EP1471997A1 - Verfahren zum speichern, zur aufnahme und abgabe von gasen unter verwendung neuartiger gerüstmaterialien - Google Patents

Verfahren zum speichern, zur aufnahme und abgabe von gasen unter verwendung neuartiger gerüstmaterialien

Info

Publication number
EP1471997A1
EP1471997A1 EP02806650A EP02806650A EP1471997A1 EP 1471997 A1 EP1471997 A1 EP 1471997A1 EP 02806650 A EP02806650 A EP 02806650A EP 02806650 A EP02806650 A EP 02806650A EP 1471997 A1 EP1471997 A1 EP 1471997A1
Authority
EP
European Patent Office
Prior art keywords
storing
dispensing
receiving
gas
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
EP02806650A
Other languages
English (en)
French (fr)
Inventor
Ulrich Mueller
Klaus Harth
Markus Hoelzle
Michael Hesse
Lisa Lobree
Wolfgang Harder
Omar M. Yaghi
Mohamed Eddaoudi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF SE
University of Michigan
Original Assignee
BASF SE
University of Michigan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BASF SE, University of Michigan filed Critical BASF SE
Publication of EP1471997A1 publication Critical patent/EP1471997A1/de
Ceased legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/065Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants by dissolution of metals or alloys; by dehydriding metallic substances
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/223Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material containing metals, e.g. organo-metallic compounds, coordination complexes
    • B01J20/226Coordination polymers, e.g. metal-organic frameworks [MOF], zeolitic imidazolate frameworks [ZIF]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/0005Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes
    • C01B3/001Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes characterised by the uptaking medium; Treatment thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C11/00Use of gas-solvents or gas-sorbents in vessels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C11/00Use of gas-solvents or gas-sorbents in vessels
    • F17C11/005Use of gas-solvents or gas-sorbents in vessels for hydrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C11/00Use of gas-solvents or gas-sorbents in vessels
    • F17C11/007Use of gas-solvents or gas-sorbents in vessels for hydrocarbon gases, such as methane or natural gas, propane, butane or mixtures thereof [LPG]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S502/00Catalyst, solid sorbent, or support therefor: product or process of making
    • Y10S502/526Sorbent for fluid storage, other than an alloy for hydrogen storage

Definitions

  • the present invention relates to the technical field of storage of gases including methane and hydrogen, and more particularly to the technology of fuel cells.
  • the invention relates in particular to a process in which an organometallic framework comprising pores and at least one metal ion and at least one bidentate organic compound, which is preferably bound as a coordination compound to said metal ion, for receiving, storing or dispensing, or for receiving and for storing, or for receiving and dispensing, or for storing and dispensing, or for receiving, for storing and dispensing at least one gas.
  • the present invention relates to a device comprising the material described above.
  • Fuel cell technology is one of the core technologies of the 21st century, for example, in stationary applications such as power plants, as well as in mobile applications such as cars, buses, trucks, and portable devices such as mobile phones, laptops, etc. and so-called "auxiliary power units” (APU), such as those used for power supply in power plants.
  • APU auxiliary power units
  • the reason for this is the increased efficiency of fuel cells compared to normal internal combustion engines.
  • fuel cells produce significantly less pollutant emissions.
  • organometallic complexes for storing gaseous C t to C 4 carbohydrates is disclosed in EP-A 0 727 608.
  • the complexes disclosed there are difficult to synthesize.
  • the storage capacity of the materials described is low, if not too low, for industrial applications.
  • the present invention relates to a method of recording, storing or dispensing, or receiving and storing, or receiving and dispensing, or storing and dispensing, or picking , is provided for storing and dispensing at least one gas, characterized in that the gas is taken or stored or dispensed, or recorded and stored, or recorded and dispensed, or stored and dispensed or picked up, stored and dispensed using a medium containing an organometallic framework material comprising pores and at least one metal ion, and at least one at least bidentate organic compound bonded to said metal ion, preferably via a coordination compound.
  • the present invention further relates to a device for receiving, storing or dispensing, or for receiving and storing, or for receiving and dispensing, or for storing and dispensing, or for receiving, for storing and dispensing of at least one gas; preferably, this is a fuel cell comprising an organometallic framework material as defined herein.
  • the present invention relates to the use of a medium comprising an organometallic framework material which contains pores and at least one metal ion and furthermore at least one at least bidentate organic compound, this organic compound being bound to the said metal ion, preferably via a coordination compound.
  • the medium is used for recording or storing or recording, storing or dispensing, or recording and storing, or recording and dispensing, or storing and dispensing, or recording, storing and dispensing at least one gas, in stationary applications, in mobile applications and in mobile applications with portable devices, preferably in power plants, cars, trucks, buses, mobile phones and laptops.
  • the invention further relates to the use of the apparatus as described herein for powering power plants, and for powering cars, trucks, buses, cell phones and laptops.
  • the organometallic framework material containing pores consists of at least at least one metal ion and at least one bidentate organic compound, said bidentate organic compound being attached to the said metal ion is attached, preferably via a coordination compound.
  • Such materials are known and described per se, for example in US 5,648,508, EP-A-0 709 253, J. Sol. State Chem., 152 (2000) p. 3-20, Nature 402 (1999), p. 276 et seq., Topics in Catalysis 9 (1999), pp. 105-111, Science 291 (2001), pp. 1021- 23rd An inexpensive process for the production of these materials is described in DE 10111230.0. The relevant content of the above-described publications is hereby fully incorporated in the present application.
  • the organometallic frameworks used in the present invention contain pores, especially micropores and / or mesopores, with micropores defined as pores having a diameter of 2 nm or less.
  • Mesopores are defined as pores having a diameter greater than 2 nm and up to 50 nm, as defined in Pure Applied Chem. 45, p. 71 et seq., Especially p. 79 (1976).
  • the presence of micro- and / or mesopores can be checked by sorption measurements, with the help of which the capacity of the organometallic frameworks can be measured in terms of nitrogen at 77 K, in accordance with DIN 66131 and DIN 66134. An I-shaped course of Isotherms indicates the presence of micropores.
  • the specific surface area is preferably more than 5 m Ig, more preferably more than 20 m Ig, more preferably more than 50 m 2 / g, even more preferably more than 500 m 2 / g, wherein the specific surface area may be greater than 2000 m Ig.
  • the metal ions of the elements of groups Ia, Ha, Ula, JVa to Villa and Ib to VIb of the periodic table of the elements are to be mentioned in particular.
  • suitable metal ions of these elements are: Mg 2+ , Ca 2+ , Sr 2+ , Ba 2+ , Sc 3+ , Y 3+ , Ti 4+ , Zr 4+ , Hf ", V 4+ , V 3+ , V 2+ , Nb 3+ , Ta 3+ , Cr 3+ , Mo 3+ , W 3+ , Mn 3+ , Mn 2+ , Re 3+ , Re 2+ , Fe 3+ , Fe 2+ , Ru 3+ , Ru 2+ , Os 3+ , Os 2+ , Co 3+ , Co 2+ , Rh 2+ , Rh + , Ir 2+ , Ir + , Ni 2+ , Ni + , Pd 2+ , Pd + , Pt 2+ , Pt + , Cu 2+ , Cu + , Ag + , Au + , Zn 2+ , Cd 2+ , Hg 2+ , Al 3+ , V
  • the at least bidentate organic compound which must be able to coordinate with the metal ion, in principle all compounds are conceivable which can be used for this purpose and which fulfill the abovementioned conditions, in particular which are at least bidentate.
  • the organic compound must have at least two centers which are capable of coordinating with the metal ions, especially with the metals of the groups indicated above.
  • the at least bidentate organic compounds mention should be made of the following compounds, which compounds include:
  • an alkyl group substructure having 1 to 10 carbon atoms i) an aryl group substructure having 1 to 5 phenyl rings, iii) an alkyl or arylamine substructure consisting of alkyl groups having 1 to 10 carbon atoms or aryl groups having 1 to 5 phenyl rings,
  • said substructures having bound thereto at least one at least bidentate functional group "X" covalently attached to the substructure said compound is attached, and wherein the group X is selected from the group consisting of
  • substituted or unsubstituted, mono- or polynuclear aromatic di-, tri- or tetracarboxylic acids and also substituted or unsubstituted aromatic, at least one heteroatom-containing di-, tri- and tetracarboxylic acids which comprise one or more nuclei.
  • a particularly preferred ligand is terephthalic acid, and particularly preferred metal ions are the Co 2+ and Zn 2+ ions.
  • the organometallic framework material as used in connection with the present invention may also contain one or more monodentate ligands, these monodentate ligands being derived in particular from the following substances:
  • Alkylamines and their corresponding Alkylammoniumsalze containing straight-chain or branched or cyclic aliphatic groups, each having 1 to 20 carbon atoms (and their corresponding ammonium salts); b. Arylamines and their corresponding Arylammoniumsalze, having 1 to 5 phenyl rings; c. Alkylphosphonium salts containing unbranched, branched or cyclic aliphatic groups each having 1 to 20 carbon atoms; d. Arylphosphonium salts with 1 to 5 phenyl rings; e.
  • alkyl organic acids and their corresponding alkylic organic anions containing unbranched, branched or cyclic aliphatic groups of 1 to 20 carbon atoms; f. arylic organic acids and their corresponding arylorganic
  • G aliphatic alcohols having unbranched, branched or cyclic aliphatic groups and having 1 to 20 carbon atoms
  • H Aryl alcohols having 1 to 5 phenyl rings
  • i inorganic anions selected from the group comprising:
  • Ammonia carbon dioxide, methane, oxygen, ethylene, hexane, benzene, toluene, xylene, chlorobenzene, nitrobenzene, naphthalene, thiophene, pyridine, acetone, 1-2-dichloroethane, methylene chloride, tetrahydrofuran, ethanolamine, triethylamine and trifluoromethylsulfonic acid.
  • the solvents used are of particular importance for the preparation of these materials and are therefore also listed in the table below.
  • the values of the cell parameters (angles ⁇ , ⁇ and ⁇ as well as the spaces a, b and c (in Angstrom)) were determined by X-ray diffractometry and correspond to the given space group.
  • framework materials of the type described here which contain Zn 2+ as the metal ion and ligands derived from terephthalic acid as a bidentate compound.
  • Such framework materials are also known as MOF-5 in the literature.
  • Separation of the organic frameworks, particularly MOF-5, from the mother liquor after crystallization can be accomplished by any of the methods known to those skilled in the art.
  • Such processes are, for example, solid-liquid separations such as centrifuging, extraction, filtration, membrane filtration, cross-flow filtration, flocculation using flocculants (nonionic, cationic and anionic additives) or the addition of substances which shift the pH, such as salts, acids or bases; further by flotation, spray drying or spray granulation, as well as by evaporation of the mother liquor at elevated temperatures and / or in vacuo and by concentration of the solid.
  • flocculants nonionic, cationic and anionic additives
  • the separated framework materials in particular MOF-5, can be compacted, extruded, coextruded, pressed, spun, foamed. Furthermore, they can be granulated according to the methods known from the processing of plastics. In general, the materials are used in the form of pellets or as thin layers or as thin plates in the sense of the present invention. However, the above methods allow the production of various more advanced geometries and physical embodiments necessary for the widespread applications of said materials in the context of the present invention, especially if they are to be used in portable or mobile applications.
  • gases which are to be taken up and / or stored and / or discharged are to be mentioned in particular: hydrocarbons, alcohols, hydrogen, nitrogen, noble gases, CO, C0 2 , naturally occurring gases, synthesis gases, compounds which produce these gases and / or deliver, as well as mixtures of at least two of the aforementioned substances.
  • gases which are to be taken up and / or stored and / or discharged
  • hydrocarbons alcohols, hydrogen, nitrogen, noble gases, CO, C0 2
  • naturally occurring gases gases
  • synthesis gases compounds which produce these gases and / or deliver, as well as mixtures of at least two of the aforementioned substances.
  • hydrogen mixtures containing hydrogen, substances which produce and supply hydrogen and a gas mixture which contain at least one hydrogen-producing and / or hydrogen-generating substance.
  • the organometallic framework material is contacted with at least one substance which increases the capacity, said substance being selected from the group consisting of: solvents, complexes, metals, metal hydrides, alloys, as well as mixtures of at least two of the aforementioned substances.
  • a substance which increases the capacity said substance being selected from the group consisting of: solvents, complexes, metals, metal hydrides, alloys, as well as mixtures of at least two of the aforementioned substances.
  • the present invention relates to a device for receiving, storing or dispensing, or for receiving and storing, or for receiving and dispensing, or for storing and dispensing, or for receiving, for storing and dispensing at least one gas containing at least one organometallic framework material as defined in the present invention.
  • Said device may contain the following further components:
  • a container which receives the organometallic framework material; an inlet for removal or discharge which allows at least one gas to enter the device or from the device; a gas-tight pick-up mechanism capable of holding the gas under pressure within the container.
  • the present invention further relates to a fuel cell which accommodates the storage medium comprising the at least one organometallic framework material as described in the present invention.
  • the present invention also relates to the use of the medium comprising at least one organometallic framework material as described in the present invention for receiving, storing or dispensing, or for receiving and storing, or for receiving and dispensing, or for storing and dispensing, or for receiving, storing and dispensing at least one gas in the following applications: stationary, mobile, mobile, portable applications, preferably in power plants, cars, trucks, buses, cell phones, laptops, and use the device according to the present invention for supplying energy in power plants, cars, trucks, buses, mobile phones and laptops.
  • the present invention also relates to a method of using the fuel cell comprising at least one organometallic framework material for supplying power to power plants, automobiles, trucks, buses, cell phones and laptops.
  • FIG. 1 shows a powder X-ray diffractogram of the MOF-5 organic framework material as prepared according to Example 1.
  • the horizontal x-axis denotes the scattering angle 2 ⁇ in degrees
  • the vertical y-axis represents a scattering intensity in arbitrary units.
  • Figure 2 shows the sorption isotherm with respect to argon from an MOF-5 material at 87K.
  • the horizontal x-axis indicates the relative pressure P / P 0 and the vertical y-axis the adsorbed volume in cm 3 / g at standard conditions ,
  • Fig. 3 shows the hydrogen absorption isotherm with respect to hydrogen of MOF-5 at 30 ° C.
  • the horizontal x-axis indicates the hydrogen partial pressure in mbar, while the vertical y-axis indicates the adsorbed amount in mg / g adsorbent.
  • the upper points connected by a line denote the framework material according to the invention, whereas the lower polyline represents the comparison material from Example 3.
  • the crystallization was carried out at 150 ° C and took 20 hours.
  • the orange solvent was then decanted from the yellow crystals, and the crystals were covered once more with 20 mm of dimethylformamide, which was decanted again. This procedure was repeated three times. Thereafter, 20 mm of chloroform was applied to the solid, which was then washed and decanted twice more with the said solvent.
  • the sorption isotherm was determined using argon (at 87K, Micromeritics AS AP 2010) and shows a type I isotherm typical of microporous materials.
  • a specific surface area of 3020 mm 2 / g is determined, calculated according to the Langmuir isotherm.
  • Example 2 The ability of the material of Example 1 to absorb hydrogen was determined by using a magnetic suspension balance from Rubotherm Rezisionsmesstechnik GmbH, Bochum, in the following manner: The sample was weighed and introduced into the apparatus. After closing of the apparatus and the evacuation of the sample to a pressure of 10 "5 mbar, by using a Membranvorpumpe and a turbo molecular pump, the sample was heated under vacuum for 16 hours at 100 ° C.
  • FIG. 1 shows that at a hydrogen pressure of about 150 mbar, the sample is capable of storing about 1% by weight of hydrogen relative to the total weight of the activated sample. By further increasing the pressure, the storage capacity can be increased even further.

