WO2013080972A1 - Ga2O3系結晶膜の製造方法 - Google Patents

Ga2O3系結晶膜の製造方法 Download PDF

Info

Publication number
WO2013080972A1
WO2013080972A1 PCT/JP2012/080623 JP2012080623W WO2013080972A1 WO 2013080972 A1 WO2013080972 A1 WO 2013080972A1 JP 2012080623 W JP2012080623 W JP 2012080623W WO 2013080972 A1 WO2013080972 A1 WO 2013080972A1
Authority
WO
WIPO (PCT)
Prior art keywords
crystal film
cell
based crystal
temperature
producing
Prior art date
Application number
PCT/JP2012/080623
Other languages
English (en)
French (fr)
Inventor
公平 佐々木
Original Assignee
株式会社タムラ製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社タムラ製作所 filed Critical 株式会社タムラ製作所
Priority to EP12854328.7A priority Critical patent/EP2800128A4/en
Priority to US14/357,180 priority patent/US9657410B2/en
Priority to JP2013547166A priority patent/JP6082700B2/ja
Publication of WO2013080972A1 publication Critical patent/WO2013080972A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B23/00Single-crystal growth by condensing evaporated or sublimed materials
    • C30B23/02Epitaxial-layer growth
    • C30B23/06Heating of the deposition chamber, the substrate or the materials to be evaporated
    • C30B23/066Heating of the material to be evaporated
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B23/00Single-crystal growth by condensing evaporated or sublimed materials
    • C30B23/002Controlling or regulating
    • C30B23/005Controlling or regulating flux or flow of depositing species or vapour
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/16Oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02414Oxide semiconducting materials not being Group 12/16 materials, e.g. ternary compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02565Oxide semiconducting materials not being Group 12/16 materials, e.g. ternary compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/0257Doping during depositing
    • H01L21/02573Conductivity type
    • H01L21/02576N-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02631Physical deposition at reduced pressure, e.g. MBE, sputtering, evaporation

