WO2022126432A1 - 金属材料及其制造方法 - Google Patents
金属材料及其制造方法 Download PDFInfo
- Publication number
- WO2022126432A1 WO2022126432A1 PCT/CN2020/136850 CN2020136850W WO2022126432A1 WO 2022126432 A1 WO2022126432 A1 WO 2022126432A1 CN 2020136850 W CN2020136850 W CN 2020136850W WO 2022126432 A1 WO2022126432 A1 WO 2022126432A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- metal material
- metal
- mof
- manufacturing
- fto
- Prior art date
Links
- 239000007769 metal material Substances 0.000 title claims abstract description 113
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 42
- 238000000034 method Methods 0.000 title claims abstract description 24
- 238000004070 electrodeposition Methods 0.000 claims abstract description 27
- 229910052751 metal Inorganic materials 0.000 claims description 68
- 239000002184 metal Substances 0.000 claims description 68
- 239000000758 substrate Substances 0.000 claims description 60
- 239000002243 precursor Substances 0.000 claims description 40
- 239000003792 electrolyte Substances 0.000 claims description 13
- 239000013384 organic framework Substances 0.000 claims description 8
- 238000004729 solvothermal method Methods 0.000 claims description 5
- 150000004682 monohydrates Chemical class 0.000 claims 1
- 230000000694 effects Effects 0.000 abstract description 21
- 230000001965 increasing effect Effects 0.000 abstract description 8
- 229910021645 metal ion Inorganic materials 0.000 abstract description 7
- 229910017052 cobalt Inorganic materials 0.000 description 25
- 239000010941 cobalt Substances 0.000 description 25
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 24
- 239000012621 metal-organic framework Substances 0.000 description 16
- 230000000052 comparative effect Effects 0.000 description 14
- 239000000463 material Substances 0.000 description 13
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 12
- 238000001514 detection method Methods 0.000 description 10
- 238000002484 cyclic voltammetry Methods 0.000 description 9
- 239000000243 solution Substances 0.000 description 8
- -1 COF-6 Substances 0.000 description 7
- 239000013310 covalent-organic framework Substances 0.000 description 7
- 239000011148 porous material Substances 0.000 description 7
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 6
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 6
- 238000002441 X-ray diffraction Methods 0.000 description 6
- 239000002659 electrodeposit Substances 0.000 description 6
- 239000012255 powdered metal Substances 0.000 description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 6
- 239000007993 MOPS buffer Substances 0.000 description 5
- 238000002149 energy-dispersive X-ray emission spectroscopy Methods 0.000 description 5
- 239000010408 film Substances 0.000 description 5
- 150000002500 ions Chemical class 0.000 description 5
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 4
- 239000012923 MOF film Substances 0.000 description 4
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 4
- 230000005611 electricity Effects 0.000 description 4
- 238000001878 scanning electron micrograph Methods 0.000 description 4
- 230000035945 sensitivity Effects 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- 229910052726 zirconium Inorganic materials 0.000 description 4
- 229910021607 Silver chloride Inorganic materials 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 238000000576 coating method Methods 0.000 description 3
- 229910000428 cobalt oxide Inorganic materials 0.000 description 3
- IVMYJDGYRUAWML-UHFFFAOYSA-N cobalt(ii) oxide Chemical compound [Co]=O IVMYJDGYRUAWML-UHFFFAOYSA-N 0.000 description 3
- 239000013078 crystal Substances 0.000 description 3
- 238000000151 deposition Methods 0.000 description 3
- 230000008021 deposition Effects 0.000 description 3
- 238000000921 elemental analysis Methods 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 239000012488 sample solution Substances 0.000 description 3
- HKZLPVFGJNLROG-UHFFFAOYSA-M silver monochloride Chemical compound [Cl-].[Ag+] HKZLPVFGJNLROG-UHFFFAOYSA-M 0.000 description 3
- 239000011780 sodium chloride Substances 0.000 description 3
- 239000010409 thin film Substances 0.000 description 3
- DVLFYONBTKHTER-UHFFFAOYSA-N 3-(N-morpholino)propanesulfonic acid Chemical compound OS(=O)(=O)CCCN1CCOCC1 DVLFYONBTKHTER-UHFFFAOYSA-N 0.000 description 2
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- QMKYBPDZANOJGF-UHFFFAOYSA-N benzene-1,3,5-tricarboxylic acid Chemical compound OC(=O)C1=CC(C(O)=O)=CC(C(O)=O)=C1 QMKYBPDZANOJGF-UHFFFAOYSA-N 0.000 description 2
- 238000006555 catalytic reaction Methods 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 239000008367 deionised water Substances 0.000 description 2
- 229910021641 deionized water Inorganic materials 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 238000000835 electrochemical detection Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000009616 inductively coupled plasma Methods 0.000 description 2
- 238000013507 mapping Methods 0.000 description 2
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 description 2
- 239000011259 mixed solution Substances 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 239000013589 supplement Substances 0.000 description 2
- 229910001428 transition metal ion Inorganic materials 0.000 description 2
- ZXMGHDIOOHOAAE-UHFFFAOYSA-N 1,1,1-trifluoro-n-(trifluoromethylsulfonyl)methanesulfonamide Chemical compound FC(F)(F)S(=O)(=O)NS(=O)(=O)C(F)(F)F ZXMGHDIOOHOAAE-UHFFFAOYSA-N 0.000 description 1
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 description 1
- 239000013474 COF-1 Substances 0.000 description 1
- 239000013489 COF-102 Substances 0.000 description 1
- 239000013487 COF-105 Substances 0.000 description 1
- 239000013488 COF-108 Substances 0.000 description 1
- 239000013475 COF-5 Substances 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- 239000013148 Cu-BTC MOF Substances 0.000 description 1
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 1
- 239000013177 MIL-101 Substances 0.000 description 1
- 229910002651 NO3 Inorganic materials 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- 239000013097 PCN-222 Substances 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- 239000004809 Teflon Substances 0.000 description 1
- 229920006362 Teflon® Polymers 0.000 description 1
- 239000007983 Tris buffer Substances 0.000 description 1
- 239000013207 UiO-66 Substances 0.000 description 1
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 1
- 239000013236 Zn4O(BTB)2 Substances 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 239000007853 buffer solution Substances 0.000 description 1
- 238000011088 calibration curve Methods 0.000 description 1
- 239000004202 carbamide Substances 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 229910001429 cobalt ion Inorganic materials 0.000 description 1
- 229910000361 cobalt sulfate Inorganic materials 0.000 description 1
- 229940044175 cobalt sulfate Drugs 0.000 description 1
- XLJKHNWPARRRJB-UHFFFAOYSA-N cobalt(2+) Chemical compound [Co+2] XLJKHNWPARRRJB-UHFFFAOYSA-N 0.000 description 1
- KTVIXTQDYHMGHF-UHFFFAOYSA-L cobalt(2+) sulfate Chemical compound [Co+2].[O-]S([O-])(=O)=O KTVIXTQDYHMGHF-UHFFFAOYSA-L 0.000 description 1
- MEYVLGVRTYSQHI-UHFFFAOYSA-L cobalt(2+) sulfate heptahydrate Chemical compound O.O.O.O.O.O.O.[Co+2].[O-]S([O-])(=O)=O MEYVLGVRTYSQHI-UHFFFAOYSA-L 0.000 description 1
- UBEWDCMIDFGDOO-UHFFFAOYSA-N cobalt(II,III) oxide Inorganic materials [O-2].[O-2].[O-2].[O-2].[Co+2].[Co+3].[Co+3] UBEWDCMIDFGDOO-UHFFFAOYSA-N 0.000 description 1
- LBFUKZWYPLNNJC-UHFFFAOYSA-N cobalt(ii,iii) oxide Chemical compound [Co]=O.O=[Co]O[Co]=O LBFUKZWYPLNNJC-UHFFFAOYSA-N 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000003487 electrochemical reaction Methods 0.000 description 1
- 239000011262 electrochemically active material Substances 0.000 description 1
- 230000005518 electrochemistry Effects 0.000 description 1
- 238000007787 electrohydrodynamic spraying Methods 0.000 description 1
- 238000000295 emission spectrum Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 235000019253 formic acid Nutrition 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 238000001000 micrograph Methods 0.000 description 1
- 239000002070 nanowire Substances 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- FUBACIUATZGHAC-UHFFFAOYSA-N oxozirconium;octahydrate;dihydrochloride Chemical compound O.O.O.O.O.O.O.O.Cl.Cl.[Zr]=O FUBACIUATZGHAC-UHFFFAOYSA-N 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 239000000523 sample Substances 0.000 description 1
- 238000003345 scintillation counting Methods 0.000 description 1
- PNGLEYLFMHGIQO-UHFFFAOYSA-M sodium;3-(n-ethyl-3-methoxyanilino)-2-hydroxypropane-1-sulfonate;dihydrate Chemical compound O.O.[Na+].[O-]S(=O)(=O)CC(O)CN(CC)C1=CC=CC(OC)=C1 PNGLEYLFMHGIQO-UHFFFAOYSA-M 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000004611 spectroscopical analysis Methods 0.000 description 1
- 229910052596 spinel Inorganic materials 0.000 description 1
- 239000011029 spinel Substances 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- LSNNMFCWUKXFEE-UHFFFAOYSA-L sulfite Chemical compound [O-]S([O-])=O LSNNMFCWUKXFEE-UHFFFAOYSA-L 0.000 description 1
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 1
- 229910001887 tin oxide Inorganic materials 0.000 description 1
- 238000004832 voltammetry Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82B—NANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
- B82B3/00—Manufacture or treatment of nanostructures by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D7/00—Electroplating characterised by the article coated
- C25D7/04—Tubes; Rings; Hollow bodies
Definitions
- the present invention relates to a metal material and a method for producing the same, and more particularly, to a metal material with high electrochemical activity and a method for producing the same.
- MOFs Metal-organic frameworks
- COFs covalent-organic frameworks
- a thin film of MOF is spray-coated on the surface of a conductive substrate, and then cobalt oxide is electrodeposited in a constant-potential manner.
- cobalt oxide can be electrically connected to the conductive substrate, it cannot enter the nanopores of the MOF film, and can only be electrodeposited on the surface and its periphery of the MOF, so it cannot effectively improve its specific surface area and electrochemical activity.
- Another method of electrodepositing metal using MOF is to electrodeposit metal on MOF film by potentiostatic or potentiodynamic method, and then rinse the electrodeposition repeatedly with deionized water, hydrochloric acid and hydrogen peroxide solution.
- metal to obtain powdered metal materials.
- the powdered metal material When the powdered metal material is used in the field of electrochemistry, the powdered metal material must be coated on the conductive substrate by means of spray coating or drop-casting. This will result in a larger gap between the powdered metal material and the conductive substrate, thereby increasing the electrical resistance.
- the powdery metal material is connected to the conductive base material, the specific surface area of the powdery metal material is reduced, thereby greatly reducing the activity of the powdery metal material.
- one aspect of the present invention is to provide a method of manufacturing a metal material.
- This manufacturing method uses pulsed current to electrodeposit metal ions in the nano-holes of the hole template to enhance the electrochemical activity of the prepared metal material, thereby increasing the applicability of the metal material.
- Another aspect of the present invention provides a metal material.
- This metal material is obtained by the aforementioned manufacturing method of the metal material.
- a method for manufacturing a metal material includes providing a template substrate including a conductive substrate and a hole template, placing the template substrate in an electrolyte, and electrodepositing a metal precursor in a plurality of nano-holes of the hole template and the conductive substrate on the surface to obtain metallic materials, in which electrodeposition is performed by applying a pulsed current to the template substrate.
- the hole template is arranged on the conductive substrate, and the electrolyte contains metal precursors, and the metal precursors correspond to metal materials.
- the pore size of the nano-holes is 1 nm to 5 nm.
- the hole template includes an electrically insulating organic framework.
- the pause time of the pulse current is 0.1 seconds to 10 seconds.
- the application time of the pulse current is 0.1 seconds to 10 seconds.
- the concentration of the metal precursor in the electrolyte is not less than 0.01M.
- the hydrated size of the metal precursor is not greater than 0.5 nm.
- the method for manufacturing the metal material before providing the template substrate, optionally includes forming a hole template on the conductive substrate by a solvothermal method.
- Another aspect of the present invention provides a metal material.
- This metal material is produced by the aforementioned manufacturing method of a metal material.
- the active metal ratio of the metal material is not less than 15%.
- the manufacturing method of the metal material of the present invention is applied, wherein pulsed current is used to electrodeposit metal ions in the nano-holes in the hole template, so as to improve the electrochemical activity of the obtained metal material, thereby increasing the applicability of the metal material.
- FIG. 1 is a flowchart illustrating a method for manufacturing a metal material according to an embodiment of the present invention
- FIG. 2 shows the X-ray diffraction patterns of MOF-808/FTO, Co@MOF-808/FTO and powdered MOF-808;
- Fig. 3A is the SEM image of MOF-808/FTO
- Fig. 3B is the SEM image of the Co@MOF-808/FTO of the embodiment
- 4A is a schematic diagram of an EDS line scan position performed on a cross-section of a MOF-808 crystal of Co@MOF-808/FTO of an embodiment
- Figure 4B is a mapping image of the EDS line scan of the elemental analysis of zirconium and cobalt shown in Figure 4A;
- 6A is a cyclic voltammogram showing the detection of H 2 O 2 using MOF-808/FTO;
- 6B is a cyclic voltammogram showing the detection of H 2 O 2 using Co/FTO of Comparative Example 1;
- FIG. 6C is a cyclic voltammogram showing the detection of H 2 O 2 using Co@MOF-808/FTO of an embodiment.
- the "metal material” referred to here in the present invention refers to the metal material confined in the nano-holes to improve the activity of the metal material.
- the manufacturing method of the metal material of the present invention uses the hole template formed on the conductive substrate as the template substrate to start electrodeposition from the bottom of the hole template (ie, the interface between the template and the conductive substrate), and Electrodeposition is not initiated from the surface of a hole template, where the template substrate contains an electrically insulating organic framework.
- the concentration of metal precursors in the nano-holes is prevented from being insufficient or too high by means of pulse electrodeposition. Therefore, the manufacturing method of the present invention can prepare the metal material confined in the nano-holes, so as to enhance its electrochemical activity, thus increasing its applicability.
- a method 100 for manufacturing a metal material first provides a template substrate, as shown in operation 110 .
- the template base material includes a conductive base material and a hole template, and the hole template is arranged on the conductive base material.
- the conductive substrate is not particularly limited, and can be a conductive material known to those with ordinary knowledge in the technical field to which the present invention pertains, such as: FTO substrate or metal substrate.
- the hole template may comprise an electrically insulating organic framework.
- the electrically insulating organic framework may comprise a metal organic framework or a covalent organic framework.
- metal organic frameworks can include, but are not limited to, MOF-808, MOF-802, MOF-841, MOF-804, MOF-805, MOF-806, MOF-177, HKUST-1, UiO-66, UiO- 67. PCN-222, MIL-101 and MOF-525.
- covalent organic frameworks can include, but are not limited to, COF-1, COF-5, COF-6, COF-102, COF-105, COF-108, and MF-8.
- the hole template has a plurality of nano-holes, and the diameter of the nano-holes is 1 nm to 5 nm.
- the pore size of the nanopore is in the aforementioned range, the electrochemical activity of the prepared metal material can be improved.
- the pore size of the nanopore is 1 nm to 3 nm.
- the fabrication method 100 of a metallic material may optionally include a forming step prior to providing the template substrate.
- a forming step a hole template is formed on the conductive substrate.
- the forming step can be accomplished using a solvothermal method.
- the known technology forms a template on a conductive substrate by means of electrospraying or coating, which easily leads to a gap between the conductive substrate and the template. Therefore, the direct deposition of metal materials on the conductive substrate is increased. The probability of voids, rather than being deposited in the nanoholes in the hole template. Therefore, compared with the known technology, the metal material manufacturing method 100 uses the solvothermal method to directly grow the hole template from the surface of the conductive substrate. Therefore, the hole template of the present invention does not have a gap between the conductive substrate and the metal material. Electrodeposited within the nanopores of the hole template.
- the template substrate is placed in the electrolyte, as shown in operation 120 .
- the electrolyte contains metal precursors, and the metal precursors are metal ions corresponding to metal materials.
- the metal precursor is not the metal ion corresponding to the metal material, the metal obtained by electrodeposition will be different from the metal material, and the expected metal material cannot be obtained.
- the electrolyte may contain inorganic acid ions, metal precursors, and other ions that may form complexes with metal precursors.
- inorganic acid ions may include, but are not limited to, sulfate ions, sulfite ions, nitrate ions, carbonate ions, and phosphate ions.
- Other ions may include, but are not limited to, halide ions, tetrafluoroboric acid, hexafluorophosphoric acid, bis(trifluoromethanesulfonyl)imide, tris, and the like.
- the aforementioned inorganic acid ions and other ions are not particularly limited, but the main purpose is not to affect the stability of the template substrate.
- the metal precursor contains metal ions that can be reduced to metal materials.
- the metal precursor may include transition metal ions, preferably transition metal ions in the first column of the periodic table, and more preferably cobalt (II and III) ions and nickel (II and III) ions.
- the concentration of the metal precursor is not less than 0.01M.
- the concentration of the metal precursor is in the aforementioned range, during the electrodeposition process, the metal precursor can diffuse into the nano-holes of the hole template through the concentration difference, so as to supplement the metal precursor consumed by the previous electrodeposition, so it can be maintained Conduction of electrodeposition within nanopores.
- the concentration of the metal precursor may be 0.01M to 0.05M.
- the hydrated size of the metal precursor referred to in the present invention refers to the size of the hydrate formed by being surrounded by water molecules after the metal precursor is dissolved in water. In some embodiments, the hydrated size of the metal precursor is no greater than 0.5 nm. When the hydrated size of the metal precursor is within the aforementioned range, the metal precursor can enter the nano-holes in the hole template to be reduced to metal atoms and electrodeposited in the nano-holes. Preferably, the hydrated size of the metal precursor may be 0.2 nm to 1.0 nm.
- metal ions are electrodeposited in the plurality of nano-holes in the hole template and on the surface of the conductive substrate to obtain a metal material, as shown in operation 130 .
- the aforementioned electrodeposition is accomplished by applying a pulsed current to the template substrate.
- the metal material is electrodeposited from the bottom of the hole template from bottom to top, so as to limit the deposition within the nano-holes of the hole template, instead of electrodepositing the metal material on the outer surface of the hole template.
- the electrodeposition is not performed using pulsed current, the metal material is easily electrodeposited on the surface of the hole template, rather than in the nano-holes thereof, thus reducing the electrochemical activity of the metal material.
- Pulse current is the application of current for a period of time (called the application time), and then the application of the current is stopped for another period of time (called the pause time).
- the application time the metal precursors inside the nanoholes are electrodeposited, and during the pause time, the metal precursors outside the nanoholes diffuse into the nanoholes through the concentration difference to replenish the metal precursors consumed by the aforementioned electrodeposition, and ready for the next electrodeposition.
- the pause time of the pulsed current is 0.1 seconds to 10 seconds.
- the metal precursor can diffuse into the nano-hole through the concentration difference when the current is temporarily applied, so as to supplement the metal precursor consumed by the previous electrodeposition, so that the nano-hole can be maintained. of electrodeposition.
- the pause time of the pulse current may be 5 seconds to 10 seconds.
- the pause time of the pulse current is 0.1 to 10 seconds.
- the larger the pore size of the nano-hole the shorter the pause time, and the smaller the pore size of the nano-hole, the longer the pause time. Since the larger the pore size of the nanopore, the faster the metal precursor diffuses, the shorter the pause time can be.
- the pulse current is applied for 0.1 seconds to 10 seconds.
- the application time of the pulse current is within the aforementioned range, an appropriate amount of electricity is provided to electrodeposit the metal precursor in the electrolyte into a metal material, thereby reducing the concentration of the metal precursor in the nano-holes. Therefore, when the pulse current is temporarily applied, , the metal precursors can be supplemented into the nanopores.
- the pulse current is applied for 5 seconds to 10 seconds.
- the number of cycles of the pulse current is 100 to 400 times, preferably 200 times.
- the sum of the aforementioned pause time of the pulse current and the adjacent application time is the time of one cycle, and the combination of the corresponding pause current operation and the current application operation is the current operation of one cycle.
- the total amount of electricity provided is sufficient to form an appropriate amount of metal material by electrodeposition (ie, an appropriate amount of loading), thereby facilitating the electrodeposition of the metal material in the nanopores.
- Another object of the present invention is to provide a metal material.
- This metal material is obtained by the aforementioned manufacturing method of the metal material.
- the metal material is deposited on the surface of the conductive substrate and in the nano-holes in the hole template, and has good electrochemical activity. Therefore, the metal material does not need to be removed from the hole template, and can be directly applied to the fields of electrochemical detection and catalysis.
- the metal material electrodeposited on the MOF film (as a template) needs to be removed from the MOF film due to insufficient electrochemical activity, and cannot be used directly, and the removed metal material is in powder form. Therefore, the powdered metal material needs to be coated on the conductive substrate before it can be used as an electrode. Therefore, the adhesion problem between the powdery metal material and the conductive substrate may occur during the coating process, or the powdery metal material will reduce its specific surface area and reduce its electrochemical activity after the powdery metal material is spread on the conductive substrate. Therefore, compared with the traditional powdered metal material and the manufacturing method thereof, the manufacturing method of the metal material of the present invention is simpler (removing steps are reduced), and the obtained metal material can be used directly, so the metal material can be improved applicability.
- metallic materials can be applied in fields related to electrochemical activity.
- metallic materials can be applied to electrochemical detection elements, such as electrodes or probes.
- metal materials can be used in electrochemical catalytic reactions, such as catalysts.
- metal materials can be used as electrodes to detect oxides in water.
- the hole template may comprise an electrically insulating organic framework.
- the organic framework is quite stable in acidic and neutral environments, maintains structural integrity during electrochemical reactions, and prevents electrochemical induction of metal materials during this process. Aggregation, thereby improving the direct applicability of metal materials.
- the loading amount of the metal material per unit area in the hole template is not less than 5 ⁇ 10 ⁇ 9 mol/cm 2 .
- the metal material is electrodeposited in the nano-holes in the hole template, and has a larger specific surface area than the metal film deposited on the plane, so it has better electrochemical activity.
- the aforementioned loading amount is not less than 1 ⁇ 10 -8 mol/cm 2 .
- the active metal fraction of the metal material is not less than 15%.
- the electrochemical activity of the prepared electrode can be improved.
- the aforementioned active metal ratio is not less than 20%.
- the metal-organic framework is a metal-organic framework of MOF-808 structure, and is prepared by a solvothermal method.
- the FTO substrate fluorine-doped tin oxide, with a resistance value of 7 ⁇ /sq and an area of 3cm ⁇ 1.25cm
- the FTO substrate was ultrasonically cleaned in soapy water and acetone in sequence for 10 minutes. After drying the FTO substrate with nitrogen, the FTO substrate was soaked in 10 mL of a 0.5 mM trimesic acid (H 3 BTC) solution in dimethylformamide (DMF) overnight at room temperature. Then, the aforementioned FTO substrate was dried in an oven at 80° C. to obtain a treated FTO substrate.
- H 3 BTC 0.5 mM trimesic acid
- DMF dimethylformamide
- MOF-808 metal-organic framework
- MOF-808/FTO a template substrate
- the metal materials of the examples were prepared by electrodeposition using a three-pole electrochemical system, with platinum wire as the counter electrode, and Ag/AgCl/NaCl (3M) electrode (brand BASi) as the reference electrode.
- cobalt ion (II) of cobalt sulfate was used as the metal precursor (the hydrated size was 0.21 nm), and the electrolyte was 20 mL of methanol solution of 0.05 M cobalt (II) sulfate heptahydrate.
- Comparative Example 1 the deposition of cobalt metal was carried out in the same manner as in Example 1, except that the growth of MOF-808 was not carried out in Comparative Example 1, and the cobalt metal film was directly electrodeposited on a blank FTO substrate to prepare A FTO substrate with a cobalt metal film (expressed as Co/FTO) is obtained.
- the amount of cobalt metal loading per unit area is obtained by immersing the Co@MOF-808/FTO of the embodiment and the Co/FTO of the comparative example 1 into 2 mL of 2M aqueous hydrochloric acid overnight overnight to completely dissolve the cobalt in the two. metallic material. Then, 5 mL of 3 wt% nitric acid aqueous solution was added to the aforementioned solution of dissolving the cobalt metal material, respectively, to prepare a sample solution of the two.
- the inductively coupled plasma atomic emission spectrum of the sample solution was measured with an inductively coupled plasma atomic emission spectrometer (manufactured by Horiba Scientific, model JY 2000-2) to obtain the concentration of cobalt metal in the sample solution, and the The amount of cobalt metal supported by electrodeposition in MOF-808 per unit area was calculated by converting the dilution ratio to the aforementioned area, and the results are described in detail later.
- the active metal ratio of /FTO the results of which are described in detail later.
- the X-ray diffraction pattern was measured by using an X-ray diffractometer (manufactured by Bruker, model D8Discover) to collect the diffraction patterns of MOF-808/FTO and Co@MOF-808/FTO of the examples, and using X-ray diffraction -
- An optical powder diffractometer (manufactured by Rigaku Corporation, model horr IV) collects diffraction patterns of powdered MOF-808, which are shown in FIG. 2 .
- Electrochemical activity tests were performed using an electrochemical workstation (manufactured by CH Instruments, model CHI6273E) using the same three-pole electrochemical system used for electrodeposition, but with FTO, MOF-808/FTO, comparative Co/FTO of Example 1 and Co@MOF-808/FTO of Examples were used as working electrodes.
- MOPS 3-(N-morpholino)propanesulfonic acid
- H 2 O 2 aqueous solutions of different concentrations were added sequentially from low concentration to high concentration every 100 seconds, and the response current values were recorded to obtain a calibration curve of H 2 O 2 concentration versus current density. The results are detailed in back.
- the data of Co@MOF-808/FTO of the example is 3.5 ⁇ 10 -8 mol/cm 2 , which is higher than the Co/cm 2 of Comparative Example 1.
- the data of FTO (4.2 ⁇ 10 -9 mol/cm 2 ) is one level, so MOF-808 can increase the loading of cobalt metal material as a hole template.
- the active metal ratio of Co@MOF-808/FTO of the embodiment is 21%, so the metal material prepared by the pulsed current manufacturing method of the embodiment has a high active metal ratio.
- FIG. 2 shows the X-ray diffraction patterns of MOF-808/FTO, Co@MOF-808/FTO of the embodiment and powdered MOF-808.
- the diffraction peaks of MOF-808/FTO and Co@MOF-808/FTO of the examples are at 4.4, 8.4, 8.8, 10.0 and 11.0 degrees, and these diffraction peaks are the same as those of powdered MOF-808. It can be seen that MOF-808 was successfully formed on the FTO substrate, and the crystallinity of MOF-808 was still retained after electrodeposition of cobalt metal material.
- FIGS. 3A and 3B are SEM images of MOF-808/FTO and Co@MOF-808/FTO of the embodiment, respectively.
- the Co@MOF-808/FTO of the example still has a morphology similar to the surface of the unelectrodeposited MOF-808/FTO, while there is no obvious electrodeposited cobalt particles covering the outer surface of the MOF-808.
- FIGS. 4A and 4B are the EDS line scan positions and their mapping images of a cross section of a MOF-808 crystal in the Co@MOF-808/FTO of the embodiment for elemental analysis of zirconium and cobalt. .
- the distributions of zirconium and cobalt overlap each other at the cross-section of the MOF-808 crystal. Therefore, it can be known from the results of the aforementioned X-ray diffraction pattern, SEM image and elemental analysis of zirconium and cobalt that the manufacturing method of the embodiment can electrodeposit the cobalt metal material in the nanopores of MOF-808, but not on the outer surface thereof.
- the cyclic voltammetry curves of the FTO substrate and MOF-808/FTO showed negligible currents.
- the cyclic voltammetry curve of Co/FTO of Comparative Example 1 shows a weak reduction-oxidation peak (which also appears in FIG. 6B described later) at about 0.9V.
- the current density of Co@MOF-808/FTO of Example is one grade higher. Therefore, compared with the flat cobalt metal coating prepared in Comparative Example 1, the cobalt metal material prepared by the porous template (ie MOF-808) has higher electrochemical activity.
- FIGS. 6A to 6C are cyclic voltammetry diagrams showing the detection of H 2 O 2 using MOF-808/FTO, Co/FTO of Comparative Example 1, and Co@MOF-808/FTO of Example, respectively.
- the direction of the arrow indicates the increasing trend of the concentration of H 2 O 2 .
- the cyclic voltammetry curves of MOF-808/FTO show negligible current.
- the catalytic current density of Co@MOF-808/FTO of Example is larger, so the Co@MOF-808/FTO prepared by the manufacturing method of Example is less effective for H 2 O 2 It has higher sensitivity, so it has better detection applicability.
- the limit of detection (LOD) (based on a signal-to-noise ratio of 3) of the cobalt metal material prepared by the manufacturing method of the embodiment is 1.3 ⁇ M, and the linear range is 1.3 ⁇ M. was 10 ⁇ M to 450 ⁇ M, and the sensitivity was 382.27 ⁇ A/mMcm 2 .
- the Co@MOF-808/FTO of the embodiment has better sensitivity.
- the manufacturing method of the metal material of the present invention is to start the electrodeposition of the metal material from the bottom of the hole template from the bottom to the top, and use the pulse electrodeposition method to avoid insufficient or excessive concentration of the metal precursor in the nano-hole, so that the Metal materials confined in nano-holes are prepared, thereby enhancing the electrochemical activity of the prepared metal materials and increasing the applicability of the metal materials.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Crystallography & Structural Chemistry (AREA)
- Nanotechnology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Electroplating And Plating Baths Therefor (AREA)
- Electroplating Methods And Accessories (AREA)
Abstract
一种金属材料及其制造方法,此制造方法使用脉冲电流电沉积金属离子于孔洞模板的纳米孔洞内,以提升所制得的金属材料的电化学活性,从而增加此金属材料的应用性。
Description
本发明是有关于一种金属材料及其制造方法,且特别是有关于一种具有高电化学活性的金属材料及其制造方法。
金属有机骨架(metal-organic framework,MOF)及共价有机骨架(covalent-organic framework,COF)具有高的比表面积、规则的孔洞率及可调式结构。再者,MOF及COF的薄膜形成于导电基材表面上后,可于其内建构活性位置(active site)。所以,基于MOF及COF薄膜的材料于电化学的应用(例如:电催化及电荷存储)具有很大的潜力。近来,以MOF及COF的薄膜来开发电化学活性的材料逐渐受到重视,尤其是金属材料。
目前,喷洒涂布(spray coating)MOF的薄膜于导电基材表面上,再以定电位方式进行氧化钴的电沉积。虽然氧化钴可与导电基材电性连接,但却不能进入MOF薄膜的纳米孔洞内,仅能被电沉积于MOF的表面及其外围,故无法有效提升其比表面积及电化学活性。
另一种使用MOF电沉积金属的方法是以定电位式(potentiostatic)或变动电位(potentiodynamic)式电沉积金属于MOF薄膜后,分次以去离子水、盐酸及过氧化氢溶液反复冲洗电沉积的金属,以制得粉状金属材料。此粉状金属材料应用于电化学领域时,必须以喷洒涂布或滴落涂布(drop-casting)等方式涂布粉状金属材料于导电基材上。此将导致粉状金属材料与导电基材间存在有较大的空隙,而增大电阻。再者,由于粉状金属材料与导电基材相连接,而减少粉状金属材料的比表面积,故大幅降低粉状金属材料的活性。
有鉴于此,亟需发展一种新的金属材料的制造方法,以改善已知的金属材料及其制造方法的上述缺点。
发明内容
有鉴于上述的问题,本发明的一态样是在提供一种金属材料的制造方法。此制造方法使用脉冲电流电沉积金属离子于孔洞模板的纳米孔洞内,以提升所 制得的金属材料的电化学活性,从而增加金属材料的应用性。
本发明的另一态样是在提供一种金属材料。此金属材料是利用前述的金属材料的制造方法所制得。
根据本发明的一态样,提出一种金属材料的制造方法。此金属材料的制造方法包含提供包含导电基材及孔洞模板的模板基材、放置模板基材于电解液中,以及电沉积金属前驱物于孔洞模板所具有的多个纳米孔洞内及导电基材的表面上,以获得金属材料,其中电沉积是通过对模板基材施加脉冲电流来进行。孔洞模板设置于导电基材上,且电解液包含金属前驱物,此金属前驱物是对应于金属材料。
依据本发明的一实施例,此些纳米孔洞的孔径为1nm至5nm。
依据本发明的另一实施例,孔洞模板包含电绝缘性有机骨架。
依据本发明的又一实施例,脉冲电流的暂停时间为0.1秒至10秒。
依据本发明的又一实施例,脉冲电流的施加时间为0.1秒至10秒。
依据本发明的又一实施例,金属前驱物于电解液中的浓度为不小于0.01M。
依据本发明的又一实施例,金属前驱物的水合尺寸为不大于0.5nm。
依据本发明的又一实施例,于提供模板基材前,金属材料的制造方法选择性包含以溶剂热法形成孔洞模板于导电基材上。
本发明的另一态样是提供一种金属材料。此金属材料利用前述的金属材料的制造方法所制得。
依据本发明的一实施例,金属材料的活性金属比例为不小于15%。
应用本发明的金属材料的制造方法,其中使用脉冲电流电沉积金属离子于孔洞模板中的纳米孔洞内,以提升所制得的金属材料的电化学活性,从而增加金属材料的应用性。
为了对本发明的实施例及其优点有更完整的理解,现请参照以下的说明并配合相应的附图。必须强调的是,各种特征并非依比例描绘且仅是为了图解目的。相关附图内容说明如下:
图1是绘示根据本发明的实施例的金属材料的制造方法的流程图;
图2是绘示MOF-808/FTO、Co@MOF-808/FTO及粉末状MOF-808的X光绕射图谱;
图3A是MOF-808/FTO的SEM的影像;
图3B是实施例的Co@MOF-808/FTO的SEM的影像;
图4A是实施例的Co@MOF-808/FTO的一个MOF-808结晶的横截面所进行EDS线扫描位置的示意图;
图4B是图4A所示的锆与钴的元素分析的EDS线扫描的映射影像;
图5是绘示于MOPS缓冲溶液(pH=7.3)中量测FTO基材、MOF-808/FTO、比较例1的Co/FTO及实施例的Co@MOF-808/FTO的循环伏安曲线图;
图6A是绘示使用MOF-808/FTO侦测H
2O
2的循环伏安曲线图;
图6B是绘示使用比较例1的Co/FTO侦测H
2O
2的循环伏安曲线图;
图6C是绘示使用实施例的Co@MOF-808/FTO侦测H
2O
2的循环伏安曲线图。
【符号说明】
100:方法
110,120,130:操作
以下仔细讨论本发明实施例的制造和使用。然而,可以理解的是,实施例提供许多可应用的发明概念,其可实施于各式各样的特定内容中。所讨论的特定实施例仅供说明,并非用以限定本发明的范围。
本发明此处所称的“金属材料”是指被拘限于纳米孔洞内的金属材料,以提高金属材料的活性。其次,本发明的金属材料的制造方法是使用形成于导电基材上的孔洞模板做为模板基材,以从孔洞模板的底部(即模板与导电基材间的界面处)开始电沉积,而非从孔洞模板的表面开始电沉积,其中模板基材包含电绝缘性有机骨架。
再者,此制造方法是以脉冲电沉积方式避免纳米孔洞内金属前驱物的浓度不足或过高。因此,本发明的制造方法可制得被拘限于纳米孔洞内的金属材料,以提升其电化学活性,故增加其应用性。
请参阅图1,金属材料的制造方法100是先提供模板基材,如操作110所 示。模板基材包含导电基材及孔洞模板,且孔洞模板设置于导电基材上。导电基材没有特别限定,且可为本发明所属技术领域中具有通常知识者所已知的导电材料,例如:FTO基材或金属基板。
在一些实施例中,孔洞模板可包含电绝缘性有机骨架。在一些具体例中,电绝缘性有机骨架可包含金属有机骨架或共价有机骨架。举例而言,金属有机骨架可包含但不限于MOF-808、MOF-802、MOF-841、MOF-804、MOF-805、MOF-806、MOF-177、HKUST-1、UiO-66、UiO-67、PCN-222、MIL-101及MOF-525。此外,共价有机骨架可包含但不限于COF-1、COF-5、COF-6、COF-102、COF-105、COF-108及MF-8。
在一些实施例中,孔洞模板具有多个纳米孔洞,此些纳米孔洞的孔径为1nm至5nm。当纳米孔洞的孔径为前述的范围时,可提升所制得的金属材料的电化学活性。较佳地,纳米孔洞的孔径为1nm至3nm。
在一些实施例中,于提供模板基材前,金属材料的制造方法100可选择性包含形成步骤。此形成步骤是形成孔洞模板于导电基材上。在一些具体例中,形成步骤可使用溶剂热法(solvothermal method)完成。
申言之,已知的技术是以电喷洒或涂布等方式,于导电基材上形成模板,而易导致导电基材与模板间有空隙,故增加金属材料直接沉积于导电基材及此空隙的机率,而不能沉积于孔洞模板中的纳米孔洞内。故相较于已知的技术,金属材料的制造方法100利用溶剂热法,直接从导电基材的表面生长孔洞模板,故本发明的孔洞模板与导电基材间不具有空隙,故金属材料可电沉积于孔洞模板的纳米孔洞内。
请再参阅图1,于前述操作110后,放置模板基材于电解液中,如操作120所示。此电解液含有金属前驱物,且金属前驱物是与金属材料对应的金属离子。当金属前驱物不为与金属材料对应的金属离子时,电沉积制得的金属将异于金属材料,而无法获得预期的金属材料。
在一些实施例中,电解液可包含无机酸根离子、金属前驱物,以及可与金属前驱物形成错合物的其他离子。举例而言,无机酸根离子可包含但不限于硫酸根离子、亚硫酸根离子、硝酸根离子、碳酸根离子及磷酸根离子。其他离子可包含但不限于卤素离子、四氟硼酸、六氟磷酸、双(三氟甲磺酰基)酰亚胺及三羟甲基氨基甲烷等。前述的无机酸根离子及其他离子没有特定限制,惟以不 会影响模板基材的安定性为主要目的。
此外,金属前驱物包含可被还原成金属材料的金属离子。在一些实施例中,金属前驱物可包含过渡金属离子,较佳可为周期表第一列的过渡金属离子,且更佳可为钴(II及III)离子及镍(II及III)离子。
在一些具体例中,金属前驱物的浓度为不小于0.01M。当金属前驱物的浓度为前述的范围时,于电沉积过程中,金属前驱物能够通过浓度差扩散到孔洞模板的纳米孔洞内,以补充前一次电沉积所消耗的金属前驱物,故可维持纳米孔洞内的电沉积的进行。较佳地,金属前驱物的浓度可为0.01M至0.05M。
本发明所指的金属前驱物的水合尺寸是指金属前驱物溶于水中后,被水分子所包围而形成的水合物的尺寸。在一些具体例中,金属前驱物的水合尺寸为不大于0.5nm。当金属前驱物的水合尺寸为前述的范围时,金属前驱物可进入孔洞模板中的纳米孔洞内,以被还原成金属原子而电沉积于纳米孔洞内。较佳地,金属前驱物的水合尺寸可为0.2nm至1.0nm。
于前述操作120后,电沉积金属离子于孔洞模板中的多个纳米孔洞内及导电基材的表面上,以获得金属材料,如操作130所示。前述的电沉积是通过施加脉冲电流于模板基材来完成。当模板基材包含孔洞模板时,由下往上从孔洞模板的底部开始电沉积金属材料,以限制于孔洞模板的纳米孔洞内进行沉积,而非电沉积金属材料于孔洞模板的外部表面。此外,当电沉积未使用脉冲电流来完成时,金属材料易电沉积于孔洞模板的表面,而非其纳米孔洞内,故降低金属材料的电化学活性。
脉冲电流是施加电流,持续一时间(称作施加时间)后,停止施加电流,再持续另一时间(称作暂停时间)。于施加时间中,纳米孔洞内的金属前驱物进行电沉积,而在暂停时间中,纳米孔洞外的金属前驱物通过浓度差扩散至纳米孔洞内以补充前述电沉积所消耗的金属前驱物,并备以进行下一次的电沉积。
在一些实施例中,脉冲电流的暂停时间为0.1秒至10秒。当脉冲电流的暂停时间为前述的范围时,金属前驱物能够于电流暂停施加时,通过浓度差扩散到纳米孔洞内,以补充前一次电沉积所消耗的金属前驱物,故可维持纳米孔洞内的电沉积的进行。较佳地,脉冲电流的暂停时间可为5秒至10秒。
在一些具体例中,孔洞模板的纳米孔洞的孔径为1nm至5nm时,脉冲电流的暂停时间为0.1秒至10秒。较佳地,纳米孔洞的孔径愈大时,暂停时间 可愈短,而纳米孔洞的孔径愈小时,暂停时间则需愈长。由于纳米孔洞的孔径愈大,金属前驱物扩散的速度愈快,故暂停时间可愈短。
在一些实施例中,脉冲电流的施加时间为0.1秒至10秒。当脉冲电流的施加时间为前述的范围时,提供适量的电量,以使电解液中的金属前驱物电沉积为金属材料,而降低纳米孔洞内金属前驱物的浓度,故当脉冲电流暂停施加时,金属前驱物可递补至纳米孔洞内。较佳地,脉冲电流的施加时间为5秒至10秒。
在一些实施例中,脉冲电流的循环次数为100次至400次,较佳可为200次。前述的脉冲电流的暂停时间与相邻的施加时间的加总为一次循环的时间,且对应的暂停电流操作与施加电流操作的结合为一次循环的电流操作。当循环次数为100次至400次时,所提供的总电量,足够以电沉积形成适量的金属材料(即适量的负载量),从而利于金属材料电沉积于纳米孔洞内。
本发明的另一目的是提供一种金属材料。此金属材料是利用前述的金属材料的制造方法所制得。金属材料沉积于导电基材的表面上及孔洞模板中的纳米孔洞内,而具有良好的电化学活性。因此,金属材料不需要从孔洞模板被移除下来,而可直接应用于电化学侦测及催化的领域。
然而,传统上,电沉积于MOF薄膜(做为模板)的金属材料由于电化学活性不足,而需要从MOF薄膜被移除,不能直接使用,且经移除后的金属材料为粉末状。因此粉末状金属材料需要被涂布于导电基材上,才可做为电极。故,于此涂布过程中会发生粉末状金属材料与导电基材的密合问题,或者粉末状金属材料平铺于导电基材后将减小其比表面积,而降低其电化学活性。所以,相较于传统的粉末状金属材料及其制造方法,本发明的金属材料的制造方法较简单(减少移除步骤),且所制得的金属材料可直接使用,故可提升此金属材料的应用性。
申言之,金属材料可应用于与电化学活性有关的领域。在一些实施例中,金属材料可应用于电化学的侦测元件,例如电极或探针。在另一些实施例中,金属材料可应用于电化学的催化反应,例如触媒。在一些具体例中,金属材料可做为电极,以侦测水体中的氧化物。
如前所述,孔洞模板可包含电绝缘性有机骨架。当孔洞模板使用电绝缘性有机骨架时,此有机骨架于酸性及中性环境中相当稳定度,且于电化学反应过 程中可维持结构完整性,并可阻止此过程中金属材料的电化学诱导聚集,从而提升金属材料的直接应用性。
在一些实施例中,金属材料于孔洞模板内的单位面积的负载量为不小于5×10
-9mol/cm
2。当金属材料于孔洞模板内的单位面积的负载量为前述的范围时,金属材料被电沉积于孔洞模板中的纳米孔洞内,而具有比沉积于平面的金属膜更大的比表面积,故具有较佳的电化学活性。较佳地,前述的负载量为不小于1×10
-8mol/cm
2。
在一些实施例中,金属材料的活性金属比例(active metal fraction)为不小于15%。当金属材料的活性金属比例为前述的范围时,可提升所制得的电极的电化学活性。较佳地,前述的活性金属比例不小于20%。
以下利用实施例以说明本发明的应用,然其并非用以限定本发明,任何熟悉此技艺者,在不脱离本发明的精神和范围内,当可作各种的更动与润饰。
金属有机骨架的制备
金属有机骨架为MOF-808结构的金属有机骨架,且使用溶剂热法制得。依序在肥皂水及丙酮中,以超音波清洗FTO基材(氟掺杂氧化锡(fluorine-doped tin oxide),电阻值为7Ω/sq,而面积为3cm×1.25cm)10分钟。以氮气吹干FTO基材后,在室温下,FTO基材浸泡于10mL的0.5mM均苯三甲酸(H
3BTC)的二甲基甲酰胺(DMF)溶液过夜。然后,在80℃的烘箱中干燥前述的FTO基材,以获得处理后的FTO基材。
另外,加入27.5mg H
3BTC、40mg八水氧氯化锆(zirconyl chloride octahydrate)、5mL DMF及5mL甲酸于装设有尿素盖与铁氟龙内衬的20mL螺纹闪烁计数瓶(scintillation vial)中,并以超音波混合5分钟,以获得混合溶液。再以导电侧朝下的方式,将处理后的FTO基材浸入前述的混合溶液中。接着,密封前述的螺纹闪烁计数瓶,并放置于重力对流烘箱底部,温度设定于80℃,经历48小时。金属有机骨架(以下以MOF-808表示)形成于处理后的FTO基材后,以DMF润洗金属有机骨架薄膜三次,以确保完全交换溶剂。再于真空下80℃干燥后,以制得模板基材(以下以MOF-808/FTO表示),其金属有机骨架的纳米孔洞的孔径为1.8nm。
金属材料及含有其的电极的制备
实施例
实施例的金属材料的制备是使用三极式电化学系统进行电沉积,以白金电线做为对电极,且以Ag/AgCl/NaCl(3M)电极(厂牌为BASi)做为参考电极。使用聚酰亚胺电绝缘胶带调整MOF-808/FTO所曝露出的面积为1cm
2,且以其做为工作电极。此外,以硫酸钴的钴离子(II)做为金属前驱物(水合尺寸为0.21nm),且电解液为20mL的0.05M七水硫酸钴(cobalt(II)sulfate heptahydrate)的甲醇溶液。
在室温下,进行脉冲计时电位电沉积。以0.1mA/cm
2的阴极电流通过工作电极,持续10秒,接着暂停10秒。前述的通过与暂停的过程视为一个循环,共经历200个循环,通过工作电极的单位面积的电量总共为0.2C/cm
2,以电沉积钴金属材料于MOF-808的纳米孔洞内。于完成电沉积后,以甲醇润洗数次,并干燥工作电极,而制得实施例的钴金属材料及包含其的电极(以下以Co@MOF-808/FTO表示)。
比较例1
比较例1是以与实施例1相同的方法进行钴金属的沉积,不同之处在于比较例1未进行MOF-808的生长,而直接电沉积钴金属膜于空白的FTO基材上,以制得具有钴金属膜的FTO基材(以Co/FTO表示)。
评价方式
1.单位面积的钴金属负载量
单位面积的钴金属负载量是取经量测过面积的实施例的Co@MOF-808/FTO及比较例1的Co/FTO分别浸入2mL的2M盐酸水溶液中过夜,以完全溶解二者中的钴金属材料。再分别加入5mL的3wt%硝酸水溶液于前述溶解钴金属材料的溶液中,以配制二者的样品溶液。分别以电感耦合电浆体原子发射仪(由Horiba Scientific公司制造,型号为JY 2000-2)量测样品溶液的电感耦合电浆体原子发射光谱,以获得样品溶液中钴金属的浓度,并经稀释比例与前述面积换算后求得电沉积于单位面积的MOF-808中的钴金属负载量,其结果详述于后。
2.活性金属比例的量测
活性金属比例的量测是以实施例的Co@MOF-808/FTO,在0.05M的MOPS缓冲液(pH=7.3)中,电位切换从+0.8V至0.0V(相对于Ag/AgCl/NaCl(3M)),量测电流式J-t曲线(电流密度-时间曲线),并从电流式J-t 曲线获得积分后电量,根据前述的单位面积的钴金属负载量,算出实施例的Co@MOF-808/FTO的活性金属比例,其结果详述于后。
3.X光绕射图谱的量测
X光绕射图谱的量测是使用X光绕射仪(由布鲁克公司制造,型号为D8Discover)收集MOF-808/FTO及实施例的Co@MOF-808/FTO的绕射图谱,且使用X-光粉末绕射仪(由Rigaku公司制造,型号为ultima IV)收集粉末状MOF-808的绕射图谱,此些绕射图谱如图2所示。
4.扫描式电子显微镜的影像及能量分散式X光光谱分析
扫描式电子显微镜(SEM)的影像及能量分散式X光光谱(EDS)分析是使用扫描式电子显微镜(由日立公司制造,型号为SU-8010)对MOF-808/FTO及实施例的Co@MOF-808/FTO进行拍摄与收集数据,其结果如图3A至3B及4A至4B所示。
5.电化学活性的试验
电化学活性的试验是使用电化学工作站(由CH仪器公司制造,型号为CHI6273E)进行,其中使用与进行电沉积相同的三极式电化学系统,但是分别以FTO、MOF-808/FTO、比较例1的Co/FTO及实施例的Co@MOF-808/FTO做为工作电极。电解液为0.1M的3-(N-吗啡啉)丙磺酸(3-(N-morpholino)propanesulfonic acid,MOPS)溶液与0.1M氢氧化钠溶液共同溶解于去离子水中所制得的缓冲溶液(pH=7.3),且分别于电解液中添加0mM、0.2mM或0.4mMH
2O
2溶液,以循环伏安法(cyclic voltammetry,CV)量测前述四种电极的氧化与还原峰值的电流密度,以评估其电化学活性,其结果如图5及图6A至6C所示。
6.电流式侦测H
2O
2的试验
电流式侦测H
2O
2的试验是于0.05M的MOPS缓冲液(pH=7.3)中,施加+0.8V电位(相对于Ag/AgCl/NaCl(3M)),以侦测H
2O
2浓度。每间隔100秒依序由低浓度到高浓度加入不同浓度的H
2O
2水溶液,并记录回应的电流值,以获得H
2O
2浓度对电流密度的检量线图,其结果详述于后。
先就制造方法而言,根据单位面积的钴金属负载量的结果,实施例的Co@MOF-808/FTO的数据为3.5×10
-8mol/cm
2,其高出比较例1的Co/FTO的数据(4.2×10
-9mol/cm
2)一个等级,故MOF-808做为孔洞模板可增加钴金属材 料的负载量。
再者,根据活性金属比例的结果,实施例的Co@MOF-808/FTO的活性金属比例为21%,故实施例的脉冲式电流的制造方法所制得的金属材料具有高活性金属比例。
此外,请参阅图2,其是绘示MOF-808/FTO、实施例的Co@MOF-808/FTO及粉末状MOF-808的X-光绕射图谱。MOF-808/FTO及实施例的Co@MOF-808/FTO的绕射峰位在4.4、8.4、8.8、10.0及11.0度,此些绕射峰与粉末状MOF-808的绕射峰相同。由此可知,MOF-808成功地形成在FTO基材上,且在电沉积钴金属材料后,MOF-808的结晶性仍被保留住。
其次,请参阅图3A及3B,此二图分别为MOF-808/FTO及实施例的Co@MOF-808/FTO的SEM的影像。实施例的Co@MOF-808/FTO仍具有与未经电沉积的MOF-808/FTO的表面相似的形貌(morphology),而无明显电沉积的钴粒子覆盖于MOF-808外表面。
再者,请参阅图4A及4B,此二图分别为实施例的Co@MOF-808/FTO中的一个MOF-808结晶的横截面进行锆与钴元素分析的EDS线扫描位置及其映射影像。锆与钴的分布于MOF-808结晶的横截面处为彼此重叠的。因此,从前述X光绕射图谱、SEM的影像及锆与钴元素分析的结果可知,实施例的制造方法可电沉积钴金属材料于MOF-808的纳米孔洞内,而非其外表面。
请参阅图5,其绘示于MOPS缓冲溶液(pH=7.3)中量测FTO基材、MOF-808/FTO、比较例1的Co/FTO及实施例的Co@MOF-808/FTO的循环伏安曲线图。FTO基材及MOF-808/FTO的循环伏安曲线显示可忽略的电流。比较例1的Co/FTO的循环伏安曲线显示弱还原氧化峰(此亦出现于后述的图6B中)在约0.9V处。相较于比较例1的Co/FTO,实施例的Co@MOF-808/FTO的电流密度高出一个等级。故相较于比较例1所制得的平面的钴金属镀膜,通过多孔性模板(即MOF-808)所制得的钴金属材料具有更高的电化学活性。
请参阅图6A至6C,其分别是绘示使用MOF-808/FTO、比较例1的Co/FTO及实施例的Co@MOF-808/FTO侦测H
2O
2的循环伏安曲线图,于三图中分别以箭号的方向表示H
2O
2浓度的增加趋势。MOF-808/FTO的循环伏安曲线显示可忽略的电流。相较于比较例1的Co/FTO,实施例的Co@MOF-808/FTO的催化电流密度较大,故实施例的制造方法所制得的Co@MOF-808/FTO对于 H
2O
2具有较高的灵敏度,从而具备较佳的侦测应用性。
此外,根据电流式侦测H
2O
2试验的结果,实施例的制造方法所制得的钴金属材料的侦测极限(LOD)(基于信号对信噪比为3)为1.3μM,线性范围为10μM至450μM,且灵敏度为382.27μA/mMcm
2。请参阅表1,相较于文献中所报导的钴金属氧化物基底的材料,实施例的Co@MOF-808/FTO具有较佳的灵敏度。
表1
材料 | 灵敏度(μA/mMcm2) | 侦测极限(μM) |
Co@MOF-808/FTO | 382.27 | 1.3 |
Co3O4纳米线 | 230.00 | 1.4 |
尖晶石结构的氧化钴 | 90.54 | 0.7 |
综上所述,本发明的金属材料的制造方法是从孔洞模板的底部由下往上开始电沉积金属材料,且以脉冲电沉积方式避免纳米孔洞内金属前驱物的浓度不足或过多,以制得被拘限于纳米孔洞内的金属材料,从而提升所制得的金属材料的电化学活性,并增加金属材料的应用性。
虽然本发明已以实施方式揭露如上,然其并非用以限定本发明,在本发明所属技术领域中任何具有通常知识者,在不脱离本发明的精神和范围内,当可作各种的更动与润饰,因此本发明的保护范围当视所附的权利要求书所界定的范围为准。
Claims (10)
- 一种金属材料的制造方法,其特征在于该金属材料的制造方法包含:提供一模板基材,其中该模板基材包含一导电基材及一孔洞模板,该孔洞模板设置于该导电基材上,且该孔洞模板具有多个纳米孔洞;放置该模板基材于一电解液中,其中该电解液包含一金属前驱物,且该金属前驱物是对应于该金属材料;电沉积该金属前驱物于所述多个纳米孔洞内及该导电基材的一表面上,以获得该金属材料,其中该电沉积是通过对该模板基材施加一脉冲电流来进行。
- 根据权利要求1所述的金属材料的制造方法,其特征在于所述多个纳米孔洞的一孔径为1nm至5nm。
- 根据权利要求1所述的金属材料的制造方法,其特征在于该孔洞模板包含一电绝缘性有机骨架。
- 根据权利要求1所述的金属材料的制造方法,其特征在于该脉冲电流的一暂停时间为0.1秒至10秒。
- 根据权利要求1所述的金属材料的制造方法,其特征在于该脉冲电流的一施加时间为0.1秒至10秒。
- 根据权利要求1所述的金属材料的制造方法,其特征在于该金属前驱物于该电解液中的一浓度为不小于0.01M。
- 根据权利要求1所述的金属材料的制造方法,其特征在于该金属前驱物的一水合尺寸为不大于0.5nm。
- 根据权利要求1所述的金属材料的制造方法,其特征在于于提供该模板基材前,该金属材料的制造方法还包含以一溶剂热法形成该孔洞模板于该导电基材上。
- 一种金属材料,其特征在于该金属材料利用如权利要求1至8的任一项所述的金属材料的制造方法所制得。
- 根据权利要求9所述的金属材料,其特征在于该金属材料的一活性金属比例为不小于15%。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2020/136850 WO2022126432A1 (zh) | 2020-12-16 | 2020-12-16 | 金属材料及其制造方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2020/136850 WO2022126432A1 (zh) | 2020-12-16 | 2020-12-16 | 金属材料及其制造方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022126432A1 true WO2022126432A1 (zh) | 2022-06-23 |
Family
ID=82059883
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2020/136850 WO2022126432A1 (zh) | 2020-12-16 | 2020-12-16 | 金属材料及其制造方法 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2022126432A1 (zh) |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2005049484A1 (de) * | 2003-11-24 | 2005-06-02 | Basf Aktiengesellschaft | Verfahren zur kontrollierten speicherung und abgabe von gasen unter einsatz eines elektrochemisch hergestellten kristallinen porösen metallorganischen gerüstmaterials |
TW200930658A (en) * | 2008-01-11 | 2009-07-16 | Univ Nat Chiao Tung | Method of forming nano-scale material |
CN101531672A (zh) * | 2008-03-12 | 2009-09-16 | 安徽大学 | 具有纳米孔洞的金属-有机骨架材料及其制备方法、应用 |
CN101585856A (zh) * | 2008-05-23 | 2009-11-25 | 安徽大学 | 具有单级或多级孔道结构的纳米孔洞金属-有机骨架材料及其制备 |
CN102317010A (zh) * | 2009-02-17 | 2012-01-11 | 富士胶片株式会社 | 金属构件 |
CN107849724A (zh) * | 2014-10-29 | 2018-03-27 | 林科闯 | 多孔材料及系统及其制造方法 |
CN110029382A (zh) * | 2019-05-22 | 2019-07-19 | 电子科技大学 | 一种用于直接电镀的表面处理工艺及其相关直接电镀工艺 |
-
2020
- 2020-12-16 WO PCT/CN2020/136850 patent/WO2022126432A1/zh active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2005049484A1 (de) * | 2003-11-24 | 2005-06-02 | Basf Aktiengesellschaft | Verfahren zur kontrollierten speicherung und abgabe von gasen unter einsatz eines elektrochemisch hergestellten kristallinen porösen metallorganischen gerüstmaterials |
TW200930658A (en) * | 2008-01-11 | 2009-07-16 | Univ Nat Chiao Tung | Method of forming nano-scale material |
CN101531672A (zh) * | 2008-03-12 | 2009-09-16 | 安徽大学 | 具有纳米孔洞的金属-有机骨架材料及其制备方法、应用 |
CN101585856A (zh) * | 2008-05-23 | 2009-11-25 | 安徽大学 | 具有单级或多级孔道结构的纳米孔洞金属-有机骨架材料及其制备 |
CN102317010A (zh) * | 2009-02-17 | 2012-01-11 | 富士胶片株式会社 | 金属构件 |
CN107849724A (zh) * | 2014-10-29 | 2018-03-27 | 林科闯 | 多孔材料及系统及其制造方法 |
CN110029382A (zh) * | 2019-05-22 | 2019-07-19 | 电子科技大学 | 一种用于直接电镀的表面处理工艺及其相关直接电镀工艺 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11643740B2 (en) | Trimetallic layered double hydroxide composition | |
Chang et al. | Pulse electrodeposited FeCoNiMnW high entropy alloys as efficient and stable bifunctional electrocatalysts for acidic water splitting | |
Xu et al. | The role of Cr doping in NiFe oxide/(oxy) hydroxide electrocatalysts for oxygen evolution | |
Hu et al. | Cyclic voltammetric deposition of hydrous ruthenium oxide for electrochemical capacitors: effects of codepositing iridium oxide | |
Hu et al. | Effects of substrates on the capacitive performance of RuOx· nH2O and activated carbon–RuOx electrodes for supercapacitors | |
Gira et al. | Physical and electrochemical area determination of electrodeposited Ni, Co, and NiCo thin films | |
Browne et al. | The goldilocks electrolyte: examining the performance of iron/nickel oxide thin films as catalysts for electrochemical water splitting in various aqueous NaOH solutions | |
Wang et al. | NiCo2O4 nanosheets in-situ grown on three dimensional porous Ni film current collectors as integrated electrodes for high-performance supercapacitors | |
Patil et al. | An ion exchange mediated shape-preserving strategy for constructing 1-D arrays of porous CoS 1.0365 nanorods for electrocatalytic reduction of triiodide | |
Ponrouch et al. | Ultra high capacitance values of Pt@ RuO2 core–shell nanotubular electrodes for microsupercapacitor applications | |
Tang et al. | Pd deposition onto Au (111) electrodes from sulphuric acid solution | |
Chen et al. | Electrodeposition of nickel and cobalt oxides onto platinum and graphite electrodes for alkaline water electrolysis | |
Mattarozzi et al. | Preparation of porous nanostructured Ag electrodes for sensitive electrochemical detection of hydrogen peroxide | |
Jow et al. | Anodic, cathodic and cyclic voltammetric deposition of ruthenium oxides from aqueous RuCl3 solutions | |
Obradović et al. | Electrochemically deposited iridium-oxide: Estimation of intrinsic activity and stability in oxygen evolution in acid solution | |
Casella et al. | Pulsed electrodeposition of nickel/palladium globular particles from an alkaline gluconate bath. An electrochemical, XPS and SEM investigation | |
Abraham et al. | Electrocatalytic performance of palladium dendrites deposited on titania nanotubes for formic acid oxidation | |
Barr et al. | Engineering a three-dimensional, photoelectrochemically active p-NiO/i-Sb2S3 junction by atomic layer deposition | |
Wei et al. | Surface functionalization of wafer-scale two-dimensional WO3 nanofilms by NM electrodeposition (NM= Ag, Pt, Pd) for electrochemical H2O2 reduction improvement | |
Nakayama et al. | A binder-free thin film anode composed of Co2+-intercalated buserite grown on carbon cloth for oxygen evolution reaction | |
Kazemian et al. | X-ray imaging and micro-spectroscopy unravel the role of zincate and zinc oxide in the cycling of zinc anodes in mildly acidic aqueous electrolytes | |
Hu et al. | Effects of complex agents on the anodic deposition and electrochemical characteristics of cobalt oxides | |
Ahn et al. | Effect of interfacial blocking layer morphology on the solar peroxydisulfate production of WO3 nanoflakes | |
Cheng et al. | Dynamic hydrogen bubble template electrodeposited Bi on graphite felt and the effect of its post-processing in vanadium redox flow batteries | |
WO2022126432A1 (zh) | 金属材料及其制造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20965450 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20965450 Country of ref document: EP Kind code of ref document: A1 |