CN103765593B - Ga2O3系半导体元件 - Google Patents

Ga2O3系半导体元件 Download PDF

Info

Publication number
CN103765593B
CN103765593B CN201280043335.0A CN201280043335A CN103765593B CN 103765593 B CN103765593 B CN 103765593B CN 201280043335 A CN201280043335 A CN 201280043335A CN 103765593 B CN103765593 B CN 103765593B
Authority
CN
China
Prior art keywords
single crystal
crystal film
shaped
substrate
source electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201280043335.0A
Other languages
English (en)
Other versions
CN103765593A (zh
Inventor
佐佐木公平
东胁正高
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Information and Communications Technology
Tamura Corp
Original Assignee
National Institute of Information and Communications Technology
Tamura Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Information and Communications Technology, Tamura Corp filed Critical National Institute of Information and Communications Technology
Publication of CN103765593A publication Critical patent/CN103765593A/zh
Application granted granted Critical
Publication of CN103765593B publication Critical patent/CN103765593B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02414Oxide semiconducting materials not being Group 12/16 materials, e.g. ternary compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/02433Crystal orientation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02483Oxide semiconducting materials not being Group 12/16 materials, e.g. ternary compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02565Oxide semiconducting materials not being Group 12/16 materials, e.g. ternary compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/0257Doping during depositing
    • H01L21/02573Conductivity type
    • H01L21/02576N-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/0257Doping during depositing
    • H01L21/02573Conductivity type
    • H01L21/02581Transition metal or rare earth elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02631Physical deposition at reduced pressure, e.g. MBE, sputtering, evaporation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02634Homoepitaxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/04Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their crystalline structure, e.g. polycrystalline, cubic or particular orientation of crystalline planes
    • H01L29/045Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their crystalline structure, e.g. polycrystalline, cubic or particular orientation of crystalline planes by their particular orientation of crystalline planes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/24Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only semiconductor materials not provided for in groups H01L29/16, H01L29/18, H01L29/20, H01L29/22
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/417Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
    • H01L29/41725Source or drain electrodes for field effect devices
    • H01L29/41741Source or drain electrodes for field effect devices for vertical or pseudo-vertical devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42356Disposition, e.g. buried gate electrode
    • H01L29/4236Disposition, e.g. buried gate electrode within a trench, e.g. trench gate electrode, groove gate electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66674DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/66712Vertical DMOS transistors, i.e. VDMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66674DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/66712Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/66734Vertical DMOS transistors, i.e. VDMOS transistors with a step of recessing the gate electrode, e.g. to form a trench gate electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66969Multistep manufacturing processes of devices having semiconductor bodies not comprising group 14 or group 13/15 materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7813Vertical DMOS transistors, i.e. VDMOS transistors with trench gate electrode, e.g. UMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7827Vertical transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/36Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the concentration or distribution of impurities in the bulk material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/36Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the concentration or distribution of impurities in the bulk material
    • H01L29/365Planar doping, e.g. atomic-plane doping, delta-doping

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)
  • Thin Film Transistor (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Recrystallisation Techniques (AREA)
  • Physical Vapour Deposition (AREA)
  • Semiconductor Memories (AREA)

Abstract

本发明提供一种高品质的Ga2O3系半导体元件。作为一个实施方式,提供Ga2O3系半导体元件(20),包含:n型β‑Ga2O3基板(2),在n型β‑Ga2O3基板(2)上形成的β‑Ga2O3单晶膜(3),在β‑Ga2O3单晶膜(3)上形成的源电极(22a)、(22b),在n型β‑Ga2O3基板(2)的与β‑Ga2O3单晶膜(3)相反侧的面上形成的漏电极(25),在β‑Ga2O3单晶膜(3)中形成的连接源电极(22a)、(22b)的n型接触区域(23a)、(23b),以及在β‑Ga2O3单晶膜(3)上介由栅极绝缘膜(26)形成的栅电极(21)。