Definitions

  • the present invention relates to a method for producing a Ga 2 O 3 based crystal film.
  • Patent Document 1 discloses that a Ga 2 O 3 crystal film is formed using the MBE method, and Sn is used as a conductive impurity that imparts conductivity to the Ga 2 O 3 crystal film.
  • An object of the present invention is to epitaxially grow a Ga 2 O 3 based crystal film on a Ga 2 O 3 based crystal substrate using the MBE method while controlling the n-type conductivity with high accuracy.
  • one embodiment of the present invention provides a method for producing a Ga 2 O 3 based crystal film according to [1] to [3].
  • a method for producing a Ga 2 O 3 -based crystal film that forms a Ga 2 O 3 -based crystal film having conductivity by epitaxial growth using MBE, wherein Ga vapor and Sn vapor are generated, and a molecular beam The step of supplying the Sn 2 vapor to the surface of the Ga 2 O 3 based crystal substrate to grow a Ga 2 O 3 based single crystal film containing Sn, and heating the Sn oxide filled in the cell of the MBE apparatus to produce the Sn vapor For producing a Ga 2 O 3 based crystal film.
  • the Ga 2 carrier concentration of O 3 based crystal film is 1 ⁇ 10 14 ⁇ 1 ⁇ 10 20 / cm 3, Ga 2 O 3 according the [1] to any one of [3]
  • a method for producing a crystalline film [5] The method for producing a Ga 2 O 3 crystal film according to [1], wherein the Sn oxide is SnO 2 and the temperature of the cell is set to 450 to 1080 ° C. to generate the Sn vapor. [6] The method for producing a Ga 2 O 3 based crystal film according to [5], wherein the Ga 2 O 3 single crystal is epitaxially grown at a growth rate of 0.01 to 100 ⁇ m / h. [7] The method for producing a Ga 2 O 3 based crystal film according to [5], wherein the Ga 2 O 3 single crystal is epitaxially grown at a growth temperature of 530 to 600 ° C.
  • a Ga 2 O 3 based crystal film can be epitaxially grown on a Ga 2 O 3 based crystal substrate while controlling n-type conductivity with high accuracy.
  • FIG. 1 is a vertical sectional view of a Ga 2 O 3 based crystal substrate and a Ga 2 O 3 based crystal film according to an embodiment.
  • FIG. 2 shows an example of the configuration of an MBE apparatus used for forming a Ga 2 O 3 based crystal film.
  • FIG. 3 is a graph showing the relationship between the temperature of the second cell filled with SnO 2 according to Example 1 and the carrier concentration of the Ga 2 O 3 based crystal film.
  • FIG. 4 is a graph showing the relationship between the temperature of the second cell filled with SnO 2 according to Example 1 and the carrier concentration of the Ga 2 O 3 based crystal film.
  • FIG. 5 is a graph showing the relationship between the temperature of the second cell filled with Si and the carrier concentration of the Ga 2 O 3 crystal film according to the comparative example.
  • Figure 6 is a graph showing the relationship between the temperature and the Ga 2 O 3 system donor concentration in the crystal film of the second cell which SnO 2 is filled according to the second embodiment.
  • Figure 7 is a graph showing the relationship between the temperature and the Ga 2 O 3 system donor concentration in the crystal film of the second cell which SnO 2 is filled according to the second embodiment.
  • Embodiment The present inventors have applied research, results of the investigation, when epitaxially growing a conductive Ga 2 O 3 based crystal film on a substrate made of Ga 2 O 3 system crystal, the conductivity Ga 2 O 3 based crystal film It has been found that the conductivity is greatly influenced by the kind of the raw material of the conductive impurity to be used, and it is necessary to use Sn oxide.
  • Ga 2 O 3 based crystal film When a Ga 2 O 3 based crystal film is formed on a Ga 2 O 3 based crystal substrate by epitaxial growth, a high quality Ga 2 O 3 based is formed compared to a case where the Ga 2 O 3 based crystal film is formed by heteroepitaxial growth on a substrate having a significantly different crystal structure. A crystal film can be obtained.
  • an appropriate conductivity type impurity source material and a heating temperature of the source material are selected, and a molecular beam epitaxy (MBE) method is used to obtain Ga 2 O having excellent conductivity.
  • MBE molecular beam epitaxy
  • a 3- system crystal film is formed on a Ga 2 O 3 system crystal substrate by epitaxial growth.
  • FIG. 1 is a vertical sectional view of a Ga 2 O 3 based crystal substrate and a Ga 2 O 3 based crystal film according to an embodiment.
  • the Ga 2 O 3 based crystal film 1 is formed by epitaxially growing a Ga 2 O 3 based single crystal on a Ga 2 O 3 based crystal substrate 2 using the MBE method.
  • the MBE method is a crystal growth method in which a raw material consisting of a simple substance or a compound is heated by an evaporation source called a cell, and vapor generated by heating is supplied as a molecular beam to a substrate surface to epitaxially grow a crystal.
  • the Ga 2 O 3 based crystal film 1 is made of an n-type ⁇ -Ga 2 O 3 based single crystal containing Sn as a conductive impurity.
  • the ⁇ -Ga 2 O 3 single crystal is a ⁇ -Ga 2 O 3 single crystal or a ⁇ -Ga 2 O 3 single crystal in which a Ga site is substituted by Al or the like (for example, ⁇ - (Al x Ga 1-x ) 2 O 3 single crystal (0 ⁇ x ⁇ 1)).
  • the thickness of the Ga 2 O 3 based crystal film 1 is, for example, about 10 to 1000 nm.
  • the carrier concentration of the Ga 2 O 3 based crystal film 1 is 1 ⁇ 10 14 to 1 ⁇ 10 20 / cm 3 . This carrier concentration can be controlled by the temperature at the time of film formation of the second cell 13b of the MBE apparatus 3 to be described later.
  • the second cell 13b is a cell in which the Ga 2 O 3 based crystal film 1 is filled with SnO 2, which is an Sn source material that imparts conductivity.
  • the Ga 2 O 3 based crystal substrate 2 is made of, for example, a ⁇ -Ga 2 O 3 based single crystal whose resistance is increased by adding an impurity such as Mg.
  • the Ga 2 O 3 based crystal substrate 2 is produced, for example, by the following procedure.
  • a semi-insulating ⁇ -Ga 2 O 3 single crystal ingot to which impurities are added is manufactured by the EFG method.
  • the impurities for example, when Ga sites are substituted, H, Li, Na, K, Rb, Cs, Fr, Be, Mg, Ca, Sr, Ba, Ra, Mn, Fe, Co, Ni, Pd Cu, Ag, Au, Zn, Cd, Hg, Tl, or Pb can be used.
  • N or P can be used.
  • adding Mg it mixes by mixing MgO powder with raw material powder.
  • 0.05 mol% or more of MgO may be added.
  • a semi-insulating ⁇ -Ga 2 O 3 single crystal ingot may be produced by the FZ method. The produced ingot is sliced into a thickness of about 1 mm, for example, so that the desired plane orientation becomes the main surface, and is made into a substrate. Then, it is processed to a thickness of about 300 to 600 ⁇ m in a grinding and polishing process.
  • FIG. 2 shows an example of the configuration of an MBE apparatus used for forming a Ga 2 O 3 based crystal film.
  • the MBE apparatus 3 includes a vacuum chamber 10, this is supported in the vacuum chamber 10, Ga 2 O 3 system and the substrate holder 11 for holding the crystal substrate 2, Ga 2 O 3 system crystal substrate held by the substrate holder 11
  • a heating device 12 for heating 2 a plurality of cells 13 (13 a, 13 b, 13 c) filled with raw materials of atoms constituting the Ga 2 O 3 based crystal film 1, and a heater for heating the cells 13 14 (14a, 14b, 14c), a gas supply pipe 15 for supplying an oxygen-based gas into the vacuum chamber 10, and a vacuum pump 16 for discharging the air in the vacuum chamber 10.
  • the substrate holder 11 is configured to be rotatable by a motor (not shown) via a shaft 110.
  • the first cell 13a is filled with a Ga raw material of the Ga 2 O 3 based crystal film 1 such as Ga powder. As for the purity of Ga of this powder, it is desirable that it is 6N or more.
  • the second cell 13b is filled with Sn oxide (SnO 2 or SnO) powder which is a raw material of Sn added to the Ga 2 O 3 based crystal film 1 as a donor. The oxidized Sn may not be powder.
  • the third cell 13c is filled with, for example, an Al raw material when the Ga 2 O 3 based crystal film 1 is made of ⁇ - (Al x Ga 1 -x ) 2 O 3 single crystal. Shutters are provided at the openings of the first cell 13a, the second cell 13b, and the third cell 13c.
  • the Ga 2 O 3 based crystal substrate 2 prepared in advance is attached to the substrate holder 11 of the MBE apparatus 3.
  • the vacuum pump 16 is operated, and the pressure in the vacuum chamber 10 is reduced to about 1 ⁇ 10 ⁇ 8 Pa.
  • the Ga 2 O 3 based crystal substrate 2 is heated by the heating device 12.
  • the heating of Ga 2 O 3 system crystal substrate 2 is performed by radiant heat of the heat source of the graphite heater of the heating device 12 is thermally conducted to the Ga 2 O 3 system crystal substrate 2 through the substrate holder 11.
  • an oxygen based gas such as oxygen radicals is supplied from the gas supply pipe 15 into the vacuum chamber 10.
  • the gas partial pressure of the oxygen-based gas is, for example, 5 ⁇ 10 ⁇ 4 Pa.
  • the first heater 13a rotates the substrate holder 11 and the first cell 13a, the second cell 13b, and necessary. If so, the third cell 13c is heated to evaporate Ga, Sn, and Al and irradiate the surface of the Ga 2 O 3 based crystal substrate 2 as a molecular beam.