Abstract

Die vorliegende Erfindung betrifft das technische Feld der Speicherung von Gasen einschliesslich von Methan und Wasserstoff. Die Erfindung betrifft insbesondere ein Verfahren, in welchem ein metallorganisches Gerüstmaterial, umfassend Poren und zumindest ein Metallion sowie mindestens eine zweizähnige organische Verbindung, die vorzugsweise als Koordinationsverbindung an das besagte Metallion gebunden ist, zur Aufnahme, zum Speichern oder zur Abgabe, oder zur Aufnahme und zum Speichern, oder zur Aufnahme und zur Abgabe, oder zum Speichern und zur Abgabe, oder zur Aufnahme, zum Speichern und zur Abgabe von mindestens einem Gas. Weiterhin betrifft die vorliegende Erfindung eine Vorrichtung, die das oben beschriebene Material umfasst.

Description

Verfahren zum Speichern, zur Aufnahme und Abgabe von Gasen unter Verwendung neuartiger Gerüstmaterialien
Die vorliegende Erfindung betrifft das technische Feld der Speicherung von Gasen einschließlich von Methan und Wasserstoff sowie insbesondere die Technik der Brennstoffzellen. Die Erfindung betrifft insbesondere ein Verfahren, in welchem ein metallorganisches Gerüstmaterial, umfassend Poren und zumindest ein Metallion sowie mindestens eine zweizähnige organische Verbindung, die vorzugsweise als Koordinationsverbindung an das besagte Metallion gebunden ist, zur Aufnahme, zum Speichern oder zur Abgabe, oder zur Aufnahme und zum Speichern, oder zur Aufnahme und zur Abgabe, oder zum Speichern und zur Abgabe, oder zur Aufnahme, zum Speichern und zur Abgabe von mindestens einem Gas. Weiterhin betrifft die vorliegende Erfindung eine Vorrichtung, die das oben beschriebene Material umfasst.
Die Technologie der Brennstoffzellen ist als eine der Kerntechnologien des 21. Jahrhunderts anzusehen, beispielsweise in Bezug auf stationäre Anwendungen, wie beispielsweise Kraftwerke, sowie auf mobile Anwendungen, wie beispielsweise Autos, Busse, Lastwagen, sowie auf tragbare Geräte, wie beispielsweise Mobiltelefone, Laptops, sowie so genannte "Auxiliary Power Units" (APU), wie sie zum Beispiel zur Energieversorgung in Kraftwerken verwendet werden. Der Grund hierfür liegt in der erhöhten Effizienz von Brennstoffzellen im Vergleich zu normalen Verbrennungsmotoren. Weiterhin erzeugen Brennstoffzellen signifikant weniger Schadstoffausstoß. Ein Überblick über die momentane Entwicklung auf dem Gebiet der Brennstoffzellentechnologie kann in Hynek et al. "Int. J. Hy- drogen Energy", 22, no. 6, S. 601 - 610 (1997), J.A. Kerres "Journal of Membrane Science", 185, 2001, S. 3 - 27 sowie in einem weiteren Übersichtsartikel von G. March in "Materials Today", 4, No. 2 (2001), S. 20 - 24 gefunden werden.
Die Verwendung von metallorganischen Komplexen zum Speichern von gasför- migen Ct bis C4-Kohlehydraten ist in der EP-A 0 727 608 offenbart. Die dort offenbarten Komplexe sind jedoch schwer zu synthetisieren. Weiterhin ist die Speicherkapazität der beschriebenen Materialien gering, wenn nicht zu gering, für industrielle Anwendungen.
Ein weiterer Versuch, um Materialien, die zum Speichern von Gasen geeignet sind, bereitzustellen, ist die Verwendung von mit Alkalimetallen dotierten oder undotierten Kohlenstoff-Nanotubes. Ein Überblick über den momentanen Status der Forschung auf diesem Gebiet findet sich beispielsweise in Yang, "Carbon" 38 (2000), S. 623 - 641 und Cheng et al. "Science" 286, S. 1127 - 1129.
Angesichts des oben angeführten Stands der Technik besteht eine Aufgabe der vorliegenden Erfindung darin, neue Materialien bereitzustellen, die besonders zum Speichern und/oder zur Aufnahme und/oder zur Abgabe von Gasen geeignet sind.
Diese Aufgabe wird dadurch gelöst, und die vorliegende Erfindung bezieht sich darauf, dass eine Methode zur Aufnahme, zum Speichern oder zur Abgabe, oder zur Aufnahme und zum Speichern, oder zur Aufnahme und zur Abgabe, oder zum Speichern und zur Abgabe, oder zur Aufnahme, zum Speichern und zur Abgabe von mindestens einem Gas bereitgestellt wird, dadurch gekennzeichnet, dass das Gas aufgenommen wird oder gespeichert wird oder abgegeben wird, oder aufgenommen und gespeichert wird, oder aufgenommen und abgegeben wird, oder gespeichert und abgegeben oder aufgenommen, gespeichert und abgegeben wird, unter Verwendung von einem Medium, welches ein metallorganisches Ge- rüstmaterial enthält, umfassend Poren und zumindest ein Metallion sowie zumin- dest eine mindestens zweizähnige organische Verbindung, die an das besagte Metallion gebunden ist, vorzugsweise über eine Koordinationsverbindung.
Die vorliegende Erfindung bezieht sich weiterhin auf eine Vorrichtung zur Auf- nähme, zum Speichern oder zur Abgabe, oder zur Aufnahme und zum Speichern, oder zur Aufnahme und zur Abgabe, oder zum Speichern und zur Abgabe, oder zur Aufnahme, zum Speichern und zur Abgabe von mindestens einem Gas; vorzugsweise handelt es sich hierbei um eine Brennstoffzelle, die ein metallorganisches Gerüstmaterial umfasst, wie es hier definiert ist.
Weiterhin betrifft die vorliegende Erfindung die Verwendung eines Mediums umfassend ein metallorganisches Gerüstmaterial, welches Poren enthält sowie zumindest ein Metallion sowie weiterhin zumindest eine mindestens zweizähnige organische Verbindung, wobei diese organische Verbindung an das besagte Me- tallion gebunden ist, vorzugsweise über eine Koordinationsverbindung. Dabei wird das Medium verwendet zur Aufnahme oder zur Speicherung oder zur Aufnahme, zum Speichern oder zur Abgabe, oder zur Aufnahme und zum Speichern, oder zur Aufnahme und zur Abgabe, oder zum Speichern und zur Abgabe, oder zur Aufnahme, zum Speichern und zur Abgabe von mindestens einem Gas, und zwar in stationären Anwendungen, in mobilen Anwendungen und in mobilen Anwendungen mit tragbaren Geräten, vorzugsweise in Kraftwerken, Autos, Lastwagen, Bussen, Mobiltelefone und Laptops.
Die Erfindung bezieht sich weiterhin auf die Verwendung der Vorrichtung, wie sie hier beschrieben ist zur Versorgung von Kraftwerken mit Energie, sowie zur Versorgung von Autos, Lastwagen, Bussen, Mobiltelefone und Laptops mit Energie.
Das metallorganische Gerüstmaterial, welches Poren enthält, besteht zumindest aus mindestens einem Metallion sowie einer mindestens zweizähnigen organischen Verbindung, wobei die besagte zweizähnige organische Verbindung an das besagte Metallion angebunden ist, vorzugsweise über eine Koordinationsverbindung. Solche Materialien sind per se bekannt und beschrieben, beispielsweise in US 5,648,508, EP-A-0 709 253, J. Sol. State Chem., 152 (2000) S. 3-20, Nature 402 (1999), S. 276 ff., Topics in Catalysis 9 (1999), S. 105-111, Science 291 (2001), S. 1021-23. Ein kostengünstiges Verfahren für die Herstellung dieser Materialien ist in der DE 10111230.0 beschrieben. Der diesbezügliche Inhalt der oben beschriebenen Druckschriften ist hierbei vollständig in die vorliegende Anmeldung einzubeziehen.
Die metallorganischen Gerüstmaterialien, wie sie in der vorliegenden Erfindung benutzt werden, enthalten Poren, insbesondere Mikro- und/oder Mesoporen, wobei Mikroporen definiert sind als Poren, die einen Durchmesser von 2 nm oder weniger aufweisen. Mesoporen sind definiert als Poren, die einen Durchmesser von mehr als 2 nm und bis zu 50 nm aufweisen, wie es definiert ist in Pure Applied Chem. 45, S. 71 ff., insbesondere S. 79 (1976). Das Vorliegen von Mikro- und/oder der Mesoporen kann durch Sorptionsmessungen überprüft werden, mit Hilfe derer die Aufnahmekapazität der metallorganischen Gerüstmaterialien bezüglich Stickstoff bei 77 K gemessen werden kann, und zwar gemäß der DIN 66131 sowie der DIN 66134. Ein I-förmiger Verlauf der Isothermen weist auf die Anwesenheit von Mikroporen hin. In einer bevorzugten Ausführungsform beträgt die spezifische Oberfläche, wie sie gemäß Langmuir-Modell berechnet worden ist, vorzugsweise mehr als 5 m Ig, weiter bevorzugt mehr als 20 m Ig, weiter bevorzugt mehr als 50 m2/g, weiter besonders bevorzugt mehr als 500 m2/g, wobei die spezifische Oberfläche auch größer als 2000 m Ig sein kann.
