach der WO 03/064030 dahingehend zu verbessern, dass keine Wechselwirkungen zwischen den gespeicherten Gasen und den Anionen auftreten. Insbesondere soll die Speicherkapazität der MOF-Materialien optimiert werden, also ein Speicherverfahren mit maximaler Speicherkapazität bereitgestellt werden.
Von der Anmelderin wurde nun gefunden, dass die nach der deutschen Patentanmeldung 103 55 087.5 hergestellten metallorganischen Gerüstmaterialien - die als solche neu sind und sich von den nasschemisch hergestellten entsprechenden metallorganischen Gerüstmaterialien unterscheiden - hervorragend zur Speicherung und/oder Abgabe von Gasen geeignet sind.
Diese Aufgabe wird gelöst durch ein Verfahren zur Aufnahme und/oder Speicherung von Gasen, bei dem das zu speichernde Gas mit einem elektrochemisch hergestellten metallorganischen Gerüstmaterial unter zur Gasaufnahme geeigneten Bedingungen in Kontakt gebracht wird, wobei eine Aufnahme des Gases in das metallorganische Gerüstmaterial erfolgt, und anschließend gegebenenfalls die Bedingungen so geändert werden, dass eine Abgabe des gespeicherten Gases erfolgt.
Das erfindungsgemäße Verfahren ermöglicht ein effektives Speichern großer Mengen von Gasen.
Der im Zusammenhang mit der vorliegenden Anmeldung verwendete Begriff "MOF- Material" weist die gleiche Bedeutung wie der Begriff "metallorganisches Gerüstmaterial" auf. Es ist damit jeweils das nach Herstellung erhaltene, von Verunreinigungen befreite Polymer bezeichnet, das aus Metallionen und verbrückenden Liganden aufgebaut ist und gegebenenfalls noch durch Reinigung nicht zu entfernende Verunreinigungen enthalten kann, beispielsweise aus der Synthese stammende Anionen. Das MOF-Material enthält dabei keine weiteren Begleit- oder Hilfsstoffe, wie etwa Binder, Gleit- und Verstrangungsmittel, die beim Verarbeiten der MOF-Materialien zu etwa Tabletten oder Strängen eingesetzt werden.
Das erfindungsgemäße Verfahren eignet sich zur Speicherung von Substanzen, die vorzugsweise bei Raumtemperatur gasförmig vorliegen. Es ist jedoch auch möglich, Materialien mit einem Siedepunkt oberhalb Raumtemperatur zu speichern. Dabei wird der Speichervorgang im Allgemeinen so durchgeführt, dass das zu speichernde Material falls nötig in die Gasphase gebracht und in gasförmigem Zustand mit dem MOF-Material unter geeigneten Bedingungen in Kontakt gebracht wird. Die Aufbewahrung des gespeicherten Gases kann anschließend auch bei Temperaturen erfolgen, in denen dieses wieder als Flüssigkeit vorliegt. Gegebenenfalls muss zur Abgabe des gespeicherten Mediums wieder auf eine Temperatur erhitzt werden, bei dem dieses gasförmig vorliegt.
Das erfindungsgemäße Verfahren eignet sich prinzipiell für die Speicherung und/oder Abgabe sämtlicher chemischer Verbindungen, die bis etwa Raumtemperatur, aber auch oberhalb Raumtemperatur als Gas vorliegen. Es kann sich dabei um eine Verbindung oder ein Gemisch aus zwei oder mehreren Verbindungen handeln. Beispiele umfassen gesättigte und ungesättigte Kohlenwasserstoffe, gesättigte und ungesättigte Alkohole, Sauerstoff, Stickstoff, Edelgase (Ne, Ar, Kr, Xe, Rn), CO, CO2, Synthesegas (im Allgemeinen CO/H2) sowie natürliche Gase aller möglichen Zusammensetzungen. Bei dem aufgenommenen Gas kann es sich auch um Verbindungen handeln, die diejenigen Gase erzeugen, die nachfolgend durch das MOF-Material abgegeben werden.
Im Rahmen der vorliegenden Erfindung bevorzugte Gase umfassen H2; H2-haltige Gasmischungen; H2-erzeugende oder abgebende Verbindungen; Methan, Ethan, Propan, Butane, Ethylen, Propylen, Acetylen, Ne, Ar, Kr, Xe, CO2 und CO2. Insbesondere bevorzugt sind H2, CH , Kr, Xe, CO2, CO.
Wenn im Zusammenhang mit der vorliegenden Anmeldung von "Speicherung" eines oder mehrerer Gase gesprochen wird, bezeichnet dies einen Vorgang, in dem das Gas mit dem MOF-Material in Kontakt tritt, in dessen Hohlräume eindringt und adsorbiert wird. Damit wird das Gas gespeichert. An dieser Speicherung kann sich gegebenenfalls eine Lagerung des mit dem Gas beladenen MOF-Materials anschließen, bevor die "Abgabe" des Gases oder des Gasgemischs erfolgt.
Wie bereits erwähnt, wird die Speicherung generell bei einer Temperatur durchgeführt, bei der die zu speichernde Verbindung oder das Verbindungsgemisch in gasförmiger Form vorliegt. Vorzugsweise wird die Speicherung bei einer Temperatur von 0 bis 100 °C, insbesondere 10 bis 30 °C durchgeführt werden. Weiterhin erfolgt die Speicherung des Gases oder des Gasgemischs im Allgemeinen bei einem Druck oberhalb Atmosphärendruck, vorzugsweise von 1 bis 300 bar (absolut), insbesondere von 1 bis 150 bar (absolut), mehr bevorzugt von 1 bis 80 bar (abs), weiter bevorzugt im Bereich von 45 bis 80 bar und insbesondere im Bereich von 50 bis 80 bar (abs).
Bei der erfindungsgemäßen Speicherung und/oder Abgabe befindet sich das MOF- Material im Allgemeinen in einem gasdichten Behälter. Am Ende des Speicherungsvorgangs weist der Behälter aufnehmend das MOF-Material einen Innendruck auf, der dem zuvor angelegten Außendruck entspricht. Damit befindet sich auch das MOF-Material aufnehmend das Gas oder Gasgemisch unter einem äußeren Druck. Zur Abgabe des Gases oder Gasgemischs wird generell der auf dem MOF- Material lastende Druck vermindert, im Allgemeinen durch Öffnen des Behälters aufnehmend das MOF-Material. Zum Bewirken der Abgabe des gespeicherten Gases/Gasgemischs ist es auch möglich, das MOF-Material zu erhitzen. Dies kann zusätzlich zu der Druckverminderung geschehen, aber auch als alleinige Maßnahme, insbesondere in den Fällen, in denen der auf dem MOF-Material lastende Druck nicht höher als der Atmosphärendruck ist. Die vorliegende Erfindung umfasst somit auch einen gasdichten Behälter, aufnehmend ein MOF-Material, eine Öffnung, durch die das zu speichernde Gas eintreten kann, und einen Schließmechanismus, durch den der Innenraum des Behälters unter Druck gehalten werden kann.
Solche Behälter können beispielsweise im Rahmen einer Brennstoffzelle verwendet werden, die zur Speicherung und Abgabe von Energie bei Vorrichtungen eingesetzt wird, bei denen eine Zufuhr von externer Energie nicht möglich oder nicht gewünscht ist und deshalb unterbleibt. Dies ist beispielsweise beim Betrieb von stationären, mobilen und/oder portablen Systemen oder Anwendungen der Fall. Als solche sind etwa Kraftwerke, Kraftfahrzeuge, wie Personenkraftwagen, Lastkraftwagen und Busse, und kabellose Anwendungen in der Elektronik, wie Mobiltelefone oder Laptops zu nennen.
Dabei kann dieser Behälter grundsätzlich jede geeignete Geometrie aufweisen. Durch die erfindungsgemäß möglichen niedrigen Drücke sind bevorzugt auch Behälter möglich, die von der Standard-Zylindergeometrie abweichen und den jeweiligen Erfordernissen, beispielsweise den spezifischen Raumvorgaben im Automobilbau variabel anpassbar sind. Dadurch können die variabel gestaltbaren Behälter in anderweitig nicht nutzbare Hohlräume eines Automobils eingepasst werden und wertvoller Stau- und Nutzraum gewonnen werden.
Nachfolgend werden die elektrochemisch hergestellten MOF-Materialien, die erfindungsgemäß bei der Speicherung eingesetzt werden, nochmals näher beschrieben.
MOF-Materialien sind aus Metallionen aufgebaut, die über mindestens zweizähnige organische Verbindungen so miteinander verbunden sind, dass eine dreidimensionale Struktur entsteht, die innere Hohlräume (Poren) aufweist. Die Poren werden durch die Metallatome und die sie verbindenden organischen Verbindungen definiert. Ein MOF- Material kann dabei ausschließlich die gleichen Metallionen aufweisen, oder auch 2 oder mehr verschiedene Metallionen.
Der Begriff "elektrochemische Herstellung" bezeichnet dabei ein Herstellverfahren, bei denen die Bildung mindestens eines Reaktionsproduktes mit der Wanderung von elektrischen Ladungen oder dem Auftreten von elektrischen Potentialen verbunden ist. Der Begriff "mindestens ein Metallion" bezeichnet dabei Ausführungsformen, gemäß denen mindestens ein Ion eines Metalls oder mindestens ein Ion eines ersten Metalls und mindestens ein Ion mindestens eines vom ersten Metall verschiedenen zweiten Metalls durch anodische Oxidation bereit gestellt werden.
Demgemäß umfassen elektrochemisch hergestellte MOF-Materialien auch Ausführungsformen, in denen mindestens ein Ion mindestens eines Metalls durch anodische Oxidation und mindestens ein Ion mindestens eines Metalls über ein Metallsalz bereit gestellt werden, wobei das mindestens eine Metall im Metallsalz und das mindestens eine Metall, das über anodische Oxidation als Metallion bereit gestellt werden, gleich oder voneinander verschieden sein können. Dies ist beispielsweise eine Ausführungsform, gemäß der das Reaktionsmedium ein oder mehrere unterschiedliche Salze eines Metalls enthält und das in diesem Salze oder in diesen Salzen enthaltene Metallion zusätzlich durch anodische Oxidation mindestens einer dieses Metall enthaltenden Anode bereitgestellt wird. Ebenso ist dies eine Ausführungsform, gemäß der das Reaktionsmedium ein oder mehrere unterschiedliche Salze mindestens eines Metalls enthält und mindestens ein von diesen Metallen unterschiedliches Metall über anodische Oxidation als Metallion im Reaktionsmedium bereitgestellt wird.
Gemäß einer bevorzugten Ausführungsform wird das mindestens eine Metallion durch anodische Oxidation mindestens einer der dieses mindestens eine Metall enthaltenden Anode bereitgestellt, wobei kein weiteres Metall über ein Metallsalz bereitgestellt wird.
Es wird somit eine Ausführungsform umfasst, gemäß der die mindestens eine Anode ein einziges oder zwei oder mehr Metalle enthält, wobei im Falle, dass die Anode ein einziges Metall enthält, dieses Metall durch anodische Oxidation bereitgestellt wird und im Falle, dass die Anode zwei oder mehr Metalle enthält, mindestens eines dieser Metalle durch anodische Oxidation bereitgestellt wird.
Weiterhin wird eine Ausführungsform umfasst, gemäß der mindestens zwei Anoden verwendet werden, wobei die beiden gleich oder verschieden voneinander sein können. Jede der mindestens zwei Anoden kann hierbei ein einziges oder zwei oder mehr Metalle enthalten. Hierbei ist es beispielsweise möglich, dass zwei unter- schiedliche Anoden die gleichen Metalle, diese jedoch in unterschiedlichen Anteilen enthalten. Ebenso ist es beispielsweise im Falle unterschiedlicher Anoden möglich, dass eine erste Anode ein erstes Metall enthält und eine zweite Anode ein zweites Metall enthält, wobei die erste Anode das zweite Metall und/oder die zweite Anode das erste Metall nicht enthält.
Der Begriff "Metall" umfasst sämtliche Elemente des Periodensystems, die über anodische Oxidation auf elektrochemischem Weg in einem Reaktionsmedium bereitgestellt werden können und mit mindestens einer mindestens zweizähnigen organischen Verbindungen mindestens ein metallorganisches poröses Gerüstmaterial zu bilden in der Lage sind.
Insbesondere bevorzugt werden im Rahmen der vorliegenden Erfindung Elemente der Gruppen la, Ha, lila, IVa bis Villa sowie Ib und Vlb des Periodensystems der Elemente. Unter diesen Elementen sind Mg, Ca, Sr, Ba, Sc, Y, Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Mn, Re, Fe, Ru, Os, Co, Rh, Ir, Ni, Pd, Pt, Cu, Ag, Au, Zn, Cd, Hg, AI, Ga, In, TI, Si, Ge, Sn, Pb, As, Sb und Bi bevorzugt. Weiter bevorzugt sind Zn, Cu, Ni, Pd, Pt, Ru, Rh, Fe, Mn, Ag und Co. Im Rahmen der vorliegenden Erfindung werden weiter bevorzugt Cu, Fe, Co, Zn, Mn und Ag. Insbesondere bevorzugt sind Cu, Fe und Zn.
Als Metallionen, die über anodische Oxidation im Reaktionsmedium bereit gestellt werden, sind insbesondere Mg2+, Ca2+, Sr2*, Ba2+, Sc3", Y3*, Ti4*, Zr4*, Hf", V4*, V3 , V2*, Nb31", Ta3", Cr , Mo3", \N\ Mn3", Mn2+, Re3", Re2+, Fe3*, Fe2*, Ru3", Ru2*, Os3", Os2*, Co3", Co2*, Rh2*, Rh*, Ir2", lr+, Ni2*, IST, Pd2*, Pd*, Pt2*, Pf, Cu2*, Cu*, Ag*, Au*, Zn2*, Cd2*, Hg2*, AI3", Ga3", In3", 7f", Si4*, Si2*, Ge4*, Ge2*, Sn4*, Sn2*, Pb4*, Pb2*, As5", As3", As*, Sb5*, Sb3", Sb*, Bi5", Bi3" und Bi* zu nennen. Besonders bevorzugt sind Cu2*, Cu*, Fe2*. Fe3*, Zn2*, Co3*, Co2*, Ag*, Mg2* und Mn2*. Insbesondere bevorzugt sind Cu2*, Cu*, Fe2*; Fe^undZn2".
Somit können als Metallionenquelle eine Kupfer und/oder eine Eisen und/oder eine Zink und/oder eine Silber und oder eine Mangan enthaltende Anode eingesetzt werden.
Ebenso können als Metallionenquelle eine Kupfer und/oder eine Eisen und/oder eine Zink und/oder eine Mangan enthaltende Anode eingesetzt werden.
Vorzugsweise werden als Metallionenquelle eine Kupfer und oder eine Eisen und/oder eine Zink enthaltende Anode eingesetzt.
Der Aufbau der eingesetzten Anode kann grundsätzlich beliebig gewählt werden, solange gewährleistet ist, dass durch anodische Oxidation das mindestens eine Metallion im Reaktionsmedium zur Bildung des porösen metallorganischen Gerüstmaterials bereit gestellt werden kann.
Unter anderem bevorzugt sind Anoden in Form eines Stabs und/oder eines Rings und/oder einer Scheibe wie beispielsweise einer Ringscheibe und/oder einer Platte und/oder eines Rohrs und/oder einer Schüttung und/oder eines Zylinders und/oder eines Kegels und/oder eines Kegelstumpfs.
Gemäß einer bevorzugten Ausführungsform wird das MOF-Material elektrochemisch unter Verwendung mindestens einer Opferanode hergestellt. Der Begriff "Opferanode" bezeichnet eine Anode, die sich im Laufe des Verfahrens mindestens teilweise auflöst. Dabei werden auch Ausführungsformen erfasst, bei denen mindestens ein Teil des sich aufgelösten Anodenmaterials im Lauf des Verfahrens ersetzt wird. Dies kann beispielsweise dadurch bewerkstelligt werden, dass mindestens eine neue Anode in das Reaktionssystem eingebracht wird oder gemäß einer bevorzugten Ausführungsform eine Anode in das Reaktionssystem eingebracht wird und im Verlauf des erfindungsgemäßen Verfahrens kontinuierlich oder diskontinuierlich in das Reaktionssystem nachgeführt wird.
Bevorzugt werden Anoden eingesetzt, die aus dem mindestens einen Metall, das als Metallionenquelle dient, bestehen oder dieses mindestens eine Metall auf mindestens ein geeignetes Trägermaterial aufgebracht enthalten.
Die Geometrie des mindestens einen Trägermaterials unterliegt im Wesentlichen keinen Beschränkungen. Möglich ist beispielsweise der Einsatz von Trägermaterialien in Form eines Gewebes und/oder einer Folie und/oder eines Filzes und/oder eines Siebes und/oder Stabs und/oder einer Kerze und/oder eines Kegels und/oder eines Kegelstumpfes und/oder eines Rings und/oder einer Scheibe und/oder einer Platte und/oder eines Rohrs und/oder einer Schüttung und/oder eines Zylinders.
Als Trägermaterialien kommen beispielsweise Metalle wie beispielsweise mindestens eines der oben genannten Metalle, Legierungen wie beispielsweise Stähle oder Bronzen oder Messing, Graphit, Filz oder Schäume in Betracht.
Ganz besonders bevorzugt sind Anoden, die aus dem mindestens einen Metall, das als Metallionenquelle dient, bestehen. Der Aufbau der eingesetzten Kathode kann grundsätzlich beliebig gewählt werden, solange gewährleistet ist, dass durch anodische Oxidation das mindestens eine Metallion im Reaktionsmedium zur Bildung des porösen metallorganischen Gerüstmaterials bereit gestellt werden kann.
Gemäß einer bevorzugten Ausführungsform wird das elektrisch leitende Elektrodenmaterial der mindestens einen Kathode so gewählt, dass im Reaktionsmedium keine störende Nebenreaktion stattfindet. Als unter anderem bevorzugte Kathodenmaterialien sind unter anderem Graphit, Kupfer, Zink, Zinn, Mangan, Silber, Gold, Platin oder Legierungen wie beispielsweise Stähle, Bronzen oder Messing.