Description

Ga2O3系半导体元件
技术领域
本发明涉及Ga2O3系半导体元件。
背景技术
作为现有的Ga2O3系半导体元件,已知有使用了形成在蓝宝石基板上的Ga2O3晶体膜的Ga2O3系半导体元件(例如,参照非专利文献1、2)。
现有技术文献
非专利文献
非专利文献1:K.Matsuzaki et al.Thin Solid Films496,2006,pp.37-41.
非专利文献2:K.Matsuzaki et al.Appl.Phys.Lett.88,092106,2006.
发明内容
然而,由于Ga2O3晶体和蓝宝石晶体的晶体结构完全不同,所以在蓝宝石基板上使Ga2O3晶体异质外延生长是非常困难的。因此,难以使用蓝宝石基板上的Ga2O3晶体膜形成高品质的Ga2O3系半导体元件。
因此,本发明的目的在于提供高品质的Ga2O3系半导体元件。
为了实现上述目的,本发明的一个方式提供[1]~[4]的Ga2O3系半导体元件。
[1]一种Ga2O3系半导体元件,包括:具有第1导电型的β-Ga2O3基板,在上述β-Ga2O3基板上直接或介由其它膜而形成的β-Ga2O3单晶膜,在上述β-Ga2O3单晶膜上形成的源电极,在上述β-Ga2O3基板的与上述β-Ga2O3单晶膜相反侧的面上形成的漏电极,在上述β-Ga2O3单晶 膜中形成的连接上述源电极的具有上述第1导电型的接触区域,在上述β-Ga2O3单晶膜上或在形成于上述β-Ga2O3单晶膜的槽内介由栅极绝缘膜形成的栅电极。
[2]根据上述[1]中记载的Ga2O3系半导体元件,其中,上述源电极包含第1源电极和第2源电极,上述栅电极介由上述栅极绝缘膜形成在上述β-Ga2O3单晶膜上的上述第1源电极与上述第2源电极之间的区域,上述β-Ga2O3单晶膜具有上述第1导电型,上述接触区域包含分别连接上述第1源电极和第2源电极的第1接触区域和第2接触区域,具有分别包围上述第1接触区域和第2接触区域的、与上述第1导电型不同的第2导电型或高电阻的第1主体区域和第2主体区域。
[3]根据上述[1]中记载的Ga2O3系半导体元件,其中,上述β-Ga2O3单晶膜介由具有上述第1导电型的其它β-Ga2O3单晶膜形成在上述β-Ga2O3基板上,上述β-Ga2O3单晶膜具有与上述第1导电型不同的第2导电型或不含有掺杂剂,上述栅电极介由上述栅极绝缘膜形成在上述槽内,上述接触区域包括分别位于上述栅电极的两侧的第1接触区域和第2接触区域。
[4]根据上述[1]~[3]中任一项记载的Ga2O3系半导体元件,其中,上述第1导电型和第2导电型分别为n型和p型。
根据本发明,能够提供高品质的Ga2O3系半导体元件。
附图说明
图1是第1实施方式涉及的Ga2O3系MISFET的截面图。
图2是简要地表示第1实施方式涉及的MBE装置的构成的构成图。
图3A是第1实施方式涉及的n型β-Ga2O3基板和n型β-Ga2O3单晶膜的截面图。
图3B是第1实施方式涉及的n型β-Ga2O3基板和n型β-Ga2O3单晶膜的截面图。
图4是第2实施方式涉及的Ga2O3系MISFET的截面图。
图5是第3实施方式涉及的Ga2O3系MISFET的截面图。
具体实施方式
根据本发明的实施方式,能够利用同质外延生长法形成高品质的β-Ga2O3系单晶膜,利用该高品质的β-Ga2O3系单晶膜形成高品质的Ga2O3系半导体元件。以下,对该实施方式的一个例子进行详细说明。
〔第1实施方式〕
在第1实施方式中,对作为Ga2O3系半导体元件的具有平面栅极结构的Ga2O3系MISFET(Metal Insulator Semiconductor Field Effect Transistor)进行说明。
(Ga2O3系半导体元件的构成)
图1是第1实施方式涉及的Ga2O3系MISFET20的截面图。Ga2O3系MISFET20包括:在n型β-Ga2O3基板2上形成的n型β-Ga2O3单晶膜3,在n型β-Ga2O3单晶膜3上形成的源电极22a、22b,在n型β-Ga2O3单晶膜3上的源电极22a、22b之间的区域介由栅极绝缘膜26形成的栅电极21,分别在n型β-Ga2O3单晶膜3中的源电极22a、22b的下方形成的n型接触区域23a、23b,分别包围接触区域23a、23b的p型主体区域24a、24b,在n型β-Ga2O3基板2的与n型β-Ga2O3单晶膜3相反侧的面上形成的漏电极25。
Ga2O3系MISFET20是源电极和漏电极分别设置在元件的上下的、电流在纵向流过的纵型半导体元件。如果对栅电极21施加阈值以上的电压,则在p型主体区域24a、24b的栅电极21下的区域形成通道,电流从源电极22a、22b流向漏电极25。
n型β-Ga2O3基板2含有Si、Ti、Zr、Hf、V、Nb、Ta、Mo、W、Ru、Rh、Ir、C、Sn、Ge、Pb、Mn、As、Sb、Bi、F、Cl、Br或I等n型掺杂剂。n型β-Ga2O3基板2例如具有100~600μm的厚度。另外,n型β-Ga2O3基板2例如含有5×1018~1×1020/cm3浓度的n型掺杂剂。
就n型β-Ga2O3基板2的主面而言,对晶面指数没有特别限定,优选是从(100)面仅旋转50°~90°的角度的面。即,优选在β-Ga2O3基 板2中,主面与(100)面所成的角θ(0<θ≤90°)为50°以上。作为从(100)面旋转50°~90°的面,例如存在(010)面、(001)面、(-201)面、(101)面以及(310)面。
n型β-Ga2O3基板2的主面是从(100)面仅旋转50°~90°的角度的面的情况下,在n型β-Ga2O3基板2上使β-Ga2O3系晶体外延生长时,能够有效抑制β-Ga2O3系晶体的原料从n型β-Ga2O3基板2再蒸发。具体而言,使β-Ga2O3系晶体在生长温度500℃生长时再蒸发的原料的比例为0%时,n型β-Ga2O3基板2的主面是从(100)面旋转50°~90°的面的情况下,能够将再蒸发的原料的比例抑制到40%以下。因此,能够将供给的原料的60%以上用于β-Ga2O3系晶体的形成,从β-Ga2O3系晶体的生长速度、制造成本的观点考虑而优选。