Betreffend die metallische Komponente des metallorganischen Gerüstmaterials, wie es im Rahmen der vorliegenden Erfindung verwendet werden soll, sind insbesondere die Metallionen der Elemente der Gruppen Ia, Ha, Ula, JVa bis Villa sowie Ib bis VIb des periodischen Systems der Elemente zu nennen. Dabei sind ins- besondere zu nennen Mg, Ca, Sr, Ba, Sc, Y, Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Mn, Re, Fe, Ru, Os, Co, Rh, Ir, Ni, Pd, Pt, Cu, Ag, Au, Zn, Cd, Hg, AI, Ga, In, TI, Si, Ge, Sn, Pb, As, Sb und Bi, wobei Zn, Cu, Ni, Pd, Pt, Ru, Rh und Co besonders bevorzugt sind. Als entsprechende Metallionen dieser Elemente sind insbesondere zu nennen: Mg2+, Ca2+, Sr2+, Ba2+, Sc3+, Y3+, Ti4+, Zr4+, Hf" , V4+, V3+, V2+, Nb3+, Ta3+, Cr3+, Mo3+, W3+, Mn3+, Mn2+, Re3+, Re2+, Fe3+, Fe2+, Ru3+, Ru2+, Os3+, Os2+, Co3+, Co2+, Rh2+, Rh+, Ir2+, Ir+, Ni2+, Ni+, Pd2+, Pd+, Pt2+, Pt+, Cu2+, Cu+, Ag+, Au+, Zn2+, Cd2+, Hg2+, Al3+, Ga3+, In3+, Tl3+, Si4+, Si2+, Ge4+, Ge2+, Sn4+, Sn2+, Pb4+, Pb2+, As5+, As3+, As+, Sb5+, Sb3+, Sb+ und Bi5+, Bi3+, Bi+.
Bezüglich der bevorzugten Metallionen sowie bezüglich weiterer Details betref- fend diese Metallionen wird insbesondere auf die EP-A 0 790 253 verwiesen, insbesondere auf S. 10, Zeilen 8-30 des Abschnittes "The Metal Ions". Dieser Abschnitt ist in die vorliegende Anmeldung vollumfänglich einzubeziehen.
Bezüglich der mindestens zweizähnigen organischen Verbindung, die dazu in der Lage sein muss, mit dem Metallion zu koordinieren, sind im Prinzip alle Verbindungen denkbar, die für diesen Zweck eingesetzt werden können und die die oben genannten Bedingungen erfüllen, insbesondere, die mindestens zweizähnig sind. Die organische Verbindung muss zumindest zwei Zentren besitzen, die dazu in der Lage sind, mit den Metallionen eine koordinative Bindung einzugehen, insbe- sondere mit den Metallen der oben angegebenen Gruppen. Bezüglich der mindestens zweizähnigen organischen Verbindungen sollen die folgenden Verbindungen besonders erwähnt werden, wobei diese Verbindungen aufweisen:
i) eine Alkylgruppen-Unterstruktur mit 1 bis 10 Kohlenstoffatomen, ii) eine Arylgruppen-Unterstruktur mit 1 bis 5 Phenylringen, iii) eine Alkyl- oder Arylamin-Unterstruktur, bestehend aus Alkylgruppen mit 1 bis 10 Kohlenstoffatomen oder Arylgruppen mit 1 bis 5 Phenylringen,
wobei die besagten Unterstrukturen zumindest eine mindestens zweizähnige funktionelle Gruppe "X" an sie gebunden haben, die kovalent an die Unterstruktur der besagte Verbindung angebunden ist, und wobei die Gruppe X ausgewählt wird aus der Gruppe bestehend aus
C02H, CS2H, N02, S03H, Si(OH)3, Ge(OH)3, Sn(OH)3, Si(SH)4, Ge(SH)4, Sn(SH)3, P03H, As03H, As04H, P(SH)3, As(SH)3, CH(RSH)2, C(RSH)3, CH(RNH2)2, C(RNH2)3, CH(ROH)2, C(ROH)3, CH(RCN)2, C(RCN)3, wobei R eine Alkylgruppe ist, die 1 bis 5 Kohlenstoffatome aufweist, oder eine Arylgrappe mit 1 bis 2 Phenylringen, und CH(SH)2, C(SH)3, CH(NH2)2, C(NH2)2, CH(OH)2, C(OH)3, CH(CN)2 und C(CN)3.
Insbesondere sind zu nennen substituierte oder nicht-substituierte, mono- oder polynukleare aromatische Di-, Tri- oder Tetracarbonsäuren sowie substituierte oder unsubstituierte aromatische, zumindest ein Heteroatom enthaltende Di-, Trioder Tetracarbonsäuren, die einen oder mehrere Kerne umfassen.
Ein besonders bevorzugter Ligand ist die Terephthalsäure, und besonders bevorzugte Metallionen sind das Co2+- sowie das Zn2+-Ion.
Abgesehen von der zumindest zweizähnigen organischen Verbindung kann das metallorganische Gerüstmaterial, wie es im Zusammenhang mit der vorliegenden Erfindung verwendet wird, auch einen oder mehrere einzähnige Liganden enthalten, wobei diese einzähnigen Liganden insbesondere von den folgenden Substanzen abgeleitet werden:
a. Alkylamine und ihre entsprechenden Alkylammoniumsalze, enthaltend geradkettige oder verzweigte oder zyklische aliphatische Gruppen, die jeweils 1 bis 20 Kohlenstoffatome aufweisen (sowie ihre entsprechenden Ammoniumsalze) ; b. Arylamine und deren entsprechende Arylammoniumsalze, aufweisend 1 bis 5 Phenylringe; c. Alkylphosphoniumsalze, enthaltend unverzweigte, verzweigte oder zyklische aliphatische Gruppen, die jeweils 1 bis 20 Kohlenstoffatome aufweisen; d. Arylphosphoniumsalze mit 1 bis 5 Phenylringen; e. alkylische organische Säuren und deren entsprechende alkylische organische Anionen (sowie Salze), enthaltend unverzweigte, verzweigte oder zyklische aliphatische Gruppen mit 1 bis 20 Kohlenstoffatomen; f. arylische organische Säuren und deren entsprechende arylorganische
Anionen sowie Salze mit 1 bis 5 Phenylringen; g. aliphatische Alkohole mit unverzweigten, verzweigten oder zyklischen aliphatischen Gruppen sowie aufweisend 1 bis 20 Kohlenstoffatome; h. Arylalkohole mit 1 bis 5 Phenylringen; i. anorganische Anionen ausgewählt aus der Gruppe umfassend:
Sulfate, Nitrate, Nitrite, Sulfite, Bisulfite, Phosphate, Hydrogenphosphate, Dihydrogenphosphate, Diphosphate, Triphosphate, Phosphate, Phosphite,
Chloride, Chlorate, Bromide, Bromate, Jodide, Jodate, Karbonate, Bikarbonate sowie die entsprechenden Säuren und Salze der vorstehend genannten Anionen, j. Ammoniak, Kohlenstoffdioxid, Methan, Sauerstoff, Ethylen, Hexan, Ben- zol, Toluol, Xylol, Chlorbenzol, Nitrobenzol, Naphthalen, Thiophen, Pyri- din, Aceton, 1-2-Dichlorethan, Methylenchlorid, Tetrahydrofuran, Etha- nolamin, Triethylamin sowie trifluoromethylsulfonische Säure.
Weitere Details betreffend die zumindest zweizähnige organische Verbindung sowie die einzähnigen Substanzen, von welchen die Liganden der metallorganischen Gerüstmaterialien, wie sie in der vorliegenden Verbindung verwendet werden, abgeleitet sind, können der EP-A 0 790 253 entnommen werden, deren diesbezüglicher Inhalt vollumfänglich in die vorliegende Anmeldung einzubeziehen ist. Nachstehend findet sich eine Liste von Beispielen bereits synthetisierter und charakterisierter metallorganischer Gerüstmaterialien. Diese schließt neue isoreticula- re metalorganische Gerüstmaterialien R-MOFs), die erfindungsgemäß eingesetzt werden können, ein. Derartige Materialien besitzen untereinander die gleiche Ge- rüsttopologie jedoch unterschiedliche Porengrößen und Kristalldichten. Derartige IR-MOFs werden u.a. in M. Eddouadi et al., Science 295 (2002) 469, beschrieben, die voll umfänglich in den Kontext der vorliegenden Anmeldung durch Bezugnahme eingefügt wird.
Die verwendeten Lösungsmittel sind von besonderer Bedeutung für die Herstellung dieser Materialien und sind deshalb in nachstehender Tabelle ebenfalls aufgeführt. Die Werte der Zellen-Parameter (Winkel α, ß and γ sowie die Zwischenräume a, b und c (in Angstrom)) wurden durch Röntgendiffraktometrie bestimmt und entsprechen der ebenfalls angegebenen Raumgruppe.
ADC Acetylendicarbonsäure NDC Naphthalindicarbonsäure BDC Benzoldicarbonsäure ATC Adamantantetracarbonsäure BTC Benzoltricarbonsäure BTB Benzoltribenzoat MTB Methantetrabenzoat ATB Adamantantetrabenzoat ADB Adamantandibenzoat
Besonders bevorzugt im Rahmen der vorliegenden Erfindung sind Gerüstmateria- lien der Art, wie sie hier beschrieben sind, die Zn2+ als Metallion enthalten sowie Liganden, die von der Terephthalsäure als zweizähnige Verbindung abgeleitet sind. Solche Gerüstmaterialien sind auch bekannt als MOF-5 in der Literatur.
Weitere Metallionen sowie mindestens zweizähnige organische Verbindungen sowie einzähnige Substanzen, die jeweils für die Herstellung der besagten metallorganischen Gerüstmaterialien nützlich sein können und in der vorliegenden Erfindung benutzt werden können, sowie Verfahren zur Herstellung derselben sind insbesondere offenbart in der EP-A 0 790 253, der US 5,648,508 sowie der DE 10111230.0. Bezüglich der Lösungsmittel, die besonders für die Herstellung von MOF-5 nützlich sind, sind zusätzlich zu den Lösungsmitteln, die in den oben genannten Druckschriften offenbart sind, die folgenden Lösungsmittel zu nennen: Diethyl- formamid, Diethylformamid sowie N-Methylpyrollidon. Diese können allein, in Verbindung miteinander oder in Verbindung mit anderen Lösungsmitteln verwendet werden. Während der Herstellung der organischen Gerüstmaterialien, insbesondere während der Herstellung von MOF-5, werden die Lösungsmittel sowie die Mutterlaugen nach der Kristallisation in das Verfahren zurückgeführt, um Ko- sten und Material zu sparen.
Das Abtrennen der organischen Gerüstmaterialien, insbesondere von MOF-5, von der Mutterlauge nach der Kristallisation kann mit allen Verfahren, die dem Fachmann bekannt sind, erreicht werden. Solche Verfahren sind beispielsweise Fest- Flüssig-Trennungen wie Zentrifugieren, Extraktion, Filtration, Membranfiltration, Cross-Flow-Filtration, Flockung unter Verwendung von Flockungsmitteln (nichtionischen, kationischen sowie anionischen Zusatzstoffen) oder die Zugabe von Substanzen, die den pH- Wert verschieben, wie beispielsweise Salze, Säuren oder Basen; weiterhin durch Flotation, Sprühtrocknung oder Sprühgranulation, sowie auch durch Verdampfen der Mutterlauge bei erhöhten Temperaturen und/oder im Vakuum sowie durch Aufkonzentrieren des Festkörpers.
