CN110010670A - Ga2O3系MISFET和Ga2O3系MESFET - Google Patents

Ga2O3系MISFET和Ga2O3系MESFET Download PDF

Info

Publication number
CN110010670A
CN110010670A CN201910099983.1A CN201910099983A CN110010670A CN 110010670 A CN110010670 A CN 110010670A CN 201910099983 A CN201910099983 A CN 201910099983A CN 110010670 A CN110010670 A CN 110010670A
Authority
CN
China
Prior art keywords
single crystal
crystal film
substrate
type dopant
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910099983.1A
Other languages
English (en)
Inventor
佐佐木公平
东胁正高
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
State-Run Research And Development Legal Person Nict
Tamura Corp
Original Assignee
State-Run Research And Development Legal Person Nict
Tamura Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by State-Run Research And Development Legal Person Nict, Tamura Corp filed Critical State-Run Research And Development Legal Person Nict
Publication of CN110010670A publication Critical patent/CN110010670A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/7869Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising an oxide semiconductor material, e.g. zinc oxide, copper aluminium oxide, cadmium stannate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02414Oxide semiconducting materials not being Group 12/16 materials, e.g. ternary compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/02433Crystal orientation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02565Oxide semiconducting materials not being Group 12/16 materials, e.g. ternary compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/0257Doping during depositing
    • H01L21/02573Conductivity type
    • H01L21/02576N-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/0257Doping during depositing
    • H01L21/02573Conductivity type
    • H01L21/02581Transition metal or rare earth elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02631Physical deposition at reduced pressure, e.g. MBE, sputtering, evaporation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/04Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their crystalline structure, e.g. polycrystalline, cubic or particular orientation of crystalline planes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/04Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their crystalline structure, e.g. polycrystalline, cubic or particular orientation of crystalline planes
    • H01L29/045Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their crystalline structure, e.g. polycrystalline, cubic or particular orientation of crystalline planes by their particular orientation of crystalline planes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/15Structures with periodic or quasi periodic potential variation, e.g. multiple quantum wells, superlattices
    • H01L29/157Doping structures, e.g. doping superlattices, nipi superlattices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/36Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the concentration or distribution of impurities in the bulk material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/36Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the concentration or distribution of impurities in the bulk material
    • H01L29/365Planar doping, e.g. atomic-plane doping, delta-doping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/417Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
    • H01L29/41725Source or drain electrodes for field effect devices
    • H01L29/41733Source or drain electrodes for field effect devices for thin film transistors with insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66969Multistep manufacturing processes of devices having semiconductor bodies not comprising group 14 or group 13/15 materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7816Lateral DMOS transistors, i.e. LDMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7816Lateral DMOS transistors, i.e. LDMOS transistors
    • H01L29/7824Lateral DMOS transistors, i.e. LDMOS transistors with a substrate comprising an insulating layer, e.g. SOI-LDMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78603Thin film transistors, i.e. transistors with a channel being at least partly a thin film characterised by the insulating substrate or support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/80Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier
    • H01L29/812Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier with a Schottky gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/80Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier
    • H01L29/812Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier with a Schottky gate
    • H01L29/8126Thin film MESFET's
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/24Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only semiconductor materials not provided for in groups H01L29/16, H01L29/18, H01L29/20, H01L29/22

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Thin Film Transistor (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

本发明提供一种高品质的Ga2O3系MISFET和Ga2O3系MESFET。Ga2O3系MISFET包括:β‑Ga2O3系基板,其以从β‑Ga2O3系单晶的(100)面仅旋转50°~90°的角度的面为主面,被添加p型掺杂剂并被控制为与所述p型掺杂剂的添加浓度相应的绝缘性;β‑Ga2O3系单晶膜,其作为同质外延膜形成在所述β‑Ga2O3系基板的所述主面上,形成通道层;在所述β‑Ga2O3系单晶膜上形成的源电极和漏电极;以及在所述源电极与所述漏电极之间的所述β‑Ga2O3系单晶膜上介由栅极绝缘膜形成的栅电极。