β-Ga2O3晶体具有单斜晶系的晶体结构,其典型的晶格常数为a=12.23、b=3.04、c=5.80、α=γ=90°、β=103.7°。在β-Ga2O3晶体中,以c轴为轴使(100)面旋转52.5°时与(310)面一致,旋转90°时与(010)面一致。另外,以b轴为轴使(100)面旋转53.8°时,通过旋转方向与(101)面或(-201)面一致,当使(100)面向使其旋转53.8°时(101)面表现的旋转方向旋转76.3°时与(001)面一致。
另外,n型β-Ga2O3基板2的主面也可以是从(010)面仅旋转37.5°以下的角度的面。此时,能够使n型β-Ga2O3基板2与i型β-Ga2O3单晶膜3的界面陡峭,并且能够高精度地控制i型β-Ga2O3单晶膜3的厚度。
n型β-Ga2O3单晶膜3是利用后述方法在n型β-Ga2O3基板2上形成的单晶膜。n型β-Ga2O3单晶膜3含有Sn、Ti、Zr、Hf、V、Nb、Ta、Mo、W、Ru、Rh、Ir、C、Si、Ge、Pb、Mn、As、Sb、Bi、F、Cl、Br、I等n型掺杂剂。n型β-Ga2O3单晶膜3的厚度例如为10~500nm。另外,n型β-Ga2O3单晶膜3例如含有1×1015~1×1019/cm3浓度的n型掺杂剂。
应予说明,可以在n型β-Ga2O3基板2与n型β-Ga2O3单晶膜3之间形成其它膜。作为该其它膜,例如,可形成n型掺杂剂的浓度比n型β-Ga2O3单晶膜3高、根据情况比n型β-Ga2O3基板2高的n型β-Ga2O3 单晶膜。此时,在n型β-Ga2O3基板2上通过同质外延生长形成其它膜,在其它膜上通过同质外延生长形成n型β-Ga2O3单晶膜3。
栅电极21、源电极22a、22b以及漏电极25例如由Au、Al、Ti、Sn、Ge、In、Ni、Co、Pt、W、Mo、Cr、Cu、Pb等金属、包含这些金属中的2种以上的合金或ITO等导电性化合物、导电性聚合物形成。作为导电性聚合物,可使用在聚噻吩衍生物(PEDOT:聚(3,4)-乙撑二氧噻吩)中掺杂聚苯乙烯磺酸(PSS)而成的导电性聚合物、在聚吡咯衍生物中掺杂TCNA而成的导电性聚合物等。另外,栅电极21可以具有由不同的2种金属构成的2层结构,例如Al/Ti、Au/Ni、Au/Co。
栅极绝缘膜26由SiO2、AlN、SiN、Al2O3、β-(AlxGa1-x2O3(0≤x≤1)等绝缘材料形成。其中,由于β-(AlxGa1-x2O3能够在β-Ga2O3晶体上作为单晶膜生长,所以能够形成界面态少的良好的半导体绝缘膜界面,栅极特性比使用其它绝缘膜时良好。
接触区域23a、23b是在n型β-Ga2O3单晶膜3中形成的n型掺杂剂的浓度高的区域,分别连接源电极22a、22b。接触区域23a、23b中含有的n型掺杂剂和n型β-Ga2O3单晶膜3中主要含有的n型掺杂剂可以相同,也可以不同。
主体区域24a、24b含有Mg、H、Li、Na、K、Rb、Cs、Fr、Be、Ca、Sr、Ba、Ra、Mn、Fe、Co、Ni、Pd、Cu、Ag、Au、Zn、Cd、Hg、Tl、Pb、N、P等p型掺杂剂。主体区域24a、24b是p型的区域、或通过电荷补偿具有i型那样的性质的高电阻区域。
(Ga2O3系MISFET的制造方法)
作为β-Ga2O3系单晶膜的制造方法,有PLD(Pulsed Laser Deposition)法、CVD(Chemical Vapor Deposition)法、溅射法、分子束外延(MBE;Molecular Beam Epitaxy)法等,但在本实施方式中,采用使用了MBE法的薄膜生长法。MBE法是在被称为束源炉的蒸发源中加热单体或化合物的固体,以通过加热生成的蒸气为分子束而供给到基板表面的晶体生长方法。
图2是表示β-Ga2O3系单晶膜的形成中使用的MBE装置的一个例 子的构成图。该MBE装置1具备:真空槽10,支撑在该真空槽10内以保持n型β-Ga2O3基板2的基板支架11,用于对保持于基板支架11的n型β-Ga2O3基板2进行加热的加热装置12,按构成薄膜的原子或分子设置的多个束源炉13(13a、13b),用于加热多个束源炉13的加热器14(14a、14b),向真空槽10内供给氧系气体的气体供给管15以及用于排出真空槽10内的空气的真空泵16。基板支架11可介由轴110利用未图示的马达旋转地构成。
第1束源炉13a中填充有Ga粉末等β-Ga2O3系单晶膜的Ga原料。该粉末的Ga的纯度优选为6N以上。第2束源炉13b中填充有作为供体掺杂的n型掺杂剂的原料的粉末。在第1束源炉13a和第2束源炉13b的开口部设有快门。
在基板支架11安装预先制作的n型β-Ga2O3基板2,在该n型β-Ga2O3基板2上一边添加n型掺杂剂一边使β-Ga2O3晶体同质外延生长,由此形成n型β-Ga2O3单晶膜3。
该n型β-Ga2O3基板2例如按如下顺序制作。首先,利用EFG法制作添加了Si等n型掺杂剂的n型β-Ga2O3单晶锭。应予说明,添加的元素不限于Si,例如,置换Ga位点时,可以使用Ti、Zr、Hf、V、Nb、Ta、Mo、W、Ru、Rh、Ir、C、Sn、Ge、Pb、Mn、As、Sb或Bi。另外,置换氧位点时,可以使用F、Cl、Br或I。添加Si时,在原料粉末中混合SiO2粉末。为了使n型β-Ga2O3基板2具有良好的导电性,可以添加0.05mol%以上的SiO2。n型β-Ga2O3单晶锭的供体浓度例如为5×1018~1×1020/cm3。另外,也可以利用FZ法制作n型β-Ga2O3单晶锭。将制成的锭以所希望的晶面指数为主面的方式切片加工成例如1mm左右的厚度而进行基板化。然后,在磨削研磨工序中加工成100~600μm左右的厚度。
接下来,将按上述顺序制作的n型β-Ga2O3基板2安装于MBE装置1的基板支架11。接下来,使真空泵16运转,将真空槽10内的气压减压至1×10-8Pa左右。然后,利用加热装置12加热n型β-Ga2O3基板2。应予说明,n型β-Ga2O3基板2的加热通过加热装置12的石墨加热器等发热源的辐射热介由基板支架11热传导到n型β-Ga2O3基板2来进行。
n型β-Ga2O3基板2被加热到规定的温度后,从气体供给管15向真空槽10内供给氧系气体。