Die abgetrennten Gerüstmaterialien, insbesondere MOF-5, können kompaktiert geschmolzen, extrudiert, koextrudiert, verpresst, versponnen, aufgeschäumt wer- den. Weiterhin können sie entsprechend den Verfahren, die von der Verarbeitung von Kunststoffen bekannt sind, granuliert werden. Ganz allgemein werden die Materialien in der Form von Pellets oder als dünne Schichten oder als dünne Platten im Sinne der vorliegenden Erfindung verwendet. Jedoch erlauben die oben genannten Verfahren die Herstellung verschiedener weitergehender Geometrien und körperlicher Ausführungsformen, die notwendig sind für die weit verbreiteten Anwendungen der besagten Materialien im Sinne der vorliegenden Erfindung, insbesondere wenn sie in tragbaren oder mobilen Anwendungen eingesetzt werden sollen.
Bezüglich der Gase, die aufgenommen und/oder gespeichert und/oder abgegeben werden sollen, sind insbesondere zu nennen: Kohlenwasserstoffe, Alkohole, Wasserstoff, Stickstoff, Edelgase, CO, C02, natürlich vorkommende Gase, Synthesegase, Verbindungen, die diese Gase erzeugen und/oder liefern, sowie Mischungen von mindestens zwei der vorstehend genannten Substanzen. Besonders bevorzugt sind Wasserstoff, Mischungen, die Wasserstoff enthalten, Substanzen, die Was- serstoff erzeugen und liefern, sowie eine Gasmischung, die zumindest eine Wasserstoffliefernde und/oder Wasserstoff erzeugende Substanz enthalten.
In einer weiteren Ausführungsform wird das metallorganische Gerüstmaterial in Kontakt gebracht mit zumindest einer Substanz, die die Kapazität erhöht, wobei diese Substanz ausgewählt wird aus der Gruppe bestehend aus: Lösungsmittel, Komplexe, Metalle, Metallhydride, Legierungen, sowie Mischungen von mindestens zwei der vorstehend genannten Substanzen. Dies betrifft beispielsweise Ausführungsformen der oben genannten Substanzen, abgeleitet von Palladium, Platin, Nickel und Ruthenium als Metall.
Weiterhin betrifft die vorliegende Erfindung eine Vorrichtung zur Aufnahme, zum Speichern oder zur Abgabe, oder zur Aufnahme und zum Speichern, oder zur Aufnahme und zur Abgabe, oder zum Speichern und zur Abgabe, oder zur Aufnahme, zum Speichern und zur Abgabe von mindestens einem Gas, beinhaltend zumindest ein metallorganisches Gerüstmaterial, wie es in der vorliegenden Erfindung definiert ist.
Die besagte Vorrichtung kann die folgenden weiteren Komponenten enthalten:
- einen Behälter, der das metallorganische Gerüstmaterial aufnimmt; eine Öffnung zur Zu- oder Abfuhr, die es zumindest einem Gas erlaubt, in die Vorrichtung oder aus der Vorrichtung zu gelangen; ein gasdichter Aufnahmemechanismus, der dazu in der Lage ist, das Gas unter Druck innerhalb des Containers zu halten.
Die vorliegende Erfindung betrifft weiterhin eine Brennstoffzelle, die das Speichermedium umfassend das mindestens eine metallorganische Gerüstmaterial, wie in der vorliegenden Erfindung beschrieben, aufnimmt.
Die vorliegende Erfindung bezieht sich auch auf die Verwendung des Mediums, umfassend zumindest ein metallorganisches Gerüstmaterial, wie es in der vorliegenden Erfindung beschrieben ist, zur Aufnahme, zum Speichern oder zur Abgabe, oder zur Aufnahme und zum Speichern, oder zur Aufnahme und zur Abgabe, oder zum Speichern und zur Abgabe, oder zur Aufnahme, zum Speichern und zur Abgabe von mindestens einem Gas in den folgenden Anwendungen: stationäre, mobile, mobile tragbare Anwendungen, vorzugsweise in Kraftwerken, Autos, Lastwagen, Bussen, Mobiltelefonen, Laptops, sowie die Verwendung der Vorrichtung gemäß der vorliegenden Erfindung zur Energielieferung in Kraftwerken, Autos, Lastwagen, Bussen, Mobiltelefonen sowie Laptops. Die vorliegende Erfin- düng bezieht sich weiterhin auf ein Verfahren zur Verwendung der Brennstoffzelle, umfassend mindestens ein metallorganisches Gerüstmaterial, zur Lieferung von Energie an Kraftwerke, Autos, Lastwagen, Busse, Mobiltelefone sowie Laptops.
Die vorliegende Erfindung wird nachfolgend im Rahmen der folgenden Beispiele beschrieben. Dabei sind die Beispiele nicht so zu verstehen, dass sie den Umfang der vorliegenden Erfindung in irgendeiner Art und Weise begrenzen oder einschränken.
BEISPIELE Fig. 1 zeigt ein Pulverröntgendiffraktogramm des MOF-5-organischen Gerüstmaterials, wie es gemäß Beispiel 1 hergestellt worden ist. Dabei bezeichnet die horizontake x-Achse den Streuwinkel 2Θ in Grad und die vertikale y-Achse repräsentiert eine Streuintensität in willkürlichen Einheiten.
Fig. 2 zeigt die Sorptionsisotherme bezüglich Argon von einem MOF-5 -Material bei 87 K. Dabei gibt die horizontale x-Achse den relativen Druck P/P0 an und die vertikale y- Achse das adsorbierte Volumen in cm3/g bei Standardbedingungen.
Fig. 3 zeigt die Wasserstoffsorptionsisotherme bezüglich Wasserstoff von MOF- 5 bei 30 °C. Dabei gibt die horizontale x-Achse den Wasserstoff- Partialdruck in mbar an, während die vertikale y-Achse die adsorbierte Menge in mg/g Adsorbens angibt. Die oberen durch eine Linie verbundenen Punkte bezeichnen dabei das erfmdungsgemäße Gerüstmaterial, wohingegen der untere Linienzug das Vergleichsmaterial aus Bsp. 3 repräsentiert.
Beispiel 1 (Herstellung von MOF-5
Die oben genannten Mengen an Ausgangsmaterialien wurden in einem Becher- glas gelöst, und zwar in der Reihenfolge: Diethylformamid, Terephtalsäure und Zinknitrat. Die daraus resultierende Lösung wurde in zwei Autoklaven (250 mm) gefüllt, wobei jeweils die Innenwände mit Teflon bedeckt waren.
Die Kristallisation wurde bei 150 °C durchgeführt und dauerte 20 Stunden. Da- nach wurde das orangefarbene Lösungsmittel von den gelben Kristallen dekantiert und die besagten Kristalle wurden noch einmal mit 20 mm an Diemethylforma- mid bedeckt, welches wiederum dekantiert wurde. Dieses Verfahren wurde dreimal wiederholt. Danach wurden 20 mm Chloroform auf den Festkörper aufgebracht, der danach gewaschen und mit dem besagten Lösungsmittel zwei weitere Male dekantiert wurde.
Die Kristalle (14,4 g), die noch feucht waren, wurden in eine Vakuumapparatur eingeschleust und zunächst bei Raumtemperatur im Vakuum (10"4 mbar) getrocknet und daran anschließend bei 120 °C getrocknet. Daran anschließend wurde das so entstandene Produkt durch Röntgenpulverdiffraktometrie charakterisiert, sowie durch eine Bestimmung der Absorptionsisothermen zur Bestimmung der Mikroporen. Das Produkt zeigt das Röntgenpulver-diffraktogramm wie in Abbildung 1 dargestellt, welches genau das Diffraktogramm ist, welches man von MOF-5 erwartet.
Die Sorptionsisotherme, wie sie in Fig. 2 dargestellt ist, wurde unter Verwendung von Argon bestimmt (bei 87 K; Micromeritics AS AP 2010) und zeigt eine Isotherme vom Typ I, welche typisch ist für mikroporöse Materialien. Es wird eine spezifische Oberfläche von 3020 mm2/g bestimmt, berechnet entsprechend der Langmuir-Isotherme. Weiterhin ergibt sich ein Volumen der Mikroporen von 0,07 mm/g (bei einem Relativdruck von p/p° = 0,4).
Beispiel 2 Die Fähigkeit des Materials aus Beispiel 1, Wasserstoff aufzunehmen, wurde durch Verwendung einer magnetischen Suspensionswaage der Firma Rubotherm Präzisionsmesstechnik GmbH, Bochum, bestimmt, und zwar in folgender Weise: Die Probe wurde gewogen und in die Apparatur eingebracht. Nach dem Schließen der Apparatur und dem Evakuieren der Probe auf einen Druck von 10"5 mbar durch Verwendung einer Membranvorpumpe sowie einer Turbomolekularpumpe, wurde die Probe unter Vakuum für 16 Stunden auf 100 °C erhitzt.
Nachdem die Probe thermisch bei einer Temperatur von 30 °C stabilisiert worden ist, wurde Wasserstoff (Reinheit 99,999 %; Firma Messer) bei verschiedenen Drucken, wie in Fig. 3 dargestellt, hinzufügt. Die daraus resultierende Sorptionsisotherme ist in Fig. 3 gezeigt. Diese Figur zeigt, dass bei einem Wasserstoffdruck von ungefähr 150 mbar die Probe dazu in der Lage ist, ungefähr 1 Gew.-% Wasserstoff, relativ zum Gesamtgewicht der aktivierten Probe, zu speichern. Durch weiteres Erhöhen des Druckes kann die Speicherkapazität sogar noch weiter erhöht werden.
Beispiel 3 (Vergleichsbeispiel)
Unter Verwendung desselben experimentellen Aufbaus und desselben Verfahrens wie in Beispiel 2 dargestellt, wurde die Speicherkapazität bezüglich Wasserstoff von aktiviertem Kohlenstoff (Firma CECA, AC40; spezifische Oberfläche gemäß Langmuir-Isotherme 2037 m2/g) gemessen. Figur 3 zeigt eine signifikant geringere Kapazität des aktivierten Kohlenstoffs im Vergleich zum MOF-5-Material.