Description

Ga2O3系MISFET和Ga2O3系MESFET
本申请是分案申请,原案申请的申请号为201280043332.7,国际申请号为PCT/JP2012/072897,申请日为2012年09月07日,发明名称为“Ga2O3系半导体元件”。
技术领域
本发明涉及Ga2O3系半导体元件。
背景技术
作为现有的Ga2O3系半导体元件,已知有使用了形成在蓝宝石基板上的Ga2O3晶体膜的Ga2O3系半导体元件(例如,参照非专利文献1、2)。
现有技术文献
非专利文献
非专利文献1:K.Matsuzaki et al.Thin Solid Films 496,2006,pp.37-41.
非专利文献2:K.Matsuzaki et al.Appl.Phys.Lett.88,092106,2006.
发明内容
然而,由于Ga2O3晶体和蓝宝石晶体的晶体结构完全不同,所以在蓝宝石基板上使Ga2O3晶体异质外延生长是非常困难的。因此,难以使用蓝宝石基板上的Ga2O3晶体膜形成高品质的Ga2O3系半导体元件。
因此,本发明的目的在于提供高品质的Ga2O3系半导体元件。
为了实现上述目的,本发明的一个方式提供[1]~[6]的Ga2O3系半导体元件。
[1]一种Ga2O3系半导体元件,包括:在β-Ga2O3基板上直接或介由其它层形成的β-Ga2O3单晶膜,在上述β-Ga2O3单晶膜上形成的源电极和漏电极,和在上述源电极与上述漏电极之间的上述β-Ga2O3单晶膜上形成的栅电极。
[2]根据上述[1]中记载的Ga2O3系半导体元件,是上述栅电极介由栅极绝缘膜形成在上述β-Ga2O3单晶膜上的Ga2O3系MISFET。
[3]根据上述[1]或[2]中记载的Ga2O3系半导体元件,包含分别形成在上述β-Ga2O3单晶膜中的上述源电极和上述漏电极的下方的源极区域和漏极区域。
[4]根据上述[3]中记载的Ga2O3系半导体元件,上述β-Ga2O3单晶膜、上述源极区域和上述漏极区域为n型,包含上述β-Ga2O3单晶膜中的包围上述源极区域的p型或高电阻的主体区域。
[5]根据上述[1]中记载的Ga2O3系半导体元件,是上述栅电极直接形成在上述β-Ga2O3单晶膜上的Ga2O3系MESFET。
[6]根据上述[5]中记载的Ga2O3系半导体元件,上述β-Ga2O3单晶膜为n型,包含分别形成在上述β-Ga2O3单晶膜中的上述源电极和上述漏电极的下方的n型源极区域和n型漏极区域。
根据本发明,能够提供高品质的Ga2O3系半导体元件。
附图说明
图1是第1实施方式涉及的Ga2O3系MISFET的截面图。
图2是示意地表示第1实施方式涉及的MBE装置的构成的构成图。
图3A是第1实施方式涉及的高电阻β-Ga2O3基板和n型β-Ga2O3单晶膜的截面图。
图3B是第1实施方式涉及的高电阻β-Ga2O3基板和n型β-Ga2O3单晶膜的截面图。
图4是第2实施方式涉及的Ga2O3系MESFET的截面图。
图5是第3实施方式涉及的Ga2O3系MISFET的截面图。
图6是第4实施方式涉及的Ga2O3系MISFET的截面图。
图7是第5实施方式涉及的Ga2O3系MISFET的截面图。
图8是表示实施例涉及的漏极-源极间电压与漏极-源极间电流的关系的图。
图9是表示实施例涉及的栅极-源极间电压与漏极-源极间电流的关系的图。
图10是表示实施例涉及的栅极-漏极间电压与栅极-漏极间电流的关系的图。
具体实施方式
根据本发明的实施方式,能够利用同质外延生长法形成高品质的β-Ga2O3系单晶膜,利用该高品质的β-Ga2O3系单晶膜能形成高品质的Ga2O3系半导体元件。以下,对该实施方式的一个例子进行详细说明。
〔第1实施方式〕
在第1实施方式中,对作为Ga2O3系半导体元件的Ga2O3系MISFET(Metal InsulatorSemiconductor Field Effect Transistor)进行叙述。
(Ga2O3系MISFET的构成)
图1是第1实施方式涉及的Ga2O3系MISFET20的截面图。Ga2O3系MISFET20包含在高电阻β-Ga2O3基板2上形成的n型β-Ga2O3单晶膜3、在n型β-Ga2O3单晶膜3上形成的源电极22和漏电极23、在源电极22与漏电极23之间的n型β-Ga2O3单晶膜3上介由栅极绝缘膜26形成的栅电极21以及分别在n型β-Ga2O3单晶膜3中的源电极22和漏电极23的下方形成的源极区域24和漏极区域25。
高电阻β-Ga2O3基板2是通过添加Mg、H、Li、Na、K、Rb、CS、Fr、Be、Ca、Sr、Ba、Ra、Mn、Fe、Co、Ni、Pd、Cu、Ag、Au、Zn、Cd、Hg、Tl、Pb、N或P等p型掺杂剂而高电阻化了的β-Ga2O3基板。
就高电阻β-Ga2O3基板2的主面而言,对晶面指数没有特别限定,优选是从(100)面仅旋转50°~90°的角度的面。即,优选在高电阻β-Ga2O3基板2中,主面与(100)面所成的角θ(0<θ≤90°)为50°以上。作为从(100)面旋转50°~90°的面,例如存在(010)面、(001)面、(-201)面、(101)面以及(310)面。
高电阻β-Ga2O3基板2的主面是从(100)面仅旋转50°~90°的角度的面的情况下,在高电阻β-Ga2O3基板2上使β-Ga2O3系晶体外延生长时,能够有效抑制β-Ga2O3系晶体的原料从高电阻β-Ga2O3基板2再蒸发。具体而言,使β-Ga2O3系晶体在生长温度500℃生长时再蒸发的原料的比例为0%时,高电阻β-Ga2O3基板2的主面是从(100)面旋转50°~90°的面的情况下,能够将再蒸发的原料的比例抑制到40%以下。因此,能够将供给的原料的60%以上用于β-Ga2O3系晶体的形成,从β-Ga2O3系晶体的生长速度、制造成本的观点考虑而优选。
β-Ga2O3晶体具有单斜晶系的晶体结构,其典型的晶格常数为 β=103.7°。在β-Ga2O3晶体中,以c轴为轴使(100)面旋转52.5°时与(310)面一致,旋转90°时与(010)面一致。另外,以b轴为轴使(100)面旋转53.8°时与(101)面一致,旋转76.3°时与(001)面一致,旋转53.8°时与(-201)面一致。
另外,高电阻β-Ga2O3基板2的主面也可以是从(010)面仅旋转37.5°以下的角度的面。此时,能够使高电阻β-Ga2O3基板2与i型β-Ga2O3单晶膜3的界面陡峭,并且能够高精度地控制i型β-Ga2O3单晶膜3的厚度。
n型β-Ga2O3单晶膜3是利用后述方法在高电阻β-Ga2O3基板2上形成的具有导电性的单晶膜。n型β-Ga2O3单晶膜3含有Sn、Ti、Zr、Hf、V、Nb、Ta、Mo、W、Ru、Rh、Ir、C、Si、Ge、Pb、Mn、As、Sb、Bi、F、Cl、Br、I等n型掺杂剂。另外,n型β-Ga2O3单晶膜3的厚度例如为10~1000nm左右。
应予说明,可以在高电阻β-Ga2O3基板2与n型β-Ga2O3单晶膜3之间形成非掺杂β-Ga2O3单晶膜等其它膜。此时,在高电阻β-Ga2O3基板2上通过同质外延生长来形成非掺杂β-Ga2O3单晶膜,在非掺杂β-Ga2O3单晶膜上通过同质外延生长来形成n型β-Ga2O3单晶膜3。
栅电极21、源电极22和漏电极23例如由Au、Al、Ti、Sn、Ge、In、Ni、Co、Pt、W、Mo、Cr、Cu、Pb等金属、包含这些金属中的2种以上的合金或ITO等导电性化合物形成。另外,可以具有由不同的2种金属构成的2层结构,例如Al/Ti、Au/Ni、Au/Co。
栅极绝缘膜26由SiO2、AlN、SiN、Al2O3、β-(AlxGa1-x)2O3(0≤x≤1)等绝缘材料形成。其中,由于β-(AlxGa1-x)2O3能够在β-Ga2O3晶体上作为单晶膜生长,所以能够形成界面态少的良好的半导体绝缘膜界面,栅极特性比使用其它绝缘膜时良好。
源极区域24和漏极区域25是形成在n型β-Ga2O3单晶膜3中的n型掺杂剂的浓度高的区域,分别连接源电极22和漏电极23。应予说明,源极区域24和漏极区域25也可以不包含于Ga2O3系MISFET20。
Ga2O3系MISFET20是常通型的晶体管。源电极22与漏电极23介由n型β-Ga2O3单晶膜3电连接。因此,如果在不对栅电极21施加电压的状态下在源电极22与漏电极23之间施加电压,则电流从源电极22流向漏电极23。另一方面,如果对栅电极21施加电压,则在n型β-Ga2O3单晶膜3的栅电极21下方的区域形成反型层,即使在源电极22与漏电极23之间施加电压,电流也不从源电极22流向漏电极23。
(Ga2O3系MISFET的制造方法)
作为β-Ga2O3系单晶膜的制造方法,有PLD(Pulsed Laser Deposition)法、CVD(Chemical Vapor Deposition)法、溅射法、分子束外延(MBE;Molecular Beam Epitaxy)法等,但在本实施方式中,采用使用了MBE法的薄膜生长法。MBE法是在被称为束源炉的蒸发源中加热单体或化合物的固体,以通过加热而生成的蒸气作为分子束供给到基板表面的晶体生长方法。