Als unter anderem bevorzugte Kombinationen des als Metallionenquelle dienenden Anodenmaterials und des elektrisch leitenden Kathodenmaterials sind beispielsweise zu nennen:
Die Geometrie der mindestens einen Kathode unterliegt im Wesentlichen keinen Beschränkungen. Möglich ist beispielsweise der Einsatz von Kathoden in Form eines Stabs und/oder eines Rings und/oder einer Scheibe und/oder einer Platte und/oder eines Rohrs.
Es kann im Wesentlichen jeder der in der Elektrochemie üblichen Zellentypen verwendet werden. Ganz besonders bevorzugt wird im erfindungsgemäßen Verfahren eine Elektrolysezelle, die für den Einsatz von Opferelektroden geeignet ist.
Grundsätzlich ist es unter anderem möglich, geteilte Zellen mit beispielsweise planparalleler Elektrodenanordnung oder kerzenförmigen Elektroden einzusetzen. Als
Trennmedium zwischen den Zellkompartimenten können beispielsweise lonenaustauschermembranen, mikroporöse Membranen, Diaphragmen, Filtergewebe aus nichtelektronenleitenden Materialien, Glasfritten und/oder poröse Keramiken eingesetzt werden. Vorzugsweise werden lonenaustauschermembranen, insbesondere Kationenaustauschermembranen, verwendet, wobei darunter wiederum solche Membranen vorzugsweise verwendet werden, die aus einem Copolymer aus Tetrafluorethylen und einem perfluorierten Monomer, das Sulfonsäuregruppen enthält, bestehen.
Im Rahmen einer bevorzugten Ausführungsform werden eine oder mehrere ungeteilte Zellen eingesetzt.
Demgemäß betrifft die genannte Erfindung auch ein wie oben beschriebenes Verfahren, das dadurch gekennzeichnet ist, dass das Verfahren in einer ungeteilten Elektrolysezelle durchgeführt wird.
Ganz besonders bevorzugt werden Kombinationen von Geometrien aus Anode und Kathode, bei denen die einander zugewandten Seiten der Anode und Kathode gemeinsam einen Spalt von homogener Dicke ausbilden.
In der mindestens einen ungeteilten Zelle werden die Elektroden beispielsweise bevorzugt planparallel angeordnet, wobei der Elektrodenspalt eine homogene Dicke beispielsweise im Bereich von 0,5 mm bis 30 mm, bevorzugt im Bereich von 0,75 mm bis 20 mm und besonders bevorzugt im Bereich von 1 bis 10 mm aufweist.
Im Rahmen einer bevorzugten Ausführungsform ist es beispielsweise möglich, eine Kathode und eine Anode derart planparallel anzuordnen, dass in der entstehenden Zelle ein Elektrodenspalt mit einer homogenen Dicke im Bereich von 0,5 bis 30 mm, bevorzugt im Bereich von 1 bis 20 mm, weiter bevorzugt im Bereich von 5 bis 15 mm und insbesondere bevorzugt im Bereich von 8 bis 12 mm wie beispielsweise im Bereich von ungefähr 10 mm ausgebildet wird. Diese Art der Zelle wird im Rahmen der vorliegenden Erfindung mit dem Begriff "Spaltzelle" bezeichnet.
Gemäß einer bevorzugten Ausführungsform wird die obenstehend beschriebene Zelle als bipolar geschaltete Zelle eingesetzt.
Neben der oben beschriebenen Zelle werden gemäß einer ebenfalls bevorzugten Ausführungsform im Rahmen des erfindungsgemäßen Verfahrens die Elektroden einzeln oder zu mehreren gestapelt angewendet. Im letzteren Fall handelt es sich um so genannte Stapelelektroden, die in der demgemäß so genannten Plattenstapelzelle bevorzugt seriell bipolar geschaltet werden. Insbesondere für die Ausübung des erfindungsgemäßen Verfahrens im industriellen Maßstab werden bevorzugt mindestens eine Topfzelle und insbesondere bevorzugt seriell geschaltete Plattenstapelzellen eingesetzt, deren prinzipieller Aufbau in der DE 195 33 773 A1 beschrieben sind, deren diesbezüglicher Inhalt durch Bezugnahme in den Kontext der vorliegenden Anmeldung vollumfänglich einbezogen wird.
Im Rahmen der bevorzugten Ausführungsform der Plattenstapelzelle ist es beispielsweise bevorzugt, Scheiben aus geeigneten Materialien wie beispielsweise Kupferscheiben derart planparallel anzuordnen, dass zwischen den einzelnen Scheiben jeweils ein Spalt mit einer homogenen Dicke im Bereich von 0,5 bis 30 mm, bevorzugt im Bereich von 0,6 bis 20 mm, weiter bevorzugt im Bereich von 0,7 bis 10 mm, weiter bevorzugt im Bereich von 0,8 bis 5 mm und insbesondere im Bereich von 0,9 bis 2 mm wie beispielsweise im Bereich von ungefähr 1 mm ausgebildet wird. Dabei können die Abstände zwischen den einzelnen Scheiben gleich oder verschieden sein, wobei gemäß einer besonders bevorzugten Ausführungsform die Abstände zwischen den Scheiben im Wesentlichen gleich sind. Gemäß einer weiteren Ausführungsform kann sich das Material einer Scheibe der Plattenstapelzelle von dem Material einer anderen Scheibe der Plattenstapelzelle unterscheiden. Beispielsweise kann eine Scheibe aus Graphit, eine andere Scheibe aus Kupfer gefertigt sein, wobei die Kupferscheibe bevorzugt als Anode und die Graphitscheibe bevorzugt als Kathode geschaltet ist.
Weiterhin ist es bevorzugt, so genannte "pencil sharpener"-Zellen zu verwenden, wie sie beispielsweise in J. Chaussard et al., J. Appl. Electrochem. 19 (1989) 345-348 beschrieben sind, deren diesbezüglicher Inhalt durch Bezugnahme in den Kontext der vorliegenden Anmeldung vollumfänglich einbezogen wird. Insbesondere bevorzugt werden im erfindungsgemäßen Verfahren Pencil-Sharpener-Elektroden mit stabförmigen, nachführbaren Elektroden eingesetzt.
Insbesondere betrifft demgemäß die genannte Erfindung auch ein wie oben beschriebenes Verfahren, das dadurch gekennzeichnet ist, dass das Verfahren in einer Spaltzelle oder Plattenstapelzelle durchgeführt wird. Zellen, bei denen der Elektrodenabstand im Bereich von kleiner oder gleich 1 mm liegt, werden als Kapillarspaltzellen bezeichnet.
Gemäß ebenfalls bevorzugter Ausführungsformen können Elektrolysezellen mit beispielsweise poröse Elektroden aus Metallschüttungen oder mit beispielsweise porösen Elektroden aus Metallnetzen oder mit beispielsweise Elektroden sowohl aus Metallschüttungen als auch Metallnetzen eingesetzt werden.
Gemäß einer weiteren bevorzugten Ausführungsform werden im erfindungsgemäßen Verfahren Elektrolysezellen eingesetzt, die mindestens eine Opferanode mit einem runden scheibenförmigen Querschnitt und mindestens eine Kathode mit einem ringförmigen Querschnitt aufweisen, wobei besonders bevorzugt der Durchmesser der bevorzugt zylinderförmigen Anode kleiner ist als der innere Durchmesser der Kathode und die Anode derart in der Kathode angebracht ist, dass zwischen der Außenfläche des Zylindermantels der Anode und der Innenfläche der die Anode zumindest teilweise umgebenden Kathode ein Spalt homogener Dicke gebildet wird.
Es ist auch möglich, durch Umpolung die ursprüngliche Anode zur Kathode und die ursprüngliche Kathode zur Anode zu machen. Im Rahmen dieser Verfahrensvariante ist es beispielsweise möglich, bei entsprechender Wahl von Elektroden, die unterschiedliche Metalle enthalten, zuerst ein Metall über anodische Oxidation als Metallkation zum Aufbau des metallorganischen Gerüstmaterials zur Verfügung zu stellen und in einem zweiten Schritt nach Umpolung ein weiteres Metall zum Aufbau des metallorganischen Gerüstmaterials zur Verfügung zu stellen. Ebenso ist es möglich, die Umpolung über das Anlegen von Wechselstrom zu bewerkstelligen.
Grundsätzlich ist es möglich, das Verfahren in Batchfahrweise oder kontinuierlich oder im Mischbetrieb durchzuführen. Bevorzugt wird das Verfahren kontinuierlich in mindestens einer Durchflusszelle durchgeführt.
Die Spannungen, die angewendet werden, können an das jeweilige mindestens eine Metall der mindestens einen Anode angepasst werden, das als Metallionenquelle für das poröse metallorganische Gerüstmaterial dient, und/oder an die Eigenschaften der mindestens einen zweizähnigen organischen Verbindung und/oder gegebenenfalls an die Eigenschaften des untenstehend beschriebenen mindestens einen Lösungsmittels und/oder gegebenenfalls an die Eigenschaften des untenstehend beschriebenen mindestens einen Leitsalzes und/oder an die Eigenschaften der untenstehend beschriebenen mindestens einen kathodischen Depolarisationsverbindung angepasst werden.
Im Allgemeinen liegen die Spannungen pro Elektrodenpaar im Bereich von 0,5 bis 100 V, bevorzugt im Bereich von 2 bis 40 V und besonders bevorzugt im Bereich von 4 bis 20 V. Beispielsweise bevorzugte Bereiche sind etwa 4 bis 10 V oder 10 bis 20 V oder 20 bis 25 V oder 10 bis 25 V oder 4 bis 20 V oder 4 bis 25 V. Dabei kann die Spannung im Laufe des erfindungsgemäßen Verfahrens konstant sein oder sich im Verlauf des Verfahrens kontinuierlich oder diskontinuierlich ändern. Beispielsweise im Fall, dass Kupfer anodisch oxidiert wird, liegen die Spannungen im Allgemeinen im Bereich von 3 bis 20 V, bevorzugt im Bereich von 3,5 bis 15 V und besonders bevorzugt im Bereich von 4 bis 15 V.
Die Stromdichten, die im Rahmen der Herstellung der porösen organischen Gerüstmaterialien auftreten, liegen im Allgemeinen im Bereich von 0,01 bis 1000 mA/cm2, bevorzugt im Bereich von 0,1 bis 1000 mA/cm2, weiter bevorzugt im Bereich von 0,2 bis 200 mA/cm2, weiter bevorzugt im Bereich von 0,3 bis 100 mA/cm2 und besonders bevorzugt im Bereich von 0,5 bis 50 mA/cm2.
Die im Verfahren verwendeten Strommengen (Ah) liegen bevorzugt im Bereich von 30 bis 200 % derjenigen Strommenge, die nötig ist, um die Menge der bevorzugt eingesetzten Säureäquivalente der mindestens einen mindestens zweizähnigen Verbindung abzusättigen.
Das Verfahren wird im Allgemeinen bei einer Temperatur im Bereich von 0 °C bis zum Siedepunkt, bevorzugt im Bereich von 20 °C bis zum Siedepunkt des jeweiligen Reaktionsmediums oder des verwendeten, mindestens einen Lösungsmittels bevorzugt unter Normaldruck durchgeführt. Ebenso ist es möglich, das Verfahren unter Druck durchzuführen, wobei Druck und Temperatur bevorzugt so gewählt werden, dass das Reaktionsmedium bevorzugt zumindest teilweise flüssig ist.
Im Allgemeinen wird das Verfahren bei einem Druck im Bereich von 0,5 bis 50 bar, bevorzugt im Bereich von 1 bis 6 bar und insbesondere bevorzugt bei Normaldruck durchgeführt.
Je nach Art und Aggregatzustand der Bestandteile des Reaktionsmediums kann die elektrochemische Herstellung des porösen metallorganischen Gerüstmaterials grundsätzlich auch ohne zusätzliches Lösungsmittel durchgeführt werden. Dies ist beispielsweise insbesondere dann der Fall, wenn mindestens eine der mindestens zweizähnigen Verbindungen im Reaktionsmedium als Lösungsmittel oder Lösungsmittelgemisch fungiert.
Ebenso ist es ohne Einsatz eines Lösungsmittels grundsätzlich möglich, das Verfahren beispielsweise in der Schmelze durchzuführen, wobei mindestens ein Bestandteil des Reaktionsmediums in geschmolzenem Zustand vorliegt.
Gemäß einer bevorzugten Ausführungsform enthält das Reaktionsmedium mindestens ein geeignetes Lösungsmittel zusätzlich zu der mindestens einen mindestens zweizähnigen organischen Verbindung und gegebenenfalls zu dem mindestens einen Leitsalz und gegebenenfalls zu der mindestens einen kathodischen Depolari- sationsverbindung. Dabei kann die chemische Natur und die Menge dieses mindestens einen Lösungsmittels an die mindestens eine mindestens zweizähnige organische Verbindung und/oder an das mindestens eine Leitsalz und/oder an die mindestens eine kathodische Depolarisationsverbindung und/oder an das mindestens eine Metallion angepasst werden.
Demgemäß umfasst die genannte Erfindung auch ein wie oben beschriebenes Verfahren, das dadurch gekennzeichnet ist, dass das Reaktionsmedium zusätzlich zu der mindestens einen mindestens zweizähnigen organischen Verbindung zusätzlich mindestens ein Lösungsmittel enthält.
Als Lösungsmittel sind grundsätzlich alle Lösungsmittel oder alle Lösungsmittelgemische denkbar, in denen sich die im Verfahren eingesetzten Edukte unter den gewählten Reaktionsbedingungen wie Druck und Temperatur zumindest teilweise lösen oder suspendieren lassen. Beispielsweise bevorzugt eingesetzte Lösungsmittel sind unter anderem
Wasser;
Alkohole mit 1 , 2, 3 oder 4 Kohlenstoffatomen wie Methanol, Ethanol, n- Propanol, iso-Propanol, n-Butanol, iso-Butanol, tert-Butanol; - Carbonsäuren mit 1 , 2, 3 oder 4 Kohlenstoffatomen wie Ameisensäure, Essigsäure, Propionsäure oder Butansäure; Nitrile wie beispielsweise Acetonitril oder Cyanobenzol; Ketone wie beispielsweise Aceton; Mindestens einfach halogensubstituierte niedere Alkane wie beispielsweise Methylenchlorid oder 1 ,2-Dichlorethan; Säureamide wie beispielswiese Amide von niederen Carbonsäuren wie beispielsweise Carbonsäuren mit 1 , 2, 3 oder 4 Kohlenstoffatomen wie Amide der Ameisensäure, Essigsäure, Propionsäure oder Butansäure wie beispielsweise Formamid, Dimethylformamid (DMF), Diethylformamid (DEF), t- Butylformamid, Acetamid, Dimethylacetamid, Diethylacetamid oder t-Butyl- Acetamid;
Cyclische Ether wie beispielsweise Tetrahydrofuran oder Dioxan; N-Formylamide oder N-Acetylamide oder symmetrische oder unsymmetrische Harnstoffderivate primärer, sekundärer oder cyclischer Amine wie beispielsweise Ethylamin, Diethylamin, Piperidin oder Morpholin; - Amine wie beispielsweise Ethanolamin, Triethylamin oder Etyhlendiamin; Dimethylsulfoxid; Pyridin; Trialkylphosphite und Phosphate;
oder Gemische aus zwei oder mehr der vorgenannten Verbindungen.
Unter dem Begriff "Lösungsmittel", wie er obenstehend verwendet wird, fallen sowohl reine Lösungsmittel als auch Lösungsmittel, die in geringen Mengen mindestens eine weitere Verbindung wie beispielsweise bevorzugt Wasser enthalten. In diesem Fall liegen die Wassergehalte der oben genannten Lösungsmittel im Bereich von bis zu 1 Gew.-%, bevorzugt im Bereich von bis zu 0,5 Gew.-%, besonders bevorzugt im Bereich von 0,01 bis 0,5 Gew.-% und insbesondere bevorzugt im Bereich von 0,1 bis 0,5 Gew.-%. Unter dem Begriff "Methanol" oder "Ethanol" oder "Acetonitril" oder "DMF" oder "DEF" wird beispielsweise auch ein Lösungsmittel verstanden, das jeweils insbesondere bevorzugt Wasser im Bereich von 0,1 bis 0,5 Gew.-% enthalten kann.
Als bevorzugte Lösungsmittel werden Methanol, Ethanol, Acetonitril, DMF und DEF oder Gemisch aus zwei oder mehr dieser Verbindungen eingesetzt. Ganz besonders bevorzugt sind als Lösungsmittel Methanol, Ethanol DMF, DEF und Gemisch aus zwei oder mehr dieser Verbindungen. Im Rahmen einer bevorzugten Ausführungsform wird als Lösungsmittel mindestens ein protisches Lösungsmittel eingesetzt. Dieses wird unter anderem dann bevorzugt eingesetzt, wenn zur Vermeidung der untenstehend beschriebenen Wiederabscheidung des durch anodische Oxidation bereitgestellten mindestens einen Metallioins an der Kathode die kathodische Bildung von Wasserstoff erreicht werden soll.
Beispielsweise im Fall, dass Methanol als Lösungsmittel eingesetzt wird, liegt die Temperatur unter Normaldruck im Allgemeinen im Bereich von 0 bis 90 °C; bevorzugt im Bereich von 0 bis 65 °C und insbesondere bevorzugt im Bereich von 25 bis 65 °C. Beispielsweise im Fall, dass Ethanol als Lösungsmittel eingesetzt wird, liegt die Temperatur unter Normaldruck im Allgemeinen im Bereich von 0 bis 100 °C; bevorzugt im Bereich von 0 bis 78 °C und insbesondere bevorzugt im Bereich von 25 bis 78 °C.
Der pH-Wert des Reaktionsmediums wird so eingestellt, dass er für die Synthese oder die Stabilität oder bevorzugt für die Synthese und die Stabilität des Gerüstmaterials günstig ist. Beispielsweise kann der pH-Wert über das mindestens eine Leitsalz eingestellt werden.
Wird die Reaktion als Batch-Reaktion durchgeführt, liegt die Reaktionsdauer im Allgemeinen im Bereich von bis zu 30 h, bevorzugt im Bereich von bis zu 20 h. weiter bevorzugt im Bereich von 1 bis 10 h und insbesondere bevorzugt im Bereich von 1 bis 5 h.
Der Begriff "mindestens zweizähnige organische Verbindung" bezeichnet eine organische Verbindung, die mindestens eine funktioneile Gruppe enthält, die in der Lage ist, zu einem gegebenen Metallion mindestens zwei, bevorzugt zwei koordinative Bindungen, und/oder zu zwei oder mehr, bevorzugt zwei Metallatomen jeweils eine koordinative Bindung auszubilden.
