WO2018101278A1 - 酸化物又は酸窒化物絶縁体膜形成用塗布液、酸化物又は酸窒化物絶縁体膜、電界効果型トランジスタ、及びそれらの製造方法 - Google Patents

酸化物又は酸窒化物絶縁体膜形成用塗布液、酸化物又は酸窒化物絶縁体膜、電界効果型トランジスタ、及びそれらの製造方法 Download PDF

Info

Publication number
WO2018101278A1
WO2018101278A1 PCT/JP2017/042686 JP2017042686W WO2018101278A1 WO 2018101278 A1 WO2018101278 A1 WO 2018101278A1 JP 2017042686 W JP2017042686 W JP 2017042686W WO 2018101278 A1 WO2018101278 A1 WO 2018101278A1
Authority
WO
WIPO (PCT)
Prior art keywords
forming
oxide
insulator film
insulating layer
oxynitride insulator
Prior art date
Application number
PCT/JP2017/042686
Other languages
English (en)
French (fr)
Inventor
植田 尚之
中村 有希
由希子 安部
真二 松本
雄司 曽根
遼一 早乙女
定憲 新江
嶺秀 草柳
安藤 友一
Original Assignee
株式会社リコー
植田 尚之
中村 有希
由希子 安部
真二 松本
雄司 曽根
遼一 早乙女
定憲 新江
嶺秀 草柳
安藤 友一
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社リコー, 植田 尚之, 中村 有希, 由希子 安部, 真二 松本, 雄司 曽根, 遼一 早乙女, 定憲 新江, 嶺秀 草柳, 安藤 友一 filed Critical 株式会社リコー
Priority to JP2018554166A priority Critical patent/JP6844624B2/ja
Priority to KR1020197018479A priority patent/KR102260807B1/ko
Priority to EP17877265.3A priority patent/EP3550595B1/en
Priority to CN201780073946.2A priority patent/CN110024089B/zh
Publication of WO2018101278A1 publication Critical patent/WO2018101278A1/ja
Priority to US16/425,446 priority patent/US11049951B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/51Insulating materials associated therewith
    • H01L29/518Insulating materials associated therewith the insulating material containing nitrogen, e.g. nitride, oxynitride, nitrogen-doped material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02172Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02172Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
    • H01L21/02175Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal
    • H01L21/02194Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal the material containing more than one metal element
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D1/00Coating compositions, e.g. paints, varnishes or lacquers, based on inorganic substances
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02126Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material containing Si, O, and at least one of H, N, C, F, or other non-metal elements, e.g. SiOC, SiOC:H or SiONC
    • H01L21/0214Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material containing Si, O, and at least one of H, N, C, F, or other non-metal elements, e.g. SiOC, SiOC:H or SiONC the material being a silicon oxynitride, e.g. SiON or SiON:H
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02164Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon oxide, e.g. SiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02282Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process liquid deposition, e.g. spin-coating, sol-gel techniques, spray coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02282Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process liquid deposition, e.g. spin-coating, sol-gel techniques, spray coating
    • H01L21/02288Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process liquid deposition, e.g. spin-coating, sol-gel techniques, spray coating printing, e.g. ink-jet printing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02299Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer pre-treatment
    • H01L21/02307Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer pre-treatment treatment by exposure to a liquid
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02469Group 12/16 materials
    • H01L21/02472Oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/0254Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02551Group 12/16 materials
    • H01L21/02554Oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02623Liquid deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • H01L21/28017Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
    • H01L21/28158Making the insulator
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • H01L21/28017Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
    • H01L21/28158Making the insulator
    • H01L21/28167Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/314Inorganic layers
    • H01L21/318Inorganic layers composed of nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66742Thin film unipolar transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78606Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device
    • H01L29/78618Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device characterised by the drain or the source properties, e.g. the doping structure, the composition, the sectional shape or the contact structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/7869Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising an oxide semiconductor material, e.g. zinc oxide, copper aluminium oxide, cadmium stannate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78696Thin film transistors, i.e. transistors with a channel being at least partly a thin film characterised by the structure of the channel, e.g. multichannel, transverse or longitudinal shape, length or width, doping structure, or the overlap or alignment between the channel and the gate, the source or the drain, or the contacting structure of the channel