Claims

Patentansprüche
1. Verfahren zur Aufnahme, zum Speichern oder zur Abgabe, oder zur Aufnahme und zum Speichern, oder zur Aufnahme und zur Abgabe, oder zum Speichern und zur Abgabe, oder zur Aufnahme, zum Speichern und zur Abgabe von mindestens einem Gas, dadurch gekennzeichnet, dass das Gas aufgenommen wird, gespeichert wird, oder abgegeben wird, oder aufge- nom en und gespeichert wird, oder aufgenommen und abgegeben wird, oder gespeichert wird und abgegeben wird, oder aufgenommen, gespeichert und abgegeben wird, mittels eines Mediums, umfassend ein metallorganisches Gerüstmaterial, enthaltend Poren und zumindest ein Metallion sowie zumindest eine mindestens zweizähnige organische Verbin- düng, wobei diese organische Verbindung an das besagte Metallion angebunden ist, vorzugsweise über eine Koordinationsbindung.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass das Gas aus mindestens einem Gas ausgewählt aus der folgenden Gruppe besteht: Was- serstoff, Stickstoff, Edelgase, CO, C02 sowie Verbindungen, die diese Gase erzeugen und/oder liefern.
3. Verfahren nach Anspruch 1 oder 2, wobei das Gas Wasserstoff ist, eine Gasmischung, die Wasserstoff enthält, eine Substanz, die Wasserstoff er- zeugt oder liefert, eine Gasmischung, umfassend zumindest eine Wasser- stoff-liefernde und/oder Wasserstoff-erzeugende Substanz.
4. Verfahren nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass das Metallion ausgewählt wird aus der Gruppe der Ionen der Elemente aus den Gruppen Ia, Ha, lila, IVa bis Villa sowie Ib bis VIb des Periodensystems der Elemente.
5. Verfahren nach einem der vorstehenden Ansprüche, dadurch gekennzeich- net, dass das metallorganische Gerüstmaterial in Kontakt gebracht wird mit zumindest einem Medium, welches die Speicherkapazität erhöht, und welches ausgewählt wird aus der Gruppe bestehend aus: Lösungsmittel, Komplexe, Metalle, Metallhydride, Metalllegierungen sowie Mischungen von mindestens zwei der vorstehend genannten Substanzen.
6. Verfahren nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass die mindestens zweizähnige organische Verbindung ausgewählt wird aus substituierten oder nicht substituierten aromatischen Polycarbon- säuren, die einen oder mehrere Kerne umfassen; sowie substituierten oder unsubstituierten aromatischen Polycarbonsäuren, die mindestens ein He- teroatom enthalten und einen oder mehrere Kerne enthalten können.
7. Verfahren nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass das metallorganische Gerüstmaterial Poren umfasst und eine spe- zifische Oberfläche von >20 m2/g aufweist, wobei die spezifische Oberfläche via BET- Absorption gemäß DIN 66131 bestimmt wird.
8. Vorrichtung zur Aufnahme, zum Speichern oder zur Abgabe, oder zur Aufnahme und zum Speichern, oder zur Aufnahme und zur Abgabe, oder zum Speichern und zur Abgabe, oder zur Aufnahme, zum Speichern und zur Abgabe von mindestens einem Gas, welches ein metallorganisches Gerüstmaterial beinhaltet wie in einem der vorstehenden Ansprüche definiert.
9. Vorrichtung nach Anspruch 8, weiter enthaltend: einen Behälter, welcher das metallorganische Gerüstmaterial aufnimmt; eine Öffnung, bzw. einen Auslass, der es ermöglicht, dass das mindestens eine Gas in die oder aus der Vorrichtung gelangt; einen gasdichten Aufnahme-Mechanismus, der dazu in der Lage ist, das Gas unter Druck innerhalb des Behältnisses zu halten.
10. Brennstoffzelle, die das Medium wie in einem der Ansprüche 1 bis 7 enthält.
11. Verwendung eines Mediums enthaltend ein metallorganisches Gerüstmate- rial, welches Poren enthält und zumindest ein Metallion sowie zumindest eine mindestens zweizähnige organische Verbindung, wobei die organische Verbindung an das besagte Metallion angebunden ist, vorzugsweise über eine Koordinationsbindung, zur Aufnahme, zum Speichern oder zur Abgabe, oder zur Aufnahme und zum Speichern, oder zur Aufnahme und zur Abgabe, oder zum Speichern und zur Abgabe, oder zur Aufiiahme, zum Speichern und zur Abgabe von mindestens einem Gas in stationären, mobilen und mobil tragbaren Anwendungen.
12. Verwendung nach Anspruch 11, wobei die Anwendungen sind: Kraftwer- ke, Kraftfahrzeuge, Lastwagen, Busse, Mobiltelefone, Laptops.
13. Verwendung einer Vorrichtung nach Anspruch 8 oder 9 zur Energielieferung an Kraftwerke, Kraftfahrzeuge, Lastwagen, Busse, Mobiltelefone, Laptops.
14. Verwendung der Brennstoffzelle gemäß Anspruch 10 zur Energielieferung an Kraftwerke, Kraftfahrzeuge, Lastwagen, Bussen, Mobiltelefone, Laptops.
EP02806650A 2002-02-01 2002-07-01 Verfahren zum speichern, zur aufnahme und abgabe von gasen unter verwendung neuartiger gerüstmaterialien Ceased EP1471997A1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US61147 2002-02-01
US10/061,147 US6929679B2 (en) 2002-02-01 2002-02-01 Method of storing, uptaking, releasing of gases by novel framework materials
PCT/EP2002/007250 WO2003064030A1 (de) 2002-02-01 2002-07-01 Verfahren zum speichern, zur aufnahme und abgabe von gasen unter verwendung neuartiger gerüstmaterialien