Als funktioneile Gruppen, über die die genannten koordinativen Bindungen ausgebildet werden kann, sind insbesondere beispielsweise folgende funktioneilen Gruppen zu nennen: -CO2H, -CS2H, -NO2, -B(OH)2, -SO3H, -Si(OH)3, -Ge(OH)3, -Sn(OH)3> -Si(SH)4, - Ge(SH)4, -Sn(SH)3, -PO3H, -AsO3H, -AsO4H, -P(SH)3, -As(SH)3, -CH(RSH)2, -C(RSH)3> -CH(RNH2)2> -C(RNH2)3, -CH(ROH)2, -C(ROH)3, -CH(RCN)2, -C(RCN)3> wobei R beispielsweise bevorzugt eine Alkylengruppe mit 1 , 2, 3, 4 oder 5 Kohlenstoffatomen wie beispielsweise eine Methylen-, Ethylen-, n-Propylen-, i-Pro- pylen, n-Butylen-, i-Butylen-, tert-Butylen- oder n-Pentylengruppe, oder eine Arylgruppe, enthaltend 1 oder 2 aromatische Kerne wie beispielsweise 2 C6-Ringe, die gegebenenfalls kondensiert sein können und unabhängig voneinander mit mindestes jeweils einem Substituenten geeignet substituiert sein können, und/oder die unabhängig voneinander jeweils mindestens ein Heteroatom wie beispielsweise N, O und/oder S enthalten können. Gemäß ebenfalls bevorzugter Ausführungsformen sind funktionelle Gruppen zu nennen, bei denen der oben genannte Rest R nicht vorhanden ist. Diesbezüglich sind unter anderem -CH(SH)2, -C(SH)3, -CH(NH2)2, -C(NH2)3, -CH(OH)2, -C(OH)3, -CH(CN)2 oder -C(CN)3zu nennen.
Die mindestens zwei funktioneilen Gruppen können grundsätzlich an jede geeignete organische Verbindung gebunden sein, solange gewährleistet ist, dass die diese funktioneilen Gruppen aufweisende organische Verbindung zur Ausbildung der koordinativen Bindung und zur Herstellung des Gerüstmaterials befähigt ist.
Bevorzugt leiten sich die organischen Verbindungen, die die mindestens zwei funktioneilen Gruppen enthalten, von einer gesättigten oder ungesättigten aliphatischen Verbindung oder einer aromatischen Verbindung oder einer sowohl aliphatischen als auch aromatischen Verbindung ab.
Die aliphatische Verbindung oder der aliphatische Teil der sowohl aliphatischen als auch aromatischen Verbindung kann linear und/oder verzweigt und/oder cyclisch sein, wobei auch mehrere Cyclen pro Verbindung möglich sind. Weiter bevorzugt enthält die aliphatische Verbindung oder der aliphatische Teil der sowohl aliphatischen als auch aromatischen Verbindung 1 bis 15, weiter bevorzugt 1 bis 14, weiter bevorzugt 1 bis 13, weiter bevorzugt 1 bis 12, weiter bevorzugt 1 bis 11 und insbesondere bevorzugt 1 bis 10 C-Atome wie beispielsweise 1 , 2, 3, 4, 5, 6, 7, 8, 9 oder 10 C-Atome. Insbesondere bevorzugt sind hierbei unter anderem Methan, Adamantan, Acetylen, Ethylen oder Butadien.
Die aromatische Verbindung oder der aromatische Teil der sowohl aromatischen als auch aliphatischen Verbindung kann einen oder auch mehrere Kerne wie beispielsweise zwei, drei, vier oder fünf Kerne aufweisen, wobei die Kerne getrennt voneinander und/oder mindestens zwei Kerne in kondensierter Form vorliegen können. Besonders bevorzugt weist die aromatische Verbindung oder der aromatische Teil der sowohl aliphatischen als auch aromatischen Verbindung einen, zwei oder drei Kerne auf, wobei einer oder zwei Kerne besonders bevorzugt sind. Unabhängig voneinander kann weiter jeder Kern der genannten Verbindung mindestens ein Heteroatom wie beispielsweise N, O, S, B, P, Si, AI, bevorzugt N, O und/oder S enthalten. Weiter bevorzugt enthält die aromatische Verbindung oder der aromatische Teil der sowohl aromatischen als auch aliphatischen Verbindung einen oder zwei C6-Keme, wobei die zwei entweder getrennt voneinander oder in kondensierter Form vorliegen. Insbesondere sind als aromatische Verbindungen Benzol, Naphthalin und/oder Biphenyl und/oder Bipyridyl und/oder Pyridyl zu nennen.
Beispielsweise sind unter anderem trans-Muconsäure oder Fumarsäure oder Phenylenbisacrylsäure zu nennen.
Beispielsweise sind im Rahmen der vorliegenden Erfindung Dicarbonsäuren wie etwa
1 ,4-Butandicarbonsäure, Weinsäure, Glutarsäure, Oxalsäure, 4-Oxo-Pyran-2,6- dicarbonsäure, 1 ,6-Hexandicarbonsäure, Decandicarbonsäure, 1 ,8-Heptadecan- dicarbonsäure, 1 ,9-Heptadecandicarbonsäure, Heptadecandicarbonsäure,
Acetylendicarbonsäure, 1 ,2-Benzoldicarbonsäure, 2,3-Pyridindicarbonsäure, Pyridin- 2,3-dicarbonsäure, 1 ,3-Butadien-1 ,4-dicarbonsäure, 1 ,4-Benzoldicarbonsäure, 1 ,3- Benzoldicarbonsäure, lmidazoI-2,4-dicarbonsäure, 2-Methyl-chinolin-3,4-dicarbon- säure, Chinolin-2,4-dicarbonsäure, Chinoxalin-2,3-dicarbonsäure, 6-Chlorchinoxalin- 2,3-dicarbonsäure, 4,4'-Diaminphenylmethan-3,3'-dicarbonsäure, Chinolin-3,4- dicarbonsäure, 7-Chlor-4-hydroxychinolin-2,8-dicarbonsäure, Diimiddi-carbonsäure, Pyridin-2,6-dicarbonsäure, 2-Methylimidazol-4,5-dicarbonsäure, Thio-phen-3,4- dicarbonsäure, 2-lsopropylimidazol-4,5-dicarbonsäure, Tetrahydropyran-4,4-dicar- bonsäure, Perylen-3,9-dicarbonsäure, Perylendicarbonsäure, Pluriol E 200-dicarbon- säure, 3,6-Dioxaoctandicarbonsäure, 3,5-Cyclohexadien-1 ,2-dicarbonsäure,
Octadicarbonsäure, Pentan-3,3-carbonsäure, 4,4'-Diamino-1,1 '-diphenyl-3,3'-dicarbon- säure, 4,4'-Diaminodiphenyl-3,3,-dicarbonsäure, Benzidin-3,3'-dicarbonsäure, 1 ,4-bis- (Phenylamino)-benzol-2,5-dicarbonsäure, 1 J'-Dinaphthyl-S.S'-dicarbonsäure, 7-Chlor- 8-methylchinolin-2,3-dicarbonsäure, 1 -Anilinoanthrachinon-2,4'-dicarbonsäure, Poly- tetrahydrofuran-250-dicarbonsäure, 1 ,4-bis-(Carboxymethyl)-piperazin-2,3-dicarbon- säure, 7-Chlorchinolin-3,8-dicarbonsäure, 1 -(4-Carboxy)-phenyl-3-(4-chlor)-phenyl-py- razolin-4,5-dicarbonsäure, 1 ,4,5,6,7,7,-Hexachlor-5-norbomen-2,3-dicarbonsäure, Phe- nylindan-dicarbonsäure, 1 ,3-Dibenzyl-2-oxo-imidazolidin~4,5-dicarbonsäure, 1 ,4-Cyclo- hexandicarbonsäure, Naphthalin-1 ,8-dicarbonsäure, 2-Benzoylbenzol-1 ,3-dicarbon- säure, 1 ,3-Dibenzyl-2-oxo-imidazolidin-4,5-cis-dicarbonsäure, 2,2'-Bichinolin-4,4'-di- carbonsäure, Pyridin-3,4-dicarbonsäure, 3,6,9-Trioxaundecan-dicarbonsäure, O-Hydro- xy-benzophenon-dicarbonsäure, Pluriol E 300-dicarbonsäure, Pluriol E 400-di- carbonsäure, Pluriol E 600-dicarbonsäure, PyrazoI-3,4-dicarbonsäure, 2,3-Pyrazin- dicarbonsäure, 5,6-Dimethyl-2,3-pyrazin-dicarbonsäure, 4,4'-Diaminodiphenylether-di- imiddicarbonsäure, 4,4'-Diaminodiphenylmethan-diimiddicarbonsäure, 4,4'-Diamino- diphenylsulfon-diimiddicarbonsäure, 2,6-Naphthalindicarbonsäure, 1 ,3-Adaman- tandicarbonsäure, 1 ,8-Naphthalindicarbonsäure, 2,3-Naphthalindicarbonsäure, 8- Methoxy-2,3-naphthalindicarbonsäure, 8-Nitro-2,3-naphthalincarbonsäure, 8-Sulfo-2,3- naphthalindicarbonsäure, Anthracen-2,3-dicarbonsäure, 2',3'-Diphenyl-p-terphenyl- 4,4"-dicarbonsäure, Diphenylether-4,4'-dicarbonsäure, lmidazol-4,5-dicarbonsäure, 4(1 H)-Oxo-thiochromen-2,8-dicarbonsäure, 5-tert-Butyl -1 ,3-benzoldicarbonsäure, 7,8- Chinolindicarbonsäure, 4,5-lmidazoldicarbonsäure, 4-Cyclohexen-1 ,2-dicarbonsäure, Hexatriacontandicarbonsäure, Tetradecandicarbonsäure, 1 ,7-Heptadicarbonsäure, 5- Hydroxy-1 ,3-Benzoldicarbonsäure, Pyrazin-2,3-dicarbonsäure, Furan-2,5-dicar- bonsäure, 1 -Nonen-6,9-dicarbonsäure, Eicosendicarbonsäure, 4,4'-Dihydroxy-diphe- nyImethan-3,3'-dicarbonsäure, 1 -Amino-4-methyl-9,10-dioxo-9,10-dihydroanthracen- 2,3-dicarbonsäure, 2,5-Pyridindicarbonsäure, Cyclohexen-2,3-dicarbonsäure,2,9-Di- chlorfluorubin-4, 11 -dicarbonsäure, 7-Chlor-3-mtehylchinolin -6,8-dicarbonsäure, 2,4- DichlorbenzophenonΛ'jS'-dicarbonsäure, 1 ,3-benzoldicarbonsäure, 2,6-Pyridin- dicarbonsäure, 1 -Methylpyrrol-3,4-dicarbonsäure, 1 -Benzyl-1 H-pyrrol-3,4-dicarbon- säure, Anthrachinon-1 ,5-dicarbonsäure, 3,5-Pyrazoldicarbonsäure, 2-Nitrobenzol-1 ,4- dicarbonsäure, Heptan-1 ,7-dicarbonsäure, Cyclobutan-1 ,1 -dicarbonsäure 1 ,14-Tetra- decandicarbonsäure, 5,6-Dehydronorboman-2,3-dicarbonsäure oder 5-Ethyl-2,3-Pyri- dindicarbonsäure,
Tricarbonsäuren wie etwa
2-Hydroxy-1 ,2,3-propantricarbonsäure, 7-Chlor-2,3,8-chinolintricarbonsäure, 1 ,2,4- Benzoltricarbonsäure, 1 ,2,4-Butantricarbonsäure, 2-Phosphono-1 ,2,4-butantricarbon- säure, 1 ,3,5-Benzoltricarbonsäure, 1 -Hydroxy-1 ,2,3-Propantricarbonsäure, 4,5-Di- hydro-4,5-dioxo-1 H-pyrrolo[2,3-F]chinolin-2,7,9-tricarbonsäure, 5-Acetyl-3-amino-6-me- thylbenzol-1 ,2,4-tricarbonsäure, 3-Amino-5-benzoyl-6-methylbenzol-1 ,2,4-tricarbon- säure, 1 ,2,3-Propantricarbonsäure oder Aurintricarbonsäure,
oder Tetracarbonsäuren wie etwa 1 ,1 -Dioxid-perylo[1 ,12-BCD]thiophen-3,4,9,10-tetracarbonsäure, Peryl'entetracarbon- säuren wie Perylen-3,4,9,10-tetracarbonsäure oder oder Perylen-1,12-sulfon-3,4,9,10- tetracarbonsäure, Butantetracarbonsäuren wie 1 ,2,3,4-Butantetracarbonsäure oder Meso-1 ,2,3,4-Butantetracarbonsäure, Decan-2,4,6,8-tetracarbonsäure, 1 ,4,7,10,13,16- Hexaoxacyclooctadecan-2,3,11 ,12-tetracarbonsäure, 1 ,2,4,5-Benzoltetracarbonsäure, 1 ,2,11 ,12-Dodecantetracarbonsäure, 1 ,2,5,6-Hexan-tetracarbonsäure, 1 ,2,7,8-Octan- tetracarbonsäure, 1 ,4,5,8-Naphthalintetracarbonsäure, 1 ,2,9, 10-Decantetracarbon- säure, Benzophenontetracarbonsäure, 3,3',4,4'-Benzo-phenontetracarbonsäure, Tetrahydrofurantetracarbonsäure oder Cyclopentantetracarbonsäuren wie Cyclopen- tan-1 ,2,3,4-tetracarbonsäure
zu nennen.
Ganz besonders bevorzugt werden gegebenenfalls mindestens einfach substituierte mono-, di-, tri-, tetra- oder höherkernige aromatische Di-, Tri- oder Tetracarbonsäuren eingesetzt, wobei jeder der Kerne mindestens ein Heteroatom enthalten kann, wobei zwei oder mehr Kerne gleiche oder unterschiedliche Heteroatome enthalten kann.
Beispielsweise bevorzugt werden monokernige Dicarbonsäuren, monokernige
Tricarbonsäuren, monokernige Tetracarbonsäuren, dikernige Dicarbonsäuren, dikernige Tricarbonsäuren, dikernige Tetracarbonsäuren, trikernige Dicarbonsäuren, trikernige Tricarbonsäuren, trikernige Tetracarbonsäuren, tetrakernige Dicarbonsäuren, tetrakernige Tricarbonsäuren und/oder tetrakernige Tetracarbonsäuren. Geeignete
Heteroatome sind beispielsweise N, O, S, B, P, Si, AI, bevorzugte Heteroatome sind hierbei N, S und/oder 0. Als geeigneter Substituent ist diesbezüglich unter anderem - OH, eine Nitrogruppe, eine Aminogruppe oder eine Alkyl- oder Alkoxygruppe zu nennen.
Insbesondere bevorzugt werden als mindestens zweizähnige organische Verbindungen Acetylendicarbonsäure (ADC), Benzoldicarbonsäuren, Naphthalindicarbonsäuren, Biphenyldicarbonsäuren wie beispielsweise 4,4'-Biphenyldicarbonsäure (BPDC), Bipyridindicarbonsäuren wie beispielsweise 2,2'-Bipyridindicarbonsäuren wie beispielsweise 2,2'-Bipyridin-5,5'-dicarbonsäure, Benzoltricarbonsäuren wie beispielsweise 1 ,2,3-Benzoltricarbonsäure oder 1 ,3,5-BenzoItricarbonsäure (BTC), Adamantan- tetracarbonsäure (ATC), Adamantandibenzoat (ADB) Benzoltribenzoat (BTB), Methantetrabenzoat (MTB), Adamantantetrabenzoat oder Dihydroxyterephthalsäuren wie beispielsweise 2,5-Dihydroxyterephthalsäure (DHBDC) eingesetzt. Ganz besonders bevorzugt werden unter anderem Terephthalsäure, 2,5-Dihydroxy- terephthalsäure, 1 ,2,3-Benzoltricarbonsäure, 1 ,3,5-Benzoltricarbonsäure oder 2,2- Bipyridin-5,5'-dicarbonsäure eingesetzt.
Gemäß einer bevorzugten Ausführungsform wird als mindestens zweizähnige organische Verbindung 1 ,3,5-Benzoltricarbonsäure eingesetzt. Im Falle, dass mindestens ein Lösungsmittel eingesetzt wird, werden beispielsweise bevorzugt als Lösungsmittel Methanol oder Ethanol oder Methanol und Ethanol eingesetzt. Besonders bevorzugt ist Ethanol.
Gemäß einer weiteren, bevorzugten Ausführungsform wird als mindestens zweizähnige organische Verbindung 1 ,2,3-Benzoltricarbonsäure eingesetzt. Im Falle, dass mindestens ein Lösungsmittel eingesetzt wird, werden beispielsweise bevorzugt als Lösungsmittel Methanol oder Ethanol oder Methanol und Ethanol eingesetzt. Besonders bevorzugt ist Methanol.
Gemäß einer weiteren, beispielsweise bevorzugten Ausführungsform wird als mindestens zweizähnige organische Verbindung Terephthalsäure eingesetzt. Im Falle, dass mindestens ein Lösungsmittel eingesetzt wird, werden beispielsweise bevorzugt als Lösungsmittel Dimethylformamid oder Diethylformamid oder Dimethylformamid und Diethylformamid eingesetzt. Besonders bevorzugt ist Diethylformamid.
Gemäß einer weiteren, beispielsweise bevorzugten Ausführungsform wird als mindestens zweizähnige organische Verbindung Dihydroxyterephthalsäure eingesetzt. Im Falle, dass mindestens ein Lösungsmittel eingesetzt wird, werden beispielsweise bevorzugt als Lösungsmittel Dimethylformamid oder Diethylformamid oder Dimethylformamid und Diethylformamid eingesetzt. Besonders bevorzugt ist Diethylformamid.
Gemäß einer weiteren, beispielsweise bevorzugten Ausführungsform wird als mindestens zweizähnige organische Verbindung Naphthalin-2,6-Dicarbonsäure eingesetzt. Im Falle, dass mindestens ein Lösungsmittel eingesetzt wird, werden beispielsweise bevorzugt als Lösungsmittel Methanol oder Ethanol oder Methanol und Ethanol eingesetzt. Besonders bevorzugt ist Methanol.
Die mindestens eine mindestens zweizähnige Verbindung wird in einer Konzentration eingesetzt, die im Allgemeinen im Bereich von 0,1 bis 30 Gew.-%, bevorzugt im Bereich von 0,5 bis 20 Gew.-% und besonders bevorzugt im Bereich von 2 bis 10 Gew.-%, jeweils bezogen auf das Gesamtgewicht des Reaktionssystems abzüglich des Gewichts der Anode und der Kathode. Demgemäß umfasst der Begriff "Konzentration" in diesem Fall sowohl die im Reaktionssystem gelöste als auch beispielsweise die im Reaktionssystem gegebenenfalls suspendierte Menge der mindestens einen mindestens zweizähnigen Verbindung.
Gemäß einer bevorzugten Ausführungsform wird die mindestens eine mindestens zweizähnige Verbindung in Abhängigkeit des Fortgangs der Elektrolyse und insbesondere in Abhängigkeit von der Zersetzung der Anode beziehungsweise Freisetzung des mindestens einen Metallions und/oder in Abhängigkeit der Bildung des metallorganischen Gerüstmaterials kontinuierlich und/oder diskontinuierlich zugesetzt.
Folgende Kombinationen aus Metall, aus dem durch anodische Oxidation das mindestens eine Metallkation bereitgestellt wird, mindestens zweizähniger Verbindung und Lösungsmittel sind beispielsweise bevorzugt:
Zn/BDC/DEF; Zn/DHBDC/DEF; Zn/H2BDC/DMF; Zn/BDC/DMF,MeOH; Zn/H2BDC/DMF; Zn/M'-BP-Λ'-DC/DEF; Zn/2,6-NDC/DEF; Zn/H3BTB/H2O,DMF,EtOH; Zn/H2BDC/DMSO; Zn/1 ,4-NDC/DMF; Zn/H3BTB/DMF,EtOH; Zn/H2BDC/DMF,AN; Zn/H2BDC/DMSO; Zn/H2BDC/DMSO,MeOH; Zn/H2BDC/DMSO,n- Propanol; Zn/H2BDC/NMP; Zn/m-BDC/DMF,AN; Zn/1 ,4-NDC/DMF,EtOH; Zn/H2N- BDC/DEF,EtOH; Zn/1 ,4-NDC/DEF; Zn/2,6-NDC/DEF; Zn/PDC/DEF;
Cu/BDC/DEF; Cu/1 ,3,5-BTC/EtOH; Cu/1 ,2,3-BTC/MeOH; Cu/H3BTB/H2O,DMF,EtOH; Cu/H2BDC(OH)2/DMF; Cu/Thiophenclicarbonsäure/DEF; Cu/Thiophendicarbonsäure/DMF; Cu/Thiophendicarbonsäure/MeOH; Cu/Maionsäure/DMF; Cu/Glutarsäure/DMF; Cu /Veinsäure/DMF;
Fe/H2BDC/DMF; Fe/H3BDC/DMF; Fe/BTC/DMF; Fe/BDC/DMF,EtOH; Fe/BPDC/DMF,n-Propanol; Fe/m-BDC/Pyridin; Fe/m-BDC/DMF,Pyridin;
Co/BDC/MeOH; Co/H2BDC/NMP; Co/H2BDC/DMF
Mg/BDC/DEF; Mg/BDC(OH)2/DMF;
Pb/H2BDC/DMF,EtOH; Dabei gelten folgende Abkürzungen:
BDC Benzoldicarbonsäure m-BDC m-Benzoldicarbonsäure
H2BDC Dihydroterephthalsäure
H2N-BDC Aminoterephthalsäure
4,4'-BP-2,2'-DC 4,4'-Biphenyl-2,2'-dicarbonsäure
4,4'-BPDC 4,4'-Biphenyldicarbonsäure H3BTB Benzoltribenzoat
1 ,3,5-BTC 1 ,3,5-Benzoltricarbonsäure
1,2,3-BTC 1 ,2,3- Benzoltricarbonsäure
DHBDC 2,5-Dihydroxyterephthalsäure
2,6-NDC 2,6-Naphthalindicarbonsäure 1,4-NDC 1 ,4-Naphthalindiearbonsäure
PDC Pyrendicarbonsäure
Gemäß einer insbesondere bevorzugten Ausführungsform enthält das Reaktionsmedium mindestens ein geeignetes Leitsalz. In Abhängigkeit von der eingesetzten mindestens einen mindestens zweizähnigen Verbindung und/oder dem gegebenenfalls eingesetzten Lösungsmittel ist es im erfindungsgemäßen Verfahren auch möglich, die Herstellung des metallorganischen Gerüstmaterials ohne zusätzliches Leitsalz durchzuführen.