  • the first cell 13 a is heated to 900 ° C., and the beam equivalent pressure (BEP; Beam Equivalent Pressure) of Ga vapor is 2 ⁇ 10 ⁇ 4 Pa.
  • BEP Beam Equivalent Pressure
  • the second cell 13b filled with SnO 2 is heated to 650 to 925 ° C., and the beam equivalent pressure of Sn vapor changes depending on the temperature of the second cell 13b.
  • the growth temperature and growth rate of the ⁇ -Ga 2 O 3 single crystal are, for example, 700 ° C. and 0.01 to 100 ⁇ m / h, respectively.
  • the carrier concentration of the Ga 2 O 3 based crystal film 1 is 1 ⁇ 10 14 to 1 ⁇ 10 20 / cm 3 , and this carrier concentration is controlled by the temperature of the second cell 13b.
  • a Ga 2 O 3 based crystal film having excellent conductivity can be formed on a Ga 2 O 3 based crystal substrate by epitaxial growth using MBE.
  • Formed Ga 2 O 3 based crystal film can be used as a constituent member of a semiconductor element such as Ga 2 O 3 light-emitting element and Ga 2 O 3 based transistor.
  • Example 1 The relationship between the temperature of the second cell 13b filled with SnO 2 powder and the carrier concentration of the Ga 2 O 3 based crystal film 1 was determined by experiments.
  • a substrate made of a high resistance ⁇ -Ga 2 O 3 single crystal added with 0.25 mol% of Mg was used as the Ga 2 O 3 based crystal substrate 2. Further, a film made of ⁇ -Ga 2 O 3 single crystal was formed as the Ga 2 O 3 based crystal film 1.
  • the main surface of the Ga 2 O 3 based crystal substrate was a (010) plane. Although the plane orientation of the substrate is not particularly limited, the main surface of the Ga 2 O 3 based crystal substrate is preferably a plane rotated by an angle of 50 ° or more and 90 ° or less from the (100) plane.
  • the angle ⁇ (0 ⁇ ⁇ 90 °) formed by the main surface and the (100) plane in the Ga 2 O 3 based substrate is preferably 50 ° or more.
  • (010) plane, (001) plane, ( ⁇ 201) plane, (101) plane, and (310) plane exist as planes rotated from 50 ° to 90 ° from (100) plane.
  • the gas partial pressure of the oxygen-based gas at the time of forming the Ga 2 O 3 based crystal film 1 is 5 ⁇ 10 ⁇ 4 Pa
  • the temperature of the first cell 13 a is 900 ° C.
  • the beam equivalent pressure of Ga vapor is 2 ⁇ .
  • the growth temperature of 10 ⁇ 4 Pa, ⁇ -Ga 2 O 3 single crystal was 700 ° C.
  • the growth rate of ⁇ -Ga 2 O 3 single crystal was 0.7 ⁇ m / h.
  • FIG. 3 is a graph showing the relationship between the temperature of the second cell 13b and the carrier concentration of the Ga 2 O 3 based crystal film 1 obtained by measurement under the above conditions.
  • the horizontal axis of FIG. 3 shows the temperature of the second cell 13b filled with SnO 2 powder, and the vertical axis shows the carrier concentration of the Ga 2 O 3 crystal film 1.
  • FIG. 3 is a semilogarithmic graph in which the scale of the vertical axis is represented by a logarithm.
  • the measured values draw a substantially straight line on the semilogarithmic graph, and the carrier concentration of the Ga 2 O 3 based crystal film 1 increases as the temperature of the second cell 13b increases.
  • the concentration of SnO 2 added to the Ga 2 O 3 based crystal film 1 becomes 1 / n
  • the carrier concentration is also 1 / n. Therefore, as shown in FIG. 4, when the growth rate is 0.01 to 100 ⁇ m / h, the relationship between the temperature of the second cell 13b and the carrier concentration of the Ga 2 O 3 based crystal film 1 is expressed as follows. It can be determined from the relationship in the case of 0.7 ⁇ m / h.
  • 0.01 to 100 ⁇ m / h is a growth rate of a ⁇ -Ga 2 O 3 single crystal that is generally used.
  • the temperature of the first cell 13a filled with the Ga raw material may be 700 ° C. and the oxygen-based gas partial pressure may be 1 ⁇ 10 ⁇ 5 Pa.
  • the temperature of the first cell 13a may be 1200 ° C. and the oxygen-based gas partial pressure may be 1 ⁇ 10 ⁇ 1 Pa.
  • FIG. 4 shows the temperature of the second cell 13b and the Ga 2 O 3 based crystal when the growth rate of the ⁇ -Ga 2 O 3 single crystal is 0.01 ⁇ m / h, 0.7 ⁇ m / h, and 100 ⁇ m / h. Straight lines each showing the relationship with the carrier concentration of the film 1 are drawn.
  • the temperature range of the second cell 13b is different from that when SnO 2 is used, but the n-type conductivity of the Ga 2 O 3 based crystal film is controlled with high accuracy. I was able to. That is, by using Sn oxide as the Sn material, the n-type conductivity of the Ga 2 O 3 based crystal film can be controlled with high accuracy.
  • the Ga 2 O 3 based crystal film 1 is formed by filling the second cell 13b with Sn instead of Sn oxide as the Sn material, the temperature of the second cell 13b, the ⁇ -Ga 2 O 3 single crystal Regardless of conditions such as the growth rate, a carrier concentration of 1 ⁇ 10 14 / cm 3 or more was not obtained.
  • FIG. 5 is a graph showing the relationship between the temperature of the second cell 13b filled with Si and the carrier concentration of the Ga 2 O 3 based crystal film 1 obtained by experiment. The measurement conditions are the same as those when Sn oxide is used. As shown in FIG.
  • the carrier concentration of the Ga 2 O 3 based crystal film 1 varies, and the conductivity may not be obtained.
  • Si oxide SiO, SiO 2
  • the Si oxide vapor pressure cannot be controlled by the temperature of the second cell 13b, and it does not depend on the doping amount of Si oxide.
  • the n-type conductivity of the Ga 2 O 3 based crystal film 1 was not obtained (even if it was doped to about several mol%).
  • Example 2 The relationship between the temperature of the second cell 13b filled with SnO 2 powder and the donor concentration of the Ga 2 O 3 based crystal film 1 was determined by experiments.
  • a substrate made of an n-type ⁇ -Ga 2 O 3 single crystal to which 0.05 mol% of Si was added was used as the Ga 2 O 3 based crystal substrate 2. Further, a film made of ⁇ -Ga 2 O 3 single crystal was formed as the Ga 2 O 3 based crystal film 1.
  • the main surface of the Ga 2 O 3 based crystal substrate was a (010) plane.
  • the plane orientation of the substrate is not particularly limited, the main surface of the Ga 2 O 3 based crystal substrate is preferably a plane rotated by an angle of 50 ° or more and 90 ° or less from the (100) plane. That is, the angle ⁇ (0 ⁇ ⁇ 90 °) formed by the main surface and the (100) plane in the Ga 2 O 3 based substrate is preferably 50 ° or more.
  • (010) plane, (001) plane, ( ⁇ 201) plane, (101) plane, and (310) plane exist as planes rotated from 50 ° to 90 ° from (100) plane.
  • the gas partial pressure of the oxygen-based gas during the formation of the Ga 2 O 3 based crystal film 1 is 5 ⁇ 10 ⁇ 4 Pa
  • the temperature of the first cell 13 a is 900 ° C.
  • the beam equivalent pressure of Ga vapor is 2 ⁇ 10 ⁇ .
  • the growth temperature of 4 Pa, ⁇ -Ga 2 O 3 single crystal was 530, 570, 600 ° C.
  • the growth rate of ⁇ -Ga 2 O 3 single crystal was 0.7 ⁇ m / h.
  • FIG. 6 is obtained by measurement under the above conditions (growth temperature is 530, 570, 600).
  • ° C.) is a graph showing the relationship between the temperature and the Ga 2 O 3 system donor concentration in the crystal layer 1 of the second cell 13b when the set.
  • the horizontal axis of FIG. 6 shows the temperature of the second cell 13b filled with SnO 2 powder, and the vertical axis shows the donor concentration of the Ga 2 O 3 crystal film 1.
  • FIG. 6 is a semilogarithmic graph in which the scale of the vertical axis is represented by a logarithm.
  • the donor concentration of the Ga 2 O 3 based crystal film 1 increases as the temperature of the second cell 13b increases.
  • the amount of SnO 2 taken into the epi film changed.
  • the growth temperature dependency becomes smaller at 570 ° C. or lower.
  • the relationship between the SnO 2 cell temperature and the donor concentration had a slope that coincided with the vapor pressure curve of SnO 2 .
  • the crystal quality during growth can be maintained by setting the growth temperature (substrate temperature) between 530 ° C. and 600 ° C., preferably between 530 ° C. and 570 ° C.
  • the concentration of SnO 2 added to the Ga 2 O 3 based crystal film 1 becomes 1 / n
  • the donor concentration is also 1 / n. Therefore, as shown in FIG. 7, when the growth rate is 0.01 to 100 ⁇ m / h, the relationship between the temperature of the second cell 13b and the donor concentration of the Ga 2 O 3 based crystal film 1 is expressed as follows. It can be determined from the relationship in the case of 0.7 ⁇ m / h.
  • 0.01 to 100 ⁇ m / h is a growth rate of a ⁇ -Ga 2 O 3 single crystal that is generally used.
  • the temperature of the first cell 13a filled with the Ga raw material may be 700 ° C. and the oxygen-based gas partial pressure may be 1 ⁇ 10 ⁇ 5 Pa.
  • the temperature of the first cell 13a may be 1200 ° C. and the oxygen-based gas partial pressure may be 1 ⁇ 10 ⁇ 1 Pa.
  • FIG. 7 shows the growth rate of the ⁇ -Ga 2 O 3 single crystal (growth temperature of 570 ).
  • growth temperature of 570 The relationship between the temperature of the second cell 13b and the donor concentration of the Ga 2 O 3 based crystal film 1 when the temperature is set at 0.01 ° C. is 0.01 ⁇ m / h, 0.7 ⁇ m / h, and 100 ⁇ m / h, respectively.
  • a Ga 2 O 3 based crystal film can be epitaxially grown on a Ga 2 O 3 based crystal substrate while controlling the n-type conductivity with high accuracy.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