将氧系气体供给到真空槽10内后,经过真空槽10内的气压稳定所需要的时间(例如5分钟)后,边使基板支架11旋转边分别利用第1加热器14a和第2加热器14b加热第1束源炉13a和第2束源炉13b,使Ga和n型掺杂剂蒸发,作为分子束照射到n型β-Ga2O3基板2的表面。
例如,第1束源炉13a被加热到900℃,Ga蒸气的束等效压力(BEP;Beam EquivalentPressure)为1×10-4Pa。
这样,在n型β-Ga2O3基板2的主面上边添加Sn等n型掺杂剂边使β-Ga2O3晶体同质外延生长,形成n型β-Ga2O3单晶膜3。β-Ga2O3晶体的生长温度例如为700℃。应予说明,作为Sn以外的n型掺杂剂,置换Ga位点时,可以使用Ti、Zr、Hf、V、Nb、Ta、Mo、W、Ru、Rh、Ir、C、Si、Ge、Pb、Mn、As、Sb、Bi等,置换氧位点时,可以使用F、Cl、Br、I等。n型掺杂剂的添加浓度例如从1×1015~1×1019/cm3的范围选择。
应予说明,n型β-Ga2O3单晶膜3也可以利用PLD(Pulsed Laser Deposition)法、CVD(Chemical Vapor Deposition)法等形成。
图3A和图3B是本实施方式涉及的n型β-Ga2O3单晶膜3的截面图。n型β-Ga2O3单晶膜3在n型β-Ga2O3基板2的主面2a上利用上述MBE法形成。
图3A表示使β-Ga2O3晶体同质外延生长期间,通过连续添加n型掺杂剂而形成的n型β-Ga2O3单晶膜3。
n型β-Ga2O3单晶膜3的供体浓度例如为1×1015~1×1019/cm3,特别优选为1×1015~1×1018/cm3。该供体浓度可以通过成膜时的第2束源炉13b的温度进行控制。
图3B表示使β-Ga2O3晶体同质外延生长期间,通过以一定周期间歇性地添加n型掺杂剂而形成的n型β-Ga2O3单晶膜3。此时,使用Sn 作为n型掺杂剂。
具体而言,通过操作第2束源炉13b的快门,从而从第2束源炉13b间歇地产生Sn蒸气,间歇地向β-Ga2O3晶体添加Sn。Sn的添加优选间歇实施2次以上。此时,即使不实施退火处理,也能够对n型β-Ga2O3单晶膜3赋予与Sn添加量相应的导电性。
由于图3B的n型β-Ga2O3单晶膜3是在成膜时间歇地添加Sn,所以具有在不添加Sn的时间生长的第1层4(4a、4b、4c)和在添加Sn的时间生长的第2层5(5a、5b、5c)。
第2层5的Sn浓度可以通过成膜时的第2束源炉13b的温度进行控制。第1层4理想的是不含有Sn而仅含有从第2层5扩散的微量的Sn。因此,第1层4的Sn浓度比第2层5的Sn浓度低。n型β-Ga2O3单晶膜3中的平均Sn浓度例如为1×1014~3×1018/cm3,特别优选为1×1015~1×1018/cm3
例如,第1层4a、4b、4c的厚度为3~20nm,第2层5a、5b、5c的厚度为0.2~1nm。第1层4a、4b、4c的厚度大于20nm时,第2层5a、5b、5c的间隔过大而n型的效果可能不明显。另一方面,第2层5a、5b、5c的厚度大于1nm时,有可能Sn从第2层5a、5b、5c向第1层4a、4b、4c的扩散量过多而间歇的n型的效果不明显。
应予说明,n型β-Ga2O3单晶膜3的最下层(与n型β-Ga2O3基板2的主面2a接触的层)可以是第1层4,也可以是第2层5。另外,第1层4和第2层5的层数不受限定。
形成n型β-Ga2O3单晶膜3后,通过向n型β-Ga2O3单晶膜3离子注入Mg等p型掺杂剂,从而形成主体区域24a、24b。应予说明,注入的离子不限于Mg,例如,置换Ga位点时,可以使用H、Li、Na、K、Rb、Cs、Fr、Be、Ca、Sr、Ba、Ra、Mn、Fe、Co、Ni、Pd、Cu、Ag、Au、Zn、Cd、Hg、Tl或Pb。另外,置换氧位点时,可以使用N或P。p型掺杂剂注入后进行退火处理,使注入所致的损伤恢复。
应予说明,主体区域24a、24b的形成方法不限于离子注入,也可以利用热扩散法。此时,通过在n型β-Ga2O3单晶膜3的想要形成主体 区域24a、24b的区域上接触Mg等金属,实施热处理,从而使Mg等掺杂剂在n型β-Ga2O3单晶膜3中扩散。
接下来,通过在n型β-Ga2O3单晶膜3的主体区域24a、24b内离子注入Sn等n型掺杂剂,从而形成接触区域23a、23b。应予说明,注入的离子不限于Sn,例如,置换Ga位点时,可以使用Ti、ZR、Hf、V、Nb、Ta、Mo、W、Ru、Rh、Ir、C、Si、Ge、Pb、Mn、As、Sb或Bi。另外,置换氧位点时,可以使用F、Cl、Br或I。注入浓度例如为1×1018/cm3~5×1019/cm3。注入深度为30nm以上即可。注入后,将注入区域的表面用氢氟酸蚀刻10nm左右。也可以使用硫酸、硝酸、盐酸等进行。然后,在氮环境下实施800℃以上30min以上的退火处理,使注入损伤恢复。在氧环境下进行退火处理时,使处理温度为800℃~950℃,处理时间为30min以上即可。
应予说明,接触区域23a、23b的形成方法不限于离子注入,也可以利用热扩散法。此时,通过在n型β-Ga2O3单晶膜3的想要形成接触区域23a、23b的区域上接触Sn等金属,实施热处理,从而使Sn等掺杂剂在n型β-Ga2O3单晶膜3中扩散。
然后,形成栅极绝缘膜26、栅电极21,源电极22a、22b以及漏电极25。
〔第2实施方式〕
在第2实施方式中,对作为Ga2O3系半导体元件的具有沟槽栅极结构的Ga2O3系MISFET进行说明。
(Ga2O3系MISFET的构成)
图4是第2实施方式涉及的Ga2O3系MISFET30的截面图。Ga2O3系MISFET30包含:在n型β-Ga2O3基板2上形成的n型β-Ga2O3单晶膜3,在n型β-Ga2O3单晶膜3上形成的无掺杂β-Ga2O3单晶膜6,被栅极绝缘膜36覆盖并埋入无掺杂β-Ga2O3单晶膜6中的栅电极31,分别在无掺杂β-Ga2O3单晶膜6中的栅电极31的两侧形成的接触区域33a、33b,在无掺杂β-Ga2O3单晶膜6上形成的与接触区域33a、33b连接的源电极32,在n型β-Ga2O3基板2的与n型β-Ga2O3单晶膜3相反侧的面上形成的漏电极35。
Ga2O3系MISFET30是源电极和漏电极分别设置在元件的上下的、电流在纵向流动的纵型半导体元件。如果对栅电极31施加阈值以上的电压,则在无掺杂β-Ga2O3单晶膜6中的栅电极31的两侧的区域形成通道,电流从源电极32流向漏电极35。