Hinsichtlich der im erfindungsgemäßen Verfahren einsetzbaren Leitsalze existieren im Wesentlichen keine Beschränkungen. Bevorzugt werden beispielsweise Salze von Mineralsäuren, Sulfonsäuren, Phosphonsäuren, Boronsäuren, Alkoxysulfonsäuren oder Carbonsäuren oder von anderen aciden Verbindungen wie beispielsweise Sulfonsäureamiden oder Imiden eingesetzt.
Mögliche anionische Komponenten des mindestens einen Leitsalzes sind demgemäß unter anderem Sulfat, Nitrat, Nitrit, Sulfit, Disulfit, Phosphat, Hydrogenphosphat, Dihydrogenphosphat, Diphosphat, Triphosphat, Phosphit, Chlorid, Chlorat, Bromid, Bromat, lodid, lodat, Carbonat oder Hydrogencarbonat. Als Kationenkomponente der erfindungsgemäß einsetzbaren Leitsalze sind unter anderem Alkalimetallionen wie etwa Li+, Na*, K* oder Rb*, Erdalkalimetallionen wie etwa Mg2*, Ca2*, Sr2* oder Ba2*, Ammoniumionen oder Phosphoniumionen zu nennen.
Bezüglich der Ammoniumionen sind quaternare Ammoniumionen und protonierte Mono-, Di- und Triamine zu nennen.
Beispiele für bevorzugt eingesetzte quaternare Ammoniumionen sind unter anderem
- symmetrische Ammoniumionen wie etwa Tetraalkylammonium mit bevorzugt Cι-C4-Alkyl, beispielsweise Methyl, Ethyl, n-Propyl, iso-Propyl, n-Butyl, iso-Butyl, tert-Butyl, wie Tetramethylammonium, Tetraethylammonium, Tetrapropyl- ammonium, Tetrabutylammonium oder
- unsymmetrische Ammoniumionen wie etwa unsymmetrische Tetraalkylammonium mit bevorzugt CrC4-Alkyl, beispielsweise Methyl, Ethyl, n- Propyl, iso-Propyl, n-Butyl, iso-Butyl. tert-Butyl, wie beispielsweise Methyltributylammonium oder
- Ammoniumionen mit mindestens einem Aryl wie beispielsweise Phenyl oder Naphthyl oder mindestes einem Alkaryl wie beispielsweise Benzyl oder mindestens einem Aralkyl und mindestens einem Alkyl, bevorzugt CrC4-Alkyl, beispielsweise Methyl, Ethyl, n-Propyl, iso-Propyl, n-Butyl, iso-Butyl, tert-Butyl, wie etwa Aryltrialkyl wie etwa Benzyltrimethylammonium oder Benzyltriethylammonium.
Gemäß einer besonders bevorzugten Ausführungsform wird mindestens ein Leitsalz eingesetzt, das als mindestens eine kationische Komponente ein Methyltributylammoniumion enthält.
Gemäß einer besonders bevorzugten Ausführungsform wird als Leitsalz Methyltributylammoniummethylsulfat eingesetzt.
Als Leitsalze sind im erfindungsgemäßen Verfahren auch ionische Flüssigkeiten wie beispielsweise Methyl-ethyl-imidazoliumchlorid oder Methyl-butyl-imidazoliumchlorid. Gemäß einer ebenfalls bevorzugten Ausführungsform wird als Leitsalz Methansulfonat eingesetzt.
Als Kationenkomponente des mindestens einen Leitsalzes sind erfindungsgemäß auch protonierte oder quaternare Heterocyclen wie beispielsweise das Imidazoliumion zu nennen.
Im Rahmen einer unter anderem bevorzugten Ausführungsform ist es möglich, über die kationische und/oder anionische Komponente des mindestens einen Leitsalzes Verbindungen in das Reaktionsmedium einzubringen, die für den Aufbau des metallorganischen Gerüstmaterials eingesetzt werden. Diese Verbindungen sind solche, die die Ausbildung der Struktur des metallorganischen Gerüstmaterials beeinflussen, im resultierenden Gerüstmaterial jedoch nicht enthalten sind, und auch solche, die im resultierenden Gerüstmaterial enthalten sind. Insbesondere kann im erfindungsgemäßen Verfahren mindestens eine Verbindung über mindestens ein Leitsalz eingebracht werden, die im resultierenden metallorganischen Gerüstmaterial enthalten ist.
Beispielsweise bevorzugt wird diesbezüglich unter anderem Tetraalkyl- ammoniumcarboxylat wie etwa eine Monotetraalkylammoniumsalz der 1 ,3,5- Benzoltricarbonsäure. Im Rahmen dieser Ausführungsform ist es unter anderem bevorzugt, 1,3,5-BenzoItricarbonsäure zusammen mit Tetraalkylammoniumhydroxid in Methanol als Lösungsmittel einzusetzen. Diese Verfahrensführung biete unter anderem den Vorteil, dass Tetraalkylammoniumhydroxid in der Regel als wässrige Lösung eingesetzt wird und somit Wasser automatisch zum essentiellen Bestandteil des Reaktionsmediums wird.
Im Rahmen einer Ausführungsform ist es somit möglich, zusätzlich zu der mindestens einen Anode als Metallionenquelle das Metallion über die kationische Komponente des mindestens einen Leitsalzes in das Reaktionsmedium einzubringen. Ebenso ist es möglich, über die kationische Komponente des mindestens einen Leitsalzes mindestens ein Metallion in das Reaktionsmedium einzubringen, das von dem mindestens einen über anodische Oxidation eingebrachte Metallion verschieden ist, wobei sich diese Verschiedenheit auf die Wertigkeit des Kations und/oder die Art des Metalls beziehen kann. Ebenso ist es möglich, Salze als Leitsalze einzusetzen, deren Anionenkomponente oder Anionenkomponenten eine Verbindung darstellt, die für den Aufbau des metallorganischen Gerüstmaterials eingesetzt wird. Insbesondere können daher Leitsalze eingesetzt werden, deren Anionenkomponente beispielsweise das Monocarboxylat oder Dicarboxylat oder Tricarboxylat oder Tetracarboxylat oder Monosulfonat oder Disulfonat oder Trisulfonat oder Tetrasulfonat, bevorzugt ein Dicarboxylat oder Tricarboxylat oder Tetracarboxylat und weiter bevorzugt das Dicarboxylat oder Tricarboxylat oder Tetracarboxylat der bevorzugt eingesetzten aromatischen Di-, Tri- oder Tetracarbonsäure darstellen.
Weiter umfasst die genannte Erfindung auch das wie oben beschriebenes Verfahren, das dadurch gekennzeichnet ist, dass das mindestens eine Leitsalz als Kationenkomponente ein quaternäres Ammoniumion und als Anionenkomponente ein Carboxylat der mindestens einen mindestens zweizähnigen Verbindung enthält.
Die Konzentration des mindestens einen Leitsalzes liegt im Rahmen des erfindungsgemäßen Verfahrens im Allgemeinen im Bereich von 0,01 bis 10 Gew.-%, bevorzugt im Bereich von 0,05 bis 5 Gew.-% und insbesondere bevorzugt im Bereich von 0,1 bis 3 Gew.-%, jeweils bezogen auf die Summe der Gewichte sämtlicher im Reaktionssystem vorhandener Leitsalze und weiter bezogen auf das Gesamtgewicht des Reaktionssystems ohne Berücksichtigung der Anoden und Kathoden.
Ein wichtiger Vorteil des genannten Verfahrens ist somit darin zu sehen, dass keines der oben genannten kritischen Anionen wie Halogenide oder Nitrat, die im herkömmlichen Verfahren über das mindestens eine Metallsalz in das Reaktionsmedium eingebracht werden, in stöchiometrischen Mengen, sondern, falls überhaupt, über das mindestens eine Leitsalz vielmehr in unterstöchiometrischen Mengen, d.h. im Wesentlichen in katalytischen Mengen eingebracht wird.
Wird das Verfahren in Batch-Fahrweise durchgeführt, so wird im Allgemeinen zuerst das Reaktionsmedium mit den Edukten bereitgestellt, anschließend Strom angelegt und dann umgepumpt.
Wird das Verfahren kontinuierlich durchgeführt, so wird im Allgemeinen aus dem Reaktionsmedium ein Teilstrom ausgeschleust, das darin enthaltene kristalline poröse metallorganische Gerüstmaterial isoliert und die Mutterlauge zurückgefahren. Ein weiterer Vorteil, den das genannte Verfahren gegenüber den aus dem Stand der Technik bekannten Verfahren, die bei der Herstellung der porösen metallorganischen Gerüstmaterialien von Metallsalzen ausgehen, bietet, ist die Tatsache, dass erfindungsgemäß pro Syntheseansatz ein höherer Feststoffgehalt im Reaktionsmedium erzielt werden kann, da der Feststoffgehalt nicht durch die Menge des eingesetzten Eduktsalzes begrenzt ist. Dies rührt aus daher, dass das Metallkation über die Anode in beliebigen Mengen nachgeführt werden kann.
Der Begriff "Feststoffgehalt", wie im Rahmen der vorliegenden Erfindung verwendet wird, bezeichnet die Menge an abgetrenntem Feststoff nach der Reaktion, bezogen auf die Gesamtmenge des Reaktionsansatzes.
Im Gegensatz zum Herstellungsverfahren gemäß Stand der Technik, bei der nicht nur der Ligand, sondern auch das Metallsalz zu lösen ist, steht im Rahmen des genannten Verfahrens das mindestes eine Lösungsmittel vollständig zur Lösung und/oder Suspension, bevorzugt zur Lösung des Liganden bereit.
Dies gilt insbesondere in einer kontinuierlichen Variante des genannten Verfahrens, bei der die Anode in dem Maße, wie sie durch anodische Oxidation abgetragen wird, nachgeführt wird. Dies wird, wie oben beschrieben, beispielsweise im Rahmen einer Pencil-Sharpener-Zelle durchgeführt. Analog zur Nachführung der Anode wird die mindestens eine mindestens zweizähnige Verbindung nachdosiert. Dabei kann dann die entstehende Suspension, enthaltend das metallorganische Gerüstmaterial, kontinuierlich ausgetragen werden.
Durch diese experimentell in einfacher Weise durchzuführende Nachführung des Metallkations über die Nachführung der Anode wird die Wirtschaftlichkeit des Verfahrens zur Herstellung der porösen metallorganischen Gerüstmaterialien erheblich gesteigert.
Im Allgemeinen liegt der Feststoffgehalt bei mindestens 0,5 Gew.-%, besonders bevorzugt im Bereich von 0,5 bis 50 Gew.-%.
Gemäß einer insbesondere bevorzugten Ausführungsform wird das genannte Verfahren so durchgeführt, dass die Wiederabscheidung des durch anodische Oxidation freigesetzten Metallions an der Kathode verhindert wird. Diese Wiederabscheidung wird beispielsweise bevorzugt dadurch verhindert, dass eine Kathode eingesetzt wird, die in einem gegebenen Reaktionsmedium eine geeignete Wasserstoffüberspannung aufweist. Solche Kathoden sind beispielsweise die bereits oben genannten Graphit-, Kupfer-, Zink-, Zinn-, Mangan-, Silber-, Gold-, Platin- Kathoden oder Kathoden, die Legierungen wie etwa Stähle, Bronzen oder Messing enthalten.
Die Wiederabscheidung wird beispielsweise bevorzugt weiter dadurch verhindert, dass im Reaktionsmedium ein Elektrolyt eingesetzt wird, der die kathodische Bildung von Wasserstoff begünstigt. Diesbezüglich ist unter anderem ein Elektrolyt bevorzugt, der mindestens ein protisches Lösungsmittel enthält. Bevorzugte Beispiele für solche Lösungsmittel sind obenstehend aufgeführt. Besonders bevorzugt sind hierbei Alkohole, insbesondere bevorzugt Methanol und Ethanol.
Die Wiederabscheidung wird beispielsweise bevorzugt weiter dadurch verhindert, dass im Reaktionsmedium mindestens eine Verbindung enthalten ist, die zu einer kathodischen Depolarisation führt. Unter einer Verbindung, die zu einer kathodischen Depolarisation führt, wird im Rahmen der vorliegenden Erfindung jede Verbindung verstanden, die unter gegebenen Reaktionsbedingungen an der Kathode reduziert wird.
Als kathodische Depolarisatoren sind unter anderem Verbindungen bevorzugt, an der Kathode hydrodimerisiert werden. Beispielsweise besonders bevorzugt sind in diesem Zusammenhang Acrylnitril, Acrylsäureester und Maleinsäureester wie beispielsweise weiter bevorzugt Maleinsäuredimethylester.
Als kathodische Depolarisatoren sind weiter unter anderem Verbindungen bevorzugt, die mindestens eine Carbonylgruppe enthalten, die an der Kathode reduziert wird. Beispiele für solche Carbonylgruppen enthaltenden Verbindungen sind etwa Ester wie beispielsweise Phthalsäuredialkylester und Ketone wie beispielsweise Aceton.
Als kathodische Depolarisatoren sind unter anderem Verbindungen bevorzugt, die mindestens eine Stickstoff-Sauerstoff-Bindung, eine Stickstoff-Stickstoff-Bindung und/oder eine Stickstoff-Kohlenstoff-Bindung aufweisen, die an der Kathode reduziert werden. Beispiele für solche Verbindungen sind etwa Verbindungen mit einer Nitrogruppe, mit einer Azogruppe, mit einer Azoxygruppe, Oxime, Pyridine, Imine, Nitrile und/oder Cyanate. Im Rahmen des genannten Verfahrens ist es weiter möglich, mindestens zwei der genannten Maßnahmen zur Verhinderung der kathodischen Wiederabscheidung zu kombinieren. Beispielsweise ist es möglich, sowohl einen Elektrolyten einzusetzen, der die kathodische Bildung von Wasserstoff begünstigt als auch eine Elektrode mit einer geeigneten Wasserstoffüberspannung einzusetzen. Ebenso ist es möglich, sowohl einen Elektrolyten einzusetzen, der die kathodische Bildung von Wasserstoff begünstigt als auch mindestens eine Verbindung zuzusetzen, die zu einer kathodischen Depolarisation führt. Ebenso ist es möglich, sowohl mindestens eine Verbindung zuzusetzen, die zu einer kathodischen Depolarisation führt, als auch eine Kathode mit einer geeigneten Wasserstoff Überspannung einzusetzen. Weiter ist es möglich, sowohl einen Elektrolyten einzusetzen, der die kathodische Bildung von Wasserstoff begünstigt, als auch eine Elektrode mit einer geeigneten Wasserstoffüberspannung einzusetzen als auch mindestens eine Verbindung zuzusetzen, die zu einer kathodischen Depolarisation führt.
Demgemäß betrifft die genannte Erfindung auch ein wie oben beschriebenes Verfahren, das dadurch gekennzeichnet ist, dass die kathodische Wiederabscheidung des mindestens einen Metallions durch mindestens eine der folgenden Maßnahmen zumindest teilweise verhindert wird:
(i) Verwendung eines Elektrolyten, der die kathodische Bildung von Wasserstoff begünstigt; (ii) Zusatz mindestens einer Verbindung, die zu einer kathodischen Depolarisation führt; (iii) Einsatz einer Kathode mit einer geeigneten Wasserstoffüberspannung.
Ebenso betrifft die genannte Erfindung daher auch ein wie oben beschriebenes Verfahren, das dadurch gekennzeichnet ist, dass der Elektrolyt gemäß (i) mindestens ein protisches Lösungsmittel, insbesondere einen Alkohol, weiter bevorzugt Methanol und/oder Ethanol enthält.
Ebenso betrifft die genannte Erfindung daher auch ein wie oben beschriebenes Verfahren, das dadurch gekennzeichnet ist, dass die kathodische Depolarisation eine Hydrodimerisierung, insbesondere eine Hydrodimerisierung eines Maleinsäurediesters, weiter bevorzugt von Maleinsäuredimethylester ist. Insbesondere bevorzugt umfasst die genannte Erfindung ein wie oben beschriebenes Verfahrens, das dadurch gekennzeichnet ist, dass zur Verhinderung der Wiederabscheidung sowohl mindestens ein protisches Lösungsmittel, bevorzugt ein Alkohol, weiter bevorzugt Methanol oder Ethanol oder ein Gemisch aus Methanol und Ethanol, als auch mindestens eine, kathodisch zur Hydrodimerisierung befähigte Verbindung, bevorzugt ein Maleinsäurediester und weiter bevorzugt ein Maleinsäuredimethylester, eingesetzt werden.
Gemäß einer insbesondere bevorzugten Ausführungsform wird das erfindungsgemäße Verfahren in Kreisfahrweise betrieben. Unter diesem "Elektrolysekreis11 wird im Rahmen der vorliegenden Erfindung jede Verfahrensführung verstanden, bei der zumindest ein Teil des sich in der Elektrolysezelle befindlichen Reaktionssystem aus der Elektrolysezelle ausgeschleust, gegebenenfalls mindestens einem Zwischenbehandlungsschritt wie beispielsweise mindestens einer Temperaturbehandlung oder Zusatz und/oder Abtrennung mindestens einer Komponenten des ausgeschleusten Stroms unterworfen und in die Elektrolysezelle zurückgeführt wird. Besonders bevorzugt wird ein solcher Elektrolysekreis im Rahmen der vorliegenden Erfindung in Kombination mit einer Plattenstapelzelle, einer Rohrzelle oder einer Pencil-Sharpener- Zelle durchgeführt.
Nach erfolgter Herstellung liegt das im Allgemeinen kristalline Gerüstmaterial in Form der Primärkristalle in der Mutterlauge vor.
Nach erfolgter Herstellung des organischen Gerüstmaterials wird der Gerüstmaterial- Feststoff von seiner Mutterlauge abgetrennt. Dieser Abtrennvorgang kann grundsätzlich gemäß sämtlicher geeigneter Verfahren erfolgen. Bevorzugt wird der Gerüstmaterialfeststoff durch Fest-Flüssig-Trennung, Zentrifugation, Extraktion, Filtration, Membranfiltration, Crossflow-Filtration, Diafiltration, Ultrafiltration, Flokkulation unter Verwendung von Flokkulationshilfsmitteln wie beispielsweise nicht- ionische, kationische und/oder anionische Hilfsmittel), pH-Shift durch Zusatz von Additiven wie beispielsweise Salzen, Säuren oder Basen, Flotation, Sprühtrocknung, Sprühgranulation, oder Evaporation der Mutterlauge bei erhöhten Temperaturen oder im Vakuum und Aufkonzentration des Feststoffs abgetrennt.