Publications (1)

Publication Number Publication Date
EP1471997A1 true EP1471997A1 (de) 2004-11-03

Family

ID=22033917

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02806650A Ceased EP1471997A1 (de) 2002-02-01 2002-07-01 Verfahren zum speichern, zur aufnahme und abgabe von gasen unter verwendung neuartiger gerüstmaterialien

Country Status (11)

Country Link
US (1) US6929679B2 (de)
EP (1) EP1471997A1 (de)
JP (1) JP2005525218A (de)
KR (1) KR100856445B1 (de)
CN (1) CN1617761A (de)
CA (1) CA2391755C (de)
DE (1) DE20210139U1 (de)
IS (1) IS7375A (de)
MX (1) MXPA04007326A (de)
TW (1) TWI304279B (de)
WO (1) WO2003064030A1 (de)

Families Citing this family (133)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6754485B1 (en) * 1998-12-23 2004-06-22 American Calcar Inc. Technique for effectively providing maintenance and information to vehicles
CA2446020A1 (en) * 2001-04-30 2002-11-07 The Regents Of The University Of Michigan Isoreticular metal-organic frameworks, process for forming the same, and systematic design of pore size and functionality therein, with application for gas storage
US6893564B2 (en) * 2002-05-30 2005-05-17 Basf Aktiengesellschaft Shaped bodies containing metal-organic frameworks
EP1513612A2 (de) * 2002-06-19 2005-03-16 University Of Iowa Research Foundation Gasspeichermaterialien und vorrichtung
US7008607B2 (en) * 2002-10-25 2006-03-07 Basf Aktiengesellschaft Process for preparing hydrogen peroxide from the elements
DE602004027036D1 (de) * 2003-05-09 2010-06-17 Univ Michigan MOFs mit einer hohen Oberfläche und Methode zu deren Herstellung
US7191602B2 (en) * 2003-06-16 2007-03-20 The Regents Of The University Of California Storage of H2 by absorption and/or mixture within a fluid medium
US7309380B2 (en) * 2003-06-30 2007-12-18 Basf Aktiengesellschaft Gas storage system
US20050004404A1 (en) 2003-07-03 2005-01-06 Basf Akiengesellschaft Process for the alkoxylation of monools in the presence of metallo-organic framework materials
JP2005106113A (ja) * 2003-09-29 2005-04-21 Kurita Water Ind Ltd 水素貯蔵方法
DE10355087A1 (de) 2003-11-24 2005-06-09 Basf Ag Verfahren zur elektrochemischen Herstellung eines kristallinen porösen metallorganischen Gerüstmaterials
EP1689762A4 (de) * 2003-12-05 2009-08-05 Univ Michigan Metallorganische polyhedra
JP2006083898A (ja) 2004-09-14 2006-03-30 Honda Motor Co Ltd 水素貯蔵タンク
US7887781B2 (en) * 2004-09-23 2011-02-15 GM Global Technology Operations LLC Methods of storing hydrogen in hydrogen storage systems
US7582798B2 (en) 2004-10-22 2009-09-01 The Regents Of The University Of Michigan Covalently linked organic frameworks and polyhedra
CN101090861A (zh) * 2004-11-05 2007-12-19 通用汽车公司 支架硼氮烷-氢化锂储氢材料
US7524444B2 (en) * 2004-11-09 2009-04-28 Basf Aktiengesellschaft Shaped bodies containing metal-organic frameworks
DE102005000938A1 (de) * 2005-01-07 2006-07-20 Basf Ag Adsorptive Gewinnung von Xenon aus Krypton-Xenon Gasgemischten
JP2006218346A (ja) * 2005-02-08 2006-08-24 Honda Motor Co Ltd 水素吸着材及びその製造方法
US7343747B2 (en) * 2005-02-23 2008-03-18 Basf Aktiengesellschaft Metal-organic framework materials for gaseous hydrocarbon storage
US7516752B2 (en) 2005-03-01 2009-04-14 General Motors Corporation Boil-off compensating cryoadsorption container for liquid gas storage
MX2007012388A (es) 2005-04-07 2008-03-11 Univ Michigan Adsorcion elevada de gas en una estructura metal-organica microporosa con sitios de metal abiertos.
DE102005017195B4 (de) * 2005-04-13 2007-02-22 Gkss-Forschungszentrum Geesthacht Gmbh Kompositmaterial, insbesondere Kompositmembran und Verfahren zur Herstellung desselben
DE102005022844A1 (de) * 2005-05-18 2006-11-23 Basf Ag Abtrennung von Geruchsstoffen aus Gasen
DE102005023856A1 (de) * 2005-05-24 2006-11-30 Basf Ag Verfahren zur Herstellung poröser metall-organischer Gerüstmaterialien
WO2007038508A2 (en) * 2005-09-26 2007-04-05 The Regents Of The University Of Michigan Metal-organic frameworks with exceptionally high capacity for storage of carbon dioxide at room-temperature
US8123834B2 (en) 2005-10-06 2012-02-28 The Board Of Trustees Of The University Of Illinois High gain selective metal organic framework preconcentrators
DE102005054523A1 (de) * 2005-11-14 2007-05-16 Basf Ag Poröses metallorganisches Gerüstmaterial enthaltend ein weiteres Polymer
JP4681449B2 (ja) * 2005-12-26 2011-05-11 本田技研工業株式会社 水素吸着材の製造方法
US8314245B2 (en) * 2006-02-28 2012-11-20 The Regents Of The University Of Michigan Preparation of functionalized zeolitic frameworks
CN101437601A (zh) * 2006-03-09 2009-05-20 巴斯夫欧洲公司 含金属-有机骨架材料的封闭可逆呼吸装置
WO2008057140A2 (en) * 2006-04-14 2008-05-15 The Board Of Trustees Of The University Of Illinois Rapid metal organic framework molecule synthesis method
KR101493529B1 (ko) 2006-04-18 2015-02-13 바스프 에스이 유기금속성 알루미늄 푸마레이트 골격재
DE102006020852A1 (de) * 2006-05-04 2007-11-15 Robert Bosch Gmbh Gasdruckbehälter für gasbetriebene Kraftfahrzeuge
DE112007001530A5 (de) * 2006-06-26 2009-05-14 Basf Se Speicherung von acetylenhaltigen Gasen mit Hilfe von metallorganischen Gerüstmaterialien
DE602006011173D1 (de) 2006-10-20 2010-01-28 Consejo Superior Investigacion Stark hydrophobes Lanthanid-organisches poröses Material mit fluoreszenten und magnetischen Eigenschaften
US9719019B1 (en) 2006-10-30 2017-08-01 Alan M. Gilbert Flame-retardant materials and systems
US9017584B2 (en) * 2006-10-30 2015-04-28 Alan M. Gilbert Flame-retardant materials and systems
US20080111114A1 (en) * 2006-10-30 2008-05-15 Gilbert Alan M Flame-retardant materials and systems
WO2008052916A1 (de) * 2006-10-30 2008-05-08 Basf Se Aluminium-naphthalindicarboxylat als poröses metallorganisches gerüstmaterial
US7985868B1 (en) 2006-11-01 2011-07-26 Sandia Corporation Hybrid metal organic scintillator materials system and particle detector
WO2008073901A2 (en) * 2006-12-08 2008-06-19 Uti Limited Partnership Metal-organic solids for use in proton exchange membranes
WO2008082087A1 (en) * 2007-01-03 2008-07-10 Insilicotech Co., Ltd Coordination polymer crystal with porous metal-organic frameworks and preperation method thereof
US20100143693A1 (en) * 2007-01-24 2010-06-10 The Regents Of The University Of California Crystalline 3d- and 2d covalent organic frameworks
US7553996B2 (en) * 2007-03-06 2009-06-30 Conant Lawrence D Gas clathrate hydrate compositions, synthesis and use
EP2155390B1 (de) 2007-04-24 2012-10-17 Basf Se Metallorganische gerüstmaterialien mit hexagonal-trigonaler struktur basierend auf aluminium, eisen oder chrom, sowie einer dicarbonsäure
US20080274033A1 (en) * 2007-05-03 2008-11-06 Gm Global Technology Operations, Inc. Methods of generating hydrogen with nitrogen-containing hydrogen storage materials
US8540802B2 (en) * 2007-05-11 2013-09-24 The Regents Of The University Of California Adsorptive gas separation of multi-component gases
TW200914115A (en) * 2007-05-14 2009-04-01 Shell Int Research Process for producing purified natural gas from natural gas comprising water and carbon dioxide
WO2009020745A2 (en) * 2007-07-17 2009-02-12 The Regents Of The University Of California Preparation of functionalized zeolitic frameworks
US8222179B2 (en) * 2007-08-30 2012-07-17 The Regents Of The University Of Michigan Porous coordination copolymers and methods for their production
US8383545B2 (en) * 2007-08-30 2013-02-26 The Regents Of The University Of Michigan Strategies, linkers and coordination polymers for high-performance sorbents
US9132411B2 (en) 2007-08-30 2015-09-15 The Regents Of The University Of Michigan Strategies, linkers and coordination polymers for high-performance sorbents
EA201000464A1 (ru) * 2007-09-10 2010-08-30 Шелл Интернэшнл Рисерч Маатсхаппий Б.В. Способ получения очищенного синтез-газа из синтез-газа, содержащего следовые количества примеси сернистых соединений, с помощью металлорганической структуры
JP5730574B2 (ja) * 2007-09-25 2015-06-10 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア 食用に適した生体適合性金属有機構造体
FR2921661B1 (fr) * 2007-10-01 2013-05-31 Centre Nat Rech Scient Solide hybride organique inorganique a surface modifiee.
FR2921660B1 (fr) 2007-10-01 2015-09-25 Centre Nat Rech Scient Nanoparticules hybrides organiques inorganiques a base de carboxylates de fer.
US20110021341A1 (en) * 2007-10-02 2011-01-27 The Regents Of The University Of Michigan Adsorbents for Organosulfur Compound Removal from Fluids
JP5305279B2 (ja) * 2007-10-12 2013-10-02 Jx日鉱日石エネルギー株式会社 多孔性金属錯体及びその製造方法
US8034952B2 (en) * 2007-11-15 2011-10-11 University Of South Florida Supramolecular assemblies and building blocks
US8123841B2 (en) * 2008-01-16 2012-02-28 The Board Of Trustees Of The University Of Illinois Column design for micro gas chromatograph
US8142745B2 (en) * 2008-02-21 2012-03-27 Exxonmobil Research And Engineering Company Separation of carbon dioxide from nitrogen utilizing zeolitic imidazolate framework materials
US8071063B2 (en) * 2008-02-21 2011-12-06 Exxonmobile Research And Engineering Company Separation of hydrogen from hydrocarbons utilizing zeolitic imidazolate framework materials
US8142746B2 (en) * 2008-02-21 2012-03-27 Exxonmobil Research And Engineering Company Separation of carbon dioxide from methane utilizing zeolitic imidazolate framework materials