Definitions

  • the present invention relates to a coating solution for forming an oxide or oxynitride insulator film, an oxide or oxynitride insulator film, a field effect transistor, and a method for manufacturing the same.
  • a liquid crystal display (LCD) or an organic EL display using an active matrix thin film transistor (AM-TFT) as a backplane has become the mainstream of flat panel displays.
  • Semiconductors used in TFTs can be broadly classified into three types: amorphous silicon (a-Si), low-temperature polysilicon (LTPS), and In—Ga—Zn—O (IGZO) -based oxide semiconductors.
  • a-Si amorphous silicon
  • LTPS low-temperature polysilicon
  • IGZO In—Ga—Zn—O
  • SiO 2 , SiON, or SiN silicon-based materials are generally limited (see, for example, Non-Patent Document 1).
  • a vacuum process such as chemical vapor deposition (CVD) or atomic layer deposition (ALD) is generally used.
  • CVD chemical vapor deposition
  • ALD atomic layer deposition
  • these vacuum processes require a complicated and expensive apparatus and safety measures for the raw material gas, and there is a problem that the process cost is high.
  • an oxide or nitride insulator film-forming coating solution that can safely and easily produce a large area in an oxide insulator film or oxynitride insulator film having a desired high relative dielectric constant at a low process temperature. It is the present situation that provision is demanded.
  • the present invention provides an oxide or nitride insulating film which can easily and easily produce a large area with an oxide insulator film or an oxynitride insulator film having a low leakage current and a desired high relative dielectric constant at a low process temperature. It aims at providing the coating liquid for body film formation.
  • the coating solution for forming an oxide or oxynitride insulator film of the present invention is: Element A; At least one of element B and element C; A solvent, Containing
  • the element A is at least one selected from the group consisting of Sc, Y, Ln (lanthanoid), Sb, Bi and Te
  • the B element is at least one selected from the group consisting of Ga, Ti, Zr and Hf
  • the C element is at least one selected from the group consisting of Group 2 elements of the Periodic Table
  • the solvent includes at least one selected from the group consisting of an organic solvent having a flash point of 21 ° C. or higher and lower than 200 ° C., and water, It is characterized by that.
  • an oxide or nitride that can easily and easily produce a large area oxide oxide film or oxynitride insulator film having a low leakage current and a desired high relative dielectric constant at a low process temperature.
  • a coating solution for forming an insulator film can be provided.
  • FIG. 1 is a schematic configuration diagram showing an example of a bottom gate / bottom contact field effect transistor.
  • FIG. 2 is a schematic configuration diagram showing an example of a bottom gate / top contact field effect transistor.
  • FIG. 3 is a schematic configuration diagram showing an example of a top-gate / bottom-contact field effect transistor.
  • FIG. 4 is a schematic configuration diagram illustrating an example of a top gate / top contact field effect transistor.
  • FIG. 5A is a diagram showing an example of a method for producing a field effect transistor according to the present invention (part 1).
  • FIG. 5B is a diagram showing an example of the method for producing the field effect transistor according to the present invention (part 2).
  • FIG. 5C is a diagram showing an example of the method for producing the field effect transistor according to the present invention (part 3).
  • FIG. 5D is a diagram showing an example of the method for producing the field effect transistor according to the present invention (part 4).
  • FIG. 6 is a schematic configuration diagram showing an example of a top gate / ILD field effect transistor.
  • FIG. 7 is a graph showing the frequency dependence of the dielectric constant and dielectric loss of the oxide insulator film or oxynitride insulator film produced in Example 1-13.
  • FIG. 8 is a graph showing the relationship between the source-drain current Ids and the absolute value
  • FIG. 9 is a graph showing the relationship between the source-drain current Ids and the absolute value
  • the coating solution for forming an oxide or oxynitride insulator film of the present invention includes an A element, at least one of a B element and a C element, It contains at least a solvent, and further contains other components as necessary.
  • the element A is at least one selected from the group consisting of Sc, Y, Ln (lanthanoid), Sb, Bi, and Te.
  • the B element is at least one selected from the group consisting of Ga, Ti, Zr and Hf.
  • the C element is at least one selected from the group consisting of Group 2 elements in the periodic table.
  • the solvent includes at least one selected from the group consisting of an organic solvent having a flash point of 21 ° C. or higher and lower than 200 ° C., and water.
  • the coating liquid for forming an oxide or oxynitride insulator film according to another aspect of the present invention contains at least an element A and at least one of a B element and a C element, and further if necessary. Contains other ingredients.
  • the coating liquid of the other aspect can produce an oxide insulator film or an oxynitride insulator film having a low leak current and a desired high relative dielectric constant easily and in a large area at a low process temperature.
  • the kind of solvent used for the coating liquid of the said other aspect is not specifically limited.
  • the coating liquid of the other aspect can be used for the production of an oxide or oxynitride insulator film, a field effect transistor, a semiconductor element, and the like, like the main coating liquid.
  • the element A is a main component of the coating solution and forms the main skeleton of the insulating film.
  • the element B adjusts physical properties such as thermal characteristics and relative dielectric constant.
  • the C element constitutes a network modification oxide and gives structural flexibility.
  • film and “layer” have the same meaning unless otherwise specified.
  • an insulating film and an insulating layer have the same meaning.
  • the coating solution for forming an oxide or oxynitride insulator film includes at least one of an inorganic salt, an oxide, a hydroxide, an organic acid salt, a metal alkoxide, an organic metal, and a metal complex containing the element A. And at least one of an inorganic salt, an oxide, a hydroxide, an organic acid salt, a metal alkoxide, an organic metal, and a metal complex containing at least one of the B element and the C element, and the solvent What was melt
  • dissolved in is preferable.
  • the inorganic salt, the oxide, the hydroxide, the organic acid salt, the metal alkoxide, the organic metal, and the metal complex need only be dissolved uniformly in the solvent and dissociate into ions.
  • the inorganic salt, the oxide, the hydroxide, the organic acid salt, the metal alkoxide, the organic metal, and the metal complex are dissolved in the coating solution for forming the oxide or oxynitride insulator film.
  • the oxide or oxynitride insulator film forming coating solution is used for a long time. Is possible.
  • the thin film produced using this coating solution has a uniform composition, the characteristic uniformity when used for the gate insulating layer of TFT is also good.
  • the gate insulating layer is required to have a high insulating property (low leakage current) and a high relative dielectric constant.
  • the element A and / or the element B are main components of the coating solution, An oxide insulator film or an oxynitride insulator film manufactured using this coating solution achieves a high relative dielectric constant and a low dielectric loss.
  • the present coating solution contains the C element
  • the degree of freedom of the structure of the obtained oxide insulator film or oxynitride insulator film is increased, and the control range of the physical properties of the insulator film can be expanded. it can.
  • the C element is at least one of Be, Mg, Ca, Sr, and Ba.
  • the TFT characteristics are required to have no hysteresis, but the insulator film is a highly dielectric paraelectric material, and high quality TFT characteristics can be obtained.
  • composition and heat treatment conditions By controlling the composition and heat treatment conditions, it is possible to form an insulating film in an amorphous or microcrystalline state, and achieve a lower dielectric loss.
  • the insulating film constituting the gate insulating layer is required to have a high insulating property (high resistance).
  • a wide band gap is desirable (preferably 3 eV or more). Therefore, the present coating solution and the oxide or oxynitride insulator film produced using the present coating solution do not have a light absorption band due to electron transition in the visible light region or the near infrared region.
  • the present coating solution and the oxide or oxynitride insulator film produced using the present coating solution do not contain a Group 5-11 transition metal element other than impurities (about several mol%). These elements easily take an open-shell electronic state and generate an absorption band due to a dd transition in the wavelength region.
  • lanthanoid elements have a narrow absorption band in the visible light region or the near infrared region, but since this absorption is an isolated ff transition on the atom, insulation is maintained.
  • the lanthanoid element may be contained in the coating solution and the oxide or oxynitride insulator film produced using the coating solution.
  • the element A which is the main component in the coating solution and the oxide or oxynitride insulator film prepared using the coating solution, is at least one of the elements in the fourth period, the fifth period, and the sixth period. Either is preferable. Since the A element is an s, p, and d orbital closed shell system, a high dielectric constant and a low dielectric loss can be realized simultaneously.
  • the volume resistivity of the insulating film of the present invention is preferably 10 6 ⁇ cm or more, more preferably 10 10 ⁇ cm or more.
  • the gate current of the field effect transistor having the insulating film of the present invention as a gate insulating film is preferably 1 nA or less, more preferably 1 pA or less, and even more preferably 100 fA or less.
  • the coating solution contains the C element
  • the A element or the B element is a main component of the coating solution.
  • the total number of atoms of the A element (NA), the total number of atoms of the B element (NB), and the total number of atoms of the C element (NC) are expressed by the following formula ( It is preferable to satisfy 1). (NA + NB) / (NA + NB + NC) ⁇ 0.5 Formula (1)
  • the total number of atoms of the A element (NA), the total number of atoms of the B element (NB), and the total number of atoms of the C element (NC) are represented by the following formula ( 2) to be satisfied.
  • the total number (NB) of atoms of the B element and the total number (NC) of atoms of the C element satisfy the following formula (3).
  • an oxide insulator film or oxynitride insulator film having a desired relative dielectric constant and dielectric loss can be obtained.
  • the coating solution for forming the oxide or oxynitride insulator film is obtained depending on the conditions, specifically, the type, composition and concentration of the solvent to be dissolved. It is possible to control the relative dielectric constant and dielectric loss of the film.
  • the relative dielectric constant and dielectric loss also depend on the heat treatment conditions after the main coating, more specifically, the firing temperature, firing time, heating rate, cooling rate, atmosphere during firing (gas fraction and pressure), etc. Can be controlled.
  • disassembly and reaction promotion effect by light can be utilized.
  • the relative permittivity and dielectric loss change by annealing after the film is formed a method of optimizing the annealing temperature and atmosphere is also effective.
  • the sputtering method In the sputtering method, the laser ablation method, and the like, it is difficult to make the composition of the target uniform. In particular, it may be difficult to produce the target depending on the composition. Also, since the sputtering efficiency for each element is different, it is difficult to keep the composition uniform within the target life period. Furthermore, since the vacuum process is used, it is difficult to reduce the amount of oxygen vacancies in the film, which leads to instability of characteristics.
  • the coating solution for forming the oxide or oxynitride insulator film By using the coating solution for forming the oxide or oxynitride insulator film, the problems in the vacuum process are solved, and an oxide insulator film or an oxynitride insulator film having a uniform and stable composition can be manufactured. As a result, stable and high-performance TFTs can be manufactured.
  • Examples of the element A include Sc, Y, Ln (lanthanoid), Sb, Bi, and Te.
  • Examples of the element A include at least one selected from the group consisting of Sc, Y, and Ln (lanthanoid).
  • Examples of the element A include at least one selected from the group consisting of Sb, Bi, and Te.
  • Group 3 elements of the periodic table are preferable from the viewpoint of safety, mass productivity, and physical properties, and Sc, Y, La, Ce, Gd, and Lu are particularly preferable.
  • Examples of the element B include Ga, Ti, Zr, and Hf. From the viewpoint of mass productivity and physical properties, at least one selected from the group consisting of Ti, Zr, and Hf is preferable. Zr, and Hf At least one of the above is particularly preferable.
  • the C element is at least one selected from the group consisting of Group 2 elements in the periodic table.
  • Examples of the Group 2 element include Be, Mg, Ca, Sr, Ba and Ra, but at least one selected from the group consisting of Mg, Ca, Sr and Ba is more preferable from the viewpoint of safety and mass productivity. preferable.
  • the coating solution for forming an oxide or oxynitride insulator film is preferably transparent or light yellow in the visible light region.
  • the gate insulating film is required to have a low leakage current.
  • the required gate current value Ig is, for example, on the order of 10 pA or less.
  • it is important that the oxide or oxynitride film has a low hygroscopic property, a high amorphous property, and a large band gap.
  • requirement it is preferable that the content rate of a Group 3 element is high.
  • the total number (NA) of atoms of the Group 3 elements is more preferably 50% or more, more preferably 75% or more, based on the total number of metal elements that become oxides or oxynitrides as a result of the heat treatment. Is more preferable. Basically, it is preferable to perform heat treatment so that the ratio of the metal element in the coating solution is preserved in the insulating film. If the ratio of Group 2 elements (especially Sr, Ba) is high, the hygroscopicity becomes strong and the insulating properties of the film are adversely affected. Therefore, the ratio of NC is reduced as in the above formulas (1) to (3). There is a need.
  • an oxide or oxynitride is formed by adding a Group 2 element, a Group 3 element, and a Group 4 element, a combination with high amorphousness exists, which is caused by a crystal grain boundary of the polycrystalline film. Leakage current can be suppressed. Since the generation of the crystal phase depends on the heat treatment process, the composition of the coating solution may be appropriately adjusted according to the required process conditions. In some cases, nano-sized microcrystals (to the extent that spots are observed by electron diffraction) exist in some parts of the amorphous film, but such a film has the same electrical and optical characteristics as the amorphous film. It can be regarded as an amorphous film.
  • An oxide or oxynitride obtained by a combination of the Group 2 element, Group 3 element, and Group 4 element is basically an insulator having a band gap of 3 eV or more, and in some cases, 5 eV or more. is there. Therefore, the present coating solution and the oxide or oxynitride insulator film produced using the present coating solution do not have a light absorption band due to electron transition in the visible light region or the near infrared region.
  • the present coating solution and the oxide or oxynitride insulator film produced using the present coating solution do not contain a Group 5-11 transition metal element other than impurities (about several mol%). These elements easily take an open-shell electronic state and generate an absorption band due to a dd transition in the wavelength region. Therefore, it is inappropriate as an element constituting an insulator.
  • some lanthanoid elements have a narrow absorption band in the visible light region or the near infrared region, but since this absorption is an isolated ff transition on the atom, insulation is maintained.
  • the lanthanoid element may be contained in the coating solution and the oxide or oxynitride insulator film produced using the coating solution.
  • the A element, the B element, and the C element are dissolved in the solvent as compounds or ions, but after coating, an oxide or oxynitride insulating film is obtained by a predetermined heat treatment.
  • the compound containing each of the A element, the B element, and the C element, and the anion and solvent of the pair are volatilized by the heat treatment, or CO 2 , NO 2 , H 2 O, etc. due to oxygen in the atmosphere. Oxidized and decomposed into low molecular weight molecules, and other than the oxide or the oxynitride are released out of the film.
  • the coating liquid of the present invention has a flash point of 37.8 ° C. (100 ° F.) or higher.
  • the flash point is 40 ° C. or higher.
  • the flash point of the coating solution is particularly preferably 50 ° C. or higher in consideration of, for example, a temperature increase during transportation. If the flash point is about room temperature or less, it becomes possible to volatilize at room temperature to form a combustible mixture with air, and if there is an ignition source, it will ignite and burn, which is dangerous. If the flash point is 40 ° C. or higher, it is sufficiently higher than the general TFT manufacturing environment, and can be handled safely.
  • the coating solution contains at least one selected from the group consisting of an organic solvent having a flash point of 21 ° C. or higher and lower than 200 ° C. and water as the solvent.
  • the coating liquid of the present invention preferably does not contain a solvent having a flash point of less than 21 ° C.
  • the coating liquid of the present invention preferably does not contain a special flammable material such as diethyl ether, a first petroleum such as acetone or toluene, or an alcohol having 1 to 3 carbon atoms.
  • “not contained” does not exclude the inevitable inclusion.
  • the content of the organic solvent other than the organic solvent having a flash point of 21 ° C. or higher and lower than 200 ° C. is preferably 15% by volume or less, more preferably 10% by volume or less, and more preferably 5% by volume or less. Particularly preferred.
  • organic solvents other than the organic solvent whose flash point is 21 degreeC or more and less than 200 degreeC the organic solvent whose flash point is less than 21 degreeC, the organic solvent whose flash point is 200 degreeC or more, etc. are mentioned, for example.
  • the density of the organic solvent is approximately in the range of 0.75 to 1.15. Therefore, in the case of weight%, the above density is taken into consideration in the above volume%.
  • the coating liquid of the present invention contains, as a solvent, at least two kinds of second petroleum (flash point of 20 ° C. or higher and lower than 70 ° C.), third petroleum (flash point of 70 ° C. or higher and lower than 200 ° C.), and water. It is preferable to contain.
  • the second petroleums there is a solvent having a flash point of less than 40 ° C., but by appropriately mixing with the third petroleum or water, the flash point of the coating liquid is 37.8 ° C. or higher. Can be 40 ° C. or higher.
  • the viscosity and surface tension of the coating solution can be adjusted and safety can be maintained.
  • the fourth petroleum flash point is 200 ° C. or higher and lower than 250 ° C.
  • Hydrocarbon impurities are likely to remain in the film, which is not preferable as the solvent of the present invention.
  • the special flammable matter are a category of items classified as Class 4 dangerous goods and special flammables under the Japanese Fire Service Act. At 1 atm, those with an ignition point of 100 ° C. or lower or flash points below zero. The thing whose boiling point is 40 degrees C or less with 20 degrees C or less is said.
  • the first petroleum is a category in which items corresponding to the fourth class hazardous materials under the Japanese Fire Service Act, the first petroleum (liquid having a flash point of less than 21 ° C. at 1 atm) are collected.
  • the second petroleum is a category in which items corresponding to a fourth class hazardous material in the Japanese Fire Service Act, a second petroleum (liquid having a flash point of 21 ° C. or more and less than 70 ° C. at 1 atm) are collected.
  • the third petroleum is a category in which items corresponding to the fourth class hazardous materials under the Japanese Fire Service Act, the third petroleum (liquid having a flash point of 70 ° C. or higher and lower than 200 ° C.) are collected.
  • the 4th petroleum is a category in which items corresponding to the 4th class dangerous goods and the 4th petroleum (liquid with a flash point of 200 ° C. or more and less than 250 ° C.) according to the Japanese Fire Service Act are collected.
  • the flash point is measured by a setter sealing method (rapid equilibrium sealing method) based on ISO 3679: 2004 or JIS K 2265-2: 2007.
  • Examples of the second petroleum include the following solvents.
  • N-decane flash point 46 ° C
  • Acetylacetone flash point 34 ° C
  • P-xylene flash point 27 ° C
  • Mesitylene (1,3,5-Trimethylbenzene): Flash point 50 ° C.
  • Decahydronaphthalene (decalin): flash point 58 ° C
  • Propylene glycol 1-monomethyl ether flash point 32 ° C ⁇
  • Ethylene glycol monomethyl ether Flash point 42 °C ⁇
  • Ethylene glycol monoisopropyl ether Flash point 46 °C ⁇ N, N-dimethylformamide: Flash point 58 °C ⁇ N, N-dimethylacetamide: Flash point 63 °C 1-butanol: flash point 37 ° C ⁇
  • Cyclopentanol Flash point 47 °C ⁇ 1-Pentanol: Flash point 43 ° C
  • Isopentanol flash point 46 ° C ⁇ 1-Hexanol: Flash point 63 ° C
  • Examples of the third petroleum include the following solvents.
  • ⁇ Octylic acid Flash point 118 °C ⁇
  • Cyclohexylbenzene Flash point 99 ° C ⁇ ⁇ -Butyrolactone: Flash point 98 ° C ⁇
  • Ethylene glycol Flash point 111 °C
  • Propylene glycol Flash point 99 ° C -Formamide: Flash point 120 ° C ⁇ 1,3-Dimethyl-2-imidazolidinone: Flash point 107 ° C 1,3-dimethyl-3,4,5,6-tetrahydro-2 (1H) -pyrimidinone: flash point 121 ° C.
  • Examples of the fourth petroleums include the following solvents. ⁇ Dioctyl phthalate: Flash point 218 °C ⁇ Benzylbutyl phthalate: Flash point 213 °C
  • the coating liquid for forming the oxide or oxynitride insulator film includes, for example, an A element-containing compound containing the A element, a B element containing compound containing the B element, and the C element. And the C-th element-containing compound containing is dissolved in the solvent.
  • the element A-containing compound include inorganic salts, oxides, hydroxides, organic acid salts, metal alkoxides, organic metals, metal complexes, and the like.
  • Examples of the element B-containing compound include inorganic salts, oxides, hydroxides, organic acid salts, metal alkoxides, organic metals, metal complexes, and the like.
  • Examples of the C element-containing compound include inorganic salts, oxides, hydroxides, organic acid salts, metal alkoxides, organic metals, metal complexes, and the like.
  • Scandium (Sc) belongs to the element A.
  • the scandium-containing compound belongs to the element A-containing compound. There is no restriction
  • the organic scandium compound is not particularly limited as long as it is a compound having scandium and an organic group, and can be appropriately selected according to the purpose.
  • the scandium and the organic group are bonded by, for example, an ionic bond, a covalent bond, or a coordinate bond.
  • the organic group is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include an alkoxy group which may have a substituent, an acyloxy group which may have a substituent, and a substituent. And an acetylacetonate group which may have Examples of the alkoxy group include an alkoxy group having 1 to 6 carbon atoms. Examples of the acyloxy group include an acyloxy group having 1 to 10 carbon atoms. Examples of the substituent include a halogen and a tetrahydrofuryl group.
  • organic scandium compound examples include scandium 2-ethylhexanoate, scandium isopropoxide, scandium acetylacetonate, and the like.
  • the inorganic scandium compound is not particularly limited and may be appropriately selected depending on the intended purpose.
  • Examples thereof include scandium oxoacid and scandium halide.
  • Examples of the scandium oxoacid include scandium nitrate and scandium carbonate.
  • Examples of the scandium halide include scandium fluoride, scandium chloride, scandium bromide, and scandium iodide. Among these, scandium oxoacid and scandium halide are preferable, and scandium nitrate and scandium chloride are more preferable because of high solubility in various solvents.
  • the scandium nitrate is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include hydrates of scandium nitrate. Examples of the hydrate of scandium nitrate include scandium nitrate pentahydrate.
  • the scandium chloride is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include scandium chloride anhydrides and hydrates. Examples of the hydrate of scandium chloride include scandium chloride hexahydrate.
  • These scandium-containing compounds may be synthesized or commercially available products.
  • Yttrium (Y) belongs to the A element.
  • the yttrium-containing compound belongs to the element A-containing compound.
  • the organic yttrium compound is not particularly limited as long as it is a compound having yttrium and an organic group, and can be appropriately selected according to the purpose.
  • the yttrium and the organic group are bonded by, for example, an ionic bond, a covalent bond, or a coordinate bond.
  • the organic group is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include the organic group exemplified in the description of the organic scandium compound.
  • organic yttrium compound examples include yttrium 2-ethylhexanoate, yttrium isopropoxide, yttrium acetylacetonate, and the like.
  • the inorganic yttrium compound is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include yttrium oxoacid and yttrium halide. Examples of the yttrium oxo acid include yttrium nitrate, yttrium sulfate, yttrium carbonate, and yttrium phosphate. Examples of the yttrium halide include yttrium fluoride, yttrium chloride, yttrium bromide, and yttrium iodide. Among these, yttrium oxoacid and yttrium halide are preferable, and yttrium nitrate and yttrium chloride are more preferable in terms of high solubility in various solvents.
  • the yttrium nitrate is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include yttrium nitrate hydrate. Examples of the hydrate of yttrium nitrate include yttrium nitrate hexahydrate.
  • the yttrium chloride is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include anhydrous yttrium chloride and hydrated yttrium chloride. Examples of the hydrate of yttrium chloride include yttrium chloride hexahydrate.
  • yttrium-containing compounds may be synthesized or commercially available products.
  • Lanthanoid (Ln) belongs to the element A.
  • the lanthanoid-containing compound belongs to the element A-containing compound.
  • Representative examples of the lanthanoid-containing compound include lanthanum-containing compounds, cerium-containing compounds, and lutetium-containing compounds.
  • Lanthanum (La) is an example of a lanthanoid (Ln).
  • Lanthanum (La) belongs to the element A.
  • the lanthanum-containing compound belongs to the element A-containing compound.
  • the organic lanthanum compound is not particularly limited as long as it is a compound having lanthanum and an organic group, and can be appropriately selected according to the purpose.
  • the lanthanum and the organic group are bonded by, for example, an ionic bond, a covalent bond, or a coordinate bond.
  • organic group etc. which were illustrated in description of the said organic scandium compound are mentioned.
  • organic lanthanum compound examples include lanthanum 2-ethylhexanoate, lanthanum isopropoxide, lanthanum acetylacetonate, and the like.
  • the inorganic lanthanum compound is not particularly limited and may be appropriately selected depending on the intended purpose.
  • examples thereof include lanthanum oxoacid and lanthanum halide.
  • the lanthanum oxoacid include lanthanum nitrate, lanthanum sulfate, lanthanum carbonate, and lanthanum phosphate.
  • the lanthanum halide include lanthanum fluoride, lanthanum chloride, lanthanum bromide, and lanthanum iodide. Among these, lanthanum oxoacid and lanthanum halide are preferable, and lanthanum nitrate and lanthanum chloride are more preferable in view of high solubility in various solvents.
  • the lanthanum nitrate is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include lanthanum nitrate hydrate. Examples of the hydrated lanthanum nitrate include lanthanum nitrate tetrahydrate and lanthanum nitrate hexahydrate.
  • the lanthanum chloride is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include anhydrous lanthanum chloride and hydrated lanthanum chloride. Examples of the hydrate of lanthanum chloride include lanthanum chloride heptahydrate.
  • These lanthanum-containing compounds may be synthesized or commercially available products.
  • Cerium (Ce) is an example of a lanthanoid (Ln).
  • Cerium (Ce) belongs to the element A.
  • the cerium-containing compound belongs to the element A-containing compound.
  • the organic cerium compound is not particularly limited as long as it is a compound having cerium and an organic group, and can be appropriately selected according to the purpose.
  • the cerium and the organic group are bonded by, for example, an ionic bond, a covalent bond, or a coordinate bond.
  • organic cerium compound examples include cerium 2-ethylhexanoate, cerium isopropoxide, cerium acetylacetonate, and the like.
  • the inorganic cerium compound is not particularly limited and may be appropriately selected depending on the intended purpose.
  • examples thereof include cerium oxoacid and cerium halide.
  • the cerium oxoacid include cerium nitrate, cerium sulfate, cerium carbonate, and cerium oxalate.
  • the cerium halide include cerium fluoride, cerium chloride, cerium bromide, and cerium iodide. Among these, cerium oxoacid and cerium halide are preferable, and cerium nitrate and cerium chloride are more preferable in terms of high solubility in various solvents.
  • the cerium nitrate is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include cerium nitrate hydrate. Examples of the cerium nitrate hydrate include cerium nitrate hexahydrate.
  • the cerium chloride is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include anhydrous cerium chloride and hydrates of cerium chloride. Examples of the cerium chloride hydrate include cerium chloride heptahydrate.
  • cerium-containing compounds may be synthesized or commercially available products.
  • Lutetium (Lu) is an example of a lanthanoid (Ln).
  • Lutetium (Lu) belongs to the element A.
  • the lutetium-containing compound belongs to the element A-containing compound.
  • the organic lutetium compound is not particularly limited as long as it is a compound having lutetium and an organic group, and can be appropriately selected according to the purpose.
  • the lutetium and the organic group are bonded by, for example, an ionic bond, a covalent bond, or a coordinate bond.
  • organic lutetium compound examples include lutetium 2-ethylhexanoate, lutetium isopropoxide, lutetium acetylacetonate, and the like.
  • the inorganic lutetium compound is not particularly limited and may be appropriately selected depending on the intended purpose.
  • examples thereof include lutetium oxoacid and lutetium halide.
  • the lutetium oxoacid include lutetium nitrate, lutetium sulfate, lutetium carbonate, and lutetium oxalate.
  • the lutetium halide include lutetium fluoride, lutetium chloride, lutetium bromide, and lutetium iodide. Among these, lutetium oxoacid and lutetium halide are preferable, and lutetium nitrate and lutetium chloride are more preferable in terms of high solubility in various solvents.
  • the lutetium nitrate is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include lutetium nitrate hydrate. Examples of the hydrate of lutetium nitrate include lutetium nitrate hexahydrate.
  • the lutetium chloride is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include anhydrous lutetium chloride and hydrated lutetium chloride. Examples of the hydrate of lutetium chloride include lutetium chloride hexahydrate.
  • lutetium-containing compounds may be synthesized or commercially available products.
  • Zirconium (Zr) belongs to the B element.
  • the zirconium-containing compound belongs to the B-th element-containing compound.
  • the organic zirconium compound is not particularly limited as long as it is a compound having zirconium and an organic group, and can be appropriately selected according to the purpose.
  • the zirconium and the organic group are bonded by, for example, an ionic bond, a covalent bond, or a coordinate bond.
  • organic zirconium compound examples include zirconium 2-ethylhexanoate, zirconium isopropoxide, zirconium acetylacetonate and the like.
  • a oxo acid zirconium, a halogenated zirconium, etc. are mentioned.
  • the zirconium oxoacid include zirconium nitrate oxide, zirconium sulfate, zirconium carbonate, zirconium hydroxide and the like.
  • the zirconium halide include zirconium fluoride, zirconium chloride, zirconium bromide, and zirconium iodide. Among these, in terms of high solubility in various solvents, zirconium oxoacid and zirconium halide are preferable, and zirconium nitrate oxide and zirconium chloride are more preferable.
  • the zirconium nitrate oxide is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include hydrates of zirconium nitrate oxide. Examples of the hydrate of zirconium nitrate oxide include zirconium nitrate oxide dihydrate.
  • the zirconium chloride is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include anhydrous zirconium chloride and zirconyl chloride hydrate.
  • zirconium-containing compounds may be synthesized ones or commercially available products.
  • Hafnium (Hf) belongs to the B element.
  • the hafnium-containing compound belongs to the B element-containing compound.
  • the organic hafnium compound is not particularly limited as long as it is a compound having hafnium and an organic group, and can be appropriately selected according to the purpose.
  • the hafnium and the organic group are bonded by, for example, an ionic bond, a covalent bond, or a coordinate bond.
  • organic hafnium compound examples include hafnium 2-ethylhexanoate, hafnium butoxide, hafnium acetylacetonate, and the like.
  • the inorganic hafnium compound is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include hafnium oxo acid and hafnium halide. Examples of the hafnium oxoacid include hafnium sulfate. Examples of the hafnium halide include hafnium fluoride, hafnium chloride, hafnium bromide, and hafnium iodide. Among these, hafnium oxoacid and hafnium halide are preferable, and hafnium sulfate and hafnium chloride are more preferable in terms of high solubility in various solvents.
  • the hafnium chloride is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include anhydrous hafnium chloride and hafnium chloride tetrahydrofuran complex. *
  • hafnium-containing compounds may be synthesized or commercially available products.
  • Bismuth (Bi) belongs to the A element.
  • the bismuth-containing compound belongs to the element A-containing compound.
  • the organic bismuth compound is not particularly limited as long as it is a compound having bismuth and an organic group, and can be appropriately selected according to the purpose.
  • the bismuth and the organic group are bonded by, for example, an ionic bond, a covalent bond, or a coordinate bond.
  • the organic group is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include an alkoxy group which may have a substituent, an acyloxy group which may have a substituent, and a substituent. And an acetylacetonate group which may have Examples of the alkoxy group include an alkoxy group having 1 to 6 carbon atoms. Examples of the acyloxy group include an acyloxy group having 1 to 10 carbon atoms. Examples of the substituent include a halogen and a tetrahydrofuryl group. Examples of the organic bismuth compound include triphenyl bismuth, bismuth 2-ethylhexanoate, bismuth acetylacetonate, and the like.
  • the inorganic bismuth compound is not particularly limited and may be appropriately selected depending on the intended purpose.
  • examples thereof include bismuth oxoacid, bismuth halide, and bismuth hydroxide.
  • the bismuth oxoacid include bismuth nitrate, bismuth sulfate, and bismuth acetate.
  • the bismuth halide include bismuth fluoride, bismuth chloride, bismuth bromide, and bismuth iodide. Among these, bismuth oxoacid and bismuth halide are preferable, and bismuth nitrate and bismuth chloride are more preferable in terms of high solubility in various solvents.
  • the bismuth nitrate is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include bismuth nitrate hydrate. Examples of the bismuth nitrate hydrate include bismuth nitrate pentahydrate.
  • the bismuth sulfate is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include anhydrous bismuth sulfate.
  • the bismuth chloride is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include anhydrous bismuth chloride.
  • These bismuth-containing compounds may be synthesized or commercially available products.
  • Titanium (Ti) belongs to the B element.
  • the titanium-containing compound belongs to the B-th element-containing compound.
  • the organic titanium compound is not particularly limited as long as it is a compound having titanium and an organic group, and can be appropriately selected according to the purpose.
  • the titanium and the organic group are bonded by, for example, an ionic bond, a covalent bond, or a coordinate bond.
  • organic titanium compound examples include titanium 2-ethylhexanoate, titanium isopropoxide, titanium acetylacetonate, and the like.
  • a oxo acid titanium, a titanium halide, etc. are mentioned.
  • the titanium oxo acid include titanium sulfate and titanium sulfate oxide.
  • the titanium halide include titanium fluoride, titanium chloride, titanium bromide, and titanium iodide. Among these, titanium oxoacid and titanium halide are preferable, and titanium sulfate and titanium chloride are more preferable in terms of high solubility in various solvents.
  • the titanium sulfate is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include titanium sulfate anhydride.
  • the titanium chloride is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include anhydrous titanium chloride.
  • titanium-containing compounds may be synthesized or commercially available products.
  • the C element is at least one of Be, Mg, Ca, Sr, Ba, and Ra.
  • the C-th element-containing compound contains the C-th element.
  • Examples of the C element-containing compound include inorganic salts, oxides, hydroxides, organic acid salts, metal alkoxides, organic metals, metal complexes, and the like.
  • Examples of the element C-containing compound include organic alkaline earth metal compounds and inorganic alkaline earth metal compounds.
  • Examples of the alkaline earth metal in the alkaline earth metal-containing compound include Mg (magnesium), Ca (calcium), Sr (strontium), Ba (barium), and Ra (radium).
  • the organic alkaline earth metal compound is not particularly limited as long as it is a compound having an alkaline earth metal and an organic group, and can be appropriately selected according to the purpose.
  • the alkaline earth metal and the organic group are bonded by, for example, an ionic bond, a covalent bond, or a coordinate bond.
  • the organic group is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include the organic group exemplified in the description of the organic scandium compound.
  • organic alkaline earth metal compound examples include magnesium methoxide, magnesium ethoxide, diethyl magnesium, magnesium acetate, magnesium formate, acetylacetone magnesium, magnesium 2-ethylhexanoate, magnesium lactate, magnesium naphthenate, magnesium citrate, Magnesium salicylate, magnesium benzoate, magnesium oxalate, magnesium trifluoromethanesulfonate, calcium methoxide, calcium ethoxide, calcium acetate, calcium formate, acetylacetone calcium, calcium dipivaloylmethanate, calcium 2-ethylhexanoate, lactic acid Calcium, calcium naphthenate, calcium citrate, calcium salicylate, calcium neodecanoate Calcium benzoate, calcium oxalate, strontium isopropoxide, strontium acetate, strontium formate, acetylacetone strontium, strontium 2-ethylhexanoate, strontium lactate, str
  • inorganic alkaline earth metal compounds examples include alkaline earth metal nitrates, alkaline earth metal sulfates, alkaline earth metal chlorides, alkaline earth metal fluorides, alkaline earth metal bromides, alkaline earth metal salts, and the like. And the like.
  • examples of the alkaline earth metal nitrate include magnesium nitrate, calcium nitrate, strontium nitrate, and barium nitrate.
  • alkaline earth metal sulfate examples include magnesium sulfate, calcium sulfate, strontium sulfate, and barium sulfate.
  • Examples of the alkaline earth metal chloride include magnesium chloride, calcium chloride, strontium chloride, and barium chloride.
  • Examples of the alkaline earth metal fluoride include magnesium fluoride, calcium fluoride, strontium fluoride, and barium fluoride.
  • Examples of the alkaline earth metal bromide include magnesium bromide, calcium bromide, strontium bromide, barium bromide and the like.
  • Examples of the alkaline earth metal iodide include magnesium iodide, calcium iodide, strontium iodide, barium iodide and the like.
  • These C element-containing compounds may be synthesized or commercially available products.
  • ⁇ solvent There is no restriction
  • Organic solvent can be appropriately selected depending on the purpose, and includes organic acids, organic acid esters, aromatic compounds, diols, glycol ethers, aprotic polar solvents, alkane compounds, alkene compounds, ether compounds, and At least one selected from the group consisting of alcohols is preferred.
  • Organic acid can be appropriately selected according to the purpose.