Nach dem Abtrennen kann sich mindestens ein zusätzlicher Waschschritt, mindestens ein zusätzlicher Trocknungsschritt und/oder mindestens ein zusätzlicher Calcinierungsschritt anschließen. Schließt sich mindestens ein Waschschritt an, so wird bevorzugt mit mindestens einem bei der Synthese verwendeten Lösungsmittel gewaschen.
Schließt sich, gegebenenfalls nach mindestens einem Waschschritt, mindestens ein Trocknungsschritt an, so wird das Gerüstmaterial-Feststoff bei Temperaturen im Allgemeinen im Bereich von 20 bis 120 °C, bevorzugt im Bereich von 40 bis 100 °C und besonders bevorzugt im Bereich von 56 bis 60 °C getrocknet.
Ebenfalls bevorzugt ist das Trocknen im Vakuum, wobei die Temperaturen im Allgemeinen so gewählt werden können, dass das mindestens eine Waschmittel zumindest teilweise, bevorzugt im Wesentlichen vollständig aus dem kristallinen porösen metallorganischen Gerüstmaterial entfernt wird und zugleich die Gerüststruktur nicht zerstört wird.
Die Trocknungszeit liegt im Allgemeinen im Bereich von 0,1 bis 15 h, bevorzugt im Bereich von 0,2 bis 5 h und insbesondere bevorzugt im Bereich von 0,5 bis 1 h.
An den gegebenenfalls mindestens einen Waschschritt und gegebenenfalls mindestens einen Trocknungsschritt kann sich mindestens ein Caicinierungsschritt anschließen, bei dem die Temperaturen bevorzugt so gewählt werden, dass die Struktur des Gerüstmaterials nicht zerstört wird.
Insbesondere durch Waschen und/oder Trocknen und/oder Calcinieren ist es beispielsweise möglich, mindestens eine Templatverbindung, die gegebenenfalls zur erfindungsgemäßen elektrochemischen Herstellung des Gerüstmaterials eingesetzt wurde, zumindest teilweise, bevorzugt im Wesentlichen quantitativ zu entfernen.
Ebenso wie das elektrochemische Herstellungsverfahren betrifft die genannte Erfindung auch das poröse metallorganische Gerüstmaterial an sich, das durch das wie oben beschrieben Verfahren hergestellt wird.
Das kristalline poröse metallorganische Gerüstmaterial fällt im Allgemeinen als feines Pulver an, wobei die Kristalle eine Größe im Bereich von 0,1 bis 100 \im, bestimmt über SEM (Scanning Electron Microscopy), aufweisen. Die Porengrößen der elektrochemisch hergestellten porösen metallorganischen Gerüstmaterialien lassen sich durch Art und Anzahl der mindestens zweizähnigen organischen Verbindung und/oder Art und gegebenenfalls Oxidationsstufe des mindestes einen Metallions, in weiten Bereichen einstellen.
Demgemäß ist es möglich, dass das Gerüstmaterial Mikroporen oder Mesoporen oder Makroporen oder Mikro- und Mesoporen oder Mikro- und Makroporen oder Meso- und Makroporen oder Mikro- und Meso- und Makroporen enthält. Insbesondere bevorzugt enthalten die erfindungsgemäß hergestellten Gerüstmaterialien Mikroporen oder Mesoporen oder Mikro- und Mesoporen. Der Begriff "Mikroporen11, wie er im Rahmen der vorliegenden Erfindung verwendet wird, bezeichnet Poren mit einem Durchmesser von bis zu 2 nm. Der Begriff "Mesoporen", wie er im Rahmen der vorliegenden Erfindung verwendet wird, bezeichnet Poren mit einem Durchmesser von mehr als 2 nm bis hin zu 50 nm. Diese Definitionen entsprechen den Definitionen, wie sie in Pure Appl. Chem. 45 (1976) S. 71 ff. insbesondere S. 79 zu finden ist. Die Anwesenheit von Mikro- und/oder Mesoporen kann durch Stickstoff-Adsorptionsmessungen bei 77 K gemäß DIN 66131 und DIN 66135 und DIN 66134 bestimmt werden.
Die spezifische Oberfläche der erfindungsgemäß hergestellten kristallinen porösen metallorganischen Gerüstmaterialien, bestimmt über DIN 66135, liegt im Allgemeinen bei mindestens 5 m2/g, insbesondere bei mehr als 5 m2/g, weiter bevorzugt bei mindestens 10 m2/g, insbesondere bei mehr als 10 m2/g, weiter bevorzugt bei mindestens 50 m2/g, insbesondere bei mehr als 50 m2/g, weiter bevorzugt bei mindestens 100 m2/g, insbesondere bei mehr als 100 m2/g, weiter bevorzugt bei mindestens 250 m2/g, insbesondere bei mehr als 250 m2/g, weiter bevorzugt bei mindestens 500 m2/g, insbesondere bei mehr als 500 m2/g, wobei die spezifische Oberfläche bis hin zu mehr als 1000 m2/g, wie beispielsweise mehr als 2000 m2/g, weiter beispielsweise mehr als 3000 m2/g und insbesondere beispielsweise mehr als 4000 m2/g.
Der Begriff "spezifische Oberfläche" bezeichnet dabei die Oberfläche, wie sie gemäß des Langmuirmodells nach DIN 66135 bei 77 K bestimmt wird.
Gemäß einer weiteren Ausführungsform wird das von der Mutterlauge abgetrennte poröse metallorganische Gerüstmaterial zu einem oder mehreren Formkörpern verformt. Hinsichtlich der möglichen Geometrien dieser Formkörper existieren im Wesentlichen keine Beschränkungen. Beispielsweise sind unter anderem Pellets wie beispielsweise scheibenförmige Pellets, Pillen, Kugeln, Granulat, Extrudate wie beispielsweise Stränge, Waben, Gitter oder Hohlkörper zu nennen.
Zur Herstellung dieser Formkörper sind grundsätzlich sämtliche geeigneten Verfahren möglich. Es sind unter anderem folgende Verfahrensführungen bevorzugt:
Kneten des Gerüstmaterials allein oder zusammen mit mindestens einem Bindemittel und/oder mindestens einem Anteigungsmittel und/oder mindestens einer Templatverbindung unter Erhalt eines Gemisches; Verformen des erhaltenen Gemisches mittels mindestens einer geeigneten Methode wie beispielsweise Extrudieren; Optional Waschen und/oder Trocknen und/oder Calcinieren des Extrudates; Optional Konfektionieren.
Aufbringen des Gerüstmaterials auf mindestens ein gegebenenfalls poröses Trägermaterial. Das erhaltene Material kann dann gemäß der vorstehend beschriebenen Methode zu einem Formkörper weiterverarbeitet werden.
- Aufbringen des Gerüstmaterials auf mindestens ein gegebenenfalls poröses Substrat.
Kneten und Verformen kann gemäß jedes geeigneten Verfahrens erfolgen, wie beispielsweise in Ullmanns Enzyklopädie der Technischen Chemie, 4. Auflage, Band 2, S. 313 ff. (1972) beschrieben, deren diesbezüglicher Inhalt durch Bezugnahme in den Kontext der vorliegenden Anmeldung vollumfänglich einbezogen wird. Beispielsweise bevorzugt kann das Kneten und/oder Verformen mittels einer Kolbenpresse, Walzenpresse in Anwesenheit oder Abwesenheit mindestens eines Bindermaterials, Compoundieren, Pelletieren, Tablettieren, Extrudieren, Co- Extrudieren, Verschäumen, Verspinnen, Beschichten, Granulieren, bevorzugt Sprühgranulieren, Versprühen, Sprühtrocknen oder einer Kombination aus zwei oder mehr dieser Methoden erfolgen.
Ganz besonders werden Pellets und/oder Tabletten hergestellt.
Das Kneten und/oder Verformen kann bei erhöhten Temperaturen wie beispielsweise im Bereich von Raumtemperatur bis 300 °C und/oder bei erhöhtem Druck wie beispielsweise im Bereich von Normaldruck bis hin zu einigen hundert bar und/oder in einer Schutzgasatmosphäre wie beispielsweise in Anwesenheit mindestens eines Edelgases, Stickstoff oder einem Gemisch aus zwei oder mehr davon erfolgen.
Das Kneten und/oder Verformen wird gemäß einer weiteren Ausführungsform unter Zugabe mindestens eines Bindemittels durchgeführt, wobei als Bindemittel grundsätzlich jede chemische Verbindung eingesetzt werden kann, die die zum Kneten und/oder Verformen gewünschte Viskosität der zu verknetenden und/oder verformenden Masse gewährleistet. Demgemäß können Bindemittel im Sinne der vorliegenden Erfindung sowohl Viskositätserhöhende als auch Viskositätserniedrigende Verbindungen sein.
Als unter anderem bevorzugte Bindemittel sind beispielsweise Aluminiumoxid oder Aluminiumoxid enthaltende Binder, wie sie beispielsweise in der WO 94/29408 beschrieben sind, Siliciumdioxid, wie es beispielsweise in der EP 0 592 050 A1 beschrieben ist, Mischungen ais Siliciumdioxid und Aluminiumoxid, wie sie beispielsweise in der WO 94/13584 beschrieben sind, Tonminerale, wie sie beispielsweise in der JP 03-037156 A beschrieben sind, beispielsweise Montmorillonit, Kaolin, Bentonit, Hallosit, Dickit, Nacrit und Anauxit, Alkoxysilane, wie sie beispielsweise in der EP 0 102 544 B1 beschrieben sind, beispielsweise Tetra- alkoxysilane wie beispielsweise Tetramethoxysilan, Tetraethoxysilan, Tetrapropoxysilan, Tetrabutoxysilan, oder beispielsweise Trialkoxysilane wie beispielsweise Trimethoxysilan, Triethoxysilan, Tripropoxysilan, Tributoxysilan, Alkoxytitanate, beispielsweise Tetraalkoxytitanate wie beispielsweise Tetra- methoxytitanat, Tetraethoxytitanat, Tetrapropoxytitanat, Tetrabutoxytitanat, oder beispielsweise Trialkoxytitanate wie beispielsweise Trimethoxytitanat, Triethoxytitanat, Tripropoxytitanat, Tributoxytitanat, Alkoxyzirkonate, beispielsweise Tetraalkoxyzirkonate wie beispielsweise Tetramethoxyzirkonat, Tetraethoxyzirkonat, Tetrapropoxyzirkonat, Tetrabutoxyzirkonat, oder beispielsweise Trialkoxyzirkonate wie beispielsweise Trimethoxyzirkonat, Triethoxyzirkonat, Tripropoxyzirkonat, Tributoxyzirkonat, Silikasole, amphiphile Substanzen und/oder Graphite zu nennen. Insbesondere bevorzugt ist Graphit.
Als viskositätssteigemde Verbindung kann beispielsweise auch, gegebenenfalls zusätzlich zu den oben genannten Verbindungen, eine organische Verbindung und/oder ein hydrophiles Polymer wie beispielsweise Cellulose oder ein
Cellulosederivat wie beispielsweise Methylcellulose und/oder ein Polyacrylat und/oder ein Polymethacrylat und/oder ein Polyvinylalkohol und/oder ein Polyvinylpyrrolidon und/oder ein Polyisobuten und/oder ein Polytetrahydrofuran eingesetzt werden.
Als Anteigungsmittel kann unter anderem bevorzugt Wasser oder mindestens ein Alkohol wie beispielsweise ein Monoalkohol mit 1 bis 4 C-Atomen wie beispielsweise Methanol, Ethanol, n-Propanol, iso-Propanol, 1 -Butanol, 2-Butanol, 2-Methyl-1 -pro- panol oder 2-Methyl-2-propanol oder ein Gemisch aus Wasser und mindestens einem der genannten Alkohole oder ein mehrwertiger Alkohol wie beispielsweise ein Glykol, bevorzugt ein wassermischbarer mehrwertiger Alkohol, allein oder als Gemisch mit Wasser und/oder mindestens einem der genannten einwertigen Alkohole eingesetzt werden.
Weitere Additive, die zum Kneten und/oder Verformen eingesetzt werden können, sind unter anderem Amine oder Aminderivate wie beispielsweise Tetraalkylammonium- Verbindungen oder Aminoalkohole und Carbonat enthaltende Verbindungen wie etwa Calciumcarbonat. Solche weiteren Additive sind etwa in der EP 0 389 041 A1 , der EP 0 200 260 A1 oder der WO 95/19222 beschrieben.
Die Reihenfolge der Additive wie Templatverbindung, Binder, Anteigungsmittel, viskositätssteigernde Substanz beim Verformen und Kneten ist grundsätzlich nicht kritisch.
Gemäß einer weiteren bevorzugten Ausführungsform wird der gemäß Kneten und/oder
Verformen erhaltene Formkörper mindestens einer Trocknung unterzogen, die im Allgemeinen bei einer Temperatur im Bereich von 25 bis 300 °C, bevorzugt im Bereich von 50 bis 300 °C und besonders bevorzugt im Bereich von 100 bis 300 °C durchgeführt wird. Ebenso ist es möglich, im Vakuum oder unter Schutzgasatmosphäre oder durch Sprühtrocknung zu trocknen.
Gemäß einer besonders bevorzugten Ausführungsform wird im Rahmen dieses Trocknungsvorgangs mindestens eine der als Additive zugesetzten Verbindungen zumindest teilweise aus dem Formkörper entfernt.
Gemäß einer weiteren Ausführungsform wird das Gerüstmaterial auf mindestens ein gegebenenfalls poröses Material aufgebracht. Bevorzugt wird hierbei ein poröses Substrat eingesetzt. Insbesondere bevorzugt erfolgt dieses Aufbringen über Imprägnieren mit einer Flüssigkeit, Tränken in einer Flüssigkeit, Aufsprühen, Ablagern aus flüssiger Phase, Ablagern aus der Gasphase (vapor deposition), Ausfällen (Präzipitation), Co- Präzipitation, Beschichten.
Als gegebenenfalls poröses Substrat werden bevorzugt Aluminiumoxid, Silikagel, Silikate, Diatomeenerden, Kaolin, Magnesiumoxid, Aktivkohle, Titandioxid und/oder Zeolithe eingesetzt.
Werden beispielsweise nicht-poröse Substrate verwendet, so können gemäß einer weiteren Ausführungsform durch Aufbringen des porösen metallorganischen Gerüstmaterials auf einen nicht-porösen Formkörper Schalenstrukturen hergestellt werden, wie sie von Schalenkatalysatoren her bekannt sind.
Selbstverständlich ist es auch möglich, bei der Herstellung der Formkörper mindestens einen geeigneten Porenbildner zuzusetzen. Als Porenbildner können im erfindungsgemäßen Verfahren sämtliche Verbindungen eingesetzt werden, die bezüglich des fertigen Formkörpers eine bestimmte Porengröße, eine bestimmte Porengrößenverteilung und/oder bestimmte Porenvolumina bereitstellen. Bevorzugt werden als Porenbildner im erfindungsgemäßen Verfahren unter anderem polymere Vinylverbindungen wie beispielsweise Polystyrol, Polyacrylate, Polymethacrylate, Polyolefine, Polyamide und Polyester. Ganz besonders bevorzugt sind etwa Verbindungen als Porenbildner, die sich bei den Calcinierungstemperaturen des erfindungsgemäßen Verfahrens zumindest teilweise, bevorzugt im Wesentlichen vollständig entfernen lassen. Diesbezüglich sei etwa Malonsäure genannt.
Die elektrochemisch hergestellten porösen metallorganischen Gerüstmaterialien werden im Rahmen der vorliegenden Erfindung zur Aufnahme und/oder Speicherung und/oder Abgabe von Flüssigkeiten und/oder Gasen eingesetzt. Die metallorganischen Gerüstmaterialien können dabei in einem Formkörper enthalten sein.
Demgemäß betrifft die vorliegende Erfindung auch die Verwendung eines elektrochemisch herstellbaren porösen metallorganischen Gerüstmaterials zur Reinigung mindestens einer Flüssigkeit und/oder mindestens eines Gas oder als Speichermedium für mindestens eine Flüssigkeit und/oder mindestens ein Gas. Die folgenden Beispiele sollen die vorliegende Erfindung illustrieren.
Beispiele
Bei allen Beispielen wurde elektrochemisch gemäß den Beispielen der DE 103 55 087 hergestellter Cu-MOF eingesetzt.
Beispiel 1 : Adsorption von Methan
Methan wurde bei 25 °C adsorbiert, an 3 mm-Strängen des EMOF. Die Messung geschah in einer üblichen Waage. Die Probe wurde ca. 20 h bei 120 °C und einem Druck < 1 mbar getrocknet. Das EMOF-Material wies eine Oberfläche von 616 m2/g auf.
Es wurden folgende Werte bestimmt:
Xgl = Gleichgewichtsverteilung
Die Ergebnisse sind in Figur 1 graphisch dargestellt.
Beispiel 2: Adsorption von CO2
CO2 wurde bei 25 °C adsorbiert, an 3 mm-Strängen des EMOF. Die Messung geschah in einer üblichen Waage. Die Probe wurde ca. 20 h bei 120 °C und einem Druck < 1 mbar getrocknet. Das EMOF-Material wies eine Oberfläche von 616 m2/g auf. Es wurden folgende Werte bestimmt:
Die Ergebnisse sind in Figur 2 graphisch dargestellt.
Beispiel 3: Sorption von Propen
Propen wurde bei 70 °C sorbiert. Die Probe wurde bei 70 °C ca. 2,5 h in der Waage getrocknet. Das EMOF-Material lag als Pulver vor und wies eine Oberfläche von 1649 m2/g auf.
Die Ergebnisse finden sich in Figur 3
Beispiel 4 (Vergleich): Sorption von CO2 an Molekularsieb 13X
CO2 wurde bei 25 °C sorbiert. Das Molsieb 13X wurde ca. 5 h bei 25 °C und < 0,1 mbar getrocknet. Das Molsieb wies eine Oberfläche von 730 m2/g auf.
Es wurden folgende Werte bestimmt:
Die Ergebnisse sind in Figur 4 graphisch dargestellt.
Beispiel 5: Sorption von Methan an herkömmlich (nicht elektrochemisch hergestellten MOF-5
Methan wurde bei 25 °C adsorbiert, an 3 mm-Strängen des EMOF. Die Messung geschah in einer üblichen Waage. Die Probe wurde ca. 40 h bei 120 °C und einem Druck < 1 mbar getrocknet. Das EMOF-Material wies eine Oberfläche von 2380 m2/g auf.
Es wurden folgende Werte ermittelt:
Die Ergebnisse sind in Figur 5 wiedergegeben.