栅电极31、栅极绝缘膜36、源电极32、漏电极35分别由与第1实施方式的栅电极21、栅极绝缘膜26、源电极22(22a、22b)、漏电极25相同的材料形成。
无掺杂β-Ga2O3单晶膜6是不含有掺杂剂的高电阻的β-Ga2O3单晶膜。有时因晶体缺陷等具有弱导电性,但由于电阻足够高,所以在不对栅电极31施加电压的情况下电流不会从源电极32流向漏电极35。无掺杂β-Ga2O3单晶膜6例如具有0.1~100μm的厚度。
接触区域33(33a、33b)含有与第1实施方式的接触区域23(23a、23b)相同的n型掺杂剂。
(Ga2O3系MISFET的制造方法)
首先,经过与第1实施方式相同的工序形成n型β-Ga2O3基板2和n型β-Ga2O3单晶膜3。
接下来,利用MBE法,不添加掺杂剂地在n型β-Ga2O3单晶膜3上使β-Ga2O3单晶生长,形成无掺杂β-Ga2O3单晶膜6。无掺杂β-Ga2O3单晶膜6的具体形成方法例如是从n型β-Ga2O3单晶膜3的形成方法中省略了注入n型掺杂剂的工序的方法。
接下来,通过在无掺杂β-Ga2O3单晶膜6内离子注入Sn等n型掺杂剂,从而形成接触区域。应予说明,注入的离子不限于Sn,例如,置换Ga位点时,可以使用Ti、ZR、Hf、V、Nb、Ta、Mo、W、Ru、Rh、Ir、C、Si、Ge、Pb、Mn、As、Sb或Bi。另外,置换氧位点时,可以使用F、Cl、Br或I。注入浓度例如为1×1018/cm3~5×1019/cm3。注入深度为30nm以上即可。注入后,将注入区域的表面用氢氟酸蚀刻10nm左右。也可以使用硫酸、硝酸、盐酸等进行。然后,在氮环境下 实施800℃以上30min以上的退火处理,使注入损伤恢复。在氧环境下进行退火处理时,使处理温度为800℃~950℃,处理时间为30min以上即可。
应予说明,接触区域的形成方法不限于离子注入,也可以利用热扩散法。此时,通过在无掺杂β-Ga2O3单晶膜6的想要形成接触区域的区域上接触Sn等金属,实施热处理,从而使Sn等掺杂剂在无掺杂β-Ga2O3单晶膜6中扩散。
接下来,对包括无掺杂β-Ga2O3单晶膜6的表面的接触区域的区域实施干式蚀刻而形成槽,在该槽中埋入被栅极绝缘膜36覆盖的栅电极31。在此,通过形成槽而将接触区域划分为接触区域33a、33b。
具体而言,例如,利用堆积法和蚀刻加工在槽的底面和侧面上形成栅极绝缘膜36,在其上利用堆积法和蚀刻加工形成栅电极31,最后利用堆积法和蚀刻加工形成栅电极31上的栅极绝缘膜36。
然后,形成源电极32和漏电极35。
〔第3实施方式〕
第3实施方式是形成p型β-Ga2O3单晶膜来代替无掺杂β-Ga2O3单晶膜6,在这方面与第2实施方式不同。对于与第2实施方式相同的方面,省略或简化说明。
(Ga2O3系MISFET的构成)
图5是第3实施方式涉及的Ga2O3系MISFET40的截面图。Ga2O3系MISFET40包含:在n型β-Ga2O3基板2上形成的n型β-Ga2O3单晶膜3,在n型β-Ga2O3单晶膜3上形成的p型β-Ga2O3单晶膜7,被栅极绝缘膜覆盖并埋入p型β-Ga2O3单晶膜7中的栅电极31,分别在p型β-Ga2O3单晶膜7中的栅电极31的两侧形成的接触区域33a、33b,在p型β-Ga2O3单晶膜7上形成的与接触区域33a、33b连接的源电极32,在n型β-Ga2O3基板2的与n型β-Ga2O3单晶膜3相反侧的面上形成的漏电极35。
Ga2O3系MISFET40是源电极和漏电极分别设置在元件的上下的、 电流在纵向流动的纵型半导体元件。如果对栅电极31施加阈值以上的电压,则在p型β-Ga2O3单晶膜7中的栅电极31的两侧的区域形成通道,电流从源电极32流向漏电极35。
p型β-Ga2O3单晶膜7含有Mg、H、Li、Na、K、Rb、Cs、Fr、Be、Ca、Sr、Ba、Ra、Mn、Fe、Co、Ni、Pd、Cu、Ag、Au、Zn、Cd、Hg、Tl、Pb、N、P等p型掺杂剂。p型β-Ga2O3单晶膜7例如具有0.1~100μm的厚度。另外,p型β-Ga2O3单晶膜7例如含有1×1015~1×1019/cm3浓度的p型掺杂剂。
由于Ga2O3系MISFET40使用作为p型层的p型β-Ga2O3单晶膜7作为通道层,所以阈值电压比第2实施方式的Ga2O3系MISFET30高。
p型β-Ga2O3单晶膜7是通过在n型β-Ga2O3单晶膜3上边添加Mg等p型掺杂剂边使β-Ga2O3单晶生长而形成的。应予说明,添加的离子不限于Mg,例如,置换Ga位点时,可以使用H、Li、Na、K、Rb、Cs、Fr、Be、Ca、Sr、Ba、Ra、Mn、Fe、Co、Ni、Pd、Cu、Ag、Au、Zn、Cd、Hg、Tl或Pb。另外,置换氧位点时,可以使用N或P。
(实施方式的效果)
根据本实施方式,能够使用同质外延生长法形成高品质的β-Ga2O3单晶膜,能使用该β-Ga2O3单晶膜形成高品质的Ga2O3系半导体元件。另外,由于这些Ga2O3系半导体元件使用高品质的β-Ga2O3单晶膜作为通道层,所以具有优异的工作性能。
应予说明,本发明不限于上述实施方式,可以在不脱离发明的主旨的范围内实施各种变形。例如,在上述实施方式中,以Ga2O3系半导体元件为n型半导体元件进行了说明,但也可以是p型半导体元件。此时,各部件的导电型(n型或p型)全部相反。
另外,可以在不脱离发明的主旨的范围内任意组合上述实施方式的构成要素。
以上,说明了本发明的实施方式,但上述中记载的实施方式不限定专利申请要求保护的范围涉及的发明。另外,应该注意实施方式中说明 的特征的所有组合未必是用于解决发明课题的手段所必需的。
产业上的可利用性
本发明提供高品质的Ga2O3系半导体元件。
符号说明
1…MBE装置,2…n型β-Ga2O3基板,3…n型β-Ga2O3单晶膜,6…无掺杂β-Ga2O3单晶膜,7…p型β-Ga2O3单晶膜,20、30、40…Ga2O3系MISFET,21、31…栅电极,22a、22b、32…源电极,25、35…漏电极,26、36…栅极绝缘膜,23a、23b、33a、33b…接触区域,24a、24b…主体区域。