  • acetic acid, lactic acid, propionic acid, octylic acid, neodecanoic acid and derivatives thereof are preferable. These may be used individually by 1 type and may use 2 or more types together.
  • Organic acid ester can be appropriately selected depending on the purpose.
  • methyl lactate, propyl propionate, and derivatives thereof are preferable. These may be used individually by 1 type and may use 2 or more types together.
  • the aromatic compound can be appropriately selected according to the purpose.
  • xylene, mesitylene, tetralin and derivatives thereof are preferable. These may be used individually by 1 type and may use 2 or more types together.
  • the diol can be appropriately selected according to the purpose, but alkanediol and dialkylene glycol are preferable.
  • the diol preferably has 2 to 6 carbon atoms.
  • the diol is preferably at least one selected from the group consisting of diethylene glycol, 1,2-ethanediol, 1,2-propanediol, and 1,3-butanediol. These may be used individually by 1 type and may use 2 or more types together.
  • the glycol ether can be appropriately selected according to the purpose, but an alkylene glycol monoalkyl ether is preferable.
  • the number of carbon atoms of the glycol ether is preferably 3-8.
  • the alkylene glycol monoalkyl ether is at least one of ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monopropyl ether, ethylene glycol monobutyl ether, propylene glycol 1-monomethyl ether, and propylene glycol 1-monobutyl ether. preferable.
  • These alkylene glycol monoalkyl ethers have a boiling point of about 120 ° C. to 180 ° C.
  • an oxide or oxynitride insulator film with few impurities such as carbon and organic matter can be obtained after firing. These may be used individually by 1 type and may use 2 or more types together.
  • the aprotic polar solvent dissolves the raw material compound well and has high stability after dissolution, the aprotic polar solvent is used in the coating solution for forming the oxide or oxynitride insulator film.
  • the aprotic polar solvent can be appropriately selected according to the purpose. For example, isophorone, propylene carbonate, dihydrofuran-2 (3H) -one ( ⁇ -butyrolactone), dimethylformamide, dimethylacetamide, 1,3-dimethyl-2-imidazolidinone, and derivatives thereof are preferable. These may be used individually by 1 type and may use 2 or more types together.
  • alkane compounds can be appropriately selected depending on the purpose.
  • n-nonane, decane, tetradecane, decalin, and derivatives thereof are preferable. These may be used individually by 1 type and may use 2 or more types together.
  • alkene compounds can be appropriately selected depending on the purpose.
  • 1-dodecene, 1-tetradecene, and derivatives thereof are preferable. These may be used individually by 1 type and may use 2 or more types together.
  • the ether compound can be appropriately selected depending on the purpose.
  • benzofuran, polyethylene glycol, and derivatives thereof are preferable. These may be used individually by 1 type and may use 2 or more types together.
  • the alcohol is not particularly limited as long as it has 4 or more carbon atoms, and can be appropriately selected according to the purpose.
  • 1-butanol, cyclopentanol, 2-hexanol and derivatives thereof are preferable. These may be used individually by 1 type and may use 2 or more types together.
  • the inorganic acid can be appropriately selected according to the purpose.
  • sulfuric acid, nitric acid, hydrochloric acid, phosphoric acid, hydrofluoric acid and the like are preferable. These may be used individually by 1 type and may use 2 or more types together. These can improve the solubility of the inorganic salt.
  • the A-element-containing compound, the B-element-containing compound, and the C-element-containing compound are dissolved in the solvent.
  • the method for preparing the coating solution for forming the oxide or oxynitride insulator film is not particularly limited and may be appropriately selected depending on the purpose.
  • the compound containing each element or a solution thereof examples include a method of mixing a solvent with a desired ratio.
  • the coating solution for forming an oxide or oxynitride insulator film of the present invention is suitable for a coating solution for producing an oxide insulator film or an oxynitride insulator film, and in particular, the formula (1)
  • the coating solution for forming an oxide or oxynitride insulator film that satisfies (2) is suitable as a coating solution for forming a gate insulating layer of a field effect transistor.
  • the oxide or oxynitride insulator film forming coating liquid of the present invention is applied to an object to be coated, dried, and then fired. can get.
  • One aspect of the oxide or oxynitride insulator film of the present invention is a fired product of the coating liquid for forming the oxide or oxynitride insulator film of the present invention.
  • the oxide or oxynitride insulator film is obtained, for example, by the following method for manufacturing an oxide or oxynitride insulator film of the present invention.
  • the oxide or oxynitride insulator film forming coating solution of the present invention is applied to an object to be coated, dried, and then fired.
  • the oxide or oxynitride insulator film-forming coating liquid satisfying the above formula (1) or (2) is used as the oxide or oxynitride insulator film-forming coating liquid, a field effect type is used.
  • An oxide insulator film or an oxynitride insulator film which is particularly suitable for a gate insulating layer of a transistor can be obtained.
  • the objective it can select suitably, For example, a glass base material, a plastic base material, etc. are mentioned.
  • the oxide insulator film or the oxynitride insulator film is used for an active layer of a field effect transistor, examples of the article to be coated include a base material and an active layer.
  • the oxide insulator film or the oxynitride insulator film is used for an active layer of a field effect transistor, examples of the article to be coated include a base material and an active layer.
  • limiting in particular as a material of the said base material According to the objective, it can select suitably, For example, a glass base material, a plastic base material, etc. are mentioned.
  • the application method is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include screen printing, roll coating, dip coating, spin coating, die coating, ink jet, and nanoimprint. Is mentioned. Among these, the spin coating method and the die coating method are preferable in that they can be easily combined with existing photolithography techniques.
  • the drying is not particularly limited as long as the volatile component in the coating solution for forming the oxide or oxynitride insulator film can be removed, and can be appropriately selected according to the purpose. In the drying, it is not necessary to completely remove the volatile component, and it is sufficient if the volatile component can be removed to such an extent that firing is not hindered.
  • the firing temperature is not particularly limited as long as it is equal to or higher than the temperature at which the metal element contained in the coating solution forms an oxide and equal to or lower than the thermal deformation temperature of the base material (coating object).
  • it can be appropriately selected depending on the conditions, it is preferably 150 ° C. to 600 ° C.
  • the atmosphere containing oxygen such as in oxygen and air, is preferable.
  • the organic substance and the anion contained in the compound of the metal element and the solvent can be removed from the film by oxidizing or gasifying.
  • the average thickness of the formed oxide insulator film or oxynitride insulator film is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 1 nm to 500 nm, more preferably 10 nm to 300 nm. 50 nm to 200 nm is particularly preferable.
  • the formed oxide or oxynitride insulator film does not have a light absorption band due to electronic transition in the visible light region or near infrared region. Due to the surface roughness of this insulator film, or the relationship between the surface roughness and the refractive index difference at the interface with the adjacent layer or substrate, light scattering may occur, and the light transmittance may decrease, It is essentially transparent. However, a narrow absorption band due to the ff transition of the lanthanoid element may exist.
  • the field effect transistor of the present invention includes at least a gate electrode, a source electrode, a drain electrode, an active layer, and a gate insulating layer, and further includes other members such as an interlayer insulating layer as necessary. .
  • the field effect transistor of the present invention can be manufactured, for example, by the method for manufacturing the field effect transistor of the present invention described later.
  • the gate electrode is not particularly limited as long as it is an electrode for applying a gate voltage, and can be appropriately selected according to the purpose.
  • the material of the gate electrode is not particularly limited and may be appropriately selected depending on the purpose. For example, platinum, palladium, gold, silver, copper, zinc, aluminum, nickel, chromium, tantalum, molybdenum, titanium, etc. Metals, alloys thereof, mixtures of these metals, and the like.
  • conductive oxides such as indium oxide, zinc oxide, tin oxide, gallium oxide, and niobium oxide, composite compounds thereof, mixtures thereof, and the like can be given.
  • the average thickness of the gate electrode is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 40 nm to 2 ⁇ m, more preferably 70 nm to 1 ⁇ m.
  • the gate insulating layer is an oxide or oxynitride insulator formed between the gate electrode and the active layer, and the coating for forming an oxide or oxynitride insulator film of the present invention is used. It consists of an oxide insulator film or an oxynitride insulator film formed by applying a liquid. Further, in another aspect, the gate insulating layer is a gate insulating layer made of an oxide or oxynitride insulator film formed between the gate electrode and the active layer. Or an oxynitride insulator film.
  • the average thickness of the gate insulating layer is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 10 nm to 1 ⁇ m, and more preferably 30 nm to 300 nm.
  • ⁇ Source electrode and drain electrode> There is no restriction
  • limiting in particular as a material of the said source electrode and the said drain electrode According to the objective, it can select suitably, For example, the same material as the material described in description of the said gate electrode is mentioned.
  • the average thickness of the source electrode and the drain electrode is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 40 nm to 2 ⁇ m, and more preferably 70 nm to 1 ⁇ m.
  • the active layer is an active layer made of a semiconductor formed between the source electrode and the drain electrode.
  • a silicon semiconductor, an oxide semiconductor, etc. are mentioned.
  • an oxide semiconductor is particularly preferable.
  • the silicon semiconductor include amorphous silicon and polycrystalline silicon.
  • the oxide semiconductor include InGa—Zn—O, In—Zn—O, In—Mg—O, and the like.
  • the average thickness of the active layer is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 1 nm to 200 nm, and more preferably 5 nm to 100 nm.
  • the structure of the field effect transistor is not particularly limited and may be appropriately selected depending on the purpose.
  • a bottom gate / bottom contact type (FIG. 1)
  • a bottom gate / top contact type (FIG. 2)
  • Examples include a top gate / bottom contact type (FIG. 3) and a top gate / top contact type (FIG. 4).
  • 1 to 4 1 is a base material
  • 2 is a gate electrode
  • 3 is a gate insulating layer
  • 4 is a source electrode
  • 5 is a drain electrode
  • 6 is an active layer.
  • the field effect transistor of the present invention can be suitably used for pixel drive circuits and logic circuit transistors such as liquid crystal displays, organic EL displays, and electrochromic displays.
  • the manufacturing method (first manufacturing method) of the field effect transistor of the present invention includes: A gate electrode forming step of forming a gate electrode; Forming a gate insulating layer on the gate electrode; and A source electrode and drain electrode forming step of forming a source electrode and a drain electrode apart from each other on the gate insulating layer; An active layer forming step of forming an active layer made of a semiconductor on the gate insulating layer in the channel region between the source electrode and the drain electrode.
  • the manufacturing method (second manufacturing method) of the field effect transistor of the present invention includes: A source electrode and drain electrode forming step of forming the source electrode and the drain electrode apart from each other; An active layer forming step of forming an active layer made of a semiconductor on the base material in the channel region between the source electrode and the drain electrode; A gate insulating layer forming step of forming a gate insulating layer on the active layer; Forming a gate electrode on the gate insulating layer.
  • the manufacturing method (third manufacturing method) of the field effect transistor of the present invention includes: An active layer forming step of forming an active layer made of a semiconductor; A gate insulating layer forming step of forming a gate insulating layer on the active layer; Forming a gate electrode on the gate insulating layer; and An interlayer insulating layer forming step of forming an interlayer insulating layer on the gate electrode layer; A through hole forming step of forming a through hole in the gate insulating layer or the interlayer insulating layer; A source / drain electrode forming step of forming a source electrode and a drain electrode on the interlayer insulating layer.
  • the gate electrode forming step is not particularly limited as long as it is a step of forming a gate electrode, and can be appropriately selected according to the purpose. For example, (i) after film formation by sputtering, dip coating, or the like A step of patterning by photolithography, and (ii) a step of directly forming a desired shape by a printing process such as inkjet, nanoimprint, or gravure.
  • the gate electrode is formed on a base material, for example.
  • size of the said base material According to the objective, it can select suitably.
  • a glass base material, a plastic base material, etc. are mentioned.
  • a material of the said glass base material According to the objective, it can select suitably, For example, an alkali free glass, silica glass, etc. are mentioned.
  • a material of the said plastic base material there is no restriction
  • pretreatments such as oxygen plasma, UV ozone, and UV irradiation washing
  • the gate insulating layer forming step includes applying the oxide or oxynitride insulator film-forming coating liquid of the present invention on the gate electrode to form a gate insulator made of an oxide insulator or an oxynitride insulator. If it is the process of forming a layer, there will be no restriction
  • the total number (NA) of atoms of the A element and the total number of atoms of the B element in the coating solution for forming the oxide or oxynitride insulator film ( NB) and the total number of atoms of the C element (NC) are adjusted to control at least one of the relative dielectric constant, crystal phase, and crystallization temperature of the oxide or oxynitride insulator. It is preferable to do. By doing so, a field effect transistor having a desired characteristic (for example, threshold voltage) can be obtained.
  • the coating solution for forming the oxide or oxynitride insulator film contains the organic solvent, and the organic in the coating solution for forming the oxide or oxynitride insulator film It is preferable to control the viscosity of the coating solution for forming the oxide or oxynitride insulator film by adjusting the component mixing ratio of the solvent. Further, in order to obtain a desired film thickness, surface shape, and coating characteristics, other solvents can be added and the concentration can be adjusted. By doing so, it is possible to obtain a field effect transistor having excellent coating properties and a good film formation state.
  • the method for forming the oxide insulator or oxynitride insulator by applying the coating liquid for forming the oxide or oxynitride insulator film is not particularly limited and can be appropriately selected depending on the purpose.
  • a method of applying the oxide or oxynitride insulator film-forming coating solution to the base material on which the gate electrode layer has been formed, drying the substrate, and baking it may be mentioned.
  • the application method is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include screen printing, roll coating, dip coating, spin coating, die coating, ink jet, and nanoimprint. Is mentioned.
  • the spin coating method and the die coating method are preferable because they can be easily combined with existing photolithography techniques.
  • the drying is not particularly limited as long as the volatile component in the coating liquid for forming the oxide or oxynitride insulator film can be removed, and can be appropriately selected depending on the purpose. In the drying, it is not necessary to completely remove the volatile component, and it is sufficient if the volatile component can be removed to such an extent that firing is not hindered.
  • the firing temperature is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 150 ° C. to 600 ° C.
  • the source / drain electrode forming step is not particularly limited as long as it is a step of forming the source electrode and the drain electrode separately on the gate insulating layer, and can be appropriately selected according to the purpose.
  • the active layer forming step is not particularly limited as long as it is a step of forming an active layer made of a semiconductor on the gate insulating layer in the channel region between the source electrode and the drain electrode.
  • the active layer forming step is not particularly limited as long as it is a step of forming an active layer made of a semiconductor on the gate insulating layer in the channel region between the source electrode and the drain electrode.
  • the order of the source electrode and drain electrode formation step and the active layer formation step is not limited, and the active layer formation step may be performed after the source electrode and drain electrode formation step.
  • the source electrode and drain electrode formation step may be performed after the active layer formation step.
  • a bottom gate / bottom contact type field effect transistor can be manufactured.
  • a bottom gate / top contact type field effect transistor can be manufactured.
  • a method for manufacturing a bottom-gate / bottom-contact field effect transistor will be described with reference to FIGS. 5A to 5D.
  • a conductive film made of aluminum or the like is formed on a base material 1 made of a glass substrate or the like by sputtering or the like, and the formed conductive film is patterned by photolithography to form a gate electrode 2 (FIG. 5A).
  • the oxide or oxynitride insulator film-forming coating solution is applied onto the gate electrode 2 and the base material 1 by a spin coat method or the like so as to cover the gate electrode 2, and heat treatment is performed for the oxide or A gate insulating layer 3 made of an oxynitride insulator is formed (FIG. 5B).
  • a conductor film made of ITO or the like is formed on the gate insulating layer 3 by sputtering or the like, and the formed conductor film is patterned by etching to form the source electrode 4 and the drain electrode 5 (FIG. 5C).
  • a semiconductor film made of IGZO or the like is formed on the gate insulating layer 3 by a sputtering method or the like so as to cover a channel region formed between the source electrode 4 and the drain electrode 5.
  • the active layer 6 is formed by patterning by etching (FIG. 5D). Thus, a field effect transistor is manufactured.
  • the source electrode and drain electrode forming step is not particularly limited as long as the source electrode and the drain electrode are formed apart from each other, and can be appropriately selected according to the purpose. The same process as the process illustrated in the source electrode and drain electrode forming process can be given.
  • the gate electrode is formed on a base material, for example.
  • a base material for example.
  • the active layer forming step is not particularly limited as long as it is a step of forming an active layer made of a semiconductor on the gate insulating layer in the channel region between the source electrode and the drain electrode.
  • the active layer forming step is not particularly limited as long as it is a step of forming an active layer made of a semiconductor on the gate insulating layer in the channel region between the source electrode and the drain electrode.
  • the gate insulating layer forming step includes applying the oxide or oxynitride insulator film-forming coating liquid of the present invention on the gate electrode to form a gate insulator made of an oxide insulator or an oxynitride insulator. If it is the process of forming a layer, there will be no restriction
  • the gate electrode forming step is not particularly limited as long as it is a step of forming a gate electrode on the gate insulating layer, and can be appropriately selected according to the purpose.
  • the process similar to the process illustrated in the gate electrode formation process is mentioned.
  • the order of the source electrode and drain electrode formation step and the active layer formation step is not limited, and the active layer formation step may be performed after the source electrode and drain electrode formation step.
  • the source electrode and drain electrode formation step may be performed after the active layer formation step.
  • a top gate / bottom contact type field effect transistor can be manufactured.
  • a top gate / top contact type field effect transistor can be manufactured.
  • the active layer forming step is not particularly limited as long as it is a step of forming an active layer on the gate insulating layer in the channel region between the source electrode and the drain electrode.
  • a step of patterning by photolithography after film formation by sputtering, dip coating or the like (ii) a desired shape directly by a printing process such as ink jet, nanoimprint, gravure, etc. Examples include a film forming process.
  • the gate insulating layer forming step includes applying the oxide or oxynitride insulator film-forming coating liquid of the present invention on the gate electrode to form a gate insulator made of an oxide insulator or an oxynitride insulator. If it is the process of forming a layer, there will be no restriction
  • the gate electrode forming step is not particularly limited as long as it is a step of forming a gate electrode on the gate insulating layer, and can be appropriately selected according to the purpose.
  • the process similar to the process illustrated in the gate electrode formation process is mentioned.
  • the interlayer insulating layer forming step is not particularly limited as long as it is a step of forming an interlayer insulating layer on the gate insulating layer and the gate electrode, and can be appropriately selected according to the purpose.
  • a through hole is opened in the interlayer insulating film in the connection region (for details, refer to a through hole forming step described later).
  • an inorganic insulating material examples include silicon oxide, aluminum oxide, tantalum oxide, titanium oxide, yttrium oxide, lanthanum oxide, hafnium oxide, zirconium oxide, silicon nitride, aluminum nitride, and mixtures thereof.
  • the organic insulating material examples include polyimide, polyamide, polyacrylate, polyvinyl alcohol, and novolac resin.
  • the average thickness of the interlayer insulating layer is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 30 nm to 3 ⁇ m, and more preferably 100 nm to 1 ⁇ m.
  • the through hole forming step is not particularly limited as long as it is a step of forming a through hole in at least one of the gate insulating layer and the interlayer insulating layer, and can be appropriately selected according to the purpose.
  • the through hole is formed to reach the active layer.
  • the through hole is a hole formed on the interlayer insulating layer so that the gate electrode and the drain electrode are in contact with the active layer. At least two through holes are formed corresponding to the gate electrode and the drain electrode.
  • the source electrode and drain electrode forming step is not particularly limited as long as the source electrode and the drain electrode are formed apart from each other, and can be appropriately selected according to the purpose. The same process as the process illustrated in the source electrode and drain electrode forming process can be given. In this step, the active layer and the source / drain electrodes are electrically connected.
  • FIG. 6 An example of a field effect transistor manufactured by the third manufacturing method is shown in FIG.
  • the field effect transistor shown in FIG. 6 is a top gate / ILD field effect transistor.
  • reference numeral 1 is a base material
  • reference numeral 2 is a gate electrode
  • reference numeral 3 is a gate insulating layer
  • reference numeral 4 is a source electrode
  • reference numeral 5 is a drain electrode
  • reference numeral 6 is an active layer
  • reference numeral 7 is a first interlayer insulating layer.
  • 8 represents a second interlayer insulating layer
  • 9 represents a third interlayer insulating layer
  • S represents a through hole.
  • One embodiment of the semiconductor element of the present invention includes the oxide or oxynitride insulator film of the present invention.
  • Another embodiment of the semiconductor element of the present invention includes the oxide or oxynitride insulator film of the present invention in an insulator layer.
  • Examples of the semiconductor element include a diode, a field effect transistor, a light emitting element, and a photoelectric conversion element.
  • ⁇ Diode> There is no restriction
  • An example of such a diode is a PIN photodiode.
  • the PIN junction diode includes at least the active layer and the insulator layer, and further includes other members such as an anode (anode) and a cathode (cathode) as necessary.
  • the active layer includes at least a p-type semiconductor layer and an n-type semiconductor layer, and further includes other members as necessary.
  • the p-type semiconductor layer and the n-type semiconductor layer are in contact with each other.
  • the average thickness of the p-type semiconductor layer is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 50 nm to 2,000 nm.
  • n-type semiconductor layer --- The average thickness of the n-type semiconductor layer is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 50 nm to 2,000 nm.
  • the insulator layer is the oxide or oxynitride insulator film of the present invention.
  • the average thickness of the oxide or oxynitride insulator film is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 50 nm to 2,000 nm.
  • the anode is in contact with the p-type semiconductor layer.
  • the material of the anode is not particularly limited and can be appropriately selected according to the purpose. Examples thereof include metals such as Mo, Al, Au, Ag, and Cu, alloys thereof, indium tin oxide (ITO), and antimony. Examples thereof include transparent conductive oxides such as doped tin oxide (ATO), and organic conductors such as polyethylenedioxythiophene (PEDOT) and polyaniline (PANI).
  • the shape, size and structure of the anode are not particularly limited and can be appropriately selected according to the purpose.
  • the anode is provided in contact with the p-type semiconductor layer, and it is preferable that an ohmic contact is formed between them.
  • the method for forming the anode is not particularly limited and may be appropriately selected depending on the purpose. For example, (i) a method of patterning by photolithography after film formation by sputtering, dip coating, or the like (ii) ) A method of directly forming a desired shape by a printing process such as inkjet printing, nanoimprinting, or gravure.
  • the shape, size and structure of the cathode are not particularly limited and can be appropriately selected according to the purpose.
  • the cathode is provided in contact with the n-type semiconductor layer, and it is preferable that an ohmic contact is formed between them.
  • the method for forming the cathode is not particularly limited and may be appropriately selected depending on the purpose. Examples thereof include the same methods as those described in the description of the anode.
  • Example 1-1 Preparation of coating solution for forming oxide or oxynitride insulator film> 2-ethylhexanoic acid bismuth 2-ethylhexanoic acid solution (Bi: 25% by mass) and 2-ethylhexanoic acid hafnium 2-ethylhexanoic acid solution (Hf: 24% by mass) were prepared. Weighed to 40 mmol and mixed in a flask. Further, 2-ethylhexanoic acid (octylic acid) was added so that the total amount of the solvent was 1000 mL, and mixed and dissolved at room temperature to prepare a coating solution for forming an oxide or oxynitride insulator film. .
  • Examples 1-2 to 1-6 In the same manner as in Example 1-1, coating liquids for forming oxide or oxynitride insulator films of Examples 1-2 to 1-6 were prepared. Table 1 shows the raw material compositions of Examples 1-1 to 1-6. All the inks were transparent in the visible range.
  • Examples 2-1 to 2-12 In the same manner as in Example 1-1, coating liquids for forming oxide or oxynitride insulator films of Examples 2-1 to 2-12 were prepared. Table 2 shows the raw material compositions of Examples 2-1 to 2-12. All the inks were transparent in the visible range.
  • Comparative Examples 1-1 to 1-3 In the same manner as in Example 1-1, coating solutions for forming oxide or oxynitride insulator films of Comparative Examples 1-1 to 1-3 were prepared. Table 3 shows the raw material compositions of Comparative Examples 1-1 to 1-3. The inks of Comparative Examples 1-1 and 1-3 (3-1 and 3-3) were transparent in the visible range, but the ink (3-2) of Comparative Example 1-2 was blue.
  • Example 1--7 The coating solution 1-1 shown in Table 1 was printed on a non-alkali glass substrate that had been cleaned with UV ozone using a spin coater. Printing was good. The substrate was dried on a hot plate heated to 120 ° C. for 10 minutes and then baked at 400 ° C. for 1 hour in an air atmosphere to obtain a transparent oxide film.
  • Examples 1-8 to 1-12 In the same manner as in Example 1-7, coating liquid 1-2 (Example 1-8), coating liquid 1-3 (Example 1-9), and coating liquid 1-4 (Example 1) in Table 1 were used. ⁇ 10), coating solution 1-5 (Example 1-11), and coating solution 1-6 (Example 1-12) were each printed, dried, and fired to obtain similar oxide films. All showed good printing characteristics as in Example 1-7.
  • Example 2-13 Coating liquid 2-1
  • Example 2-14 Coating liquid 2-2
  • Example 2-15 Coating liquid 2-3
  • Example 2-16 Coating liquid 2-4
  • Example 2-17 Coating liquid 2-5
  • Example 2-18 Coating liquid 2-6
  • Example 2-19 Coating liquid 2-7
  • Example 3-1 The flash point of the coating liquid 2-7 shown in Table 2 was measured by the setter sealing method. The flash point was 49 ° C., which was confirmed to be sufficiently higher than room temperature.
  • the coating liquids 1-1 to 1-6, the coating liquids 2-1 to 2-6, and 2-8 to 2-12 also had a flash point of 40 ° C. or higher (provided that 2-11 is Can not be detected.)
  • Tables 4 and 5 show the flash points.
  • Example 1-13 On a non-alkali glass substrate that had been cleaned with UV ozone, Al was deposited as a lower electrode in a 100 nm mask. On top of this, the coating liquid 1-1 shown in Table 1 was printed by spin coating. The film forming property was good. The substrate was dried in an oven at 120 ° C. for 1 hour in the air atmosphere, and then baked at 400 ° C. for 1 hour in the air atmosphere to obtain an oxide film. Further, Al was deposited as a 100 nm mask as the upper electrode to produce a capacitor structure.
  • FIG. 7 shows the relationship between the relative dielectric constant ⁇ r and dielectric loss tan ⁇ of the capacitor fabricated in this example and the frequency of the applied electric field.
  • the relative dielectric constant ⁇ of the capacitor manufactured in this example is 17.5 or more in the region from 100 Hz to 1 MHz, and it was confirmed to have a high relative dielectric constant.
  • the value of dielectric loss tan ⁇ was as low as approximately 1% or less from 100 Hz to 100 kHz, and it was confirmed that the film was a good insulating film. Further, it was confirmed that the film was transparent in the visible range and had a band gap of 3.5 eV or more.
  • the film was grayish brown and the dielectric loss was 10% or more at 1 kHz, and did not function as an insulating film.
  • the film was a little white and translucent, and the dielectric loss was 8% or more at 1 kHz, and did not function as an insulating film.
  • each of the following coating liquids was applied onto the gate electrode and the alkali-free glass substrate with a spin coater.
  • Example 1-14 Coating liquid 1-1
  • Example 1-15 Coating liquid 1-2
  • Example 1-16 Coating liquid 1-3
  • Example 1-17 Coating liquid 1-4
  • Example 1-18 Coating liquid 1-5
  • Example 1-19 Coating liquid 1-6
  • Example 2-25 Coating liquid 2-1.
  • Example 2-26 Coating liquid 2-2
  • Example 2-27 Coating liquid 2-3
  • Example 2-28 Coating liquid 2-4
  • Example 2-29 Coating liquid 2-5
  • Example 2-30 Coating liquid 2-6
  • Example 2-35 Coating liquid 2-11
  • Example 2-36 Coating liquid 2-12
  • the substrate was dried on a hot plate heated to 120 ° C. for 10 minutes, then baked at 400 ° C. for 1 hour in the air atmosphere, and further annealed at 300 ° C. for 1 hour in the air atmosphere to obtain a gate insulating layer.
  • the average thickness of the obtained gate insulating layer was about 150 nm.
  • an ITO film having a thickness of 100 nm was formed on the gate insulating layer by a DC magnetron sputtering method, and patterned by a photolithography method to form a source electrode and a drain electrode.
  • the channel width defined by the source and drain electrode length was 30 ⁇ m
  • the channel length defined by the source-drain electrode distance was 10 ⁇ m.
  • an IGZO film having a thickness of 20 nm was formed on the gate insulating layer by DC magnetron sputtering, patterned by photolithography, and the substrate was annealed at 300 ° C. for 1 hour in an air atmosphere to obtain an active layer. .
  • a field effect transistor was manufactured.
  • Example 3-1 A field effect transistor was produced in the same manner as in Example 1-14. However, a 200 nm thick SiO 2 film was formed as the gate insulating layer by RF magnetron sputtering.
  • Ids is 1E-04A, and no more current value is measured.
  • the off-current value is very good below the measurement limit (up to 1 fA).
  • is about 10 fA, which indicates that the insulating property of the gate insulating film of the present invention is very high. The results are shown in Table 6.
  • a field effect transistor using a body as a gate insulating layer has high carrier mobility and a large on / off ratio even at a process temperature of about 400 ° C., and exhibits good transistor characteristics.
  • [NA + NB] / [NA + NB + NC] satisfies the above formula (1), the relative dielectric constant and dielectric loss of the gate insulating layer are very suitable for those required for the gate insulating layer of the field effect transistor, and the carrier mobility is It was very high and the on / off ratio was very large, showing very good transistor characteristics.
  • Comparative Example 3-1 The characteristics of the field effect transistor of Comparative Example 3-1 are shown in FIG. In Comparative Example 3-1, the TFT characteristics were in a strong depletion state, and Von was not clearly observed. In addition,
  • the field effect transistor produced in the present invention is suitable for expanding the process margin and stabilizing the TFT characteristics at a high level.
  • the display element of the present invention is suitable for high-speed driving, reducing variations between elements, and improving reliability.
  • the image display device of the present invention is suitable for displaying a high-quality image on a large screen.
  • the system of the present invention can display image information with high definition and can be suitably used for a television apparatus, a computer system, and the like.
  • the element A is at least one selected from the group consisting of Sc, Y, Ln (lanthanoid), Sb, Bi and Te;
  • the B element is at least one selected from the group consisting of Ga, Ti, Zr and Hf;
  • the C element is at least one selected from the group consisting of Group 2 elements of the Periodic Table;
  • the solvent includes at least one selected from the group consisting of an organic solvent having a flash point of 21 ° C.
  • ⁇ 4> The oxide or oxynitride insulation according to any one of ⁇ 1> to ⁇ 3>, wherein the element A is at least one selected from the group consisting of Sc, Y, and Ln (lanthanoid) It is a coating solution for forming a body film.
  • ⁇ 5> The oxide or oxynitride insulator film formation according to any one of ⁇ 1> to ⁇ 4>, wherein the element A is at least one selected from the group consisting of Sb, Bi, and Te. Coating solution.
  • ⁇ 6> The oxide or oxynitride insulator film formation according to any one of ⁇ 1> to ⁇ 5>, wherein the B element is at least one selected from the group consisting of Ti, Zr, and Hf Coating solution.
  • the C element is at least one selected from the group consisting of Mg, Ca, Sr, and Ba It is a coating liquid for film formation.
  • the total number of atoms of the A element (NA), the total number of atoms of the B element (NB), and the total number of atoms of the C element (NC) are expressed by the following formula (1):
  • the element A-containing compound containing the element A is dissolved in the solvent,
  • the element A-containing compound is at least one selected from the group consisting of inorganic salts, oxides, hydroxides, organic acid salts, metal alkoxides, organic metals, and metal complexes.
  • the element A-containing compound containing the element A and the element B-containing compound containing the element B are dissolved in the solvent,
  • the element A-containing compound is at least one selected from the group consisting of inorganic salts, oxides, hydroxides, organic acid salts, metal alkoxides, organic metals, and metal complexes
  • the B-element-containing compound is at least one selected from the group consisting of inorganic salts, oxides, hydroxides, organic acid salts, metal alkoxides, organic metals, and metal complexes.
  • the element A-containing compound containing the element A, the element B-containing compound containing the element B, and the element C-containing compound containing the element C are dissolved in the solvent.
  • the element A-containing compound is at least one selected from the group consisting of inorganic salts, oxides, hydroxides, organic acid salts, metal alkoxides, organic metals, and metal complexes
  • the B element-containing compound is at least one selected from the group consisting of inorganic salts, oxides, hydroxides, organic acid salts, metal alkoxides, organic metals, and metal complexes
  • the C-element-containing compound is at least one selected from the group consisting of inorganic salts, oxides, hydroxides, organic acid salts, metal alkoxides, organic metals, and metal complexes.
  • the solvent is at least one selected from the group consisting of organic acids, organic acid esters, aromatic compounds, diols, glycol ethers, aprotic polar solvents, alkane compounds, alkene compounds, ether compounds, and alcohols.
  • the oxide or oxynitride insulator film-forming coating solution according to any one of ⁇ 1> to ⁇ 18> is applied to an object to be coated, dried, and then fired.
  • the oxide or oxynitride insulator film-forming coating solution according to any one of ⁇ 1> to ⁇ 18> is applied on the gate electrode layer to form an oxide insulator or A method of manufacturing a field-effect transistor, which is a step of forming the gate insulating layer made of an oxynitride insulator.
  • the oxide or oxynitride insulator film forming coating solution according to any one of ⁇ 1> to ⁇ 18> is applied to form an oxide insulator or oxynitride insulator.
  • an active layer forming step of forming an active layer made of a semiconductor A gate insulating layer forming step of forming a gate insulating layer on the active layer; Forming a gate electrode on the gate insulating layer; and Forming an interlayer insulating layer on the gate electrode; Forming a through hole in the gate insulating layer or interlayer insulating layer; Forming a source electrode and a drain electrode on the interlayer insulating layer; Including In the gate insulating layer forming step, the oxide or oxynitride insulator film forming coating solution according to any one of ⁇ 1> to ⁇ 18> is applied to form an oxide insulator or oxynitride insulator.
  • a method of manufacturing a field effect transistor which is a step of forming the gate insulating layer.
  • the total number (NA) of atoms of the A element and the number of atoms of the B element in the coating solution for forming the oxide or oxynitride insulator film The relative dielectric constant and dielectric loss of the oxide insulator or oxynitride insulator are controlled by adjusting the total (NB) and the total number (NC) of atoms of the C element.
  • NB total
  • NC total number
  • An oxide or oxynitride insulator film which is a fired product of the coating solution for forming an oxide or oxynitride insulator film according to any one of ⁇ 1> to ⁇ 18> is there.
  • the oxide or oxynitride insulator film according to ⁇ 24> which does not have a light absorption band due to electron transition in a visible light region or a near infrared region.
  • a semiconductor element comprising the oxide or oxynitride insulator film according to any one of ⁇ 24> to ⁇ 25>.
  • ⁇ 27> a gate electrode for applying a gate voltage; A source electrode and a drain electrode; An active layer made of a semiconductor film formed between the source electrode and the drain electrode; A gate insulating layer formed between the gate electrode and the active layer; Have The field-effect transistor is characterized in that the gate insulating layer is the oxide or oxynitride insulator film according to any one of ⁇ 24> to ⁇ 25>.
  • ⁇ 28> The field effect transistor according to ⁇ 27>, wherein the active layer is an oxide semiconductor.
  • ⁇ 29> The field effect transistor according to ⁇ 27>, wherein the active layer is amorphous silicon.
  • the active layer is low-temperature polysilicon.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Thin Film Transistor (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