Claims

Patentansprüche
1. Verfahren zur Aufnahme und/oder Speicherung von Gasen, bei dem das zu speichernde Gas mit einem elektrochemisch hergestellten metallorganischen Gerüstmaterial unter zur Gasaufnahme geeigneten Bedingungen in Kontakt gebracht wird, wobei eine Aufnahme des Gases in das metallorganische Gerüstmaterial erfolgt, und anschließend gegebenenfalls die Bedingungen so geändert werden, dass eine Abgabe des gespeicherten Gases erfolgt.
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass die gespeicherten oder abgegebenen Gase sind: gesättigte und ungesättigte Kohlenwasserstoffe, gesättigte und ungesättigte Alkohole, Sauerstoff, Stickstoff, Edelgase, CO, CO2, Synthesegas, natürliche Gase aller möglichen Zusammensetzungen oder Verbindungen, die diejenigen Gase erzeugen, die nachfolgend durch das MOF-Material abgegeben werden.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass das gespeicherte oder abgegebene Gas ausgewählt ist aus H2; H2-haltigen Gasmischungen; H2-erzeugenden oder abgebenden Verbindungen; Methan, Ethan, Propan, Butanen, Ethylen, Propylen, Acetylen, Ne, Ar, Kr, Xe, CO2 und CO2.
4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die Speicherung bei einer Temperatur von 0 bis 100 °C durchgeführt wird.
5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die Speicherung bei einem Druck von 1 bis 300 bar (abs) durchgeführt wird.
6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass das gespeicherte Gas durch Druckverminderung oder Temperaturerhöhung wieder abgegeben wird.
7. Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass sich das MOF-Material in einem gasdichten Behälter befindet.
8. Verfahren nach Anspruch 7, dadurch gekennzeichnet, dass der Behälter mit einer Brennstoffzelle verbunden oder Teil von dieser ist.
9. Verfahren nach Anspruch 8, dadurch gekennzeichnet, dass die Brennstoffzelle in einem Kraftwerk, Kraftfahrzeug oder kabellosen Anwendung in der Elektronik eingesetzt wird.
10. Verfahren nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass das elektrochemisch hergestellte metallorganische Gerüstmaterial ein Metall aus den Gruppen la, lla, lila, IVa bis Villa sowie Ib und Vlb des Periodensystems der Elemente enthält.
11. Verfahren nach Anspruch 10, dadurch gekennzeichnet, dass das Metall ausgewählt ist aus der Gruppe Zn, Co, Ni, Pd, Pt, Ru, Rh, Fe, Mn, Ag und Co.
12. MOF-Material enthaltend ein Gas, erhältlich nach dem Verfahren nach einem der Ansprüche 1 bis 11.
13. Behälter enthaltend ein MOF-Material nach Anspruch 12.
14. Brennstoffzelle enthaltend ein MOF-Material nach Anspruch 12 oder einen Behälter nach Anspruch 13.
15. System oder Anwendung enthaltend ein Material nach Anspruch 12 oder eine Brennstoffzelle nach Anspruch 14.
16. System oder Anwendung nach Anspruch 15, ausgewählt aus Kraftwerken, Kraftfahrzeugen, vorzugsweise Personenkraftwagen, Lastkraftwagen und Bussen, kabellosen Anwendungen in der Elektronik, vorzugsweise Mobiltelefone und Laptops.
17. Verwendung von einem elektrochemisch hergestellten metallorganischen Gerüstmaterial zur Speicherung oder Abgabe von Gasen.
EP04803253A 2003-11-24 2004-11-24 VERFAHREN ZUR KONTROLLIERTEN SPEICHERUNG UND ABGABE VON GASEN UNTER EINSATZ EINES ELEKTROCHEMISCH HERGESTELLTEN KRISTALLINEN POR&Ouml;SEN METALLORGANISCHEN GER STMATERIALS Withdrawn EP1689670A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10355087A DE10355087A1 (de) 2003-11-24 2003-11-24 Verfahren zur elektrochemischen Herstellung eines kristallinen porösen metallorganischen Gerüstmaterials
PCT/EP2004/013331 WO2005049484A1 (de) 2003-11-24 2004-11-24 Verfahren zur kontrollierten speicherung und abgabe von gasen unter einsatz eines elektrochemisch hergestellten kristallinen porösen metallorganischen gerüstmaterials

Publications (1)

Publication Number Publication Date
EP1689670A1 true EP1689670A1 (de) 2006-08-16

Family

ID=34559735

Family Applications (2)

Application Number Title Priority Date Filing Date
EP04818813.0A Not-in-force EP1687462B1 (de) 2003-11-24 2004-11-22 Verfahren zur elektrochemischen herstellung eines kristallinen poroesen metallorganischen geruestmaterials
EP04803253A Withdrawn EP1689670A1 (de) 2003-11-24 2004-11-24 VERFAHREN ZUR KONTROLLIERTEN SPEICHERUNG UND ABGABE VON GASEN UNTER EINSATZ EINES ELEKTROCHEMISCH HERGESTELLTEN KRISTALLINEN POR&Ouml;SEN METALLORGANISCHEN GER STMATERIALS

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP04818813.0A Not-in-force EP1687462B1 (de) 2003-11-24 2004-11-22 Verfahren zur elektrochemischen herstellung eines kristallinen poroesen metallorganischen geruestmaterials

Country Status (10)

Country Link
US (3) US7968739B2 (de)
EP (2) EP1687462B1 (de)
JP (4) JP4970043B2 (de)
KR (2) KR101166590B1 (de)
CN (2) CN1886536B (de)
CA (2) CA2544859C (de)
DE (1) DE10355087A1 (de)
IS (2) IS8517A (de)
MX (1) MXPA06004620A (de)
WO (2) WO2005049892A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103877951A (zh) * 2012-12-21 2014-06-25 中国科学院大连化学物理研究所 石墨氧化物和含铜配位聚合物纳米粒子复合材料及其制备
CN106622150A (zh) * 2017-02-25 2017-05-10 华南理工大学 优先吸附乙烷的C2H3N@Ni(2‑MTPA)(TED)0.5材料及其制备方法

Families Citing this family (176)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2003267309A1 (en) 2000-11-16 2004-04-08 Microspherix Llc Flexible and/or elastic brachytherapy seed or strand
DE10355087A1 (de) 2003-11-24 2005-06-09 Basf Ag Verfahren zur elektrochemischen Herstellung eines kristallinen porösen metallorganischen Gerüstmaterials
TWI434676B (zh) * 2004-03-19 2014-04-21 Merck Sharp & Dohme 可用x射線看出之藥物遞送裝置
US20060191409A1 (en) * 2004-06-03 2006-08-31 Gas Technology Institute Electrostatic switch for hydrogen storage and release from hydrogen storage media
US7343747B2 (en) 2005-02-23 2008-03-18 Basf Aktiengesellschaft Metal-organic framework materials for gaseous hydrocarbon storage
DE102005022844A1 (de) * 2005-05-18 2006-11-23 Basf Ag Abtrennung von Geruchsstoffen aus Gasen
DE102005023856A1 (de) 2005-05-24 2006-11-30 Basf Ag Verfahren zur Herstellung poröser metall-organischer Gerüstmaterialien
JP4747691B2 (ja) * 2005-06-24 2011-08-17 東京エレクトロン株式会社 半導体装置の製造方法
DE102005035762A1 (de) * 2005-07-29 2007-02-01 Süd-Chemie AG Hochporöse Schichten aus MOF-Materialien und Verfahren zur Herstellung derartiger Schichten
DE102005037893A1 (de) * 2005-08-10 2007-02-15 Süd-Chemie AG Verfahren zur Herstellung hochaktiver Metall/Metalloxid-Katalysatoren
DE102005039654A1 (de) * 2005-08-22 2007-03-01 Basf Ag Mesoporöses metallorganisches Gerüstmaterial
DE102005039623A1 (de) * 2005-08-22 2007-03-01 Basf Ag Verfahren zur Herstellung von metallorganischen Gerüstmaterialien Hauptgruppen Metallionen enthaltend
DE102005054523A1 (de) * 2005-11-14 2007-05-16 Basf Ag Poröses metallorganisches Gerüstmaterial enthaltend ein weiteres Polymer
US20070141431A1 (en) * 2005-12-21 2007-06-21 General Electric Company Fuel cell closed structure
US20090261107A1 (en) * 2005-12-23 2009-10-22 Thorsten Allgeier Motor vehicle with a gas tank
US8115024B2 (en) 2006-02-10 2012-02-14 Basf Aktiengesellschaft Process for preparing porous metal-organic framework materials
EP1996311A1 (de) * 2006-03-09 2008-12-03 Basf Se Geschlossenes reversibles atemgerät mit metallorganischem gerüstmaterial
KR100806586B1 (ko) * 2006-03-10 2008-02-28 한국화학연구원 수분의 흡착 및 탈착을 위한 흡착제
EA200802034A1 (ru) * 2006-03-29 2009-02-27 Басф Се Способ получения пропена из пропана
WO2007118841A2 (de) * 2006-04-18 2007-10-25 Basf Se Metallorganisches gerüstmaterial aus aluminiumfumarat
DE102006020852A1 (de) 2006-05-04 2007-11-15 Robert Bosch Gmbh Gasdruckbehälter für gasbetriebene Kraftfahrzeuge
MX2008013626A (es) * 2006-05-16 2008-10-30 Basf Se Estructura metalica-organica porosa basada en pirroles y piridinonas.
US7879221B2 (en) * 2006-05-16 2011-02-01 Basf Se Process for preparing porous metal organic frameworks
WO2008000694A2 (de) * 2006-06-26 2008-01-03 Basf Se Speicherung von acetylenhaltigen gasen mit hilfe von metallorganischen gerüstmaterialien
DE102006048043A1 (de) * 2006-10-11 2008-04-17 Bayer Materialscience Ag Verfahren zur Herstellung metallorganischer Gerüstverbindungen
US8603225B2 (en) 2006-10-30 2013-12-10 Basf Se Aluminum naphthalenedicarboxylate as porous metal-organic framework material
ES2392107T3 (es) * 2006-11-06 2012-12-04 Basf Se Isoftalato butílico de magnesio como material estructural organometálico poroso
DE102006061587A1 (de) 2006-12-27 2008-07-03 Basf Se Verwendung poröser metallorganischer Gerüstmaterialien zur farblichen Kennzeichung von Filtern
US8093350B2 (en) 2007-01-03 2012-01-10 Insilicotech Co., Ltd Coordination polymer crystal with porous metal-organic frameworks and preparation method thereof
CN101641152B (zh) * 2007-01-24 2014-04-23 加利福尼亚大学董事会 结晶的3d-和2d-共价有机构架
EP2134445A2 (de) * 2007-04-05 2009-12-23 Basf Se Mischung enthaltend ein metallorganisches gerüstmaterial sowie einen latentwärmespeicher
WO2008129051A2 (de) 2007-04-24 2008-10-30 Basf Se Metallorganische gerüstmaterialien mit hexagonal-trigonaler struktur basierend auf aluminium, eisen oder chrom, sowie einer dicarbonsäure
US8372305B2 (en) 2007-05-24 2013-02-12 Basf Se Chemical-mechanical polishing composition comprising metal-organic framework materials
RU2478602C2 (ru) * 2007-07-10 2013-04-10 Басф Се Способ отделения неразветвленных углеводородов от их разветвленных изомеров
WO2009007436A1 (en) * 2007-07-12 2009-01-15 Shell Internationale Research Maatschappij B.V. Method and apparatus for separating nitrogen from a mixed nitrogen and methane containing stream by using a metal organic framework
AU2008297220A1 (en) * 2007-09-10 2009-03-19 Shell Internationale Research Maatschappij B.V. Process for producing purified synthesis gas from synthesis gas comprising trace amounts of sulphur contaminants with a metal-organic framework
US8715395B2 (en) * 2007-09-14 2014-05-06 University Of North Texas Fluorinated metal-organic frameworks for hydrocarbon storage
US8343260B2 (en) * 2007-09-14 2013-01-01 University Of North Texas Fluorinated metal-organic frameworks for gas storage
DE102008005218A1 (de) 2007-11-04 2009-05-07 BLüCHER GMBH Sorptionsfiltermaterial und seine Verwendung
WO2009073739A1 (en) * 2007-12-03 2009-06-11 The Regents Of The University Of Michigan Microporous coordination polymers as novel sorbents for gas separation
DE102007058673B4 (de) * 2007-12-06 2016-04-14 Basf Se Verfahren zur Speicherung von gasförmigen Kohlenwasserstoffen und Vorrichtung dazu
US8343261B2 (en) * 2008-03-17 2013-01-01 Basf Se Use of formate-based porous metal organic frameworks for methane storage
JP5156445B2 (ja) * 2008-03-21 2013-03-06 岩谷瓦斯株式会社 アセチレン吸蔵材料とアセチレン吸蔵容器及び高純度アセチレンの供給装置並びに高純度アセチレンの精製装置
GB0807862D0 (en) 2008-04-29 2008-06-04 Uni I Oslo Compounds
FR2932397B1 (fr) * 2008-06-11 2010-07-30 Centre Nat Rech Scient Solide hybride cristallin poreux reductible pour la separation de melanges de molecules ayant des degres et/ou un nombre d'insaturations differents
ES2387349T3 (es) * 2008-07-21 2012-09-20 Basf Se Procedimiento para la obtención industrial de propeno
KR100949308B1 (ko) * 2008-08-08 2010-03-23 인하대학교 산학협력단 초음파를 이용한 금속유기구조체의 제조방법 및 이에 의해 제조된 금속유기구조체
US8227375B2 (en) * 2008-09-12 2012-07-24 Uop Llc Gas adsorption on metal-organic frameworks
US20100089238A1 (en) * 2008-10-15 2010-04-15 Centre National De La Recherche Scientifique Method for Dissolving, Recovering and Treating a Gas, Installation for the Stocking of a Gas and Its Method of Manufacture
MX2011007483A (es) 2009-01-14 2011-08-04 Basf Se Unidades de aislamiento de vacio con materiales adquiridores.
DK2230288T3 (en) 2009-03-20 2016-09-05 Basf Se Organometallic skeleton material in cool / heat machines
ES2511049T3 (es) 2009-03-20 2014-10-22 Basf Se Procedimiento para la separación de gases ácidos con ayuda de materiales de estructura organometálicos impregnados con aminas
EP2408684B1 (de) 2009-03-20 2013-08-21 Basf Se Biologisch abbaubares material aus einem polymer enthaltenden porösen metallorganischen gerüstmaterial
US8372477B2 (en) * 2009-06-11 2013-02-12 Basf Corporation Polymeric trap with adsorbent
US8449650B2 (en) * 2009-06-17 2013-05-28 Los Alamos National Security, Llc Gas storage and separation by electric field swing adsorption
EP2296171A3 (de) 2009-09-10 2016-04-06 Basf Se Verwendung von metallorganischen gerüstmaterialien zur herstellung von mikroelektronischen bauteilen
DE102009047201A1 (de) 2009-11-26 2011-06-01 Hagen, Gunter, Dipl.-Ing. Verwendung von metallorganischem Gerüstmaterial zur Herstellung von feuchteempfindlichen Schichten für Sensoren
CN101706481B (zh) * 2009-11-27 2012-12-26 南开大学 基于MOFs材料的新颖毛细管气相色谱柱及其制备方法
DE102010062374A1 (de) 2009-12-04 2011-06-09 Basf Se Verfahren zur Herstellung von Homo- oder Copolymeren
US9120080B2 (en) * 2010-02-10 2015-09-01 The Board Of Regents Of The University Of Texas System Acetylene storage using metal-organic frameworks with open metal sites
US8425662B2 (en) 2010-04-02 2013-04-23 Battelle Memorial Institute Methods for associating or dissociating guest materials with a metal organic framework, systems for associating or dissociating guest materials within a series of metal organic frameworks, and gas separation assemblies
US8454730B2 (en) 2010-04-20 2013-06-04 GM Global Technology Operations LLC Method of operating gas storage and supply system
EP2561568A1 (de) * 2010-04-21 2013-02-27 Basf Se Neuartige metallo-organische rahmenwerke als elektrodenmaterial für lithiumionenakkumulatoren
US8597406B2 (en) 2010-04-27 2013-12-03 Board Of Regents, The University Of Texas System Isoreticular metal-organic framework of the formula Zn4O(FMA)3
US8664419B2 (en) 2010-04-30 2014-03-04 The Board Of Regents Of The University Of Texas System Acetylene storage using metal-organic frameworks of the formula M2(2,5-dihydroxyterephthalate)
US20110143226A1 (en) * 2010-07-01 2011-06-16 Ford Global Technologies, Llc Metal Oxygen Battery Containing Oxygen Storage Materials
US9147920B2 (en) * 2010-07-01 2015-09-29 Ford Global Technologies, Llc Metal oxygen battery containing oxygen storage materials
US8658319B2 (en) * 2010-07-01 2014-02-25 Ford Global Technologies, Llc Metal oxygen battery containing oxygen storage materials
US9209503B2 (en) * 2010-07-01 2015-12-08 Ford Global Technologies, Llc Metal oxygen battery containing oxygen storage materials
US8119295B2 (en) * 2010-07-01 2012-02-21 Ford Global Technologies, Llc Metal oxygen battery containing oxygen storage materials
US8968942B2 (en) * 2010-07-01 2015-03-03 Ford Global Technologies, Llc Metal oxygen battery containing oxygen storage materials
US8507406B2 (en) 2010-08-12 2013-08-13 The Board Of Regents Of The University Of Texas System Zn4(OH)2(1,2,4-BTC)2—a rod packing microporous metal-organic framework with open metal sites for selective separation and sensing of small molecules
US8518153B2 (en) * 2010-08-19 2013-08-27 Northwestern University Metal-organic frameworks for Xe/Kr separation
US8697191B2 (en) 2010-12-07 2014-04-15 Basf Se Process for coating a support surface with a porous metal-organic framework
WO2012138419A1 (en) * 2011-04-04 2012-10-11 Georgia Tech Research Corporation Mof nanocrystals
BR112013027141A2 (pt) * 2011-04-21 2017-01-10 Basf Se corpo moldado, método para a preparação de um corpo moldado, e, uso de um corpo moldado
DE102011106668A1 (de) 2011-07-05 2013-01-10 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren zur Beschichtung eines Bauteils und beschichtetes Bauteil
US9127025B2 (en) 2011-08-19 2015-09-08 The Board Of Regents Of The University Of Texas System Zn5(BTA)6(TDA)2—a robust highly interpenetrated metal-organic framework constructed from pentanuclear clusters for selective sorption of gas molecules
CN108380189B (zh) * 2011-09-05 2021-03-16 株式会社可乐丽 吸附材料
EP2578593A1 (de) * 2011-10-04 2013-04-10 Fundació Privada Institut Català de Nanotecnologia Verfahren zur Herstellung metallischer organischer Rahmenwerke
WO2013099382A1 (ja) * 2011-12-28 2013-07-04 株式会社村田製作所 機能性材料の製造方法および電子部品
US9296773B2 (en) 2012-01-17 2016-03-29 The Board Of Regents Of The University Of Texas System Zn3(BDC)3[Cu(SalPycy)] and Zn3(CDC)3[Cu(SalPycy)]—enantiopure mixed metal-organic frameworks for selective separations and enantioselective recognition
US9206945B2 (en) 2012-02-15 2015-12-08 Ford Global Technologies, Llc System and method for hydrogen storage
US8735608B2 (en) 2012-02-28 2014-05-27 Saudi Basic Industries Corporation Process for preparing carbonate and diol products
US8809569B2 (en) 2012-02-28 2014-08-19 Saudi Basic Industries Corporation Process for preparing dialkyl carbonate and diol products
GB201207208D0 (en) * 2012-04-25 2012-06-06 Johnson Matthey Plc Compound and method of manufacture
WO2013159797A1 (en) 2012-04-25 2013-10-31 BLüCHER GMBH Filtering material and use thereof
US9375678B2 (en) 2012-05-25 2016-06-28 Georgia Tech Research Corporation Metal-organic framework supported on porous polymer
CN103665015A (zh) * 2012-09-19 2014-03-26 中国科学院大连化学物理研究所 一种混合配体多孔铝金属有机框架材料及其制备方法
KR101902921B1 (ko) 2012-10-16 2018-10-01 삼성전자주식회사 다공성 금속 재료의 제조방법
CN102928474A (zh) * 2012-11-28 2013-02-13 吉林大学 一种基于含钛金属有机骨架材料的湿敏传感器及制备方法
KR101253985B1 (ko) * 2013-01-14 2013-04-15 한국화학연구원 다공성 유무기 혼성체, 그의 제조 방법, 그를 포함하는 흡착제 및 그의 응용
CN104968425B (zh) * 2013-01-31 2017-08-11 巴斯夫欧洲公司 具有高填充密度和可调节孔体积的金属‑有机骨架挤出物
DE102013202517A1 (de) 2013-02-15 2014-08-21 Universität Zu Köln Monokalium-2fluorbenzol-1,3,5-tricarboxylat
DE102013202524A1 (de) 2013-02-15 2014-08-21 Universität Zu Köln Monokalium-2,4,6-trifluorbenzol-1,3,5-tricarboxylat
US20140286857A1 (en) * 2013-03-21 2014-09-25 Basf Corporation Methods of preparing metal containing inorganic ion exchangers
DE202013102315U1 (de) 2013-04-06 2014-04-09 BLüCHER GMBH Aktivkohle mit spezieller Ausrüstung
US9994501B2 (en) 2013-05-07 2018-06-12 Georgia Tech Research Corporation High efficiency, high performance metal-organic framework (MOF) membranes in hollow fibers and tubular modules
US9687791B2 (en) 2013-05-07 2017-06-27 Georgia Tech Research Corporation Flow processing and characterization of metal-organic framework (MOF) membranes in hollow fiber and tubular modules
US9006137B2 (en) 2013-05-13 2015-04-14 Ford Global Technologies, Llc Adsorbent material with anisotropic layering
PL230327B1 (pl) 2013-09-02 2018-10-31 Univ Jagiellonski Nowe warstwowe polimery koordynacyjne manganu typu MOF, sposób ich wytwarzania, modyfikacji i zastosowanie
CN103451717B (zh) * 2013-09-05 2016-05-25 太原理工大学 一种金属有机聚合物材料的制备方法
WO2015040593A1 (en) 2013-09-23 2015-03-26 Basf Se Process for the recovery of components forming a metal-organic framework material
CN104667876B (zh) * 2013-11-29 2018-02-13 北京思达安新材料科技有限公司 系列MOF型多级孔材料IPD‑mesoMOF‑1~8及其制备方法,以及介孔大小的调节方法
US9751071B2 (en) 2013-12-27 2017-09-05 State Of Oregon Acting By And Through The State Board Of Higher Education On Behalf Of Oregon State University Continuous microwave-assisted segmented flow reactor for high-quality nanocrystal synthesis
CN103820850B (zh) * 2014-02-27 2016-04-27 河南理工大学 一种金属有机骨架mof-2多晶膜的制备方法
US10150095B2 (en) 2014-03-21 2018-12-11 The Board Of Regents Of The University Of Texas System Porous metal-organic framework with pyrimidine groups for methane storage exhibiting high working capacity
WO2015144695A1 (en) 2014-03-27 2015-10-01 Basf Se Porous films comprising metal-organic framework materials
PL232317B1 (pl) 2014-06-16 2019-06-28 Univ Jagiellonski Polimer koordynacyjny typu MOF
CN104073863B (zh) * 2014-07-22 2016-03-30 天津工业大学 一种用于电沉积法镀mof膜的组合式装置
DE102014215568A1 (de) * 2014-08-06 2016-02-11 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren zur Herstellung eines Adsorbens aus metallorganischen Gerüststrukturen (MOF)
EP2985075A1 (de) 2014-08-15 2016-02-17 Basf Se Formkörper hergestellt aus einem porösen Material
WO2016075100A1 (en) 2014-11-11 2016-05-19 Basf Se Storage vessel comprising layers of a shaped body of a porous solid separated by a seal
JP6668344B2 (ja) 2014-11-11 2020-03-18 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se 多孔質体の成形体を含む貯蔵容器
EP3031846B1 (de) 2014-12-08 2018-06-06 Samsung Electronics Co., Ltd Multifunktionale supramolekulare hybriden mit hierarchischer selbstordnung von metallorganischen rahmennanopartikeln und verfahren zur herstellung davon
JP6698325B2 (ja) * 2014-12-08 2020-05-27 三星電子株式会社Samsung Electronics Co.,Ltd. 超分子金属−有機構造体物質およびその製造方法
WO2016116406A1 (de) 2015-01-21 2016-07-28 Basf Se Gasdruckbehälter enthaltend ein gas, ein latentwärmespeichermaterial und einen porösen feststoff
WO2016135133A1 (en) 2015-02-27 2016-09-01 Basf Se A vehicle comprising a storage system and a combustion engine, the storage system comprising a container and at least one storage vessel
JP6578704B2 (ja) * 2015-03-31 2019-09-25 東ソー株式会社 多孔性配位高分子
CN104801341B (zh) * 2015-04-07 2017-06-23 大连理工大学 一种电化学合成催化剂Cu3(BTC)2的方法及其NH3‑SCR应用
EP3093549A1 (de) 2015-05-11 2016-11-16 Basf Se Fahrzeug mit verbrennungsmotor, mindestens einem aufbewahrungsbehälter und einer kühlkammer und/oder einer klimaanlageneinheit
CN104941685B (zh) * 2015-05-11 2017-10-31 中南大学 一种金属多孔三维网络结构聚合物催化材料及其制备方法
EP3093550A1 (de) 2015-05-11 2016-11-16 Basf Se Lagerbehälter mit mindestens einem formkörper eines porösen feststoffs
KR102461717B1 (ko) * 2015-05-12 2022-11-01 삼성전자주식회사 에너지 저장장치용 전해질막, 이를 포함하는 에너지 저장장치, 및 상기 에너지 저장장치용 전해질막의 제조방법
CN105037404B (zh) * 2015-07-31 2017-03-08 四川大学 一种基于液相中放电等离子体制备金属有机骨架材料的方法
EP3130835A1 (de) 2015-08-13 2017-02-15 Basf Se Fahrzeug mit einem aufbewahrungssystem und einem verbrennungsmotor, das aufbewahrungssystem mit einem container und mindestens einem aufbewahrungsbehälter mit einem gehäuse
EP3130834A1 (de) 2015-08-13 2017-02-15 Basf Se Fahrzeug mit einem aufbewahrungssystem und einem verbrennungsmotor, das aufbewahrungssystem mit einem container und mindestens zwei aufbewahrungsbehältern
KR101807266B1 (ko) * 2015-10-14 2018-01-10 한국에너지기술연구원 금속-유기 골격체 및 이의 제조방법
KR102145675B1 (ko) * 2015-11-07 2020-08-18 엔테그리스, 아이엔씨. 흡착제 및 이를 포함하는 유체 공급 패키지 및 장치
EP3380226B1 (de) 2015-11-27 2019-10-23 Basf Se Ultraschneller synthese mit hoher raum-zeit-ausbeute von metallorganischen rahmen
CN105762363B (zh) * 2015-12-11 2018-06-15 华南师范大学 一种基于zif配合物的锂离子电池负极材料的制备方法
CN105601472B (zh) * 2016-01-28 2017-11-07 遵义医学院 新型5‑[4‑(1‑羧基萘基)]‑间苯二甲酸的制备方法
CN108160121B (zh) * 2016-04-25 2021-02-12 项敬来 一种复合可见光光催化剂Ag2CO3/TiO2/UIO-66-(COOH)2及有机物降解应用
CN108295907B (zh) * 2016-04-25 2020-07-10 工大环境股份有限公司 一种复合可见光光催化剂Ag2CO3/TiO2/UiO-66-(COOH)2的制备方法及其应用
CN107307069A (zh) * 2016-04-27 2017-11-03 上海鲜锐生物科技有限公司 用于果蔬花卉保鲜的1-甲基环丙烯制剂及制备和使用方法
JP6308244B2 (ja) 2016-04-28 2018-04-11 トヨタ自動車株式会社 多孔体の製造方法
JP6784510B2 (ja) * 2016-05-17 2020-11-11 Jx金属株式会社 ポリタングステン酸アルコールアミンの製造方法
JP6323495B2 (ja) 2016-05-26 2018-05-16 トヨタ自動車株式会社 多孔体の製造方法
CN106498447B (zh) * 2016-11-23 2018-10-19 北京建筑大学 金属有机骨架材料的批量电化学合成装置及方法
FR3063804B1 (fr) 2017-03-10 2019-09-06 Mof Apps As Utilisation de materiau metallique-organique hybride dans un systeme de refroidissement/chauffage par adsorption pour batterie thermique
BR112019024204A2 (pt) 2017-06-02 2020-06-02 Basf Se Processo para condicionar um fluido, aparelho de condicionamento de ar, uso do aparelho de condicionamento de ar, trocador de calor e elemento externo de parede
CN107353411A (zh) * 2017-06-27 2017-11-17 哈尔滨理工大学 一种用于荧光检测痕量2,4,6‑三硝基苯酚的irmof‑3的制备方法
DE102017211592B4 (de) 2017-07-07 2022-02-17 Leibniz-Institut Für Festkörper- Und Werkstoffforschung Dresden E.V. Verfahren zur Herstellung omniphober Oberflächen, einer omniphoben Oberflächenbeschichtung, Verwendungen der omniphoben Oberflächenbeschichtung und der Einsatz in einem Wärmeübertrager
WO2019036140A1 (en) 2017-07-17 2019-02-21 Zymergen Inc. METALLO-ORGANIC STRESS MATERIALS
CN107383386B (zh) * 2017-08-04 2020-07-21 南京工业大学 一种制备二维金属有机骨架材料的方法及其应用
US11596877B2 (en) 2017-08-10 2023-03-07 Trustees Of Dartmouth College Porous scaffolds for electrochemically-controlled reversible capture and release of alkenes
CN107576701B (zh) * 2017-09-05 2019-06-04 济南大学 一种多孔金属有机框架物负载Ag纳米复合材料的制备方法和应用
CN111936667B (zh) * 2018-03-30 2022-12-13 大金工业株式会社 叠层体的制造方法
CN108404872A (zh) * 2018-05-29 2018-08-17 中国科学院生态环境研究中心 除砷吸附剂及制备方法
CN109320729B (zh) * 2018-09-19 2021-04-30 常州大学 基于吡嗪多羧酸配体构筑金属锰有机框架化合物的方法及应用
EP3653800A1 (de) 2018-11-15 2020-05-20 Basf Se Erzeugung von trinkwasser aus luft mittels einer box mit mindestens einem sorptionsmaterial
EP3653283A1 (de) * 2018-11-15 2020-05-20 Basf Se Verfahren zur konditionierung von metallorganischen gerüsten mittels membranfiltration
US11767331B2 (en) 2018-12-18 2023-09-26 King Fahd University Of Petroleum And Minerals Water stable zinc-based metal organic framework and method of use
CN109897056A (zh) * 2019-04-12 2019-06-18 云南师范大学 一种金属镉配合物及其制备方法与应用
CN110078935A (zh) * 2019-05-17 2019-08-02 哈尔滨理工大学 一种合成金属有机骨架材料dut-52的电化学新方法
CN110144048B (zh) * 2019-05-29 2021-07-09 哈尔滨理工大学 一种电化学快速合成双金属Zn/Co-ZIF-8的方法
CN110541239B (zh) * 2019-08-09 2022-04-05 河南圣玛斯科技有限公司 一种高性能静电纺丝纳米纤维膜的制备方法
CN110484932A (zh) * 2019-09-04 2019-11-22 哈尔滨理工大学 一种电化学合成金属有机框架材料Ni-BTC的方法
US20220410121A1 (en) * 2019-11-26 2022-12-29 ExxonMobil Technology and Engineering Company Metal-Organic Material Extrudates, Methods of Making, and Methods of Use
CN111258192A (zh) * 2020-02-11 2020-06-09 Tcl华星光电技术有限公司 光阻剥离装置及光阻剥离方法
CN113394368B (zh) * 2020-03-11 2023-08-01 宁德新能源科技有限公司 极片及电化学装置
KR20230019417A (ko) 2020-03-31 2023-02-08 누맷 테크놀로지스, 인코포레이티드 활성화 아미노 함유 금속 유기 프레임워크(mof) 조성물, 이의 제조 방법 및 사용 방법
CN111575727B (zh) * 2020-05-27 2022-07-12 上海科技大学 多层级纳米孔金属基柔性薄膜气体扩散电极及其制备方法与应用
JP7453651B2 (ja) * 2020-10-30 2024-03-21 株式会社デンソー 電気化学セルおよび二酸化炭素回収システム
WO2022126432A1 (zh) * 2020-12-16 2022-06-23 龚仲伟 金属材料及其制造方法
CN116829611A (zh) 2021-02-11 2023-09-29 巴斯夫欧洲公司 通过多孔材料减少单体异氰酸酯
WO2022174270A1 (en) * 2021-02-15 2022-08-18 Rj Lee Group, Inc. Metal organic frameworks comprising copper ions and processes for preparing same
US11639705B2 (en) 2021-02-16 2023-05-02 GM Global Technology Operations LLC Vapor capture element for an air intake system of an internal combustion engine
US11499507B2 (en) 2021-02-16 2022-11-15 GM Global Technology Operations LLC Evaporative canister for an internal combustion engine
US11466631B2 (en) 2021-02-16 2022-10-11 GM Global Technology Operations LLC Method and system for controlling an on-vehicle evaporative emission system
CN113702460B (zh) * 2021-07-29 2023-04-07 江苏大学 一种基于Co-MOF和血红素-G-DNA协同催化的电化学传感器及其制备方法和应用
WO2023090993A1 (en) * 2021-11-19 2023-05-25 Petroliam Nasional Berhad (Petronas) Method for producing catalyst
CN114029088A (zh) * 2021-12-09 2022-02-11 南京环保产业创新中心有限公司 一种光助电化学催化氧化电极及其制备方法与应用
CN114517303B (zh) * 2022-03-31 2023-05-23 云南大学 一种蜂窝状电解水催化剂及其制备方法和应用
CN114956039A (zh) * 2022-06-09 2022-08-30 西安理工大学 空心海胆状双金属MOFs衍生碳材料及其制备方法和应用
EP4360751A1 (de) * 2022-10-28 2024-05-01 Calistair SAS Verfahren zur herstellung eines metallorganischen gerüsts, das nach diesem verfahren erhältliche metallorganische gerüst und dessen verwendung

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US700607A (en) * 1901-07-31 1902-05-20 Birney C Batcheller Sending apparatus for pneumatic-despatch systems.
AT324352B (de) * 1972-10-05 1975-08-25 Studiengesellschaft Kohle Mbh Verfahren zur herstellung von organischen metallverbindungen durch elektrochemische umsetzung von metallen und h-aciden verbindungen
US4104140A (en) 1972-10-05 1978-08-01 Studiengesellschaft Kohle Mbh Process for the electrochemical synthesis of organic metal compounds
DE2720165C2 (de) * 1977-05-05 1979-01-18 Studiengesellschaft Kohle Mbh, 4330 Muelheim Elektrochemisches Verfahren zur Herstellung von Ferrocenen aus Eisen und Cyclopentadien bzw. dessen Derivaten
JPS57198281A (en) * 1981-05-27 1982-12-04 Asahi Glass Co Ltd Electrolytic synthesizing method for organic compound
JPS5873780A (ja) 1981-10-29 1983-05-04 Naoe Terao 有機ゲルマニウム化合物の製造方法
EP0108469B1 (de) 1982-08-13 1986-10-15 The Secretary of State for Defence in Her Britannic Majesty's Government of the United Kingdom of Great Britain and Verfahren zur Herstellung von organometallischen Indium- und Gallium-Verbindungen
CN1004810B (zh) * 1985-04-01 1989-07-19 武汉大学 一类新型的铅铁双金属络合物的制备方法
FR2708002A1 (fr) 1993-07-23 1995-01-27 Assoun Christian Daniel Procédé de préparation de complexes organométalliques et leurs applications en tant que médicament et en catalyse chimique.
US5648508A (en) * 1995-11-22 1997-07-15 Nalco Chemical Company Crystalline metal-organic microporous materials
JPH09227571A (ja) 1996-02-28 1997-09-02 Osaka Gas Co Ltd ガス貯蔵性金属錯体とその製造方法及びガス貯蔵装置並びにガス貯蔵装置を装備した自動車
JPH1066865A (ja) * 1996-08-28 1998-03-10 Osaka Gas Co Ltd 難燃性ガス貯蔵剤、難燃性ガス貯蔵方法ならびに高圧難燃性ガス発生装置
US6491740B1 (en) * 1999-07-22 2002-12-10 The Boc Group, Inc. Metallo-organic polymers for gas separation and purification
CN1346359A (zh) * 2000-01-31 2002-04-24 巴塞尔技术有限公司 携带二齿双阴离子配体的过渡金属烷基络合物的制备
DE10058304A1 (de) * 2000-11-24 2002-05-29 Basf Ag Verfahren zur Herstellung von alkoxylierten Carbonylverbindungen durch ein anodisches Oxidationsverfahren unter Nutzung der kathodischen Koppelreaktion zur organischen Synthese
JP3566655B2 (ja) * 2001-01-10 2004-09-15 大陽東洋酸素株式会社 ガス吸着剤の製造法
DE10111230A1 (de) 2001-03-08 2002-09-19 Basf Ag Metallorganische Gerüstmaterialien und Verfahren zu deren Herstellung
CA2446020A1 (en) 2001-04-30 2002-11-07 The Regents Of The University Of Michigan Isoreticular metal-organic frameworks, process for forming the same, and systematic design of pore size and functionality therein, with application for gas storage
US20030078311A1 (en) * 2001-10-19 2003-04-24 Ulrich Muller Process for the alkoxylation of organic compounds in the presence of novel framework materials
US6929679B2 (en) 2002-02-01 2005-08-16 Basf Aktiengesellschaft Method of storing, uptaking, releasing of gases by novel framework materials
US6893564B2 (en) * 2002-05-30 2005-05-17 Basf Aktiengesellschaft Shaped bodies containing metal-organic frameworks
US6624318B1 (en) * 2002-05-30 2003-09-23 Basf Aktiengesellschaft Process for the epoxidation of an organic compound with oxygen or an oxygen-delivering compounds using catalysts containing metal-organic frame-work materials
US7008607B2 (en) * 2002-10-25 2006-03-07 Basf Aktiengesellschaft Process for preparing hydrogen peroxide from the elements
US6617467B1 (en) * 2002-10-25 2003-09-09 Basf Aktiengesellschaft Process for producing polyalkylene carbonates
US7309380B2 (en) * 2003-06-30 2007-12-18 Basf Aktiengesellschaft Gas storage system
US20050004404A1 (en) * 2003-07-03 2005-01-06 Basf Akiengesellschaft Process for the alkoxylation of monools in the presence of metallo-organic framework materials
DE10355087A1 (de) 2003-11-24 2005-06-09 Basf Ag Verfahren zur elektrochemischen Herstellung eines kristallinen porösen metallorganischen Gerüstmaterials
EP1689762A4 (de) * 2003-12-05 2009-08-05 Univ Michigan Metallorganische polyhedra
US7411081B2 (en) * 2004-01-13 2008-08-12 Basf Aktiengesellschaft Process for preparing and organometallic framework material

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
None *
See also references of WO2005049484A1 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103877951A (zh) * 2012-12-21 2014-06-25 中国科学院大连化学物理研究所 石墨氧化物和含铜配位聚合物纳米粒子复合材料及其制备
CN106622150A (zh) * 2017-02-25 2017-05-10 华南理工大学 优先吸附乙烷的C2H3N@Ni(2‑MTPA)(TED)0.5材料及其制备方法

Also Published As

Publication number Publication date
CN100537414C (zh) 2009-09-09
US20110105776A1 (en) 2011-05-05
WO2005049484A1 (de) 2005-06-02
IS8517A (is) 2006-06-22
US20070227898A1 (en) 2007-10-04
US7968739B2 (en) 2011-06-28
KR101289492B1 (ko) 2013-07-24
US7553352B2 (en) 2009-06-30
IS8518A (is) 2006-06-22
JP5349505B2 (ja) 2013-11-20
JP4970043B2 (ja) 2012-07-04
CA2546327C (en) 2013-09-03
CN1886536A (zh) 2006-12-27
CA2544859A1 (en) 2005-06-02
JP2011042881A (ja) 2011-03-03
CA2544859C (en) 2012-10-02
CN1886536B (zh) 2010-12-08
EP1687462A1 (de) 2006-08-09
US8163949B2 (en) 2012-04-24
JP2011064336A (ja) 2011-03-31
KR20060111618A (ko) 2006-10-27
JP2007534896A (ja) 2007-11-29
CA2546327A1 (en) 2005-06-02
JP2007533846A (ja) 2007-11-22
DE10355087A1 (de) 2005-06-09
MXPA06004620A (es) 2006-12-14
KR20070013261A (ko) 2007-01-30
WO2005049892A1 (de) 2005-06-02
CN1886334A (zh) 2006-12-27
EP1687462B1 (de) 2019-03-13
JP5074035B2 (ja) 2012-11-14
US20070248852A1 (en) 2007-10-25
KR101166590B1 (ko) 2012-07-18

Similar Documents

Publication Publication Date Title
EP1689670A1 (de) VERFAHREN ZUR KONTROLLIERTEN SPEICHERUNG UND ABGABE VON GASEN UNTER EINSATZ EINES ELEKTROCHEMISCH HERGESTELLTEN KRISTALLINEN POR&amp;Ouml;SEN METALLORGANISCHEN GER STMATERIALS
JP5167122B2 (ja) 多孔質の金属有機骨格材料の製造方法
EP2027307B1 (de) Verfahren zur herstellung von porösen metallorganischen gerüstmaterialien
EP1471997A1 (de) Verfahren zum speichern, zur aufnahme und abgabe von gasen unter verwendung neuartiger gerüstmaterialien
DE102004061238A1 (de) Adsorptive Anreicherung von Methan in Methan-haltigen Gasgemischen
WO2006072573A2 (de) Adsorptive gewinnung von xenon aus krypton-xenon gasgemischen
WO2009007267A1 (en) Process for the separation of unbranched hydrocarbons from their branched isomers
MXPA06005336A (en) Method for the controlled storage and release of gases using an electrochemically produced crystalline, porous, organometallic skeleton material

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20060626

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LU MC NL PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: BASF SE

17Q First examination report despatched

Effective date: 20110823

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: FRAUNHOFER GESELLSCHAFT ZUR FOERDERUNG DER ANGEWAN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20190618