JP5549901B2 (ja) * 2008-02-25 2014-07-16 本田技研工業株式会社 水素貯蔵材
FR2929278A1 (fr) * 2008-04-01 2009-10-02 Centre Nat Rech Scient Solide hybride cristallin poreux pour l'adsorption et la liberation de gaz a interet biologique.
US8269029B2 (en) 2008-04-08 2012-09-18 The Board Of Trustees Of The University Of Illinois Water repellent metal-organic frameworks, process for making and uses regarding same
US8946454B2 (en) * 2008-06-05 2015-02-03 The Regents Of The University Of California Chemical framework compositions and methods of use
US20100081186A1 (en) * 2008-09-30 2010-04-01 Yongwoo Lee Self-decontaminating metal organic frameworks
US7955416B2 (en) * 2008-12-05 2011-06-07 Matheson Tri-Gas, Inc. Polymerized polymeric fluid storage and purification method and system
EP2358726B1 (de) 2008-12-18 2017-08-02 The Regents of the University of California Poröse reaktive rahmenwerke
EP2356072A1 (de) 2008-12-29 2011-08-17 The Regents of the University of California Gassensor mit poröser struktur
EP2382043A1 (de) 2009-01-15 2011-11-02 The Regents of the University of California Leitfähiges metallorganisches gerüst
US8709134B2 (en) 2009-02-02 2014-04-29 The Regents Of The University Of California Reversible ethylene oxide capture in porous frameworks
FR2942229B1 (fr) 2009-02-18 2011-02-25 Univ Paris Curie Materiau solide hybride inorganique-organique polycarboxylate a base de titane, son procede de preparation et utilisations
US8449650B2 (en) * 2009-06-17 2013-05-28 Los Alamos National Security, Llc Gas storage and separation by electric field swing adsorption
WO2010148296A2 (en) 2009-06-19 2010-12-23 The Regents Of The University Of California Complex mixed ligand open framework materials
WO2010148276A2 (en) 2009-06-19 2010-12-23 The Regents Of The University Of California Carbon dioxide capture and storage using open frameworks
CN102428057B (zh) 2009-07-27 2015-03-25 加利福尼亚大学董事会 使用多孔铜金属-有机骨架作为高效非均相催化剂的芳基硼酸的氧化均偶联反应
US8841471B2 (en) 2009-09-25 2014-09-23 The Regents Of The University Of California Open metal organic frameworks with exceptional surface area and high gas storage capacity
WO2011075618A1 (en) * 2009-12-18 2011-06-23 Georgia Institute Of Technology Screening metal organic framework materials
GB201000824D0 (en) 2010-01-19 2010-03-03 Univ East Anglia Material for storing hydrogen
WO2011123795A1 (en) 2010-04-02 2011-10-06 Battelle Memorial Institute Methods for associating or dissociating guest materials with a metal organic framework, systems for associating or dissociating guest materials within a series of metal organic frameworks, and gas separation assemblies
CN101816924A (zh) * 2010-04-13 2010-09-01 东南大学 用于co2吸附与分离的金属有机骨架材料及其制备方法
RU2013107361A (ru) 2010-07-20 2014-08-27 Те Риджентс Оф Те Юниверсити Оф Калифорния Функционализация органических молекул с использованием металлоорганических структур (мос ) в качестве катализаторов
WO2012082213A2 (en) 2010-09-27 2012-06-21 The Regents Of The University Of California Conductive open frameworks
KR20140015315A (ko) 2011-01-21 2014-02-06 더 리젠츠 오브 더 유니버시티 오브 캘리포니아 금속-트리아졸레이트 골격체의 제조
JP2014507431A (ja) 2011-02-04 2014-03-27 ザ リージェンツ オブ ザ ユニバーシティー オブ カリフォルニア 金属カテコレート骨格体の製造
KR20140035379A (ko) 2011-04-21 2014-03-21 바스프 에스이 다공성 방향족 골격(paf) 물질을 함유하는 성형체
WO2013112212A2 (en) 2011-10-13 2013-08-01 The Regents Of The University Of California Metal-organic frameworks with exceptionally large pore aperatures
WO2013059785A1 (en) 2011-10-21 2013-04-25 Massachusetts Institute Of Technology Adsorption system
FR2985670A1 (fr) * 2012-01-12 2013-07-19 Centre Nat Rech Scient Procede ameliore pour le stockage d'un gaz
US9853270B2 (en) 2012-04-18 2017-12-26 King Abdullah University Of Science And Technology Nanostructured metal organic material electrode separators and methods therefor
US9375678B2 (en) 2012-05-25 2016-06-28 Georgia Tech Research Corporation Metal-organic framework supported on porous polymer
WO2014118074A1 (en) 2013-01-31 2014-08-07 Basf Se Metal-organic framework extrudates with high packing density and tunable pore volume
JP6586366B2 (ja) * 2013-03-11 2019-10-02 ユーティーアイ リミテッド パートナーシップ 金属有機フレームワーク、その製造および使用
US9687791B2 (en) 2013-05-07 2017-06-27 Georgia Tech Research Corporation Flow processing and characterization of metal-organic framework (MOF) membranes in hollow fiber and tubular modules
US9994501B2 (en) 2013-05-07 2018-06-12 Georgia Tech Research Corporation High efficiency, high performance metal-organic framework (MOF) membranes in hollow fibers and tubular modules
US9006137B2 (en) 2013-05-13 2015-04-14 Ford Global Technologies, Llc Adsorbent material with anisotropic layering
MY182759A (en) * 2013-08-05 2021-02-05 Numat Tech Inc Metal organic frameworks for electronic gas storage
WO2015066693A1 (en) 2013-11-04 2015-05-07 The Regents Of Thd University Of California Metal-organic frameworks with a high density of highly charged exposed metal cation sites
CN106029674B (zh) 2014-02-19 2020-02-14 加利福尼亚大学董事会 耐酸性、耐溶剂性、以及耐热性金属有机骨架
EP3074405A2 (de) 2014-03-18 2016-10-05 The Regents of the University of California Mesoskopische materialien aus geordneten supergittern aus mikroporösen metallorganische gerüsten
CN106459590B (zh) 2014-03-27 2019-11-05 巴斯夫欧洲公司 包含金属有机骨架材料的多孔膜
WO2015195179A2 (en) 2014-03-28 2015-12-23 The Regents Of The University Of California Metal organic frameworks comprising a plurality of sbus with different metal ions and/or a plurality of organic linking ligands with different functional groups.
US9541032B2 (en) * 2014-05-16 2017-01-10 Adsorbed Natural Gas Products, Inc. Sorbent-based low pressure gaseous fuel delivery system
EP2985075A1 (de) 2014-08-15 2016-02-17 Basf Se Formkörper hergestellt aus einem porösen Material
US10422480B2 (en) 2014-11-11 2019-09-24 Basf Se Storage vessel comprising a one-piece shaped body of a porous solid
WO2016075100A1 (en) 2014-11-11 2016-05-19 Basf Se Storage vessel comprising layers of a shaped body of a porous solid separated by a seal
US10118877B2 (en) 2014-12-03 2018-11-06 The Regents Of The University Of California Metal-organic frameworks for aromatic hydrocarbon separations
WO2016116406A1 (de) 2015-01-21 2016-07-28 Basf Se Gasdruckbehälter enthaltend ein gas, ein latentwärmespeichermaterial und einen porösen feststoff
WO2016135133A1 (en) 2015-02-27 2016-09-01 Basf Se A vehicle comprising a storage system and a combustion engine, the storage system comprising a container and at least one storage vessel
EP3093550A1 (de) 2015-05-11 2016-11-16 Basf Se Lagerbehälter mit mindestens einem formkörper eines porösen feststoffs
US10058855B2 (en) 2015-05-14 2018-08-28 The Regents Of The University Of California Redox-active metal-organic frameworks for the catalytic oxidation of hydrocarbons
WO2017004682A1 (en) 2015-07-08 2017-01-12 Commonwealth Scientific And Industrial Research Organisation Composition and system for gas storage
EP3130835A1 (de) 2015-08-13 2017-02-15 Basf Se Fahrzeug mit einem aufbewahrungssystem und einem verbrennungsmotor, das aufbewahrungssystem mit einem container und mindestens einem aufbewahrungsbehälter mit einem gehäuse
EP3130834A1 (de) 2015-08-13 2017-02-15 Basf Se Fahrzeug mit einem aufbewahrungssystem und einem verbrennungsmotor, das aufbewahrungssystem mit einem container und mindestens zwei aufbewahrungsbehältern
US20170079296A1 (en) * 2015-09-22 2017-03-23 The United States Of America, As Represented By The Secretary Of Agriculture Methods For Treating Plants Or Fruits
EP3380228A1 (de) 2015-11-27 2018-10-03 The Regents of The University of California Kovalente organische rahmen mit einer webstruktur
EP3380437A1 (de) 2015-11-27 2018-10-03 The Regents of The University of California Zeolithische imidazolatrahmen
US10737239B2 (en) 2015-11-27 2020-08-11 Basf Se Ultrafast high space-time-yield synthesis of metal-organic frameworks
JP6941762B2 (ja) 2016-04-27 2021-09-29 パナソニックIpマネジメント株式会社 多孔性配位高分子、ならびにそれを用いた水素分子貯蔵方法、水素貯蔵装置、水素分子分離方法、および水素純化装置
US10472299B2 (en) 2016-06-24 2019-11-12 The Regents Of The University Of Michigan Explosive microporous coordination polymers
CN106540661A (zh) * 2016-09-30 2017-03-29 华北电力大学(保定) 一种金属有机框架材料及该金属有机框架材料的制备方法
JP7022950B2 (ja) * 2016-10-03 2022-02-21 パナソニックIpマネジメント株式会社 多孔性配位高分子、ならびにそれを用いたガス吸蔵方法およびガス吸蔵装置
CN108623814B (zh) * 2017-03-23 2020-10-16 中国石油化工股份有限公司 一种铜基多孔配位聚合物储氢材料及其制备方法
US10113696B1 (en) 2017-06-30 2018-10-30 Adsorbed Natural Gas Products, Inc. Integrated on-board low-pressure adsorbed natural gas storage system for an adsorbed natural gas vehicle
US11452967B2 (en) 2017-07-17 2022-09-27 Zymergen Inc. Metal-organic framework materials
CN110013735B (zh) * 2018-01-09 2022-07-05 中国石油化工股份有限公司 含氢驰放气的安全吸附处理装置及方法
EP3784824A4 (de) 2018-04-25 2022-01-19 UTI Limited Partnership Synthese von zink-mof-materialien
GB201813439D0 (en) 2018-08-17 2018-10-03 Univ Tartu Novel catalytic materials
WO2021220166A1 (en) 2020-04-28 2021-11-04 King Abdullah University Of Science And Technology Electrode separators
WO2022076546A1 (en) * 2020-10-08 2022-04-14 Entegris, Inc. STORAGE AND DELIVERY VESSEL FOR STORING GeH4, USING A ZEOLITIC ADSORBENT