Claims (3)

1.一种Ga2O3系场效应晶体管(FET),包括:
具有第1导电型的β-Ga2O3基板,
位于所述β-Ga2O3基板上的、具有所述第1导电型的β-Ga2O3单晶膜,
位于所述β-Ga2O3单晶膜上的第1源电极和第2源电极,
位于所述β-Ga2O3基板的与所述β-Ga2O3单晶膜位于的面相反侧的面上的漏电极,以及
介由栅极绝缘膜位于所述β-Ga2O3单晶膜上的所述第1源电极与所述第2源电极之间的区域的栅电极,
所述β-Ga2O3单晶膜包含:
分别位于所述第1源电极和所述第2源电极下的第1接触区域和第2接触区域,以及
分别包围所述第1接触区域和所述第2接触区域的、具有与所述第1导电型不同的第2导电型的第1主体区域和第2主体区域,
所述β-Ga2O3基板以从(100)面仅旋转50°~90°的角度的面为主面。
2.一种Ga2O3系场效应晶体管(FET),包含:
具有第1导电型的β-Ga2O3基板,
位于所述β-Ga2O3基板上的、具有与所述第1导电型不同的第2导电型的β-Ga2O3单晶膜,
位于所述β-Ga2O3单晶膜上的源电极,
被栅极绝缘膜覆盖并埋入所述β-Ga2O3单晶膜中的栅电极,
位于所述β-Ga2O3基板的与所述β-Ga2O3单晶膜位于的面相反侧的面上的漏电极,以及
位于所述β-Ga2O3单晶膜中的所述栅电极的两侧的、连接所述源电极的具有第1导电型的接触区域,
所述β-Ga2O3基板以从(100)面仅旋转50°~90°的角度的面为主面。
3.根据权利要求1或2所述的Ga2O3系场效应晶体管(FET),其中,所述第1导电型和第2导电型分别为n型和p型。
CN201280043335.0A 2011-09-08 2012-09-07 Ga2O3系半导体元件 Active CN103765593B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011196440 2011-09-08
JP2011-196440 2011-09-08
PCT/JP2012/072902 WO2013035845A1 (ja) 2011-09-08 2012-09-07 Ga2O3系半導体素子