酸化物又は酸窒化物絶縁体膜形成用塗布液であって、 第A元素と、第B元素及び第C元素の少なくともいずれかと、溶媒と、を含有し、 前記第A元素が、Sc、Y、Ln(ランタノイド)、Sb、Bi及びTeからなる群から選択される少なくとも1種であり、 前記第B元素が、Ga、Ti、Zr及びHfからなる群から選択される少なくとも1種であり、 前記第C元素が、周期表の第2族元素からなる群から選択される少なくとも1種であり、 前記溶媒が、引火点が21℃以上200℃未満である有機溶媒、及び水からなる群から選択される少なくとも1種を含む、酸化物又は酸窒化物絶縁体膜形成用塗布液である。

Description

酸化物又は酸窒化物絶縁体膜形成用塗布液、酸化物又は酸窒化物絶縁体膜、電界効果型トランジスタ、及びそれらの製造方法
 本発明は、酸化物又は酸窒化物絶縁体膜形成用塗布液、酸化物又は酸窒化物絶縁体膜、電界効果型トランジスタ、及びそれらの製造方法に関する。
 近年、フラットパネルディスプレイはアクティブマトリックス薄膜トランジスタ(AM-TFT)をバックプレーンとする液晶ディスプレイ(LCD)又は有機ELディスプレイが主流となっている。TFTに使用される半導体としては、アモルファスシリコン(a-Si)、低温ポリシリコン(LTPS)、及びIn-Ga-Zn-O(IGZO)系の酸化物半導体の3種類に大別できるが、TFTの性能を大きく左右するゲート絶縁膜に関しては、SiO、SiON、又はSiNのシリコン系材料概ね限定される(例えば、非特許文献1参照)。
 このようなゲート絶縁膜の形成方法としては、化学気相蒸着法(CVD)や原子層堆積(ALD)などの真空プロセスが一般的である。
 しかし、これらの真空プロセスは、複雑で高価な装置や原料ガスに対する安全対策等を必要とし、プロセスコストが高いという問題がある。また、原料ガスの制約から絶縁膜の組成や物性を自由に制御することは困難であった。
 そこで近年、簡易で低コスト化が可能な液相法が注目されている。代表的なケイ素化合物としてヘキサメチルシラザンが検討されているが、引火点は14.1℃と低く、また、大気中の水分と反応してアンモニアガスを発生するなど、安全性や量産プロセスへの適用には問題がある(例えば、特許文献1参照)。
 したがって、所望の高い比誘電率を有する酸化物絶縁体膜又は酸窒化物絶縁体膜を、安全に低プロセス温度で簡便かつ大面積に作製できる酸化物又は窒化物絶縁体膜形成用塗布液の提供が求められているのが現状である。
特開2008-159824号公報
Thin-Film Transistors,Cherie R. Kagan, Paul Andry,CRC Press (2003/2/25)
 本発明は、リーク電流が低く、所望の高い比誘電率を有する酸化物絶縁体膜又は酸窒化物絶縁体膜を、安全に低プロセス温度で簡便かつ大面積に作製できる酸化物又は窒化物絶縁体膜形成用塗布液を提供することを目的とする。
 前記課題を解決するための手段としては、以下の通りである。即ち、
 本発明の酸化物又は酸窒化物絶縁体膜形成用塗布液は、
 第A元素と、
 第B元素及び第C元素の少なくともいずれかと、
 溶媒と、
を含有し、
 前記第A元素が、Sc、Y、Ln(ランタノイド)、Sb、Bi及びTeからなる群から選択される少なくとも1種であり、
 前記第B元素が、Ga、Ti、Zr及びHfからなる群から選択される少なくとも1種であり、
 前記第C元素が、周期表の第2族元素からなる群から選択される少なくとも1種であり、
 前記溶媒が、引火点が21℃以上200℃未満である有機溶媒、及び水からなる群から選択される少なくとも1種を含む、
ことを特徴とする。
 本発明によると、リーク電流が低く、所望の高い比誘電率を有する酸化物絶縁体膜又は酸窒化物絶縁体膜を、安全に低プロセス温度で簡便かつ大面積に作製できる酸化物又は窒化物絶縁体膜形成用塗布液を提供することができる。
図1は、ボトムゲート/ボトムコンタクトの電界効果型トランジスタの一例を示す概略構成図である。 図2は、ボトムゲート/トップコンタクトの電界効果型トランジスタの一例を示す概略構成図である。 図3は、トップゲート/ボトムコンタクトの電界効果型トランジスタの一例を示す概略構成図である。 図4は、トップゲート/トップコンタクトの電界効果型トランジスタの一例を示す概略構成図である。 図5Aは、本発明の電界効果型トランジスタの製造方法の一例を示す図である(その1)。 図5Bは、本発明の電界効果型トランジスタの製造方法の一例を示す図である(その2)。 図5Cは、本発明の電界効果型トランジスタの製造方法の一例を示す図である(その3)。 図5Dは、本発明の電界効果型トランジスタの製造方法の一例を示す図である(その4)。 図6は、トップゲート/ILDの電界効果型トランジスタの一例を示す概略構成図である。 図7は、実施例1-13で作製した酸化物絶縁体膜又は酸窒化物絶縁体膜の比誘電率及び誘電損失の周波数依存性を示すグラフである。 図8は、実施例2-29で作製した電界効果型トランジスタのゲート電圧Vgsに対するソース・ドレイン間電流Ids及びゲート電流の絶対値|Igs|の関係を示すグラフである。 図9は、比較例3-1で作製した電界効果型トランジスタのゲート電圧Vgsに対するソース・ドレイン間電流Ids及びゲート電流の絶対値|Igs|の関係を示すグラフである
(酸化物又は酸窒化物絶縁体膜形成用塗布液)
 本発明の酸化物又は酸窒化物絶縁体膜形成用塗布液(以下、「本塗布液」と称することがある。)は、第A元素と、第B元素及び第C元素の少なくともいずれかと、溶媒とを少なくとも含有し、更に必要に応じて、その他の成分を含有する。
 前記第A元素は、Sc、Y、Ln(ランタノイド)、Sb、Bi及びTeからなる群から選択される少なくとも1種である。
 前記第B元素は、Ga、Ti、Zr及びHfからなる群から選択される少なくとも1種である。
 前記第C元素は、周期表の第2族元素からなる群から選択される少なくとも1種である。
 前記溶媒は、引火点が21℃以上200℃未満である有機溶媒、及び水からなる群から選択される少なくとも1種を含む。
 また、本発明の他の態様の酸化物又は酸窒化物絶縁体膜形成用塗布液は、第A元素と、第B元素及び第C元素の少なくともいずれかとを少なくとも含有し、更に必要に応じて、その他の成分を含有する。
 前記他の態様の塗布液は、リーク電流が低く、所望の高い比誘電率を有する酸化物絶縁体膜又は酸窒化物絶縁体膜を、低プロセス温度で簡便かつ大面積に作製できる。
 前記他の態様の塗布液に使用される溶媒の種類は特に限定されない。
 前記他の態様の塗布液は、前記本塗布液と同様に、酸化物又は酸窒化物絶縁体膜、電界効果型トランジスタ、半導体素子等の作製に利用できる。
 前記第A元素は、本塗布液の主たる構成要素であり、絶縁膜の主骨格を形成する。
 前記第B元素は、熱特性や比誘電率などの物性を調製する。
 前記第C元素は、網目修飾酸化物を構成し、構造柔軟性を与える。
 なお、本発明、及び本明細書において、「膜」と「層」とは、特に断りが無い限り、同じ意味である。例えば、絶縁膜と、絶縁層とは同じ意味である。
 前記酸化物又は酸窒化物絶縁体膜形成用塗布液は、前記第A元素を含む、無機塩、酸化物、水酸化物、有機酸塩、金属アルコキシド、有機金属、及び金属錯体類の少なくともいずれかと、前記第B元素及び前記第C元素の少なくともいずれかを含む、無機塩、酸化物、水酸化物、有機酸塩、金属アルコキシド、有機金属、及び金属錯体類の少なくともいずれかとを、前記溶媒に溶解させたものが好ましい。
 前記無機塩、前記酸化物、前記水酸化物、前記有機酸塩、前記金属アルコキシド、前記有機金属、及び前記金属錯体類は、前記溶媒中に均一に溶解すればよく、解離してイオンとなっていても構わない。
 前記無機塩、前記酸化物、前記水酸化物、前記有機酸塩、前記金属アルコキシド、前記有機金属、及び前記金属錯体類が、前記酸化物又は酸窒化物絶縁体膜形成用塗布液に溶解している場合には、前記酸化物又は酸窒化物絶縁体膜形成用塗布液中の濃度の偏析などが生じにくいため、前記酸化物又は酸窒化物絶縁体膜形成用塗布液は、長期の使用が可能である。またこの塗布液を用いて作製した薄膜も均一な組成であるためTFTのゲート絶縁層に用いた場合の特性均一性も良好である。
 ゲート絶縁層に対しては高い絶縁性(低リーク電流)と高い比誘電率が要求されるが、前記第A元素と、或いはまた、前記第B元素は本塗布液の主たる構成要素であり、本塗布液を用いて作製した酸化物絶縁体膜又は酸窒化物絶縁体膜は、高い比誘電率と低い誘電損失を実現する。
 前記本塗布液は、前記第C元素を含有することにより、得られる酸化物絶縁体膜又は酸窒化物絶縁体膜の構造の自由度が増し、絶縁体膜の物性の制御範囲を広げることができる。前記第C元素は、Be、Mg、Ca、Sr、及びBaの少なくともいずれかである。
 TFT特性としてはヒステリシスが無い事が要求されるが、本絶縁体膜は高絶縁性の常誘電体であり、高品質のTFT特性が得られる。
 組成と熱処理条件を制御することにより、アモルファス或いはまた微結晶状態の絶縁膜を形成可能で、更に低い誘電損失を実現する。
 ゲート絶縁層を構成する絶縁膜に対しては前述のように高い絶縁性(高抵抗)であることが要求されるが、そのためにはワイドバンドギャップであることが望ましい(好ましくは3eV以上)。
 従って、本塗布液及び本塗布液を用いて作製した酸化物又は酸窒化物絶縁体膜は可視光領域或いはまた近赤外領域に電子遷移による光吸収帯を有しない。そのためには、本塗布液及び本塗布液を用いて作製した酸化物又は酸窒化物絶縁体膜は、不純物(数モル%程度)以外に第5~11族の遷移金属元素を含有しない。これらの元素は開殻系の電子状態を取りやすく、前記波長領域にd-d遷移による吸収帯を生じる。故に絶縁体を構成する元素としては不適切である。一方、一部のランタノイド元素は可視光領域或いはまた近赤外領域に狭い吸収帯を持つが、この吸収は原子上に孤立したf-f遷移であるので絶縁性は保たれることから、本塗布液及び本塗布液を用いて作製した酸化物又は酸窒化物絶縁体膜に前記ランタノイド元素が含有されていてもよい。
 SiやAlを主成分にしてアモルファス性を高めて高い絶縁性を実現する手法が従来取られていたが、高誘電率を実現するためには好ましくない。本塗布液及び本塗布液を用いて作製した酸化物又は酸窒化物絶縁体膜に於ける主たる構成要素である第A元素は、第4周期、第5周期、及び第6周期の元素の少なくともいずれかであることが好ましい。第A元素はs、p、及びd軌道閉殻系であるので、高誘電率と低誘電損失を同時に実現できる。
 本発明の前記絶縁膜の体積抵抗率は、好ましくは10Ωcm以上であり、より好ましくは1010Ωcm以上である。
 本発明の前記絶縁膜をゲート絶縁膜として有する電界効果型トランジスタのゲート電流は、好ましくは1nA以下であり、より好ましくは1pA以下であり、更により好ましくは100fA以下である。
 前記本塗布液が前記第C元素を含有する場合でも、前記第A元素或いはまた前記第B元素は前記本塗布液の主たる構成要素である。その点で、前記第A元素の原子数の合計(NA)と、前記第B元素の原子数の合計(NB)と、前記第C元素の原子数の合計(NC)とが、下記式(1)を満たすことが好ましい。
  (NA+NB)/(NA+NB+NC)≧0.5  式(1)
 更に好ましくは、前記第A元素の原子数の合計(NA)と、前記第B元素の原子数の合計(NB)と、前記第C元素の原子数の合計(NC)とが、下記式(2)を満たすことである。
  NA/(NA+NB+NC)≧0.5  式(2)
 さらに、前記第B元素の原子数の合計(NB)と、前記第C元素の原子数の合計(NC)とが、下記式(3)を満たすことが好ましい。
  NB>NC 式(3)
 前記酸化物又は酸窒化物絶縁体膜形成用塗布液を用いることで、所望の比誘電率と誘電損失を有する酸化物絶縁体膜又は酸窒化物絶縁体膜を得ることができる。
 なお、前記酸化物又は酸窒化物絶縁体膜形成用塗布液は、その条件、具体的には溶解させる溶媒の種類、組成、濃度によっても、得られる酸化物絶縁体膜又は酸窒化物絶縁体膜の比誘電率と誘電損失を制御することが可能である。また、前記本塗布後の熱処理条件、より具体的には、焼成温度、焼成時間、昇温速度、降温速度、焼成中の雰囲気(ガス分率及び圧力)などによっても比誘電率と誘電損失を制御することができる。
 更に光による原料分解及び反応の促進効果を利用することができる。また、膜を形成した後のアニールによっても比誘電率と誘電損失は変化するため、アニール温度や雰囲気を最適化する方法も有効である。
 スパッタリング法やレーザーアブレーション法などでは、ターゲットの組成を均一にすることは困難で、特に組成によってはターゲットを作製すること自体が困難な場合があった。また、元素毎のスパッタ効率も異なるためターゲットライフ期間内で組成を均一に保つことも困難であった。更には、真空プロセスを使用するため膜中の酸素欠損量を減少させることは困難であり、このことは特性の不安定さに繋がっていた。
 前記酸化物又は酸窒化物絶縁体膜形成用塗布液を用いることで、前記真空プロセスにおける問題点は解決し、均一で安定な組成の酸化物絶縁体膜又は酸窒化物絶縁体膜の製造が可能になり、ひいては安定した高性能なTFTの製造が可能になった。
 前記第A元素としては、Sc、Y、Ln(ランタノイド)、Sb、Bi及びTeが挙げられる。前記第A元素としては、例えば、Sc、Y及びLn(ランタノイド)からなる群から選択される少なくとも1種が挙げられる。また、前記第A元素としては、例えば、Sb、Bi及びTeからなる群から選択される少なくとも1種などが挙げられる。これらのなかでも、安全性や量産性、物性的観点から周期表の第3族元素が好ましく、Sc、Y、La、Ce、Gd、及びLuなどが特に好ましい。
 前記第B元素としては、Ga、Ti、Zr、及びHfが挙げられるが、量産性、物性的観点からTi、Zr、及びHfからなる群から選択される少なくとも1種が好ましく、Zr、及びHfの少なくともいずれかが特に好ましい。
 前記第C元素は、周期表の第2族元素からなる群から選択される少なくとも1種である。
 前記第2族元素としてはBe、Mg、Ca、Sr、Ba及びRaが挙げられるが、安全性や量産性の観点からMg、Ca、Sr及びBaからなる群から選択される少なくとも1種がより好ましい。
 前記酸化物又は酸窒化物絶縁体膜形成用塗布液は、可視光領域で透明又は淡黄色であることが好ましい。
 更にまた、ゲート絶縁膜としてはリーク電流が低いことが要求される。AM-TFTの解像度にも依存するが、要求されるゲート電流値Igは例えば10pAオーダー以下である。要求を満たすには該酸化物又は酸窒化物膜の吸湿性及が低いこと、アモルファス性が高いこと、及びバンドギャップが大きいことが重要である。
 そして、要求を満たすには第3族元素の含有比率が高いことが好ましい。熱処理の結果として酸化物又は酸窒化物となる全金属元素数に対し、前記第3族元素の原子の総数(NA)は50%以上であることが、より好ましく、さらに75%以上であることがより好ましい。基本的には塗布液中の金属元素の比率が絶縁膜に於いて保存される様に熱処理することが好ましい。
 第2族元素(特にSr、Ba)の比率が高いと吸湿性が強くなり膜の絶縁性に悪影響があるため、前記式(1)乃至前記式(3)のようにNCの比率を低くする必要がある。一方、第2族元素と第3族元素、更に第4族元素を加えたで酸化物又は酸窒化物を形成した場合、アモルファス性高い組み合わせが存在し、多結晶膜の結晶粒界に起因するリーク電流を抑えることができる。結晶相の生成は熱処理プロセスに依存するため、要求されるプロセス条件に合わせて、塗布液の組成を適切に調整すれば良い。アモルファス膜中の一部にナノサイズの微結晶(電子線回折でスポットが観測される程度)が存在する場合もあるが、このような膜はアモルファス膜と同等の電気的光学的特性を有しており、アモルファス膜と見做すことができる。第13族元素(特にAlとGa)は第3族元素(特にLa)との間でペロブスカイト結晶を形成しやすいので、このような組み合わせは控えたほうが好ましい。第14族元素であるSiの添加は、アモルファス性を高めるが、比誘電率を下げるので好ましくない。
 前記第2族元素と第3族元素、更に第4族元素を加えた組み合わせによって得られる酸化物、又は酸窒化物は、基本的にバンドギャップが3eV以上、場合によっては5eV以上の絶縁体である。
 従って、本塗布液及び本塗布液を用いて作製した酸化物又は酸窒化物絶縁体膜は可視光領域或いはまた近赤外領域に電子遷移による光吸収帯を有しない。そのためには、本塗布液及び本塗布液を用いて作製した酸化物又は酸窒化物絶縁体膜は、不純物(数モル%程度)以外に第5~11族の遷移金属元素を含有しない。これらの元素は開殻系の電子状態を取りやすく、前記波長領域にd-d遷移による吸収帯を生じる。故に絶縁体を構成する元素としては不適切である。一方、一部のランタノイド元素は可視光領域或いはまた近赤外領域に狭い吸収帯を持つが、この吸収は原子上に孤立したf-f遷移であるので絶縁性は保たれることから、本塗布液及び本塗布液を用いて作製した酸化物又は酸窒化物絶縁体膜に前記ランタノイド元素が含有されていてもよい。
 前記第A元素、前記第B元素、及び前記第C元素は化合物またはイオンとして前記溶媒に溶解しているが、塗布後、所定の熱処理により酸化物又は酸窒化物絶縁膜が得られる。前記第A元素、前記第B元素、及び前記第C元素をそれぞれ含有する化合物や対の陰イオン及び溶媒は前記熱処理によって揮発、又は雰囲気中の酸素などによりCO、NO、HOなどの低分子へと酸化・分解し、前記酸化物又は前記酸窒化物以外は膜外へ放出される。
 更に、本発明の塗布液は、本塗布液の引火点が37.8℃(華氏100度)以上であることが好ましい。更に好ましくは引火点が40℃以上である。引火点の上限値としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、100℃であってもよいし、150℃であってもよいし、190℃であってもよい。
 なお、前記塗布液の引火点は、たとえば輸送時の温度上昇を考慮すると50℃以上が特に好ましい。
 引火点が室温程度以下であると、常温で揮発して空気と可燃性の混合物を作ることができるようになり、点火源があると引火して燃焼してしまい、危険である。引火点が40℃以上であれば、一般的なTFTの製造環境より充分高いので、安全に取り扱うことができる。
 そのために、前記塗布液は、前記溶媒として、引火点が21℃以上200℃未満である有機溶媒、及び水からなる群から選択される少なくとも1種を含有する。
 本発明の塗布液は、引火点が21℃未満の溶媒を含有しないことが好ましい。
 本発明の塗布液は、ジエチルエーテルなどの特殊引火物、アセトン、トルエンなどの第1石油類、炭素数1~3のアルコール類を含有しないことが好ましい。ここで、「含有しない」とは、不可避的に含まれることを排除するものではない。
 前記塗布液において、引火点が21℃以上200℃未満である有機溶媒、及び水からなる群から選択される溶媒の含有量としては、85体積%~100体積%が好ましく、90体積%~100体積%がより好ましく、95体積%~100体積%が特に好ましい。
 また、前記塗布液において、引火点が21℃以上200℃未満である有機溶媒以外の有機溶媒の含有量としては、15体積%以下が好ましく、10体積%以下がより好ましく、5体積%以下が特に好ましい。
 ここで、引火点が21℃以上200℃未満である有機溶媒以外の有機溶媒としては、例えば、引火点が21℃未満の有機溶媒、引火点が200℃以上の有機溶媒などが挙げられる。
 なお、有機溶媒の密度は、概ね0.75~1.15の範囲内にあるので、重量%の場合は、上記体積%に上記密度を勘案した範囲となる。
 更に本発明の塗布液は、溶媒として、第2石油類(引火点は20℃以上70℃未満)、第3石油類(引火点は70℃以上200℃未満)、及び水の少なくとも2種類以上を含有することが好ましい。
 第2石油類の中には、引火点が40℃未満の溶媒も存在するが、第3石油類、又は水との適切な混合により、該塗布液の引火点を37.8℃以上、更には40℃以上にすることができる。
 更には、第2石油類、第3石油類、及び水の少なくとも2種類以上を適切に選択し混合、含有することによって、本塗布液の粘度や表面張力を調整し、安全性を維持しながら所望の塗膜性を得ることができる。
 また、第4石油類(引火点は200℃以上250℃未満)は、引火点が高く安全性からは好ましいが、沸点が高い(一般的には350℃以上)ため、焼成後にも溶媒由来の炭化水素系の不純物が膜中に残留しやすく、本発明の溶媒としては好ましくない。
 ここで、前記特殊引火物、前記第1石油類、前記第2石油類、前記第3石油類、及び前記第4石油類は、それぞれ以下のように定義される用語である。
 前記特殊引火物とは、日本の消防法上の第4類危険物、特殊引火物に該当する品目を集めたカテゴリであり、1気圧において、発火点が100℃以下のもの又は引火点が零下20℃以下で沸点が40℃以下のものをいう。
 前記第1石油類とは、日本の消防法上の第4類危険物、第1石油類(1気圧において引火点21℃未満の液体)に該当する品目を集めたカテゴリである。
 前記第2石油類とは、日本の消防法上の第4類危険物、第2石油類(1気圧において引火点21℃以上70℃未満の液体)に該当する品目を集めたカテゴリである。
 前記第3石油類とは、日本の消防法上の第4類危険物、第3石油類(引火点70℃以上200℃未満の液体)に該当する品目を集めたカテゴリである。
 前記第4石油類とは、日本の消防法上の第4類危険物、第4石油類(引火点200℃以上250℃未満の液体)に該当する品目を集めたカテゴリである。
 そして、前記引火点は、ISO 3679:2004、又はJIS K 2265-2:2007に基づくセタ密閉式(迅速平衡密閉法)により測定される。
 前記第2石油類(1気圧において引火点21℃以上70℃未満の液体)としては、例えば、以下の溶媒が挙げられる。
 ・n-デカン : 引火点46℃
 ・アセチルアセトン : 引火点34℃
 ・p-キシレン : 引火点27℃
 ・メシチレン(1,3,5-Trimethylbenzene) : 引火点50℃
 ・デカヒドロナフタレン(デカリン) : 引火点58℃
 ・プロピレングリコール1-モノメチルエーテル : 引火点32℃
 ・エチレングリコールモノメチルエーテル : 引火点42℃
 ・エチレングリコールモノイソプロピルエーテル : 引火点46℃
 ・N,N-ジメチルホルムアミド : 引火点58℃
 ・N,N-ジメチルアセトアミド : 引火点63℃
 ・1-ブタノール : 引火点37℃
 ・シクロペンタノール : 引火点47℃
 ・1-ペンタノール : 引火点43℃
 ・イソペンタノール : 引火点46℃
 ・1-ヘキサノール : 引火点63℃
 前記第3石油類(1気圧において引火点70℃以上200℃未満の液体)としては、例えば、以下の溶媒が挙げられる。
 ・オクチル酸 : 引火点118℃
 ・シクロヘキシルベンゼン : 引火点99℃
 ・γ-ブチロラクトン : 引火点98℃
 ・エチレングリコール : 引火点111℃
 ・プロピレングリコール : 引火点99℃
 ・ホルムアミド : 引火点120℃
 ・1,3-ジメチル-2-イミダゾリジノン : 引火点107℃
 ・1,3-ジメチル-3,4,5,6-テトラヒドロ-2(1H)-ピリミジノン : 引火点121℃
 前記第4石油類(1気圧において引火点200℃以上250℃未満の液体)としては、例えば、以下の溶媒が挙げられる。
 ・フタル酸ジオクチル : 引火点 218℃
 ・フタル酸ベンジルブチル : 引火点213℃
 以下、前記酸化物又は酸窒化物絶縁体膜形成用塗布液についてより詳細に説明する。
 前記酸化物又は酸窒化物絶縁体膜形成用塗布液は、例えば、前記第A元素を含有する第A元素含有化合物と、前記第B元素を含有する第B元素含有化合物と、前記第C元素を含有する第C元素含有化合物とが、前記溶媒に溶解されてなる。
 前記第A元素含有化合物としては、例えば、無機塩、酸化物、水酸化物、有機酸塩、金属アルコキシド、有機金属、金属錯体類などが挙げられる。
 前記第B元素含有化合物としては、例えば、無機塩、酸化物、水酸化物、有機酸塩、金属アルコキシド、有機金属、金属錯体類などが挙げられる。
 前記第C元素含有化合物としては、例えば、無機塩、酸化物、水酸化物、有機酸塩、金属アルコキシド、有機金属、金属錯体類などが挙げられる。
 以下、上記化合物について個別に説明する。
<<スカンジウム含有化合物>>
 スカンジウム(Sc)は、前記第A元素に属する。
 前記スカンジウム含有化合物は、前記第A元素含有化合物に属する。
 前記スカンジウム含有化合物としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、有機スカンジウム化合物、無機スカンジウム化合物などが挙げられる。
-有機スカンジウム化合物-
 前記有機スカンジウム化合物としては、スカンジウムと、有機基とを有する化合物であれば、特に制限はなく、目的に応じて適宜選択することができる。前記スカンジウムと前記有機基とは、例えば、イオン結合、共有結合、又は配位結合で結合している。
 前記有機基としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、置換基を有していてもよいアルコキシ基、置換基を有していてもよいアシルオキシ基、置換基を有していてもよいアセチルアセトナート基などが挙げられる。
 前記アルコキシ基としては、例えば、炭素数1~6のアルコキシ基などが挙げられる。
 前記アシルオキシ基としては、例えば、炭素数1~10のアシルオキシ基などが挙げられる。
 前記置換基としては、例えば、ハロゲン、テトラヒドロフリル基などが挙げられる。
 前記有機スカンジウム化合物としては、例えば、2-エチルヘキサン酸スカンジウム、スカンジウムイソプロポキシド、スカンジウムアセチルアセトナートなどが挙げられる。
-無機スカンジウム化合物-
 前記無機スカンジウム化合物としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、オキソ酸スカンジウム、ハロゲン化スカンジウムなどが挙げられる。
 前記オキソ酸スカンジウムとしては、例えば、硝酸スカンジウム、炭酸スカンジウムなどが挙げられる。
 前記ハロゲン化スカンジウムとしては、フッ化スカンジウム、塩化スカンジウム、臭化スカンジウム、沃化スカンジウムなどが挙げられる。
 これらの中でも、各種溶媒に対する溶解度が高い点で、オキソ酸スカンジウム、ハロゲン化スカンジウムが好ましく、硝酸スカンジウム、塩化スカンジウムがより好ましい。
 前記硝酸スカンジウムとしては、特に制限はなく、目的に応じて適宜選択することができ、例えば、硝酸スカンジウムの水和物などが挙げられる。前記硝酸スカンジウムの水和物としては、例えば、硝酸スカンジウム五水和物などが挙げられる。
 前記塩化スカンジウムとしては、特に制限はなく、目的に応じて適宜選択することができ、例えば、塩化スカンジウムの無水物あるいは水和物などが挙げられる。前記塩化スカンジウムの水和物としては、例えば、塩化スカンジウム六水和物などが挙げられる。