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4440871A (en) * 1982-07-26 1984-04-03 Union Carbide Corporation Crystalline silicoaluminophosphates
DE3380564D1 (en) * 1982-09-30 1989-10-19 Japan Found Cancer Human leukemia virus-related peptides, antibodies of the peptides and a process for production of the antibodies
AU692041B2 (en) 1995-02-13 1998-05-28 Osaka Gas Co., Ltd. Gas storage apparatus, gaseous fuel automobile using the gasstorage apparatus, gas storage method and methane adsorbing-retaining agent
US5648508A (en) 1995-11-22 1997-07-15 Nalco Chemical Company Crystalline metal-organic microporous materials
JP3746321B2 (ja) * 1996-02-28 2006-02-15 大阪瓦斯株式会社 ガス貯蔵性有機金属錯体とその製造方法及びガス貯蔵装置並びにガス貯蔵装置を装備した自動車
US6491740B1 (en) * 1999-07-22 2002-12-10 The Boc Group, Inc. Metallo-organic polymers for gas separation and purification
US6596055B2 (en) * 2000-11-22 2003-07-22 Air Products And Chemicals, Inc. Hydrogen storage using carbon-metal hybrid compositions
US6634321B2 (en) * 2000-12-14 2003-10-21 Quantum Fuel Systems Technologies Worldwide, Inc. Systems and method for storing hydrogen
DE10111230A1 (de) * 2001-03-08 2002-09-19 Basf Ag Metallorganische Gerüstmaterialien und Verfahren zu deren Herstellung
US6624318B1 (en) * 2002-05-30 2003-09-23 Basf Aktiengesellschaft Process for the epoxidation of an organic compound with oxygen or an oxygen-delivering compounds using catalysts containing metal-organic frame-work materials
US6617467B1 (en) * 2002-10-25 2003-09-09 Basf Aktiengesellschaft Process for producing polyalkylene carbonates
DE602004027036D1 (de) * 2003-05-09 2010-06-17 Univ Michigan MOFs mit einer hohen Oberfläche und Methode zu deren Herstellung

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
None *
See also references of WO03064030A1 *

Also Published As

Publication number Publication date
DE20210139U1 (de) 2003-06-12
CA2391755A1 (en) 2003-08-01
TWI304279B (en) 2008-12-11
KR100856445B1 (ko) 2008-09-04
KR20040096545A (ko) 2004-11-16
CA2391755C (en) 2010-01-05
IS7375A (is) 2004-07-29
US6929679B2 (en) 2005-08-16
MXPA04007326A (es) 2004-11-26
US20030148165A1 (en) 2003-08-07
JP2005525218A (ja) 2005-08-25
CN1617761A (zh) 2005-05-18
WO2003064030A1 (de) 2003-08-07

Similar Documents

Publication Publication Date Title
EP1471997A1 (de) Verfahren zum speichern, zur aufnahme und abgabe von gasen unter verwendung neuartiger gerüstmaterialien
EP1687462B1 (de) Verfahren zur elektrochemischen herstellung eines kristallinen poroesen metallorganischen geruestmaterials
DE60122456T2 (de) Wasserstoffspeicherung, die Kohlenstoff-Metall Hybridzusammensetzungen verwendet
EP2981354B1 (de) Aktivkohle mit spezieller ausrüstung sowie deren herstellung und verwendung
WO2006072573A2 (de) Adsorptive gewinnung von xenon aus krypton-xenon gasgemischen
EP2160232B1 (de) Speicherbehälter für gasförmige krafstoffe und dessen anwendung
DE102004061238A1 (de) Adsorptive Anreicherung von Methan in Methan-haltigen Gasgemischen
DE102005023856A1 (de) Verfahren zur Herstellung poröser metall-organischer Gerüstmaterialien
DE102005022844A1 (de) Abtrennung von Geruchsstoffen aus Gasen
EP1785428A1 (de) Dotierte metallorganische Gerüstmaterialien
WO2009035664A1 (en) Fluorinated metal-organic frameworks for gas storage
EP2176201A1 (de) Verfahren zur abtrennung nichtverzweigter kohlenwasserstoffe von ihren verzweigten isomeren
WO2010081797A2 (de) Vakuumisolationseinheiten mit gettermaterialien
US20220372049A1 (en) Multimetal-metal organic framework adsorbent
WO2008080813A1 (de) Verwendung poröser metallorganischer gerüstmaterialien zur farblichen kennzeichnung von filtern
DE602004001838T2 (de) Verfahren zur Abtrennung von Wasser aus Ammoniak
WO2008062034A1 (de) Verfahren zur trennung von gasen mit hilfe eines porösen metallorganischen gerüstmaterials
Kim et al. Hydrophilic pore-blocked metal–organic frameworks: a simple route to a highly selective CH 4/N 2 separation
Chen et al. Sustainable and scalable continuous synthesis of metal‐organic frameworks for CO2 capture
KR102358489B1 (ko) 저밀도 기둥 구조의 유무기 하이브리드 화합물의 제조방법
Yusuf et al. Metal-organic framework-based composites for biogas and natural gas uptake: An overview of adsorption and storage mechanisms of gaseous fuels
Hardian Interplay between structure, texture, and reactivity in MOFs in the case of amorphous, defective, and composite materials
EP2402079A1 (de) Verfahren zur Herstellung von Polymernetzwerken
Potts et al. Porosity studies of wave-like, one-dimensional coordination polymers
Marais et al. A gating mechanism accounts for gas transport through calixarene crystals

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20040901

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

RIN1 Information on inventor provided before grant (corrected)

Inventor name: EDDAOUDI, MOHAMED

Inventor name: YAGHI, OMAR, M.

Inventor name: HARDER, WOLFGANG

Inventor name: LOBREE, LISA

Inventor name: HESSE, MICHAEL

Inventor name: HOELZLE, MARKUS

Inventor name: HARTH, KLAUS

Inventor name: MUELLER, ULRICH

RIN1 Information on inventor provided before grant (corrected)

Inventor name: EDDAOUDI, MOHAMED

Inventor name: YAGHI, OMAR, M.

Inventor name: HARDER, WOLFGANG

Inventor name: LOBREE, LISA

Inventor name: HESSE, MICHAEL

Inventor name: HOELZLE, MARKUS

Inventor name: HARTH, KLAUS

Inventor name: MUELLER, ULRICH

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: THE REGENTS OF THE UNIVERSITY OF MICHIGAN

Owner name: BASF SE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R003

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN REFUSED

18R Application refused

Effective date: 20191202