图2是表示β-Ga2O3系单晶膜的形成中使用的MBE装置的一个例子的构成图。该MBE装置1具备:真空槽10,支撑在该真空槽10内以保持高电阻β-Ga2O3基板2的基板支架11,用于对保持于基板支架11的高电阻β-Ga2O3基板2进行加热的加热装置12,按构成薄膜的原子或分子设置的多个束源炉13(13a、13b),用于加热多个束源炉13的加热器14(14a、14b),向真空槽10内供给氧系气体的气体供给管15以及用于排出真空槽10内的空气的真空泵16。基板支架11介由轴110可利用未图示的马达而旋转地构成。
第1束源炉13a中填充有Ga粉末等β-Ga2O3系单晶膜的Ga原料。该粉末的Ga的纯度优选为6N以上。第2束源炉13b中填充有作为供体而掺杂的n型掺杂剂的原料的粉末。在第1束源炉13a和第2束源炉13b的开口部设有快门。
在基板支架11安装预先制作的高电阻β-Ga2O3基板2,在该高电阻β-Ga2O3基板2上一边添加n型掺杂剂一边使β-Ga2O3晶体同质外延生长,由此形成n型β-Ga2O3单晶膜3。
该高电阻β-Ga2O3基板2例如按如下顺序制作。首先,利用EFG法制作掺杂了Mg的半绝缘性β-Ga2O3单晶锭。应予说明,掺杂的元素不限于Mg。例如,置换Ga位点时,可以使用H、Li、Na、K、Rb、CS、Fr、Be、Ca、Sr、Ba、Ra、Mn、Fe、Co、Ni、Pd、Cu、Ag、Au、Zn、Cd、Hg、Tl或Pb。另外,置换氧位点时,可以使用N或P。掺杂Mg时,通过在原料粉末中混合MgO粉末来进行。为了使高电阻β-Ga2O3基板2具有良好的绝缘性,可以添加0.05mol%以上的MgO。另外,可以利用FZ法制作半绝缘性β-Ga2O3单晶锭。将制成的锭以所希望的晶面指数为主面的方式切片加工成例如1mm左右的厚度而进行基板化。然后,在磨削研磨工序中加工成300~600μm左右的厚度。
接下来,将按上述顺序制作的高电阻β-Ga2O3基板2安装于MBE装置1的基板支架11。接下来,使真空泵16运转,将真空槽10内的气压减压至10-10Torr左右。然后,利用加热装置12加热高电阻β-Ga2O3基板2。应予说明,高电阻β-Ga2O3基板2的加热通过加热装置12的石墨加热器等发热源的辐射热介由基板支架11热传导到高电阻β-Ga2O3基板2来进行。
高电阻β-Ga2O3基板2被加热到规定温度后,从气体供给管15向真空槽10内供给氧系气体。
将氧系气体供给到真空槽10内后,经过真空槽10内的气压稳定所需要的时间(例如5分钟)后,边使基板支架11旋转边分别利用第1加热器14a和第2加热器14b加热第1束源炉13a和第2束源炉13b,使Ga和n型掺杂剂蒸发,作为分子束照射到高电阻β-Ga2O3基板2的表面。
例如,第1束源炉13a被加热到900℃,Ga蒸气的束等效压力(BEP;Beam EquivalentPressure)为1×10-4Pa。
这样,在高电阻β-Ga2O3基板2的主面上一边添加Sn等n型掺杂剂一边将β-Ga2O3晶体同质外延生长,形成n型β-Ga2O3单晶膜3。β-Ga2O3晶体的生长温度例如为700℃。应予说明,作为Sn以外的n型掺杂剂,置换Ga位点时,可以使用Ti、Zr、Hf、V、Nb、Ta、Mo、W、Ru、Rh、Ir、C、Si、Ge、Pb、Mn、As、Sb、Bi等,置换氧位点时,可以使用F、Cl、Br、I等。
应予说明,n型β-Ga2O3单晶膜3可以利用PLD(Pulsed Laser Deposition)法、CVD(Chemical Vapor Deposition)法等形成。
图3A和图3B是本实施方式涉及的n型β-Ga2O3单晶膜3的截面图。n型β-Ga2O3单晶膜3在高电阻β-Ga2O3基板2的主面2a上利用上述MBE法形成。
图3A表示使β-Ga2O3晶体同质外延生长期间,通过连续添加n型掺杂剂而形成的n型β-Ga2O3单晶膜3。
n型β-Ga2O3单晶膜3的供体浓度例如为1×1015~1×1019/cm3,特别优选为1×1017~1×1018/cm3。该供体浓度可以通过成膜时的第2束源炉13b的温度进行控制。
图3B表示使β-Ga2O3晶体同质外延生长期间,通过以一定周期间歇地添加n型掺杂剂而形成的n型β-Ga2O3单晶膜3。此时,使用Sn作为n型掺杂剂。
具体而言,通过操作第2束源炉13b的快门,从而从第2束源炉13b间歇地产生Sn蒸气,间歇地向β-Ga2O3晶体添加Sn。Sn的添加优选间歇实施2次以上。此时,即使不实施退火处理,也能够对n型β-Ga2O3单晶膜3赋予与Sn添加量相应的导电性。
由于图3B的n型β-Ga2O3单晶膜3是在成膜时间歇地添加Sn,所以具有在不添加Sn的时间生长的第1层4(4a、4b、4c)和在添加Sn的时间生长的第2层5(5a、5b、5c)。
第2层5的Sn浓度可以通过成膜时的第2束源炉13b的温度进行控制。第1层4理想的是不含有Sn而仅含有从第2层5扩散的微量的Sn。因此,第1层4的Sn浓度比第2层5的Sn浓度低。n型β-Ga2O3单晶膜3中的平均Sn浓度例如为1×1014~3×1018/cm3,特别优选为1×1017~1×1018/cm3
例如,第1层4a、4b、4c的厚度为3~20nm,第2层5a、5b、5c的厚度为0.2~1nm。第1层4a、4b、4c的厚度大于20nm时,第2层5a、5b、5c的间隔过大而n型的效果可能不明显。另一方面,第2层5a、5b、5c的厚度大于1nm时,有时Sn从第2层5a、5b、5c向第1层4a、4b、4c的扩散量过多而间歇的n型的效果可能不明显。
应予说明,n型β-Ga2O3单晶膜3的最下层(与高电阻β-Ga2O3基板2的主面2a接触的层)可以是第1层4,也可以是第2层5。另外,第1层4和第2层5的层数不受限定。
形成n型β-Ga2O3单晶膜3后,通过向n型β-Ga2O3单晶膜3离子注入Sn等n型掺杂剂,从而形成源极区域24和漏极区域25。应予说明,注入的离子不限于Sn,例如,置换Ga位点时,可以使用Ti、ZR、Hf、V、Nb、Ta、Mo、W、Ru、Rh、Ir、C、Si、Ge、Pb、Mn、As、Sb或Bi。另外,置换氧位点时,可以使用F、Cl、Br或I。注入浓度例如为1×1018/cm3~5×1019/cm3。注入深度为30nm以上。注入后,将注入区域的表面用氢氟酸蚀刻10nm左右。也可以使用硫酸、硝酸、盐酸等进行。然后,在氮环境下实施800℃以上30min以上的退火处理,使注入损伤恢复。在氧环境下进行退火处理时,使处理温度为800℃~950℃,处理时间为30min以上即可。
应予说明,源极区域24和漏极区域25的形成方法不限于离子注入,也可以利用热扩散法。此时,通过在n型β-Ga2O3单晶膜3的想要形成源极区域24和漏极区域25的区域上接触Sn等金属,实施热处理,从而使Sn等掺杂剂在n型β-Ga2O3单晶膜3中扩散。另外,也可以不形成源极区域24和漏极区域25。
然后,形成栅极绝缘膜26、源电极22、漏电极23、栅电极21。
〔第2实施方式〕
在第2实施方式中,对作为Ga2O3系半导体元件的Ga2O3系MESFET(MetalSemiconductor Field Effect Transistor)进行叙述。
(Ga2O3系MESFET的构成)
图4是第2实施方式涉及的Ga2O3系MESFET30的截面图。Ga2O3系MESFET30包含:在高电阻β-Ga2O3基板2上形成的n型β-Ga2O3单晶膜3,在n型β-Ga2O3单晶膜3上形成的源电极32和漏电极33,在源电极32与漏电极33之间的n型β-Ga2O3单晶膜3上形成的栅电极31以及分别在n型β-Ga2O3单晶膜3中的源电极32和漏电极33的下方形成的源极区域34和漏极区域35。
高电阻β-Ga2O3基板2和n型β-Ga2O3单晶膜3的构成和制造方法与第1实施方式相同。
栅电极31、源电极32、漏电极33、源极区域34以及漏极区域35利用与第1实施方式的栅电极21、源电极22、漏电极23、源极区域24以及漏极区域25相同的方法形成。应予说明,源极区域34和漏极区域35可以不包含于Ga2O3系MESFET30。
源电极32和漏电极33介由n型β-Ga2O3单晶膜3电连接。另外,栅电极31与n型β-Ga2O3单晶膜3的界面形成肖特基接合,在n型β-Ga2O3单晶膜3中的栅电极31下形成有空乏层。利用该空乏区域的厚度,从而Ga2O3系MESFET30作为常断型的晶体管或常通型的晶体管发挥功能。
〔第3实施方式〕
图5是第3实施方式涉及的Ga2O3系MISFET40的截面图。Ga2O3系MISFET40包含:在高电阻β-Ga2O3基板2上形成的n型β-Ga2O3单晶膜3,在n型β-Ga2O3单晶膜3上形成的源电极42和漏电极43,在源电极42与漏电极43之间的n型β-Ga2O3单晶膜3上介由栅极绝缘膜46形成的栅电极41,分别在n型β-Ga2O3单晶膜3中的源电极42和漏电极43的下方形成的源极区域44和漏极区域45,以及包围源极区域44的主体区域47。
高电阻β-Ga2O3基板2和n型β-Ga2O3单晶膜3的构成和制造方法与第1实施方式相同。
栅电极41、源电极42、漏电极43、源极区域44、漏极区域45以及栅极绝缘膜46可以利用与第1实施方式的栅电极21、源电极22、漏电极23、源极区域24、漏极区域25以及栅极绝缘膜26相同的方法形成。应予说明,源极区域44和漏极区域45可以不包含于Ga2O3系MISFET40。
主体区域47含有Mg、H、Li、Na、K、Rb、Cs、Fr、Be、Ca、Sr、Ba、Ra、Mn、Fe、Co、Ni、Pd、Cu、Ag、Au、Zn、Cd、Hg、Tl、Pb、N、P等p型掺杂剂。主体区域47是p型的区域、或通过电荷补偿具有i型那样的性质的高电阻区域。
主体区域47是通过在n型β-Ga2O3单晶膜3中离子注入Mg等p型掺杂剂而形成的。应予说明,注入的离子不限于Mg,例如,置换Ga位点时,可以使用H、Li、Na、K、Rb、Cs、Fr、Be、Ca、Sr、Ba、Ra、Mn、Fe、Co、Ni、Pd、Cu、Ag、Au、Zn、Cd、Hg、Tl或Pb。另外,置换氧位点时,可以使用N或P。注入p型掺杂剂后进行退火处理,使注入所致的损伤恢复。
应予说明,主体区域47的形成方法不限于离子注入,可以利用热扩散法。此时,通过在n型β-Ga2O3单晶膜3的想要形成主体区域47的区域上接触Mg膜等金属膜,实施热处理,从而使Mg等掺杂剂扩散至n型β-Ga2O3单晶膜3中。
Ga2O3系MISFET40作为常断型的晶体管发挥功能。在不对栅电极41施加电压的状态下,由于p型的主体区域47,所以电流不从n型的源电极42流向n型的漏电极43。如果对栅电极41施加阈值以上的电压,则在主体区域47的栅电极41下的区域形成通道,电流从源电极42流向漏电极43。
〔第4实施方式〕
图6是第4实施方式涉及的Ga2O3系MISFET50的截面图。Ga2O3系MISFET50包含:在高电阻β-Ga2O3基板2上形成的无掺杂β-Ga2O3单晶膜6,在无掺杂β-Ga2O3单晶膜6上形成的源电极52和漏电极53,在源电极52与漏电极53之间的无掺杂β-Ga2O3单晶膜6上介由栅极绝缘膜56形成的栅电极51,以及分别在无掺杂β-Ga2O3单晶膜6中的源电极52和漏电极53的下方形成的源极区域54和漏极区域55。
高电阻β-Ga2O3基板2的构成和制造方法与第1实施方式相同。
栅电极51、源电极52、漏电极53、源极区域54、漏极区域55以及栅极绝缘膜56利用与第1实施方式的栅电极21、源电极22、漏电极23、源极区域24、漏极区域25以及栅极绝缘膜26相同的方法形成。应予说明,源极区域54和漏极区域55可以不包含于Ga2O3系MISFET50。
无掺杂β-Ga2O3单晶膜6是不含有掺杂剂的高电阻的β-Ga2O3单晶膜。也有时因晶体缺陷等而具有弱导电性,但由于电阻足够高,所以在不对栅电极51施加电压的情况下电流不从源电极52流向漏电极53。无掺杂β-Ga2O3单晶膜6的形成方法例如是从第1实施方式的n型β-Ga2O3单晶膜3的形成方法中省略了注入n型掺杂剂的工序的方法。
Ga2O3系MISFET50作为常断型的晶体管发挥功能。如果对栅电极51施加阈值以上的电压,则在无掺杂β-Ga2O3单晶膜6的栅电极51下的区域形成通道,电流从源电极52流向漏电极53。
〔第5实施方式〕
图7是第5实施方式涉及的Ga2O3系MISFET60的截面图。Ga2O3系MISFET60包含:在高电阻β-Ga2O3基板2上形成的p型β-Ga2O3单晶膜7,在p型β-Ga2O3单晶膜7上形成的源电极62和漏电极63,在源电极62与漏电极63之间的p型β-Ga2O3单晶膜7上介由栅极绝缘膜66形成的栅电极61,以及分别在p型β-Ga2O3单晶膜7中的源电极62和漏电极63的下方形成的源极区域64和漏极区域65。
高电阻β-Ga2O3基板2的构成和制造方法与第1实施方式相同。
栅电极61、源电极62、漏电极63、源极区域64、漏极区域65以及栅极绝缘膜66利用与第1实施方式的栅电极21、源电极22、漏电极23、源极区域24、漏极区域25以及栅极绝缘膜26相同的方法形成。
p型β-Ga2O3单晶膜7是含有Mg、H、Li、Na、K、Rb、Cs、Fr、Be、Ca、Sr、Ba、Ra、Mn、Fe、Co、Ni、Pd、Cu、Ag、Au、Zn、Cd、Hg、Tl、Pb、N、P等p型掺杂剂的β-Ga2O3单晶膜。p型β-Ga2O3单晶膜7的形成方法例如是将第1实施方式的n型β-Ga2O3单晶膜3的形成方法中的注入n型掺杂剂的工序替换成注入p型掺杂剂的工序的方法。
Ga2O3系MISFET60作为常断型的晶体管发挥功能。如果对栅电极61施加阈值以上的电压,则在p型β-Ga2O3单晶膜7的栅电极61下的区域形成通道,电流从源电极62流向漏电极63。
(实施方式的效果)
根据本实施方式,可以利用同质外延生长法形成高品质的β-Ga2O3单晶膜,利用该β-Ga2O3单晶膜可形成高品质的Ga2O3系MISFET或Ga2O3系MESFET。另外,由于这些Ga2O3系MISFET和Ga2O3系MESFET使用高品质的β-Ga2O3单晶膜作为通道层,所以具有优异的工作性能。
应予说明,本发明不限于上述实施方式,可以在不脱离发明的主旨的范围内实施各种变形。另外,可以在不脱离发明的主旨的范围内任意组合上述实施方式的构成要素。
实施例
制造第2实施方式的MESFET30,对晶体管特性进行评价。
(Ga2O3系MESFET的制造)
首先,在Ga2O3粉末中混合0.25mol%的MgO,用FZ法培养β-Ga2O3系单晶。接下来,以(010)面为主面从培养的β-Ga2O3系单晶中切出高电阻β-Ga2O3基板2,以成为350μm左右的厚度的方式进行磨削研磨。
接下来,对高电阻β-Ga2O3基板2实施有机清洗、酸清洗以及纯水清洗后,输送到MBE装置。接下来,利用MBE法在高电阻β-Ga2O3基板2上使n型β-Ga2O3单晶生长,形成n型β-Ga2O3单晶膜3。在此,使高电阻β-Ga2O3基板2的温度为700℃,使填充有Ga粉末的第1束源炉13a的温度为900℃,使填充有SnO2粉末的第2束源炉13b的温度为770℃,使n型β-Ga2O3单晶生长30分钟,形成厚度0.3μm的n型β-Ga2O3单晶膜3。n型β-Ga2O3单晶膜3中的Sn浓度为8×1017/cm3左右。
然后,在n型β-Ga2O3单晶膜3上形成由Ti构成的源电极32和漏电极33以及由Pt构成的栅电极31。不形成源极区域34和漏极区域35。
(Ga2O3系MESFET的评价)
图8是表示漏极-源极间电压与漏极-源极间电流的关系的图。图8的横轴表示源电极32与漏电极33之间的电压VDS,纵轴表示源电极32与漏电极33之间的电流IDS。图中的多条曲线分别表示将栅电极31与源电极32之间的电压VGS从+2V到-24V以-2V的跨度进行变化而测定得到的值。
如图8所示,确认IDS随着VGS的减少而减少,MESFET30正常工作。
图9是表示栅极-源极间电压与漏极-源极间电流的关系的图。图9的横轴表示栅电极31与源电极32之间的电压VGS,左侧的纵轴表示漏电极33与源电极32之间的电流IDS,右侧的纵轴表示跨导gm。图中的左侧的曲线表示IDS,右侧的曲线表示gm。应予说明,源电极32与漏电极33之间的电压VDS固定为40V。
如图9所示,确认通断比(VGS=0V时的ISD与VGS=-20V时的ISD的比)足够大,为4位数,MESFET30的晶体管特性良好。
图10是表示栅极-漏极间电压与栅极-漏极间电流的关系的图。图10的横轴表示栅电极31与漏电极33之间的电压VGD,纵轴表示栅电极31与漏电极33之间的栅极漏电流IGD
如图10所示,确认在VGD为-20V以下的区域栅极漏电流IGD为μA级,MESFET30的栅极特性良好。
以上,说明了本发明的实施方式和实施例,但上述中记载的实施方式和实施例不限定专利申请要求保护的范围涉及的发明。另外,应该注意实施方式和实施例中说明的特征的所有组合未必是用于解决发明课题的手段所必需的。
产业上的可利用性
本发明提供高品质的Ga2O3系半导体元件。
符号说明
1…MBE装置,2…高电阻β-Ga2O3基板,3…n型β-Ga2O3单晶膜,6…无掺杂β-Ga2O3单晶膜,7…p型β-Ga2O3单晶膜,20、40、50、60…Ga2O3系MISFET,21、31、41、51、61…栅电极,22、32、42、52、62…源电极,23、33、43、53、63…漏电极,24、34、44、54、64…源极区域,25、35、45、55、65…漏极区域,26、46、56、66…栅极绝缘膜,30…Ga2O3系MESFET。

Claims (9)

1.一种Ga2O3系MISFET,包括:
β-Ga2O3系基板,其以从β-Ga2O3系单晶的(100)面仅旋转50°~90°的角度的面为主面,被添加p型掺杂剂并被控制为与所述p型掺杂剂的添加浓度相应的绝缘性;
β-Ga2O3系单晶膜,其作为同质外延膜形成在所述β-Ga2O3系基板的所述主面上,形成通道层;
在所述β-Ga2O3系单晶膜上形成的源电极和漏电极;以及
在所述源电极与所述漏电极之间的所述β-Ga2O3系单晶膜上介由栅极绝缘膜形成的栅电极。
2.根据权利要求1所述的Ga2O3系MISFET,
所述β-Ga2O3系单晶膜被添加n型掺杂剂并被控制为与所述n型掺杂剂的添加浓度相应的导电性,基于所述导电性形成所述通道层。
3.根据权利要求2所述的Ga2O3系MISFET,
在所述β-Ga2O3系单晶膜中,作为所述n型掺杂剂,被添加从Ti、Zr、Hf、V、Nb、Ta、Mo、W、Ru、Rh、Ir、C、Si、Ge、Pb、Mn、As、Sb、Bi、Sn、F、Cl、Br、I中选择的n型掺杂剂。
4.根据权利要求1至3中的任意一项所述的Ga2O3系MISFET,
所述β-Ga2O3系单晶膜介由非掺杂β-Ga2O3系单晶膜形成在所述β-Ga2O3系基板的所述主面上。
5.根据权利要求1至3中的任意一项所述的Ga2O3系MISFET,
所述β-Ga2O3系单晶膜在所述源电极和所述漏电极的至少下方具有被控制为比所述导电性高的导电性的源极区域和漏极区域。
6.一种Ga2O3系MESFET,包括:
β-Ga2O3系基板,其以从β-Ga2O3系单晶的(100)面仅旋转50°~90°的角度的面为主面,被添加p型掺杂剂并被控制为与所述p型掺杂剂的添加浓度相应的绝缘性;
β-Ga2O3系单晶膜,其作为同质外延膜形成在所述β-Ga2O3系基板的所述主面上,被添加n型掺杂剂并被控制为与所述n型掺杂剂的添加浓度相应的导电性,基于所述导电性形成通道层;
在所述β-Ga2O3系单晶膜上形成的源电极和漏电极;以及
位于所述源电极与所述漏电极之间并与所述β-Ga2O3系单晶膜进行肖特基接合的栅电极。
7.根据权利要求6所述的Ga2O3系MESFET,
在所述β-Ga2O3系单晶膜中,作为所述n型掺杂剂,被添加从Ti、Zr、Hf、V、Nb、Ta、Mo、W、Ru、Rh、Ir、C、Si、Ge、Pb、Mn、As、Sb、Bi、Sn、F、Cl、Br、I中选择的n型掺杂剂。
8.根据权利要求6或7所述的Ga2O3系MESFET,
所述β-Ga2O3系单晶膜介由非掺杂β-Ga2O3系单晶膜形成在所述β-Ga2O3系基板的所述主面上。
9.根据权利要求6或7所述的Ga2O3系MESFET,
所述β-Ga2O3系单晶膜在所述源电极和所述漏电极的至少下方具有被控制为比所述导电性高的导电性的源极区域和漏极区域。
CN201910099983.1A 2011-09-08 2012-09-07 Ga2O3系MISFET和Ga2O3系MESFET Pending CN110010670A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011196435 2011-09-08
JP2011-196435 2011-09-08
CN201280043332.7A CN103782392A (zh) 2011-09-08 2012-09-07 Ga2O3 系半导体元件

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CN201280043332.7A Division CN103782392A (zh) 2011-09-08 2012-09-07 Ga2O3 系半导体元件

Publications (1)

Publication Number Publication Date
CN110010670A true CN110010670A (zh) 2019-07-12

Family

ID=47832281

Family Applications (3)

Application Number Title Priority Date Filing Date
CN201910099983.1A Pending CN110010670A (zh) 2011-09-08 2012-09-07 Ga2O3系MISFET和Ga2O3系MESFET
CN201910099876.9A Pending CN110047922A (zh) 2011-09-08 2012-09-07 Ga2O3系MISFET和Ga2O3系MESFET
CN201280043332.7A Pending CN103782392A (zh) 2011-09-08 2012-09-07 Ga2O3 系半导体元件

Family Applications After (2)

Application Number Title Priority Date Filing Date
CN201910099876.9A Pending CN110047922A (zh) 2011-09-08 2012-09-07 Ga2O3系MISFET和Ga2O3系MESFET
CN201280043332.7A Pending CN103782392A (zh) 2011-09-08 2012-09-07 Ga2O3 系半导体元件

Country Status (5)

Country Link
US (2) US9437689B2 (zh)
EP (2) EP2765612B1 (zh)
JP (1) JP5807282B2 (zh)
CN (3) CN110010670A (zh)
WO (1) WO2013035842A1 (zh)

Families Citing this family (55)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5745073B2 (ja) * 2011-09-08 2015-07-08 株式会社タムラ製作所 Ga2O3系単結晶体のドナー濃度制御方法
EP2765612B1 (en) 2011-09-08 2021-10-27 Tamura Corporation Ga2O3 SEMICONDUCTOR ELEMENT
WO2013080972A1 (ja) 2011-11-29 2013-06-06 株式会社タムラ製作所 Ga2O3系結晶膜の製造方法
JP6284140B2 (ja) * 2013-06-17 2018-02-28 株式会社タムラ製作所 Ga2O3系半導体素子
JP6543869B2 (ja) * 2013-06-18 2019-07-17 株式会社タムラ製作所 半導体素子及びその製造方法
JP6662432B2 (ja) * 2013-06-28 2020-03-11 株式会社リコー 電界効果型トランジスタ、表示素子、画像表示装置及びシステム
JP6421446B2 (ja) 2013-06-28 2018-11-14 株式会社リコー 電界効果型トランジスタ、表示素子、画像表示装置及びシステム
JP6601738B2 (ja) * 2013-09-30 2019-11-06 株式会社タムラ製作所 結晶積層構造体、及びその製造方法
JP5984069B2 (ja) * 2013-09-30 2016-09-06 株式会社タムラ製作所 β−Ga2O3系単結晶膜の成長方法、及び結晶積層構造体
EP2942804B1 (en) 2014-05-08 2017-07-12 Flosfia Inc. Crystalline multilayer structure and semiconductor device
JP6253150B2 (ja) 2014-05-09 2017-12-27 株式会社タムラ製作所 エピタキシャルウエハ及びその製造方法
JP5749839B1 (ja) * 2014-06-30 2015-07-15 株式会社タムラ製作所 β−Ga2O3系単結晶基板
JP6344718B2 (ja) * 2014-08-06 2018-06-20 株式会社タムラ製作所 結晶積層構造体及び半導体素子
JP6406602B2 (ja) * 2014-08-29 2018-10-17 株式会社タムラ製作所 半導体素子及びその製造方法、並びに結晶積層構造体
JP5907465B2 (ja) * 2014-08-29 2016-04-26 株式会社タムラ製作所 半導体素子及び結晶積層構造体
JP5828568B1 (ja) * 2014-08-29 2015-12-09 株式会社タムラ製作所 半導体素子及びその製造方法
JP6758569B2 (ja) * 2015-03-20 2020-09-23 株式会社タムラ製作所 高耐圧ショットキーバリアダイオード
JP6376600B2 (ja) * 2015-03-20 2018-08-22 株式会社タムラ製作所 結晶積層構造体の製造方法
JP6845397B2 (ja) 2016-04-28 2021-03-17 株式会社タムラ製作所 トレンチmos型ショットキーダイオード
WO2018101278A1 (ja) * 2016-11-30 2018-06-07 株式会社リコー 酸化物又は酸窒化物絶縁体膜形成用塗布液、酸化物又は酸窒化物絶縁体膜、電界効果型トランジスタ、及びそれらの製造方法
CN106898644B (zh) * 2017-01-23 2019-07-30 西安电子科技大学 高击穿电压场效应晶体管及其制作方法
CN106876466B (zh) * 2017-02-16 2020-11-13 大连理工大学 一种氧化镓基金属-氧化物半导体场效应晶体管及其制备方法
JP7008293B2 (ja) * 2017-04-27 2022-01-25 国立研究開発法人情報通信研究機構 Ga2O3系半導体素子
CN107359127B (zh) * 2017-06-07 2020-03-24 西安电子科技大学 蓝宝石衬底的Fe掺杂自旋场效应晶体管及其制造方法
CN107369707B (zh) * 2017-06-07 2020-03-24 西安电子科技大学 基于4H-SiC衬底异质结自旋场效应晶体管及其制造方法
CN107425059B (zh) * 2017-06-07 2020-05-22 西安电子科技大学 Cr掺杂异质结自旋场效应晶体管及其制备方法
CN107359122B (zh) * 2017-06-07 2020-09-08 西安电子科技大学 Mn掺杂异质结自旋场效应晶体管的制备方法
CN107658337B (zh) * 2017-06-07 2020-09-08 西安电子科技大学 高电子迁移率自旋场效应晶体管及其制备方法
CN107527949B (zh) * 2017-06-07 2020-05-12 西安电子科技大学 基于Cr掺杂4H-SiC衬底异质结自旋场效应晶体管及其制备方法
JP7037142B2 (ja) * 2017-08-10 2022-03-16 株式会社タムラ製作所 ダイオード
JP7179276B2 (ja) 2017-09-29 2022-11-29 株式会社タムラ製作所 電界効果トランジスタ
JP7143601B2 (ja) * 2018-03-16 2022-09-29 株式会社リコー 電界効果型トランジスタ、表示素子、画像表示装置、及びシステム
CN112424947A (zh) * 2018-07-12 2021-02-26 株式会社Flosfia 半导体装置及包含半导体装置的半导体系统
TW202013716A (zh) * 2018-07-12 2020-04-01 日商Flosfia股份有限公司 半導體裝置和半導體系統
TW202018819A (zh) * 2018-07-12 2020-05-16 日商Flosfia股份有限公司 半導體裝置和半導體系統
TW202006945A (zh) * 2018-07-12 2020-02-01 日商Flosfia股份有限公司 半導體裝置和半導體系統
JP7162833B2 (ja) * 2018-08-01 2022-10-31 国立研究開発法人物質・材料研究機構 半導体装置の製造方法
CN110880529A (zh) * 2018-09-05 2020-03-13 财团法人工业技术研究院 半导体元件及其制造方法
TWI700737B (zh) * 2018-09-05 2020-08-01 財團法人工業技術研究院 半導體元件及其製造方法
CN109537055A (zh) * 2019-01-28 2019-03-29 山东大学 一种半绝缘氧化镓晶体及其制备方法
JP2020155530A (ja) * 2019-03-19 2020-09-24 トヨタ自動車株式会社 半導体装置の製造方法
CN109873038B (zh) * 2019-03-19 2020-12-08 南方科技大学 一种场效应晶体管及其制备方法
WO2020209022A1 (ja) * 2019-04-08 2020-10-15 Agc株式会社 酸化ガリウム基板、および酸化ガリウム基板の製造方法
CN110265486B (zh) * 2019-06-20 2023-03-24 中国电子科技集团公司第十三研究所 氧化镓sbd终端结构及制备方法
CN110571275A (zh) * 2019-09-17 2019-12-13 中国科学技术大学 氧化镓mosfet的制备方法
CN110993503B (zh) * 2019-11-25 2023-02-24 韦华半导体(苏州)有限公司 基于氧化镓/钙钛矿传输层异质结的n型晶体管及其制备方法
US11251268B2 (en) * 2020-01-28 2022-02-15 Taiwan Semiconductor Manufacturing Co., Ltd. Semiconductor device with doped structure
JP6846754B2 (ja) * 2020-03-31 2021-03-24 株式会社タムラ製作所 結晶積層構造体
US11624126B2 (en) 2020-06-16 2023-04-11 Ohio State Innovation Foundation Deposition of single phase beta-(AlxGa1-x)2O3 thin films with 0.28< =x<=0.7 on beta Ga2O3(100) or (−201) substrates by chemical vapor deposition
CN113517174B (zh) * 2021-06-07 2023-08-08 西安电子科技大学 一种ε-Ga2O3薄膜的制备方法及ε-Ga2O3薄膜
KR102516936B1 (ko) * 2021-06-11 2023-03-31 숭실대학교산학협력단 향상모드 동작이 가능한 전계 효과 트랜지스터 소자
CN113629148A (zh) * 2021-06-24 2021-11-09 湖南大学 一种双栅极增强型氧化镓mesfet器件及其制作方法
KR102641279B1 (ko) * 2021-12-27 2024-02-27 재단법인차세대융합기술연구원 박막 전력 소자용 스태거드 금속-반도체 전계 효과 트랜지스터
CN117012834A (zh) * 2023-09-28 2023-11-07 深圳市港祥辉电子有限公司 一种高效散热氧化镓ldmosfet器件及其制备方法
CN118621440A (zh) * 2024-08-12 2024-09-10 深圳平湖实验室 一种半导体材料、半导体器件及制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1754013A (zh) * 2003-02-24 2006-03-29 学校法人早稻田大学 β-Ga2O3单晶生长方法、薄膜单晶生长方法、Ga2O3发光器件及其制造方法
US20080038906A1 (en) * 2004-10-01 2008-02-14 Noboru Ichinose Method for Producing P-Type Ga2o3 Film and Method for Producing Pn Junction-Type Ga2o3 Film
JP2008303119A (ja) * 2007-06-08 2008-12-18 Nippon Light Metal Co Ltd 高機能性Ga2O3単結晶膜及びその製造方法
JP2009049198A (ja) * 2007-08-20 2009-03-05 New Japan Radio Co Ltd 半導体装置およびその製造方法
JP2009111004A (ja) * 2007-10-26 2009-05-21 Sumitomo Electric Ind Ltd 絶縁ゲート型電界効果トランジスタおよびその製造方法

Family Cites Families (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07176640A (ja) * 1993-10-26 1995-07-14 Fuji Electric Co Ltd 半導体装置の製造方法
JP3401918B2 (ja) * 1994-07-04 2003-04-28 株式会社デンソー 半導体装置
JP3502531B2 (ja) 1997-08-28 2004-03-02 株式会社ルネサステクノロジ 半導体装置の製造方法
US6686616B1 (en) * 2000-05-10 2004-02-03 Cree, Inc. Silicon carbide metal-semiconductor field effect transistors
JP4083396B2 (ja) * 2000-07-10 2008-04-30 独立行政法人科学技術振興機構 紫外透明導電膜とその製造方法
US6844227B2 (en) * 2000-12-26 2005-01-18 Matsushita Electric Industrial Co., Ltd. Semiconductor devices and method for manufacturing the same
US6916745B2 (en) 2003-05-20 2005-07-12 Fairchild Semiconductor Corporation Structure and method for forming a trench MOSFET having self-aligned features
US6756320B2 (en) * 2002-01-18 2004-06-29 Freescale Semiconductor, Inc. Method of forming article comprising an oxide layer on a GaAs-based semiconductor structure
JP3679097B2 (ja) * 2002-05-31 2005-08-03 株式会社光波 発光素子
US6940110B2 (en) * 2002-11-29 2005-09-06 Matsushita Electric Industrial Co., Ltd. SiC-MISFET and method for fabricating the same
JP2004214607A (ja) * 2002-12-19 2004-07-29 Renesas Technology Corp 半導体装置及びその製造方法
ATE525498T1 (de) 2003-02-24 2011-10-15 Univ Waseda Verfahren zum ziehen von beta-ga2o3 einkristallen
US7652326B2 (en) 2003-05-20 2010-01-26 Fairchild Semiconductor Corporation Power semiconductor devices and methods of manufacture
US7473929B2 (en) * 2003-07-02 2009-01-06 Panasonic Corporation Semiconductor device and method for fabricating the same
TWI313060B (en) * 2003-07-28 2009-08-01 Japan Science & Tech Agency Feild effect transisitor and fabricating method thereof
JP4066946B2 (ja) 2003-12-18 2008-03-26 日産自動車株式会社 半導体装置
JP2005235961A (ja) * 2004-02-18 2005-09-02 Univ Waseda Ga2O3系単結晶の導電率制御方法
US7265415B2 (en) 2004-10-08 2007-09-04 Fairchild Semiconductor Corporation MOS-gated transistor with reduced miller capacitance
JP4956904B2 (ja) 2005-03-25 2012-06-20 富士電機株式会社 炭化珪素半導体装置とその製造方法
US7554137B2 (en) 2005-10-25 2009-06-30 Infineon Technologies Austria Ag Power semiconductor component with charge compensation structure and method for the fabrication thereof
JP5145694B2 (ja) 2006-11-07 2013-02-20 富士電機株式会社 SiC半導体縦型MOSFETの製造方法。
US7541260B2 (en) 2007-02-21 2009-06-02 Infineon Technologies Austria Ag Trench diffusion isolation in semiconductor devices
JP2009064970A (ja) 2007-09-06 2009-03-26 Toshiba Corp 半導体装置
JP2009070950A (ja) * 2007-09-12 2009-04-02 Koha Co Ltd 紫外線センサ
JP5103683B2 (ja) * 2007-11-21 2012-12-19 日本軽金属株式会社 酸化ガリウム基板用電極の製造方法及びそれにより製造される酸化ガリウム基板用電極
JP2009126764A (ja) 2007-11-27 2009-06-11 Nippon Light Metal Co Ltd γ−Ga2O3の製造方法及びγ−Ga2O3
JP5292968B2 (ja) * 2008-07-23 2013-09-18 住友電気工業株式会社 炭化珪素半導体装置の製造方法および炭化珪素半導体装置
US20110233689A1 (en) * 2008-12-08 2011-09-29 Sumitomo Chemical Company, Limited Semiconductor device, process for producing semiconductor device, semiconductor substrate, and process for producing semiconductor substrate
JP2010219130A (ja) 2009-03-13 2010-09-30 Sumitomo Electric Ind Ltd 半導体装置およびその製造方法
JPWO2011013364A1 (ja) * 2009-07-28 2013-01-07 パナソニック株式会社 半導体素子の製造方法
US8841682B2 (en) * 2009-08-27 2014-09-23 Cree, Inc. Transistors with a gate insulation layer having a channel depleting interfacial charge and related fabrication methods
US8525257B2 (en) 2009-11-18 2013-09-03 Micrel, Inc. LDMOS transistor with asymmetric spacer as gate
US20130154478A1 (en) * 2010-08-25 2013-06-20 Sharp Kabushiki Kaisha Organic light emitting device and antistatic method for the same
EP2765612B1 (en) 2011-09-08 2021-10-27 Tamura Corporation Ga2O3 SEMICONDUCTOR ELEMENT
JP5745073B2 (ja) * 2011-09-08 2015-07-08 株式会社タムラ製作所 Ga2O3系単結晶体のドナー濃度制御方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1754013A (zh) * 2003-02-24 2006-03-29 学校法人早稻田大学 β-Ga2O3单晶生长方法、薄膜单晶生长方法、Ga2O3发光器件及其制造方法
US20080038906A1 (en) * 2004-10-01 2008-02-14 Noboru Ichinose Method for Producing P-Type Ga2o3 Film and Method for Producing Pn Junction-Type Ga2o3 Film
JP2008303119A (ja) * 2007-06-08 2008-12-18 Nippon Light Metal Co Ltd 高機能性Ga2O3単結晶膜及びその製造方法
JP2009049198A (ja) * 2007-08-20 2009-03-05 New Japan Radio Co Ltd 半導体装置およびその製造方法
JP2009111004A (ja) * 2007-10-26 2009-05-21 Sumitomo Electric Ind Ltd 絶縁ゲート型電界効果トランジスタおよびその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MATSUZAKI ET AL: "Growth, structure and carrier transport properties of Ga2O3 epitaxial film examined for transparent field-effect transistor", 《THIN SOLID FILMS》 *

Also Published As

Publication number Publication date
US20140217469A1 (en) 2014-08-07
CN103782392A (zh) 2014-05-07
EP3151285B1 (en) 2023-11-22
EP2765612B1 (en) 2021-10-27
EP3151285A1 (en) 2017-04-05
CN110047922A (zh) 2019-07-23
EP2765612A4 (en) 2015-07-22
EP2765612A1 (en) 2014-08-13
US20160300953A1 (en) 2016-10-13
US9437689B2 (en) 2016-09-06
US10249767B2 (en) 2019-04-02
WO2013035842A1 (ja) 2013-03-14
JP5807282B2 (ja) 2015-11-10
JPWO2013035842A1 (ja) 2015-03-23

Similar Documents

Publication Publication Date Title
CN110010670A (zh) Ga2O3系MISFET和Ga2O3系MESFET
CN103765593B (zh) Ga2O3系半导体元件
CN103781948B (zh) 晶体层叠结构体及其制造方法
JP6142358B2 (ja) Ga2O3系半導体素子
JP5948581B2 (ja) Ga2O3系半導体素子
JP5975466B2 (ja) Ga2O3系半導体素子
Ou et al. Anomalous p-channel amorphous oxide transistors based on tin oxide and their complementary circuits
WO2013035841A1 (ja) Ga2O3系HEMT
JP2016189473A (ja) Ga2O3系半導体素子
Sasaki et al. Ga 2 O 3 semiconductor element
Sasaki et al. Ga 2 O 3-based semiconductor element
Jain et al. Hg/Cd Interdiffusion in Thin CdTe Film on HgCdTe Epilayer

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20190712

RJ01 Rejection of invention patent application after publication