MBE法を用いて、n型導電性を高精度に制御しつつGa23系結晶膜をGa23系結晶基板上にエピタキシャル成長させる。 MBE法を用いて、エピタキシャル成長により導電性を有するGa23系結晶膜を形成するGa23系結晶膜の製造方法であって、Ga蒸気及びSn蒸気を発生させ、分子線としてGa23系結晶基板の表面に供給してSnを含むGa23系単結晶膜を成長させる工程を含み、MBE装置のセルに充填された酸化Snを加熱することにより前記Sn蒸気を発生させる、Ga23系結晶膜の製造方法を提供する。

Description

Ga2O3系結晶膜の製造方法
 本発明は、Ga23系結晶膜の製造方法に関する。
 従来のGa23系結晶膜の製造方法として、サファイア基板等の結晶基板上に導電性のGa23結晶膜をヘテロエピタキシャル成長により形成する方法が知られている(例えば、特許文献1参照)。特許文献1には、MBE法を用いてGa23結晶膜を形成することや、Ga23結晶膜に導電性を付与する導電型不純物としてSnを用いることが示されている。
特許第4083396号公報
 本発明の目的は、MBE法を用いて、n型導電性を高精度に制御しつつGa23系結晶膜をGa23系結晶基板上にエピタキシャル成長させることにある。
 本発明の一態様は、上記目的を達成するために、[1]~[3]に記載のGa23系結晶膜の製造方法を提供する。
[1]MBE法を用いて、エピタキシャル成長により導電性を有するGa23系結晶膜を形成するGa23系結晶膜の製造方法であって、Ga蒸気及びSn蒸気を発生させ、分子線としてGa23系結晶基板の表面に供給してSnを含むGa23系単結晶膜を成長させる工程を含み、MBE装置のセルに充填された酸化Snを加熱することにより前記Sn蒸気を発生させる、Ga23系結晶膜の製造方法。
[2]前記酸化SnはSnO2であり、前記セルの温度を650~925℃にして前記Sn蒸気を発生させる、前記[1]に記載のGa23系結晶膜の製造方法。
[3]前記Ga23単結晶を0.01~100μm/hの成長速度でエピタキシャル成長させる、前記[1]又は[2]のいずれかに記載のGa23系結晶膜の製造方法。
[4]前記Ga23系結晶膜のキャリア濃度は1×1014~1×1020/cm3である、前記[1]から[3]のいずれか1つに記載のGa23系結晶膜の製造方法。
[5]前記酸化SnはSnO2であり、前記セルの温度を450~1080℃にして前記Sn蒸気を発生させる、前記[1]に記載のGa23系結晶膜の製造方法。
[6]前記Ga23単結晶を0.01~100μm/hの成長速度でエピタキシャル成長させる、前記[5]に記載のGa23系結晶膜の製造方法。
[7]前記Ga23単結晶を530~600℃の成長温度でエピタキシャル成長させる、前記[5]に記載のGa23系結晶膜の製造方法。
 本発明によれば、MBE法を用いて、n型導電性を高精度に制御しつつGa23系結晶膜をGa23系結晶基板上にエピタキシャル成長させることができる。
図1は、実施の形態に係るGa23系結晶基板及びGa23系結晶膜の垂直断面図である。 図2は、Ga23系結晶膜の形成に用いられるMBE装置の構成の一例を示す。 図3は、実施例1に係るSnO2が充填された第2のセルの温度とGa23系結晶膜のキャリア濃度との関係を示すグラフである。 図4は、実施例1に係るSnO2が充填された第2のセルの温度とGa23系結晶膜のキャリア濃度との関係を示すグラフである。 図5は、比較例に係るSiが充填された第2のセルの温度とGa23系結晶膜のキャリア濃度との関係を示すグラフである。 図6は、実施例2に係るSnO2が充填された第2のセルの温度とGa23系結晶膜のドナー濃度との関係を示すグラフである。 図7は、実施例2に係るSnO2が充填された第2のセルの温度とGa23系結晶膜のドナー濃度との関係を示すグラフである。
〔実施の形態〕
 本発明者等は、研究、調査の結果、Ga23系結晶からなる基板上に導電性のGa23系結晶膜をエピタキシャル成長させる場合、Ga23系結晶膜に導電性を付与する導電型不純物の原料の種類によって、導電性が大きく影響を受け、酸化Snを用いる必要があることを見出した。
 Ga23系結晶膜をGa23系結晶基板上にエピタキシャル成長により形成する場合、結晶構造が大きく異なる基板上にヘテロエピタキシャル成長により形成する場合と比較して、高品質のGa23系結晶膜を得ることができる。
 本実施の形態においては、適切な導電型不純物の原料の種類や、原料の加熱温度を選択し、分子線エピタキシー(MBE;Molecular Beam Epitaxy)法を用いて、優れた導電性を有するGa23系結晶膜をGa23系結晶基板上にエピタキシャル成長により形成する。以下、その実施の形態の一例について詳細に説明する。
(Ga23系結晶膜)
 図1は、実施の形態に係るGa23系結晶基板及びGa23系結晶膜の垂直断面図である。
 Ga23系結晶膜1は、MBE法を用いてGa23系結晶基板2上にGa23系単結晶をエピタキシャル成長させることにより形成される。MBE法は、単体あるいは化合物からなる原料をセルと呼ばれる蒸発源で加熱し、加熱により生成された蒸気を分子線として基板表面に供給して、結晶をエピタキシャル成長させる結晶成長方法である。
 Ga23系結晶膜1は、導電型不純物としてのSnを含むn型のβ-Ga23系単結晶からなる。ここで、β-Ga23系単結晶とは、β-Ga23単結晶、及びAl等によりGaサイトが置換されたβ-Ga23単結晶(例えば、β-(AlxGa1-x23単結晶(0<x<1))をいう。Ga23系結晶膜1の厚さは、例えば、10~1000nm程度である。
 Ga23系結晶膜1のキャリア濃度は、1×1014~1×1020/cm3である。このキャリア濃度は、後述するMBE装置3の第2のセル13bの成膜時の温度により制御することができる。第2のセル13bは、Ga23系結晶膜1に導電性を付与する不純物であるSnの原料のSnO2が充填されたセルである。
 Ga23系結晶基板2は、例えば、Mg等の不純物を添加することにより高抵抗化したβ-Ga23系単結晶からなる。
 Ga23系結晶基板2は、例えば、次のような手順で作製される。まず、EFG法により、不純物を添加した半絶縁性β-Ga23単結晶インゴットを作製する。この不純物としては、例えば、Gaサイトを置換する場合は、H、Li、Na、K、Rb、Cs、Fr、Be、Mg、Ca、Sr、Ba、Ra、Mn、Fe、Co、Ni、Pd、Cu、Ag、Au、Zn、Cd、Hg、Tl、又はPbを用いることができる。また、酸素サイトを置換する場合は、N、又はPを用いることができる。例えば、Mgを添加する場合は、原料粉末にMgO粉末を混合することにより行う。Ga23系結晶基板2に良好な絶縁性を持たせるためには、MgOを0.05mol%以上添加すればよい。また、FZ法により半絶縁性β-Ga23単結晶インゴットを作製してもよい。作製したインゴットを所望の面方位が主面となるように、例えば1mm程度の厚さにスライス加工して基板化する。そして、研削研磨工程にて300~600μm程度の厚さに加工する。
(Ga23系結晶膜の製造方法)
 図2は、Ga23系結晶膜の形成に用いられるMBE装置の構成の一例を示す。このMBE装置3は、真空槽10と、この真空槽10内に支持され、Ga23系結晶基板2を保持する基板ホルダ11と、基板ホルダ11に保持されたGa23系結晶基板2を加熱するための加熱装置12と、Ga23系結晶膜1を構成する原子の原料が充填された複数のセル13(13a、13b、13c)と、セル13を加熱するためのヒータ14(14a、14b、14c)と、真空槽10内に酸素系ガスを供給するガス供給パイプ15と、真空槽10内の空気を排出するための真空ポンプ16とを備えている。基板ホルダ11は、シャフト110を介して図示しないモータにより回転可能に構成されている。
 第1のセル13aには、Ga粉末等のGa23系結晶膜1のGa原料が充填されている。この粉末のGaの純度は、6N以上であることが望ましい。第2のセル13bには、ドナーとしてGa23系結晶膜1に添加されるSnの原料である酸化Sn(SnO2又はSnO)粉末が充填されている。なお、酸化Snは粉末でなくてもよい。第3のセル13cには、例えば、Ga23系結晶膜1がβ-(AlxGa1-x23単結晶からなる場合のAl原料が充填されている。第1のセル13a、第2のセル13b、及び第3のセル13cの開口部にはシャッターが設けられている。
 まず、予め作製されたGa23系結晶基板2をMBE装置3の基板ホルダ11に取り付ける。次に、真空ポンプ16を作動させ、真空槽10内の気圧を1×10-8Pa程度まで減圧する。そして、加熱装置12によってGa23系結晶基板2を加熱する。なお、Ga23系結晶基板2の加熱は、加熱装置12の黒鉛ヒータ等の発熱源の輻射熱が基板ホルダ11を介してGa23系結晶基板2に熱伝導することにより行われる。
 Ga23系結晶基板2が所定の温度に加熱された後、ガス供給パイプ15から真空槽10内に例えば酸素ラジカルのような酸素系ガスを供給する。酸素系ガスのガス分圧は、例えば、5×10-4Paである。
 真空槽10内のガス圧が安定するのに必要な時間(例えば5分間)経過後、基板ホルダ11を回転させながら第1のヒータ14aにより第1のセル13a、第2のセル13b、及び必要であれば第3のセル13cを加熱し、Ga、Sn、Alを蒸発させて分子線としてGa23系結晶基板2の表面に照射する。
 例えば、第1のセル13aは900℃に加熱され、Ga蒸気のビーム等価圧力(BEP;Beam Equivalent Pressure)は2×10-4Paである。SnO2が充填された第2のセル13bは650~925℃に加熱され、Sn蒸気のビーム等価圧力は、第2のセル13bの温度により変化する。
 これにより、Ga23系結晶基板2上にβ-Ga23系単結晶がSnを添加されながらエピタキシャル成長し、Ga23系結晶膜1が形成される。
 ここで、β-Ga23系単結晶の成長温度及び成長速度は、例えば、それぞれ700℃、0.01~100μm/hである。
 Ga23系結晶膜1のキャリア濃度は1×1014~1×1020/cm3であり、このキャリア濃度は第2のセル13bの温度により制御される。
(実施の形態の効果)
 本実施の形態によれば、MBE法を用いて、優れた導電性を有するGa23系結晶膜をGa23系結晶基板上にエピタキシャル成長により形成することができる。形成されたGa23系結晶膜は、Ga23系発光素子やGa23系トランジスタ等の半導体素子の構成部材として用いることができる。
 なお、本発明は、上記実施の形態に限定されず、発明の主旨を逸脱しない範囲内において種々変形実施が可能である。
 (実施例1)
SnO2粉末が充填された第2のセル13bの温度と、Ga23系結晶膜1のキャリア濃度との関係を、実験により求めた。
 本実施例においては、Mgを0.25mol%添加した高抵抗のβ-Ga23単結晶からなる基板をGa23系結晶基板2として用いた。また、Ga23系結晶膜1として、β-Ga23単結晶からなる膜を形成した。Ga23系結晶基板の主面は(010)面とした。基板の面方位について特に限定されないが、Ga23系結晶基板の主面は、(100)面から50°以上90°以下の角度だけ回転させた面であることが好ましい。すなわち、Ga23系基板において主面と(100)面のなす角θ(0<θ≦90°)が50°以上であることが好ましい。(100)面から50°以上90°以下回転させた面として、例えば、(010)面、(001)面、(-201)面、(101)面、及び(310)面が存在する。
 また、Ga23系結晶膜1の成膜時における酸素系ガスのガス分圧を5×10-4Pa、第1のセル13aの温度を900℃、Ga蒸気のビーム等価圧力を2×10-4Pa、β-Ga23単結晶の成長温度を700℃、β-Ga23単結晶の成長速度を0.7μm/hとした。
 そして、SnO2が充填された第2のセル13bの温度を750~850℃の範囲で変化させて各種試料を作製し、Hall測定によりキャリア濃度を測定することで、第2のセル13bの温度と、Ga23系結晶膜1のキャリア濃度との関係を求めた。
 図3は、上記の条件下での測定により求めた、第2のセル13bの温度と、Ga23系結晶膜1のキャリア濃度との関係を示すグラフである。図3の横軸はSnO2粉末を充填した第2のセル13bの温度を示し、縦軸は、Ga23系結晶膜1のキャリア濃度を示す。図3は、縦軸の目盛が対数で表される片対数グラフである。
 図3に示されるように、測定値は片対数グラフ上でほぼ直線を描き、第2のセル13bの温度の増加に伴ってGa23系結晶膜1のキャリア濃度が増加する。
 また、β-Ga23単結晶の成長速度をn倍(nは正の実数)にした場合、Ga23系結晶膜1に添加されるSnO2の濃度は1/nになり、キャリア濃度も1/nになる。そのため、図4に示されるように、成長速度が0.01~100μm/hの場合の第2のセル13bの温度とGa23系結晶膜1のキャリア濃度との関係を、成長速度が0.7μm/hの場合の関係から求めることができる。
 ここで、0.01~100μm/hは、一般的に用いられるβ-Ga23単結晶の成長速度である。成長速度を0.01μm/hとする場合、例えば、Ga原料が充填された第1のセル13aの温度を700℃、酸素系ガス分圧を1×10-5Paとすればよい。また、成長速度を100μm/hとする場合、例えば、第1のセル13aの温度を1200℃、酸素系ガス分圧を1×10-1Paとすればよい。
 図4には、β-Ga23単結晶の成長速度が0.01μm/h、0.7μm/h、100μm/hであるときの第2のセル13bの温度とGa23系結晶膜1のキャリア濃度との関係をそれぞれ示す直線が描かれている。