Publications (2)

Publication Number Publication Date
CN103765593A CN103765593A (zh) 2014-04-30
CN103765593B true CN103765593B (zh) 2017-06-09

Family

ID=47832284

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201280043335.0A Active CN103765593B (zh) 2011-09-08 2012-09-07 Ga2O3系半导体元件

Country Status (5)

Country Link
US (3) US9461124B2 (zh)
EP (1) EP2765610B1 (zh)
JP (2) JP6066210B2 (zh)
CN (1) CN103765593B (zh)
WO (1) WO2013035845A1 (zh)

Families Citing this family (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013035465A1 (ja) 2011-09-08 2013-03-14 株式会社タムラ製作所 Ga2O3系単結晶体のドナー濃度制御方法
JP5788925B2 (ja) 2013-04-04 2015-10-07 株式会社タムラ製作所 β−Ga2O3系単結晶の成長方法
JP6543869B2 (ja) * 2013-06-18 2019-07-17 株式会社タムラ製作所 半導体素子及びその製造方法
JP5984069B2 (ja) * 2013-09-30 2016-09-06 株式会社タムラ製作所 β−Ga2O3系単結晶膜の成長方法、及び結晶積層構造体
JP6601738B2 (ja) * 2013-09-30 2019-11-06 株式会社タムラ製作所 結晶積層構造体、及びその製造方法
JP5892495B2 (ja) * 2013-12-24 2016-03-23 株式会社タムラ製作所 Ga2O3系結晶膜の成膜方法、及び結晶積層構造体
US9590050B2 (en) * 2014-05-08 2017-03-07 Flosfia, Inc. Crystalline multilayer structure and semiconductor device
JP6253150B2 (ja) * 2014-05-09 2017-12-27 株式会社タムラ製作所 エピタキシャルウエハ及びその製造方法
JP5749839B1 (ja) * 2014-06-30 2015-07-15 株式会社タムラ製作所 β−Ga2O3系単結晶基板
CN110804728A (zh) * 2014-07-22 2020-02-18 株式会社Flosfia 结晶性半导体膜和板状体以及半导体装置
JP2016031953A (ja) * 2014-07-25 2016-03-07 株式会社タムラ製作所 半導体素子及びその製造方法、半導体基板、並びに結晶積層構造体
JP6344718B2 (ja) * 2014-08-06 2018-06-20 株式会社タムラ製作所 結晶積層構造体及び半導体素子
JP6013410B2 (ja) * 2014-08-07 2016-10-25 株式会社タムラ製作所 Ga2O3系単結晶基板
JP5828568B1 (ja) 2014-08-29 2015-12-09 株式会社タムラ製作所 半導体素子及びその製造方法
JP6515318B2 (ja) * 2014-09-25 2019-05-22 株式会社Flosfia 結晶性積層構造体の製造方法および半導体装置
JP6758569B2 (ja) * 2015-03-20 2020-09-23 株式会社タムラ製作所 高耐圧ショットキーバリアダイオード
JP6376600B2 (ja) 2015-03-20 2018-08-22 株式会社タムラ製作所 結晶積層構造体の製造方法
JP6845397B2 (ja) * 2016-04-28 2021-03-17 株式会社タムラ製作所 トレンチmos型ショットキーダイオード
WO2018045175A1 (en) * 2016-09-01 2018-03-08 Hrl Laboratories, Llc Normally-off gallium oxide based vertical transistors with p-type algan blocking layers
CN106449419A (zh) * 2016-12-08 2017-02-22 西安电子科技大学 基于Ga2O3材料的U型栅MOSFET及其制备方法
CN106898644B (zh) * 2017-01-23 2019-07-30 西安电子科技大学 高击穿电压场效应晶体管及其制作方法
CN108342775B (zh) * 2017-01-25 2024-04-12 中国科学院上海光学精密机械研究所 一种钽掺杂β氧化镓晶态材料及其制备方法和应用
CN110325671A (zh) * 2017-01-25 2019-10-11 中国科学院上海光学精密机械研究所 掺杂氧化镓晶态材料及其制备方法和应用
CN106816366A (zh) * 2017-02-16 2017-06-09 大连理工大学 一种锡掺杂n型氧化镓制备方法
JP7116409B2 (ja) * 2017-02-27 2022-08-10 株式会社タムラ製作所 トレンチmos型ショットキーダイオード
JP7008293B2 (ja) * 2017-04-27 2022-01-25 国立研究開発法人情報通信研究機構 Ga2O3系半導体素子
US10777644B2 (en) * 2017-04-27 2020-09-15 The Government Of The United States Of America, As Represented By The Secretary Of The Navy Heterojunction devices and methods for fabricating the same
CN107369707B (zh) * 2017-06-07 2020-03-24 西安电子科技大学 基于4H-SiC衬底异质结自旋场效应晶体管及其制造方法
CN107658337B (zh) * 2017-06-07 2020-09-08 西安电子科技大学 高电子迁移率自旋场效应晶体管及其制备方法
CN107359127B (zh) * 2017-06-07 2020-03-24 西安电子科技大学 蓝宝石衬底的Fe掺杂自旋场效应晶体管及其制造方法
CN107359122B (zh) * 2017-06-07 2020-09-08 西安电子科技大学 Mn掺杂异质结自旋场效应晶体管的制备方法
WO2019003861A1 (ja) 2017-06-29 2019-01-03 三菱電機株式会社 酸化物半導体装置、および、酸化物半導体装置の製造方法
JP7061747B2 (ja) 2017-07-10 2022-05-02 株式会社タムラ製作所 半導体基板、半導体素子、及び半導体基板の製造方法
CN107481939B (zh) * 2017-07-20 2021-06-15 中国电子科技集团公司第十三研究所 帽层结构氧化镓场效应晶体管的制备方法
JP7037142B2 (ja) * 2017-08-10 2022-03-16 株式会社タムラ製作所 ダイオード
JP7179276B2 (ja) 2017-09-29 2022-11-29 株式会社タムラ製作所 電界効果トランジスタ
JP6933339B2 (ja) * 2017-10-18 2021-09-08 矢崎総業株式会社 半導体装置および半導体ウェーハ
CN110634938A (zh) * 2018-06-22 2019-12-31 中国科学院苏州纳米技术与纳米仿生研究所 氧化镓垂直结构半导体电子器件及其制作方法
US11482600B1 (en) 2019-09-05 2022-10-25 United States of America as represented by Wright-Patterson the Secretary of the Air Force Alignment-tolerant gallium oxide device
JP7453618B2 (ja) 2020-03-19 2024-03-21 株式会社Flosfia 通電機構およびその通電方法
CN111415979A (zh) * 2020-02-28 2020-07-14 深圳第三代半导体研究院 一种垂直异质p-n结结构器件及其制备方法
JP7238847B2 (ja) * 2020-04-16 2023-03-14 トヨタ自動車株式会社 半導体素子の製造方法
US11624126B2 (en) 2020-06-16 2023-04-11 Ohio State Innovation Foundation Deposition of single phase beta-(AlxGa1-x)2O3 thin films with 0.28< =x<=0.7 on beta Ga2O3(100) or (−201) substrates by chemical vapor deposition
CN111785776B (zh) * 2020-07-16 2022-06-03 西安电子科技大学 垂直结构Ga2O3金属氧化物半导体场效应晶体管的制备方法
WO2022030648A2 (ja) * 2020-08-07 2022-02-10 株式会社Flosfia p型酸化物半導体及びp型酸化物半導体を含む半導体装置
KR102201924B1 (ko) * 2020-08-13 2021-01-11 한국세라믹기술원 도펀트 활성화 기술을 이용한 전력반도체용 갈륨옥사이드 박막 제조 방법
JP7477407B2 (ja) 2020-09-17 2024-05-01 トヨタ自動車株式会社 酸化ガリウム系半導体の製造方法
KR102669198B1 (ko) * 2021-04-13 2024-05-27 한국전자통신연구원 전력반도체 소자
CN113643960B (zh) * 2021-06-07 2024-03-19 西安电子科技大学 一种基于脉冲法的β-Ga2O3薄膜及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1754013A (zh) * 2003-02-24 2006-03-29 学校法人早稻田大学 β-Ga2O3单晶生长方法、薄膜单晶生长方法、Ga2O3发光器件及其制造方法
CN1833310A (zh) * 2003-08-08 2006-09-13 株式会社光波 半导体层
CN101091258A (zh) * 2004-10-08 2007-12-19 飞兆半导体公司 具有减小的密勒电容的mos栅控晶体管
JP2009111004A (ja) * 2007-10-26 2009-05-21 Sumitomo Electric Ind Ltd 絶縁ゲート型電界効果トランジスタおよびその製造方法

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07176640A (ja) 1993-10-26 1995-07-14 Fuji Electric Co Ltd 半導体装置の製造方法
JPH08204179A (ja) * 1995-01-26 1996-08-09 Fuji Electric Co Ltd 炭化ケイ素トレンチmosfet
JP3502531B2 (ja) * 1997-08-28 2004-03-02 株式会社ルネサステクノロジ 半導体装置の製造方法
US6686616B1 (en) 2000-05-10 2004-02-03 Cree, Inc. Silicon carbide metal-semiconductor field effect transistors
CN1173411C (zh) * 2000-11-21 2004-10-27 松下电器产业株式会社 半导体器件及其制造方法
US6916745B2 (en) * 2003-05-20 2005-07-12 Fairchild Semiconductor Corporation Structure and method for forming a trench MOSFET having self-aligned features
US6756320B2 (en) 2002-01-18 2004-06-29 Freescale Semiconductor, Inc. Method of forming article comprising an oxide layer on a GaAs-based semiconductor structure
US6940110B2 (en) 2002-11-29 2005-09-06 Matsushita Electric Industrial Co., Ltd. SiC-MISFET and method for fabricating the same
JP2004214607A (ja) 2002-12-19 2004-07-29 Renesas Technology Corp 半導体装置及びその製造方法
CA2517024C (en) 2003-02-24 2009-12-01 Waseda University .beta.-ga2o3 single crystal growing method, thin-film single crystal growing method, ga2o3 light-emitting device, and its manufacturing method
US7638841B2 (en) * 2003-05-20 2009-12-29 Fairchild Semiconductor Corporation Power semiconductor devices and methods of manufacture
JP4066946B2 (ja) * 2003-12-18 2008-03-26 日産自動車株式会社 半導体装置
JP2005235831A (ja) * 2004-02-17 2005-09-02 Toyota Central Res & Dev Lab Inc p型半導体及び半導体デバイス
JP4956904B2 (ja) * 2005-03-25 2012-06-20 富士電機株式会社 炭化珪素半導体装置とその製造方法
JP4611103B2 (ja) * 2005-05-09 2011-01-12 株式会社光波 β−Ga2O3結晶の製造方法
US7554137B2 (en) * 2005-10-25 2009-06-30 Infineon Technologies Austria Ag Power semiconductor component with charge compensation structure and method for the fabrication thereof
JP5145694B2 (ja) * 2006-11-07 2013-02-20 富士電機株式会社 SiC半導体縦型MOSFETの製造方法。
US7541260B2 (en) * 2007-02-21 2009-06-02 Infineon Technologies Austria Ag Trench diffusion isolation in semiconductor devices
JP2008303119A (ja) 2007-06-08 2008-12-18 Nippon Light Metal Co Ltd 高機能性Ga2O3単結晶膜及びその製造方法
JP5339698B2 (ja) 2007-08-20 2013-11-13 新日本無線株式会社 半導体装置の製造方法
JP2009064970A (ja) 2007-09-06 2009-03-26 Toshiba Corp 半導体装置
JP5103683B2 (ja) 2007-11-21 2012-12-19 日本軽金属株式会社 酸化ガリウム基板用電極の製造方法及びそれにより製造される酸化ガリウム基板用電極
JP2009126764A (ja) * 2007-11-27 2009-06-11 Nippon Light Metal Co Ltd γ−Ga2O3の製造方法及びγ−Ga2O3
JP5292968B2 (ja) 2008-07-23 2013-09-18 住友電気工業株式会社 炭化珪素半導体装置の製造方法および炭化珪素半導体装置
JP2010219130A (ja) * 2009-03-13 2010-09-30 Sumitomo Electric Ind Ltd 半導体装置およびその製造方法
US8525257B2 (en) 2009-11-18 2013-09-03 Micrel, Inc. LDMOS transistor with asymmetric spacer as gate

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1754013A (zh) * 2003-02-24 2006-03-29 学校法人早稻田大学 β-Ga2O3单晶生长方法、薄膜单晶生长方法、Ga2O3发光器件及其制造方法
CN1833310A (zh) * 2003-08-08 2006-09-13 株式会社光波 半导体层
CN101091258A (zh) * 2004-10-08 2007-12-19 飞兆半导体公司 具有减小的密勒电容的mos栅控晶体管
JP2009111004A (ja) * 2007-10-26 2009-05-21 Sumitomo Electric Ind Ltd 絶縁ゲート型電界効果トランジスタおよびその製造方法

Also Published As

Publication number Publication date
EP2765610B1 (en) 2018-12-26
JP6108366B2 (ja) 2017-04-05
US20160365418A1 (en) 2016-12-15
JP2016015503A (ja) 2016-01-28
EP2765610A1 (en) 2014-08-13
CN103765593A (zh) 2014-04-30
US20140217405A1 (en) 2014-08-07
US20180350967A1 (en) 2018-12-06
JPWO2013035845A1 (ja) 2015-03-23
US9461124B2 (en) 2016-10-04
JP6066210B2 (ja) 2017-01-25
WO2013035845A1 (ja) 2013-03-14
EP2765610A4 (en) 2015-05-06

Similar Documents

Publication Publication Date Title
CN103765593B (zh) Ga2O3系半导体元件
CN110010670A (zh) Ga2O3系MISFET和Ga2O3系MESFET
JP6142358B2 (ja) Ga2O3系半導体素子
JP5948581B2 (ja) Ga2O3系半導体素子
JP5975466B2 (ja) Ga2O3系半導体素子
CN103781948B (zh) 晶体层叠结构体及其制造方法
Seok et al. Field-effect device using quasi-two-dimensional electron gas in mass-producible atomic-layer-deposited Al2O3/TiO2 ultrathin (< 10 nm) film heterostructures
JP5828568B1 (ja) 半導体素子及びその製造方法
US20150207067A1 (en) Metal oxide structures, devices &amp; fabrication methods
CN102386246B (zh) 一种p型导电氧化锌薄膜材料及制备方法
WO2013035841A1 (ja) Ga2O3系HEMT
JP2012186324A (ja) 半導体装置
TWI287295B (en) Method of forming a raised source/drain and a semiconductor device employing the same
JP2009266871A (ja) 炭化珪素半導体装置およびその製造方法
Shao et al. CdS Nanoribbon‐Based Resistive Switches with Ultrawidely Tunable Power by Surface Charge Transfer Doping
JP5802492B2 (ja) 半導体素子及びその製造方法
CN109659363A (zh) 一种氮化镓hemt结构低欧姆接触结构的制备方法
JP6216978B2 (ja) Ga2O3系半導体素子

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant