CN110914705A - 集成lidar照明功率控制 - Google Patents
集成lidar照明功率控制 Download PDFInfo
- Publication number
- CN110914705A CN110914705A CN201880035992.8A CN201880035992A CN110914705A CN 110914705 A CN110914705 A CN 110914705A CN 201880035992 A CN201880035992 A CN 201880035992A CN 110914705 A CN110914705 A CN 110914705A
- Authority
- CN
- China
- Prior art keywords
- pulse
- source
- node
- illumination
- fet
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000005259 measurement Methods 0.000 claims abstract description 168
- 238000005286 illumination Methods 0.000 claims abstract description 156
- JMASRVWKEDWRBT-UHFFFAOYSA-N Gallium nitride Chemical compound [Ga]#N JMASRVWKEDWRBT-UHFFFAOYSA-N 0.000 claims abstract description 43
- 229910002601 GaN Inorganic materials 0.000 claims abstract description 37
- 230000004044 response Effects 0.000 claims abstract description 24
- 238000000034 method Methods 0.000 claims abstract description 14
- 230000000977 initiatory effect Effects 0.000 claims description 32
- 239000003990 capacitor Substances 0.000 claims description 11
- 238000003079 width control Methods 0.000 claims description 7
- 230000005669 field effect Effects 0.000 claims description 6
- 239000000758 substrate Substances 0.000 abstract description 9
- 230000003287 optical effect Effects 0.000 description 28
- 208000028659 discharge Diseases 0.000 description 13
- 238000010586 diagram Methods 0.000 description 11
- 238000001514 detection method Methods 0.000 description 8
- 230000000630 rising effect Effects 0.000 description 8
- 230000001934 delay Effects 0.000 description 7
- 239000000835 fiber Substances 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 5
- 230000005540 biological transmission Effects 0.000 description 5
- 230000008859 change Effects 0.000 description 5
- 229910052710 silicon Inorganic materials 0.000 description 5
- 239000010703 silicon Substances 0.000 description 5
- 230000007704 transition Effects 0.000 description 5
- 238000004364 calculation method Methods 0.000 description 4
- 230000001105 regulatory effect Effects 0.000 description 4
- 238000009825 accumulation Methods 0.000 description 3
- 230000009471 action Effects 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 239000003086 colorant Substances 0.000 description 3
- 238000004891 communication Methods 0.000 description 3
- CNQCVBJFEGMYDW-UHFFFAOYSA-N lawrencium atom Chemical compound [Lr] CNQCVBJFEGMYDW-UHFFFAOYSA-N 0.000 description 3
- 230000003321 amplification Effects 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 238000005253 cladding Methods 0.000 description 2
- 230000000295 complement effect Effects 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000007599 discharging Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000010304 firing Methods 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 238000003384 imaging method Methods 0.000 description 2
- 229910044991 metal oxide Inorganic materials 0.000 description 2
- 150000004706 metal oxides Chemical class 0.000 description 2
- 238000001208 nuclear magnetic resonance pulse sequence Methods 0.000 description 2
- 238000003199 nucleic acid amplification method Methods 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 238000007493 shaping process Methods 0.000 description 2
- 230000003595 spectral effect Effects 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 230000006978 adaptation Effects 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 238000003491 array Methods 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000004397 blinking Effects 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000004590 computer program Methods 0.000 description 1
- 230000003750 conditioning effect Effects 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000004146 energy storage Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 238000002310 reflectometry Methods 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/48—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
- G01S7/483—Details of pulse systems
- G01S7/484—Transmitters
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/48—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
- G01S7/481—Constructional features, e.g. arrangements of optical elements
- G01S7/4814—Constructional features, e.g. arrangements of optical elements of transmitters alone
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/52—Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
- H01L23/522—Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
- H01L23/528—Geometry or layout of the interconnection structure
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/02—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
- H01L27/04—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
- H01L27/06—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
- H01L27/0605—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits made of compound material, e.g. AIIIBV
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/02—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
- H01L27/04—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
- H01L27/06—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
- H01L27/0611—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region
- H01L27/0617—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region comprising components of the field-effect type
- H01L27/0629—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region comprising components of the field-effect type in combination with diodes, or resistors, or capacitors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/02—Semiconductor bodies ; Multistep manufacturing processes therefor
- H01L29/12—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
- H01L29/20—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
- H01L29/2003—Nitride compounds
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S17/00—Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
- G01S17/02—Systems using the reflection of electromagnetic waves other than radio waves
- G01S17/06—Systems determining position data of a target
- G01S17/42—Simultaneous measurement of distance and other co-ordinates
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K1/00—Printed circuits
- H05K1/18—Printed circuits structurally associated with non-printed electric components
- H05K1/181—Printed circuits structurally associated with non-printed electric components associated with surface mounted components
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K2201/00—Indexing scheme relating to printed circuits covered by H05K1/00
- H05K2201/10—Details of components or other objects attached to or integrated in a printed circuit board
- H05K2201/10007—Types of components
- H05K2201/10015—Non-printed capacitor
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K2201/00—Indexing scheme relating to printed circuits covered by H05K1/00
- H05K2201/10—Details of components or other objects attached to or integrated in a printed circuit board
- H05K2201/10007—Types of components
- H05K2201/10022—Non-printed resistor
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K2201/00—Indexing scheme relating to printed circuits covered by H05K1/00
- H05K2201/10—Details of components or other objects attached to or integrated in a printed circuit board
- H05K2201/10007—Types of components
- H05K2201/10106—Light emitting diode [LED]
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K2201/00—Indexing scheme relating to printed circuits covered by H05K1/00
- H05K2201/10—Details of components or other objects attached to or integrated in a printed circuit board
- H05K2201/10007—Types of components
- H05K2201/10121—Optical component, e.g. opto-electronic component
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K2201/00—Indexing scheme relating to printed circuits covered by H05K1/00
- H05K2201/10—Details of components or other objects attached to or integrated in a printed circuit board
- H05K2201/10007—Types of components
- H05K2201/10151—Sensor
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K2201/00—Indexing scheme relating to printed circuits covered by H05K1/00
- H05K2201/10—Details of components or other objects attached to or integrated in a printed circuit board
- H05K2201/10007—Types of components
- H05K2201/10166—Transistor
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Power Engineering (AREA)
- General Physics & Mathematics (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Computer Hardware Design (AREA)
- Remote Sensing (AREA)
- Radar, Positioning & Navigation (AREA)
- Computer Networks & Wireless Communication (AREA)
- Geometry (AREA)
- Ceramic Engineering (AREA)
- Optical Radar Systems And Details Thereof (AREA)
- Semiconductor Lasers (AREA)
- Measurement Of Optical Distance (AREA)
Abstract
在本文中描述了用于利用集成LIDAR测量设备来执行三维LIDAR测量的方法和系统。在一个方面中,基于氮化镓(GaN)的照明驱动器集成电路(IC)、照明源、以及返回信号接收器IC被装配到公共基板。照明驱动器IC响应于从返回信号接收器IC所接收的脉冲触发信号来向照明源提供电功率的脉冲。在另一方面中,所述基于GaN的照明驱动器IC基于从返回信号接收器IC被传送到照明驱动器IC的命令信号来控制电功率的脉冲的幅度、缓变率和持续时间。在另外的方面中,在照明驱动器IC不向照明源提供电功率时的时间段期间,照明驱动器IC降低由照明驱动器IC所消耗的电功率的量。
Description
对相关申请的交叉引用
本专利申请要求来自2018年3月30日提交的、题为“Integrated LIDAR IlluminationPower Control”、申请序列号为15/941,302的美国专利申请的优先权,所述美国专利申请进而在35 U.S.C.§119下要求来自2017年3月31日提交的、题为“Integrated LIDARIllumination Power Control”、申请序列号为62/480,119的美国临时专利申请的优先权,每一个的主题通过引用以其全部被并入本文中。
技术领域
所描述的实施例涉及基于LIDAR的3D点云测量系统。
背景技术
LIDAR系统采用光脉冲来基于每个光脉冲的飞行时间(TOF)来测量距对象的距离。从LIDAR系统的光源所发射的光脉冲与远端对象交互。光的一部分从对象反射并且返回到LIDAR系统的检测器。基于在光脉冲的发射与对所返回的光脉冲的检测之间过去的时间,估计距离。在一些示例中,由激光发射器生成光脉冲。通过透镜或透镜组装件来聚焦光脉冲。对于激光脉冲返回到被装配在发射器近旁的检测器所花费的时间被测量。以高准确性从时间测量中得到距离。
一些LIDAR系统采用与旋转镜组合的单个激光发射器/检测器组合来有效地跨平面而扫描。由这样的系统所执行的距离测量实际上是二维的(即平面的),并且所捕获的距离点被渲染为2D(即单个平面)点云。在一些示例中,旋转镜以非常快速的速度(例如每分钟数千转)旋转。
在许多操作场景中,需要3D点云。已经采用多个方案来询问三维中的周围环境。在一些示例中,2D仪器通常在平衡环上被致动以向上和向下和/或向后和向前。这在本领域内通常已知为使传感器“眨眼”或“点头”。因而,可以采用单个射束LIDAR单元来捕获距离点的整个3D阵列,尽管一次一个点。在有关示例中,采用棱镜来将“激光脉冲”划分成多个层,其各自具有稍微不同的垂直角。这模拟上述点头效应,但没有对传感器本身的致动。
在所有以上示例中,单个激光发射器/检测器组合的光路径以某种方法被变更以实现比单个传感器更宽的视场。这样的设备每单位时间能生成的像素的数目固有地受限,这是由于单个激光的脉冲重复率上的限制所致。对射束路径的任何变更,无论它是通过镜、棱镜还是设备的致动,其都实现更大的覆盖面积,以减小的点云密度为代价。
如以上所指出的,3D点云系统以若干配置而存在。然而,在许多应用中,通过宽视场来查看是必要的。例如,在自主载具应用中,垂直视场应当向下尽可能靠近地延伸,以看到载具前方的地面。另外,在汽车进入道路中的凹陷处的情况下,垂直视场应当在水平线以上延伸。另外,有必要具有在现实世界中的动作发生与对那些动作的成像之间的最小延迟。在一些示例中,合期望的是每秒提供至少五次完整的图像更新。为了解决这些要求,已经开发了3D LIDAR系统,其包括多个激光发射器和检测器的阵列。该系统在2011年6月28日所发布的专利号为7,969,558的美国专利中被描述,所述专利的主题通过引用以其全部被并入本文中。
在许多应用中,发射脉冲的序列。每个脉冲的方向顺序地快速连续地变化。在这些示例中,与每个单独的脉冲相关联的距离测量可以被视为像素,并且快速连续地发射并且捕获的像素的集合(即“点云”)可以被渲染为图像或出于其它理由而被分析(例如检测障碍物)。在一些示例中,采用查看软件来将结果得到的点云渲染为对于用户而言看似三维的图像。可以使用不同的方案来将距离测量描绘为3D图像,所述3D图像看似仿佛它们通过实况动作相机而被捕获似的。
一些现有LIDAR系统采用照明源和检测器,所述照明源和检测器不一起被集成到公共基板(例如电装配板)上。此外,照明射束路径与收集射束路径在LIDAR设备内是分离的。这导致光机设计复杂性和对准困难。
另外,被采用来在不同的方向上扫描照明射束的机械设备对于机械振动、惯性力和一般的环境条件可以是敏感的。在没有恰当设计的情况下,这些机械设备可降级,从而导致性能损失或故障。
为了以高分辨率和高吞吐量来测量3D环境,测量脉冲必须非常短。当前系统遭受低分辨率,因为它们在其生成短持续时间脉冲的能力方面受限。
检测器的饱和限制测量能力,因为目标反射率和邻近度在现实操作环境中大大地变化。另外,功率消耗可引起LIDAR系统过热。光设备、目标、电路和温度在实际系统中变化。在没有对每个LIDAR设备的光子输出的恰当校准的情况下,所有这些元件的可变性限制系统性能。
期望LIDAR系统的照明驱动电子器件和接收器电子器件中的改进,以改善成像分辨率和范围。
发明内容
在本文中描述了用于利用集成LIDAR测量设备来执行三维LIDAR测量的方法和系统。
在一个方面中,LIDAR测量设备的照明驱动器是基于GaN的集成电路(IC),所述基于GaN的集成电路(IC)选择性地将照明源耦合到电功率源,以响应于脉冲触发信号而生成照明光的测量脉冲。基于GaN的照明驱动器包括场效应晶体管(FET),所述场效应晶体管(FET)与常规的基于硅的硅上互补金属氧化物(CMOS)器件相比提供更高的电流密度。作为结果,基于GaN的照明驱动器能够以显著更少的功率损失来向照明源递送相对大的电流。
在另外的方面中,返回脉冲接收器IC从主控制器接收脉冲命令信号,并且响应于所述脉冲命令信号来向照明驱动器IC传送脉冲触发信号。脉冲触发信号还触发通过返回脉冲接收器IC的返回信号的数据获取以及相关联的飞行时间计算。以此方式,采用基于接收器IC的内部时钟所生成的脉冲触发信号来触发脉冲生成和返回脉冲数据获取二者。这确保脉冲生成和返回脉冲获取的精确同步,其使得能够实现通过时间至数字转换的精确飞行时间计算。
在此外的另一方面中,返回脉冲接收器IC基于以下来测量飞行时间:在由于集成LIDAR测量设备的照明源与光电检测器之间的内部串扰所致的脉冲与有效返回脉冲的检测之间过去的时间。以此方式,从飞行时间的估计中消除系统延迟。
在另一方面中,照明驱动器IC包括多个不同的FET,所述FET被配置成控制通过照明源的电流流动。此外,被耦合到照明源的FET的数目是可基于数字FET选择信号而选择的。在一些实施例中,从返回脉冲接收器IC向照明驱动器IC传送FET选择信号。
在另一方面中,照明驱动器IC包括功率节省控制模块,所述功率节省控制模块对被供给到照明驱动器IC的电路的一部分的功率进行调制以降低功耗。在操作中,照明驱动器IC花费相对短量的时间来生成测量脉冲,并且花费相对长量的时间来等待触发信号以生成下一个测量脉冲。在这些空闲时段期间,照明驱动器IC降低或消除被供给到在整个等待时段内不需要是活动的电路组件的功率。
在另一方面中,照明驱动器IC包括脉冲发起信号发生器,其基于脉冲触发信号来生成脉冲发起信号。另外,照明驱动器IC包括脉冲终止信号发生器,其生成脉冲终止信号。在一起,脉冲发起信号和脉冲终止信号直接确定由照明驱动器IC所生成的脉冲的定时。照明驱动器IC基于从返回脉冲接收器IC所接收的模拟脉冲宽度控制信号的值来生成可编程的持续时间的脉冲。照明驱动器基于脉冲宽度控制信号的值来生成脉冲终止信号,其具有从脉冲发起信号的延迟。
在另一方面中,照明驱动器IC基于从返回脉冲接收器IC所接收的模拟幅度控制信号的值来生成可编程的幅度的脉冲。
在另一方面中,主控制器被配置成生成多个脉冲命令信号,其各自被传送到不同的集成LIDAR测量设备。每个返回脉冲接收器IC基于所接收的脉冲命令信号来生成对应的脉冲触发信号。
前述内容是概要并且因而必然包含细节的简化、一般化和省略;因此,本领域技术人员将领会到,概要仅仅是说明性的并且不以任何方式是限制性的。在本文中所阐明的非限制性的详细描述中,本文中所述的设备和/或过程的其它方面、发明的特征和优点将变得显而易见。
附图说明
图1是一简化图解,其图示了在至少一个新颖方面中的、包括至少一个集成LIDAR测量设备的LIDAR测量系统的一个实施例。
图2描绘了与从集成LIDAR测量设备130的测量脉冲的发射和对返回测量脉冲的捕获相关联的定时的图示。
图3描绘了一简化图解,其图示了在一个实施例中的照明驱动器IC。
图4描绘了一简化图解,其图示了在另一实施例中的照明驱动器IC。
图5描绘了一简化图解,其图示了照明驱动器IC的一部分的一个实施例,所述照明驱动器IC包括功率节省控制模块、脉冲发起信号发生器和脉冲终止信号发生器。
图6进一步详细地描绘了功率节省控制模块的实施例。
图7进一步详细地描绘了脉冲发起信号发生器的实施例。
图8进一步详细地描绘了脉冲终止信号发生器的实施例。
图9进一步详细地描绘了脉冲幅度控制电路的实施例。
图10描绘了响应于脉冲触发信号由功率节省控制模块所生成的稳定电压VREG中的改变的简化图示。
图11是一图解,其图示了在一个示例性操作场景中的3D LIDAR系统100的实施例。
图12是一图解,其图示了在一个示例性操作场景中的3D LIDAR系统10的另一实施例。
图13描绘了一图解,其图示了在一个示例性实施例中的3D LIDAR系统100的分解视图。
图14更详细地描绘了光学元件116的视图。
图15描绘了光学器件116的剖视图,用于图示所收集的光118的每个射束的成形。
图16描绘了一流程图,其图示了在至少一个新颖方面中的、用于通过集成LIDAR测量设备来执行LIDAR测量的方法300。
具体实施方式
现在将详细参考背景示例和本发明的一些实施例,其示例在附图中被图示出。
图1描绘了在一个实施例中的LIDAR测量系统120。LIDAR测量系统120包括主控制器190以及一个或多个集成LIDAR测量设备130。集成LIDAR测量设备130包括返回信号接收器集成电路(IC)、基于氮化镓的照明驱动器集成电路(IC)140、照明源160、光电检测器170、以及跨阻抗放大器(TIA)180。这些元件中的每一个都被装配到公共基板135(例如印刷电路板),所述公共基板135提供机械支撑以及在元件之间的电连接性。
另外,在一些实施例中,集成LIDAR测量设备包括一个或多个电压供给,所述电压供给向被装配到基板135的电子元件提供电压并且向照明设备160提供电功率。如图1中所描绘的,集成LIDAR测量设备130包括低信号电压供给131,所述低信号电压供给131被配置成跨节点VDDLV 137和VSS 136而供给相对低的电压。在一些实施例中,由电压供给131所供给的电压近似是五伏特。选择该电压以确保在照明驱动器IC 140的晶体管中的一个或多个的栅极处所供给的电压不超过损害阈值。另外,集成LIDAR测量设备130包括中等信号电压供给132,所述中等信号电压供给132被配置成跨节点VDDMV 139和VSS 138而供给电压,所述电压比低电压供给131所供给的电压更高。在一些实施例中,由电压供给132所供给的电压近似是十二伏特。选择该电压以确保照明驱动器IC 140的晶体管中的一个或多个的快速开关转变。另外,集成LIDAR测量设备130包括功率电压供给133,所述功率电压供给133被配置成跨节点VDDHV 122和VSS 121而供给电压,所述电压比中等电压供给132所供给的电压更高。在一些实施例中,由电压供给133所供给的电压近似是十五到二十伏特。电压供给133被配置成向照明源160供给高电流136(例如一百安培或更多),其使得照明源160发射测量光的脉冲。
尽管在本文中已经描述了优选的输出电压,但是一般地,供给131、132和133可以被配置成供给任何合适的电压。另外,参考图1所描述的电压供给131、132和133被装配到基板135。然而,一般地,本文中所述的功率供给中的任何可以以任何合适的方式被装配到分离的基板并且电耦合到被装配到基板135的各种元件。尽管参考图1将功率供给131、132和133描述为电压供给,但是一般地,本文中所述的任何电功率源可以被配置成供给被指定为电压或电流的电功率。因此,本文中被描述为电压源或电流源的任何电功率源可以相应地被设想为等同的电流源或电压源。
照明源160响应于电流136的脉冲而发射照明光162的测量脉冲。照明光162通过LIDAR系统的一个或多个光学元件而被聚焦并且投射到周围环境中的特定位置上。
在一些实施例中,照明源160是基于激光的(例如激光二极管)。在一些实施例中,照明源基于一个或多个发光二极管。一般地,可以设想任何合适的脉冲照明源。
如图1中所描绘的,从集成LIDAR测量设备130所发射的照明光162以及指向集成LIDAR测量设备的对应的返回测量光171共享公共的光学路径。集成LIDAR测量设备130包括光电检测器170,所述光电检测器170具有活性传感器区域174。如图1中所描绘的,照明源160位于光电检测器的活性区域174的视场外。如图1中所描绘的,包塑(overmold)透镜172被装配在光电检测器170之上。包塑透镜172包括与返回光171的射线接受锥体相对应的锥形腔体。来自照明源160的照明光162通过纤维波导而被注入到检测器接收锥体中。光学耦合器光学地耦合照明源160与纤维波导。在纤维波导的端部处,镜元件161以相对于波导的45度角被定向,以将照明光162注入到返回光171的锥体中。在一个实施例中,纤维波导的端面以45度角被切割,并且端面涂覆有高度反射性介电涂层以提供镜表面。在一些实施例中,波导包括矩形玻璃芯以及具有较低折射率的聚合物包层。在一些实施例中,整个光学组装件利用如下材料来被封装:所述材料具有与聚合物包层的折射率接近地匹配的折射率。以此方式,波导在最小吸留(occlusion)的情况下将照明光162注入到返回光171的接受锥体中。
选择将波导安置在被投射到检测器170的活性感测区域174上的返回光171的接受锥体内,用以确保照明斑点和检测器视场在远场中具有最大重叠。
如图1中所描绘的,从周围环境所反射的返回光171由光电检测器170来检测。在一些实施例中,光电检测器170是雪崩光电二极管。光电检测器170生成输出信号173,所述输出信号173被模拟跨阻抗放大器(TIA)180放大。然而,一般地,输出信号173的放大可以包括多个放大器级。在此意义上,模拟跨阻抗放大器作为非限制性示例被提供,因为在本专利文档的范围内可以设想许多其它的模拟信号放大方案。尽管TIA 180在图1中被描绘为与接收器IC 150分离的分立设备,但是一般地,TIA 180可以与接收器IC 150集成。在一些实施例中,优选的是集成TIA 180与接收器IC 150,用以节省空间并且减小信号污染。
如图1中所描绘的,经放大的信号181被传送到返回信号接收器IC 150。接收器IC150包括定时电路和时间至数字转换器,其估计测量脉冲从照明源160到三维环境中的反射对象并且回到光电检测器170的飞行时间。指示所估计的飞行时间的信号155被传送到主控制器190以用于进一步处理并且传送到LIDAR测量系统120的用户。另外,返回信号接收器IC150被配置成将包括峰值(即返回脉冲)的返回信号181的片段数字化,并且将对经数字化的片段进行指示的信号156传送到主控制器190。在一些实施例中,主控制器190处理这些信号片段以标识所检测到的对象的性质。在一些实施例中,主控制器190将信号156传送到LIDAR测量系统120的用户以用于进一步处理。
主控制器190被配置成生成脉冲命令信号191,所述脉冲命令信号191被传送到集成LIDAR测量设备130的接收器IC 150。一般地,LIDAR测量系统包括多个不同的集成LIDAR测量设备130。在这些实施例中,主控制器190将脉冲命令信号191传送到每个不同的集成LIDAR测量设备。以此方式,主控制器190协调由任何数目的集成LIDAR测量设备所执行的LIDAR测量的定时。
脉冲命令信号191是由主控制器190所生成的数字信号。因而,脉冲命令信号191的定时由与主控制器190相关联的时钟来确定。在一些实施例中,脉冲命令信号191直接用于触发通过照明驱动器IC 140的脉冲生成以及通过接收器IC 150的数据获取。然而,照明驱动器IC 140和接收器IC 150不共享与主控制器190相同的时钟。为此原因,当脉冲命令信号191直接用于触发脉冲生成和数据获取的时候,对飞行时间的精确估计变得在计算上冗长得多。
在一个方面中,接收器IC 150接收脉冲命令信号191并且响应于脉冲命令信号191而生成脉冲触发信号VTRG 151。脉冲触发信号151被传送到照明驱动器IC 140,并且直接触发照明驱动器IC 140以将照明源160电耦合到功率供给133并且生成照明光162的脉冲。另外,脉冲触发信号151直接触发返回信号181的数据获取以及相关联的飞行时间计算。以此方式,采用基于接收器IC 150的内部时钟所生成的脉冲触发信号151来触发脉冲生成和返回脉冲数据获取二者。这确保脉冲生成和返回脉冲获取的精确同步,其使得能够实现通过时间至数字转换的精确飞行时间计算。
图2描绘了与从集成LIDAR测量设备130的测量脉冲的发射和对返回测量脉冲的捕获相关联的定时的图示。如图2中所描绘的,通过由接收器IC 150所生成的脉冲触发信号162的上升边沿来发起测量。如图1和2中所描绘的,由接收器IC 150接收经放大的返回信号181。如在上文中所述,通过在脉冲触发信号162的上升边沿处启用数据获取而发起测量窗口(即,在其之上所收集的返回信号数据与特定的测量脉冲相关联的时间段)。接收器IC150控制测量窗口的持续时间Tmeasurement,以对应于响应于测量脉冲序列的发射而预期返回信号时的时间窗口。在一些示例中,在脉冲触发信号162的上升边沿处启用测量窗口,并且在与光在LIDAR系统的射程的近似两倍的距离之上的飞行时间相对应的时间处禁用测量窗口。以此方式,测量窗口是打开的以收集从与LIDAR系统相邻(即可忽略的飞行时间)的对象到位于LIDAR系统的最大射程处的对象的返回光。以此方式,拒绝不能有可能贡献于有用的返回信号的所有其它光。
如图2中所描绘的,返回信号181包括与所发射的测量脉冲相对应的三个返回测量脉冲。一般地,在所有所检测到的测量脉冲上执行信号检测。另外的信号分析可以被执行以标识最接近的有效信号181B(即返回测量脉冲的第一有效实例)、最强信号、和最远的有效信号181C(即测量窗口中返回测量脉冲的最后的有效实例)。这些实例中的任一个可以作为通过LIDAR系统的潜在有效的距离测量而被报告。
与光从LIDAR系统的发射相关联的内部系统延迟(例如与开关元件、能量存储元件、以及脉冲光发射设备相关联的信号通信延迟和等待时间)以及与收集光以及生成对所收集的光进行指示的信号相关联的延迟(例如放大器等待时间、模拟-数字转换延迟等等)贡献于在光的测量脉冲的飞行时间的估计中的误差。因而,基于在脉冲触发信号162的上升边沿与每个有效的返回脉冲(即181B和181C)之间过去的时间的对飞行时间的测量引入不合期望的测量误差。在一些实施例中,采用经校准、预定的延迟时间来补偿电子延迟,以达成对实际光学飞行时间的经校正的估计。然而,对动态改变的电子延迟的静态校正的准确性是受限的。尽管可以采用频繁的重校准,但这以计算复杂性为代价并且可干扰系统正常运行时间。
在另一方面中,接收器IC 150基于在由于在照明源160与光电检测器170之间的内部串扰所致的所检测的脉冲181A与有效返回脉冲(例如181B和181C)的检测之间过去的时间来测量飞行时间。以此方式,从飞行时间的估计中消除系统延迟。在实际上没有光传播距离的情况下由内部串扰生成脉冲181A。因而,来自脉冲触发信号的上升边沿与脉冲181A的检测实例的时间延迟捕获捕获与照明和信号检测相关联的所有系统延迟。通过参照所检测的脉冲181A来测量有效返回脉冲(例如返回脉冲181B和181C)的飞行时间,消除由于内部串扰所致的、与照明和信号检测相关联的所有系统延迟。如图2中所描绘的,接收器IC 150参照返回脉冲181A来估计与返回脉冲181B相关联的飞行时间TOF1以及与返回脉冲181C相关联的飞行时间TOF2。
在一些实施例中,完全通过接收器IC 150来执行信号分析。在这些实施例中,从集成LIDAR测量设备130所传送的信号155包括由接收器IC 150所确定的飞行时间的指示。在一些实施例中,信号156包括由接收器IC 150所生成的返回信号181的经数字化的片段。这些原始测量信号片段由位于3D LIDAR系统上或3D LIDAR系统外部的一个或多个处理器进一步处理,以达成对距离的另一估计、对所检测的对象的多个物理性质之一的估计或其组合。
在一个方面中,LIDAR测量设备的照明驱动器是基于GaN的IC,所述基于GaN的IC选择性地将照明源耦合到电功率源,以响应于脉冲触发信号而生成照明光的测量脉冲。基于GaN的照明驱动器包括场效应晶体管(FET),所述场效应晶体管(FET)与常规的基于硅的硅上互补金属氧化物(CMOS)设备相比提供更高的电流密度。作为结果,基于GaN的照明驱动器能够以比基于硅的驱动器显著更少的功率损失来向照明源递送相对大的电流。
如图1中所描绘的,照明驱动器IC 140被耦合到功率电压供给133的电压节点121以及照明源160的节点。照明源160的另一节点被耦合到功率电压供给133的电压节点122。响应于脉冲触发信号151,照明驱动器IC 140的场效应晶体管(FET)变成大体上导通的,并且有效地将照明源160耦合到节点121。这引起通过照明源160的高电流流动136,其激励照明光162的测量脉冲的发射。
图3描绘了照明驱动器IC 140的实施例140A。在另外的方面中,基于GaN的照明驱动器IC 140A包括被集成到公共的基于GaN的IC上的三个FET 141、143和144。主要FET 141控制电流通过照明源160(例如激光二极管160)的流动。但是,两个附加的晶体管、主要充电FET 143和主要放电FET 144控制去往主要FET 141的栅极电压,以加速转变并且使功率损失最小化。
如图3中所描绘的,主要充电FET 143的漏极被耦合到图1中所描绘的低电压供给131的电压节点137。主要充电FET 143的源极被耦合到主要放电FET 144的漏极以及主要FET 141的栅极。主要放电FET 144的源极被耦合到低电压供给131的电压节点136。另外,电阻器被耦合在主要FET 141的栅极与低电压供给131的电压节点136之间。在主要充电FET143的栅极处提供栅极充电控制信号145,并且在主要放电FET 144的栅极处提供栅极放电控制信号146。以此方式,栅极充电控制信号145和栅极放电控制信号144确定主要FET 141的栅极处的电荷,并且因而确定主要FET 141的导通状态。在一个示例中,栅极充电控制信号是脉冲触发信号151,并且栅极放电控制信号是脉冲触发信号151的相反物。
图3中所描绘的照明驱动器IC 140的实施例140A包括单个主要FET 141,其确定通过照明源160的电流流动。在另一方面中,照明驱动器IC 140包括多个不同的FET,所述FET被配置成控制通过照明源160的电流流动。此外,被耦合到照明源的FET的数目是可编程的。这使能实现通过照明源160的可编程的最大电流流动,并且因而使能实现可编程的最大照明脉冲幅度。
图4描绘了照明驱动器IC 140的实施例140B。同样标号的元件参考图3被描述。如图4中所描绘的,一个或多个FET的N个群组与照明源160并联地耦合,其中N是任何正整数。每个FET群组141A-141N中的每个主要FET的漏极被耦合到照明源160的节点。类似地,每个FET群组141A-141N中的每个主要FET的源极被耦合到功率电压供给133的节点121。每个FET群组141A-141N的每个主要FET的栅极被选择性地耦合到主要充电FET 143的源极以及主要放电FET 144的漏极。通过从接收器IC 150所接收的选择信号SEL 154的状态来确定FET的特定群组的每个主要FET是否被电耦合到主要充电FET 143的源极以及主要放电FET 144的漏极。在图4中所描绘的示例中,SEL是N位字。每个位与特定的主要FET群组相对应。如果特定的位处于高状态中,则与对应的主要FET群组相关联的每个主要FET被耦合到主要充电FET 143的源极以及主要放电FET 144的漏极。在该状态中,栅极充电控制信号145和栅极放电控制信号144确定对应的主要FET群组中的每个主要FET的栅极处的电荷。以此方式,N位字的每个位的状态确定哪些主要FET群组将参与通过照明源160的脉冲生成。
接收器IC 150通过生成SEL信号并且将其传送到照明驱动器IC 140来确定哪些FET群组应当参与下一个测量脉冲。在一些示例中,所述确定基于从在先的测量脉冲所接收的返回信号。例如,如果所接收的返回信号饱和,则接收器IC 150生成选择信号SEL并且将其传送到照明驱动器140,其具有较大数目的零值位以减小参与的主要FET群组的数目。以此方式,在下一个照明脉冲中所发射的光子的数目被减小。
在一些实施例中,每个主要FET群组中的FET的数目不同。以此方式,FET群组的不同组合可以被激活以实现具有均匀分辨率的宽范围的参与的FET。
图5描绘了照明驱动器IC 140的一部分的一个实施例140C。如图5中所描绘的,照明驱动器IC 140C包括功率节省控制模块210、脉冲发起信号发生器220以及脉冲终止信号发生器230。
在另一方面中,照明驱动器IC 140包括功率节省控制模块,所述功率节省控制模块对被供给到照明驱动器IC 140的电路的一部分的功率进行调制以降低功耗。在操作中,照明驱动器IC 140花费相对短量的时间来生成测量脉冲,并且花费相对长量的时间来等待触发信号以生成下一个测量脉冲。在这些空闲时段期间,合期望的是降低或消除被供给到在整个等待时段内不需要是活动的电路组件的功率。如图5中所描绘的,功率节省控制模块210被耦合在图1中所描绘的信号电压供给132的电压节点VDDMV与VSS之间。另外,功率节省控制模块210从接收器IC 150接收脉冲触发信号151,并且作为响应,生成稳定电压Vreg,其被供给到照明驱动器IC 140的各个部分。例如,Vreg被提供到图4中所描绘的主要FET群组141A-N、图9中所描绘的脉冲幅度控制电路250以及图5中所描绘的脉冲终止信号发生器230。
图6描绘了功率节省控制模块210的实施例210A。功率节省控制模块210A包括电阻器214。在电阻器214的第一节点上提供脉冲触发信号151。电阻器214的第二节点被耦合到电容器215的第一节点。电容器215的其它节点被耦合到图1中所描绘的信号电压供给132的节点138。功率节省控制模块210A还包括FET 213,所述FET 213具有被耦合到信号电压供给132的节点138的源极、被耦合到电阻器214的第二节点的栅极、以及被耦合到FET 211的该栅极的漏极。FET 211的漏极被耦合到信号电压供给132的节点139,并且在FET 211的源极处提供稳定电压Vreg。电阻器214和电容器215创建RC网络,其在FET 213的栅极处引入延迟。这在VTRG的上升边沿与在睡眠模式期间VREG下降到VSS时的时间之间引入延迟(图10中所描绘的TD_SLEEP)。
图10描绘了由功率节省控制模块210响应于脉冲触发信号VTRG所生成的稳定电压VREG中的改变的简化图示。如图10中所描绘的,在脉冲触发信号的上升边沿处,稳定电压在时间段TD_SLEEP内保持为高。通过电阻器214和电容器215的值来确定该时间长度。在该时间段之后,VREG快速下降。在VTRG的下落边沿处,稳定电压在一段时间内保持为低,然后斜升到相对高的电压值,使得照明驱动器IC 140准备好响应于VTRG的后续上升边沿而生成测量脉冲。
在另一方面中,照明驱动器IC 140包括脉冲发起信号发生器220,所述脉冲发起信号发生器220基于脉冲触发信号而向基于GaN的照明驱动器IC的一部分生成脉冲发起信号Vinit。另外,照明驱动器IC 140包括脉冲终止信号发生器230,所述脉冲终止信号发生器230基于脉冲发起信号而向基于GaN的照明驱动器IC的一部分生成脉冲终止信号Vterm。在一起,脉冲发起信号和脉冲终止信号直接确定由照明驱动器IC 140所生成的脉冲的定时。换言之,在一些实施例中,采用脉冲触发信号151来触发脉冲发起信号的生成,而不是使脉冲触发信号151直接确定由照明驱动器IC 140所生成的脉冲的定时。脉冲发起信号进而直接发起脉冲生成,并且还发起脉冲终止信号的生成。脉冲终止信号进而直接终止脉冲生成。
图7描绘了脉冲发起信号发生器220的实施例220A。脉冲发起信号发生器220A包括FET 222和电阻器223。在FET 222的栅极上提供脉冲触发信号151。FET 222的源极被耦合到图1中所描绘的信号电压供给132的节点138。电阻器223的第一节点被耦合到信号电压供给132的节点139,并且电阻器223的第二节点被耦合到FET 222的漏极。在FET 222的漏极处提供脉冲发起信号221。
图10描绘了由脉冲发起信号发生器220响应于脉冲触发信号VTRG所生成的脉冲发起信号VINIT中的改变的简化图示。如图10中所描绘的,在脉冲触发信号的上升边沿处,VINIT非常快速地下降到低电压值VSS。在VTRG的下落边沿处,VINIT斜升到VDDMV的值,使得照明驱动器IC 140准备好响应于VTRG的后续上升边沿而生成脉冲发起信号。
在另一方面中,脉冲终止信号发生器230被配置成基于模拟输入信号的值来生成具有可编程的持续时间的脉冲。如图1中所描绘的,接收器IC 150生成模拟脉冲宽度控制信号VPWC 152,并且将VPWC传送到照明驱动器IC 140。作为响应,照明驱动器IC 140基于VPWC的所接收的值来改变脉冲持续时间。在图5中所描绘的实施例中,脉冲终止信号发生器230接收VPWC和VINIT,并且生成脉冲终止信号VTERM,其具有自根据VPWC的值所编程的VINIT的延迟。
图8描绘了脉冲终止信号发生器220的实施例230A。脉冲终止信号发生器230包括电阻器238以及FET 236-237,其被配置为运算放大器。运算放大器的输出被耦合到FET 243的栅极。运算放大器在FET 236的栅极处接收VPWC作为输入。另外,运算放大器在FET 237的栅极处接收输入电压249。当输入电压249超过VPWC的值的时候,输出电压248的值切换转变到低值。当VPWC的值超过输入电压249的值的时候,输出电压248的值转变到高值。输入电压249是由电阻器241和电容器242所形成的RC电路的电压。在FET 240的栅极处接收VINIT。当(在脉冲的起始处)VINIT转变到低值的时候,FET 240有效地将RC电路从VSS断开。这允许RC电路开始充电。FET 239为RC电路提供非零起始电压。随着RC电路的电压上升,最后它超过VPWC的值,因而触发输出节点248的转变。由于RC电路的电压缓变率是恒定的,所以直到输出电压248的转变为止的延迟部分地由VPWC的值来确定。VPWC的值越大,自脉冲发起、在终止信号VTERM的生成之前的延迟就越长。以此方式,VPWC的值确定脉冲持续时间。脉冲终止信号发生器230包括电阻器232以及FET 233-235,其被配置为用于运算放大器结构的电流源。FET243和244被配置成按比例缩小输出电压248的值。电阻器245和247以及FET 246被配置成使输出电压248的经缩放的值反转。在FET 246的漏极处提供脉冲终止信号VTERM。
图10描绘了由脉冲终止信号发生器230响应于脉冲发起信号VINIT和脉冲宽度控制信号VPWC所生成的脉冲终止信号VTERM中的改变的简化图示。如图10中所描绘的,当VINIT走低的时候,RC电路的电压开始斜升。在RC电路的电压超过时VPWC的时间点处,VTERM走高,保持一段时间,然后再次斜降。注意到在脉冲发起与VTERM的上升边沿之间的时间段TD_PULSE确定测量脉冲的相对持续时间。在VTRG的下落边沿处,VTERM再次斜降,使得照明驱动器IC 140准备好生成用于后续脉冲的脉冲终止信号。如所描绘的,在图10中,还描绘了主要FET 141的栅极电压VGATE。
在另一方面中,脉冲终止信号发生器230被配置成基于模拟输入信号的值来生成具有可编程的幅度的脉冲。如图1中所描绘的,接收器IC 150生成模拟幅度控制信号VAMP153,并且将VAMP传送到照明驱动器IC 140。作为响应,照明驱动器IC 140基于VAMP的所接收的值来改变脉冲幅度。
在图9中所描绘的照明驱动器IC 140的部分的实施例140C中,脉冲幅度控制电路250接收VAMP,其控制由照明源160所生成的脉冲的幅度。
当VINIT走低的时候(其用信号通知测量脉冲的起始),FET 262快速地将主要充电FET 143的栅极从VSS释放,从而允许主要充电FET 143快速地充电。类似地,FET 263快速地将主要FET 141的栅极从VSS释放,从而允许主要FET 141充电。
当VTERM走高的时候(其用信号通知测量脉冲的结束),FET 264将充电FET 143的栅极短接到VSS。类似地,主要放电FET 144尽可能快地将主要FET 141的栅极短接到VSS,以切断通过照明源160的电流流动。
FET 260和电阻器261提供主要放电FET 144和放电FET 264的快速开启。
另外,脉冲幅度控制电路250包括电阻器251和254、电容器252以及FET 253。在电阻器251的第一节点上接收脉冲幅度控制信号VAMP。电阻器251的第二节点被耦合到FET 253的栅极并且被耦合到电容器252的第一节点。FET 253的漏极被耦合到稳定电压供给VREG。FET 253的源极被耦合到电阻器254的第一节点。电阻器254的第二节点被耦合到电容器252的第二节点,其被耦合到主要放电FET 143的栅极。以此方式,脉冲幅度控制电路250控制主要充电FET 143的栅极处的电荷。
如图9中所描绘的,VAMP的值控制脉冲幅度控制电路250的缓变率。当VAMP增大时,FET 253的栅极处的电荷累积速率增大。进而,这增大主要充电FET 143的栅极上的电荷累积速率。这进而增大主要FET 141的栅极上的电荷累积速率,其加速由照明源160所生成的结果得到的照明脉冲的缓变率。以此方式,VAMP在给定的脉冲持续时间内控制照明脉冲的峰值幅度。
在另一方面中,主控制器被配置成生成多个脉冲命令信号,其各自被传送到不同的集成LIDAR测量设备。每个返回脉冲接收器IC基于所接收的脉冲命令信号来生成对应的脉冲触发信号。
图11-13描绘了3D LIDAR系统,其包括多个集成LIDAR测量设备。在一些实施例中,在每个集成LIDAR测量设备的点火(firing)之间设置延迟时间。在一些示例中,所述延迟时间大于测量脉冲序列向和从位于LIDAR设备的最大射程处的对象的飞行时间。以此方式,在任何集成LIDAR测量设备之间不存在任何串扰。在一些其它示例中,在从另一集成LIDAR测量设备发射的测量脉冲已有时间返回到LIDAR设备之前,从一个集成LIDAR测量设备发射测量脉冲。在这些实施例中,注意确保在由每个射束询问的周围环境的区域之间存在充足的空间分离,以避免串扰。
图11是一图解,其图示了在一个示例性操作场景中的3D LIDAR系统100的实施例。3D LIDAR系统100包括下外壳101和上外壳102,所述上外壳102包括由如下材料所构造的半球形壳体元件103:所述材料对于红外光(例如具有在700到1700纳米的光谱范围内的波长的光)是透明的。在一个示例中,半球形壳体元件103对于具有以905纳米为中心的波长的光是透明的。
如图11中所描绘的,光105的多个射束通过半球形壳体元件103、在从中央轴104所测量的角范围α之上从3D LIDAR系统100发射。在图11中所描绘的实施例中,光的每个射束被投射到由x和y轴所限定的平面上、在与彼此间隔开的多个不同位置处。例如,射束106被投射到xy平面上、在位置107处。
在图11中所描绘的实施例中,3D LIDAR系统100被配置成绕中央轴104扫描光105的所述多个射束中的每一个。被投射到xy平面上的光的每个射束描画以中央轴104与xy平面的相交点为中心的圆形图案。例如,随着时间的过去,被投射到xy平面上的射束106描出以中央轴104为中心的圆形轨迹108。
图12是一图解,其图示了在一个示例性操作场景中的3D LIDAR系统10的另一实施例。3D LIDAR系统10包括下外壳11和上外壳12,所述上外壳12包括由如下材料所构造的圆柱形壳体元件13:所述材料对于红外光(例如具有在700到1700纳米的光谱范围内的波长的光)是透明的。在一个示例中,圆柱形壳体元件13对于具有以905纳米为中心的波长的光是透明的。
如图12中所描绘的,光15的多个射束通过圆柱形壳体元件13、在角范围β之上从3DLIDAR系统100发射。在图12中所描绘的实施例中,图示了光的每个射束的主射线。光的每个射束在多个不同的方向上向外投射到周围环境中。例如,射束16被投射到周围环境中的位置17上。在一些实施例中,从系统10发射的光的每个射束轻微发散。在一个示例中,从系统10发射的光的射束在自系统10有100米的距离处照明了直径为20厘米的斑点大小。以此方式,照明光的每个射束是从系统10发射的照明光的锥体。
在图12中所描绘的实施例中,3D LIDAR系统10被配置成绕中央轴14扫描光15的所述多个射束中的每一个。为了图示的目的,光15的射束在相对于3D LIDAR系统10的非旋转坐标系的一个角定向中被图示,光15’的射束在相对于所述非旋转坐标系的另一角定向中被图示。在光15的射束绕中央轴14旋转时,被投射到周围环境中的光的每个射束(例如与每个射束相关联的照明光的每个锥体)在它绕中央轴14被扫掠时照明与锥体形状的照明射束对应的环境体积。
图13描绘了在一个示例性实施例中的3D LIDAR系统100的分解视图。3D LIDAR系统100此外包括绕中央轴104旋转的光发射/收集引擎112。在图13中所描绘的实施例中,光发射/收集引擎112的中央光学轴117以相对于中央轴104的角度θ倾斜。如图13中所描绘的,3D LIDAR系统100包括被装配在相对于下外壳101的固定定位中的固定电子板110。旋转电子板111被布置在固定电子板110的上方,并且被配置成以预定的旋转速度(例如多于每分钟200转)相对于固定电子板110而旋转。电功率信号和电子信号通过一个或多个变换器、电容性或光学元件而在固定电子板110与旋转电子板111之间被传送,从而导致这些信号的无接触传送。光发射/收集引擎112相对于旋转电子板111被固定地定位,并且因而以预定的角速度ω绕中央轴104旋转。
如图13中所描绘的,光发射/收集引擎112包括集成LIDAR测量设备113的阵列。在一个方面中,每个集成LIDAR测量设备包括被集成到公共基板(例如印刷电路板或其它电路板)上的光发射元件、光检测元件、以及相关联的控制和信号调节电子器件。
从每个集成LIDAR测量设备所发射的光通过一系列光学元件116,所述光学元件116使所发射的光准直以生成从3D LIDAR系统投射到环境中的照明光的射束。以此方式,各自从不同的LIDAR测量设备所发射的光105的射束的阵列从3D LIDAR系统100被发射,如图11中所描绘的那样。一般地,任何数目的LIDAR测量设备可以被布置成从3D LIDAR系统100同时发射任何数目的光射束。从环境中的对象所反射的光由于其通过特定LIDAR测量设备的照明而被光学元件116收集。所收集的光通过光学元件116,其中它被聚焦到相同的、特定LIDAR测量设备的检测元件上。以此方式,与通过由不同LIDAR测量设备所生成的照明而对环境的不同部分的照明相关联的所收集的光被分离地聚焦到每个对应的LIDAR测量设备的检测器上。
图14更详细地描绘了光学元件116的视图。如图14中所描绘的,光学元件116包括四个透镜元件116A-D,所述四个透镜元件116A-D被布置成将所收集的光118聚焦到集成LIDAR测量设备113的阵列的每个检测器上。在图14中所描绘的实施例中,通过光学器件116的光从镜124被反射,并且被指引到集成LIDAR测量设备113的阵列的每个检测器上。在一些实施例中,光学元件116中的一个或多个由一种或多种如下材料来被构造:所述材料吸收在预定波长范围外的光。所述预定波长范围包括由集成LIDAR测量设备113的阵列所发射的光的波长。在一个示例中,透镜元件中的一个或多个由塑料材料构造,所述塑料材料包括着色剂添加剂,用于吸收具有比通过集成LIDAR测量设备113的阵列中的每一个所生成的红外光更小的波长的光。在一个示例中,着色剂是自Aako BV(荷兰的)可得到的Epolight 7276A。一般地,任何数目的不同着色剂可以被添加到光学器件116的任何塑料透镜元件,用于过滤掉不期望的光谱。
图15描绘了光学器件116的剖视图,用于图示所收集的光118的每个射束的成形。
以此方式,LIDAR系统、诸如图2中所描绘的3D LIDAR系统10以及图11中所描绘的系统100包括多个集成LIDAR测量设备,其各自从LIDAR设备往周围环境中发射照明光的脉冲射束,并且测量从周围环境中的对象所反射的返回光。
在一些实施例、诸如参考图11和图12所描述的实施例,集成LIDAR测量设备的阵列被装配到LIDAR设备的旋转框架。该旋转框架相对于LIDAR设备的基础框架而旋转。然而,一般地,集成LIDAR测量设备的阵列可以相对于LIDAR设备的基础框架用任何合适的方式(例如平衡环、摇摄(pan)/倾斜等等)可移动或固定。
在一些其它实施例中,每个集成LIDAR测量设备包括射束指向元件(例如扫描镜、MEMS镜等等),所述射束指向元件扫描由集成LIDAR测量设备所生成的照明射束。
在一些其它实施例中,两个或更多集成LIDAR测量设备各自朝向扫描镜设备(例如MEMS镜)发射照明光的射束,所述扫描镜设备以不同的方向将射束反射到周围的环境中。
在另外的方面中,一个或多个集成LIDAR测量设备与光学相位调制设备进行光学通信,所述光学相位调制设备在不同的方向上指引由所述一个或多个集成LIDAR测量设备所生成的(多个)照明射束。所述光学相位调制设备是有源设备,其接收控制信号,所述控制信号使得光学相位调制设备改变状态并且因而改变从光学相位调制设备所衍射的光的方向。以此方式,由所述一个或多个集成LIDAR设备所生成的(多个)照明射束通过多个不同的定向被扫描并且有效地询问在被测量的周围的3D环境。被投射到周围环境中的所衍射的射束与环境中的对象交互。每个相应的集成LIDAR测量设备基于从对象所收集的返回光来测量在LIDAR测量系统与所检测的对象之间的距离。光学相位调制设备被布置在集成LIDAR测量设备与周围环境中在被测量的对象之间的光学路径中。因而,照明光和对应的返回光二者通过光学相位调制设备。
图16图示了适合用于通过如本文中所述的集成LIDAR测量设备实现的方法300的流程图。在一些实施例中,集成LIDAR测量设备130可根据图16中所图示的方法300而操作。然而,一般地,方法300的执行不限于参考图1所述的集成LIDAR测量设备130的实施例。这些图示和对应的解释作为示例被提供,因为可以设想许多其它实施例和操作示例。
在框301中,由被装配到印刷电路板的基于氮化镓(GaN)的照明驱动器集成电路(IC)响应于脉冲触发信号来提供电功率的脉冲。
在框302中,响应于所述电功率的脉冲而从被装配到印刷电路板的照明源发射照明光的测量脉冲。
在框303中,检测光的返回脉冲。返回脉冲是从被对应的测量脉冲所照明的周围环境中的位置所反射的测量脉冲的量。
在框304中,由被装配到印刷电路板的返回脉冲接收器IC基于所检测的光的返回脉冲来确定测量脉冲从LIDAR设备到三维环境中的测量位置并且回到LIDAR设备的飞行时间。
如本文中所述的计算系统可以包括但不限于个人计算机系统、大型计算机系统、工作站、图像计算机、并行处理器、或本领域中已知的任何其它设备。通常,术语“计算系统”可以宽泛地被定义成包括具有一个或多个处理器的任何设备,所述处理器执行来自存储器介质的指令。
实现诸如本文中所述的那些之类的方法的程序指令可以通过传送介质、诸如导线、线缆或无线传送链路来被传送。程序指令被存储在计算机可读介质中。示例性的计算机可读介质包括只读存储器、随机存取存储器、磁碟或光碟、或磁带。
在一个或多个示例性实施例中,所述的功能可以被实现在硬件、软件、固件或其任何组合中。如果被实现在软件中,则功能可以被存储在计算机可读介质上或通过作为计算机可读介质上的一个或多个指令或代码而被传送。计算机可读介质包括计算机存储介质和通信介质二者,所述通信介质包括促进将计算机程序从一个地方传递到另一个地方的任何介质。存储介质可以是能被通用或专用计算机访问的任何可用介质。作为示例而不是限制,这样的计算机可读介质可以包括RAM、ROM、EEPROM、CD-ROM或其它光碟存储装置、磁碟存储装置或其它磁性存储设备,或任何其它介质,其能够用于承载或存储以指令或数据结构的形式的所期望的程序代码构件并且其能够被通用或专用计算机或者通用或专用处理器访问。而且,任何连接被恰当地称为计算机可读介质。例如,如果软件通过使用同轴线缆、光纤线缆、双绞线、数字订户线(DSL)或无线技术、诸如红外、无线电和微波而被从网站、服务器、或其它远程源传送,那么所述同轴线缆、光纤线缆、双绞线、DSL或无线技术、诸如红外、无线电和微波被包括在介质的定义中。如本文中所使用的碟和盘包括压缩盘(CD)、激光盘、光盘、数字通用盘(DVD)、软碟和蓝光盘,其中碟通常磁性地重现数据,而盘光学地利用激光来重现数据。以上的组合应当也被包括在计算机可读介质的范围内。
尽管以上为了教学目的而描述了某些特定实施例,但是本专利文档的教导具有一般可适用性并且不限于上述特定实施例。因此,所述的实施例的各种特征的各种修改、改编和组合可以在不偏离如权利要求中所阐明的本发明的范围的情况下被实践。
Claims (26)
1.一种集成LIDAR测量设备,包括:
被装配到印刷电路板的照明源;以及
被装配到印刷电路板的基于氮化镓(GaN)的照明驱动器集成电路(IC),所述照明驱动器IC电耦合到照明源和第一电功率源,其中所述照明驱动器IC被配置成响应于脉冲触发信号而选择性地将照明源电耦合到第一电功率源,从而使得所述照明源发射照明光的测量脉冲。
2.根据权利要求1所述的集成LIDAR测量设备,其中所述第一电功率源跨第一电功率源的第一节点和第二节点来提供第一电压,其中所述照明源的第一节点被电耦合到电功率源的第一节点,其中所述照明驱动器IC被电耦合到照明源的第二节点和第一电功率源的第二节点,并且其中所述照明驱动器IC被配置成响应于脉冲触发信号而选择性地将照明源的第二节点电耦合到第一电功率源的第二节点。
3.根据权利要求2所述的集成LIDAR测量设备,其中所述基于GaN的照明驱动器IC包括:
第一场效应晶体管(FET),其具有源极、被耦合到第二电功率源的第一节点的漏极、以及被配置成接收栅极充电控制信号的栅极;
第二FET,其具有被耦合到第一FET的源极的漏极、被耦合到第二电功率源的第二节点的源极、以及被配置成接收栅极放电控制信号的栅极;以及
第三FET,其具有被耦合到第一FET的源极和第二FET的漏极的栅极、被耦合到照明源的第二节点的漏极、以及被耦合到第一电功率源的第二节点的源极,其中所述栅极充电控制信号使得第三FET的栅极被选择性地耦合到第二电功率源的第一节点,并且其中所述栅极放电控制信号使得第三FET的栅极被选择性地耦合到第二电功率源的第二节点。
4.根据权利要求2所述的集成LIDAR测量设备,此外包括:
第一场效应晶体管(FET),其具有源极、被耦合到第二电功率源的第一节点的漏极、以及被配置成接收栅极充电控制信号的栅极;
第二FET,其具有被耦合到第一FET的源极的漏极、被耦合到第二电功率源的第二节点的源极、以及被配置成接收栅极放电控制信号的栅极;以及
第一多个FET,其各自具有被耦合到照明源的第二节点的漏极、被耦合到第一电功率源的第二节点的源极、以及被选择性地耦合到第一FET的源极和第二FET的漏极的栅极。
5.根据权利要求4所述的集成LIDAR测量设备,其中FET选择信号确定所述第一多个FET中每一个的栅极是否被电耦合到第一FET的源极和第二FET的漏极。
6.根据权利要求5所述的集成LIDAR测量设备,其中所述第一多个FET中每一个的栅极基于FET选择信号的第一位而被选择性地耦合到第一FET的源极和第二FET的漏极,并且此外包括:
第二多个FET,其各自具有被耦合到照明源的第二节点的漏极、被耦合到第一电功率源的第二节点的源极、以及基于FET选择信号的第二位而被选择性地耦合到第一FET的源极和第二FET的漏极的栅极。
7.根据权利要求6所述的集成LIDAR测量设备,其中所述第一多个FET是与所述第二多个FET不同数目的FET。
8.根据权利要求1所述的集成LIDAR测量设备,其中所述基于GaN的照明驱动器IC包括功率节省控制模块,所述功率节省控制模块基于脉冲触发信号而向所述基于GaN的照明驱动器IC的一部分供给受控量的电功率。
9.根据权利要求8所述的集成LIDAR测量设备,其中所述基于GaN的照明驱动器IC的该部分包括以下各项中的任一个:脉冲幅度控制电路、脉冲终止发生器;以及FET选择电路。
10.根据权利要求8所述的集成LIDAR测量设备,其中所述功率节省控制模块包括:
电阻器,其具有第一节点和第二节点,其中在所述电阻器的第一节点处供给脉冲触发信号;
电容器,其具有被耦合到所述电阻器的第一节点的第一节点以及被耦合到第二电功率源的第二节点的第二节点;
第一FET,其具有被耦合到所述电容器的第二节点的源极、被耦合到所述电阻器的第二节点的栅极、以及漏极;以及
第二FET,其具有被耦合到所述第一FET的漏极的栅极、被耦合到第二电功率源的第一节点的漏极,其中在所述第二FET的源极处提供受控量的电功率。
11.根据权利要求1所述的集成LIDAR测量设备,其中所述基于GaN的照明驱动器IC包括脉冲发起信号发生器,所述脉冲发起信号发生器基于脉冲触发信号而向基于GaN的照明驱动器IC的一部分生成脉冲发起信号。
12.根据权利要求11所述的集成LIDAR测量设备,其中所述脉冲发起信号发生器包括:
电阻器,其具有第一节点和第二节点,其中所述第一节点被耦合到第二电功率源的第一节点;
FET,其具有被耦合到所述第二电功率源的第二节点的源极、被耦合到所述电阻器的第二节点的漏极、以及栅极,其中在所述FET的栅极处提供脉冲触发信号,并且其中在所述FET的漏极处提供脉冲发起信号。
13.根据权利要求11所述的集成LIDAR测量设备,其中所述基于GaN的照明驱动器IC包括脉冲终止信号发生器,所述脉冲终止信号发生器基于脉冲触发信号而向基于GaN的照明驱动器IC的一部分生成脉冲终止信号,其中在所述脉冲发起信号与脉冲终止信号之间的延迟基于被提供到基于GaN的照明驱动器IC的脉冲宽度控制信号。
14.根据权利要求1所述的集成LIDAR测量设备,其中所述基于GaN的照明驱动器IC包括脉冲幅度控制电路,所述脉冲幅度控制电路基于被提供到基于GaN的照明驱动器IC的幅度控制信号来控制照明光的测量脉冲的幅度。
15.根据权利要求14所述的集成LIDAR测量设备,其中所述脉冲幅度控制电路包括:
第一电阻器,其具有第一节点和第二节点,其中在所述第一电阻器的第一节点上提供脉冲幅度控制信号;
FET,其具有源极、被耦合到所述第一电阻器的第二节点的栅极、以及被耦合到第二电功率源的节点的漏极;
第二电阻器,其具有被耦合到所述FET的源极的第一节点以及被耦合到充电控制FET的栅极的第二节点;以及
电容器,其具有被耦合到所述第一电阻器的第二节点的第一节点以及被耦合到所述第二电阻器的第二节点的第二节点。
16.根据权利要求1所述的集成LIDAR测量设备,此外包括:
被装配到印刷电路板的光电检测器,所述光电检测器被配置成检测光的返回脉冲并且生成对所检测到的返回脉冲进行指示的输出信号,其中所述返回脉冲是从被对应的测量脉冲所照明的周围环境中的位置所反射的测量脉冲的量;
被装配到所述印刷电路板的返回脉冲接收器IC,所述返回脉冲接收器被配置成基于所述输出信号来确定测量脉冲从LIDAR设备到三维环境中的测量位置并且回到LIDAR设备的飞行时间,其中所述返回脉冲接收器IC生成脉冲触发信号并且将脉冲触发信号传送到基于GaN的照明驱动器IC。
17.一种LIDAR测量系统,包括:
多个集成LIDAR测量设备,其各自包括:
被装配到印刷电路板的照明源;
被装配到印刷电路板的基于氮化镓(GaN)的照明驱动器集成电路(IC),所述照明驱动器IC电耦合到照明源和第一电功率源,其中所述照明驱动器IC被配置成响应于脉冲触发信号而选择性地耦合照明源与电功率源,从而使得所述照明源发射照明光的测量脉冲;以及
被装配到所述印刷电路板的返回脉冲接收器IC,返回脉冲接收器被配置成确定测量脉冲从LIDAR设备到三维环境中的测量位置并且回到LIDAR设备的飞行时间,其中所述返回脉冲接收器IC生成脉冲触发信号并且将脉冲触发信号传送到基于GaN的照明驱动器IC;以及
主控制器,其被配置成生成多个脉冲命令信号,其各自被传送到所述多个集成LIDAR测量设备中的不同集成LIDAR测量设备,其中每个返回脉冲接收器IC基于所接收的脉冲命令信号来生成对应的脉冲触发信号。
18.根据权利要求17所述的LIDAR测量系统,其中所述基于GaN的照明驱动器IC包括脉冲幅度控制电路,所述脉冲幅度控制电路基于从返回脉冲接收器IC被传送到基于GaN的照明驱动器IC的幅度控制信号来控制照明光的测量脉冲的幅度。
19.根据权利要求17所述的LIDAR测量系统,其中所述基于GaN的照明驱动器IC响应于脉冲触发信号而生成脉冲发起信号和脉冲终止信号,并且其中在所述脉冲发起信号与脉冲终止信号之间的延迟基于从返回脉冲接收器IC被传送到基于GaN的照明驱动器IC的脉冲宽度控制信号。
20.根据权利要求17所述的LIDAR测量系统,所述基于GaN的照明驱动器IC包括多个场效应晶体管(FET),其各自被配置成选择性地耦合照明源和电功率源,其中FET选择信号确定选择性地耦合照明源和电功率源的所述多个FET的数目,并且其中所述FET选择信号从返回脉冲接收器IC被传送到基于GaN的照明驱动器IC。
21.一种集成LIDAR测量设备,包括:
被装配到印刷电路板的照明源,所述照明源被配置成提供照明光的测量脉冲;
装配到印刷电路板的基于氮化镓(GaN)的照明驱动器集成电路(IC),所述照明驱动器IC电耦合到照明源,其中所述照明驱动器IC被配置成使得照明源响应于脉冲触发信号而提供照明光的测量脉冲;
被装配到印刷电路板的光电检测器,所述光电检测器被配置成检测由于在照明源与光电检测器之间的串扰所致的照明光的测量脉冲的第一量以及从被测量脉冲的第二量所照明的周围环境中的位置反射的光的有效返回脉冲;以及
被装配到所述印刷电路板的返回脉冲接收器IC,所述返回脉冲接收器IC被配置成在检测到所述测量脉冲的第一量时的时间与检测到所述光的有效返回脉冲时的时间之间的时间差。
22.一种方法,包括:
响应于脉冲触发信号、从被装配到印刷电路板的基于氮化镓(GaN)的照明驱动器集成电路(IC)提供电功率的脉冲;
响应于来自被装配到印刷电路板的照明源的电功率的脉冲而发射照明光的测量脉冲;
检测光的返回脉冲,其中所述返回脉冲是从被对应的测量脉冲所照明的周围环境中的位置所反射的测量脉冲的量;以及
基于所检测到的光返回脉冲来确定测量脉冲从LIDAR设备到三维环境中的测量位置并且回到LIDAR设备的飞行时间,所述确定通过被装配到所述印刷电路板的返回脉冲接收器IC来被执行。
23.根据权利要求22所述的方法,此外包括:
基于所述脉冲触发信号来控制被供给到以下各项中任一个的电功率的量:基于GaN的照明驱动器IC的脉冲幅度控制电路、脉冲终止发生器、以及FET选择电路。
24.根据权利要求22所述的方法,其中通过由所述基于GaN的照明驱动器IC所生成的脉冲发起信号和脉冲终止信号来确定电功率的脉冲的持续时间,其中在所述脉冲发起信号与脉冲终止信号之间的延迟基于从返回脉冲接收器IC被传送到基于GaN的照明驱动器IC的脉冲宽度控制信号。
25.根据权利要求22所述的方法,其中所述基于GaN的照明驱动器IC包括脉冲幅度控制电路,所述脉冲幅度控制电路基于从返回脉冲接收器IC被传送到基于GaN的照明驱动器IC的幅度控制信号来控制照明光的测量脉冲的幅度。
26.根据权利要求22所述的方法,其中所述脉冲触发信号从返回脉冲接收器IC被传送到基于GaN的照明驱动器IC。
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201762480119P | 2017-03-31 | 2017-03-31 | |
US62/480119 | 2017-03-31 | ||
PCT/US2018/025395 WO2018183843A1 (en) | 2017-03-31 | 2018-03-30 | Integrated lidar illumination power control |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110914705A true CN110914705A (zh) | 2020-03-24 |
CN110914705B CN110914705B (zh) | 2024-04-26 |
Family
ID=63670272
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201880035992.8A Active CN110914705B (zh) | 2017-03-31 | 2018-03-30 | 用于集成lidar照明功率控制的设备、系统和方法 |
Country Status (6)
Country | Link |
---|---|
US (4) | US10386465B2 (zh) |
EP (1) | EP3593166B1 (zh) |
JP (2) | JP7290571B2 (zh) |
CN (1) | CN110914705B (zh) |
CA (1) | CA3057988A1 (zh) |
WO (1) | WO2018183843A1 (zh) |
Families Citing this family (63)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
USRE46672E1 (en) | 2006-07-13 | 2018-01-16 | Velodyne Lidar, Inc. | High definition LiDAR system |
US11609336B1 (en) | 2018-08-21 | 2023-03-21 | Innovusion, Inc. | Refraction compensation for use in LiDAR systems |
US10627490B2 (en) | 2016-01-31 | 2020-04-21 | Velodyne Lidar, Inc. | Multiple pulse, LIDAR based 3-D imaging |
JP7149256B2 (ja) | 2016-03-19 | 2022-10-06 | ベロダイン ライダー ユーエスエー,インコーポレイテッド | Lidarに基づく3次元撮像のための統合された照射及び検出 |
US10393877B2 (en) | 2016-06-01 | 2019-08-27 | Velodyne Lidar, Inc. | Multiple pixel scanning LIDAR |
IL247944B (en) * | 2016-09-20 | 2018-03-29 | Grauer Yoav | A pulsating illuminator with a configurable structure |
US10502618B2 (en) | 2016-12-03 | 2019-12-10 | Waymo Llc | Waveguide diffuser for light detection using an aperture |
JP7088937B2 (ja) | 2016-12-30 | 2022-06-21 | イノビュージョン インコーポレイテッド | 多波長ライダー設計 |
US10942257B2 (en) | 2016-12-31 | 2021-03-09 | Innovusion Ireland Limited | 2D scanning high precision LiDAR using combination of rotating concave mirror and beam steering devices |
US11054508B2 (en) | 2017-01-05 | 2021-07-06 | Innovusion Ireland Limited | High resolution LiDAR using high frequency pulse firing |
US11009605B2 (en) | 2017-01-05 | 2021-05-18 | Innovusion Ireland Limited | MEMS beam steering and fisheye receiving lens for LiDAR system |
KR102569841B1 (ko) | 2017-01-05 | 2023-08-24 | 이노뷰전, 인크. | LiDAR를 인코딩 및 디코딩하기 위한 방법 및 시스템 |
US10365351B2 (en) | 2017-03-17 | 2019-07-30 | Waymo Llc | Variable beam spacing, timing, and power for vehicle sensors |
EP3583384A4 (en) * | 2017-03-20 | 2021-01-13 | Velodyne Lidar, Inc. | STRUCTURED LIGHT LIDAR ORIENTED 3D IMAGING AND INTEGRATED LIGHTING AND DETECTION |
JP7290571B2 (ja) * | 2017-03-31 | 2023-06-13 | ベロダイン ライダー ユーエスエー,インコーポレイテッド | 統合化されたlidar照明出力制御 |
JP2020519881A (ja) | 2017-05-08 | 2020-07-02 | ベロダイン ライダー, インク. | Lidarデータ収集及び制御 |
US10890650B2 (en) | 2017-09-05 | 2021-01-12 | Waymo Llc | LIDAR with co-aligned transmit and receive paths |
CN111542765B (zh) | 2017-10-19 | 2024-08-02 | 图达通智能美国有限公司 | 具有大动态范围的lidar |
US11294041B2 (en) | 2017-12-08 | 2022-04-05 | Velodyne Lidar Usa, Inc. | Systems and methods for improving detection of a return signal in a light ranging and detection system |
US11493601B2 (en) | 2017-12-22 | 2022-11-08 | Innovusion, Inc. | High density LIDAR scanning |
US11977184B2 (en) | 2018-01-09 | 2024-05-07 | Seyond, Inc. | LiDAR detection systems and methods that use multi-plane mirrors |
US11675050B2 (en) | 2018-01-09 | 2023-06-13 | Innovusion, Inc. | LiDAR detection systems and methods |
WO2019165130A1 (en) | 2018-02-21 | 2019-08-29 | Innovusion Ireland Limited | Lidar detection systems and methods with high repetition rate to observe far objects |
US11927696B2 (en) | 2018-02-21 | 2024-03-12 | Innovusion, Inc. | LiDAR systems with fiber optic coupling |
US11808888B2 (en) | 2018-02-23 | 2023-11-07 | Innovusion, Inc. | Multi-wavelength pulse steering in LiDAR systems |
WO2019165095A1 (en) | 2018-02-23 | 2019-08-29 | Innovusion Ireland Limited | Distributed lidar systems |
US11988773B2 (en) | 2018-02-23 | 2024-05-21 | Innovusion, Inc. | 2-dimensional steering system for lidar systems |
US11567182B2 (en) | 2018-03-09 | 2023-01-31 | Innovusion, Inc. | LiDAR safety systems and methods |
US11789132B2 (en) | 2018-04-09 | 2023-10-17 | Innovusion, Inc. | Compensation circuitry for lidar receiver systems and method of use thereof |
WO2019199775A1 (en) | 2018-04-09 | 2019-10-17 | Innovusion Ireland Limited | Lidar systems and methods for exercising precise control of a fiber laser |
WO2019241396A1 (en) | 2018-06-15 | 2019-12-19 | Innovusion Ireland Limited | Lidar systems and methods for focusing on ranges of interest |
US11579300B1 (en) | 2018-08-21 | 2023-02-14 | Innovusion, Inc. | Dual lens receive path for LiDAR system |
US11860316B1 (en) | 2018-08-21 | 2024-01-02 | Innovusion, Inc. | Systems and method for debris and water obfuscation compensation for use in LiDAR systems |
US11971507B2 (en) | 2018-08-24 | 2024-04-30 | Velodyne Lidar Usa, Inc. | Systems and methods for mitigating optical crosstalk in a light ranging and detection system |
US11614526B1 (en) | 2018-08-24 | 2023-03-28 | Innovusion, Inc. | Virtual windows for LIDAR safety systems and methods |
US11796645B1 (en) | 2018-08-24 | 2023-10-24 | Innovusion, Inc. | Systems and methods for tuning filters for use in lidar systems |
US11579258B1 (en) | 2018-08-30 | 2023-02-14 | Innovusion, Inc. | Solid state pulse steering in lidar systems |
US10712434B2 (en) | 2018-09-18 | 2020-07-14 | Velodyne Lidar, Inc. | Multi-channel LIDAR illumination driver |
US11082010B2 (en) | 2018-11-06 | 2021-08-03 | Velodyne Lidar Usa, Inc. | Systems and methods for TIA base current detection and compensation |
CN114114606B (zh) | 2018-11-14 | 2024-09-06 | 图达通智能美国有限公司 | 使用多面镜的lidar系统和方法 |
US11885958B2 (en) | 2019-01-07 | 2024-01-30 | Velodyne Lidar Usa, Inc. | Systems and methods for a dual axis resonant scanning mirror |
US11448756B2 (en) | 2019-01-07 | 2022-09-20 | Velodyne Lidar Usa, Inc. | Application specific integrated circuits for LIDAR sensor and multi-type sensor systems |
US12061263B2 (en) | 2019-01-07 | 2024-08-13 | Velodyne Lidar Usa, Inc. | Systems and methods for a configurable sensor system |
DE112020000407B4 (de) | 2019-01-10 | 2024-02-15 | Innovusion, Inc. | Lidar-systeme und -verfahren mit strahllenkung und weitwinkelsignaldetektion |
US11486970B1 (en) | 2019-02-11 | 2022-11-01 | Innovusion, Inc. | Multiple beam generation from a single source beam for use with a LiDAR system |
US11977185B1 (en) | 2019-04-04 | 2024-05-07 | Seyond, Inc. | Variable angle polygon for use with a LiDAR system |
US10613203B1 (en) | 2019-07-01 | 2020-04-07 | Velodyne Lidar, Inc. | Interference mitigation for light detection and ranging |
US11556000B1 (en) | 2019-08-22 | 2023-01-17 | Red Creamery Llc | Distally-actuated scanning mirror |
US11740333B2 (en) * | 2019-12-04 | 2023-08-29 | Waymo Llc | Pulse energy plan for light detection and ranging (lidar) devices based on areas of interest and thermal budgets |
KR102483978B1 (ko) * | 2020-02-03 | 2023-01-04 | 주식회사 라이드로 | 광 신호 처리 장치 및 이의 전력 제어 방법 |
USD1000978S1 (en) * | 2020-04-23 | 2023-10-10 | Hesai Technology Co., Ltd. | Lidar |
US12061289B2 (en) | 2021-02-16 | 2024-08-13 | Innovusion, Inc. | Attaching a glass mirror to a rotating metal motor frame |
US11422267B1 (en) | 2021-02-18 | 2022-08-23 | Innovusion, Inc. | Dual shaft axial flux motor for optical scanners |
EP4260086A1 (en) | 2021-03-01 | 2023-10-18 | Innovusion, Inc. | Fiber-based transmitter and receiver channels of light detection and ranging systems |
US11555895B2 (en) | 2021-04-20 | 2023-01-17 | Innovusion, Inc. | Dynamic compensation to polygon and motor tolerance using galvo control profile |
US11614521B2 (en) | 2021-04-21 | 2023-03-28 | Innovusion, Inc. | LiDAR scanner with pivot prism and mirror |
WO2022225859A1 (en) | 2021-04-22 | 2022-10-27 | Innovusion, Inc. | A compact lidar design with high resolution and ultra-wide field of view |
CN117178199A (zh) | 2021-04-22 | 2023-12-05 | 图达通智能美国有限公司 | 具有高分辨率和超宽视场的紧凑型光检测和测距设计 |
EP4314885A1 (en) | 2021-05-12 | 2024-02-07 | Innovusion, Inc. | Systems and apparatuses for mitigating lidar noise, vibration, and harshness |
CN117413199A (zh) | 2021-05-21 | 2024-01-16 | 图达通智能美国有限公司 | 使用lidar扫描仪内部的检流计镜进行智能扫描的移动配置文件 |
US11768294B2 (en) | 2021-07-09 | 2023-09-26 | Innovusion, Inc. | Compact lidar systems for vehicle contour fitting |
CN216356147U (zh) | 2021-11-24 | 2022-04-19 | 图达通智能科技(苏州)有限公司 | 一种车载激光雷达电机、车载激光雷达及车辆 |
US11871130B2 (en) | 2022-03-25 | 2024-01-09 | Innovusion, Inc. | Compact perception device |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5198657A (en) * | 1992-02-05 | 1993-03-30 | General Atomics | Integrated imaging and ranging lidar receiver |
US5953110A (en) * | 1998-04-23 | 1999-09-14 | H.N. Burns Engineering Corporation | Multichannel laser radar |
JP2008102000A (ja) * | 2006-10-18 | 2008-05-01 | Matsushita Electric Works Ltd | 強度変調光を用いた空間情報検出装置 |
US20080258695A1 (en) * | 2007-04-19 | 2008-10-23 | Luminus Devices, Inc. | Switching device integrated with light emitting device |
US20100020306A1 (en) * | 2006-07-13 | 2010-01-28 | Velodyne Acoustics, Inc. | High definition lidar system |
JP2013187528A (ja) * | 2012-03-12 | 2013-09-19 | Furukawa Electric Co Ltd:The | 発光素子駆動装置 |
US20150116695A1 (en) * | 2013-10-28 | 2015-04-30 | Texas Instruments Incorporated | Light radar signal processing apparatus, systems and methods |
US20160079854A1 (en) * | 2014-09-16 | 2016-03-17 | Navitas Semiconductor Inc. | GaN CIRCUIT DRIVERS FOR GaN CIRCUIT LOADS |
US20160313445A1 (en) * | 2012-03-16 | 2016-10-27 | Advanced Scientific Concepts, Inc. | Personal ladar sensor |
US9529079B1 (en) * | 2015-03-26 | 2016-12-27 | Google Inc. | Multiplexed multichannel photodetector |
Family Cites Families (587)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE930909C (de) | 1943-03-30 | 1955-07-28 | Hans Dr-Ing Thoma | Hydraulische Getriebeanlage |
US3064252A (en) | 1952-03-31 | 1962-11-13 | Arthur A Varela | Height finding radar system |
US3636250A (en) | 1964-02-26 | 1972-01-18 | Andrew V Haeff | Apparatus for scanning and reproducing a three-dimensional representation of an object |
US3373441A (en) | 1966-06-17 | 1968-03-12 | Ernest A. Zadig | Laser speed detector |
US3551845A (en) | 1968-05-09 | 1970-12-29 | Gen Systems Inc | Transistor-magnetic oscillators incorporating voltage reference means to regulate the output frequency |
DE10151981A1 (de) | 2001-10-22 | 2003-04-30 | Ibeo Automobile Sensor Gmbh | Optoelektronische Erfassungseinrichtung |
US4944036A (en) | 1970-12-28 | 1990-07-24 | Hyatt Gilbert P | Signature filter system |
US3730633A (en) | 1970-12-31 | 1973-05-01 | Aerotherm Corp | Photometric detector and measuring system |
US3686514A (en) | 1971-07-16 | 1972-08-22 | Ney Co J M | Slip ring assembly |
US3781111A (en) | 1972-03-16 | 1973-12-25 | Nasa | Short range laser obstacle detector |
US3897150A (en) | 1972-04-03 | 1975-07-29 | Hughes Aircraft Co | Scanned laser imaging and ranging system |
US5023888A (en) | 1972-07-24 | 1991-06-11 | Martin Marietta Corporation | Pulse code recognition method and system |
US5026156A (en) | 1972-07-24 | 1991-06-25 | Martin Marietta Corporation | Method and system for pulse interval modulation |
US3862415A (en) | 1972-10-31 | 1975-01-21 | Gen Electric | Opto-electronic object detector using semiconductor light source |
US3921081A (en) * | 1974-10-30 | 1975-11-18 | Gen Electric | Pulse generator for producing pulses of definable width |
AT353487B (de) | 1977-05-31 | 1979-11-12 | Plasser Bahnbaumasch Franz | Vermessungseinrichtung zur anzeige bzw. registrierung des profilverlaufes von tunnel- roehren, durchlaessen u.dgl. engstellen |
DE2744130A1 (de) | 1977-09-30 | 1979-04-12 | Siemens Ag | Vorrichtung zum beruehrungsfreien messen des abstandes einer oberflaeche eines objektes von einer bezugsebene |
DE2818942C2 (de) | 1978-04-28 | 1986-03-27 | Zellweger Uster Ag, Uster | Verfahren zur Raumüberwachung und Vorrichtung zur Durchführung des Verfahrens |
US4199697A (en) * | 1978-07-05 | 1980-04-22 | Northern Telecom Limited | Pulse amplitude modulation sampling gate including filtering |
CH640050A5 (de) | 1978-07-20 | 1983-12-15 | Kern & Co Ag | Verfahren und vorrichtung zur messung der relativlage zwischen einem ersten und mindestens einem zweiten punkt. |
JPS5525883U (zh) | 1978-08-10 | 1980-02-19 | ||
US4201442A (en) | 1978-10-02 | 1980-05-06 | Sperry Corporation | Liquid crystal switching coupler matrix |
GB2041687B (en) | 1978-12-18 | 1983-03-23 | Decca Ltd | Narrow beam scanning radar or lidas |
JPS5596475A (en) | 1979-01-19 | 1980-07-22 | Nissan Motor Co Ltd | Obstacle detector for vehicle |
US4327437A (en) | 1980-07-30 | 1982-04-27 | Nasa | Reconfiguring redundancy management |
DE3134815C2 (de) | 1981-09-03 | 1986-07-10 | Telenot Electronic GmbH, 7080 Aalen | Flächensicherung |
DE3216313C2 (de) | 1982-05-03 | 1994-11-03 | Hipp Johann F | Regelungselektronische Einrichtung für elektrooptische Entfernungsmesser mit Lichtpulslaufzeit-Meßverfahren |
DE3216312A1 (de) | 1982-05-03 | 1983-11-03 | Johann F. Dipl.-Phys. 2000 Hamburg Hipp | Schaltungsanordnung zum betrieb von pulslaserdioden |
JPS58211677A (ja) | 1982-06-02 | 1983-12-09 | Nissan Motor Co Ltd | 光レ−ダ装置 |
US4516837A (en) | 1983-02-22 | 1985-05-14 | Sperry Corporation | Electro-optical switch for unpolarized optical signals |
US4700301A (en) | 1983-11-02 | 1987-10-13 | Dyke Howard L | Method of automatically steering agricultural type vehicles |
GB2158232B (en) | 1984-04-25 | 1987-11-18 | Matsushita Electric Works Ltd | Object detecting apparatus including photosensors for restricted detection area |
EP0185816A1 (en) | 1984-12-27 | 1986-07-02 | THE GENERAL ELECTRIC COMPANY, p.l.c. | A vehicle guidance and control system |
DE3530646A1 (de) | 1985-08-28 | 1987-03-12 | Telenot Electronic Gmbh | Flaechensicherung |
US4834531A (en) | 1985-10-31 | 1989-05-30 | Energy Optics, Incorporated | Dead reckoning optoelectronic intelligent docking system |
JPH0690149B2 (ja) | 1986-01-31 | 1994-11-14 | 東洋ガラス株式会社 | 透光度検査装置 |
DE3635396A1 (de) | 1986-10-17 | 1988-04-28 | Bayerische Motoren Werke Ag | Vorrichtung zum erkennen von hindernissen fuer kraftfahrzeuge |
US5241481A (en) | 1987-06-22 | 1993-08-31 | Arnex Handelsbolag | Method and a device for laser optical navigation |
JP2509246B2 (ja) * | 1987-09-17 | 1996-06-19 | 株式会社トプコン | 光波測距儀 |
DE3741259A1 (de) | 1987-12-05 | 1989-06-15 | Hipp Johann F | Verfahren und vorrichtung zur autonomen steuerung eines fahrzeuges |
US4902126A (en) | 1988-02-09 | 1990-02-20 | Fibertek, Inc. | Wire obstacle avoidance system for helicopters |
DE3808972A1 (de) | 1988-03-17 | 1989-10-05 | Hipp Johann F | Vorrichtung zur kontinuierlichen verfolgung und positionsmessung eines objektes |
US4896343A (en) | 1988-05-02 | 1990-01-23 | Saunders Allan M | Radiation apparatus with distance mapper for dose control |
US4952911A (en) | 1988-05-18 | 1990-08-28 | Eastman Kodak Company | Scanning intrusion detection device |
US4967183A (en) | 1988-05-18 | 1990-10-30 | Eastman Kodak Company | Method of intrusion detection over a wide area |
DE3821892C1 (en) | 1988-06-29 | 1990-02-22 | Johann F. Dipl.-Phys. 2000 Hamburg De Hipp | Method and device for position measurement of container repositioning vehicles |
US4862257A (en) | 1988-07-07 | 1989-08-29 | Kaman Aerospace Corporation | Imaging lidar system |
US4895440A (en) | 1988-08-22 | 1990-01-23 | Spectra-Physics, Inc. | Laser-based measurement system |
DE3833022A1 (de) | 1988-09-29 | 1990-04-05 | Fraunhofer Ges Forschung | Verfahren zum schutz eines fahrzeugs gegen kollisionen und kollisionsgeschuetztes fahrzeug |
US5621203A (en) | 1992-09-25 | 1997-04-15 | Symbol Technologies | Method and apparatus for reading two-dimensional bar code symbols with an elongated laser line |
US5710417A (en) | 1988-10-21 | 1998-01-20 | Symbol Technologies, Inc. | Bar code reader for reading both one dimensional and two dimensional symbologies with programmable resolution |
US4916536A (en) | 1988-11-07 | 1990-04-10 | Flir Systems, Inc. | Imaging range finder and method |
JPH0755525Y2 (ja) | 1989-02-10 | 1995-12-20 | 旭光学工業株式会社 | レンズシャッタ式カメラのレンズ鏡筒の遮光装置 |
DE3915627A1 (de) | 1989-05-12 | 1990-11-15 | Dornier Luftfahrt | Optisches radar |
JPH036407A (ja) | 1989-06-03 | 1991-01-11 | Daido Steel Co Ltd | 外周形状測定装置 |
US5004916A (en) | 1989-07-28 | 1991-04-02 | Ncr Corporation | Scanning system having automatic laser shutdown upon detection of defective scanning element motion |
ATE111994T1 (de) | 1989-08-08 | 1994-10-15 | Siemens Ag | Führung eines bagger-schaufelrades zum erzeugen vorherbestimmter flächen. |
EP0412398B1 (de) | 1989-08-08 | 1994-09-21 | Siemens Aktiengesellschaft | Fördervolumenmessung aus der Schnittkontur eines Schaufelradbaggers oder anderen Tagebaugeräts |
EP0412400B1 (de) | 1989-08-08 | 1994-03-02 | Siemens Aktiengesellschaft | Kollisionsschutzeinrichtung für Fördergeräte |
EP0412399B1 (de) | 1989-08-08 | 1994-01-05 | Siemens Aktiengesellschaft | Fördermengenregelung eines Schaufelradbaggers oder Schaufelradaufnehmers im Tagebau |
US5291261A (en) | 1990-02-06 | 1994-03-01 | Motorola, Inc. | Optical object detection system incorporating fiber optic coupling |
US5175694A (en) | 1990-02-08 | 1992-12-29 | The United States Of America As Represented By The Secretary Of The Navy | Centroid target tracking system utilizing parallel processing of digital data patterns |
DE4107850B4 (de) | 1990-03-10 | 2006-06-29 | Daimlerchrysler Ag | Anordnung zur Verbesserung der Sicht, insbesondere in Fahrzeugen |
US5006721A (en) | 1990-03-23 | 1991-04-09 | Perceptron, Inc. | Lidar scanning system |
US5059008A (en) | 1990-03-26 | 1991-10-22 | General Electric Company | Wide angle beam steerer using translation of plural lens arrays |
EP0464263A3 (en) | 1990-06-27 | 1992-06-10 | Siemens Aktiengesellschaft | Device for obstacle detection for pilots of low flying aircrafts |
US5249157A (en) | 1990-08-22 | 1993-09-28 | Kollmorgen Corporation | Collision avoidance system |
CH681756A5 (zh) | 1990-11-12 | 1993-05-14 | Beat Decoi | |
JP2975424B2 (ja) | 1990-11-14 | 1999-11-10 | 株式会社トプコン | 光波測距装置 |
DE4040894C1 (en) | 1990-12-20 | 1992-04-30 | Eltro Gmbh, Gesellschaft Fuer Strahlungstechnik, 6900 Heidelberg, De | Motor vehicle parking aid using pulsed laser - evaluates signal reflected from obstacle and received by semiconductor diode at rear corner of vehicle |
US5164823A (en) | 1990-12-21 | 1992-11-17 | Kaman Aerospace Corporation | Imaging lidar system employing multipulse single and multiple gating for single and stacked frames |
IE71181B1 (en) | 1991-01-29 | 1997-01-29 | Proximeter Co Ltd | Proximity detector |
US5463384A (en) | 1991-02-11 | 1995-10-31 | Auto-Sense, Ltd. | Collision avoidance system for vehicles |
DE4115747C2 (de) | 1991-05-14 | 1998-02-26 | Hipp Johann F | Vorrichtung und Verfahren zur Situations-, Hindernis- und Objekterkennung |
DE4215272C2 (de) | 1991-06-15 | 1994-11-17 | Leuze Electronic Gmbh & Co | Einen Sender, einen Empfänger und eine Schaltungsanordnung zur Signalauswertung aufweisende lichtelektrische Überwachungseinrichtung |
US5357331A (en) * | 1991-07-02 | 1994-10-18 | Flockencier Stuart W | System for processing reflected energy signals |
DE4124192A1 (de) | 1991-07-20 | 1993-01-21 | Dornier Luftfahrt | Abstandsmessgeraet oder abstandswarngeraet |
DE4127168C2 (de) | 1991-08-16 | 1994-07-07 | Spies Martin J Dipl Ing Fh | Signalverarbeitung zur Abstandsmessung |
DE4130619A1 (de) | 1991-09-14 | 1993-03-25 | Deutsche Aerospace | Einrichtung zum objektschutz |
US5177768A (en) | 1991-11-22 | 1993-01-05 | Bell Communications Research, Inc. | Spread-time code division multiple access technique with arbitrary spectral shaping |
JPH05240940A (ja) | 1992-02-26 | 1993-09-21 | Toshihiro Tsumura | 光計測システム |
US5241315A (en) | 1992-08-13 | 1993-08-31 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Micro pulse laser radar |
WO1994005586A1 (de) | 1992-08-28 | 1994-03-17 | Johann Hipp | Vorrichtung und verfahren zur steuerung eines containerkranes |
US5309212A (en) | 1992-09-04 | 1994-05-03 | Yaskawa Electric Corporation | Scanning rangefinder with range to frequency conversion |
US6333121B1 (en) | 1992-10-13 | 2001-12-25 | General Electric Company | Low-sulfur article having a platinum-aluminide protective layer and its preparation |
US5838239A (en) | 1992-10-20 | 1998-11-17 | Robotic Vision Systems, Inc. | System for detecting ice or snow on surface which specularly reflects light |
US5546188A (en) | 1992-11-23 | 1996-08-13 | Schwartz Electro-Optics, Inc. | Intelligent vehicle highway system sensor and method |
DE4345446C2 (de) | 1992-12-08 | 1998-07-30 | Sick Ag | Laserabstandsermittlungsvorrichtung |
DE4340756C5 (de) | 1992-12-08 | 2006-08-10 | Sick Ag | Laserabstandsermittlungsvorrichtung |
DE4243631A1 (de) | 1992-12-22 | 1994-06-23 | Siemens Ag | Verfahren zum Steuern einer Abraumförderbrücke und Abraumförderbrücke |
US5793491A (en) | 1992-12-30 | 1998-08-11 | Schwartz Electro-Optics, Inc. | Intelligent vehicle highway system multi-lane sensor and method |
US5314037A (en) | 1993-01-22 | 1994-05-24 | Shaw David C H | Automobile collision avoidance system |
CA2089105A1 (en) | 1993-02-09 | 1994-08-10 | Denis Jacob | Borehole laser cavity monitoring system |
JP3345953B2 (ja) | 1993-04-01 | 2002-11-18 | 大同特殊鋼株式会社 | 線材の直径測定装置 |
US5465142A (en) | 1993-04-30 | 1995-11-07 | Northrop Grumman Corporation | Obstacle avoidance system for helicopters and other aircraft |
DE69413761T2 (de) | 1993-07-29 | 1999-07-08 | Omron Corp., Kyoto | Sender für elektromagnetische Wellen und Entfernungsmesser |
US5563706A (en) | 1993-08-24 | 1996-10-08 | Nikon Corporation | Interferometric surface profiler with an alignment optical member |
US5612781A (en) | 1993-09-09 | 1997-03-18 | Kabushiki Kaisha Topcon | Object reflector detection system |
JP3444310B2 (ja) | 1993-10-20 | 2003-09-08 | 東京電力株式会社 | 光学式振動検出装置 |
DE4406821A1 (de) | 1994-03-02 | 1995-09-07 | Hipp Johann | Vorrichtung zur Führung des Piloten eines sich seiner Parkposition nähernden Flugzeuges |
DE4411448C5 (de) | 1994-03-31 | 2009-05-14 | Sick Ag | Verfahren und Vorrichtung zur Kontrolle eines vorgegebenen Überwachungsbereichs |
DE4412044A1 (de) | 1994-04-08 | 1995-10-12 | Leuze Electronic Gmbh & Co | Optoelektronische Vorrichtung zum Erfassen von Gegenständen in einem Überwachungsbereich |
DE69512914T2 (de) * | 1994-07-08 | 2000-04-20 | Forskningscenter Riso | Optisches messgerat und verfahren |
US5526291A (en) | 1994-09-08 | 1996-06-11 | Trimble Navigation Limited | Compensation for receiver and satellite signal differences |
JPH08122060A (ja) | 1994-10-21 | 1996-05-17 | Mitsubishi Electric Corp | 車両周辺監視システム |
JP3264109B2 (ja) | 1994-10-21 | 2002-03-11 | 三菱電機株式会社 | 障害物検知装置 |
JP3130223B2 (ja) | 1994-11-18 | 2001-01-31 | 三菱電機株式会社 | 検出方法及び検出装置 |
FR2730829B1 (fr) | 1995-02-22 | 2003-06-06 | Asahi Optical Co Ltd | Dispositif de mesure de distance |
DE19512644A1 (de) | 1995-04-05 | 1996-10-10 | Bayerische Motoren Werke Ag | Verfahren zum Vermeiden einer Kollision eines Kraftfahrzeugs |
DE19512681A1 (de) | 1995-04-07 | 1996-10-10 | Hipp Johann | Sicherheitseinrichtung für Fahrzeuge, insbesondere frei navigierende Fahrzeuge, zur Kollisionsverhinderung |
DE69633524T2 (de) | 1995-04-12 | 2005-03-03 | Matsushita Electric Industrial Co., Ltd., Kadoma | Verfahren und Gerät zur Objekterfassung |
DE19517001A1 (de) | 1995-05-09 | 1996-11-14 | Sick Optik Elektronik Erwin | Verfahren und Vorrichtung zur Bestimmung der Lichtlaufzeit über eine zwischen einer Meßvorrichtung und einem reflektierenden Objekt angeordnete Meßstrecke |
US5638163A (en) | 1995-06-07 | 1997-06-10 | Hughes Electronics | Low cost laser range finder system architecture |
US5691687A (en) | 1995-07-03 | 1997-11-25 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Contactless magnetic slip ring |
US5572219A (en) | 1995-07-07 | 1996-11-05 | General Electric Company | Method and apparatus for remotely calibrating a phased array system used for satellite communication |
DE19530281C2 (de) | 1995-08-17 | 1999-01-07 | Johann Hipp | Vorrichtung zum optischen Erfassen von Hindernissen vor Fahrzeugen |
JP3619299B2 (ja) | 1995-09-29 | 2005-02-09 | パイオニア株式会社 | 発光素子の駆動回路 |
DE19539955A1 (de) | 1995-10-26 | 1997-04-30 | Sick Ag | Optische Erfassungseinrichtung |
DE19546563C2 (de) | 1995-12-13 | 1997-09-18 | Leica Ag | Spannungsversorgung für eine Impulsendstufe |
US6629641B2 (en) | 2000-06-07 | 2003-10-07 | Metrologic Instruments, Inc. | Method of and system for producing images of objects using planar laser illumination beams and image detection arrays |
DE19607345A1 (de) | 1996-02-27 | 1997-08-28 | Sick Ag | Laserabstandsermittlungsvorrichtung |
DE29607076U1 (de) | 1996-04-18 | 1996-08-29 | Erwin Sick Gmbh Optik-Elektronik, 79183 Waldkirch | Opto-elektronischer Sensor zur Erkennung transparenter Objekte |
US5988862A (en) | 1996-04-24 | 1999-11-23 | Cyra Technologies, Inc. | Integrated system for quickly and accurately imaging and modeling three dimensional objects |
US5742384A (en) | 1996-05-02 | 1998-04-21 | Lockheed Martin Corporation | Compact scanning infrared countermeasure emitter |
JPH1075347A (ja) | 1996-06-24 | 1998-03-17 | Nikon Corp | フィルム画像読取装置及びフィルム画像読取装置に対する制御手順を記憶する記憶媒体 |
US5790244A (en) | 1996-08-23 | 1998-08-04 | Laser Technology, Inc. | Pre-biasing technique for a transistor based avalanche circuit in a laser based distance measurement and ranging instrument |
GB9620001D0 (en) | 1996-09-25 | 1996-11-13 | Firearms Research Ltd | Optical sighting devices |
FR2754909B1 (fr) | 1996-10-22 | 1999-01-08 | Thomson Csf | Lidar monostatique |
DE19647152A1 (de) | 1996-11-14 | 1998-05-28 | Sick Ag | Laserabstandsermittlungsvorrichtung |
US5847817A (en) | 1997-01-14 | 1998-12-08 | Mcdonnell Douglas Corporation | Method for extending range and sensitivity of a fiber optic micro-doppler ladar system and apparatus therefor |
DE19701803A1 (de) | 1997-01-20 | 1998-10-01 | Sick Ag | Lichttaster mit Lichtlaufzeit-Auswertung |
DE19704340A1 (de) | 1997-02-05 | 1998-08-06 | Sick Ag | Entfernungsmesser |
JPH10221450A (ja) * | 1997-02-07 | 1998-08-21 | Nikon Corp | 距離測定装置 |
JP3456120B2 (ja) * | 1997-09-09 | 2003-10-14 | 三菱電機株式会社 | レーザダイオード用電源制御装置 |
US6420698B1 (en) | 1997-04-24 | 2002-07-16 | Cyra Technologies, Inc. | Integrated system for quickly and accurately imaging and modeling three-dimensional objects |
DE19717399C2 (de) | 1997-04-24 | 2001-05-23 | Martin Spies | Einrichtung zur Bestimmung von Abstand und Art von Objekten sowie der Sichtweite |
US6621764B1 (en) | 1997-04-30 | 2003-09-16 | Thomas Smith | Weapon location by acoustic-optic sensor fusion |
US6034803A (en) | 1997-04-30 | 2000-03-07 | K2 T, Inc. | Method and apparatus for directing energy based range detection sensor |
DE19727792C2 (de) | 1997-06-30 | 2000-03-23 | Sick Ag | Scanner |
US5910767A (en) | 1997-07-11 | 1999-06-08 | Laser Guard | Intruder detector system |
DE19735037C2 (de) | 1997-08-13 | 1999-06-02 | Schmersal Eot Gmbh & Co Kg | Vorrichtung zum Orten von in einen zu überwachenden Raumbereich eindringenden Objekten |
DE19735038C2 (de) | 1997-08-13 | 1999-07-15 | Schmersal Eot Gmbh & Co Kg | Vorrichtung zum Orten von in einen zu überwachenden Raumbereich eindringenden Objekten |
DE19741731A1 (de) | 1997-09-22 | 1999-04-01 | Sick Ag | Vorrichtung zur optischen Abtastung von Oberflächen |
DE19741730B4 (de) | 1997-09-22 | 2006-02-02 | Sick Ag | Verfahren zur Ermittlung der Oberflächenkontur von Meßobjekten |
US7962285B2 (en) | 1997-10-22 | 2011-06-14 | Intelligent Technologies International, Inc. | Inertial measurement unit for aircraft |
EP0913707B1 (de) | 1997-10-31 | 2003-06-11 | LAP GmbH Laser Applikationen | Verfahren zur berührungsfreien Messung des Abstands eines Objekts nach dem Prinzip der Laser-Triangulation |
US6201236B1 (en) | 1997-11-13 | 2001-03-13 | Auto Sense Ltd. | Detection system with improved noise tolerance |
DE19752145A1 (de) | 1997-11-25 | 1999-05-27 | Hipp Johann F | Vorrichtung zur Überwachung von Fahrzeuginnenräumen |
DE19757840C1 (de) | 1997-12-24 | 1999-09-30 | Johann F Hipp | Vorrichtung zur optischen Erfassung und Abstandermittlung von Objekten von einem Fahrzeug aus |
DE19757849C5 (de) | 1997-12-24 | 2013-11-21 | Sick Ag | Scanner und Vorrichtung zur optischen Erfassung von Hindernissen, sowie deren Verwendung |
DE19757847A1 (de) | 1997-12-24 | 1999-07-15 | Hipp Johann F | Scanner für eine Vorrichtung zur optischen Erfassung von Objekten |
DE19757848C2 (de) | 1997-12-24 | 2003-04-30 | Sick Ag | Vorrichtung zur optischen Erfassung von Objekten |
JP3420049B2 (ja) | 1997-12-27 | 2003-06-23 | 本田技研工業株式会社 | 車両用物体検知装置 |
US5903386A (en) | 1998-01-20 | 1999-05-11 | Northrop Grumman Corporation | Tilted primary clamshell lens laser scanner |
DE19805606A1 (de) | 1998-02-12 | 1999-09-02 | Schmersal Eot Gmbh & Co Kg | Verfahren zum Konfigurieren von Sensoren |
DE19806741A1 (de) | 1998-02-18 | 1999-08-19 | Schmersal Eot Gmbh & Co Kg | Lichtlaufzeitzähler mit Korrekturschaltung |
JPH11242518A (ja) | 1998-02-25 | 1999-09-07 | Honda Motor Co Ltd | レーダー装置 |
JPH11264871A (ja) | 1998-03-17 | 1999-09-28 | Komatsu Ltd | 車両用障害物検出装置の監視機構 |
DE19815149A1 (de) | 1998-04-03 | 1999-10-07 | Leuze Electronic Gmbh & Co | Sensoranordnung |
AUPP299498A0 (en) | 1998-04-15 | 1998-05-07 | Commonwealth Scientific And Industrial Research Organisation | Method of tracking and sensing position of objects |
US6529923B2 (en) | 1998-05-29 | 2003-03-04 | Cidra Corporation | Method for improving the accuracy in the determination of a waveform center of a waveform signal |
DE19828000C2 (de) | 1998-06-24 | 2000-06-21 | Schmersal Eot Gmbh & Co Kg | Verfahren zur optoelektronischen Überwachung eines Schutzbereichs |
US7184088B1 (en) | 1998-10-28 | 2007-02-27 | Measurement Devices Limited | Apparatus and method for obtaining 3D images |
JP2000162318A (ja) | 1998-11-24 | 2000-06-16 | Hamamatsu Photonics Kk | 全方位距離検出装置 |
US6744800B1 (en) * | 1998-12-30 | 2004-06-01 | Xerox Corporation | Method and structure for nitride based laser diode arrays on an insulating substrate |
DE19902903C1 (de) | 1999-01-26 | 2000-05-31 | Schmersal Eot Gmbh & Co Kg | Vorrichtung zum Orten von in einen zu überwachenden Raumbereich eindringenden Objekten |
US6137566A (en) | 1999-02-24 | 2000-10-24 | Eoo, Inc. | Method and apparatus for signal processing in a laser radar receiver |
US6441363B1 (en) | 1999-02-24 | 2002-08-27 | Siemens Vdo Automotive Corporation | Vehicle occupant sensing system |
DE19911375A1 (de) | 1999-03-15 | 2000-09-21 | Johann F Hipp | Einrichtung zur Detektion der Position eines Flugkörpers |
DE50002356D1 (de) | 1999-03-18 | 2003-07-03 | Siemens Ag | Ortsauflösendes abstandsmesssystem |
US9191260B1 (en) | 1999-04-05 | 2015-11-17 | Lightworks Ii, Llc | Method and apparatus to determine a match between signals |
DE29907270U1 (de) | 1999-04-23 | 1999-07-29 | Sick AG, 79183 Waldkirch | Verbindungsvorrichtung |
DE19919925C2 (de) | 1999-04-30 | 2001-06-13 | Siemens Ag | Anordnung und Verfahren zur gleichzeitigen Messung der Geschwindigkeit sowie der Oberflächengestalt von bewegten Objekten |
EP1055937A3 (de) | 1999-05-22 | 2002-05-08 | Volkswagen Aktiengesellschaft | Empfangseinrichtung für einen Laserscanner |
DE19927501A1 (de) | 1999-05-22 | 2000-11-23 | Volkswagen Ag | Sendeeinrichtung für einen Laserscanner |
KR20010007146A (ko) | 1999-06-01 | 2001-01-26 | 안자이 이치로 | 퍼스널 컴퓨터용 cpu의 방열기 |
US6670905B1 (en) | 1999-06-14 | 2003-12-30 | Escort Inc. | Radar warning receiver with position and velocity sensitive functions |
DE19936440C2 (de) | 1999-08-03 | 2003-12-24 | Leuze Electronic Gmbh & Co Kg | Optoelektronische Vorrichtung |
US6687373B1 (en) | 1999-08-24 | 2004-02-03 | Nortel Networks Limited | Heusristics for optimum beta factor and filter order determination in echo canceler systems |
US6836285B1 (en) | 1999-09-03 | 2004-12-28 | Arete Associates | Lidar with streak-tube imaging,including hazard detection in marine applications; related optics |
DE19953008A1 (de) | 1999-10-27 | 2001-05-03 | Johann F Hipp | Vorrichtung zur Steuerung des Verkehrsflusses an einer Kreuzung, insbesondere zur Ampelsteuerung |
DE19953007A1 (de) | 1999-10-27 | 2001-05-03 | Johann F Hipp | Vorrichtung zur Verkehrsüberwachung von Straßen |
DE19953010B4 (de) | 1999-10-27 | 2006-03-23 | Sick Ag | Vorrichtung zur Durchfahrtkontrolle bei Parkhäusern |
DE19953006B4 (de) | 1999-10-27 | 2008-07-24 | Sick Ag | Vorrichtung zur Steuerung des Verkehrsflusses im Bereich einer Kreuzung, insbesondere zur Ampelsteuerung |
DE19953009C2 (de) | 1999-10-27 | 2003-11-27 | Sick Ag | Vorrichtung zur Überwachung der Belegung von Kraftfahrzeug-Stellplätzen |
US6297844B1 (en) | 1999-11-24 | 2001-10-02 | Cognex Corporation | Video safety curtain |
US6794725B2 (en) | 1999-12-21 | 2004-09-21 | Xerox Corporation | Amorphous silicon sensor with micro-spring interconnects for achieving high uniformity in integrated light-emitting sources |
DE10002090A1 (de) | 2000-01-19 | 2001-07-26 | Sick Ag | Optische Abtastvorrichtung |
JP2001216592A (ja) | 2000-02-03 | 2001-08-10 | Mitsubishi Cable Ind Ltd | 道路の路面状態検知装置 |
US6650402B2 (en) | 2000-02-10 | 2003-11-18 | Oceanit Laboratories, Inc. | Omni-directional cloud height indicator |
US7129971B2 (en) | 2000-02-16 | 2006-10-31 | Immersive Media Company | Rotating scan self-cleaning camera |
JP4370660B2 (ja) | 2000-03-09 | 2009-11-25 | 株式会社Ihi | 火災監視システム |
DE50014199D1 (de) | 2000-04-19 | 2007-05-10 | Sick Ag | Vorrichtung zum Orten von in einen zu überwachenden Raumbereich eindringenden Objekten |
DE10025511C1 (de) | 2000-05-23 | 2001-12-06 | Schmersal Eot Gmbh & Co Kg | Vorrichtung zum Orten von in einen zu überwachenden Raumbereich eindringenden Objekten |
DE10026668A1 (de) | 2000-05-29 | 2001-12-06 | Sick Ag | Laserscanner |
DE10027239A1 (de) | 2000-05-31 | 2001-12-06 | Sick Ag | Verfahren zur Abstandsmessung und Abstandsmeßeinrichtung |
JP4486737B2 (ja) | 2000-07-14 | 2010-06-23 | アジア航測株式会社 | モービルマッピング用空間情報生成装置 |
US6664529B2 (en) | 2000-07-19 | 2003-12-16 | Utah State University | 3D multispectral lidar |
ATE288590T1 (de) | 2000-07-21 | 2005-02-15 | Leuze Electronic Gmbh & Co Kg | Optischer sensor |
DE10043694A1 (de) | 2000-09-04 | 2002-03-14 | Bosch Gmbh Robert | Verfahren zur adaptiven Klopfregelung einer Benzindirekteinspritzenden Brennkraftmaschine und entsprechende Vorrichtung |
IL138683A0 (en) | 2000-09-25 | 2001-10-31 | Vital Medical Ltd | Apparatus and method for monitoring tissue vitality parameters |
US6329800B1 (en) * | 2000-10-17 | 2001-12-11 | Sigmatel | Method and apparatus for reducing power consumption in driver circuits |
FR2817339B1 (fr) | 2000-11-24 | 2004-05-14 | Mensi | Dispositif de relevement tridimensionnel d'une scene a emission laser |
US6441889B1 (en) | 2000-11-29 | 2002-08-27 | P.A.T.C.O. Properties, Inc. | LIDAR with increased emitted laser power |
JP2002286959A (ja) * | 2000-12-28 | 2002-10-03 | Canon Inc | 半導体装置、光電融合基板、及びそれらの製造方法 |
US6682478B2 (en) | 2001-02-08 | 2004-01-27 | Olympus Optical Co., Ltd. | Endoscope apparatus with an insertion part having a small outer diameter which includes and object optical system |
DE10110416A1 (de) | 2001-03-05 | 2002-09-12 | Sick Ag | Verfahren und Vorrichtung zur Überwachung einer Schutzzone |
DE10110420A1 (de) | 2001-03-05 | 2002-09-12 | Sick Ag | Vorrichtung zur Bestimmung eines Abstandsprofils |
US6396577B1 (en) | 2001-03-19 | 2002-05-28 | Thomas P. Ramstack | Lidar-based air defense system |
DE10114362C2 (de) | 2001-03-22 | 2003-12-24 | Martin Spies | Laserscan-System für Entfernungsmessung |
ES2250636T3 (es) | 2001-04-04 | 2006-04-16 | Instro Precision Limited | Equipo de analisis de imagenes. |
US6798527B2 (en) | 2001-04-27 | 2004-09-28 | Minolta Co., Ltd. | Three-dimensional shape-measuring system |
US6593582B2 (en) | 2001-05-11 | 2003-07-15 | Science & Engineering Services, Inc. | Portable digital lidar system |
DE10127204A1 (de) | 2001-06-05 | 2003-03-20 | Ibeo Automobile Sensor Gmbh | Erfassungsverfahren und - vorrichtung |
DE10127417A1 (de) | 2001-06-06 | 2002-12-12 | Ibeo Automobile Sensor Gmbh | Transport-Protokoll für die Gerätekommunikation |
US20040247157A1 (en) | 2001-06-15 | 2004-12-09 | Ulrich Lages | Method for preparing image information |
DE10128954A1 (de) | 2001-06-15 | 2002-12-19 | Ibeo Automobile Sensor Gmbh | Korrekturverfahren für Daten mehrerer optoelektronischer Sensoren |
EP1405100B1 (de) | 2001-06-15 | 2008-09-24 | IBEO Automobile Sensor GmbH | Korrekturverfahren für daten mehrerer optoelektronischer sensoren |
US6844924B2 (en) | 2001-06-29 | 2005-01-18 | The United States Of America As Represented By The Secretary Of The Army | Ladar system for detecting objects |
US6646725B1 (en) | 2001-07-11 | 2003-11-11 | Iowa Research Foundation | Multiple beam lidar system for wind measurement |
DE10138641A1 (de) | 2001-08-07 | 2003-02-20 | Ibeo Automobile Sensor Gmbh | Verfahren zur Bestimmung einer Modellfahrbahn |
US6804693B2 (en) | 2001-08-14 | 2004-10-12 | Cidra Corporation | Method for reducing skew in a real-time centroid calculation |
DE10140802A1 (de) | 2001-08-20 | 2003-03-06 | Ibeo Automobile Sensor Gmbh | Führung von Kraftfahrzeugen |
EP1419402B1 (de) | 2001-08-22 | 2006-04-26 | IBEO Automobile Sensor GmbH | Verfahren zur erkennung und verfolgung von objekten |
DE10141055B4 (de) | 2001-08-22 | 2013-09-05 | Ibeo Automobile Sensor Gmbh | Verfahren zur Bestimmung von Bewegungsinformationen |
DE10141294B4 (de) | 2001-08-23 | 2016-12-08 | Sick Ag | Verfahren zur Bodenerkennung |
US7190465B2 (en) | 2001-08-30 | 2007-03-13 | Z + F Zoller & Froehlich Gmbh | Laser measurement system |
DE10143059A1 (de) | 2001-09-03 | 2003-03-27 | Sick Ag | Optoelektronische Erfassungseinrichtung mit einer Speichereinrichtung |
EP1291674A3 (de) | 2001-09-03 | 2004-02-04 | IBEO Automobile Sensor GmbH | Verfahren zur Erkennung und Verfolgung von Objekten |
DE10143060A1 (de) | 2001-09-03 | 2003-03-20 | Sick Ag | Optoelektronische Erfassungseinrichtung |
DE10143107A1 (de) | 2001-09-03 | 2003-03-20 | Sick Ag | Optoelektronische Entfernungsmeßeinrichtung |
DE10143061A1 (de) | 2001-09-03 | 2003-03-20 | Sick Ag | Optoelektronische Entfernungsmeßeinrichtung |
US6556282B2 (en) | 2001-09-04 | 2003-04-29 | Rosemount Aerospace, Inc. | Combined LOAS and LIDAR system |
US6665063B2 (en) | 2001-09-04 | 2003-12-16 | Rosemount Aerospace Inc. | Distributed laser obstacle awareness system |
US6542227B2 (en) | 2001-09-04 | 2003-04-01 | Rosemount Aerospace, Inc. | System and method of measuring flow velocity in three axes |
DE10146692B4 (de) | 2001-09-21 | 2004-08-05 | Spies, Martin, Dipl.-Ing. (FH) | Entfernungsbildsensor |
DE10148060A1 (de) | 2001-09-28 | 2003-04-10 | Ibeo Automobile Sensor Gmbh | Verfahren zur Erkennung und Verfolgung von Objekten |
DE10148069A1 (de) | 2001-09-28 | 2003-04-10 | Ibeo Automobile Sensor Gmbh | Verfahren zur Erkennung und Verfolgung von Objekten |
DE10148070A1 (de) | 2001-09-28 | 2003-04-17 | Ibeo Automobile Sensor Gmbh | Verfahren zur Erkennung und Verfolgung von Objekten |
DE10148071A1 (de) | 2001-09-28 | 2003-04-17 | Ibeo Automobile Sensor Gmbh | Verfahren zur Erkennung und Verfolgung von Objekten |
DE10148064A1 (de) | 2001-09-28 | 2003-04-10 | Ibeo Automobile Sensor Gmbh | Verfahren zur Erkennung und Verfolgung von Objekten |
DE10149768A1 (de) | 2001-10-09 | 2003-04-17 | Ibeo Automobile Sensor Gmbh | Sichtweitenbestimmung |
DE10151983A1 (de) | 2001-10-22 | 2003-04-30 | Ibeo Automobile Sensor Gmbh | Verfahren zur Dokumentation einer Unfallsituation |
DE10151979A1 (de) | 2001-10-22 | 2003-04-30 | Ibeo Automobile Sensor Gmbh | Verfahren zur Objekterkennung und/oder -verfolgung |
DE10153270A1 (de) | 2001-10-29 | 2003-05-08 | Sick Ag | Optoelektronische Entfernungsmesseinrichtung |
ATE336013T1 (de) | 2001-11-08 | 2006-09-15 | Siemens Ag | Entfernungsmessendes laserlichtgitter |
AT412028B (de) | 2001-11-09 | 2004-08-26 | Riegl Laser Measurement Sys | Einrichtung zur aufnahme eines objektraumes |
DE10162668B4 (de) | 2001-12-19 | 2004-03-04 | Spies, Martin, Dipl.-Ing. (FH) | System zur Messung des Abstandes zu Objekten mittels elektromagnetischer Impulse |
US7489865B2 (en) | 2002-02-01 | 2009-02-10 | Cubic Corporation | Integrated optical communication and range finding system and applications thereof |
US6741341B2 (en) | 2002-02-04 | 2004-05-25 | Bae Systems Information And Electronic Systems Integration Inc | Reentry vehicle interceptor with IR and variable FOV laser radar |
US20030163030A1 (en) | 2002-02-25 | 2003-08-28 | Arriaga Moises A. | Hollow endoscopy |
US7868665B2 (en) | 2002-03-05 | 2011-01-11 | Nova R&D, Inc. | Integrated circuit and sensor for imaging |
IL148795A0 (en) | 2002-03-20 | 2002-09-12 | Vital Medical Ltd | Apparatus and method for monitoring tissue vitality parameters for the diagnosis of body metabolic emergency state |
WO2003088485A1 (en) | 2002-04-10 | 2003-10-23 | The Johns Hopkins University | The time of flight system on a chip |
DE10217294A1 (de) | 2002-04-18 | 2003-11-06 | Sick Ag | Sensorausrichtung |
DE10217295B4 (de) | 2002-04-18 | 2014-05-15 | Ibeo Automotive Systems GmbH | Bestimmung der Ausrichtung eines optoelektronischen Sensors |
US6876790B2 (en) | 2002-05-17 | 2005-04-05 | Science & Engineering Services, Inc. | Method of coupling a laser signal to an optical carrier |
JP3779644B2 (ja) | 2002-05-21 | 2006-05-31 | ナブテスコ株式会社 | 自動ドア装置及びそれのタッチセンサ |
DE10222797C5 (de) | 2002-05-23 | 2018-07-12 | Sick Ag | Abstandsbestimmung |
DE10229408B4 (de) | 2002-06-29 | 2006-09-07 | Leuze Electronic Gmbh & Co Kg | Optischer Sensor |
DE10230397A1 (de) | 2002-07-05 | 2004-01-15 | Sick Ag | Laserabtastvorrichtung |
WO2004015369A2 (en) | 2002-08-09 | 2004-02-19 | Intersense, Inc. | Motion tracking system and method |
DE10238759A1 (de) | 2002-08-23 | 2004-03-04 | Ibeo Automobile Sensor Gmbh | Überwachung der Umgebung eines Gegenstandes |
DE10244643A1 (de) | 2002-09-25 | 2004-04-08 | Ibeo Automobile Sensor Gmbh | Optoelektronische Erfassungseinrichtung |
DE10244640A1 (de) | 2002-09-25 | 2004-04-08 | Ibeo Automobile Sensor Gmbh | Optoelektronische Erfassungseinrichtung |
DE10244639A1 (de) | 2002-09-25 | 2004-04-08 | Ibeo Automobile Sensor Gmbh | Optoelektronische Erfassungseinrichtung |
DE10244641A1 (de) | 2002-09-25 | 2004-04-08 | Ibeo Automobile Sensor Gmbh | Optoelektronische Erfassungseinrichtung |
DE10244638A1 (de) | 2002-09-25 | 2004-04-08 | Ibeo Automobile Sensor Gmbh | Optoelektronische Erfassungseinrichtung |
US20040066500A1 (en) | 2002-10-02 | 2004-04-08 | Gokturk Salih Burak | Occupancy detection and measurement system and method |
DE20215631U1 (de) | 2002-10-11 | 2003-02-06 | Sick AG, 79183 Waldkirch | Sensor |
US7139459B2 (en) | 2002-10-16 | 2006-11-21 | Lake Shore Cryotronics, Inc. | Spectral filter for green and longer wavelengths |
DE10252323A1 (de) | 2002-11-11 | 2004-05-19 | Ibeo Automobile Sensor Gmbh | Verfahren zur Bestimmung einer Eigenbewegung eines Fahrzeuges |
US6879419B2 (en) | 2002-12-05 | 2005-04-12 | Northrop Grumman Corporation | Laser scanner with peripheral scanning capability |
DE10258794A1 (de) | 2002-12-16 | 2004-06-24 | Ibeo Automobile Sensor Gmbh | Verfahren zur Erkennung und Verfolgung von Objekten |
DE10303015A1 (de) | 2003-01-27 | 2004-08-12 | Daimlerchrysler Ag | System aus laserscanner und katadioptrischer Kamera |
US6781677B1 (en) | 2003-01-31 | 2004-08-24 | The Boeing Company | Laser range finding apparatus |
JP2004241915A (ja) * | 2003-02-04 | 2004-08-26 | Sumitomo Electric Ind Ltd | 光送受信モジュール、光送信モジュール及び光受信モジュール |
EP1595131A4 (en) | 2003-02-10 | 2008-11-26 | Univ Virginia | SYSTEM AND METHOD FOR REMOTELY DETECTING AND / OR ANALYZING THE SPECTRAL PROPERTIES OF TARGETS AND / OR CHEMICAL SPECIES FOR DETECTION AND IDENTIFICATION THEREOF |
US7248342B1 (en) | 2003-02-14 | 2007-07-24 | United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Three-dimension imaging lidar |
GB2398841A (en) | 2003-02-28 | 2004-09-01 | Qinetiq Ltd | Wind turbine control having a Lidar wind speed measurement apparatus |
US7106424B2 (en) | 2003-03-11 | 2006-09-12 | Rosemount Aerospace Inc. | Compact laser altimeter system |
DE10312249A1 (de) | 2003-03-19 | 2004-09-30 | Ibeo Automobile Sensor Gmbh | Verfahren zur gemeinsamen Verarbeitung von tiefenaufgelösten Bildern und Videobildern |
US20040213463A1 (en) | 2003-04-22 | 2004-10-28 | Morrison Rick Lee | Multiplexed, spatially encoded illumination system for determining imaging and range estimation |
DE10319700A1 (de) | 2003-05-02 | 2004-11-18 | Ibeo Automobile Sensor Gmbh | Verfahren und Vorrichtung zur Ermittlung einer Wahrscheinlichkeit für eine Kollision eines Fahrzeugs mit einem Gegenstand |
JP4284644B2 (ja) | 2003-05-23 | 2009-06-24 | 財団法人生産技術研究奨励会 | 3次元モデル構築システム及び3次元モデル構築プログラム |
US7379559B2 (en) | 2003-05-28 | 2008-05-27 | Trw Automotive U.S. Llc | Method and apparatus for determining an occupant's head location in an actuatable occupant restraining system |
US7089114B1 (en) | 2003-07-03 | 2006-08-08 | Baojia Huang | Vehicle collision avoidance system and method |
DE10331529A1 (de) | 2003-07-11 | 2005-01-27 | Ibeo Automobile Sensor Gmbh | Optoelektronische Erfassungseinrichtung |
CN2681085Y (zh) | 2003-07-22 | 2005-02-23 | 烟台麦特电子有限公司 | 一种激光测量三维尺寸的仪器 |
US8242428B2 (en) | 2007-12-06 | 2012-08-14 | The United States Of America As Represented By The Secretary Of The Army | Method and system for lidar using spatial information from a light source in combination with nonspatial information influenced by the subject to derive an image |
JP2005070840A (ja) | 2003-08-25 | 2005-03-17 | East Japan Railway Co | 三次元モデル作成装置、三次元モデル作成方法、及び三次元モデル作成プログラム |
DE10341548A1 (de) | 2003-09-09 | 2005-03-31 | Ibeo Automobile Sensor Gmbh | Optoelektronische Erfassungseinrichtung |
DE10353347A1 (de) | 2003-11-14 | 2005-06-02 | Ibeo Automobile Sensor Gmbh | Verfahren zur Erkennung von Fußgängern |
DE10353348A1 (de) | 2003-11-14 | 2005-06-02 | Ibeo Automobile Sensor Gmbh | Verfahren zur Verfolgung von Objekten |
DE10360889A1 (de) | 2003-12-19 | 2005-07-14 | Robert Bosch Gmbh | System mit zwei oder mehr Sensoren |
DE10360789B4 (de) | 2003-12-23 | 2007-03-15 | Leuze Lumiflex Gmbh + Co. Kg | Vorrichtung zur Überwachung eines Erfassungsbereichs an einem Arbeitsmittel |
DE102004003870A1 (de) | 2004-01-26 | 2005-08-11 | Ibeo Automobile Sensor Gmbh | Verfahren zur Klassifizierung von Objekten |
DE102004003848A1 (de) | 2004-01-26 | 2005-08-11 | Ibeo Automobile Sensor Gmbh | Verfahren zur Erkennung von gekennzeichneten Gefahr- und/oder Baustellen im Bereich von Fahrbahnen |
DE102004003868A1 (de) | 2004-01-26 | 2005-08-11 | Ibeo Automobile Sensor Gmbh | Verfahren zur Verfolgung von Objekten |
DE102004003850A1 (de) | 2004-01-26 | 2005-08-18 | Ibeo Automobile Sensor Gmbh | Verfahren zur Erkennung von Markierungen auf einer Fahrbahn |
JP3908226B2 (ja) | 2004-02-04 | 2007-04-25 | 日本電産株式会社 | スキャニング型レンジセンサ |
DE102004010197B4 (de) | 2004-03-02 | 2015-04-16 | Sick Ag | Verfahren zur Funktionskontrolle einer Positionsermittlungs- oder Umgebungserfassungseinrichtung eines Fahrzeugs oder zur Kontrolle einer digitalen Karte |
US7373473B2 (en) | 2004-03-10 | 2008-05-13 | Leica Geosystems Hds Llc | System and method for efficient storage and manipulation of extremely large amounts of scan data |
US7187823B2 (en) | 2004-03-16 | 2007-03-06 | Leica Geosystems Hds Llc | Contact-free slip ring for survey instrumentation |
US7323670B2 (en) | 2004-03-16 | 2008-01-29 | Leica Geosystems Hds Llc | Laser operation for survey instruments |
US8042056B2 (en) | 2004-03-16 | 2011-10-18 | Leica Geosystems Ag | Browsers for large geometric data visualization |
DE102004014041B4 (de) | 2004-03-19 | 2006-04-06 | Martin Spies | Sensor zur Hinderniserkennung |
US7583364B1 (en) | 2004-03-19 | 2009-09-01 | University Corporation For Atmospheric Research | High pulse-energy, eye-safe lidar system |
WO2005100613A2 (en) | 2004-04-13 | 2005-10-27 | Hyo Sang Lee | Ultraviolet lidar for detection of biological warfare agents |
JP2005297863A (ja) | 2004-04-14 | 2005-10-27 | Bunpei Sono | 自動車の安全システム |
DE102004018813A1 (de) | 2004-04-19 | 2006-02-23 | Ibeo Automobile Sensor Gmbh | Verfahren zur Erkennung und/oder Verfolgung von Objekten |
CA2505715A1 (en) | 2004-05-03 | 2005-11-03 | Her Majesty In Right Of Canada As Represented By The Minister Of National Defence | Volumetric sensor for mobile robotics |
JP2005321403A (ja) | 2004-05-10 | 2005-11-17 | Ibeo Automobile Sensor Gmbh | 距離測定のための方法及び装置 |
US7240314B1 (en) | 2004-06-04 | 2007-07-03 | Magma Design Automation, Inc. | Redundantly tied metal fill for IR-drop and layout density optimization |
DE102004033114A1 (de) | 2004-07-08 | 2006-01-26 | Ibeo Automobile Sensor Gmbh | Verfahren zur Kalibrierung eines Abstandsbildsensors |
US7667769B2 (en) | 2004-07-12 | 2010-02-23 | Honeywell International Inc. | Rotatable wireless electrical coupler |
DE102004044973B4 (de) | 2004-09-16 | 2014-12-04 | Sick Ag | Kontrolle eines Überwachungsbereiches |
US20060073621A1 (en) | 2004-10-01 | 2006-04-06 | Palo Alto Research Center Incorporated | Group III-nitride based HEMT device with insulating GaN/AlGaN buffer layer |
US20060100783A1 (en) | 2004-10-21 | 2006-05-11 | Sick Ag | Monitoring the surroundings of a vehicle |
US8078338B2 (en) | 2004-10-22 | 2011-12-13 | Irobot Corporation | System and method for behavior based control of an autonomous vehicle |
DE102005050824A1 (de) | 2004-11-17 | 2006-05-24 | Heidelberger Druckmaschinen Ag | Verfahren zur ortsabhängigen Absicherung von gefährlichen Bereichen |
WO2006083349A2 (en) | 2004-11-19 | 2006-08-10 | Science & Engineering Services, Inc. | Enhanced portable digital lidar system |
EP1672382A1 (de) | 2004-12-18 | 2006-06-21 | Leica Geosystems AG | Einkanal-Heterodyn -Distanzmessverfahren |
US7688374B2 (en) | 2004-12-20 | 2010-03-30 | The United States Of America As Represented By The Secretary Of The Army | Single axis CCD time gated ladar sensor |
JP4171728B2 (ja) | 2004-12-24 | 2008-10-29 | パルステック工業株式会社 | 3次元形状測定装置 |
WO2006076731A1 (en) | 2005-01-12 | 2006-07-20 | University Of Florida Research Foundation, Inc. | Full circumferential scanning oct intravascular imaging probe based on scanning mems miror |
DE102005003827B4 (de) | 2005-01-26 | 2007-01-04 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Vorrichtung und Verfahren zur Interaktion zwischen einem Menschen und einer Robotereinheit an einem Roboterarbeitsplatz |
US20060176697A1 (en) | 2005-02-08 | 2006-08-10 | Arruda Steven S | Combination light fixture and motion sensor apparatus |
US7477360B2 (en) | 2005-02-11 | 2009-01-13 | Deltasphere, Inc. | Method and apparatus for displaying a 2D image data set combined with a 3D rangefinder data set |
CN2773714Y (zh) | 2005-02-21 | 2006-04-19 | 王治平 | 激光扫描探测器 |
US20060186326A1 (en) | 2005-02-21 | 2006-08-24 | Takashi Ito | Wave receiving apparatus and distance measuring apparatus |
US20060197867A1 (en) | 2005-03-02 | 2006-09-07 | Peter Johnson | Imaging head and imaging system |
DE102005011684A1 (de) | 2005-03-11 | 2006-09-14 | Sick Ag | System zur Absicherung von mit Türen verschließbaren Personeneinstiegsöffnungen an Fahrzeugen zur Personenbeförderung |
DE102005019233A1 (de) | 2005-04-26 | 2006-11-09 | Sick Ag | Vorrichtung zur optischen Erfassung von Objekten |
US8139685B2 (en) | 2005-05-10 | 2012-03-20 | Qualcomm Incorporated | Systems, methods, and apparatus for frequency control |
US8451432B2 (en) | 2005-06-09 | 2013-05-28 | Analog-Modules, Inc. | Laser spot tracking with off-axis angle detection |
US8203702B1 (en) | 2005-06-13 | 2012-06-19 | ARETé ASSOCIATES | Optical system |
US20080002176A1 (en) | 2005-07-08 | 2008-01-03 | Lockheed Martin Corporation | Lookdown and loitering ladar system |
US7907333B2 (en) * | 2005-07-27 | 2011-03-15 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Optical source and apparatus for remote sensing |
US20070071056A1 (en) | 2005-09-09 | 2007-03-29 | Ye Chen | Laser ranging with large-format VCSEL array |
US7511800B2 (en) | 2005-11-28 | 2009-03-31 | Robert Bosch Company Limited | Distance measurement device with short range optics |
US7649182B2 (en) | 2006-10-26 | 2010-01-19 | Searete Llc | Variable multi-stage waveform detector |
AU2007204542B2 (en) | 2006-01-13 | 2013-12-05 | Leica Geosystems Ag | Coordinate measurement instrument |
DE102006002376A1 (de) | 2006-01-17 | 2007-07-19 | Robert Bosch Gmbh | Verfahren und Vorrichtung zur Durchgangsverkehrserkennung |
US7358819B2 (en) | 2006-01-17 | 2008-04-15 | Rockwell Automation Technologies, Inc. | Reduced-size sensor circuit |
US7489186B2 (en) | 2006-01-18 | 2009-02-10 | International Rectifier Corporation | Current sense amplifier for voltage converter |
US7544945B2 (en) | 2006-02-06 | 2009-06-09 | Avago Technologies General Ip (Singapore) Pte. Ltd. | Vertical cavity surface emitting laser (VCSEL) array laser scanner |
US20070201027A1 (en) | 2006-02-07 | 2007-08-30 | Doushkina Valentina V | Innovative Raster-Mirror Optical Detection System For Bistatic Lidar |
US7826117B2 (en) | 2006-02-20 | 2010-11-02 | Sanyo Electric Co., Ltd. | Beam irradiation apparatus |
US7944548B2 (en) | 2006-03-07 | 2011-05-17 | Leica Geosystems Ag | Increasing measurement rate in time of flight measurement apparatuses |
US8050863B2 (en) | 2006-03-16 | 2011-11-01 | Gray & Company, Inc. | Navigation and control system for autonomous vehicles |
DE202006005643U1 (de) | 2006-03-31 | 2006-07-06 | Faro Technologies Inc., Lake Mary | Vorrichtung zum dreidimensionalen Erfassen eines Raumbereichs |
US7501616B2 (en) | 2006-05-25 | 2009-03-10 | Microvision, Inc. | Method and apparatus for capturing an image of a moving object |
DE102006027063A1 (de) | 2006-06-10 | 2007-12-13 | Sick Ag | Scanner |
US20080013896A1 (en) | 2006-06-28 | 2008-01-17 | Salzberg Jose B | Miniature optical transceiver |
DE102006031580A1 (de) | 2006-07-03 | 2008-01-17 | Faro Technologies, Inc., Lake Mary | Verfahren und Vorrichtung zum dreidimensionalen Erfassen eines Raumbereichs |
EP1876415B1 (en) | 2006-07-03 | 2010-05-12 | Trimble AB | A surveying instrument and method of controlling a surveying instrument |
US7587260B2 (en) | 2006-07-05 | 2009-09-08 | Battelle Energy Alliance, Llc | Autonomous navigation system and method |
USRE46672E1 (en) | 2006-07-13 | 2018-01-16 | Velodyne Lidar, Inc. | High definition LiDAR system |
EP1895318B1 (de) | 2006-08-28 | 2009-12-16 | IBEO Automobile Sensor GmbH | Verfahren zur Bestimmung der globalen Position |
JP4116053B2 (ja) | 2006-09-20 | 2008-07-09 | 北陽電機株式会社 | 測距装置 |
US7701558B2 (en) | 2006-09-22 | 2010-04-20 | Leica Geosystems Ag | LIDAR system |
KR100758987B1 (ko) * | 2006-09-26 | 2007-09-17 | 삼성전자주식회사 | Led 발광 장치 및 그 제어 방법 |
US8884763B2 (en) | 2006-10-02 | 2014-11-11 | iRobert Corporation | Threat detection sensor suite |
DE502006007272D1 (de) | 2006-10-19 | 2010-08-05 | Sick Ag | Optische Erfassungseinrichtung |
EP2618102A2 (en) | 2006-11-21 | 2013-07-24 | Mantisvision Ltd. | 3d geometric modeling and 3d video content creation |
EP1927867B1 (de) | 2006-12-02 | 2012-04-04 | Sick Ag | Optoelektronischer Mehrebenensensor und Verfahren zur Erfassung von Objekten |
DE102006060062A1 (de) | 2006-12-19 | 2008-07-03 | Sick Ag | Objektfeststellungssensor |
DE102006060108A1 (de) | 2006-12-20 | 2008-06-26 | Sick Ag | Laserscanner |
DE202007000327U1 (de) | 2007-01-10 | 2007-04-12 | Sick Ag | Optoelektronischer Scanner |
US20080170826A1 (en) | 2007-01-16 | 2008-07-17 | Applied Optical Materials | Misalignment-tolerant optical coupler/connector |
DE102007013023B4 (de) | 2007-03-19 | 2017-10-05 | Sick Ag | Probabilistische Rasterkarte |
US8953647B1 (en) | 2007-03-21 | 2015-02-10 | Lockheed Martin Corporation | High-power laser using thulium-doped fiber amplifier and frequency quadrupling for blue output |
EP1983354A1 (de) | 2007-04-20 | 2008-10-22 | IBEO Automobile Sensor GmbH | Optoelektronischer Scanner |
EP2003471A1 (de) | 2007-06-11 | 2008-12-17 | IBEO Automobile Sensor GmbH | Einziehbare Radarvorrichtung |
US8767215B2 (en) | 2007-06-18 | 2014-07-01 | Leddartech Inc. | Method for detecting objects with light |
US20090005901A1 (en) * | 2007-06-28 | 2009-01-01 | Pitney Bowes Incorporated | Payment system for delivery services |
US8063415B2 (en) | 2007-07-25 | 2011-11-22 | Renesas Electronics Corporation | Semiconductor device |
US7944420B2 (en) | 2007-09-28 | 2011-05-17 | Osram Sylvania Inc. | Light emitting diode driver providing current and power control |
TWI358606B (en) | 2007-12-28 | 2012-02-21 | Ind Tech Res Inst | Method for three-dimension (3d) measurement and an |
JP5376707B2 (ja) | 2008-01-24 | 2013-12-25 | 株式会社半導体エネルギー研究所 | レーザアニール装置 |
CN101983420B (zh) | 2008-03-28 | 2013-06-26 | 伊雷克托科学工业股份有限公司 | 用于硅晶片划线的自动聚焦方法与设备 |
US7642946B2 (en) | 2008-04-07 | 2010-01-05 | Broadcom Corporation | Successive approximation analog to digital converter |
WO2009136184A2 (en) | 2008-04-18 | 2009-11-12 | Bae Systems Plc | Improvements in lidars |
US8301027B2 (en) | 2008-05-02 | 2012-10-30 | Massachusetts Institute Of Technology | Agile-beam laser array transmitter |
US20090299633A1 (en) | 2008-05-29 | 2009-12-03 | Delphi Technologies, Inc. | Vehicle Pre-Impact Sensing System Having Terrain Normalization |
US8311067B2 (en) | 2008-06-12 | 2012-11-13 | Akonia Holographics, Llc | System and devices for improving external cavity diode lasers using wavelength and mode sensors and compact optical paths |
US8466725B2 (en) | 2008-08-13 | 2013-06-18 | Pierre F. Thibault | Method and device for generating short pulses |
IL200332A0 (en) | 2008-08-19 | 2010-04-29 | Rosemount Aerospace Inc | Lidar system using a pseudo-random pulse sequence |
US8107056B1 (en) | 2008-09-17 | 2012-01-31 | University Of Central Florida Research Foundation, Inc. | Hybrid optical distance sensor |
JP5243161B2 (ja) | 2008-09-18 | 2013-07-24 | 日本板硝子株式会社 | 画像読取装置 |
JP2010072557A (ja) | 2008-09-22 | 2010-04-02 | Oki Data Corp | レンズアレイユニット、光学ヘッドおよび情報装置 |
DE102008052064B4 (de) | 2008-10-17 | 2010-09-09 | Diehl Bgt Defence Gmbh & Co. Kg | Vorrichtung zur Aufnahme von Bildern einer Objektszene |
RU2469435C1 (ru) | 2008-10-17 | 2012-12-10 | Нэшнл Юниверсити Корпорейшн Хоккайдо Юниверсити | Массив полупроводниковых светоизлучающих элементов и способ его изготовления |
KR101781399B1 (ko) | 2008-11-17 | 2017-09-25 | 익스프레스 이미징 시스템즈, 엘엘씨 | 고체 상태 전등을 위한 전력을 조절하기 위한 전자 제어 및 그 방법들 |
JP5688876B2 (ja) | 2008-12-25 | 2015-03-25 | 株式会社トプコン | レーザスキャナ測定システムの較正方法 |
US20100204964A1 (en) | 2009-02-09 | 2010-08-12 | Utah State University | Lidar-assisted multi-image matching for 3-d model and sensor pose refinement |
US8717545B2 (en) | 2009-02-20 | 2014-05-06 | Digital Signal Corporation | System and method for generating three dimensional images using lidar and video measurements |
US8761465B2 (en) | 2009-03-18 | 2014-06-24 | Microsoft Corporation | Centroid processing |
US8447563B2 (en) | 2009-03-31 | 2013-05-21 | The United States Of America As Represented By The Secretary Of The Navy | Method and system for determination of detection probability or a target object based on a range |
US8077047B2 (en) | 2009-04-16 | 2011-12-13 | Ut-Battelle, Llc | Tampering detection system using quantum-mechanical systems |
US8743176B2 (en) | 2009-05-20 | 2014-06-03 | Advanced Scientific Concepts, Inc. | 3-dimensional hybrid camera and production system |
US8675181B2 (en) | 2009-06-02 | 2014-03-18 | Velodyne Acoustics, Inc. | Color LiDAR scanner |
WO2010144961A1 (en) | 2009-06-17 | 2010-12-23 | Stephen Woodford | Determining haemodynamic performance |
US20110028859A1 (en) | 2009-07-31 | 2011-02-03 | Neuropace, Inc. | Methods, Systems and Devices for Monitoring a Target in a Neural System and Facilitating or Controlling a Cell Therapy |
JP2011069726A (ja) | 2009-09-25 | 2011-04-07 | Hamamatsu Photonics Kk | 距離画像取得装置 |
WO2011044629A1 (en) | 2009-10-14 | 2011-04-21 | Newsouth Innovations Pty Limited | Location verification in quantum communications |
US8875409B2 (en) | 2010-01-20 | 2014-11-04 | Faro Technologies, Inc. | Coordinate measurement machines with removable accessories |
JP2011150100A (ja) | 2010-01-21 | 2011-08-04 | Nippon Sheet Glass Co Ltd | 正立等倍レンズアレイプレートおよび画像読取装置 |
US8760631B2 (en) | 2010-01-27 | 2014-06-24 | Intersil Americas Inc. | Distance sensing by IQ domain differentiation of time of flight (TOF) measurements |
DE102010010097A1 (de) | 2010-03-01 | 2011-09-01 | Esw Gmbh | Kompakter Laser-Entfernungsmesser |
US20110305256A1 (en) | 2010-03-05 | 2011-12-15 | TeraDiode, Inc. | Wavelength beam combining based laser pumps |
US8502867B2 (en) | 2010-03-19 | 2013-08-06 | Lightspeed Genomics, Inc. | Synthetic aperture optics imaging method using minimum selective excitation patterns |
US9465228B2 (en) | 2010-03-19 | 2016-10-11 | Optical Biosystems, Inc. | Illumination apparatus optimized for synthetic aperture optics imaging using minimum selective excitation patterns |
US8305561B2 (en) | 2010-03-25 | 2012-11-06 | Hokuyo Automatic Co., Ltd. | Scanning-type distance measuring apparatus |
US20110280265A1 (en) * | 2010-05-14 | 2011-11-17 | Institut National D'optique | Driver circuit for the direct modulation of a laser diode |
EP3901653A3 (en) | 2010-05-17 | 2022-03-02 | Velodyne Lidar USA, Inc. | High definition lidar system |
US8605262B2 (en) | 2010-06-23 | 2013-12-10 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Time shifted PN codes for CW LiDAR, radar, and sonar |
CN102299621B (zh) | 2010-06-28 | 2014-12-10 | 东芝照明技术株式会社 | 开关电源用装置、开关电源电路以及电气设备 |
US8736818B2 (en) | 2010-08-16 | 2014-05-27 | Ball Aerospace & Technologies Corp. | Electronically steered flash LIDAR |
WO2012056615A1 (ja) | 2010-10-26 | 2012-05-03 | パナソニック株式会社 | 半導体装置 |
US20130286404A1 (en) | 2010-11-16 | 2013-10-31 | Thunder Bay Regional Research Institute | Methods and apparatus for alignment of interferometer |
EP2641102A4 (en) | 2010-11-19 | 2014-08-13 | Nokia Corp | HANDLING COMPLEX SIGNAL PARAMETERS |
US20120173185A1 (en) | 2010-12-30 | 2012-07-05 | Caterpillar Inc. | Systems and methods for evaluating range sensor calibration data |
EP2503360B1 (de) | 2011-03-25 | 2020-08-19 | Baumer Electric AG | Verfahren zur optischen Erfassung zumindest teilweise transparenter Objekte |
US8976340B2 (en) | 2011-04-15 | 2015-03-10 | Advanced Scientific Concepts, Inc. | Ladar sensor for landing, docking and approach |
US8908159B2 (en) | 2011-05-11 | 2014-12-09 | Leddartech Inc. | Multiple-field-of-view scannerless optical rangefinder in high ambient background light |
DE102011076493A1 (de) | 2011-05-26 | 2012-11-29 | Hilti Aktiengesellschaft | Messeinrichtung zur Distanzmessung |
US9059562B2 (en) | 2011-06-23 | 2015-06-16 | Daylight Solutions, Inc. | Control system for directing power to a laser assembly |
US9069061B1 (en) | 2011-07-19 | 2015-06-30 | Ball Aerospace & Technologies Corp. | LIDAR with analog memory |
JP2013037298A (ja) | 2011-08-10 | 2013-02-21 | Nippon Sheet Glass Co Ltd | 正立等倍レンズアレイプレート |
US9288513B2 (en) | 2011-08-29 | 2016-03-15 | Aerovironment, Inc. | System and method of high-resolution digital data image transmission |
US8907921B2 (en) | 2011-08-30 | 2014-12-09 | Synaptics Incorporated | Interference sensing within a display device with an integrated sensing device |
US9453914B2 (en) | 2011-09-08 | 2016-09-27 | Continental Advanced Lidar Solutions Us, Inc. | Terrain mapping LADAR system |
US20130093583A1 (en) | 2011-10-14 | 2013-04-18 | Alan D. Shapiro | Automotive panel warning and protection system |
WO2013053952A1 (en) | 2011-10-14 | 2013-04-18 | Iee International Electronics & Engineering S.A. | Spatially selective detection using a dynamic mask in an image plane |
US9217415B2 (en) | 2011-10-14 | 2015-12-22 | Vestas Wind Systems A/S | Estimation of wind properties using a light detection and ranging device |
US8760634B2 (en) | 2011-10-28 | 2014-06-24 | Lockheed Martin Corporation | Optical synthetic aperture radar |
WO2013091697A1 (de) | 2011-12-21 | 2013-06-27 | Carl Zeiss Industrielle Messtechnik Gmbh | Verfahren zum koppeln zweier systemkomponenten eines messgeräts, insbesondere eines koordinatenmessgeräts |
EP2607924A1 (de) | 2011-12-23 | 2013-06-26 | Leica Geosystems AG | Entfernungsmesser-Justage |
US8754412B2 (en) | 2012-01-03 | 2014-06-17 | International Business Machines Corporation | Intra die variation monitor using through-silicon via |
US9651417B2 (en) * | 2012-02-15 | 2017-05-16 | Apple Inc. | Scanning depth engine |
JP5863512B2 (ja) | 2012-02-29 | 2016-02-16 | 日本板硝子株式会社 | レンズアレイユニット、正立等倍レンズアレイ、光走査ユニット、画像読取装置、および画像書込装置 |
EP2637038B1 (de) | 2012-03-07 | 2017-01-18 | Vectronix AG | Entfernungsmesser |
US20130241761A1 (en) | 2012-03-16 | 2013-09-19 | Nikon Corporation | Beam steering for laser radar and other uses |
US8804101B2 (en) | 2012-03-16 | 2014-08-12 | Advanced Scientific Concepts, Inc. | Personal LADAR sensor |
US8994925B2 (en) | 2012-03-27 | 2015-03-31 | Pulsedlight, Inc. | Optical distance measurement device |
US20160191173A1 (en) | 2012-04-10 | 2016-06-30 | Robert Anderson Malaney | Location Verification in Quantum Communications |
US9246041B1 (en) | 2012-04-26 | 2016-01-26 | Id Quantique Sa | Apparatus and method for allowing avalanche photodiode based single-photon detectors to be driven by the same electrical circuit in gated and in free-running modes |
US9634156B2 (en) * | 2012-05-25 | 2017-04-25 | Sensl Technologies Ltd. | Semiconductor photomultiplier and readout method |
CN104641222A (zh) | 2012-05-29 | 2015-05-20 | 麦考瑞大学 | 用于发光显微成像的双向扫描 |
TW201400800A (zh) | 2012-06-18 | 2014-01-01 | Fujifilm Corp | 圖案相位差濾光片的檢查裝置以及檢查方法 |
US9349263B2 (en) | 2012-06-22 | 2016-05-24 | GM Global Technology Operations LLC | Alert systems and methods for a vehicle |
KR101908304B1 (ko) | 2012-08-10 | 2018-12-18 | 엘지전자 주식회사 | 거리 검출 장치, 및 이를 구비하는 영상처리장치 |
CN107104649B (zh) | 2012-08-15 | 2020-10-13 | 天工方案公司 | 射频功率放大器控制电路及方法、射频模块和射频装置 |
US20140063189A1 (en) | 2012-08-28 | 2014-03-06 | Digital Signal Corporation | System and Method for Refining Coordinate-Based Three-Dimensional Images Obtained from a Three-Dimensional Measurement System |
US9081096B2 (en) | 2012-08-31 | 2015-07-14 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Apparatus, method, and computer program for a resolution-enhanced pseudo-noise code technique |
EP4221187A3 (en) | 2012-09-10 | 2023-08-09 | Aemass, Inc. | Multi-dimensional data capture of an environment using plural devices |
CN104620129A (zh) | 2012-09-14 | 2015-05-13 | 法罗技术股份有限公司 | 具有角扫描速度的动态调整的激光扫描仪 |
US9383753B1 (en) | 2012-09-26 | 2016-07-05 | Google Inc. | Wide-view LIDAR with areas of special attention |
US9442195B2 (en) * | 2012-10-11 | 2016-09-13 | Lumentum Operations Llc | Power efficient pulsed laser driver for time of flight cameras |
JP6352287B2 (ja) * | 2012-11-19 | 2018-07-04 | ライトラボ・イメージング・インコーポレーテッド | マルチモーダル・イメージングシステム、プローブ及び方法 |
JP6270863B2 (ja) | 2012-11-29 | 2018-01-31 | コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. | 構造化光パターンをシーンに投影するためのレーザー装置 |
US8879050B2 (en) | 2012-12-04 | 2014-11-04 | Texas Instruments Incorporated | Method for dynamically adjusting the operating parameters of a TOF camera according to vehicle speed |
US9151940B2 (en) | 2012-12-05 | 2015-10-06 | Kla-Tencor Corporation | Semiconductor inspection and metrology system using laser pulse multiplier |
US9660639B2 (en) * | 2012-12-21 | 2017-05-23 | Gan Systems Inc. | Distributed driver circuitry integrated with GaN power transistors |
US9285477B1 (en) | 2013-01-25 | 2016-03-15 | Apple Inc. | 3D depth point cloud from timing flight of 2D scanned light beam pulses |
US8908251B2 (en) | 2013-01-30 | 2014-12-09 | Hrl Laboratories, Llc | Tunable optical metamaterial |
KR102048361B1 (ko) | 2013-02-28 | 2019-11-25 | 엘지전자 주식회사 | 거리 검출 장치, 및 이를 구비하는 영상처리장치 |
US9250327B2 (en) | 2013-03-05 | 2016-02-02 | Subcarrier Systems Corporation | Method and apparatus for reducing satellite position message payload by adaptive data compression techniques |
US9063549B1 (en) | 2013-03-06 | 2015-06-23 | Google Inc. | Light detection and ranging device with oscillating mirror driven by magnetically interactive coil |
US9128190B1 (en) | 2013-03-06 | 2015-09-08 | Google Inc. | Light steering device with an array of oscillating reflective slats |
US9110169B2 (en) | 2013-03-08 | 2015-08-18 | Advanced Scientific Concepts, Inc. | LADAR enabled impact mitigation system |
US9086273B1 (en) | 2013-03-08 | 2015-07-21 | Google Inc. | Microrod compression of laser beam in combination with transmit lens |
US20160098620A1 (en) | 2013-03-11 | 2016-04-07 | 1626628 Ontario Limited | Method and system for object identification |
US9319916B2 (en) | 2013-03-15 | 2016-04-19 | Isco International, Llc | Method and appartus for signal interference processing |
US9215430B2 (en) * | 2013-03-15 | 2015-12-15 | Omnivision Technologies, Inc. | Image sensor with pixels having increased optical crosstalk |
JP6175835B2 (ja) | 2013-03-26 | 2017-08-09 | 株式会社デンソーウェーブ | レーザレーダ装置 |
US20140293263A1 (en) | 2013-03-28 | 2014-10-02 | James Justice | LIDAR Comprising Polyhedron Transmission and Receiving Scanning Element |
US9239959B1 (en) | 2013-04-08 | 2016-01-19 | Lockheed Martin Corporation | Multi-resolution, wide field-of-view, unmanned ground vehicle navigation sensor |
US10132928B2 (en) | 2013-05-09 | 2018-11-20 | Quanergy Systems, Inc. | Solid state optical phased array lidar and method of using same |
US9069080B2 (en) * | 2013-05-24 | 2015-06-30 | Advanced Scientific Concepts, Inc. | Automotive auxiliary ladar sensor |
CN103278808B (zh) | 2013-05-28 | 2015-12-23 | 中国科学院合肥物质科学研究院 | 一种多线扫描式激光雷达装置 |
US20150002852A1 (en) | 2013-06-26 | 2015-01-01 | Zygo Corporation | Coherence scanning interferometry using phase shifted interferometrty signals |
US9113154B2 (en) | 2013-07-10 | 2015-08-18 | Faro Technologies, Inc. | Three-dimensional measurement device having three-dimensional overview camera |
US9297900B2 (en) | 2013-07-25 | 2016-03-29 | Hand Held Products, Inc. | Code symbol reading system having adjustable object detection |
US9629220B2 (en) | 2013-08-05 | 2017-04-18 | Peter Panopoulos | Sensor-based controllable LED lighting system with repositionable components and method |
US10126412B2 (en) | 2013-08-19 | 2018-11-13 | Quanergy Systems, Inc. | Optical phased array lidar system and method of using same |
US8836922B1 (en) | 2013-08-20 | 2014-09-16 | Google Inc. | Devices and methods for a rotating LIDAR platform with a shared transmit/receive path |
JP6440151B2 (ja) | 2013-08-23 | 2018-12-19 | シクパ ホルディング ソシエテ アノニムSicpa Holding Sa | デバイスを認証するための方法及びシステム |
US10203399B2 (en) | 2013-11-12 | 2019-02-12 | Big Sky Financial Corporation | Methods and apparatus for array based LiDAR systems with reduced interference |
CA2931055C (en) | 2013-11-22 | 2022-07-12 | Ottomotto Llc | Lidar scanner calibration |
JP6135481B2 (ja) | 2013-11-28 | 2017-05-31 | トヨタ自動車株式会社 | 自律移動体 |
KR101770872B1 (ko) * | 2013-12-27 | 2017-08-23 | 주식회사 만도 | 차량용 tof 카메라 및 그의 구동 방법 |
WO2015104572A1 (en) | 2014-01-08 | 2015-07-16 | Dh Technologies Development Pte. Ltd. | Detector current amplification with current gain transformer followed by transimpedance amplifier |
US9831630B2 (en) | 2014-02-06 | 2017-11-28 | GM Global Technology Operations LLC | Low cost small size LiDAR for automotive |
KR20150095033A (ko) | 2014-02-12 | 2015-08-20 | 한국전자통신연구원 | 레이저 레이더 장치 및 그것의 영상 획득 방법 |
US9110154B1 (en) | 2014-02-19 | 2015-08-18 | Raytheon Company | Portable programmable ladar test target |
JP2015169491A (ja) | 2014-03-06 | 2015-09-28 | 株式会社ミツトヨ | 変位検出装置および変位検出方法 |
US9658322B2 (en) | 2014-03-13 | 2017-05-23 | Garmin Switzerland Gmbh | LIDAR optical scanner system |
US8995478B1 (en) | 2014-04-08 | 2015-03-31 | Tekhnoscan-Lab LLC | Passively mode-locked pulsed fiber laser |
US9360554B2 (en) | 2014-04-11 | 2016-06-07 | Facet Technology Corp. | Methods and apparatus for object detection and identification in a multiple detector lidar array |
US9286538B1 (en) | 2014-05-01 | 2016-03-15 | Hrl Laboratories, Llc | Adaptive 3D to 2D projection for different height slices and extraction of robust morphological features for 3D object recognition |
FR3022349B1 (fr) | 2014-06-13 | 2016-09-23 | Thales Sa | Lidar doppler a mesure relative de vitesse |
DE202014005508U1 (de) * | 2014-07-02 | 2014-10-09 | Robert Bosch Gmbh | Entfernungsmessvorrichtung |
US9575184B2 (en) | 2014-07-03 | 2017-02-21 | Continental Advanced Lidar Solutions Us, Inc. | LADAR sensor for a dense environment |
US9531928B2 (en) | 2014-07-08 | 2016-12-27 | Flir Systems, Inc. | Gimbal system with imbalance compensation |
US9759809B2 (en) | 2014-07-08 | 2017-09-12 | Sikorsky Aircraft Corporation | LIDAR-based shipboard tracking and state estimation for autonomous landing |
US9377533B2 (en) | 2014-08-11 | 2016-06-28 | Gerard Dirk Smits | Three-dimensional triangulation and time-of-flight based tracking systems and methods |
US9342968B2 (en) | 2014-08-12 | 2016-05-17 | Tyco Fire & Security Gmbh | Electronic article surveillance systems implementing methods for determining security tag locations |
WO2016036961A1 (en) | 2014-09-05 | 2016-03-10 | Halliburton Energy Services, Inc. | Electromagnetic signal booster |
WO2016056545A1 (ja) | 2014-10-09 | 2016-04-14 | コニカミノルタ株式会社 | 走査光学系及び投受光装置 |
US9734276B2 (en) | 2014-10-22 | 2017-08-15 | Samsung Electronics Co., Ltd. | Integrated circuit and method of designing layout of the same |
US10054675B2 (en) | 2014-10-24 | 2018-08-21 | Analog Devices, Inc. | Active compensation for phase alignment errors in time-of-flight cameras |
EP3029494A1 (de) | 2014-12-02 | 2016-06-08 | Sick Ag | Optoelektronischer Sensor |
JP2016133341A (ja) | 2015-01-16 | 2016-07-25 | 株式会社リコー | 物体検出装置、センシング装置、移動体装置及び物体検出方法 |
US10107914B2 (en) | 2015-02-20 | 2018-10-23 | Apple Inc. | Actuated optical element for light beam scanning device |
JP6924555B2 (ja) | 2015-03-02 | 2021-08-25 | 晶元光電股▲ふん▼有限公司Epistar Corporation | Ledドライブ及び関連する照明システム |
US10036801B2 (en) | 2015-03-05 | 2018-07-31 | Big Sky Financial Corporation | Methods and apparatus for increased precision and improved range in a multiple detector LiDAR array |
US9715016B2 (en) | 2015-03-11 | 2017-07-25 | The Boeing Company | Real time multi dimensional image fusing |
US9625582B2 (en) | 2015-03-25 | 2017-04-18 | Google Inc. | Vehicle with multiple light detection and ranging devices (LIDARs) |
US9866035B2 (en) * | 2015-03-27 | 2018-01-09 | Irobot Corporation | Rotatable coupling |
DE102015004272B4 (de) | 2015-04-07 | 2019-05-29 | Metek Meteorologische Messtechnik Gmbh | Störlicht-tolerantes Lidar-Messsystem und Störlicht-tolerantes Lidar-Messverfahren |
WO2016164455A1 (en) | 2015-04-09 | 2016-10-13 | Avaz Surgical, Llc | Device and system for placing securing device within bone |
EP3078935A1 (en) | 2015-04-10 | 2016-10-12 | The European Atomic Energy Community (EURATOM), represented by the European Commission | Method and device for real-time mapping and localization |
US10436904B2 (en) | 2015-04-15 | 2019-10-08 | The Boeing Company | Systems and methods for modular LADAR scanning |
JP6554310B2 (ja) | 2015-04-28 | 2019-07-31 | 浜松ホトニクス株式会社 | 距離測定装置 |
US10215847B2 (en) | 2015-05-07 | 2019-02-26 | GM Global Technology Operations LLC | Pseudo random sequences in array lidar systems |
WO2016191367A1 (en) | 2015-05-22 | 2016-12-01 | Massachusetts Institute Of Technology | Rapid and precise optically multiplexed imaging |
CN107615005B (zh) | 2015-05-28 | 2021-06-01 | 赛莱特私人有限公司 | 高分辨率3-d谱域光学成像设备和方法 |
US10356392B2 (en) | 2015-05-28 | 2019-07-16 | University College Cork—National Univesity of Ireland, Cork | Coded access optical sensor |
US10591592B2 (en) | 2015-06-15 | 2020-03-17 | Humatics Corporation | High-precision time of flight measurement systems |
US9866208B2 (en) | 2015-06-15 | 2018-01-09 | Microsoft Technology Lincensing, LLC | Precision measurements and calibrations for timing generators |
US9887537B2 (en) | 2015-06-30 | 2018-02-06 | Microsoft Technology Licensing, Llc | Analog limit on digitally set pulse widths |
EP3343202B1 (en) | 2015-08-24 | 2019-12-04 | Panasonic Intellectual Property Management Co., Ltd. | Substance detecting device, substance detecting system, and substance detecting method |
KR20240010086A (ko) * | 2015-09-09 | 2024-01-23 | 일렉트로 싸이언티픽 인더스트리이즈 인코포레이티드 | 작업물들을 레이저 가공하기 위한 레이저 가공 장치, 방법들 및 관련된 배열들 |
US10754034B1 (en) | 2015-09-30 | 2020-08-25 | Near Earth Autonomy, Inc. | Apparatus for redirecting field of view of lidar scanner, and lidar scanner including same |
US10215846B2 (en) | 2015-11-20 | 2019-02-26 | Texas Instruments Incorporated | Compact chip scale LIDAR solution |
US10539661B2 (en) | 2015-11-25 | 2020-01-21 | Velodyne Lidar, Inc. | Three dimensional LIDAR system with targeted field of view |
DE102015120538A1 (de) | 2015-11-26 | 2017-06-01 | Valeo Schalter Und Sensoren Gmbh | Laserscanner und Kraftfahrzeug mit einem Laserscanner |
EP3411660A4 (en) | 2015-11-30 | 2019-11-27 | Luminar Technologies, Inc. | LIDAR SYSTEM WITH DISTRIBUTED LASER AND MULTIPLE SENSOR HEADS AND PULSED LASER FOR LIDAR SYSTEM |
WO2017116383A1 (en) | 2015-12-28 | 2017-07-06 | Halliburton Energy Services, Inc. | Distributed optical sensing using compressive sampling |
US10627490B2 (en) | 2016-01-31 | 2020-04-21 | Velodyne Lidar, Inc. | Multiple pulse, LIDAR based 3-D imaging |
US10641872B2 (en) | 2016-02-18 | 2020-05-05 | Aeye, Inc. | Ladar receiver with advanced optics |
EP3423865B1 (en) | 2016-03-01 | 2024-03-06 | Brightway Vision Ltd. | Gated imaging apparatus, system and method |
JP7149256B2 (ja) | 2016-03-19 | 2022-10-06 | ベロダイン ライダー ユーエスエー,インコーポレイテッド | Lidarに基づく3次元撮像のための統合された照射及び検出 |
CN108885263B (zh) | 2016-03-21 | 2024-02-23 | 威力登激光雷达有限公司 | 具有可变脉冲重复的基于lidar的3d成像 |
JP7258554B2 (ja) | 2016-03-21 | 2023-04-17 | ベロダイン ライダー ユーエスエー,インコーポレイテッド | 可変照射場密度を有するlidarに基づく三次元撮像 |
US10761195B2 (en) | 2016-04-22 | 2020-09-01 | OPSYS Tech Ltd. | Multi-wavelength LIDAR system |
US11507064B2 (en) | 2016-05-09 | 2022-11-22 | Strong Force Iot Portfolio 2016, Llc | Methods and systems for industrial internet of things data collection in downstream oil and gas environment |
US10838046B2 (en) | 2016-05-10 | 2020-11-17 | Suteng Innovation Technology Co., Ltd. | Multiline lidar |
US10690756B2 (en) | 2016-05-10 | 2020-06-23 | Texas Instruments Incorporated | Methods and apparatus for LIDAR operation with pulse position modulation |
KR102384875B1 (ko) | 2016-05-11 | 2022-04-08 | 삼성전자주식회사 | 거리 센서의 칼리브레이션 방법, 장치 및 시스템 |
US10393877B2 (en) | 2016-06-01 | 2019-08-27 | Velodyne Lidar, Inc. | Multiple pixel scanning LIDAR |
US11270904B2 (en) | 2016-07-12 | 2022-03-08 | Brooks Automation Us, Llc | Substrate processing apparatus |
US20180059219A1 (en) | 2016-08-31 | 2018-03-01 | Qualcomm Incorporated | Multi-beam position sensing devices |
KR102698290B1 (ko) | 2016-09-09 | 2024-08-23 | 삼성전자주식회사 | 위상 변조 능동 소자, 이의 구동 방법 및 위상 변조 능동 소자를 포함하는 광학 장치 |
CN106443699B (zh) | 2016-09-09 | 2019-02-15 | 深圳市砝石激光雷达有限公司 | 一种多组合式激光雷达装置及相应的扫描方法 |
US20180081041A1 (en) | 2016-09-22 | 2018-03-22 | Apple Inc. | LiDAR with irregular pulse sequence |
CN106597471B (zh) | 2016-11-08 | 2019-05-24 | 上海禾赛光电科技有限公司 | 具有透明障碍物自动检测功能的车辆及方法 |
US11598850B2 (en) | 2016-11-30 | 2023-03-07 | Sony Semiconductor Solutions Corporation | Apparatus and method for illumination |
US10048358B2 (en) | 2016-12-30 | 2018-08-14 | Panosense Inc. | Laser power calibration and correction |
US10109183B1 (en) | 2016-12-30 | 2018-10-23 | Panosense Inc. | Interface for transferring data between a non-rotating body and a rotating body |
US10830878B2 (en) | 2016-12-30 | 2020-11-10 | Panosense Inc. | LIDAR system |
US10673204B2 (en) * | 2017-03-07 | 2020-06-02 | Sensl Technologies Ltd. | Laser driver |
EP3583384A4 (en) | 2017-03-20 | 2021-01-13 | Velodyne Lidar, Inc. | STRUCTURED LIGHT LIDAR ORIENTED 3D IMAGING AND INTEGRATED LIGHTING AND DETECTION |
US9869754B1 (en) | 2017-03-22 | 2018-01-16 | Luminar Technologies, Inc. | Scan patterns for lidar systems |
US9989629B1 (en) | 2017-03-30 | 2018-06-05 | Luminar Technologies, Inc. | Cross-talk mitigation using wavelength switching |
JP7290571B2 (ja) | 2017-03-31 | 2023-06-13 | ベロダイン ライダー ユーエスエー,インコーポレイテッド | 統合化されたlidar照明出力制御 |
US20180284246A1 (en) | 2017-03-31 | 2018-10-04 | Luminar Technologies, Inc. | Using Acoustic Signals to Modify Operation of a Lidar System |
US10460180B2 (en) | 2017-04-20 | 2019-10-29 | GM Global Technology Operations LLC | Systems and methods for visual classification with region proposals |
WO2018196001A1 (en) | 2017-04-28 | 2018-11-01 | SZ DJI Technology Co., Ltd. | Sensing assembly for autonomous driving |
JP2020519881A (ja) | 2017-05-08 | 2020-07-02 | ベロダイン ライダー, インク. | Lidarデータ収集及び制御 |
WO2018213338A1 (en) | 2017-05-15 | 2018-11-22 | Ouster, Inc. | Augmenting panoramic lidar results with color |
CN206773192U (zh) | 2017-06-19 | 2017-12-19 | 上海禾赛光电科技有限公司 | 基于多个非均匀分布激光器的激光雷达 |
CN110869750A (zh) | 2017-06-14 | 2020-03-06 | 优比库德股份有限公司 | 光纤耦合宽带光源 |
US10003168B1 (en) | 2017-10-18 | 2018-06-19 | Luminar Technologies, Inc. | Fiber laser with free-space components |
US11644834B2 (en) | 2017-11-10 | 2023-05-09 | Nvidia Corporation | Systems and methods for safe and reliable autonomous vehicles |
US11353556B2 (en) | 2017-12-07 | 2022-06-07 | Ouster, Inc. | Light ranging device with a multi-element bulk lens system |
US11294041B2 (en) | 2017-12-08 | 2022-04-05 | Velodyne Lidar Usa, Inc. | Systems and methods for improving detection of a return signal in a light ranging and detection system |
KR102715478B1 (ko) * | 2018-01-10 | 2024-10-10 | 벨로다인 라이더 유에스에이, 인크. | 계층형 전력 제어를 이용한 lidar 기반의 거리 측정 |
CN109116367B (zh) * | 2018-06-27 | 2020-05-19 | 上海禾赛光电科技有限公司 | 一种激光雷达 |
US11971507B2 (en) | 2018-08-24 | 2024-04-30 | Velodyne Lidar Usa, Inc. | Systems and methods for mitigating optical crosstalk in a light ranging and detection system |
CN208902906U (zh) | 2018-09-03 | 2019-05-24 | 上海禾赛光电科技有限公司 | 遮光件、具有遮光结构的透镜组及激光雷达 |
US10712434B2 (en) * | 2018-09-18 | 2020-07-14 | Velodyne Lidar, Inc. | Multi-channel LIDAR illumination driver |
US11082010B2 (en) | 2018-11-06 | 2021-08-03 | Velodyne Lidar Usa, Inc. | Systems and methods for TIA base current detection and compensation |
US10613203B1 (en) | 2019-07-01 | 2020-04-07 | Velodyne Lidar, Inc. | Interference mitigation for light detection and ranging |
-
2018
- 2018-03-30 JP JP2019553816A patent/JP7290571B2/ja active Active
- 2018-03-30 US US15/941,302 patent/US10386465B2/en active Active
- 2018-03-30 EP EP18774795.1A patent/EP3593166B1/en active Active
- 2018-03-30 WO PCT/US2018/025395 patent/WO2018183843A1/en unknown
- 2018-03-30 CN CN201880035992.8A patent/CN110914705B/zh active Active
- 2018-03-30 CA CA3057988A patent/CA3057988A1/en active Pending
-
2019
- 2019-07-12 US US16/510,749 patent/US20190361092A1/en not_active Abandoned
- 2019-07-12 US US16/510,710 patent/US11808891B2/en active Active
- 2019-07-12 US US16/510,680 patent/US10627491B2/en active Active
-
2021
- 2021-03-30 JP JP2021056430A patent/JP2021107817A/ja active Pending
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5198657A (en) * | 1992-02-05 | 1993-03-30 | General Atomics | Integrated imaging and ranging lidar receiver |
US5953110A (en) * | 1998-04-23 | 1999-09-14 | H.N. Burns Engineering Corporation | Multichannel laser radar |
US20100020306A1 (en) * | 2006-07-13 | 2010-01-28 | Velodyne Acoustics, Inc. | High definition lidar system |
JP2008102000A (ja) * | 2006-10-18 | 2008-05-01 | Matsushita Electric Works Ltd | 強度変調光を用いた空間情報検出装置 |
US20080258695A1 (en) * | 2007-04-19 | 2008-10-23 | Luminus Devices, Inc. | Switching device integrated with light emitting device |
JP2013187528A (ja) * | 2012-03-12 | 2013-09-19 | Furukawa Electric Co Ltd:The | 発光素子駆動装置 |
US20160313445A1 (en) * | 2012-03-16 | 2016-10-27 | Advanced Scientific Concepts, Inc. | Personal ladar sensor |
US20150116695A1 (en) * | 2013-10-28 | 2015-04-30 | Texas Instruments Incorporated | Light radar signal processing apparatus, systems and methods |
US20160079854A1 (en) * | 2014-09-16 | 2016-03-17 | Navitas Semiconductor Inc. | GaN CIRCUIT DRIVERS FOR GaN CIRCUIT LOADS |
US9529079B1 (en) * | 2015-03-26 | 2016-12-27 | Google Inc. | Multiplexed multichannel photodetector |
Also Published As
Publication number | Publication date |
---|---|
US10627491B2 (en) | 2020-04-21 |
EP3593166A4 (en) | 2020-12-09 |
EP3593166B1 (en) | 2024-04-17 |
WO2018183843A1 (en) | 2018-10-04 |
JP2021107817A (ja) | 2021-07-29 |
US20190361092A1 (en) | 2019-11-28 |
US10386465B2 (en) | 2019-08-20 |
JP7290571B2 (ja) | 2023-06-13 |
US20200191915A1 (en) | 2020-06-18 |
US20190339365A1 (en) | 2019-11-07 |
CN110914705B (zh) | 2024-04-26 |
EP3593166A1 (en) | 2020-01-15 |
CA3057988A1 (en) | 2018-10-04 |
US20180284227A1 (en) | 2018-10-04 |
JP2020515855A (ja) | 2020-05-28 |
US11808891B2 (en) | 2023-11-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110914705B (zh) | 用于集成lidar照明功率控制的设备、系统和方法 | |
US11796648B2 (en) | Multi-channel lidar illumination driver | |
US11703569B2 (en) | LIDAR data acquisition and control | |
US10330780B2 (en) | LIDAR based 3-D imaging with structured light and integrated illumination and detection | |
KR102715478B1 (ko) | 계층형 전력 제어를 이용한 lidar 기반의 거리 측정 | |
US20190369258A1 (en) | Multiple Pixel Scanning LIDAR | |
RU2778356C1 (ru) | Многоканальный lidar-формирователь облучения |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
TA01 | Transfer of patent application right | ||
TA01 | Transfer of patent application right |
Effective date of registration: 20210226 Address after: California, USA Applicant after: Wieden lidar USA Ltd. Address before: California, USA Applicant before: VELODYNE LIDAR, Inc. |
|
GR01 | Patent grant | ||
GR01 | Patent grant |