 図4から、成長速度が0.01~100μm/hである条件下において、一般的に求められる1×1014~1×1020/cm3の範囲内のキャリア濃度を得るためには、SnO2粉末が充填された第2のセル13bの温度を650~925℃とすればよいことがわかる。
 なお、Sn原料としてSnOを用いた場合も、SnO2を用いた場合とは第2のセル13bの温度範囲は異なるものの、Ga23系結晶膜のn型導電性を高精度に制御することができた。すなわち、Sn原料として酸化Snを用いることにより、Ga23系結晶膜のn型導電性を高精度に制御することができる。
 一方、Sn原料として酸化SnではなくSnを第2のセル13bに充填してGa23系結晶膜1を形成した場合、第2のセル13bの温度、β-Ga23単結晶の成長速度等の条件にかかわらず、1×1014/cm3以上のキャリア濃度は得られなかった。
 また、導電型不純物として酸化Snの代わりにSiを第2のセル13bに充填してGa23系結晶膜1を形成した場合、原因は定かではないが、第2のセル13bの温度によってSi蒸気圧を制御することができず、Ga23系結晶膜1中のSi量の高精度制御は困難であった。図5は、実験により求めた、Siが充填された第2のセル13bの温度と、Ga23系結晶膜1のキャリア濃度との関係を示すグラフである。測定条件は、酸化Snを用いた場合の条件と同じである。図5に示されるように、第2のセル13bの温度が同じ場合であってもGa23系結晶膜1のキャリア濃度がばらつき、導電性が得られない場合もある。また、Siの代わりに酸化Si(SiO、SiO2)を用いた場合も、第2のセル13bの温度によって酸化Si蒸気圧を制御することができず、さらに、酸化Siのドープ量に依らず(数mol%程度までドーピングしても)Ga23系結晶膜1のn型導電性は得られなかった。
 (実施例2)
 SnO2粉末が充填された第2のセル13bの温度と、Ga23系結晶膜1のドナー濃度との関係を、実験により求めた。
 本実施例においては、Siを0.05mol%添加したn型のβ-Ga23単結晶からなる基板をGa23系結晶基板2として用いた。また、Ga23系結晶膜1として、β-Ga23単結晶からなる膜を形成した。
 Ga23系結晶基板の主面は(010)面とした。基板の面方位について特に限定されないが、Ga23系結晶基板の主面は、(100)面から50°以上90°以下の角度だけ回転させた面であることが好ましい。すなわち、Ga23系基板において主面と(100)面のなす角θ(0<θ≦90°)が50°以上であることが好ましい。(100)面から50°以上90°以下回転させた面として、例えば、(010)面、(001)面、(-201)面、(101)面、及び(310)面が存在する。
 Ga23系結晶膜1の成膜時における酸素系ガスのガス分圧を5×10-4Pa、第1のセル13aの温度を900℃、Ga蒸気のビーム等価圧力を2×10-4Pa、β-Ga23単結晶の成長温度を530、570、600℃、β-Ga23単結晶の成長速度を0.7μm/hとした。
 そして、SnO2が充填された第2のセル13bの温度を585~820℃の範囲で変化させて各種試料を作製し、C-V測定によりドナー濃度を測定することで、第2のセル13bの温度と、Ga23系結晶膜1のドナー濃度との関係を求めた。
 図6は、上記の条件下での測定により求めた、(成長温度を530、570、600 ℃に設定したときの)第2のセル13bの温度とGa23系結晶膜1のドナー濃度との関係を示すグラフである。図6の横軸はSnO2粉末を充填した第2のセル13bの温度を示し、縦軸は、Ga23系結晶膜1のドナー濃度を示す。図6は、縦軸の目盛が対数で表される片対数グラフである。
 図6に示されるように、第2のセル13bの温度の増加に伴ってGa23系結晶膜1のドナー濃度が増加する。ここで、成長温度を変えるとエピ膜中へ取り込まれるSnO2の量に変化が生じることがわかった。具体的には、成長温度を下げると取り込まれるSnO2の量が増える傾向(成長温度依存性)が見られた。ただし、570 ℃以下では成長温度依存性は小さくなる。また、成長温度を570 ℃以下にすると、SnO2セル温度とドナー濃度の関係が、SnO2の蒸気圧曲線と一致する傾きになることもわかった。なお、成長温度を500 ℃に下げると、エピ表面が荒れてしまい結晶品質の低い膜が成長することが確認された。従って、成長温度(基板温度)を530 ℃から600 ℃の間、好ましくは530 ℃から570 ℃の間に設定することにより成長中の結晶品質を保つことができる。
 また、β-Ga23単結晶の成長速度をn倍(nは正の実数)にした場合、Ga23系結晶膜1に添加されるSnO2の濃度は1/nになり、ドナー濃度も1/nになる。そのため、図7に示されるように、成長速度が0.01~100μm/hの場合の第2のセル13bの温度とGa23系結晶膜1のドナー濃度との関係を、成長速度が0.7μm/hの場合の関係から求めることができる。
 ここで、0.01~100μm/hは、一般的に用いられるβ-Ga23単結晶の成長速度である。成長速度を0.01μm/hとする場合、例えば、Ga原料が充填された第1のセル13aの温度を700℃、酸素系ガス分圧を1×10-5Paとすればよい。また、成長速度を100μm/hとする場合、例えば、第1のセル13aの温度を1200℃、酸素系ガス分圧を1×10-1Paとすればよい。
 図7は、β-Ga23単結晶の成長速度(成長温度を570 ℃に設定)が0.01μm/h、0.7μm/h、100μm/hであるときの第2のセル13bの温度とGa23系結晶膜1のドナー濃度との関係をそれぞれ示す。
 図7から、成長速度が0.01~100μm/hである条件下において、一般的に求められる1×1014~1×1020/cm3の範囲内のドナー濃度を得るためには、SnO2粉末が充填された第2のセル13bの温度を450~1080℃とすればよいことがわかる。
 また、本実施例においてはGa23系結晶膜1としてβ-Ga23単結晶を用いて実験を行ったが、Al等によりGaサイトが置換されたβ-Ga23単結晶を用いた場合であっても、ほぼ同様の結果が得られる。
 以上、本発明の実施の形態及び実施例を説明したが、上記に記載した実施の形態及び実施例は請求の範囲に係る発明を限定するものではない。また、実施の形態及び実施例の中で説明した特徴の組合せの全てが発明の課題を解決するための手段に必須であるとは限らない点に留意すべきである。
 MBE法を用いて、n型導電性を高精度に制御しつつGa23系結晶膜をGa23系結晶基板上にエピタキシャル成長させることができる。
1…Ga23系結晶膜、2…Ga23系結晶基板、3…MBE装置、13b…第2のセル

Claims (8)

  1.  MBE法を用いて、エピタキシャル成長により導電性を有するGa23系結晶膜を形成するGa23系結晶膜の製造方法であって、
     Ga蒸気及びSn蒸気を発生させ、分子線としてGa23系結晶基板の表面に供給してSnを含むGa23系単結晶膜を成長させる工程を含み、
     MBE装置のセルに充填された酸化Snを加熱することにより前記Sn蒸気を発生させる、
     Ga23系結晶膜の製造方法。
  2.  前記酸化SnはSnO2であり、
     前記セルの温度を650~925℃にして前記Sn蒸気を発生させる、
     請求項1に記載のGa23系結晶膜の製造方法。
  3.  前記Ga23単結晶を0.01~100μm/hの成長速度でエピタキシャル成長させる、
     請求項1又は2のいずれかに記載のGa23系結晶膜の製造方法。
  4.  前記Ga23系結晶膜のキャリア濃度は1×1014~1×1020/cm3である、
     請求項1又は2のいずれかに記載のGa23系結晶膜の製造方法。
  5.  前記Ga23系結晶膜のキャリア濃度は1×1014~1×1020/cm3である、
     請求項3に記載のGa23系結晶膜の製造方法。
  6.  前記酸化SnはSnO2であり、
     前記セルの温度を450~1080℃にして前記Sn蒸気を発生させる、 請求項1に記載のGa23系結晶膜の製造方法。
  7.  前記Ga23単結晶を0.01~100μm/hの成長速度でエピタキシャル成長させる、請求項6に記載のGa23系結晶膜の製造方法。
  8.  前記Ga23単結晶を530~600℃の成長温度でエピタキシャル成長させる、請求項6に記載のGa23系結晶膜の製造方法。

      

      
PCT/JP2012/080623 2011-11-29 2012-11-27 Ga2O3系結晶膜の製造方法 WO2013080972A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP12854328.7A EP2800128A4 (en) 2011-11-29 2012-11-27 PROCESS FOR PRODUCING A CRYSTALLINE FILM OF GA2O3
US14/357,180 US9657410B2 (en) 2011-11-29 2012-11-27 Method for producing Ga2O3 based crystal film
JP2013547166A JP6082700B2 (ja) 2011-11-29 2012-11-27 Ga2O3系結晶膜の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011260493 2011-11-29
JP2011-260493 2011-11-29

Publications (1)

Publication Number Publication Date
WO2013080972A1 true WO2013080972A1 (ja) 2013-06-06

Family

ID=48535425

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/080623 WO2013080972A1 (ja) 2011-11-29 2012-11-27 Ga2O3系結晶膜の製造方法

Country Status (5)

Country Link
US (1) US9657410B2 (ja)
EP (1) EP2800128A4 (ja)
JP (1) JP6082700B2 (ja)
TW (1) TWI553144B (ja)
WO (1) WO2013080972A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160265137A1 (en) * 2013-09-30 2016-09-15 Tamura Corporation METHOD FOR GROWING BETA-Ga2O3-BASED SINGLE CRYSTAL FILM, AND CRYSTALLINE LAYERED STRUCTURE
JP2016204214A (ja) * 2015-04-23 2016-12-08 株式会社タムラ製作所 Ga2O3系結晶膜の形成方法、及び結晶積層構造体
JP2017041593A (ja) * 2015-08-21 2017-02-23 株式会社タムラ製作所 Ga2O3系結晶膜の形成方法
JP2017218334A (ja) * 2016-06-03 2017-12-14 株式会社タムラ製作所 Ga2O3系結晶膜の成長方法及び結晶積層構造体
CN114808118A (zh) * 2022-04-29 2022-07-29 杭州富加镓业科技有限公司 一种在导电型氧化镓衬底上制备同质外延氧化镓薄膜的方法及分子束外延设备