 これらのスカンジウム含有化合物は、合成したものを用いてもよいし、市販品を用いてもよい。
<<イットリウム含有化合物>>
 イットリウム(Y)は、前記第A元素に属する。
 前記イットリウム含有化合物は、前記第A元素含有化合物に属する。
 前記イットリウム含有化合物としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、有機イットリウム化合物、無機イットリウム化合物などが挙げられる。
-有機イットリウム化合物-
 前記有機イットリウム化合物としては、イットリウムと、有機基とを有する化合物であれば、特に制限はなく、目的に応じて適宜選択することができる。前記イットリウムと前記有機基とは、例えば、イオン結合、共有結合、又は配位結合で結合している。
 前記有機基としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、前記有機スカンジウム化合物の説明において例示した前記有機基などが挙げられる。
 前記有機イットリウム化合物としては、例えば、2-エチルヘキサン酸イットリウム、イットリウムイソプロポキシド、イットリウムアセチルアセトナートなどが挙げられる。
-無機イットリウム化合物-
 前記無機イットリウム化合物としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、オキソ酸イットリウム、ハロゲン化イットリウムなどが挙げられる。
 前記オキソ酸イットリウムとしては、例えば、硝酸イットリウム、硫酸イットリウム、炭酸イットリウム、燐酸イットリウムなどが挙げられる。
 前記ハロゲン化イットリウムとしては、例えば、フッ化イットリウム、塩化イットリウム、臭化イットリウム、沃化イットリウムなどが挙げられる。
 これらの中でも、各種溶媒に対する溶解度が高い点で、オキソ酸イットリウム、ハロゲン化イットリウムが好ましく、硝酸イットリウム、塩化イットリウムがより好ましい。
 前記硝酸イットリウムとしては、特に制限はなく、目的に応じて適宜選択することができ、例えば、硝酸イットリウムの水和物などが挙げられる。前記硝酸イットリウムの水和物としては、例えば、硝酸イットリウム六水和物などが挙げられる。
 前記塩化イットリウムとしては、特に制限はなく、目的に応じて適宜選択することができ、例えば、無水塩化イットリウム、塩化イットリウムの水和物などが挙げられる。前記塩化イットリウムの水和物としては、例えば、塩化イットリウム六水和物などが挙げられる。
 これらのイットリウム含有化合物は、合成したものを用いてもよいし、市販品を用いてもよい。
<<ランタノイド含有化合物>>
 ランタノイド(Ln)は、前記第A元素に属する。
 前記ランタノイド含有化合物は、前記第A元素含有化合物に属する。
 前記ランタノイド含有化合物を代表して、その一例であるランタン含有化合物、セリウム含有化合物、ルテチウム含有化合物を説明する。
<<<ランタン含有化合物>>>
 ランタン(La)は、ランタノイド(Ln)の一例である。
 ランタン(La)は、前記第A元素に属する。
 前記ランタン含有化合物は、前記第A元素含有化合物に属する。
 前記ランタン含有化合物としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、有機ランタン化合物、無機ランタン化合物などが挙げられる。
-有機ランタン化合物-
 前記有機ランタン化合物としては、ランタンと、有機基とを有する化合物であれば、特に制限はなく、目的に応じて適宜選択することができる。前記ランタンと前記有機基とは、例えば、イオン結合、共有結合、又は配位結合で結合している。
 前記有機基としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、前記有機スカンジウム化合物の説明において例示した前記有機基などが挙げられる。
 前記有機ランタン化合物としては、例えば、2-エチルヘキサン酸ランタン、ランタンイソプロポキシド、ランタンアセチルアセトナートなどが挙げられる。
-無機ランタン化合物-
 前記無機ランタン化合物としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、オキソ酸ランタン、ハロゲン化ランタンなどが挙げられる。
 前記オキソ酸ランタンとしては、例えば、硝酸ランタン、硫酸ランタン、炭酸ランタン、燐酸ランタンなどが挙げられる。
 前記ハロゲン化ランタンとしては、例えば、フッ化ランタン、塩化ランタン、臭化ランタン、沃化ランタンなどが挙げられる。
 これらの中でも、各種溶媒に対する溶解度が高い点で、オキソ酸ランタン、ハロゲン化ランタンが好ましく、硝酸ランタン、塩化ランタンがより好ましい。
 前記硝酸ランタンとしては、特に制限はなく、目的に応じて適宜選択することができ、例えば、硝酸ランタンの水和物などが挙げられる。前記硝酸ランタンの水和物としては、例えば、硝酸ランタン四水和物、硝酸ランタン六水和物などが挙げられる。
 前記塩化ランタンとしては、特に制限はなく、目的に応じて適宜選択することができ、例えば、無水塩化ランタン、塩化ランタンの水和物などが挙げられる。前記塩化ランタンの水和物としては、例えば、塩化ランタン七水和物などが挙げられる。
 これらのランタン含有化合物は、合成したものを用いてもよいし、市販品を用いてもよい。
<<<セリウム含有化合物>>>
 セリウム(Ce)は、ランタノイド(Ln)の一例である。
 セリウム(Ce)は、前記第A元素に属する。
 前記セリウム含有化合物は、前記第A元素含有化合物に属する。
 前記セリウム含有化合物としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、有機セリウム化合物、無機セリウム化合物などが挙げられる。
-有機セリウム化合物-
 前記有機セリウム化合物としては、セリウムと、有機基とを有する化合物であれば、特に制限はなく、目的に応じて適宜選択することができる。前記セリウムと前記有機基とは、例えば、イオン結合、共有結合、又は配位結合で結合している。
 前記有機基としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、前記有機スカンジウム化合物の説明において例示した前記有機基などが挙げられる。
 前記有機セリウム化合物としては、例えば、2-エチルヘキサン酸セリウム、セリウムイソプロポキシド、セリウムアセチルアセトナートなどが挙げられる。
-無機セリウム化合物-
 前記無機セリウム化合物としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、オキソ酸セリウム、ハロゲン化セリウムなどが挙げられる。
 前記オキソ酸セリウムとしては、例えば、硝酸セリウム、硫酸セリウム、炭酸セリウム、シュウ酸セリウムなどが挙げられる。
 前記ハロゲン化セリウムとしては、例えば、フッ化セリウム、塩化セリウム、臭化セリウム、沃化セリウムなどが挙げられる。
 これらの中でも、各種溶媒に対する溶解度が高い点で、オキソ酸セリウム、ハロゲン化セリウムが好ましく、硝酸セリウム、塩化セリウムがより好ましい。
 前記硝酸セリウムとしては、特に制限はなく、目的に応じて適宜選択することができ、例えば、硝酸セリウムの水和物などが挙げられる。前記硝酸セリウムの水和物としては、例えば、硝酸セリウム六水和物などが挙げられる。
 前記塩化セリウムとしては、特に制限はなく、目的に応じて適宜選択することができ、例えば、無水塩化セリウム、塩化セリウムの水和物などが挙げられる。前記塩化セリウムの水和物としては、例えば、塩化セリウム七水和物などが挙げられる。
 これらのセリウム含有化合物は、合成したものを用いてもよいし、市販品を用いてもよい。
<<<ルテチウム含有化合物>>>
 ルテチウム(Lu)は、ランタノイド(Ln)の一例である。
 ルテチウム(Lu)は、前記第A元素に属する。
 前記ルテチウム含有化合物は、前記第A元素含有化合物に属する。
 前記ルテチウム含有化合物としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、有機ルテチウム化合物、無機ルテチウム化合物などが挙げられる。
-有機ルテチウム化合物-
 前記有機ルテチウム化合物としては、ルテチウムと、有機基とを有する化合物であれば、特に制限はなく、目的に応じて適宜選択することができる。前記ルテチウムと前記有機基とは、例えば、イオン結合、共有結合、又は配位結合で結合している。
 前記有機基としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、前記有機スカンジウム化合物の説明において例示した前記有機基などが挙げられる。
 前記有機ルテチウム化合物としては、例えば、2-エチルヘキサン酸ルテチウム、ルテチウムイソプロポキシド、ルテチウムアセチルアセトナートなどが挙げられる。
-無機ルテチウム化合物-
 前記無機ルテチウム化合物としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、オキソ酸ルテチウム、ハロゲン化ルテチウムなどが挙げられる。
 前記オキソ酸ルテチウムとしては、例えば、硝酸ルテチウム、硫酸ルテチウム、炭酸ルテチウム、シュウ酸ルテチウムなどが挙げられる。
 前記ハロゲン化ルテチウムとしては、例えば、フッ化ルテチウム、塩化ルテチウム、臭化ルテチウム、沃化ルテチウムなどが挙げられる。
 これらの中でも、各種溶媒に対する溶解度が高い点で、オキソ酸ルテチウム、ハロゲン化ルテチウムが好ましく、硝酸ルテチウム、塩化ルテチウムがより好ましい。
 前記硝酸ルテチウムとしては、特に制限はなく、目的に応じて適宜選択することができ、例えば、硝酸ルテチウムの水和物などが挙げられる。前記硝酸ルテチウムの水和物としては、例えば、硝酸ルテチウム六水和物などが挙げられる。
 前記塩化ルテチウムとしては、特に制限はなく、目的に応じて適宜選択することができ、例えば、無水塩化ルテチウム、塩化ルテチウムの水和物などが挙げられる。前記塩化ルテチウムの水和物としては、例えば、塩化ルテチウム六水和物などが挙げられる。
 これらのルテチウム含有化合物は、合成したものを用いてもよいし、市販品を用いてもよい。
<<ジルコニウム含有化合物>>
 ジルコニウム(Zr)は、前記第B元素に属する。
 前記ジルコニウム含有化合物は、前記第B元素含有化合物に属する。
 前記ジルコニウム含有化合物としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、有機ジルコニウム化合物、無機ジルコニウム化合物などが挙げられる。
-有機ジルコニウム化合物-
 前記有機ジルコニウム化合物としては、ジルコニウムと、有機基とを有する化合物であれば、特に制限はなく、目的に応じて適宜選択することができる。前記ジルコニウムと前記有機基とは、例えば、イオン結合、共有結合、又は配位結合で結合している。
 前記有機基としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、前記有機スカンジウム化合物の説明において例示した前記有機基などが挙げられる。
 前記有機ジルコニウム化合物としては、例えば、2-エチルヘキサン酸ジルコニウム、ジルコニウムイソプロポキシド、ジルコニウムアセチルアセトナートなどが挙げられる。
-無機ジルコニウム化合物-
 前記無機ジルコニウム化合物としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、オキソ酸ジルコニウム、ハロゲン化ジルコニウムなどが挙げられる。
 前記オキソ酸ジルコニウムとしては、例えば、硝酸酸化ジルコニウム、硫酸ジルコニウム、炭酸ジルコニウム、水酸化ジルコニウムなどが挙げられる。
 前記ハロゲン化ジルコニウムとしては、例えば、フッ化ジルコニウム、塩化ジルコニウム、臭化ジルコニウム、沃化ジルコニウムなどが挙げられる。
 これらの中でも、各種溶媒に対する溶解度が高い点で、オキソ酸ジルコニウム、ハロゲン化ジルコニウムが好ましく、硝酸酸化ジルコニウム、塩化ジルコニウムがより好ましい。
 前記硝酸酸化ジルコニウムとしては、特に制限はなく、目的に応じて適宜選択することができ、例えば、硝酸酸化ジルコニウムの水和物などが挙げられる。前記硝酸酸化ジルコニウムの水和物としては、例えば、硝酸酸化ジルコニウム二水和物などが挙げられる。
 前記塩化ジルコニウムとしては、特に制限はなく、目的に応じて適宜選択することができ、例えば、無水塩化ジルコニウム、塩化ジルコニル水和物などが挙げられる。
 これらのジルコニウム含有化合物は、合成したものを用いてもよいし、市販品を用いてもよい。
<<ハフニウム含有化合物>>
 ハフニウム(Hf)は、前記第B元素に属する。
 前記ハフニウム含有化合物は、前記第B元素含有化合物に属する。
 前記ハフニウム含有化合物としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、有機ハフニウム化合物、無機ハフニウム化合物などが挙げられる。
-有機ハフニウム化合物-
 前記有機ハフニウム化合物としては、ハフニウムと、有機基とを有する化合物であれば、特に制限はなく、目的に応じて適宜選択することができる。前記ハフニウムと前記有機基とは、例えば、イオン結合、共有結合、又は配位結合で結合している。
 前記有機基としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、前記有機スカンジウム化合物の説明において例示した前記有機基などが挙げられる。
 前記有機ハフニウム化合物としては、例えば、2-エチルヘキサン酸ハフニウム、ハフニウムブトキシド、ハフニウムアセチルアセトナートなどが挙げられる。
-無機ハフニウム化合物-
 前記無機ハフニウム化合物としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、オキソ酸ハフニウム、ハロゲン化ハフニウムなどが挙げられる。
 前記オキソ酸ハフニウムとしては、例えば、硫酸ハフニウムなどが挙げられる。
 前記ハロゲン化ハフニウムとしては、例えば、フッ化ハフニウム、塩化ハフニウム、臭化ハフニウム、沃化ハフニウムなどが挙げられる。
 これらの中でも、各種溶媒に対する溶解度が高い点で、オキソ酸ハフニウム、ハロゲン化ハフニウムが好ましく、硫酸ハフニウム、塩化ハフニウムがより好ましい。
 前記塩化ハフニウムとしては、特に制限はなく、目的に応じて適宜選択することができ、例えば、無水塩化ハフニウム、塩化ハフニウムテトラヒドロフラン錯体などが挙げられる。 
 これらのハフニウム含有化合物は、合成したものを用いてもよいし、市販品を用いてもよい。
<<ビスマス含有化合物>>
 ビスマス(Bi)は、前記第A元素に属する。
 前記ビスマス含有化合物は、前記第A元素含有化合物に属する。
 前記ビスマス含有化合物としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、有機ビスマス化合物、無機ビスマス化合物などが挙げられる。
-有機ビスマス化合物-
 前記有機ビスマス化合物としては、ビスマスと、有機基とを有する化合物であれば、特に制限はなく、目的に応じて適宜選択することができる。前記ビスマスと前記有機基とは、例えば、イオン結合、共有結合、又は配位結合で結合している。
 前記有機基としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、置換基を有していてもよいアルコキシ基、置換基を有していてもよいアシルオキシ基、置換基を有していてもよいアセチルアセトナート基などが挙げられる。前記アルコキシ基としては、例えば、炭素数1~6のアルコキシ基などが挙げられる。前記アシルオキシ基としては、例えば、炭素数1~10のアシルオキシ基などが挙げられる。
 前記置換基としては、例えば、ハロゲン、テトラヒドロフリル基などが挙げられる。
 前記有機ビスマス化合物としては、例えば、トリフェニルビスマス、2-エチルヘキサン酸ビスマス、ビスマスアセチルアセトナートなどが挙げられる。
-無機ビスマス化合物-
 前記無機ビスマス化合物としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、オキソ酸ビスマス、ハロゲン化ビスマス、水酸化ビスマスなどが挙げられる。
 前記オキソ酸ビスマスとしては、例えば、硝酸ビスマス、硫酸ビスマス、酢酸ビスマスなどが挙げられる。
 前記ハロゲン化ビスマスとしては、例えば、フッ化ビスマス、塩化ビスマス、臭化ビスマス、沃化ビスマスなどが挙げられる。
 これらの中でも、各種溶媒に対する溶解度が高い点で、オキソ酸ビスマス、ハロゲン化ビスマスが好ましく、硝酸ビスマス、塩化ビスマスがより好ましい。
 前記硝酸ビスマスとしては、特に制限はなく、目的に応じて適宜選択することができ、例えば、硝酸ビスマスの水和物などが挙げられる。前記硝酸ビスマスの水和物としては、例えば、硝酸ビスマス五水和物などが挙げられる。
 前記硫酸ビスマスとしては、特に制限はなく、目的に応じて適宜選択することができ、例えば、無水硫酸ビスマス、などが挙げられる。
 前記塩化ビスマスとしては、特に制限はなく、目的に応じて適宜選択することができ、例えば、無水塩化ビスマスなどが挙げられる。
 これらのビスマス含有化合物は、合成したものを用いてもよいし、市販品を用いてもよい。
<<チタン含有化合物>>
 チタン(Ti)は、前記第B元素に属する。
 前記チタン含有化合物は、前記第B元素含有化合物に属する。
 前記チタン含有化合物としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、有機チタン化合物、無機チタン化合物などが挙げられる。
-有機チタン化合物-
 前記有機チタン化合物としては、チタンと、有機基とを有する化合物であれば、特に制限はなく、目的に応じて適宜選択することができる。前記チタンと前記有機基とは、例えば、イオン結合、共有結合、又は配位結合で結合している。
 前記有機基としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、前記有機インジウム化合物の説明において例示した前記有機基などが挙げられる。
 前記有機チタン化合物としては、例えば、2-エチルヘキサン酸チタン、チタンイソプロポキシド、チタンアセチルアセトナートなどが挙げられる。
-無機チタン化合物-
 前記無機チタン化合物としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、オキソ酸チタン、ハロゲン化チタンなどが挙げられる。
 前記オキソ酸チタンとしては、例えば、硫酸チタン、硫酸酸化チタンなどが挙げられる。
 前記ハロゲン化チタンとしては、例えば、フッ化チタン、塩化チタン、臭化チタン、沃化チタンなどが挙げられる。
 これらの中でも、各種溶媒に対する溶解度が高い点で、オキソ酸チタン、ハロゲン化チタンが好ましく、硫酸チタン、塩化チタンがより好ましい。
 前記硫酸チタンとしては、特に制限はなく、目的に応じて適宜選択することができ、例えば、硫酸チタンの無水物などが挙げられる。
 前記塩化チタンとしては、特に制限はなく、目的に応じて適宜選択することができ、例えば、無水塩化チタンなどが挙げられる。
 これらのチタン含有化合物は、合成したものを用いてもよいし、市販品を用いてもよい。
 以上では、スカンジウム(Sc)、イットリウム(Y)、ランタノイド〔ランタン(La)、セリウム(Ce)、ルテリウム(Lu)〕、ジルコニウム(Zr)、ハフニウム(Hf)、ビスマス(Bi)、チタン(Ti)、に関し、それを含有する化合物について詳細に説明した。同様の説明が、例えば、アンチモン(Sb)、テルル(Te)、Ga(ガリウム)についても、当てはまる。
 前記第C元素は、Be、Mg、Ca、Sr、Ba及びRaの少なくともいずれかである。
 前記第C元素含有化合物は、前記第C元素を含有する。
 前記第C元素含有化合物としては、例えば、無機塩、酸化物、水酸化物、有機酸塩、金属アルコキシド、有機金属、金属錯体類などが挙げられる。
 前記第C元素含有化合物としては、例えば、有機アルカリ土類金属化合物、無機アルカリ土類金属化合物などが挙げられる。前記アルカリ土類金属含有化合物におけるアルカリ土類金属としては、Mg(マグネシウム)、Ca(カルシウム)、Sr(ストロンチウム)、Ba(バリウム)、Ra(ラジウム)が挙げられる。
-有機アルカリ土類金属化合物-
 前記有機アルカリ土類金属化合物としては、アルカリ土類金属と、有機基とを有する化合物であれば、特に制限はなく、目的に応じて適宜選択することができる。前記アルカリ土類金属と前記有機基とは、例えば、イオン結合、共有結合、又は配位結合で結合している。
 前記有機基としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、前記有機スカンジウム化合物の説明において例示した前記有機基などが挙げられる。
 前記有機アルカリ土類金属化合物としては、例えば、マグネシウムメトキシド、マグネシウムエトキシド、ジエチルマグネシウム、酢酸マグネシウム、ギ酸マグネシウム、アセチルアセトンマグネシウム、2-エチルヘキサン酸マグネシウム、乳酸マグネシウム、ナフテン酸マグネシウム、クエン酸マグネシウム、サリチル酸マグネシウム、安息香酸マグネシウム、シュウ酸マグネシウム、トリフルオロメタンスルホン酸マグネシウム、カルシウムメトキシド、カルシウムエトキシド、酢酸カルシウム、ギ酸カルシウム、アセチルアセトンカルシウム、カルシウムジピバロイルメタナート、2-エチルヘキサン酸カルシウム、乳酸カルシウム、ナフテン酸カルシウム、クエン酸カルシウム、サリチル酸カルシウム、ネオデカン酸カルシウム、安息香酸カルシウム、シュウ酸カルシウム、ストロンチウムイソプロポキシド、酢酸ストロンチウム、ギ酸ストロンチウム、アセチルアセトンストロンチウム、2-エチルヘキサン酸ストロンチウム、乳酸ストロンチウム、ナフテン酸ストロンチウム、ネオデカン酸ストロンチウム、サリチル酸ストロンチウム、シュウ酸ストロンチウム、バリウムエトキシド、バリウムイソプロポキシド、酢酸バリウム、ギ酸バリウム、アセチルアセトンバリウム、2-エチルヘキサン酸バリウム、乳酸バリウム、ナフテン酸バリウム、ネオデカン酸バリウム、シュウ酸バリウム、安息香酸バリウム、トリフルオロメタンスルホン酸バリウムなどが挙げられる。
-無機アルカリ土類金属化合物-
 前記無機アルカリ土類金属化合物としては、例えば、アルカリ土類金属硝酸塩、アルカリ土類金属硫酸塩、アルカリ土類金属塩化物、アルカリ土類金属フッ化物、アルカリ土類金属臭化物、アルカリ土類金属よう化物などが挙げられる。
 前記アルカリ土類金属硝酸塩としては、例えば、硝酸マグネシウム、硝酸カルシウム、硝酸ストロンチウム、硝酸バリウムなどが挙げられる。
 前記アルカリ土類金属硫酸塩としては、例えば、硫酸マグネシウム、硫酸カルシウム、硫酸ストロンチウム、硫酸バリウムなどが挙げられる。
 前記アルカリ土類金属塩化物としては、例えば、塩化マグネシウム、塩化カルシウム、塩化ストロンチウム、塩化バリウムなどが挙げられる。
 前記アルカリ土類金属フッ化物としては、例えば、フッ化マグネシウム、フッ化カルシウム、フッ化ストロンチウム、フッ化バリウムなどが挙げられる。
 前記アルカリ土類金属臭化物としては、例えば、臭化マグネシウム、臭化カルシウム、臭化ストロンチウム、臭化バリウムなどが挙げられる。
 前記アルカリ土類金属よう化物としては、例えば、よう化マグネシウム、よう化カルシウム、よう化ストロンチウム、よう化バリウムなどが挙げられる。
 これらの第C元素含有化合物は、合成したものを用いてもよいし、市販品を用いてもよい。
<<溶媒>>
 前記溶媒としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、水、有機溶媒、無機酸などが挙げられる。それらの中でも、有機溶媒が好ましい。
<<<有機溶媒>>>
 前記有機溶媒としては、目的に応じて適宜選択することができるが、有機酸、有機酸エステル、芳香族化合物、ジオール、グリコールエーテル、非プロトン性極性溶媒、アルカン化合物、アルケン化合物、エーテル化合物、及びアルコールからなる群から選択される少なくとも1種が好ましい。
-有機酸-
 前記有機酸としては、目的に応じて適宜選択することができる。例えば、酢酸、乳酸、プロピオン酸、オクチル酸、ネオデカン酸及びそれらの誘導体などが好ましい。
 これらは、1種単独で使用してもよいし、2種以上を併用してもよい。
-有機酸エステル-
 前記有機酸エステルとしては、目的に応じて適宜選択することができる。例えば、乳酸メチル、プロピオン酸プロピル、及びそれらの誘導体などが好ましい。
 これらは、1種単独で使用してもよいし、2種以上を併用してもよい。
-芳香族化合物-
 前記芳香族化合物としては、目的に応じて適宜選択することができる。例えば、キシレン、メシチレン、テトラリン及びそれらの誘導体などが好ましい。
 これらは、1種単独で使用してもよいし、2種以上を併用してもよい。
-ジオール-
 前記ジオールとしては、目的に応じて適宜選択することができるが、アルカンジオール、ジアルキレングリコールが好ましい。前記ジオールの炭素数としては、2~6が好ましい。前記ジオールとしては、ジエチレングリコール、1,2-エタンジオール、1,2-プロパンジオール、及び1,3-ブタンジオールからなる群から選択される少なくとも1種が好ましい。
 これらは、1種単独で使用してもよいし、2種以上を併用してもよい。
-グリコールエーテル-
 前記グリコールエーテルとしては、目的に応じて適宜選択することができるが、アルキレングリコールモノアルキルエーテルが好ましい。前記グリコールエーテルの炭素数としては、3~8が好ましい。
 前記アルキレングリコールモノアルキルエーテルとしては、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノプロピルエーテル、エチレングリコールモノブチルエーテル、プロピレングリコール1-モノメチルエーテル、及びプロピレングリコール1-モノブチルエーテルの少なくともいずれかが好ましい。これらのアルキレングリコールモノアルキルエーテルは、沸点が120℃~180℃程度で、比較的低い焼成温度と短い焼成時間を可能にする。また、焼成後に炭素及び有機物などの不純物が少ない酸化物又は酸窒化物絶縁体膜が得られる。
 これらは、1種単独で使用してもよいし、2種以上を併用してもよい。
-非プロトン性極性溶媒-
 前記非プロトン性極性溶媒は、原料化合物をよく溶解し、かつ溶解後の安定性が高いため、前記非プロトン性極性溶媒を前記酸化物又は酸窒化物絶縁体膜形成用塗布液に用いることにより、均一性が高く、欠陥の少ない酸化物絶縁体膜又は酸窒化物絶縁体膜を得ることができる。
 前記非プロトン性極性溶媒としては、目的に応じて適宜選択することができる。例えば、イソホロン、炭酸プロピレン、ジヒドロフラン-2(3H)-オン(γ-ブチロラクトン)、ジメチルホルムアミド、ジメチルアセトアミド、1,3-ジメチル-2-イミダゾリジノン、及びそれらの誘導体などが好ましい。
 これらは、1種単独で使用してもよいし、2種以上を併用してもよい。
-アルカン化合物-
 前記アルカン化合物としては、目的に応じて適宜選択することができる。例えば、n-ノナン、デカン、テトラデカン、デカリン及びそれらの誘導体などが好ましい。
 これらは、1種単独で使用してもよいし、2種以上を併用してもよい。
-アルケン化合物-
 前記アルケン化合物としては、目的に応じて適宜選択することができる。例えば、1-ドデセン、1-テトラデセン、及びそれらの誘導体などが好ましい。
 これらは、1種単独で使用してもよいし、2種以上を併用してもよい。
-エーテル化合物-
 前記エーテル化合物としては、目的に応じて適宜選択することができる。例えば、ベンゾフラン、ポリエチレングリコール及びそれらの誘導体などが好ましい。
 これらは、1種単独で使用してもよいし、2種以上を併用してもよい。
-アルコール-
 前記アルコールとしては、炭素数4以上であれば、特に制限はなく、目的に応じて適宜選択することができる。例えば、1-ブタノール、シクロペンタノール、2-ヘキサノール及びそれらの誘導体などが好ましい。
 これらは、1種単独で使用してもよいし、2種以上を併用してもよい。
<<<無機酸>>>
 前記無機酸としては、目的に応じて適宜選択することができる。例えば、硫酸、硝酸、塩酸、リン酸、弗酸などが好ましい。
 これらは、1種単独で使用してもよいし、2種以上を併用してもよい。
 これらは、前記無機塩の溶解性を向上することができる。
 前記酸化物又は酸窒化物絶縁体膜形成用塗布液において、前記第A元素含有化合物、前記第B元素含有化合物、及び前記第C元素含有化合物は、前記溶媒に溶解していることが好ましい。
<酸化物又は酸窒化物絶縁体膜形成用塗布液の作製方法>
 前記酸化物又は酸窒化物絶縁体膜形成用塗布液の作製方法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、各元素を含有する化合物又はその溶液と、前記溶媒とを所望の割合で混合する方法などが挙げられる。
 本発明の前記酸化物又は酸窒化物絶縁体膜形成用塗布液は、酸化物絶縁体膜又は酸窒化物絶縁体膜を作製するための塗布液に適しており、特に、前記式(1)又は(2)を満たす酸化物又は酸窒化物絶縁体膜形成用塗布液は、電界効果型トランジスタのゲート絶縁層を作製するための塗布液に適している。
(酸化物又は酸窒化物絶縁体膜)
 本発明の酸化物又は酸窒化物絶縁体膜の一態様は、本発明の前記酸化物又は酸窒化物絶縁体膜形成用塗布液を被塗物に塗布し、乾燥させた後に焼成を行って得られる。
 本発明の酸化物又は酸窒化物絶縁体膜の一態様は、本発明の前記酸化物又は酸窒化物絶縁体膜形成用塗布液の焼成物である。
 前記酸化物又は酸窒化物絶縁体膜は、例えば、以下の本発明の酸化物又は酸窒化物絶縁体膜の製造方法によって得られる。
(酸化物又は酸窒化物絶縁体膜の製造方法)
 本発明の酸化物又は酸窒化物絶縁体膜の製造方法では、本発明の前記酸化物又は酸窒化物絶縁体膜形成用塗布液を被塗物に塗布し、乾燥させた後に焼成を行う。
 前記酸化物又は酸窒化物絶縁体膜形成用塗布液として、前記式(1)又は(2)を満たす酸化物又は酸窒化物絶縁体膜形成用塗布液を用いた場合には、電界効果型トランジスタのゲート絶縁層に特に適した酸化物絶縁体膜又は酸窒化物絶縁体膜が得られる。
 前記被塗物としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、ガラス基材、プラスチック基材などが挙げられる。
 また、前記酸化物絶縁体膜又は酸窒化物絶縁体膜を電界効果型トランジスタの活性層に用いる場合には、前記被塗物としては、例えば、基材、活性層などが挙げられる。前記基材の形状、構造、及び大きさとしては、特に制限はなく、目的に応じて適宜選択することができる。前記基材の材質としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、ガラス基材、プラスチック基材などが挙げられる。
 前記塗布の方法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、スクリーン印刷法、ロールコート法、ディップコート法、スピンコート法、ダイコート法、インクジェット法、ナノインプリント法などが挙げられる。これらの中でも、スピンコート法及びダイコート法は既存のフォトリソグラフィー技術と組み合わせることが容易である点で好ましい。
 前記乾燥は、前記酸化物又は酸窒化物絶縁体膜形成用塗布液中の揮発成分を除去できる条件であれば、特に制限はなく、目的に応じて適宜選択することができる。なお、前記乾燥において、揮発成分を完全に除去する必要はなく、焼成を阻害しない程度に揮発成分を除去できればよい。
 前記焼成の温度としては、前記本塗布液に含有する金属元素が酸化物を形成する温度以上で、かつ基材(塗布対象物)の熱変形温度以下であれば、特に制限はなく、目的に応じて適宜選択することができるが、150℃~600℃が好ましい。
 前記焼成の雰囲気としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、酸素中や空気中など酸素を含む雰囲気が好ましい。これにより、金属元素の化合物や溶媒中に含まれる有機物や陰イオンを酸化、ガス化するなどして、膜中より除去することができる。また、窒素中やアンモニア蒸気中など窒素を含む雰囲気で焼成することにより、膜中に窒素を取り込むことが可能で、酸窒化物膜を形成し、比誘電率、熱膨張係数などの膜物性を制御することができる。
 前記焼成の時間としては、特に制限はなく、目的に応じて適宜選択することができる。
 形成される酸化物絶縁体膜又は酸窒化物絶縁体膜の平均厚みとしては、特に制限はなく、目的に応じて適宜選択することができるが、1nm~500nmが好ましく、10nm~300nmがより好ましく、50nm~200nmが特に好ましい。
 形成される酸化物又は酸窒化物絶縁体膜は可視光領域又は近赤外領域に電子遷移による光吸収帯を有しない。本絶縁体膜の表面、又は隣接する層或いは基材との界面に於ける表面粗さや屈折率差等の関係で、光の散乱等が起こり、光透過率が低下することは起こりうるが、本質的には透明である。但し、ランタノイド元素のf-f遷移による狭い吸収帯は存在してもよい。
(電界効果型トランジスタ)
 本発明の電界効果型トランジスタは、ゲート電極と、ソース電極と、ドレイン電極と、活性層と、ゲート絶縁層とを少なくとも有し、更に必要に応じて、層間絶縁層などのその他の部材を有する。
 本発明の電界効果型トランジスタは、例えば、後述する本発明の電界効果型トランジスタの製造方法により製造することができる。
<ゲート電極>
 前記ゲート電極としては、ゲート電圧を印加するための電極であれば、特に制限はなく、目的に応じて適宜選択することができる。
 前記ゲート電極の材質としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、白金、パラジウム、金、銀、銅、亜鉛、アルミニウム、ニッケル、クロム、タンタル、モリブデン、チタン等の金属、これらの合金、これら金属の混合物などが挙げられる。また、酸化インジウム、酸化亜鉛、酸化スズ、酸化ガリウム、酸化ニオブ等の導電性酸化物、これらの複合化合物、これらの混合物などが挙げられる。
 前記ゲート電極の平均厚みとしては、特に制限はなく、目的に応じて適宜選択することができるが、40nm~2μmが好ましく、70nm~1μmがより好ましい。
<ゲート絶縁層>
 前記ゲート絶縁層は、一態様では、前記ゲート電極と前記活性層との間に形成された酸化物又は酸窒化物絶縁体であり、本発明の酸化物又は酸窒化物絶縁体膜形成用塗布液を塗布して形成される酸化物絶縁体膜又は酸窒化物絶縁体膜からなる。
 また、前記ゲート絶縁層は、他の一態様では、前記ゲート電極と前記活性層との間に形成された酸化物又は酸窒化物絶縁体膜からなるゲート絶縁層であり、本発明の前記酸化物又は酸窒化物絶縁体膜である。
 前記ゲート絶縁層の平均厚みとしては、特に制限はなく、目的に応じて適宜選択することができるが、10nm~1μmが好ましく、30nm~300nmがより好ましい。
<ソース電極、及びドレイン電極>
 前記ソース電極、及び前記ドレイン電極としては、特に制限はなく、目的に応じて適宜選択することができる。
 前記ソース電極、及び前記ドレイン電極の材質としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、前記ゲート電極の説明において記載した材質と同じ材質が挙げられる。
 前記ソース電極、及び前記ドレイン電極の平均厚みとしては、特に制限はなく、目的に応じて適宜選択することができるが、40nm~2μmが好ましく、70nm~1μmがより好ましい。
<活性層>
 前記活性層は、前記ソース電極と前記ドレイン電極との間に形成された半導体からなる活性層である。前記半導体としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、シリコン半導体、酸化物半導体などが挙げられる。これらのなかでも、酸化物半導体が特に好ましい。
 前記シリコン半導体としては、例えば、非晶質シリコン、多結晶シリコンなどが挙げられる。
 前記酸化物半導体としては、例えば、InGa-Zn-O、In-Zn-O、In-Mg-Oなどが挙げられる。
 前記活性層の平均厚みとしては、特に制限はなく、目的に応じて適宜選択することができるが、1nm~200nmが好ましく、5nm~100nmがより好ましい。
 前記電界効果型トランジスタの構造としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、ボトムゲート/ボトムコンタクト型(図1)、ボトムゲート/トップコンタクト型(図2)、トップゲート/ボトムコンタクト型(図3)、トップゲート/トップコンタクト型(図4)などが挙げられる。
 なお、図1~図4中、1は基材、2はゲート電極、3はゲート絶縁層、4はソース電極、5はドレイン電極、6は活性層をそれぞれ表す。
 本発明の電界効果型トランジスタは、液晶ディスプレイ、有機ELディスプレイ、エレクトロクロミックディスプレイ等の画素駆動回路及び論理回路用の電界効果型トランジスタに好適に用いることができる。
(電界効果型トランジスタの製造方法)
 本発明の電界効果型トランジスタの製造方法(第1の製造方法)は、
 ゲート電極を形成するゲート電極形成工程と、
 前記ゲート電極上にゲート絶縁層を形成するゲート絶縁層形成工程と、
 前記ゲート絶縁層上にソース電極及びドレイン電極を離間して形成するソース電極及びドレイン電極形成工程と、
 前記ソース電極と前記ドレイン電極との間のチャネル領域であって前記ゲート絶縁層上に、半導体からなる活性層を形成する活性層形成工程とを含む。
 また、本発明の電界効果型トランジスタの製造方法(第2の製造方法)は、
 ソース電極及びドレイン電極を離間して形成するソース電極及びドレイン電極形成工程と、
 前記ソース電極と前記ドレイン電極との間のチャネル領域であって前記基材上に、半導体からなる活性層を形成する活性層形成工程と、
 前記活性層上にゲート絶縁層を形成するゲート絶縁層形成工程と、
 前記ゲート絶縁層上にゲート電極を形成するゲート電極形成工程とを含む。
 また、本発明の電界効果型トランジスタの製造方法(第3の製造方法)は、
 半導体からなる活性層を形成する活性層形成工程と、
 前記活性層上にゲート絶縁層を形成するゲート絶縁層形成工程と、
 前記ゲート絶縁層上にゲート電極を形成するゲート電極形成工程と、
 前記ゲート電極層上に層間絶縁層を形成する層間絶縁層形成工程と、
 前記ゲート絶縁層或いは前記層間絶縁層にスルーホールを形成するスルーホール形成工程と、
 前記層間絶縁層上にソース電極及びドレイン電極を形成するソース・ドレイン電極形成工程とを含む。
<第1の製造方法>    
 前記第1の製造方法について説明する。
-ゲート電極形成工程-
 前記ゲート電極形成工程としては、ゲート電極を形成する工程であれば、特に制限はなく、目的に応じて適宜選択することができ、例えば、(i)スパッタ法、ディップコーティング法等による成膜後、フォトリソグラフィーによってパターニングする工程、(ii)インクジェット、ナノインプリント、グラビア等の印刷プロセスによって、所望の形状を直接成膜する工程などが挙げられる。
 前記ゲート電極は、例えば、基材上に形成される。
 前記基材の形状、構造、及び大きさとしては、特に制限はなく、目的に応じて適宜選択することができる。
 前記基材としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、ガラス基材、プラスチック基材などが挙げられる。
 前記ガラス基材の材質としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、無アルカリガラス、シリカガラスなどが挙げられる。
 前記プラスチック基材の材質としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、ポリカーボネート(PC)、ポリイミド(PI)、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)などが挙げられる。
 なお、前記基材としては、表面の清浄化及び密着性向上の点で、酸素プラズマ、UVオゾン、UV照射洗浄などの前処理が行われることが好ましい。
-ゲート絶縁層形成工程-
 前記ゲート絶縁層形成工程としては、前記ゲート電極上に、本発明の前記酸化物又は酸窒化物絶縁体膜形成用塗布液を塗布して酸化物絶縁体又は酸窒化物絶縁体からなるゲート絶縁層を形成する工程であれば、特に制限はなく、目的に応じて適宜選択することができる。
 前記ゲート絶縁層形成工程においては、前記酸化物又は酸窒化物絶縁体膜形成用塗布液中の、前記第A元素の原子数の合計(NA)と、前記第B元素の原子数の合計(NB)と、前記第C元素の原子数の合計(NC)とを調整することにより、前記酸化物又は酸窒化物絶縁体の比誘電率、結晶相、及び結晶化温度の少なくともいずれかを制御することが好ましい。そうすることによって、所望の特性(例えば、閾値電圧)を有する電界効果型トランジスタを得ることができる。
 前記ゲート絶縁層形成工程においては、前記酸化物又は酸窒化物絶縁体膜形成用塗布液が、前記有機溶媒を含有し、前記酸化物又は酸窒化物絶縁体膜形成用塗布液中の前記有機溶媒の成分混合比を調整することにより、前記酸化物又は酸窒化物絶縁体膜形成用塗布液の粘度を制御することが好ましい。また、所望の膜厚、表面形状、塗布特性を得るために、他の溶媒を追加したり、濃度を調製することができる。そうすることにより、塗布性に優れ、成膜状態が良好な電界効果型トランジスタを得ることができる。
 前記酸化物又は酸窒化物絶縁体膜形成用塗布液を塗布して酸化物絶縁体又は酸窒化物絶縁体を形成する方法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、前記酸化物又は酸窒化物絶縁体膜形成用塗布液を前記ゲート電極層が形成された前記基材に塗布して、乾燥させた後、焼成する方法が挙げられる。
 前記塗布の方法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、スクリーン印刷法、ロールコート法、ディップコート法、スピンコート法、ダイコート法、インクジェット法、ナノインプリント法などが挙げられる。これらの中でも、電界効果型トランジスタの製造において、スピンコート法及びダイコート法は既存のフォトリソグラフィー技術と組み合わせることが容易である点で好ましい。
 前記乾燥は、前記酸化物又は酸窒化物絶縁体膜形成用塗布液中の揮発成分を除去できる条件であれば、特に制限はなく、目的に応じて適宜選択することができる。なお、前記乾燥において、揮発成分を完全に除去する必要はなく、焼成を阻害しない程度に揮発成分を除去できればよい。
 前記焼成の温度としては、特に制限はなく、目的に応じて適宜選択することができるが、150℃~600℃が好ましい。
-ソース・ドレイン電極形成工程-
 前記ソース・ドレイン電極形成工程としては、前記ゲート絶縁層上にソース電極及びドレイン電極を離間して形成する工程であれば、特に制限はなく、目的に応じて適宜選択することができ、例えば、(i)スパッタ法、ディップコーティング法等による成膜後、フォトリソグラフィーによってパターニングする工程、(ii)インクジェット、ナノインプリント、グラビア等の印刷プロセスによって、所望の形状を直接成膜する工程などが挙げられる。
-活性層形成工程-
 前記活性層形成工程としては、前記ソース電極と前記ドレイン電極との間のチャネル領域であって前記ゲート絶縁層上に、半導体からなる活性層を形成する工程であれば、特に制限はなく、目的に応じて適宜選択することができ、例えば、(i)スパッタ法、ディップコーティング法等による成膜後、フォトリソグラフィーによってパターニングする工程、(ii)インクジェット、ナノインプリント、グラビア等の印刷プロセスによって、所望の形状を直接成膜する工程などが挙げられる。
 前記第1の製造方法においては、前記ソース電極及びドレイン電極形成工程と、前記活性層形成工程との順序は問わず、前記ソース電極及びドレイン電極形成工程の後に前記活性層形成工程を行ってもよく、前記活性層形成工程の後に前記ソース電極及びドレイン電極形成工程を行ってもよい。
 前記第1の製造方法において、前記ソース電極及びドレイン電極形成工程の後に前記活性層形成工程を行うと、ボトムゲート/ボトムコンタクト型の電界効果型トランジスタを製造することができる。
 前記第1の製造方法において、前記活性層形成工程の後に前記ソース電極及びドレイン電極形成工程を行うと、ボトムゲート/トップコンタクト型の電界効果型トランジスタを製造することができる。
 ここで、ボトムゲート/ボトムコンタクト型の電界効果型トランジスタの製造方法について図5A~図5Dを参照して説明する。
 初めに、ガラス基板等からなる基材1上に、スパッタ法等によりアルミニウム等からなる導電体膜を形成し、形成した導電体膜をフォトリソグラフィーによりパターニングすることによりゲート電極2を形成する(図5A)。
 次いで、前記ゲート電極2を覆うように前記ゲート電極2及び前記基材1上にスピンコート法などにより前記酸化物又は酸窒化物絶縁体膜形成用塗布液を塗布し、熱処理を行い酸化物又は酸窒化物絶縁体からなるゲート絶縁層3を形成する(図5B)。
 次いで、前記ゲート絶縁層3上にスパッタ法等によりITO等からなる導電体膜を形成し、形成した導電体膜をエッチングによりパターニングすることによりソース電極4及びドレイン電極5を形成する(図5C)。
 次いで、前記ソース電極4及び前記ドレイン電極5の間に形成されるチャネル領域を覆うように、前記ゲート絶縁層3上にスパッタ法等によりIGZO等からなる半導体膜を形成し、形成した半導体膜をエッチングによりパターニングすることにより、活性層6を形成する(図5D)。
 以上により、電界効果型トランジスタが製造される。
<第2の製造方法>
 前記第2の製造方法について説明する。
-ソース電極及びドレイン電極形成工程-
 前記ソース電極及びドレイン電極形成工程としては、ソース電極及びドレイン電極を離間して形成する工程であれば、特に制限はなく、目的に応じて適宜選択することができ、前記第1の製造方法の前記ソース電極及びドレイン電極形成工程において例示した工程と同様の工程が挙げられる。
 前記ゲート電極は、例えば、基材上に形成される。
 前記基材としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、前記第1の製造方法において例示した基材と同じ基材が挙げられる。
-活性層形成工程-
 前記活性層形成工程としては、前記ソース電極と前記ドレイン電極との間のチャネル領域であって前記ゲート絶縁層上に、半導体からなる活性層を形成する工程であれば、特に制限はなく、目的に応じて適宜選択することができ、例えば、(i)スパッタ法、ディップコーティング法等による成膜後、フォトリソグラフィーによってパターニングする工程、(ii)インクジェット、ナノインプリント、グラビア等の印刷プロセスによって、所望の形状を直接成膜する工程などが挙げられる。
-ゲート絶縁層形成工程-
 前記ゲート絶縁層形成工程としては、前記ゲート電極上に、本発明の前記酸化物又は酸窒化物絶縁体膜形成用塗布液を塗布して酸化物絶縁体又は酸窒化物絶縁体からなるゲート絶縁層を形成する工程であれば、特に制限はなく、目的に応じて適宜選択することができる。
-ゲート電極形成工程-
 前記ゲート電極形成工程としては、前記ゲート絶縁層上にゲート電極を形成する工程であれば、特に制限はなく、目的に応じて適宜選択することができ、例えば、前記第1の製造方法の前記ゲート電極形成工程において例示した工程と同様の工程が挙げられる。
 前記第2の製造方法においては、前記ソース電極及びドレイン電極形成工程と、前記活性層形成工程との順序は問わず、前記ソース電極及びドレイン電極形成工程の後に前記活性層形成工程を行ってもよく、前記活性層形成工程の後に前記ソース電極及びドレイン電極形成工程を行ってもよい。
 前記第2の製造方法において、前記ソース電極及びドレイン電極形成工程の後に前記活性層形成工程を行うと、トップゲート/ボトムコンタクト型の電界効果型トランジスタを製造することができる。
 前記第2の製造方法において、前記活性層形成工程の後に前記ソース電極及びドレイン電極形成工程を行うと、トップゲート/トップコンタクト型の電界効果型トランジスタを製造することができる。
<第3の製造方法>
 前記第3の製造方法について説明する。
-活性層形成工程-
 前記活性層形成工程としては、前記ソース電極と前記ドレイン電極との間のチャネル領域であって前記ゲート絶縁層上に、活性層を形成する工程であれば、特に制限はなく、目的に応じて適宜選択することができ、例えば、(i)スパッタ法、ディップコーティング法等による成膜後、フォトリソグラフィーによってパターニングする工程、(ii)インクジェット、ナノインプリント、グラビア等の印刷プロセスによって、所望の形状を直接成膜する工程などが挙げられる。
-ゲート絶縁層形成工程-
 前記ゲート絶縁層形成工程としては、前記ゲート電極上に、本発明の前記酸化物又は酸窒化物絶縁体膜形成用塗布液を塗布して酸化物絶縁体又は酸窒化物絶縁体からなるゲート絶縁層を形成する工程であれば、特に制限はなく、目的に応じて適宜選択することができる。
-ゲート電極形成工程-
 前記ゲート電極形成工程としては、前記ゲート絶縁層上にゲート電極を形成する工程であれば、特に制限はなく、目的に応じて適宜選択することができ、例えば、前記第1の製造方法の前記ゲート電極形成工程において例示した工程と同様の工程が挙げられる。
-層間絶縁層形成工程-
 前記層間絶縁層形成工程としては、前記ゲート絶縁層上及びゲート電極上に層間絶縁層を形成する工程であれば、特に制限はなく、目的に応じて適宜選択することができ、例えば、(i)スパッタ法、CVD法、スピンコート法等による成膜後、フォトリソグラフィーによってパターニングする工程、(ii)インクジェット、ナノインプリント、グラビア等の印刷プロセスによって、所望の形状を直接成膜する工程などが挙げられる。本工程では次工程で活性層とソース/ドレイン電極との電気的接続を取るために、前記接続領域の層間絶縁膜にスルーホールを開口する(詳細は、後述のスルーホール形成工程参照)。
 前記層間絶縁層の材質としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、無機絶縁材料、有機絶縁材料などが挙げられる。
 前記無機絶縁材料としては、例えば、酸化ケイ素、酸化アルミニウム、酸化タンタル、酸化チタン、酸化イットリウム、酸化ランタン、酸化ハフニウム、酸化ジルコニウム、窒化ケイ素、窒化アルミニウム、これらの混合物などが挙げられる。
 前記有機絶縁材料としては、例えば、ポリイミド、ポリアミド、ポリアクリレート、ポリビニルアルコール、ノボラック樹脂などが挙げられる。
 前記層間絶縁層の平均厚みとしては、特に制限はなく、目的に応じて適宜選択することができるが、30nm~3μmが好ましく、100nm~1μmがより好ましい。
-スルーホール形成工程-
 前記スルーホール形成工程としては、前記ゲート絶縁層及び前記層間絶縁層の少なくともいずれかにスルーホールを形成する工程であれば、特に制限はなく、目的に応じて適宜選択することができる。
 前記スルーホールは、前記活性層に達するように形成される。
 前記スルーホールは、前記層間絶縁層上に形成される、ゲート電極、及びドレイン電極が記活性層に接するための穴である。
 前記スルーホールは、前記ゲート電極、及び前記ドレイン電極に対応して、少なくとも2つ形成される。
-ソース電極及びドレイン電極形成工程-
 前記ソース電極及びドレイン電極形成工程としては、ソース電極及びドレイン電極を離間して形成する工程であれば、特に制限はなく、目的に応じて適宜選択することができ、前記第1の製造方法の前記ソース電極及びドレイン電極形成工程において例示した工程と同様の工程が挙げられる。本工程では活性層とソース/ドレイン電極との電気的接続が取られる。
 前記第3の製造方法で製造される電界効果型トランジスタの一例を図6に示す。
 図6に示す電界効果型トランジスタは、トップゲート/ILDの電界効果型トランジスタである。
 図6中、符号1は基材、符号2はゲート電極、符号3はゲート絶縁層、符号4はソース電極、符号5はドレイン電極、符号6は活性層、符号7は第1の層間絶縁層、符号8は第2の層間絶縁層、符号9は第3の層間絶縁層、符号Sはスルーホールをそれぞれ表す。
(半導体素子)
 本発明の半導体素子の一態様は、本発明の前記酸化物又は酸窒化物絶縁体膜を有する。
 本発明の半導体素子の他の一態様は、本発明の前記酸化物又は酸窒化物絶縁体膜を絶縁体層に有する。
 前記半導体素子としては、例えば、ダイオード、電界効果型トランジスタ、発光素子、光電変換素子などが挙げられる。
<ダイオード>
 前記ダイオードとしては、特に制限はなく、目的に応じて適宜選択することができ、例えば、第一の電極と、第二の電極と、前記第一の電極と前記第二の電極の間に形成された前記活性層と前記絶縁体層を有するダイオードなどが挙げられる。このようなダイオードとしては、例えば、PINフォトダイオードなどが挙げられる。
-PIN接合ダイオード-
 前記PIN接合ダイオードは、前記活性層と前記絶縁体層とを少なくとも有し、更に必要に応じて、アノード(陽極)、カソード(陰極)などのその他の部材を有する。
--活性層--
 前記活性層は、p型半導体層と、n型半導体層とを少なくとも有し、更に必要に応じて、その他の部材を有する。
 前記p型半導体層と前記n型半導体層とは、接している。
---p型半導体層---
 前記p型半導体層の材質としては、特に制限はなく、目的に応じて適宜選択することができる。
 前記p型半導体層の平均厚みとしては、特に制限はなく、目的に応じて適宜選択することができるが、50nm~2,000nmが好ましい。
---n型半導体層---
 前記n型半導体層の平均厚みとしては、特に制限はなく、目的に応じて適宜選択することができるが、50nm~2,000nmが好ましい。
---絶縁体層---
 前記絶縁体層は、本発明の前記酸化物又は酸窒化物絶縁体膜である。
 前記酸化物又は酸窒化物絶縁体膜の平均厚みとしては、特に制限はなく、目的に応じて適宜選択することができるが、50nm~2,000nmが好ましい。
--アノード(陽極)--
 前記アノードは、前記p型半導体層に接している。
 前記アノードの材質としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、Mo、Al、Au、Ag、Cu等の金属乃至これらの合金、酸化インジウムスズ(ITO)、アンチモンドープ酸化スズ(ATO)等の透明導電性酸化物、ポリエチレンジオキシチオフェン(PEDOT)、ポリアニリン(PANI)等の有機導電体などが挙げられる。
 前記アノードの形状、大きさ、構造としては、特に制限はなく、目的に応じて適宜選択することができる。
 前記アノードは、前記p型半導体層に接して設けられるが、これらの間ではオーミック接触が形成されていることが好ましい。
 前記アノードの形成方法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、(i)スパッタ法、ディップコーティング法等による成膜後、フォトリソグラフィーによってパターニングする方法、(ii)インクジェットプリント、ナノインプリント、グラビア等の印刷プロセスによって、所望の形状を直接成膜する方法などが挙げられる。
--カソード(陰極)--
 前記カソードの材質としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、前記アノードの説明において記載した材質と同じ材質などが挙げられる。
 前記カソードの形状、大きさ、構造としては、特に制限はなく、目的に応じて適宜選択することができる。
 前記カソードは、前記n型半導体層に接して設けられるが、これらの間ではオーミック接触が形成されていることが好ましい。
 前記カソードの形成方法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、前記アノードの説明において記載した形成方法と同じ方法などが挙げられる。
 以下、本発明の実施例について説明するが、本発明は下記実施例に何ら限定されるものではない。
(実施例1-1)
<酸化物又は酸窒化物絶縁体膜形成用塗布液の作製>
 2-エチルヘキサン酸ビスマス2-エチルヘキサン酸溶液(Bi:25質量%)と2-エチルヘキサン酸ハフニウム2-エチルヘキサン酸溶液(Hf:24質量%)とを用意し、各金属元素が60mmolと40mmolとなるように秤量し、フラスコで混合した。更に2-エチルヘキサン酸(オクチル酸)を、溶媒の全量が全体で1000mLとなるように添加し、室温で混合して溶解させ、酸化物又は酸窒化物絶縁体膜形成用塗布液を作製した。
(実施例1-2~1-6)
 実施例1-1と同様の方法で、実施例1-2~1-6の酸化物又は酸窒化物絶縁体膜形成用塗布液を作製した。表1に実施例1-1~1-6の原料組成を示す。いずれのインクも可視域で透明であった。
Figure JPOXMLDOC01-appb-T000001
(実施例2-1~2-12)
 実施例1-1と同様の方法で、実施例2-1~2-12の酸化物又は酸窒化物絶縁体膜形成用塗布液を作製した。表2に実施例2-1~2-12の原料組成を示す。いずれのインクも可視域で透明であった。
Figure JPOXMLDOC01-appb-T000002
(比較例1-1~1-3)
 実施例1-1と同様の方法で、比較例1-1~1-3の酸化物又は酸窒化物絶縁体膜形成用塗布液を作製した。表3に比較例1-1~1-3の原料組成を示す。比較例1-1及び比較例1-3のインク(3-1及び3-3)は可視域で透明であったが、比較例1-2のインク(3-2)は青色を呈した。
Figure JPOXMLDOC01-appb-T000003
 表1、表2、及び表3において、各種原料、溶媒における名称は以下のとおりである。また、原料として使用可能なものも以下に例示した。
<原料A>
 Sc(NO・5HO : 硝酸スカンジウム五水和物
 Ce(C15 : 2-エチルヘキサン酸セリウム
 Ce(NO・6HO : 硝酸セリウム六水和物
 Ce(CHCOO)・HO : 酢酸セリウム一水和物
 Y(C15 : 2-エチルヘキサン酸イットリウム
 Y(C1019 : ネオデカン酸イットリウム
 YCl・6HO : 塩化イットリウム六水和物
 Y(NO・6HO : 硝酸イットリウム六水和物
 Y(CHCOO)・4HO : 酢酸イットリウム四水和物
 La(C15 : 2-エチルヘキサン酸ランタン
 LaCl・6HO : 塩化ランタン六水和物
 La(NO・6HO : 硝酸ランタン六水和物
 La(CHCOO) : 酢酸ランタン
 Nd(C15 : 2-エチルヘキサン酸ネオジウム
 Nd(C1019 : ネオデカン酸ネオジウム
 Lu(NO・HO : 硝酸ルテチウム一水和物
 Sb(C : トリフェニルアンチモン
 Bi(C15 : 2-エチルヘキサン酸ビスマス
 Bi(NO・5HO : 硝酸ビスマス五水和物
 TeCl : 塩化テルル
 ただし、Bi(C15、Ce(C15、及びNd(C15、は、2-エチルヘキサン酸(オクチル酸)溶液のものを用いた。
 ただし、La(C15は、キシレン溶液のもの又はオクチル酸溶液のものを用いた。
<原料B>
 Ti(OC : チタニウムブトキシド
 Zr(C154 : 2-エチルヘキサン酸ジルコニウム
 Zr(acac) : ジルコニウムアセチルアセトネート
 ZrO(CHCOO) : 酢酸酸化ジルコニウム
 ZrO(NO・2HO : 硝酸酸化ジルコニウム二水和物
 ZrClO・8HO : 塩化酸化ジルコニウム八水和物
 Hf(C15 : 2-エチルヘキサン酸ハフニウム
 Hf(OC : ハフニウムブトキシド
 Hf(acac) : ハフニウムアセチルアセトネート
 HfClO・8HO : 塩化酸化ハフニウム八水和物
 GaCl : 塩化ガリウム
<原料C>
 MgCl・6HO : 硝酸マグネシウム六水和物
 Mg(NO・6HO : 硝酸マグネシウム六水和物
 Ca(C15 : 2-エチルヘキサン酸カルシウム
 Ca(C1019 : ネオデカン酸カルシウム
 Ca(CHCOO)・HO : 酢酸カルシウム一水和物
 CaCl・2HO : 塩化カルシウム二水和物
 Ca(NO・4HO : 硝酸カルシウム四水和物
 Sr(C15 : 2-エチルヘキサン酸ストロンチウム
 Sr(C1019 : ネオデカン酸ストロンチウム
 SrCl・6HO : 塩化ストロンチウム六水和物
 Ba(C15 : 2-エチルヘキサン酸バリウム
 Ba(C1019 : ネオデカン酸バリウム
 Ba(C15 : 2-エチルヘキサン酸バリウム
 BaCl・2HO : 塩化バリウム二水和物
 但し、Ca(C15、Sr(C15、及びBa(C15は、オクチル酸溶液のものを用いた。
<原料G>
 Al(NO・9HO : 硝酸アルミニウム9水和物
 Cu(C1019 : ネオデカン酸銅
 ただし、Cu(C1019は、トルエン溶液のものを用いた。
<溶媒D>
 EGME : エレングリコールモノメチルエーテル
 PGME : プロピレングリコールモノメチルエーテル
 DMF : ジメチルホルムアミド
<溶媒E>
 PG : 1,2-プロピレングリコール
 EG : エチレングリコール
 CHB : シクロヘキシルベンゼン
 GBL : γ-ブチロラクトン
 DMI : 1,3-ジメチル-2-イミダゾリジノン
 DMPU : N,N’-ジメチルプロピレン尿素
<溶媒F>
 HO : 水
 0.2M-HCl : 0.2mol/L塩酸
 0.1M-HNO : 0.1mol/L硝酸
<溶媒J>
 DOP : フタル酸ジオクチル
 BBP : フタル酸ベンジルブチル
(実施例1-7)
 UVオゾン洗浄済みの無アルカリガラス基板上に、スピンコート装置で表1中の塗布液1-1を印刷した。印刷は良好であった。その基板を120℃に加熱したホットプレート上で10分間乾燥させた後、大気雰囲気中400℃で1時間焼成して、透明な酸化物膜を得た。
(実施例1-8~1-12)
 実施例1-7と同様の方法で、表1中の塗布液1-2(実施例1-8)、塗布液1-3(実施例1-9)、塗布液1-4(実施例1-10)、塗布液1-5(実施例1-11)、及び塗布液1-6(実施例1-12)をそれぞれ、印刷・乾燥・焼成し、同様の酸化物膜を得た。何れも実施例1-7と同様に良好な印刷特性を示した。
(実施例2-13~2-23)
 実施例1-7と同様の方法で、表2中の塗布液2-1~2-11をそれぞれ、印刷・乾燥・焼成し、同様の酸化物膜を得た。何れも実施例1-7と同様に良好な印刷特性を示した。
 ・実施例2-13:塗布液2-1
 ・実施例2-14:塗布液2-2
 ・実施例2-15:塗布液2-3
 ・実施例2-16:塗布液2-4
 ・実施例2-17:塗布液2-5
 ・実施例2-18:塗布液2-6
 ・実施例2-19:塗布液2-7
 ・実施例2-20:塗布液2-8
 ・実施例2-21:塗布液2-9
 ・実施例2-22:塗布液2-10
 ・実施例2-23:塗布液2-11
(実施例2-24)
 乾燥、焼成雰囲気をO/N=2/98(sccm)気流中で行った以外は、実施例1-7と同様の方法で、表2中の塗布液2-12を印刷・乾燥・焼成し、透明な酸窒化物膜を得た。実施例1-7と同様に良好な印刷特性を示した。
(実施例3-1)
 表2に示す塗布液2-7の引火点をセタ密閉法により測定した。引火点は49℃で、充分室温より高いことが確認された。
 なお、塗布液1-1~1-6、塗布液2-1~2-6、及び2-8~2-12も、40℃以上の引火点を有していた(但し、2-11は検出できなかった。)。
 表4及び表5に引火点を示す。
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
(比較例2-1)
 表3に示す塗布液3-1の引火点をセタ密閉法により測定した。引火点は24℃で、室温程度であることが確認された。
(実施例1-13)
 UVオゾン洗浄済みの無アルカリガラス基板上に、下部電極としてAlを100nmマスク蒸着した。その上に、スピンコーティングによりで表1中の塗布液1-1を印刷した。製膜性は良好であった。その基板を大気雰囲気中120℃、1時間オーブンで乾燥させた後、大気雰囲気中400℃で1時間焼成して酸化物膜を得た。更に、上部電極としてAlを100nmマスク蒸着し、キャパシタ構造を作製した。
 図7は、本実施例において作製されたキャパシタの比誘電率ε及び誘電損失tanδと印加される電界の周波数との関係を示すものである。図7に示されるように、本実施例において作製されたキャパシタにおける比誘電率εは、100Hzから1MHzまでの領域において17.5以上であり、高い比誘電率を有することが確認された。また、誘電損失tanδの値も100Hzから100kHzまでは、略1%以下と低い値であり、良好な絶縁膜であることが確認された。また、膜は可視域で透明であり、3.5eV以上のバンドギャップを持つことが確認された。
 塗布液1-2~1-6、及び塗布液2-1~2-12についても、塗布液1-1と同様に透明かつ良好な酸化物絶縁膜が得られた。
 これらのキャパシタの比誘電率ε及び誘電損失tanδは、いずれも各々8.5以上、および略1%以下と良好な絶縁性が得られた。
(比較例2-2)
 実施例1-13と同様の方法で、表3中の塗布液3-2を印刷しキャパシタ構造を作製した。
 膜は灰褐色を呈し、誘電損失も1kHzで10%以上になり、絶縁膜としては機能しなかった。
(比較例2-3)
 実施例1-13と同様の方法で、表3中の塗布液3-3を印刷しキャパシタ構造を作製した。
 膜は少し白く半透明で、誘電損失も1kHzで8%以上になり、絶縁膜としては機能しなかった。
(実施例1-14~1-19、実施例2-25~2-36)
<電界効果型トランジスタの作製>
-ゲート電極の形成-
 無アルカリガラス基板を、中性洗剤、純水、及びイソプロピルアルコールを用いて超音波洗浄した。この基板を乾燥後、さらにUV-オゾン処理を90℃で10分間行った。前記無アルカリガラス基板にDCマグネトロンスパッタリング法でMoを100nm成膜し、フォトリソグラフィー法によりパターニングし、ゲート電極を形成した。
-ゲート絶縁層の形成-
 次に、前記ゲート電極及び前記無アルカリガラス基板上に、以下の各々塗布液をスピンコート装置でそれぞれ塗布した。
 ・実施例1-14:塗布液1-1
 ・実施例1-15:塗布液1-2
 ・実施例1-16:塗布液1-3
 ・実施例1-17:塗布液1-4
 ・実施例1-18:塗布液1-5
 ・実施例1-19:塗布液1-6
 ・実施例2-25:塗布液2-1
 ・実施例2-26:塗布液2-2
 ・実施例2-27:塗布液2-3
 ・実施例2-28:塗布液2-4
 ・実施例2-29:塗布液2-5
 ・実施例2-30:塗布液2-6
 ・実施例2-31:塗布液2-7
 ・実施例2-32:塗布液2-8
 ・実施例2-33:塗布液2-9
 ・実施例2-34:塗布液2-10
 ・実施例2-35:塗布液2-11
 ・実施例2-36:塗布液2-12
 その基板を120℃に加熱したホットプレート上で10分間乾燥させた後、大気雰囲気中400℃で1時間焼成し、更に大気雰囲気中で300℃で1時間アニールし、ゲート絶縁層を得た。得られたゲート絶縁層の平均厚みは約150nmであった。
-ソース電極及びドレイン電極の形成-
 次に、前記ゲート絶縁層上にDCマグネトロンスパッタリング法でITOを100nm成膜し、フォトリソグラフィー法によりパターニングし、ソース電極、及びドレイン電極を形成した。このとき、ソース及びドレイン電極長で規定されるチャネル幅は30μm、ソース-ドレイン電極間隔で規定されるチャネル長は10μmとした。
-活性層の形成-
 次に、前記ゲート絶縁層上にDCマグネトロンスパッタリング法でIGZOを20nm成膜し、フォトリソグラフィー法によりパターニングし、さらに、その基板を大気雰囲気中で300℃で1時間アニールし、活性層を得た。
 以上により、電界効果型トランジスタを作製した。
(比較例3-1)
 実施例1-14と同様の方法で電界効果型トランジスタを作製した。但し、ゲート絶縁層としてRFマグネトロンスパッタでSiO膜を200nm製膜した。
<評価>
-キャリア移動度、及びon/off比-
 得られた電界効果型トランジスタについて、半導体パラメータ・アナライザ装置(アジレントテクノロジー社製、半導体パラメータ・アナライザB1500A)を用いてソース・ドレイン電圧Vdsを10Vとした時のゲート電圧Vgsとソース・ドレイン間電流Idsとの関係を求めた。実施例2-29の結果を図8のグラフに示す。図8から、ヒステリシスのない良好なトランジスタ特性が得られていることが確認できる。なお、図8において、「e」は「10のべき乗」を表す。例えば、「1e-04」は、「0.0001」である。表6等の「E」においても同様である。
 キャリア移動度は、飽和領域において算出した。また、on/off比を求めた。なお、on/off比において、on値は、Vgs=10VにおけるIds値である。また、Idsは1E-04Aでコンプライアンスをかけており、これ以上の電流値は計測されない。オフ電流値は計測限界以下(~1fA)で非常に良好である。ゲート電流|Igs|は約10fAであり、本発明のゲート絶縁膜の絶縁性が非常に高いことがわかる。結果を表6に示す。
Figure JPOXMLDOC01-appb-T000006
 実施例1-14~1-19、及び実施例2-25~2-36の本発明の酸化物又は酸窒化物絶縁体膜形成用塗布液を塗布して得られる酸化物又は酸窒化物絶縁体をゲート絶縁層に用いた電界効果型トランジスタは、400℃程度のプロセス温度でもキャリア移動度が高く、かつon/off比が大きく、良好なトランジスタ特性を示した。
 〔NA+NB〕/〔NA+NB+NC〕が前記式(1)を満たす場合、ゲート絶縁層の比誘電率及び誘電損失が電界効果型トランジスタのゲート絶縁層に求められるそれに非常に適しており、キャリア移動度が非常に高く、かつon/off比が非常に大きく、非常に良好なトランジスタ特性を示した。
 比較例3-1の電界効果型トランジスタの特性を図9に示す。比較例3-1ではTFT特性は強いデプレッション状態となりVonは明確に観測されなかった。また、|Igs|は10-13Aオーダーであり、実施例と比較して高かった。
 以上説明したように、本発明で作製された電界効果型トランジスタによれば、プロセスマージンを拡大し、TFT特性を高いレベルで安定させるのに適している。また、本発明の表示素子によれば、高速駆動が可能で素子間のばらつきを小さくし信頼性を向上するのに適している。また、本発明の画像表示装置によれば、大画面で高品質の画像を表示するのに適している。また、本発明のシステムは、画像情報を高精細に表示することができ、テレビジョン装置、コンピュータシステムなどに好適に使用できる。
 本発明の態様は、例えば、以下のとおりである。
 <1> 酸化物又は酸窒化物絶縁体膜形成用塗布液であって、
 第A元素と、
 第B元素及び第C元素の少なくともいずれかと、
 溶媒と、
を含有し、
 前記第A元素が、Sc、Y、Ln(ランタノイド)、Sb、Bi及びTeからなる群から選択される少なくとも1種であり、
 前記第B元素が、Ga、Ti、Zr及びHfからなる群から選択される少なくとも1種であり、
 前記第C元素が、周期表の第2族元素からなる群から選択される少なくとも1種であり、
 前記溶媒が、引火点が21℃以上200℃未満である有機溶媒、及び水からなる群から選択される少なくとも1種を含む、
ことを特徴とする酸化物又は酸窒化物絶縁体膜形成用塗布液である。
 <2> 前記第B元素及び第C元素の少なくともいずれかが、少なくとも前記第B元素を含む前記<1>に記載の酸化物又は酸窒化物絶縁体膜形成用塗布液である。
 <3> 前記第B元素及び第C元素の少なくともいずれかが、少なくとも前記第C元素を含む前記<1>に記載の酸化物又は酸窒化物絶縁体膜形成用塗布液である。
 <4> 前記第A元素が、Sc、Y及びLn(ランタノイド)からなる群から選択される少なくとも1種である前記<1>から<3>のいずれかに記載の酸化物又は酸窒化物絶縁体膜形成用塗布液である。
 <5> 前記第A元素が、Sb、Bi及びTeからなる群から選択される少なくとも1種である前記<1>から<4>のいずれかに記載の酸化物又は酸窒化物絶縁体膜形成用塗布液である。
 <6> 前記第B元素が、Ti、Zr及びHfからなる群から選択される少なくとも1種である前記<1>から<5>のいずれかに記載の酸化物又は酸窒化物絶縁体膜形成用塗布液である。
 <7> 前記第C元素が、Mg、Ca、Sr及びBaからなる群から選択される少なくとも1種である前記<1>から<6>のいずれかに記載の酸化物又は酸窒化物絶縁体膜形成用塗布液である。
 <8> 前記塗布液の引火点が、37.8℃(華氏100度)以上である前記<1>から<7>のいずれかに記載の酸化物又は酸窒化物絶縁体膜形成用塗布液である。
 <9> 前記塗布液の引火点が、40℃以上である前記<1>から<8>のいずれかに記載の酸化物又は酸窒化物絶縁体膜形成用塗布液である。
 <10> 前記塗布液の引火点が、50℃以上である前記<1>から<9>のいずれかに記載の酸化物又は酸窒化物絶縁体膜形成用塗布液である。
 <11> 引火点が21℃未満の溶媒を含有しない前記<1>から<10>のいずれかに記載の酸化物又は酸窒化物絶縁体膜形成用塗布液である。
 <12> 可視光領域で透明又は淡黄色である前記<1>から<11>のいずれかに記載の酸化物又は酸窒化物絶縁体膜形成用塗布液である。
 <13> 前記第A元素の原子数の合計(NA)と、前記第B元素の原子数の合計(NB)と、前記第C元素の原子数の合計(NC)とが、下記式(1)を満たす前記<1>から<12>のいずれかに記載の酸化物又は酸窒化物絶縁体膜形成用塗布液である。
  (NA+NB)/(NA+NB+NC)≧0.5  式(1)
 <14> 前記第A元素の原子数の合計(NA)と、前記第B元素の原子数の合計(NB)と、前記第C元素の原子数の合計(NC)とが、下記式(2)を満たす前記<1>から<13>のいずれかに記載の酸化物又は酸窒化物絶縁体膜形成用塗布液である。
  NA/(NA+NB+NC)≧0.5  式(2)
 <15> 前記第A元素を含有する第A元素含有化合物が、前記溶媒に溶解されてなり、
 前記第A元素含有化合物が、無機塩、酸化物、水酸化物、有機酸塩、金属アルコキシド、有機金属、及び金属錯体類からなる群から選択される少なくとも1種である、
前記<1>から<14>のいずれかに記載の酸化物又は酸窒化物絶縁体膜形成用塗布液である。
 <16> 前記第A元素を含有する第A元素含有化合物と、前記第B元素を含有する第B元素含有化合物とが、前記溶媒に溶解されてなり、
 前記第A元素含有化合物が、無機塩、酸化物、水酸化物、有機酸塩、金属アルコキシド、有機金属、及び金属錯体類からなる群から選択される少なくとも1種であり、
 前記第B元素含有化合物が、無機塩、酸化物、水酸化物、有機酸塩、金属アルコキシド、有機金属、及び金属錯体類からなる群から選択される少なくとも1種である、
前記<1>から<15>のいずれかに記載の酸化物又は酸窒化物絶縁体膜形成用塗布液である。
 <17> 前記第A元素を含有する第A元素含有化合物と、前記第B元素を含有する第B元素含有化合物と、前記第C元素を含有する第C元素含有化合物とが、前記溶媒に溶解されてなり、
 前記第A元素含有化合物が、無機塩、酸化物、水酸化物、有機酸塩、金属アルコキシド、有機金属、及び金属錯体類からなる群から選択される少なくとも1種であり、
 前記第B元素含有化合物が、無機塩、酸化物、水酸化物、有機酸塩、金属アルコキシド、有機金属、及び金属錯体類からなる群から選択される少なくとも1種であり、
 前記第C元素含有化合物が、無機塩、酸化物、水酸化物、有機酸塩、金属アルコキシド、有機金属、及び金属錯体類からなる群から選択される少なくとも1種である、
前記<1>から<15>のいずれかに記載の酸化物又は酸窒化物絶縁体膜形成用塗布液である。
 <18> 前記溶媒が、有機酸、有機酸エステル、芳香族化合物、ジオール、グリコールエーテル、非プロトン性極性溶媒、アルカン化合物、アルケン化合物、エーテル化合物、及びアルコールからなる群から選択される少なくとも1種である前記<1>から<17>のいずれかに記載の酸化物又は酸窒化物絶縁体膜形成用塗布液である。
 <19> 前記<1>から<18>のいずれかに記載の酸化物又は酸窒化物絶縁体膜形成用塗布液を被塗物に塗布し、乾燥させた後に焼成を行うことを特徴とする酸化物又は酸窒化物絶縁体膜の製造方法である。
 <20> ゲート電極を形成するゲート電極形成工程と、
 前記ゲート電極上にゲート絶縁層を形成するゲート絶縁層形成工程と、
 前記ゲート絶縁層上にソース電極及びドレイン電極を離間して形成するソース電極及びドレイン電極形成工程と、
 前記ソース電極と前記ドレイン電極との間のチャネル領域であって前記ゲート絶縁層上に、半導体からなる活性層を形成する活性層形成工程とを含み、
 前記ゲート絶縁層形成工程が、前記ゲート電極層上に前記<1>から<18>のいずれかに記載の酸化物又は酸窒化物絶縁体膜形成用塗布液を塗布して酸化物絶縁体又は酸窒化物絶縁体からなる前記ゲート絶縁層を形成する工程であることを特徴とする電界効果型トランジスタの製造方法である。
 <21> ソース電極及びドレイン電極を離間して形成するソース電極及びドレイン電極形成工程と、
 前記ソース電極と前記ドレイン電極との間のチャネル領域に、半導体からなる活性層を形成する活性層形成工程と、
 前記活性層上にゲート絶縁層を形成するゲート絶縁層形成工程と、
 前記ゲート絶縁層上にゲート電極を形成するゲート電極形成工程とを含み、
 前記ゲート絶縁層形成工程が、前記<1>から<18>のいずれかに記載の酸化物又は酸窒化物絶縁体膜形成用塗布液を塗布して酸化物絶縁体又は酸窒化物絶縁体からなる前記ゲート絶縁層を形成する工程であることを特徴とする電界効果型トランジスタの製造方法である。
 <22> 半導体からなる活性層を形成する活性層形成工程と、
 前記活性層上にゲート絶縁層を形成するゲート絶縁層形成工程と、
 前記ゲート絶縁層上にゲート電極を形成するゲート電極形成工程と、
 前記ゲート電極上に層間絶縁層を形成する工程と、
 前記ゲート絶縁層或いは層間絶縁層にスルーホールを形成する工程と、
 前記層間絶縁層上にソース電極及びドレイン電極を形成する工程と、
を含み、
 前記ゲート絶縁層形成工程が、前記<1>から<18>のいずれかに記載の酸化物又は酸窒化物絶縁体膜形成用塗布液を塗布して酸化物絶縁体又は酸窒化物絶縁体からなる前記ゲート絶縁層を形成する工程であることを特徴とする電界効果型トランジスタの製造方法である。
 <23> 前記ゲート絶縁層形成工程において、前記酸化物又は酸窒化物絶縁体膜形成用塗布液中の、前記第A元素の原子数の合計(NA)と、前記第B元素の原子数の合計(NB)と、前記第C元素の原子数の合計(NC)と、を調整することにより、前記酸化物絶縁体又は酸窒化物絶縁体の比誘電率及び誘電損失を制御する前記<20>から<22>のいずれかに記載の電界効果型トランジスタの製造方法である。
 <24> 前記<1>から<18>のいずれかに記載の酸化物又は酸窒化物絶縁体膜形成用塗布液の焼成物であることを特徴とする酸化物又は酸窒化物絶縁体膜である。
 <25> 可視光領域又は近赤外領域に電子遷移による光吸収帯を有しない前記<24>に記載の酸化物又は酸窒化物絶縁体膜である。
 <26> 前記<24>から<25>のいずれかに記載の酸化物又は酸窒化物絶縁体膜を有することを特徴とする半導体素子である。
 <27> ゲート電圧を印加するためのゲート電極と、
 ソース電極及びドレイン電極と、
 前記ソース電極と前記ドレイン電極との間に形成された半導体膜からなる活性層と、
 前記ゲート電極と前記活性層との間に形成されたゲート絶縁層と、
を有し、
 前記ゲート絶縁層が、前記<24>から<25>のいずれかに記載の酸化物又は酸窒化物絶縁体膜であることを特徴とする電界効果型トランジスタである。
 <28> 前記<27>に記載の電界効果型トランジスタであって、前記活性層が酸化物半導体である電界効果型トランジスタである。
 <29> 前記<27>に記載の電界効果型トランジスタであって、前記活性層がアモルファスシリコンである電界効果型トランジスタである。
 <30> 前記<27>に記載の電界効果型トランジスタであって、前記活性層が低温ポリシリコンである電界効果型トランジスタである。
  1   基材
  2   ゲート電極
  3   ゲート絶縁層
  4   ソース電極
  5   ドレイン電極
  6   活性層

 

Claims (30)

  1.  酸化物又は酸窒化物絶縁体膜形成用塗布液であって、
     第A元素と、
     第B元素及び第C元素の少なくともいずれかと、
     溶媒と、
    を含有し、
     前記第A元素が、Sc、Y、Ln(ランタノイド)、Sb、Bi及びTeからなる群から選択される少なくとも1種であり、
     前記第B元素が、Ga、Ti、Zr及びHfからなる群から選択される少なくとも1種であり、
     前記第C元素が、周期表の第2族元素からなる群から選択される少なくとも1種であり、
     前記溶媒が、引火点が21℃以上200℃未満である有機溶媒、及び水からなる群から選択される少なくとも1種を含む、
    ことを特徴とする酸化物又は酸窒化物絶縁体膜形成用塗布液。
  2.  前記第B元素及び第C元素の少なくともいずれかが、少なくとも前記第B元素を含む請求項1に記載の酸化物又は酸窒化物絶縁体膜形成用塗布液。
  3.  前記第B元素及び第C元素の少なくともいずれかが、少なくとも前記第C元素を含む請求項1に記載の酸化物又は酸窒化物絶縁体膜形成用塗布液。
  4.  前記第A元素が、Sc、Y及びLn(ランタノイド)からなる群から選択される少なくとも1種である請求項1から3のいずれかに記載の酸化物又は酸窒化物絶縁体膜形成用塗布液。
  5.  前記第A元素が、Sb、Bi及びTeからなる群から選択される少なくとも1種である請求項1から4のいずれかに記載の酸化物又は酸窒化物絶縁体膜形成用塗布液。
  6.  前記第B元素が、Ti、Zr及びHfからなる群から選択される少なくとも1種である請求項1から5のいずれかに記載の酸化物又は酸窒化物絶縁体膜形成用塗布液。
  7.  前記第C元素が、Mg、Ca、Sr及びBaからなる群から選択される少なくとも1種である請求項1から6のいずれかに記載の酸化物又は酸窒化物絶縁体膜形成用塗布液。
  8.  前記塗布液の引火点が、37.8℃(華氏100度)以上である請求項1から7のいずれかに記載の酸化物又は酸窒化物絶縁体膜形成用塗布液。
  9.  前記塗布液の引火点が、40℃以上である請求項1から8のいずれかに記載の酸化物又は酸窒化物絶縁体膜形成用塗布液。
  10.  前記塗布液の引火点が、50℃以上である請求項1から9のいずれかに記載の酸化物又は酸窒化物絶縁体膜形成用塗布液。
  11.  引火点が21℃未満の溶媒を含有しない請求項1から10のいずれかに記載の酸化物又は酸窒化物絶縁体膜形成用塗布液。
  12.  可視光領域で透明又は淡黄色である請求項1から11のいずれかに記載の酸化物又は酸窒化物絶縁体膜形成用塗布液。
  13.  前記第A元素の原子数の合計(NA)と、前記第B元素の原子数の合計(NB)と、前記第C元素の原子数の合計(NC)とが、下記式(1)を満たす請求項1から12のいずれかに記載の酸化物又は酸窒化物絶縁体膜形成用塗布液。
      (NA+NB)/(NA+NB+NC)≧0.5  式(1)
  14.  前記第A元素の原子数の合計(NA)と、前記第B元素の原子数の合計(NB)と、前記第C元素の原子数の合計(NC)とが、下記式(2)を満たす請求項1から13のいずれかに記載の酸化物又は酸窒化物絶縁体膜形成用塗布液。
      NA/(NA+NB+NC)≧0.5  式(2)
  15.  前記第A元素を含有する第A元素含有化合物が、前記溶媒に溶解されてなり、
     前記第A元素含有化合物が、無機塩、酸化物、水酸化物、有機酸塩、金属アルコキシド、有機金属、及び金属錯体類からなる群から選択される少なくとも1種である、
    請求項1から14のいずれかに記載の酸化物又は酸窒化物絶縁体膜形成用塗布液。
  16.  前記第A元素を含有する第A元素含有化合物と、前記第B元素を含有する第B元素含有化合物とが、前記溶媒に溶解されてなり、
     前記第A元素含有化合物が、無機塩、酸化物、水酸化物、有機酸塩、金属アルコキシド、有機金属、及び金属錯体類からなる群から選択される少なくとも1種であり、
     前記第B元素含有化合物が、無機塩、酸化物、水酸化物、有機酸塩、金属アルコキシド、有機金属、及び金属錯体類からなる群から選択される少なくとも1種である、
    請求項1から15のいずれかに記載の酸化物又は酸窒化物絶縁体膜形成用塗布液。
  17.  前記第A元素を含有する第A元素含有化合物と、前記第B元素を含有する第B元素含有化合物と、前記第C元素を含有する第C元素含有化合物とが、前記溶媒に溶解されてなり、
     前記第A元素含有化合物が、無機塩、酸化物、水酸化物、有機酸塩、金属アルコキシド、有機金属、及び金属錯体類からなる群から選択される少なくとも1種であり、
     前記第B元素含有化合物が、無機塩、酸化物、水酸化物、有機酸塩、金属アルコキシド、有機金属、及び金属錯体類からなる群から選択される少なくとも1種であり、
     前記第C元素含有化合物が、無機塩、酸化物、水酸化物、有機酸塩、金属アルコキシド、有機金属、及び金属錯体類からなる群から選択される少なくとも1種である、
    請求項1から15のいずれかに記載の酸化物又は酸窒化物絶縁体膜形成用塗布液。
  18.  前記溶媒が、有機酸、有機酸エステル、芳香族化合物、ジオール、グリコールエーテル、非プロトン性極性溶媒、アルカン化合物、アルケン化合物、エーテル化合物、及びアルコールからなる群から選択される少なくとも1種である請求項1から17のいずれかに記載の酸化物又は酸窒化物絶縁体膜形成用塗布液。
  19.  請求項1から18のいずれかに記載の酸化物又は酸窒化物絶縁体膜形成用塗布液を被塗物に塗布し、乾燥させた後に焼成を行うことを特徴とする酸化物又は酸窒化物絶縁体膜の製造方法。
  20.  ゲート電極を形成するゲート電極形成工程と、
     前記ゲート電極上にゲート絶縁層を形成するゲート絶縁層形成工程と、
     前記ゲート絶縁層上にソース電極及びドレイン電極を離間して形成するソース電極及びドレイン電極形成工程と、
     前記ソース電極と前記ドレイン電極との間のチャネル領域であって前記ゲート絶縁層上に、半導体からなる活性層を形成する活性層形成工程とを含み、
     前記ゲート絶縁層形成工程が、前記ゲート電極層上に請求項1から18のいずれかに記載の酸化物又は酸窒化物絶縁体膜形成用塗布液を塗布して酸化物絶縁体又は酸窒化物絶縁体からなる前記ゲート絶縁層を形成する工程であることを特徴とする電界効果型トランジスタの製造方法。
  21.  ソース電極及びドレイン電極を離間して形成するソース電極及びドレイン電極形成工程と、
     前記ソース電極と前記ドレイン電極との間のチャネル領域に、半導体からなる活性層を形成する活性層形成工程と、
     前記活性層上にゲート絶縁層を形成するゲート絶縁層形成工程と、
     前記ゲート絶縁層上にゲート電極を形成するゲート電極形成工程とを含み、
     前記ゲート絶縁層形成工程が、請求項1から18のいずれかに記載の酸化物又は酸窒化物絶縁体膜形成用塗布液を塗布して酸化物絶縁体又は酸窒化物絶縁体からなる前記ゲート絶縁層を形成する工程であることを特徴とする電界効果型トランジスタの製造方法。
  22.  半導体からなる活性層を形成する活性層形成工程と、
     前記活性層上にゲート絶縁層を形成するゲート絶縁層形成工程と、
     前記ゲート絶縁層上にゲート電極を形成するゲート電極形成工程と、
     前記ゲート電極上に層間絶縁層を形成する工程と、
     前記ゲート絶縁層或いは層間絶縁層にスルーホールを形成する工程と、
     前記層間絶縁層上にソース電極及びドレイン電極を形成する工程と、
    を含み、
     前記ゲート絶縁層形成工程が、請求項1から18のいずれかに記載の酸化物又は酸窒化物絶縁体膜形成用塗布液を塗布して酸化物絶縁体又は酸窒化物絶縁体からなる前記ゲート絶縁層を形成する工程であることを特徴とする電界効果型トランジスタの製造方法。
  23.  前記ゲート絶縁層形成工程において、前記酸化物又は酸窒化物絶縁体膜形成用塗布液中の、前記第A元素の原子数の合計(NA)と、前記第B元素の原子数の合計(NB)と、前記第C元素の原子数の合計(NC)と、を調整することにより、前記酸化物絶縁体又は酸窒化物絶縁体の比誘電率及び誘電損失を制御する請求項20から22のいずれかに記載の電界効果型トランジスタの製造方法。
  24.  請求項1から18のいずれかに記載の酸化物又は酸窒化物絶縁体膜形成用塗布液の焼成物であることを特徴とする酸化物又は酸窒化物絶縁体膜。
  25.  可視光領域又は近赤外領域に電子遷移による光吸収帯を有しない請求項24に記載の酸化物又は酸窒化物絶縁体膜。
  26.  請求項24から25のいずれかに記載の酸化物又は酸窒化物絶縁体膜を有することを特徴とする半導体素子。
  27.  ゲート電圧を印加するためのゲート電極と、
     ソース電極及びドレイン電極と、
     前記ソース電極と前記ドレイン電極との間に形成された半導体膜からなる活性層と、
     前記ゲート電極と前記活性層との間に形成されたゲート絶縁層と、
    を有し、
     前記ゲート絶縁層が、請求項24から25のいずれかに記載の酸化物又は酸窒化物絶縁体膜であることを特徴とする電界効果型トランジスタ。
  28.  請求項27に記載の電界効果型トランジスタであって、前記活性層が酸化物半導体である電界効果型トランジスタ。
  29.  請求項27に記載の電界効果型トランジスタであって、前記活性層がアモルファスシリコンである電界効果型トランジスタ。
  30.  請求項27に記載の電界効果型トランジスタであって、前記活性層が低温ポリシリコンである電界効果型トランジスタ。

     
PCT/JP2017/042686 2016-11-30 2017-11-28 酸化物又は酸窒化物絶縁体膜形成用塗布液、酸化物又は酸窒化物絶縁体膜、電界効果型トランジスタ、及びそれらの製造方法 WO2018101278A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2018554166A JP6844624B2 (ja) 2016-11-30 2017-11-28 酸化物又は酸窒化物絶縁体膜形成用塗布液、酸化物又は酸窒化物絶縁体膜、電界効果型トランジスタ、及びそれらの製造方法
KR1020197018479A KR102260807B1 (ko) 2016-11-30 2017-11-28 산화물 또는 산질화물 절연체 막 형성용 도포액, 산화물 또는 산질화물 절연체 막, 전계 효과형 트랜지스터 및 이들의 제조 방법
EP17877265.3A EP3550595B1 (en) 2016-11-30 2017-11-28 Coating liquid for forming oxide or oxynitride insulator film and a method for manufacturing using the coating liquid
CN201780073946.2A CN110024089B (zh) 2016-11-30 2017-11-28 氧化物或氧氮化物绝缘体膜及其形成用涂布液,场效应晶体管及其制造方法
US16/425,446 US11049951B2 (en) 2016-11-30 2019-05-29 Coating liquid for forming oxide or oxynitride insulator film, oxide or oxynitride insulator film, field-effect transistor, and method for producing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-233523 2016-11-30
JP2016233523 2016-11-30

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/425,446 Continuation US11049951B2 (en) 2016-11-30 2019-05-29 Coating liquid for forming oxide or oxynitride insulator film, oxide or oxynitride insulator film, field-effect transistor, and method for producing the same

Publications (1)

Publication Number Publication Date
WO2018101278A1 true WO2018101278A1 (ja) 2018-06-07

Family

ID=62242506

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/042686 WO2018101278A1 (ja) 2016-11-30 2017-11-28 酸化物又は酸窒化物絶縁体膜形成用塗布液、酸化物又は酸窒化物絶縁体膜、電界効果型トランジスタ、及びそれらの製造方法

Country Status (7)

Country Link
US (1) US11049951B2 (ja)
EP (1) EP3550595B1 (ja)
JP (1) JP6844624B2 (ja)
KR (1) KR102260807B1 (ja)
CN (1) CN110024089B (ja)
TW (1) TWI682063B (ja)
WO (1) WO2018101278A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020021935A (ja) * 2018-07-23 2020-02-06 株式会社リコー 金属酸化物、電界効果型トランジスタ、及び電界効果型トランジスタの製造方法
EP3599646A3 (en) * 2018-07-23 2020-04-01 Ricoh Company, Ltd. Metal oxide, field-effect transistor, and method for producing the same
US11502203B2 (en) 2017-03-21 2022-11-15 Ricoh Company, Ltd. Coating liquid for forming metal oxide film, oxide film, field-effect transistor, and method for producing the same
US11901431B2 (en) 2018-07-23 2024-02-13 Ricoh Company, Ltd. Coating liquid for forming metal oxide film, oxide insulator film, field-effect transistor, display element, image display device, and system

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4423325A1 (en) 2021-10-27 2024-09-04 Silanna UV Technologies Pte Ltd Methods and systems for heating a wide bandgap substrate
EP4430676A1 (en) 2021-11-10 2024-09-18 Silanna UV Technologies Pte Ltd Ultrawide bandgap semiconductor devices including magnesium germanium oxides
CN118369767A (zh) 2021-11-10 2024-07-19 斯兰纳Uv科技有限公司 外延氧化物材料、结构和装置
EP4430674A1 (en) 2021-11-10 2024-09-18 Silanna UV Technologies Pte Ltd Epitaxial oxide materials, structures, and devices

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10270712A (ja) * 1997-03-25 1998-10-09 Internatl Business Mach Corp <Ibm> 薄膜トランジスタ・デバイスの構造
JP2001233604A (ja) * 2000-02-24 2001-08-28 Kansai Research Institute 酸化物薄膜形成用塗布液およびその製造方法ならびに酸化物薄膜の製造方法
JP2002543627A (ja) * 1999-04-29 2002-12-17 シメトリックス・コーポレーション 傾斜機能を有する不揮発性メモリアプリケーションのための強誘電体電界効果トランジスタおよびそれを作成する方法
JP2007019432A (ja) * 2005-07-11 2007-01-25 Tokyo Ohka Kogyo Co Ltd 常誘電体薄膜およびその形成方法
JP2008159824A (ja) 2006-12-25 2008-07-10 National Institute Of Advanced Industrial & Technology 酸化シリコン薄膜の製造装置及び形成方法
JP2011151370A (ja) * 2009-12-25 2011-08-04 Ricoh Co Ltd 電界効果型トランジスタ、半導体メモリ、表示素子、画像表示装置及びシステム
JP2011216845A (ja) * 2010-03-18 2011-10-27 Ricoh Co Ltd 絶縁膜形成用インク、絶縁膜の製造方法及び半導体装置の製造方法
JP2015061048A (ja) * 2013-09-20 2015-03-30 セイコーエプソン株式会社 液体噴射ヘッド、液体噴射装置及び圧電素子
JP2016028412A (ja) * 2014-07-11 2016-02-25 株式会社リコー n型酸化物半導体製造用塗布液、電界効果型トランジスタ、表示素子、画像表示装置、及びシステム
JP2016197631A (ja) * 2015-04-02 2016-11-24 Dic株式会社 絶縁膜形成用前駆体溶液とその製造方法、絶縁膜とその製造方法及びトランジスタデバイス及びその製造方法

Family Cites Families (54)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3072000B2 (ja) * 1994-06-23 2000-07-31 株式会社半導体エネルギー研究所 半導体装置の作製方法
US5792592A (en) * 1996-05-24 1998-08-11 Symetrix Corporation Photosensitive liquid precursor solutions and use thereof in making thin films
US5981970A (en) 1997-03-25 1999-11-09 International Business Machines Corporation Thin-film field-effect transistor with organic semiconductor requiring low operating voltages
US5946551A (en) 1997-03-25 1999-08-31 Dimitrakopoulos; Christos Dimitrios Fabrication of thin film effect transistor comprising an organic semiconductor and chemical solution deposited metal oxide gate dielectric
US6344662B1 (en) 1997-03-25 2002-02-05 International Business Machines Corporation Thin-film field-effect transistor with organic-inorganic hybrid semiconductor requiring low operating voltages
KR100333375B1 (ko) * 2000-06-30 2002-04-18 박종섭 반도체 소자의 게이트 제조방법
WO2002052652A1 (fr) * 2000-12-26 2002-07-04 Matsushita Electric Industrial Co., Ltd. Composant a semi-conducteur et son procede de fabrication
JP4329287B2 (ja) * 2000-12-27 2009-09-09 三菱マテリアル株式会社 Plzt又はpzt強誘電体薄膜、その形成用組成物及び形成方法
US20020168785A1 (en) * 2001-05-10 2002-11-14 Symetrix Corporation Ferroelectric composite material, method of making same, and memory utilizing same
US6831313B2 (en) * 2001-05-10 2004-12-14 Symetrix Corporation Ferroelectric composite material, method of making same and memory utilizing same
JP2003017687A (ja) * 2001-06-29 2003-01-17 Hitachi Ltd 半導体装置
US6960537B2 (en) * 2001-10-02 2005-11-01 Asm America, Inc. Incorporation of nitrogen into high k dielectric film
AU2002309806A1 (en) * 2002-04-10 2003-10-27 Honeywell International, Inc. New porogens for porous silica dielectric for integral circuit applications
AU2003289764A1 (en) * 2002-12-09 2004-06-30 Asm America Inc. Method for forming a dielectric stack
JP4536333B2 (ja) * 2003-04-03 2010-09-01 忠弘 大見 半導体装置及び、その製造方法
US7906441B2 (en) * 2003-05-13 2011-03-15 Texas Instruments Incorporated System and method for mitigating oxide growth in a gate dielectric
US7303949B2 (en) * 2003-10-20 2007-12-04 International Business Machines Corporation High performance stress-enhanced MOSFETs using Si:C and SiGe epitaxial source/drain and method of manufacture
US7247534B2 (en) * 2003-11-19 2007-07-24 International Business Machines Corporation Silicon device on Si:C-OI and SGOI and method of manufacture
WO2005065402A2 (en) * 2003-12-29 2005-07-21 Translucent Photonics, Inc. Rare earth-oxides, rare earth-nitrides, rare earth-phosphides and ternary alloys with silicon
EP1737044B1 (en) * 2004-03-12 2014-12-10 Japan Science and Technology Agency Amorphous oxide and thin film transistor
US20050224897A1 (en) * 2004-03-26 2005-10-13 Taiwan Semiconductor Manufacturing Co., Ltd. High-K gate dielectric stack with buffer layer to improve threshold voltage characteristics
KR20050112031A (ko) * 2004-05-24 2005-11-29 삼성에스디아이 주식회사 반도체 소자 및 그 형성 방법
US7384829B2 (en) * 2004-07-23 2008-06-10 International Business Machines Corporation Patterned strained semiconductor substrate and device
US7202164B2 (en) * 2004-11-19 2007-04-10 Chartered Semiconductor Manufacturing Ltd. Method of forming ultra thin silicon oxynitride for gate dielectric applications
US20060172473A1 (en) * 2005-02-03 2006-08-03 Po-Lun Cheng Method of forming a two-layer gate dielectric
JP2006216897A (ja) * 2005-02-07 2006-08-17 Toshiba Corp 半導体装置及びその製造方法
US7498247B2 (en) * 2005-02-23 2009-03-03 Micron Technology, Inc. Atomic layer deposition of Hf3N4/HfO2 films as gate dielectrics
US7709402B2 (en) * 2006-02-16 2010-05-04 Micron Technology, Inc. Conductive layers for hafnium silicon oxynitride films
US7521307B2 (en) * 2006-04-28 2009-04-21 International Business Machines Corporation CMOS structures and methods using self-aligned dual stressed layers
JP4702215B2 (ja) * 2006-08-02 2011-06-15 住友金属鉱山株式会社 高誘電体薄膜形成用塗布組成物とその製造方法
US7582549B2 (en) * 2006-08-25 2009-09-01 Micron Technology, Inc. Atomic layer deposited barium strontium titanium oxide films
US20080057659A1 (en) * 2006-08-31 2008-03-06 Micron Technology, Inc. Hafnium aluminium oxynitride high-K dielectric and metal gates
US9716153B2 (en) * 2007-05-25 2017-07-25 Cypress Semiconductor Corporation Nonvolatile charge trap memory device having a deuterated layer in a multi-layer charge-trapping region
WO2009031232A1 (ja) * 2007-09-07 2009-03-12 Canon Anelva Corporation スパッタリング方法および装置
US8115254B2 (en) * 2007-09-25 2012-02-14 International Business Machines Corporation Semiconductor-on-insulator structures including a trench containing an insulator stressor plug and method of fabricating same
US8492846B2 (en) * 2007-11-15 2013-07-23 International Business Machines Corporation Stress-generating shallow trench isolation structure having dual composition
JP5679622B2 (ja) * 2008-01-31 2015-03-04 株式会社東芝 絶縁膜、およびこれを用いた半導体装置
JP5659457B2 (ja) * 2009-03-13 2015-01-28 三菱マテリアル株式会社 強誘電体薄膜形成用組成物、強誘電体薄膜の形成方法並びに該方法により形成された強誘電体薄膜
JP2010034440A (ja) * 2008-07-31 2010-02-12 Toshiba Corp 半導体装置及びその製造方法
JP5644071B2 (ja) * 2008-08-20 2014-12-24 株式会社リコー 電界効果型トランジスタ、表示素子、画像表示装置及びシステム
KR20120004419A (ko) * 2009-03-23 2012-01-12 에스비에이 머티어리얼스 인코포레이티드 신규한 유전체 산화필름 및 이를 만드는 방법
JP5640478B2 (ja) 2009-07-09 2014-12-17 株式会社リコー 電界効果型トランジスタの製造方法及び電界効果型トランジスタ
DE102009038710B4 (de) * 2009-08-25 2020-02-27 Infineon Technologies Austria Ag Halbleiterbauelement
CN105097952B (zh) * 2009-12-25 2018-12-21 株式会社理光 绝缘膜形成墨水、绝缘膜制造方法和半导体制造方法
JP5776192B2 (ja) 2010-02-16 2015-09-09 株式会社リコー 電界効果型トランジスタ、表示素子、画像表示装置及びシステム
JP2012186455A (ja) 2011-02-16 2012-09-27 Ricoh Co Ltd ホール形成方法、並びに該方法を用いてビアホールを形成した多層配線、半導体装置、表示素子、画像表示装置、及びシステム
WO2013035842A1 (ja) * 2011-09-08 2013-03-14 株式会社タムラ製作所 Ga2O3系半導体素子
JP6015389B2 (ja) * 2012-11-30 2016-10-26 株式会社リコー 電界効果型トランジスタ、表示素子、画像表示装置、及びシステム
US9006064B2 (en) * 2013-03-11 2015-04-14 International Business Machines Corporation Multi-plasma nitridation process for a gate dielectric
JP6421446B2 (ja) * 2013-06-28 2018-11-14 株式会社リコー 電界効果型トランジスタ、表示素子、画像表示装置及びシステム
EP3054488B1 (en) * 2013-10-04 2019-05-08 Asahi Kasei Kabushiki Kaisha Transistor, and transistor manufacturing method
JP6607013B2 (ja) * 2015-12-08 2019-11-20 株式会社リコー 電界効果型トランジスタ、表示素子、画像表示装置、及びシステム
JP2017105013A (ja) * 2015-12-08 2017-06-15 株式会社リコー ガスバリア性積層体、半導体装置、表示素子、表示装置、システム
US10170635B2 (en) * 2015-12-09 2019-01-01 Ricoh Company, Ltd. Semiconductor device, display device, display apparatus, and system

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10270712A (ja) * 1997-03-25 1998-10-09 Internatl Business Mach Corp <Ibm> 薄膜トランジスタ・デバイスの構造
JP2002543627A (ja) * 1999-04-29 2002-12-17 シメトリックス・コーポレーション 傾斜機能を有する不揮発性メモリアプリケーションのための強誘電体電界効果トランジスタおよびそれを作成する方法
JP2001233604A (ja) * 2000-02-24 2001-08-28 Kansai Research Institute 酸化物薄膜形成用塗布液およびその製造方法ならびに酸化物薄膜の製造方法
JP2007019432A (ja) * 2005-07-11 2007-01-25 Tokyo Ohka Kogyo Co Ltd 常誘電体薄膜およびその形成方法
JP2008159824A (ja) 2006-12-25 2008-07-10 National Institute Of Advanced Industrial & Technology 酸化シリコン薄膜の製造装置及び形成方法
JP2011151370A (ja) * 2009-12-25 2011-08-04 Ricoh Co Ltd 電界効果型トランジスタ、半導体メモリ、表示素子、画像表示装置及びシステム
JP2011216845A (ja) * 2010-03-18 2011-10-27 Ricoh Co Ltd 絶縁膜形成用インク、絶縁膜の製造方法及び半導体装置の製造方法
JP2015061048A (ja) * 2013-09-20 2015-03-30 セイコーエプソン株式会社 液体噴射ヘッド、液体噴射装置及び圧電素子
JP2016028412A (ja) * 2014-07-11 2016-02-25 株式会社リコー n型酸化物半導体製造用塗布液、電界効果型トランジスタ、表示素子、画像表示装置、及びシステム
JP2016197631A (ja) * 2015-04-02 2016-11-24 Dic株式会社 絶縁膜形成用前駆体溶液とその製造方法、絶縁膜とその製造方法及びトランジスタデバイス及びその製造方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CHERIE R. KAGANPAUL ANDRY: "Thin-Film Transistors", 25 February 2003, CRC PRESS
See also references of EP3550595A4

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11502203B2 (en) 2017-03-21 2022-11-15 Ricoh Company, Ltd. Coating liquid for forming metal oxide film, oxide film, field-effect transistor, and method for producing the same
JP2020021935A (ja) * 2018-07-23 2020-02-06 株式会社リコー 金属酸化物、電界効果型トランジスタ、及び電界効果型トランジスタの製造方法
EP3599646A3 (en) * 2018-07-23 2020-04-01 Ricoh Company, Ltd. Metal oxide, field-effect transistor, and method for producing the same
US10818770B2 (en) 2018-07-23 2020-10-27 Ricoh Company, Ltd. Metal oxide, field-effect transistor, and method for producing the same
US11901431B2 (en) 2018-07-23 2024-02-13 Ricoh Company, Ltd. Coating liquid for forming metal oxide film, oxide insulator film, field-effect transistor, display element, image display device, and system
JP7476490B2 (ja) 2018-07-23 2024-05-01 株式会社リコー 金属酸化物、電界効果型トランジスタ、及び電界効果型トランジスタの製造方法

Also Published As

Publication number Publication date
EP3550595B1 (en) 2024-04-10
CN110024089A (zh) 2019-07-16
JPWO2018101278A1 (ja) 2019-10-24
JP6844624B2 (ja) 2021-03-17
EP3550595A1 (en) 2019-10-09
US20190280098A1 (en) 2019-09-12
TW201823510A (zh) 2018-07-01
CN110024089B (zh) 2023-06-27
KR20190085127A (ko) 2019-07-17
KR102260807B1 (ko) 2021-06-07
EP3550595A4 (en) 2019-11-27
US11049951B2 (en) 2021-06-29
TWI682063B (zh) 2020-01-11

Similar Documents

Publication Publication Date Title
JP6844624B2 (ja) 酸化物又は酸窒化物絶縁体膜形成用塗布液、酸化物又は酸窒化物絶縁体膜、電界効果型トランジスタ、及びそれらの製造方法
JP6607013B2 (ja) 電界効果型トランジスタ、表示素子、画像表示装置、及びシステム
US9418842B2 (en) Coating liquid for forming metal oxide thin film, metal oxide thin film, field-effect transistor, and method for manufacturing field-effect transistor
US9236493B2 (en) P-type transparent oxide semiconductor, transistor having the same, and manufacture method of the same
JP2017163118A (ja) 電界効果型トランジスタ、表示素子、画像表示装置、及びシステム
US20170162704A1 (en) Field-effect transistor, display element, image display device, and system
KR102511266B1 (ko) 금속 산화물 막 형성용 도포액, 산화물 절연체 막, 전계효과형 트랜지스터, 표시 소자, 화상 표시 장치 및 시스템
CN108028270B (zh) 用于形成n-型氧化物半导体膜的涂布液、n-型氧化物半导体膜制造方法和场效应晶体管制造方法
TWI673327B (zh) 用於形成金屬氧化物膜的塗佈液、氧化物膜、場效電晶體、及其製造方法
JP6848405B2 (ja) 電界効果型トランジスタの製造方法
TWI631401B (zh) 場效電晶體、顯示元件、影像顯示裝置及系統
WO2018174218A1 (en) Coating liquid for forming metal oxide film, oxide film, field-effect transistor, and method for producing the same
JP2020021935A (ja) 金属酸化物、電界効果型トランジスタ、及び電界効果型トランジスタの製造方法
JP2017085080A (ja) 電界効果型トランジスタ、表示素子、画像表示装置、及びシステム
JP2018148145A (ja) 電界効果型トランジスタ、表示素子、表示装置、システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17877265

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018554166

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20197018479

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2017877265

Country of ref document: EP

Effective date: 20190701