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5828568B1 (ja) * 2014-08-29 2015-12-09 株式会社タムラ製作所 半導体素子及びその製造方法
RU2657674C1 (ru) * 2017-08-14 2018-06-14 Федеральное государственное бюджетное учреждение науки Институт общей и неорганической химии им. Н.С. Курнакова Российской академии наук (ИОНХ РАН) Способ получения гетероструктуры Mg(Fe1-xGax)2O4/Si со стабильной межфазной границей
CN110923665B (zh) * 2019-11-27 2021-08-24 太原理工大学 一种具有择优取向的Ga2O3和SnO2混相膜的制备方法
TR202019031A2 (tr) * 2020-11-25 2021-02-22 Univ Yildiz Teknik Yüksek kalitede hetero epitaksiyel monoklinik galyum oksit kristali büyütme metodu
US20240249954A1 (en) * 2021-05-13 2024-07-25 Ohio State Innovation Foundation IN SITU DAMAGE FREE ETCHING OF Ga2O3 USING Ga FLUX FOR FABRICATING HIGH ASPECT RATIO 3D STRUCTURES
WO2023073404A1 (en) 2021-10-27 2023-05-04 Silanna UV Technologies Pte Ltd Methods and systems for heating a wide bandgap substrate
WO2023084275A1 (en) 2021-11-10 2023-05-19 Silanna UV Technologies Pte Ltd Ultrawide bandgap semiconductor devices including magnesium germanium oxides
CN118369767A (zh) 2021-11-10 2024-07-19 斯兰纳Uv科技有限公司 外延氧化物材料、结构和装置
WO2023084274A1 (en) 2021-11-10 2023-05-19 Silanna UV Technologies Pte Ltd Epitaxial oxide materials, structures, and devices
CN115928014B (zh) * 2022-11-23 2024-06-14 西安邮电大学 一种β相氧化镓薄膜及其制备和掺杂方法
CN115838971B (zh) * 2023-02-14 2023-06-13 楚赟精工科技(上海)有限公司 氧化镓薄膜及其制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002093243A (ja) * 2000-07-10 2002-03-29 Japan Science & Technology Corp 紫外透明導電膜とその製造方法
JP2008303119A (ja) * 2007-06-08 2008-12-18 Nippon Light Metal Co Ltd 高機能性Ga2O3単結晶膜及びその製造方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1598450B1 (en) 2003-02-24 2011-09-21 Waseda University Beta-Ga2O3 SINGLE CRYSTAL GROWING METHOD
JP4803634B2 (ja) * 2004-10-01 2011-10-26 学校法人早稲田大学 p型Ga2O3膜の製造方法およびpn接合型Ga2O3膜の製造方法
JP5807282B2 (ja) 2011-09-08 2015-11-10 株式会社タムラ製作所 Ga2O3系半導体素子

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002093243A (ja) * 2000-07-10 2002-03-29 Japan Science & Technology Corp 紫外透明導電膜とその製造方法
JP4083396B2 (ja) 2000-07-10 2008-04-30 独立行政法人科学技術振興機構 紫外透明導電膜とその製造方法
JP2008303119A (ja) * 2007-06-08 2008-12-18 Nippon Light Metal Co Ltd 高機能性Ga2O3単結晶膜及びその製造方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MIN-YING TSAI ET AL.: "Beta-Ga2O3 growth by plasma-assisted molecular beam epitaxy", J. VAC. SCI. TECHNOL. A, vol. 28, no. 2, March 2010 (2010-03-01), pages 354 - 359, XP012143612 *
See also references of EP2800128A4 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160265137A1 (en) * 2013-09-30 2016-09-15 Tamura Corporation METHOD FOR GROWING BETA-Ga2O3-BASED SINGLE CRYSTAL FILM, AND CRYSTALLINE LAYERED STRUCTURE
CN113832544A (zh) * 2013-09-30 2021-12-24 株式会社田村制作所 β-Ga2O3系单晶膜的生长方法和晶体层叠结构体
US11982016B2 (en) 2013-09-30 2024-05-14 Tamura Corporation Method for growing beta-Ga2O3-based single crystal film, and crystalline layered structure
JP2016204214A (ja) * 2015-04-23 2016-12-08 株式会社タムラ製作所 Ga2O3系結晶膜の形成方法、及び結晶積層構造体
JP2017041593A (ja) * 2015-08-21 2017-02-23 株式会社タムラ製作所 Ga2O3系結晶膜の形成方法
JP2017218334A (ja) * 2016-06-03 2017-12-14 株式会社タムラ製作所 Ga2O3系結晶膜の成長方法及び結晶積層構造体
CN114808118A (zh) * 2022-04-29 2022-07-29 杭州富加镓业科技有限公司 一种在导电型氧化镓衬底上制备同质外延氧化镓薄膜的方法及分子束外延设备
CN114808118B (zh) * 2022-04-29 2024-05-17 杭州富加镓业科技有限公司 一种在导电型氧化镓衬底上制备同质外延氧化镓薄膜的方法及分子束外延设备

Also Published As

Publication number Publication date
JP6082700B2 (ja) 2017-02-15
TW201331406A (zh) 2013-08-01
EP2800128A4 (en) 2015-02-25
EP2800128A1 (en) 2014-11-05
US9657410B2 (en) 2017-05-23
JPWO2013080972A1 (ja) 2015-04-27
US20140331919A1 (en) 2014-11-13
TWI553144B (zh) 2016-10-11

Similar Documents

Publication Publication Date Title
JP6082700B2 (ja) Ga2O3系結晶膜の製造方法
JP6108366B2 (ja) Ga2O3系半導体素子
US9716004B2 (en) Crystal laminate structure and method for producing same
JP5807282B2 (ja) Ga2O3系半導体素子
CN103781947B (zh) 晶体层叠结构体
JP6705962B2 (ja) Ga2O3系結晶膜の成長方法及び結晶積層構造体
JP5866727B2 (ja) β−Ga2O3単結晶膜の製造方法及び結晶積層構造体
JP2013056803A (ja) β−Ga2O3系単結晶膜の製造方法
WO2013035841A1 (ja) Ga2O3系HEMT
JP5031651B2 (ja) 炭化珪素単結晶インゴットの製造方法
CN101368288B (zh) 一种p型ZnO薄膜制造方法
JP2004343133A (ja) 炭化珪素製造方法、炭化珪素及び半導体装置
JP2013056804A (ja) β−Ga2O3系単結晶膜の製造方法及び結晶積層構造体
JP6846754B2 (ja) 結晶積層構造体
Sasaki et al. Method for producing Ga 2 O 3 based crystal film
Zhu et al. P-Doped p-Type ZnΟ Films Deposited by Sputtering and Diffusing
JPS61240628A (ja) 半導体薄膜の製造方法
JP2004200352A (ja) ZnTe系化合物半導体結晶の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12854328

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013547166

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2012854328

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14357180

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE