CN1095196C - 具有超浅端区的晶体管及其制造方法 - Google Patents
具有超浅端区的晶体管及其制造方法 Download PDFInfo
- Publication number
- CN1095196C CN1095196C CN95197621A CN95197621A CN1095196C CN 1095196 C CN1095196 C CN 1095196C CN 95197621 A CN95197621 A CN 95197621A CN 95197621 A CN95197621 A CN 95197621A CN 1095196 C CN1095196 C CN 1095196C
- Authority
- CN
- China
- Prior art keywords
- semi
- side wall
- wall
- conducting material
- transistor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000004519 manufacturing process Methods 0.000 title abstract description 22
- 239000004065 semiconductor Substances 0.000 claims description 128
- 239000000758 substrate Substances 0.000 claims description 73
- 238000000034 method Methods 0.000 claims description 32
- 125000006850 spacer group Chemical group 0.000 claims description 22
- 229910021332 silicide Inorganic materials 0.000 claims description 17
- FVBUAEGBCNSCDD-UHFFFAOYSA-N silicide(4-) Chemical compound [Si-4] FVBUAEGBCNSCDD-UHFFFAOYSA-N 0.000 claims description 17
- 239000010703 silicon Substances 0.000 claims description 15
- 239000002019 doping agent Substances 0.000 claims description 13
- 229910052710 silicon Inorganic materials 0.000 claims description 13
- 230000015572 biosynthetic process Effects 0.000 claims description 12
- 239000000463 material Substances 0.000 claims description 12
- 150000002500 ions Chemical class 0.000 claims description 9
- 229910021420 polycrystalline silicon Inorganic materials 0.000 claims description 7
- 230000008021 deposition Effects 0.000 claims description 6
- 229920005591 polysilicon Polymers 0.000 claims description 6
- 238000005468 ion implantation Methods 0.000 claims description 5
- 230000002093 peripheral effect Effects 0.000 claims description 5
- 229910021421 monocrystalline silicon Inorganic materials 0.000 claims description 2
- 238000009792 diffusion process Methods 0.000 description 13
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 12
- 239000012535 impurity Substances 0.000 description 9
- 238000005260 corrosion Methods 0.000 description 8
- 230000007797 corrosion Effects 0.000 description 8
- 239000000203 mixture Substances 0.000 description 5
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 4
- 229910045601 alloy Inorganic materials 0.000 description 4
- 239000000956 alloy Substances 0.000 description 4
- 239000010936 titanium Substances 0.000 description 4
- 229910052719 titanium Inorganic materials 0.000 description 4
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 3
- 229910052796 boron Inorganic materials 0.000 description 3
- 229910000927 Ge alloy Inorganic materials 0.000 description 2
- 229910000676 Si alloy Inorganic materials 0.000 description 2
- 229910052581 Si3N4 Inorganic materials 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 238000001259 photo etching Methods 0.000 description 2
- 238000001020 plasma etching Methods 0.000 description 2
- 150000003376 silicon Chemical class 0.000 description 2
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 229910021341 titanium silicide Inorganic materials 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 1
- 229910008484 TiSi Inorganic materials 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 238000005137 deposition process Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 230000005669 field effect Effects 0.000 description 1
- -1 for example Substances 0.000 description 1
- 229910052732 germanium Inorganic materials 0.000 description 1
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 1
- 238000001459 lithography Methods 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical group 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 229920002120 photoresistant polymer Polymers 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000035755 proliferation Effects 0.000 description 1
- 239000003870 refractory metal Substances 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/02—Semiconductor bodies ; Multistep manufacturing processes therefor
- H01L29/06—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
- H01L29/08—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
- H01L29/0843—Source or drain regions of field-effect devices
- H01L29/0847—Source or drain regions of field-effect devices of field-effect transistors with insulated gate
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/22—Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities
- H01L21/225—Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities using diffusion into or out of a solid from or into a solid phase, e.g. a doped oxide layer
- H01L21/2251—Diffusion into or out of group IV semiconductors
- H01L21/2254—Diffusion into or out of group IV semiconductors from or through or into an applied layer, e.g. photoresist, nitrides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/22—Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities
- H01L21/225—Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities using diffusion into or out of a solid from or into a solid phase, e.g. a doped oxide layer
- H01L21/2251—Diffusion into or out of group IV semiconductors
- H01L21/2254—Diffusion into or out of group IV semiconductors from or through or into an applied layer, e.g. photoresist, nitrides
- H01L21/2257—Diffusion into or out of group IV semiconductors from or through or into an applied layer, e.g. photoresist, nitrides the applied layer being silicon or silicide or SIPOS, e.g. polysilicon, porous silicon
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/28—Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
- H01L21/28008—Making conductor-insulator-semiconductor electrodes
- H01L21/28017—Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
- H01L21/28026—Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor
- H01L21/2807—Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor the final conductor layer next to the insulator being Si or Ge or C and their alloys except Si
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/77—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
- H01L21/78—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
- H01L21/82—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
- H01L21/822—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
- H01L21/8232—Field-effect technology
- H01L21/8234—MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
- H01L21/8238—Complementary field-effect transistors, e.g. CMOS
- H01L21/823814—Complementary field-effect transistors, e.g. CMOS with a particular manufacturing method of the source or drain structures, e.g. specific source or drain implants or silicided source or drain structures or raised source or drain structures
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/77—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
- H01L21/78—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
- H01L21/82—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
- H01L21/822—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
- H01L21/8232—Field-effect technology
- H01L21/8234—MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
- H01L21/8238—Complementary field-effect transistors, e.g. CMOS
- H01L21/823828—Complementary field-effect transistors, e.g. CMOS with a particular manufacturing method of the gate conductors, e.g. particular materials, shapes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/77—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
- H01L21/78—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
- H01L21/82—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
- H01L21/822—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
- H01L21/8232—Field-effect technology
- H01L21/8234—MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
- H01L21/8238—Complementary field-effect transistors, e.g. CMOS
- H01L21/823864—Complementary field-effect transistors, e.g. CMOS with a particular manufacturing method of the gate sidewall spacers, e.g. double spacers, particular spacer material or shape
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/40—Electrodes ; Multistep manufacturing processes therefor
- H01L29/41—Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
- H01L29/417—Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
- H01L29/41725—Source or drain electrodes for field effect devices
- H01L29/41775—Source or drain electrodes for field effect devices characterised by the proximity or the relative position of the source or drain electrode and the gate electrode, e.g. the source or drain electrode separated from the gate electrode by side-walls or spreading around or above the gate electrode
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/40—Electrodes ; Multistep manufacturing processes therefor
- H01L29/41—Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
- H01L29/417—Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
- H01L29/41725—Source or drain electrodes for field effect devices
- H01L29/41775—Source or drain electrodes for field effect devices characterised by the proximity or the relative position of the source or drain electrode and the gate electrode, e.g. the source or drain electrode separated from the gate electrode by side-walls or spreading around or above the gate electrode
- H01L29/41783—Raised source or drain electrodes self aligned with the gate
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/40—Electrodes ; Multistep manufacturing processes therefor
- H01L29/43—Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
- H01L29/45—Ohmic electrodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/40—Electrodes ; Multistep manufacturing processes therefor
- H01L29/43—Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
- H01L29/49—Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
- H01L29/4916—Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET the conductor material next to the insulator being a silicon layer, e.g. polysilicon doped with boron, phosphorus or nitrogen
- H01L29/4925—Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET the conductor material next to the insulator being a silicon layer, e.g. polysilicon doped with boron, phosphorus or nitrogen with a multiple layer structure, e.g. several silicon layers with different crystal structure or grain arrangement
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/40—Electrodes ; Multistep manufacturing processes therefor
- H01L29/43—Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
- H01L29/49—Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
- H01L29/4916—Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET the conductor material next to the insulator being a silicon layer, e.g. polysilicon doped with boron, phosphorus or nitrogen
- H01L29/4925—Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET the conductor material next to the insulator being a silicon layer, e.g. polysilicon doped with boron, phosphorus or nitrogen with a multiple layer structure, e.g. several silicon layers with different crystal structure or grain arrangement
- H01L29/4933—Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET the conductor material next to the insulator being a silicon layer, e.g. polysilicon doped with boron, phosphorus or nitrogen with a multiple layer structure, e.g. several silicon layers with different crystal structure or grain arrangement with a silicide layer contacting the silicon layer, e.g. Polycide gate
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/66007—Multistep manufacturing processes
- H01L29/66075—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
- H01L29/66227—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
- H01L29/66409—Unipolar field-effect transistors
- H01L29/66477—Unipolar field-effect transistors with an insulated gate, i.e. MISFET
- H01L29/665—Unipolar field-effect transistors with an insulated gate, i.e. MISFET using self aligned silicidation, i.e. salicide
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/66007—Multistep manufacturing processes
- H01L29/66075—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
- H01L29/66227—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
- H01L29/66409—Unipolar field-effect transistors
- H01L29/66477—Unipolar field-effect transistors with an insulated gate, i.e. MISFET
- H01L29/6656—Unipolar field-effect transistors with an insulated gate, i.e. MISFET using multiple spacer layers, e.g. multiple sidewall spacers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/66007—Multistep manufacturing processes
- H01L29/66075—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
- H01L29/66227—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
- H01L29/66409—Unipolar field-effect transistors
- H01L29/66477—Unipolar field-effect transistors with an insulated gate, i.e. MISFET
- H01L29/66568—Lateral single gate silicon transistors
- H01L29/66575—Lateral single gate silicon transistors where the source and drain or source and drain extensions are self-aligned to the sides of the gate
- H01L29/6659—Lateral single gate silicon transistors where the source and drain or source and drain extensions are self-aligned to the sides of the gate with both lightly doped source and drain extensions and source and drain self-aligned to the sides of the gate, e.g. lightly doped drain [LDD] MOSFET, double diffused drain [DDD] MOSFET
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/66007—Multistep manufacturing processes
- H01L29/66075—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
- H01L29/66227—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
- H01L29/66409—Unipolar field-effect transistors
- H01L29/66477—Unipolar field-effect transistors with an insulated gate, i.e. MISFET
- H01L29/66568—Lateral single gate silicon transistors
- H01L29/66613—Lateral single gate silicon transistors with a gate recessing step, e.g. using local oxidation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/66007—Multistep manufacturing processes
- H01L29/66075—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
- H01L29/66227—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
- H01L29/66409—Unipolar field-effect transistors
- H01L29/66477—Unipolar field-effect transistors with an insulated gate, i.e. MISFET
- H01L29/66568—Lateral single gate silicon transistors
- H01L29/66613—Lateral single gate silicon transistors with a gate recessing step, e.g. using local oxidation
- H01L29/66628—Lateral single gate silicon transistors with a gate recessing step, e.g. using local oxidation recessing the gate by forming single crystalline semiconductor material at the source or drain location
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/66007—Multistep manufacturing processes
- H01L29/66075—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
- H01L29/66227—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
- H01L29/66409—Unipolar field-effect transistors
- H01L29/66477—Unipolar field-effect transistors with an insulated gate, i.e. MISFET
- H01L29/66568—Lateral single gate silicon transistors
- H01L29/66636—Lateral single gate silicon transistors with source or drain recessed by etching or first recessed by etching and then refilled
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/76—Unipolar devices, e.g. field effect transistors
- H01L29/772—Field effect transistors
- H01L29/78—Field effect transistors with field effect produced by an insulated gate
- H01L29/7833—Field effect transistors with field effect produced by an insulated gate with lightly doped drain or source extension, e.g. LDD MOSFET's; DDD MOSFET's
- H01L29/7834—Field effect transistors with field effect produced by an insulated gate with lightly doped drain or source extension, e.g. LDD MOSFET's; DDD MOSFET's with a non-planar structure, e.g. the gate or the source or the drain being non-planar
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Ceramic Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Insulated Gate Type Field-Effect Transistor (AREA)
- Electrodes Of Semiconductors (AREA)
- Thin Film Transistor (AREA)
- Junction Field-Effect Transistors (AREA)
- Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
Abstract
具有超浅端区(214)的新型晶体管(200)及其制造方法。本发明的新型晶体管有一个源/漏扩展或端区(210),该源/漏扩展或端区包括延伸到栅电极和突起的区域(216)下的超浅区(214)。
Description
发明背景
发明领域
本发明涉及半导体集成电路,特别涉及超大规模亚微米晶体管的制造。
相关技术介绍
今天,确确实实有上百万个分立晶体管连在一起形成超大规模集成(VLSI)电路,例如微处理器,存储器,和特殊应用的集成电路(ICs)。目前,最先进的IC由大约三百万晶体管组成,例如栅长度级别为0.5μm的金属氧化物半导体(MOS)场效应晶体管。为了继续增加未来的集成电路的复杂性和计算能力,必须将更多的晶体管封装到单个IC中(即,晶体管的密度必须增加)。这样,未来的超大规模集成(ULSI)电路将需要有效栅长度小于0.1μm的极短沟道晶体管。然而,常规MOS晶体管的制造方法和结构不能简单地“按比例缩小”来生产更小的晶体管以实现高密度集成。
常规MOS晶体管100的结构显示在图1中。晶体管100包括栅电极102,一般为多晶硅,在栅介质层104上形成,而栅介质层104是在硅衬底106上形成。一对源/漏扩展区或端区110在衬底106的上表面上形成,并与栅电极102的外边缘对准。端区110一般采用已知的离子注入技术形成。与栅电极102的相对侧相邻并位于端区110之上处形成的是一对侧壁间隔层108。然后通过离子注入在衬底106内形成一对源/漏区120,并基本上与侧壁间隔层108的外边缘对准。
随着晶体管100的栅长度按比例缩小,为了制造更小的晶体管,端区110扩展进入衬底106的深度也必须按比例缩小(即,降低),以便改善制造的晶体管的穿通特性。然而,端区110的长度必须大于0.10μm以确保后来的大剂量的深源/漏注入不会淹没和覆盖端区110。因此,如图1所示,使用常规方法制造的小比例晶体管中,端区110又浅又长。由于端区110又浅又长,端区110存在实际寄生电阻。寄生电阻反过来影响(减小)晶体管的驱动电流。
因此,实际需要的是具有低阻超浅端区的新型晶体管,和VLSI的制造方法。
发明概述
下面介绍的是带低阻超浅端区的新型晶体管及其制造方法。根据本发明的优选方法,栅介质层在半导体衬底的第一表面上形成。接下来,栅电极在栅介质层上形成。然后第一对侧壁间隔层邻接栅电极的相对侧面形成。之后,在半导体衬底内形成一对凹槽,并与第一对侧壁间隔层的外边缘对准。接下来,将半导体材料选择性地淀积到凹槽中,以便半导体材料在半导体衬底的第一表面之上和之下扩展。然后掺杂剂由半导体材料中扩散进第一对侧壁间隔层下的衬底中,形成超浅端区。之后在邻接第一对侧壁间隔层的外边缘的半导体材料上形成第二对侧壁间隔层。接下来,以与第二对侧壁间隔层的外边缘对准的方式进行深注入,形成深结源/漏接触区。最后,在制备的晶体管的源/漏区和栅电极上形成硅化物。
附图简述
图1显示的是常规晶体管的剖面图。
图2显示的是本发明的具有低阻超浅端区的晶体管的剖面图。
图3a显示的是在衬底上形成的栅电极的相对侧上形成第一对侧壁间隔层的剖面图。
图3b显示的是图3a的衬底中形成凹槽区剖面图。
图3c显示的是在图3b的衬底上淀积半导体材料的剖面图。
图3d显示的是掺杂剂固态扩散进图3c的衬底中的剖面图。
图3e显示的是在图3d的衬底上形成第二对侧壁间隔层的剖面图。
图3f显示的是在图3d的衬底中形成深结源/漏接触区的剖面图。
图4显示的是带有浅结淀积源/漏接触区的低阻超浅端区晶体管的本发明另一优选实施例的剖面图。
图5显示的是带有淀积半导体掩埋沟道区的低阻超浅端区晶体管的本发明另一优选实施例的剖面图。
图6显示的是带有垂直和水平地扩散的超浅端区的低阻超浅端区晶体管的本发明另一优选实施例的剖面图。
本发明的详细描述
下面介绍的是带低阻超浅端区的新型晶体管及其制造方法。为了彻底地理解本发明,在以下的说明中列举了大量的具体细节,例如具体的材料、范围和工艺等等。然而,对于本领域的普通技术人员来说,很明显不采用这些具体细节也可以实践本发明。另外,没有特别详细地介绍已知的半导体设备和工艺以免给本发明带来不必要的混淆。
具有低阻超浅端区的新型晶体管200的本发明优选实施例显示在图2中。晶体管200在硅衬底或阱201上形成。栅介质层202在衬底201的表面203上形成,而栅电极204在栅介质层202上形成。第一对薄侧壁间隔层206在栅电极204的相对侧上形成(间隔层206沿栅电极204的宽度方向)。晶体管200也包括基本上更大些的第二对侧壁间隔层208,而该第二对侧壁间隔层邻接第一对侧壁间隔层206的外边缘形成。晶体管200包括一对源/漏区211,每个包括一对端区或源/漏扩展区210和源/漏接触区212。
端区或源/漏扩展区210限定为位于第二侧壁间隔层208、第一侧壁间隔层206、和栅电极204外边缘下的源/漏区。端区210包括超浅端区部分214和突起的端区部分216。超浅端区214包括掺杂的半导体衬底215,而该掺杂的半导体衬底是由“向外扩散”的掺杂剂从选择性淀积的半导体材料217进入衬底201中形成。超浅端区214由第一侧壁间隔层206下扩展到栅电极204外边缘。对于有效栅长度大约为0.10微米(或1000)的晶体管,超浅端区214在栅电极204下延伸大约100更适宜。此外,对于0.10μm的有效栅长度,超浅端区214延伸进入衬底表面203下衬底201内的深度最好小于500。应该知道,由于本发明采用了新型的制造方法,超浅端区214的特征为典型的突变结。
晶体管200的端区210也包括突起的端区部分216。突起的端区部分21 6位于第二侧壁间隔层208的下面,并与第一对侧壁间隔层206的外边缘邻接。突起的端区216最好由掺杂的半导体材料217形成,而该掺杂的半导体材料217是在半导体衬底215的表面203之上和之下选择性淀积形成。由于突起的端区216的部分在半导体衬底的表面203之上形成,所以突起的端区216被称为“突起的”。突起的端区可显著地减少晶体管200的寄生电阻,从而改善它的性能。
一对源/漏接触区212邻接第二侧壁间隔层208的外边缘形成。源/漏接触区212为深结源/漏接触。源/漏接触区212由离子注入或将附加的掺杂剂扩散到区域220中形成,源/漏接触区212包括选择性淀积的半导体材料217、“向外扩散的”并与第二侧壁间隔层208的外边缘对准的掺杂的半导体衬底215和衬底201。源/漏接触区212为部分突起的源/漏区。硅化物218最好在源/漏区212上形成,以便减少晶体管200的接触电阻。此外,根据本发明,第一半导体材料217最好淀积在栅电极204的上表面。硅化物218也最好在栅电极204的淀积的半导体材料217上形成,以帮助改善接触电阻。
应该知道,本发明有价值的特征在于晶体管200包括端区或源/漏扩展区210,且为超浅的和突起的。这样,晶体管200就会有很低寄生电阻的浅端区。晶体管200的新型结构允许端区按需要缩小比例,用于制造有效栅长度小于0.15μm的晶体管200。由于本发明的新型端区结构,晶体管200具有良好的穿通特性并且VT滚降减小。此外,由于有端区210,晶体管200具有低的寄生电阻,从而产生良好的驱动电流。
图3a-3f显示的是具有低电阻超浅端区的晶体管当前的优选制造方法。优选的制造方法将针对PMOS晶体管的制造进行介绍。应该知道,优选的方法同样适用于导电类型简单相反的NMOS器件的制造。如图3a所示,本发明的PMOS晶体管最好在掺杂浓度在1×1017/cm3到1×1019/cm3之间的n型衬底或阱300上制造。应该知道,衬底300还可以包括淀积的半导体材料的顶层或多层。根据本发明,衬底限定为晶体管在其上制造的初始材料。
根据本发明,首先,栅介质层302在衬底300的上表面304上形成。栅介质层302最好为厚度在20-50之间的氮化物-氧化物(nitrided)层。应该知道,如有需要,其它已知的栅介质层,例如氧化物、氮化物、及它们的结合,也可以使用。接下来,在栅介质层302上形成栅电极306。栅电极306最好使用已知的光刻技术由厚度为1000-3500覆盖淀积的多晶硅层构图成栅电极306形成。应该知道,其它已知的构图技术也可用于形成栅电极306的图形,包括亚微米光刻技术和亚光刻构图技术,例如在审查中专利申请中所介绍,名称为“反转缓冲层晶体管”(Inverted Spacer Transistor),申请日为1994年8月10日,序列号为08/288,332,已转让给本受让人。此外,虽然栅电极306最好为多晶硅,但如有必要,栅电极306也可以为金属栅、单晶硅栅、或它们的结合。
下一步,也显示在图3a中,第一侧壁间隔层308覆盖淀积在衬底300和栅电极306的顶面和侧面。间隔层308最好为采用已知的工艺淀积的二氧化硅层,厚度大约在50-500之间,最好为200。应该知道,如有必要,其它绝缘层,例如氮化硅和氮化物-氧化物等等,也可用作间隔层308。应该知道,形成的间隔层308的厚度必须足以电隔离栅电极306与随后淀积的半导体材料。此外,从后面可知道,侧壁间隔层308的厚度限定了制造的晶体管的最终间隔层的厚度和超浅端区部分的最小长度。
接下来,如图3b中所示,使用任何已知的技术对第一侧壁间隔层308进行各向异性干法腐蚀,形成沿栅电极306宽度方向的第一对侧壁间隔层310。
之后,如图3b中所示,使用任何已知的技术对衬底300进行各向异性的腐蚀,例如含有比例为2∶1的C2F6和He的化学物质的反应离子腐蚀(RIE),分别在硅衬底300中形成一对凹槽312,并与第一对侧壁间隔层310的外边缘对准。应该注意的是,在硅衬底凹槽腐蚀期间,多晶硅栅电极306被部分腐蚀。栅电极306和第一对侧壁间隔层310作为掩模可防止位于其下的硅衬底表面304被腐蚀。这样,本发明的凹槽腐蚀可与第一对侧壁间隔层310的外边缘自对准。根据本发明的优选实施例,腐蚀衬底300形成凹槽区312,其深度大约在20-1000之间,衬底表面304下的深度最好为200。应该知道,凹槽区312的深度限定了制造的晶体管的超浅端区延伸到衬底300内的最小深度。凹槽区越深,晶体管的超浅端区延伸到衬底300中的部分就越深。
接下来,根据本发明的优选实施例,如图3c中所示,半导体材料314选择性地淀积到凹槽312中以及栅电极306的上表面。选择性地淀积半导体材料314是为了仅在露出硅的部位例如衬底300和多晶硅栅电极306上形成半导体材料314。在侧壁间隔层310上没有形成半导体材料314。因此侧壁间隔层310可将凹槽312中形成的半导体材料314与栅电极306电隔离开。半导体材料314形成的厚度在200-2000之间,最好约为600。这样,在半导体衬底300的表面304之上和之下都形成了半导体材料314。此外,半导体材料314适宜就地掺杂p型杂质,例如硼,浓度级别在1×1018/cm3到5×1020/cm3之间,最好浓度约为1×1020/cm3。此外,应该知道,半导体材料不必就地掺杂,通过离子注入或扩散淀积后,掺杂到所需的导电率级别。例如,在制造CMOS或BiMOS部分时,有必要在淀积后掺杂半导体材料314,以便可使用标准的光刻胶掩模蔽技术分别形成CMOS电路中PMOS和NMOS器件的p型导电半导体材料和n型导电半导体材料。
应该注意到半导体材料314的厚度和掺杂浓度级别决定制造的晶体管突起的端区部分的电阻率。半导体材料314越厚并且掺杂浓度越高,生成的晶体管的寄生电阻就越低。然而,当反向电压施加到栅电极306和半导体材料314上时,产生反向电容(即,米勒电容)变大。半导体材料314越厚并且掺杂浓度越高,米勒电容就越大。因此,必须在晶体管的寄生电阻和它的米勒电容之间做一折衷。
根据本发明,半导体材料314最好为硅/锗半导体合金,其中锗占合金的大约10-50%。硅/锗半导体合金可以在H2的气氛中分解SiH2Cl2和GeH4得到,温度在500-800℃之间,最好是600℃。优选这种半导体材料是由于在淀积过程中它显示出对硅良好的选择性,可使本发明更易制造。此外,这种硅/锗半导体合金具有许多“缺陷”或“位错”,有助于掺杂剂在固态扩散中穿过半导体材料。应该知道,任何可以选择性淀积的半导体材料都可用于形成半导体材料314。例如,半导体材料314可以选择性淀积多晶硅,该多晶硅是在H2的气氛中,温度在600-900℃之间,分解SiH2Cl2和HCl得到,或可以选择性淀积任何已知技术得到的单晶硅。
下一步,根据本发明,如图3d中所示,p型杂质或掺杂剂由半导体材料314扩散进入半导体衬底300中形成扩散的半导体区316。杂质向外扩散形成的扩散的半导体区316的浓度级别大致等于淀积的半导体材料314的浓度级别。杂质在第一薄侧壁间隔层310下横向地(水平地)扩散直到杂质至少达到栅电极306的外边缘,最好延伸到栅电极306下大约100处。横向地延伸到第一侧壁间隔层310和栅电极306下面的那部分扩散的半导体区316就是制造的晶体管的超浅端区部分。应该知道,杂质向外扩散也将杂质更深地(垂直地)扩散到衬底300中。每横向扩散200,掺杂剂则垂直地向衬底300内大约扩散200。因此,根据本发明的优选实施例,对于0.10μm的有效栅长度超浅端区317的长度大约为300并且深度大约为500(或0.05μm)。
根据本发明的优选实施例,使用快速加热工艺(RTP)在氮气(N2)气氛中,在温度800℃到1000℃之间加热5到60秒,形成半导体材料314,之后直接进行固态扩散步骤。应该知道,本发明的固态扩散步骤不必在半导体材料314形成后直接进行,可以在以后的工艺步骤中使用的热循环期间进行。
应该知道,本发明的关键特征是半导体材料314在半导体衬底表面304的下面形成。也就是,在本发明中,掺杂剂源315放置在衬底300中直接与要形成的超浅端区317相邻。这样,在固态扩散步骤中,掺杂剂能够很容易地沿一个方向(横向地)扩散到第一侧壁间隔层310下和多晶硅栅电极306外边缘的下面。这就产生了超浅端区317,其特征为衬底300的很明显的突变结。这种突变结改善了制造的晶体管的穿通特性。此外,应该知道,采用固态扩散形成的超浅端区317,比采用现在标准的离子注入技术制造出的端区导电率更高。端区浓度更高可改善器件的性能并降低器件的寄生电阻。
接下来,如图3e中所示,第二对侧壁间隔层318在淀积的半导体材料314上邻近第一侧壁间隔层310的外边缘形成。最好采用各向异性干法腐蚀热壁工艺形成的氮化硅的共形层,从而形成第二侧壁间隔层318。与侧壁间隔层310一样,如有必要,第二侧壁间隔层318可使用任何一种已知的技术形成。第二侧壁间隔层318基本上比第一侧壁间隔层310厚,形成的厚度在500-2500之间,最好是1800。
下一步,如图3f中所示,形成源/漏接触区319完成晶体管340的制造。形成第二侧壁间隔层318后,如图3e中所示,对衬底进行标准和已知的离子注入并退火,其中将例如硼等p型导电杂质,注入到淀积的半导体材料314、扩散的硅区316、和半导体衬底300中。离子注入步骤形成的源/漏接触区322的p型导电率级别最好在1×1019/cm3到5×1020/cm3之间,并且源/漏接触区319的总厚度在0.15-0.25μm之间。此外,如果在形成多晶硅栅电极306期间未预先掺杂,那么离子注入步骤也可用于掺杂多晶硅栅电极306。应该知道,形成的第二侧壁间隔层318必须足够的厚和宽以提供足够的掩模,防止源/漏接触区319很深、高剂量的离子注入覆盖制造的端区321。
之后,根据本发明的优选实施例,使用自对准硅化物工艺(Salicide)将硅化物320形成到源/漏接触区319上淀积的半导体材料314上和栅电极306上淀积的半导体材料314上,从而显著地减少器件的接触电阻。在优选的自对准硅化物(Salicide)工艺中,先将钛层覆盖淀积在整个器件上。然后对器件进行温度循环使淀积的钛层和任何暴露的硅表面(即,栅电极306上的半导体材料314和源/漏接触区319上的半导体材料314)发生反应,形成硅化钛320(即,TiSix)。应该知道,钛并不与第二侧壁间隔层318发生反应。接下来,采用选择性腐蚀将未反应的钛从第二侧壁间隔层318上除去,留下硅化钛320。应当知道,其它耐高温金属,例如,钨,可用于形成硅化物320。此外,应该注意的是第二侧壁间隔层318必须足够厚以防止硅化物侵蚀造成栅电极与源/漏接触区电短路。完成硅化物工艺后,采用优选方法制造的具有低阻超浅端区的新型晶体管340也就完成了。
图4为本发明的另一优选实施例的剖面图。图4为带有低阻超浅端区410和一对部分突起的浅结源/漏接触区412的MOS晶体管400。以分别在图3a-3e中图示并介绍及附带说明的晶体管340的相同方式制造晶体管400。形成第二侧壁间隔层318之后,进行第二次选择淀积半导体材料形成第二层半导体材料420,该第二层半导体材料420位于与第二侧壁间隔层318相邻接的第一淀积的半导体材料314的上表面和栅电极306上形成的半导体材料314上。形成的第二层半导体材料420要足够厚,厚度要在100到1500之间,浓度级别要足够高,浓度要在1×1019/cm3到5×1020/cm3之间,从而为制造的器件提供足够的源/漏接触区412。应该知道,形成的源/漏接触区412必须足够厚以确保不产生金属接触尖刺。第二层半导体材料420最好由硅/锗合金形成,该硅/锗合金掺杂p型杂质,例如硼,并达到所需的导电率级别。应该知道,第二侧壁间隔层318需要足够厚,以防止第二层半导体材料420和栅电极306之间的过大的米勒电容增长,对器件特性造成不利影响。
此时最好使用化学-机械抛光工艺从栅电极306的上表面除去第二层半导体材料420,以改善制造的晶体管的形貌。最后,使用自对准硅化物(Salicide)工艺将硅化物320形成到第二次淀积的半导体材料420上和栅电极306上的半导体材料314上。
图5为本发明的另一优选实施例的剖面图。图5图示了带有低阻超浅端区510的埋沟道MOS晶体管500。晶体管500可以用与晶体管340相同的方式制造,不同的是半导体衬底300也包括上部淀积的半导体材料524,其厚度在200-1000之间,掺杂成p型导电,其浓度在1×1017/cm3到1×1019cm3之间。应该知道,本发明优选的范围与淀积的半导体材料524的上表面526相关,在这个实施例中上表面526被认为是半导体衬底300的上表面。应该知道,淀积的半导体材料524不必是单一半导体材料,可以包括多种不同掺杂和不同类型的半导体材料。埋沟道晶体管500显示出沟道载流子的迁移率增加,从而改善了器件的驱动电流和开关速度。
图6为本发明的另一优选实施例的剖面图。图6显示带有低阻超浅端区610的埋沟道MOS晶体管600。晶体管600与本发明公开的其它实施例不同,不同之处在于选择淀积半导体材料319之前没在半导体衬底300中形成凹槽312。取而代之的是,半导体材料314直接淀积在半导体衬底300的上表面304上。其它的制造步骤,如在图3b-3f中和附带的说明中所公开的,用于完成晶体管600的制备。应该知道,对于晶体管600,没有半导体材料凹进衬底300中,因此固态扩散步骤必须先驱使p型掺杂剂向下(垂直地)扩散到衬底300中,然后驱使它们在第一侧壁间隔层310下面横向地(水平地)扩散到栅电极306的外边缘,形成晶体管600的超浅低阻端区610。虽然已显示出这种扩散工艺能生产高性能的器件,但当掺杂剂沿单一方向由半导体材料部分地退进衬底300中时,超浅低阻端区610的结不是突变的。虽然晶体管600没有象其它的实施例那样有突变的超浅低阻端区,但去掉凹槽步骤确实降低了工艺的复杂性并降低了成本。
以上介绍了本发明的许多替换的实施例和细节,然而,本领域的普通技术人员应该理解,在一个实施例中的许多特征同样适用于其它实施例。此外,虽然介绍了许多特定的范围、材料、和浓度,但应该知道,这些特定的范围、材料、和浓度并不能作为一种限制。此外,本领域的普通技术人员有能力改变本发明的比例形成更大和更小的器件。本发明并不受本发明的详细介绍的限制,而由以下的权利要求所决定。
在此,我们已经对具有超浅端区的新型晶体管及其制造方法进行了介绍。
Claims (30)
1.一种形成晶体管的方法,包括以下步骤:
在半导体衬底的第一表面上形成栅介质层;
在所述栅介质层上形成栅电极;
邻接所述栅电极的相对侧形成第一对侧壁间隔层;
在所述第一表面下的所述半导体衬底中形成一对凹槽,与所述第一对侧壁间隔层的外边缘对准;及
在所述凹槽对中形成第一半导体材料以形成第一对源/漏区。
2.如权利要求1所述的方法,还包括以下步骤:
将掺杂剂从所述第一半导体材料中扩散到所述第一对侧壁间隔层下的所述衬底中。
3.如权利要求2所述的方法,还包括以下步骤:
在邻近所述第一侧壁间隔层的外边缘的所述半导体材料上形成第二对侧壁间隔层。
4.如权利要求3所述的方法,还包括以下步骤:
将离子淀积到所述第一半导体材料和所述衬底中,与所述第二对侧壁间隔层的外边缘对准。
5.如权利要求4所述的方法,其特征在于,所述离子通过离子注入淀积。
6.如权利要求3所述的方法,还包括以下步骤:
在所述半导体材料上形成硅化物,与所述第二对侧壁间隔层的外边缘对准。
7.如权利要求3所述的方法,还包括以下步骤:
在所述第一半导体材料上形成第二半导体材料,与所述第二对侧壁间隔层的外边缘对准。
8.如权利要求7所述的方法,还包括以下步骤:
在所述第二半导体材料上形成硅化物。
9.一种形成晶体管的方法,包括以下步骤:
在半导体衬底上形成栅介质层;
在所述栅介质层上形成栅电极;
邻近所述栅电极的相对侧形成第一对侧壁间隔层;
在所述半导体衬底上形成第一掺杂的半导体材料,与所述第一对侧壁间隔层的外边缘对准;
将掺杂剂从所述第一半导体材料中扩散到所述第一对侧壁间隔层下的所述衬底中,形成一对顶区;在邻近所述第一对侧壁间隔层的外边缘的所述第一半导体材料上形成第二对侧壁间隔层。
将离子注入到所述半导体材料和所述衬底中,与所述第二对侧壁间隔层的外边缘对准,以形成源/漏接触区。
10.如权利要求9所述的方法,其特征在于,第一对间隔层的厚度在50-500之间。
11.如权利要求9所述的方法,其特征在于,通过离子注入步骤掺杂所述栅电极。
12.如权利要求9所述的方法,还包括以下步骤:
在所述第一半导体材料上形成硅化物,与所述第二对侧壁间隔层的外边缘对准。
13.如权利要求9所述的方法,还包括以下步骤:
在所述第一半导体材料上形成第二半导体材料,与所述第二对侧壁间隔层的外边缘对准。
14.如权利要求13所述的方法,还包括以下步骤:
在所述第二半导体材料上形成硅化物。
15.一种晶体管,包括:
在半导体衬底的第一表面形成的栅介质层;
在所述栅介质层上形成的栅电极;
邻近所述栅电极的相对侧形成的第一对侧壁间隔层;
在所述衬底中形成的第一对超浅端区,该端区延伸在所述第一对侧壁间隔层和所述栅电极的相对侧的下面;
一对突起的端区,该区与所述第一对侧壁间隔层的外边缘对准形成,其中所述一对突起的端区包括第一淀积的半导体材料,该半导体材料至少部分在所述半导体衬底的所述第一表面之上和之下。
16.如权利要求15所述的晶体管,其特征在于,所述第一淀积的半导体材料延伸在所述半导体衬底的所述第一表面下。
17.如权利要求15所述的晶体管,还包括:
邻接所述第一对侧壁间隔层的外边缘形成第二对侧壁间隔层,所述第二对侧壁间隔层在所述的一对突起的端区上形成。
18.如权利要求15所述的晶体管,还包括:
与所述第二对侧壁间隔层对准形成一对源/漏接触区,在所述衬底内所述源/漏接触区对比所述突起的端区对形成得更深。
19.如权利要求17所述的晶体管,还包括在所述源/漏接触区对和所述栅电极上形成的硅化物。
20.如权利要求16所述的晶体管,还包括在邻接所述第二对侧壁间隔层的外边缘的第一淀积半导体材料上形成的第二半导体材料。
21.如权利要求20所述的晶体管,还包括在所述第二半导体材料上形成的硅化物。
22.如权利要求15所述的晶体管,其特征在于,所述的一对突起的端区包括淀积的多晶硅。
23.如权利要求15所述的晶体管,其特征在于,所述突起的端区对包括淀积的单晶硅。
24.如权利要求15所述的晶体管,其特征在于,所述突起的端区对包括淀积的硅/锗半导体。
25.如权利要求15所述的晶体管,其特征在于,所述第一对侧壁间隔层的厚度大约在50-500之间。
26.如权利要求15所述的晶体管,其特征在于,第二对侧壁间隔层的厚度大约在500-2500之间。
27.如权利要求15所述的晶体管,其特征在于,所述第二对源/漏区在所述半导体衬底的所述第一表面下大约20-1000延伸。
28.如权利要求15所述的晶体管,其特征在于,所述第一对源/漏区在所述半导体衬底的所述第一表面下的深度为20-1000之间,且长度大于100。
29.一种形成晶体管的方法,包括以下步骤:
在半导体衬底的第一表面上形成栅介质层;
在所述栅介质层上形成栅电极;
在所述栅电极的相对侧沿横向形成一对侧壁间隔层;
在所述侧壁间隔层的相对侧上的半导体衬底中形成一对凹槽;及
通过所述凹槽形成一对源/漏区。
30.一种形成晶体管的方法,包括以下步骤:
在半导体衬底的第一表面上的栅介质层上形成栅电极;
邻接所述栅电极的相对侧形成一对侧壁间隔层;
在所述半导体衬底中形成一对凹槽,与所述一对侧壁间隔层的外边缘对准;及
通过所述凹槽对形成一对源/漏区。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US08/363,749 | 1994-12-23 | ||
US08/363,749 US5710450A (en) | 1994-12-23 | 1994-12-23 | Transistor with ultra shallow tip and method of fabrication |
Publications (2)
Publication Number | Publication Date |
---|---|
CN1175321A CN1175321A (zh) | 1998-03-04 |
CN1095196C true CN1095196C (zh) | 2002-11-27 |
Family
ID=23431557
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN95197621A Expired - Lifetime CN1095196C (zh) | 1994-12-23 | 1995-12-21 | 具有超浅端区的晶体管及其制造方法 |
Country Status (7)
Country | Link |
---|---|
US (3) | US5710450A (zh) |
EP (2) | EP1253632A3 (zh) |
JP (2) | JPH10511506A (zh) |
CN (1) | CN1095196C (zh) |
AU (1) | AU4528396A (zh) |
TW (1) | TW330309B (zh) |
WO (1) | WO1996020499A1 (zh) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7368792B2 (en) | 2003-05-14 | 2008-05-06 | Samsung Electronics Co., Ltd. | MOS transistor with elevated source/drain structure |
CN100449780C (zh) * | 2003-06-27 | 2009-01-07 | 英特尔公司 | 具有凸起的结区域的pmos晶体管 |
CN102468164A (zh) * | 2010-10-29 | 2012-05-23 | 中国科学院微电子研究所 | 晶体管及其制造方法 |
Families Citing this family (270)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3256084B2 (ja) | 1994-05-26 | 2002-02-12 | 株式会社半導体エネルギー研究所 | 半導体集積回路およびその作製方法 |
JP3761918B2 (ja) * | 1994-09-13 | 2006-03-29 | 株式会社東芝 | 半導体装置の製造方法 |
US5710450A (en) * | 1994-12-23 | 1998-01-20 | Intel Corporation | Transistor with ultra shallow tip and method of fabrication |
US6720627B1 (en) * | 1995-10-04 | 2004-04-13 | Sharp Kabushiki Kaisha | Semiconductor device having junction depths for reducing short channel effect |
JP4027447B2 (ja) * | 1996-04-24 | 2007-12-26 | 株式会社ルネサステクノロジ | 半導体装置の製造方法 |
US5811350A (en) * | 1996-08-22 | 1998-09-22 | Micron Technology, Inc. | Method of forming contact openings and an electronic component formed from the same and other methods |
US5827769A (en) * | 1996-11-20 | 1998-10-27 | Intel Corporation | Method for fabricating a transistor with increased hot carrier resistance by nitridizing and annealing the sidewall oxide of the gate electrode |
US5869866A (en) | 1996-12-06 | 1999-02-09 | Advanced Micro Devices, Inc. | Integrated circuit having sacrificial spacers for producing graded NMOS source/drain junctions possibly dissimilar from PMOS source/drain junctions |
US5869879A (en) * | 1996-12-06 | 1999-02-09 | Advanced Micro Devices, Inc. | CMOS integrated circuit having a sacrificial metal spacer for producing graded NMOS source/drain junctions dissimilar from PMOS source/drain junctions |
JPH10173177A (ja) * | 1996-12-10 | 1998-06-26 | Mitsubishi Electric Corp | Misトランジスタの製造方法 |
US5908313A (en) * | 1996-12-31 | 1999-06-01 | Intel Corporation | Method of forming a transistor |
JP2925008B2 (ja) * | 1997-01-30 | 1999-07-26 | 日本電気株式会社 | 半導体装置の製造方法 |
US6197645B1 (en) * | 1997-04-21 | 2001-03-06 | Advanced Micro Devices, Inc. | Method of making an IGFET with elevated source/drain regions in close proximity to gate with sloped sidewalls |
US6518155B1 (en) * | 1997-06-30 | 2003-02-11 | Intel Corporation | Device structure and method for reducing silicide encroachment |
US6777759B1 (en) | 1997-06-30 | 2004-08-17 | Intel Corporation | Device structure and method for reducing silicide encroachment |
US6010954A (en) * | 1997-07-11 | 2000-01-04 | Chartered Semiconductor Manufacturing, Ltd. | Cmos gate architecture for integration of salicide process in sub 0.1 . .muM devices |
KR100302187B1 (ko) * | 1997-10-08 | 2001-11-22 | 윤종용 | 반도체장치제조방법 |
US6429481B1 (en) | 1997-11-14 | 2002-08-06 | Fairchild Semiconductor Corporation | Field effect transistor and method of its manufacture |
JP2967477B2 (ja) * | 1997-11-26 | 1999-10-25 | 日本電気株式会社 | 半導体装置の製造方法 |
US7105411B1 (en) * | 1997-12-18 | 2006-09-12 | Micron Technology, Inc. | Methods of forming a transistor gate |
JP2002509361A (ja) * | 1997-12-18 | 2002-03-26 | マイクロン テクノロジー, インク. | 半導体製造方法及び電界効果トランジスタ |
US6121100A (en) * | 1997-12-31 | 2000-09-19 | Intel Corporation | Method of fabricating a MOS transistor with a raised source/drain extension |
KR100257075B1 (ko) * | 1998-01-13 | 2000-05-15 | 김영환 | 반도체 소자 및 그의 제조방법 |
US6153456A (en) * | 1998-01-14 | 2000-11-28 | Vlsi Technology, Inc. | Method of selectively applying dopants to an integrated circuit semiconductor device without using a mask |
US6177323B1 (en) * | 1998-03-02 | 2001-01-23 | Texas Instruments - Acer Incorporated | Method to form MOSFET with an elevated source/drain for PMOSFET |
US5989967A (en) * | 1998-04-30 | 1999-11-23 | Advanced Micro Devices, Inc. | Transistor with ultra short length defined partially by sidewall oxidation of a gate conductor overlying the channel length |
KR100475034B1 (ko) * | 1998-06-08 | 2005-05-27 | 삼성전자주식회사 | 엘리베이티드소오스/드레인영역을갖는모스트랜지스터및그제조방법 |
US6124610A (en) | 1998-06-26 | 2000-09-26 | Advanced Micro Devices, Inc. | Isotropically etching sidewall spacers to be used for both an NMOS source/drain implant and a PMOS LDD implant |
KR100343135B1 (ko) | 1998-07-24 | 2002-09-18 | 삼성전자 주식회사 | 단채널효과를개선한모스트랜지스터제조방법 |
US6261948B1 (en) | 1998-07-31 | 2001-07-17 | Micron Technology, Inc. | Method of forming contact openings |
US6198142B1 (en) | 1998-07-31 | 2001-03-06 | Intel Corporation | Transistor with minimal junction capacitance and method of fabrication |
US6380023B2 (en) | 1998-09-02 | 2002-04-30 | Micron Technology, Inc. | Methods of forming contacts, methods of contacting lines, methods of operating integrated circuitry, and integrated circuits |
US5923986A (en) * | 1998-09-17 | 1999-07-13 | Taiwan Semiconductor Manufacturing Company, Ltd. | Method of forming a wide upper top spacer to prevent salicide bridge |
JP2000156502A (ja) * | 1998-09-21 | 2000-06-06 | Texas Instr Inc <Ti> | 集積回路及び方法 |
US6887762B1 (en) | 1998-11-12 | 2005-05-03 | Intel Corporation | Method of fabricating a field effect transistor structure with abrupt source/drain junctions |
US6124627A (en) * | 1998-12-03 | 2000-09-26 | Texas Instruments Incorporated | Lateral MOSFET having a barrier between the source/drain region and the channel region using a heterostructure raised source/drain region |
JP2003526198A (ja) * | 1998-12-16 | 2003-09-02 | インテル・コーポレーション | 電界効果トランジスタのチャネル領域へのシリサイドの侵入を防ぐための基板のアモルファス化 |
JP4068746B2 (ja) * | 1998-12-25 | 2008-03-26 | 株式会社ルネサステクノロジ | 半導体集積回路装置 |
KR20000050568A (ko) * | 1999-01-12 | 2000-08-05 | 윤종용 | 융기된 소스/드레인 구조를 갖는 모스 트랜지스터 및 그 제조방법 |
KR100308133B1 (ko) * | 1999-01-12 | 2001-09-26 | 김영환 | 듀얼 게이트 모스 트랜지스터 제조방법 |
JP4521542B2 (ja) * | 1999-03-30 | 2010-08-11 | ルネサスエレクトロニクス株式会社 | 半導体装置および半導体基板 |
KR20000065719A (ko) * | 1999-04-08 | 2000-11-15 | 김영환 | 반도체 소자 및 그 제조방법 |
KR100332106B1 (ko) * | 1999-06-29 | 2002-04-10 | 박종섭 | 반도체 소자의 트랜지스터 제조 방법 |
WO2001003200A1 (de) * | 1999-06-30 | 2001-01-11 | Infineon Technologies Ag | Isolation von gate-elektroden und herstellungsverfahren |
US6737710B2 (en) * | 1999-06-30 | 2004-05-18 | Intel Corporation | Transistor structure having silicide source/drain extensions |
DE19943114B4 (de) * | 1999-09-09 | 2007-12-27 | Infineon Technologies Ag | Verfahren zur Herstellung eines MOS-Transistors |
KR100341182B1 (ko) * | 1999-11-30 | 2002-06-20 | 윤종용 | 반도체소자의 모스 트랜지스터 형성방법 |
US6541343B1 (en) * | 1999-12-30 | 2003-04-01 | Intel Corporation | Methods of making field effect transistor structure with partially isolated source/drain junctions |
US6448129B1 (en) * | 2000-01-24 | 2002-09-10 | Micron Technology, Inc. | Applying epitaxial silicon in disposable spacer flow |
CN1366711A (zh) * | 2000-02-17 | 2002-08-28 | 皇家菲利浦电子有限公司 | 具有硅-锗(Sii-x-Gex)门极MOS晶体管的集成CMOS电路的半导体装置及其生产方法 |
US6274420B1 (en) * | 2000-02-23 | 2001-08-14 | Advanced Micro Devices, Inc. | Sti (shallow trench isolation) structures for minimizing leakage current through drain and source silicides |
US6420250B1 (en) * | 2000-03-03 | 2002-07-16 | Micron Technology, Inc. | Methods of forming portions of transistor structures, methods of forming array peripheral circuitry, and structures comprising transistor gates |
US6331486B1 (en) | 2000-03-06 | 2001-12-18 | International Business Machines Corporation | Method and structure for reduction of contact resistance of metal silicides using a metal-germanium alloy |
KR100628253B1 (ko) * | 2000-08-09 | 2006-09-27 | 매그나칩 반도체 유한회사 | 반도체 소자의 자기 정렬 실리사이드 형성방법 |
JP2002124665A (ja) * | 2000-10-12 | 2002-04-26 | Mitsubishi Electric Corp | 半導体装置およびその製造方法 |
US6649480B2 (en) * | 2000-12-04 | 2003-11-18 | Amberwave Systems Corporation | Method of fabricating CMOS inverter and integrated circuits utilizing strained silicon surface channel MOSFETs |
US6426247B1 (en) * | 2001-01-17 | 2002-07-30 | International Business Machines Corporation | Low bitline capacitance structure and method of making same |
US6323073B1 (en) * | 2001-01-19 | 2001-11-27 | United Microelectronics Corp. | Method for forming doped regions on an SOI device |
US6767777B2 (en) * | 2001-02-06 | 2004-07-27 | Texas Instruments Incorporated | Method for manufacturing and structure for transistors with reduced gate to contact spacing including etching to thin the spacers |
US6380043B1 (en) * | 2001-02-12 | 2002-04-30 | Advanced Micro Devices, Inc. | Low temperature process to form elevated drain and source of a field effect transistor having high-K gate dielectric |
US6830976B2 (en) * | 2001-03-02 | 2004-12-14 | Amberwave Systems Corproation | Relaxed silicon germanium platform for high speed CMOS electronics and high speed analog circuits |
US6703688B1 (en) * | 2001-03-02 | 2004-03-09 | Amberwave Systems Corporation | Relaxed silicon germanium platform for high speed CMOS electronics and high speed analog circuits |
US6670263B2 (en) * | 2001-03-10 | 2003-12-30 | International Business Machines Corporation | Method of reducing polysilicon depletion in a polysilicon gate electrode by depositing polysilicon of varying grain size |
US6506650B1 (en) * | 2001-04-27 | 2003-01-14 | Advanced Micro Devices, Inc. | Method of fabrication based on solid-phase epitaxy for a MOSFET transistor with a controlled dopant profile |
US6541317B2 (en) * | 2001-05-03 | 2003-04-01 | International Business Machines Corporation | Polysilicon doped transistor |
US20020171107A1 (en) * | 2001-05-21 | 2002-11-21 | Baohong Cheng | Method for forming a semiconductor device having elevated source and drain regions |
US6413829B1 (en) * | 2001-06-01 | 2002-07-02 | Advanced Micro Devices, Inc. | Field effect transistor in SOI technology with schottky-contact extensions |
US6465847B1 (en) * | 2001-06-11 | 2002-10-15 | Advanced Micro Devices, Inc. | Semiconductor-on-insulator (SOI) device with hyperabrupt source/drain junctions |
US6855649B2 (en) * | 2001-06-12 | 2005-02-15 | International Business Machines Corporation | Relaxed SiGe layers on Si or silicon-on-insulator substrates by ion implantation and thermal annealing |
US7301180B2 (en) | 2001-06-18 | 2007-11-27 | Massachusetts Institute Of Technology | Structure and method for a high-speed semiconductor device having a Ge channel layer |
US6952040B2 (en) * | 2001-06-29 | 2005-10-04 | Intel Corporation | Transistor structure and method of fabrication |
US6614079B2 (en) * | 2001-07-19 | 2003-09-02 | International Business Machines Corporation | All-in-one disposable/permanent spacer elevated source/drain, self-aligned silicide CMOS |
WO2003015142A2 (en) * | 2001-08-06 | 2003-02-20 | Massachusetts Institute Of Technology | Formation of planar strained layers |
US6974735B2 (en) | 2001-08-09 | 2005-12-13 | Amberwave Systems Corporation | Dual layer Semiconductor Devices |
US6891209B2 (en) * | 2001-08-13 | 2005-05-10 | Amberwave Systems Corporation | Dynamic random access memory trench capacitors |
JP2003086798A (ja) * | 2001-09-13 | 2003-03-20 | Nec Corp | 半導体装置およびその製造方法 |
JP2003100769A (ja) * | 2001-09-20 | 2003-04-04 | Nec Corp | 半導体装置およびその製造方法 |
US6831292B2 (en) * | 2001-09-21 | 2004-12-14 | Amberwave Systems Corporation | Semiconductor structures employing strained material layers with defined impurity gradients and methods for fabricating same |
WO2003028106A2 (en) | 2001-09-24 | 2003-04-03 | Amberwave Systems Corporation | Rf circuits including transistors having strained material layers |
US6649460B2 (en) | 2001-10-25 | 2003-11-18 | International Business Machines Corporation | Fabricating a substantially self-aligned MOSFET |
US6621131B2 (en) | 2001-11-01 | 2003-09-16 | Intel Corporation | Semiconductor transistor having a stressed channel |
KR100406537B1 (ko) * | 2001-12-03 | 2003-11-20 | 주식회사 하이닉스반도체 | 반도체장치의 제조 방법 |
JP2003188274A (ja) * | 2001-12-19 | 2003-07-04 | Toshiba Corp | 半導体装置及びその製造方法 |
US6891266B2 (en) * | 2002-02-14 | 2005-05-10 | Mia-Com | RF transition for an area array package |
US20030166323A1 (en) * | 2002-03-01 | 2003-09-04 | Infineon Technologies North America Corp. | Raised extension structure for high performance cmos |
US6716710B1 (en) * | 2002-04-19 | 2004-04-06 | Advanced Micro Devices, Inc. | Using a first liner layer as a spacer in a semiconductor device |
US6537885B1 (en) * | 2002-05-09 | 2003-03-25 | Infineon Technologies Ag | Transistor and method of manufacturing a transistor having a shallow junction formation using a two step EPI layer |
US20030227057A1 (en) | 2002-06-07 | 2003-12-11 | Lochtefeld Anthony J. | Strained-semiconductor-on-insulator device structures |
AU2003238963A1 (en) | 2002-06-07 | 2003-12-22 | Amberwave Systems Corporation | Semiconductor devices having strained dual channel layers |
US6995430B2 (en) | 2002-06-07 | 2006-02-07 | Amberwave Systems Corporation | Strained-semiconductor-on-insulator device structures |
AU2003247513A1 (en) * | 2002-06-10 | 2003-12-22 | Amberwave Systems Corporation | Growing source and drain elements by selecive epitaxy |
US6982474B2 (en) * | 2002-06-25 | 2006-01-03 | Amberwave Systems Corporation | Reacted conductive gate electrodes |
US20040033677A1 (en) * | 2002-08-14 | 2004-02-19 | Reza Arghavani | Method and apparatus to prevent lateral oxidation in a transistor utilizing an ultra thin oxygen-diffusion barrier |
US6911695B2 (en) * | 2002-09-19 | 2005-06-28 | Intel Corporation | Transistor having insulating spacers on gate sidewalls to reduce overlap between the gate and doped extension regions of the source and drain |
DE10246718A1 (de) * | 2002-10-07 | 2004-04-22 | Infineon Technologies Ag | Feldeffekttransistor mit lokaler Source-/Drainisolation sowie zugehöriges Herstellungsverfahren |
US6727136B1 (en) * | 2002-10-18 | 2004-04-27 | Advanced Micro Devices, Inc. | Formation of ultra-shallow depth source/drain extensions for MOS transistors |
US6703648B1 (en) | 2002-10-29 | 2004-03-09 | Advanced Micro Devices, Inc. | Strained silicon PMOS having silicon germanium source/drain extensions and method for its fabrication |
FR2846789B1 (fr) * | 2002-11-05 | 2005-06-24 | St Microelectronics Sa | Dispositif semi-conducteur a transistors mos a couche d'arret de gravure ayant un stress residuel ameliore et procede de fabrication d'un tel dispositif semi-conducteur |
KR100911986B1 (ko) | 2002-12-23 | 2009-08-13 | 매그나칩 반도체 유한회사 | 반도체 소자의 제조 방법 |
US20040154083A1 (en) * | 2002-12-23 | 2004-08-12 | Mcvicker Henry J. | Sports pad closure system with integrally molded hooks |
KR100641494B1 (ko) * | 2002-12-30 | 2006-10-31 | 동부일렉트로닉스 주식회사 | 반도체 소자 제조방법 |
KR100498475B1 (ko) * | 2003-01-07 | 2005-07-01 | 삼성전자주식회사 | 모스 전계 효과 트랜지스터 구조 및 그 제조 방법 |
JP2004241755A (ja) * | 2003-01-15 | 2004-08-26 | Renesas Technology Corp | 半導体装置 |
US6878583B2 (en) * | 2003-02-05 | 2005-04-12 | Taiwan Semiconductor Manufacturing Company | Integration method to enhance p+ gate activation |
US6921913B2 (en) * | 2003-03-04 | 2005-07-26 | Taiwan Semiconductor Manufacturing Co., Ltd. | Strained-channel transistor structure with lattice-mismatched zone |
EP1602125B1 (en) * | 2003-03-07 | 2019-06-26 | Taiwan Semiconductor Manufacturing Company, Ltd. | Shallow trench isolation process |
US6830996B2 (en) * | 2003-03-24 | 2004-12-14 | Taiwan Semiconductor Manufacturing Company, Ltd. | Device performance improvement by heavily doped pre-gate and post polysilicon gate clean |
US20040188765A1 (en) * | 2003-03-28 | 2004-09-30 | International Business Machines Corporation | Cmos device integration for low external resistance |
FR2854276A1 (fr) * | 2003-04-24 | 2004-10-29 | Koninkl Philips Electronics Nv | Dispositif semiconducteur comprenant des extensions realisees en un materiau a faible temperature de fusion. |
JP4305192B2 (ja) * | 2003-04-25 | 2009-07-29 | セイコーエプソン株式会社 | 薄膜半導体装置の製造方法、電気光学装置の製造方法 |
US6891192B2 (en) * | 2003-08-04 | 2005-05-10 | International Business Machines Corporation | Structure and method of making strained semiconductor CMOS transistors having lattice-mismatched semiconductor regions underlying source and drain regions |
US7012024B2 (en) * | 2003-08-15 | 2006-03-14 | Micron Technology, Inc. | Methods of forming a transistor with an integrated metal silicide gate electrode |
KR100546369B1 (ko) * | 2003-08-22 | 2006-01-26 | 삼성전자주식회사 | 콘택 마진을 확보할 수 있는 실리사이드막을 구비한고집적 반도체 소자 및 그 제조방법 |
US6906360B2 (en) * | 2003-09-10 | 2005-06-14 | International Business Machines Corporation | Structure and method of making strained channel CMOS transistors having lattice-mismatched epitaxial extension and source and drain regions |
US7303949B2 (en) | 2003-10-20 | 2007-12-04 | International Business Machines Corporation | High performance stress-enhanced MOSFETs using Si:C and SiGe epitaxial source/drain and method of manufacture |
US7138320B2 (en) * | 2003-10-31 | 2006-11-21 | Advanced Micro Devices, Inc. | Advanced technique for forming a transistor having raised drain and source regions |
DE10351008B4 (de) * | 2003-10-31 | 2008-07-10 | Advanced Micro Devices, Inc., Sunnyvale | Verfahren zur Herstellung von Transistoren mit erhöhten Drain- und Sourcegebieten mit unterschiedlicher Höhe sowie ein Halbleiterbauelement |
US6933157B2 (en) * | 2003-11-13 | 2005-08-23 | Taiwan Semiconductor Manufacturing Company, Ltd. | Semiconductor wafer manufacturing methods employing cleaning delay period |
US7176522B2 (en) * | 2003-11-25 | 2007-02-13 | Taiwan Semiconductor Manufacturing Company, Ltd. | Semiconductor device having high drive current and method of manufacturing thereof |
US20050116360A1 (en) * | 2003-12-01 | 2005-06-02 | Chien-Chao Huang | Complementary field-effect transistors and methods of manufacture |
US7247569B2 (en) * | 2003-12-02 | 2007-07-24 | International Business Machines Corporation | Ultra-thin Si MOSFET device structure and method of manufacture |
US7012014B2 (en) * | 2003-12-04 | 2006-03-14 | Taiwan Semiconductor Manufacturing Co., Ltd | Recessed gate structure with reduced current leakage and overlap capacitance |
US20050156229A1 (en) * | 2003-12-16 | 2005-07-21 | Yeap Geoffrey C. | Integrated circuit device and method therefor |
US7244654B2 (en) * | 2003-12-31 | 2007-07-17 | Texas Instruments Incorporated | Drive current improvement from recessed SiGe incorporation close to gate |
US20050145956A1 (en) * | 2004-01-05 | 2005-07-07 | Taiwan Semiconductor Manufacturing Co. | Devices with high-k gate dielectric |
US20050179111A1 (en) * | 2004-02-12 | 2005-08-18 | Iwen Chao | Semiconductor device with low resistive path barrier |
JP3884439B2 (ja) * | 2004-03-02 | 2007-02-21 | 株式会社東芝 | 半導体装置 |
US6881635B1 (en) | 2004-03-23 | 2005-04-19 | International Business Machines Corporation | Strained silicon NMOS devices with embedded source/drain |
US7402207B1 (en) | 2004-05-05 | 2008-07-22 | Advanced Micro Devices, Inc. | Method and apparatus for controlling the thickness of a selective epitaxial growth layer |
US20050274951A1 (en) * | 2004-06-14 | 2005-12-15 | Howard Gregory E | MOSFET having channel in bulk semiconductor and source/drain on insulator, and method of fabrication |
JP4837902B2 (ja) | 2004-06-24 | 2011-12-14 | 富士通セミコンダクター株式会社 | 半導体装置 |
US7332439B2 (en) * | 2004-09-29 | 2008-02-19 | Intel Corporation | Metal gate transistors with epitaxial source and drain regions |
US7135724B2 (en) * | 2004-09-29 | 2006-11-14 | International Business Machines Corporation | Structure and method for making strained channel field effect transistor using sacrificial spacer |
US7456062B1 (en) | 2004-10-20 | 2008-11-25 | Advanced Micro Devices, Inc. | Method of forming a semiconductor device |
US7241700B1 (en) | 2004-10-20 | 2007-07-10 | Advanced Micro Devices, Inc. | Methods for post offset spacer clean for improved selective epitaxy silicon growth |
US7402485B1 (en) | 2004-10-20 | 2008-07-22 | Advanced Micro Devices, Inc. | Method of forming a semiconductor device |
US7393733B2 (en) | 2004-12-01 | 2008-07-01 | Amberwave Systems Corporation | Methods of forming hybrid fin field-effect transistor structures |
US7064025B1 (en) * | 2004-12-02 | 2006-06-20 | International Business Machines Corporation | Method for forming self-aligned dual salicide in CMOS technologies |
US7026232B1 (en) * | 2004-12-23 | 2006-04-11 | Texas Instruments Incorporated | Systems and methods for low leakage strained-channel transistor |
JP4369359B2 (ja) * | 2004-12-28 | 2009-11-18 | 富士通マイクロエレクトロニクス株式会社 | 半導体装置 |
US7195985B2 (en) * | 2005-01-04 | 2007-03-27 | Intel Corporation | CMOS transistor junction regions formed by a CVD etching and deposition sequence |
US7335959B2 (en) * | 2005-01-06 | 2008-02-26 | Intel Corporation | Device with stepped source/drain region profile |
JP4361880B2 (ja) * | 2005-01-11 | 2009-11-11 | 富士通マイクロエレクトロニクス株式会社 | 半導体集積回路装置の製造方法 |
CN1808268B (zh) * | 2005-01-18 | 2010-10-06 | 中芯国际集成电路制造(上海)有限公司 | 用于应变硅mos晶体管的金属硬掩模方法和结构 |
US7553718B2 (en) | 2005-01-28 | 2009-06-30 | Texas Instruments Incorporated | Methods, systems and structures for forming semiconductor structures incorporating high-temperature processing steps |
KR100593452B1 (ko) * | 2005-02-01 | 2006-06-28 | 삼성전자주식회사 | 전체실리사이드 금속게이트전극을 갖는 모스 트랜지스터의제조방법 |
JP2006229040A (ja) * | 2005-02-18 | 2006-08-31 | Matsushita Electric Ind Co Ltd | 熱処理方法および熱処理装置 |
JP4369379B2 (ja) | 2005-02-18 | 2009-11-18 | 富士通マイクロエレクトロニクス株式会社 | 半導体装置 |
US7211481B2 (en) * | 2005-02-18 | 2007-05-01 | Texas Instruments Incorporated | Method to strain NMOS devices while mitigating dopant diffusion for PMOS using a capped poly layer |
JP4867176B2 (ja) * | 2005-02-25 | 2012-02-01 | ソニー株式会社 | 半導体装置の製造方法 |
JP4515305B2 (ja) * | 2005-03-29 | 2010-07-28 | 富士通セミコンダクター株式会社 | pチャネルMOSトランジスタおよびその製造方法、半導体集積回路装置の製造方法 |
WO2006111888A1 (en) * | 2005-04-20 | 2006-10-26 | Koninklijke Philips Electronics N.V. | A strained integrated circuit and a method of manufacturing the same |
DE102005020133B4 (de) * | 2005-04-29 | 2012-03-29 | Advanced Micro Devices, Inc. | Verfahren zur Herstellung eines Transistorelements mit Technik zur Herstellung einer Kontaktisolationsschicht mit verbesserter Spannungsübertragungseffizienz |
US20060252191A1 (en) * | 2005-05-03 | 2006-11-09 | Advanced Micro Devices, Inc. | Methodology for deposition of doped SEG for raised source/drain regions |
JP4630728B2 (ja) * | 2005-05-26 | 2011-02-09 | 株式会社東芝 | 半導体装置及びその製造方法 |
US7553732B1 (en) | 2005-06-13 | 2009-06-30 | Advanced Micro Devices, Inc. | Integration scheme for constrained SEG growth on poly during raised S/D processing |
US20060281271A1 (en) * | 2005-06-13 | 2006-12-14 | Advanced Micro Devices, Inc. | Method of forming a semiconductor device having an epitaxial layer and device thereof |
US7732289B2 (en) * | 2005-07-05 | 2010-06-08 | Taiwan Semiconductor Manufacturing Company, Ltd. | Method of forming a MOS device with an additional layer |
CN101218667B (zh) * | 2005-07-07 | 2010-12-29 | 富士通半导体股份有限公司 | 半导体器件及其制造方法 |
CN100463143C (zh) * | 2005-07-07 | 2009-02-18 | 中芯国际集成电路制造(上海)有限公司 | 具有氧化物间隔层的应变源漏cmos的集成方法 |
KR100632465B1 (ko) * | 2005-07-26 | 2006-10-09 | 삼성전자주식회사 | 반도체 소자 및 이의 제조 방법 |
US7902008B2 (en) * | 2005-08-03 | 2011-03-08 | Globalfoundries Inc. | Methods for fabricating a stressed MOS device |
KR100618908B1 (ko) * | 2005-08-12 | 2006-09-05 | 삼성전자주식회사 | 게이트 저항을 개선한 반도체 소자 및 제조 방법 |
US7470943B2 (en) * | 2005-08-22 | 2008-12-30 | International Business Machines Corporation | High performance MOSFET comprising a stressed gate metal silicide layer and method of fabricating the same |
US7572705B1 (en) | 2005-09-21 | 2009-08-11 | Advanced Micro Devices, Inc. | Semiconductor device and method of manufacturing a semiconductor device |
US7326601B2 (en) * | 2005-09-26 | 2008-02-05 | Advanced Micro Devices, Inc. | Methods for fabrication of a stressed MOS device |
KR100654360B1 (ko) * | 2005-10-27 | 2006-12-08 | 삼성전자주식회사 | 반도체 집적 회로 장치와 그 제조 방법 |
US7947546B2 (en) * | 2005-10-31 | 2011-05-24 | Chartered Semiconductor Manufacturing, Ltd. | Implant damage control by in-situ C doping during SiGe epitaxy for device applications |
US7566609B2 (en) * | 2005-11-29 | 2009-07-28 | International Business Machines Corporation | Method of manufacturing a semiconductor structure |
US7618856B2 (en) * | 2005-12-06 | 2009-11-17 | United Microelectronics Corp. | Method for fabricating strained-silicon CMOS transistors |
US7560780B2 (en) * | 2005-12-08 | 2009-07-14 | Intel Corporation | Active region spacer for semiconductor devices and method to form the same |
KR100741908B1 (ko) * | 2005-12-30 | 2007-07-24 | 동부일렉트로닉스 주식회사 | 반도체 소자의 제조방법 |
DE602006019940D1 (de) * | 2006-03-06 | 2011-03-17 | St Microelectronics Crolles 2 | Herstellung eines flachen leitenden Kanals aus SiGe |
DE102006015087B4 (de) * | 2006-03-31 | 2011-03-10 | Advanced Micro Devices, Inc., Sunnyvale | Verfahren zur Herstellung von Transistoren |
DE102006015090B4 (de) * | 2006-03-31 | 2008-03-13 | Advanced Micro Devices, Inc., Sunnyvale | Verfahren zur Herstellung unterschiedlicher eingebetteter Verformungsschichten in Transistoren |
US7410875B2 (en) * | 2006-04-06 | 2008-08-12 | United Microelectronics Corp. | Semiconductor structure and fabrication thereof |
US8207523B2 (en) * | 2006-04-26 | 2012-06-26 | United Microelectronics Corp. | Metal oxide semiconductor field effect transistor with strained source/drain extension layer |
US7935590B2 (en) * | 2006-05-11 | 2011-05-03 | United Microelectronics Corp. | Method of manufacturing metal oxide semiconductor and complementary metal oxide semiconductor |
US7541239B2 (en) * | 2006-06-30 | 2009-06-02 | Intel Corporation | Selective spacer formation on transistors of different classes on the same device |
DE102006030264B4 (de) * | 2006-06-30 | 2008-08-28 | Advanced Micro Devices, Inc., Sunnyvale | Verfahren zur Herstellung von Transistoren mit einem Kanal mit biaxialer Verformung, die durch Silizium/Germanium in der Gateelektrode hervorgerufen wird |
KR100834741B1 (ko) | 2006-07-26 | 2008-06-05 | 삼성전자주식회사 | 반도체 소자 및 그 제조 방법 |
US20080076236A1 (en) * | 2006-09-21 | 2008-03-27 | Jih-Shun Chiang | Method for forming silicon-germanium epitaxial layer |
US7494862B2 (en) * | 2006-09-29 | 2009-02-24 | Intel Corporation | Methods for uniform doping of non-planar transistor structures |
US7800182B2 (en) * | 2006-11-20 | 2010-09-21 | Infineon Technologies Ag | Semiconductor devices having pFET with SiGe gate electrode and embedded SiGe source/drain regions and methods of making the same |
US7897493B2 (en) * | 2006-12-08 | 2011-03-01 | Taiwan Semiconductor Manufacturing Company, Ltd. | Inducement of strain in a semiconductor layer |
DE102007004862B4 (de) * | 2007-01-31 | 2014-01-30 | Globalfoundries Inc. | Verfahren zur Herstellung von Si-Ge enthaltenden Drain/Source-Gebieten in Transistoren mit geringerem Si/Ge-Verlust |
US20080272437A1 (en) * | 2007-05-01 | 2008-11-06 | Doris Bruce B | Threshold Adjustment for High-K Gate Dielectric CMOS |
US8574979B2 (en) * | 2007-05-18 | 2013-11-05 | Texas Instruments Incorporated | Method for integrating silicon germanium and carbon doped silicon with source/drain regions in a strained CMOS process flow |
US7795605B2 (en) * | 2007-06-29 | 2010-09-14 | International Business Machines Corporation | Phase change material based temperature sensor |
US7892930B2 (en) * | 2007-10-08 | 2011-02-22 | Texas Instruments Incorporated | Method to improve transistor tox using SI recessing with no additional masking steps |
US20090146181A1 (en) * | 2007-12-07 | 2009-06-11 | Chartered Semiconductor Manufacturing Ltd. | Integrated circuit system employing diffused source/drain extensions |
KR101082096B1 (ko) * | 2008-01-21 | 2011-11-10 | 주식회사 하이닉스반도체 | 샐리사이드 공정을 이용한 반도체 소자의 제조방법 |
US20090186475A1 (en) * | 2008-01-21 | 2009-07-23 | Shyh-Fann Ting | Method of manufacturing a MOS transistor |
US8293631B2 (en) | 2008-03-13 | 2012-10-23 | International Business Machines Corporation | Semiconductor devices having tensile and/or compressive stress and methods of manufacturing |
KR101448172B1 (ko) * | 2008-07-02 | 2014-10-08 | 삼성전자주식회사 | 반도체 소자 및 그 제조 방법 |
DE102009006800B4 (de) * | 2009-01-30 | 2013-01-31 | Advanced Micro Devices, Inc. | Verfahren zur Herstellung von Transistoren und entsprechendes Halbleiterbauelement |
DE102009006884B4 (de) * | 2009-01-30 | 2011-06-30 | Advanced Micro Devices, Inc., Calif. | Verfahren zur Herstellung eines Transistorbauelementes mit In-Situ erzeugten Drain- und Source-Gebieten mit einer verformungsinduzierenden Legierung und einem graduell variierenden Dotierstoffprofil und entsprechendes Transistorbauelement |
US8274110B2 (en) * | 2009-05-20 | 2012-09-25 | Micron Technology, Inc. | Vertically-oriented semiconductor selection device providing high drive current in cross-point array memory |
JP5446558B2 (ja) * | 2009-08-04 | 2014-03-19 | 富士通セミコンダクター株式会社 | 半導体装置の製造方法 |
US8487354B2 (en) * | 2009-08-21 | 2013-07-16 | Taiwan Semiconductor Manufacturing Company, Ltd. | Method for improving selectivity of epi process |
JP5434365B2 (ja) * | 2009-08-24 | 2014-03-05 | ソニー株式会社 | 半導体装置及びその製造方法 |
US8067282B2 (en) * | 2009-10-08 | 2011-11-29 | United Microelectronics Corp. | Method for selective formation of trench |
US8421164B2 (en) | 2010-01-05 | 2013-04-16 | Micron Technology, Inc. | Memory cell array with semiconductor selection device for multiple memory cells |
CN101807605B (zh) * | 2010-02-05 | 2015-05-06 | 上海华虹宏力半导体制造有限公司 | 一种半导体器件及其制造方法 |
JP5236676B2 (ja) * | 2010-03-18 | 2013-07-17 | ルネサスエレクトロニクス株式会社 | スタティック・ランダム・アクセス・メモリ |
US8278166B2 (en) * | 2010-07-16 | 2012-10-02 | United Microelectronics Corp. | Method of manufacturing complementary metal oxide semiconductor device |
US8426265B2 (en) * | 2010-11-03 | 2013-04-23 | International Business Machines Corporation | Method for growing strain-inducing materials in CMOS circuits in a gate first flow |
US8778767B2 (en) | 2010-11-18 | 2014-07-15 | Taiwan Semiconductor Manufacturing Company, Ltd. | Integrated circuits and fabrication methods thereof |
KR101195269B1 (ko) * | 2011-02-15 | 2012-11-14 | 에스케이하이닉스 주식회사 | 낮은 컨택저항을 갖는 반도체소자의 제조방법 |
US8466502B2 (en) | 2011-03-24 | 2013-06-18 | United Microelectronics Corp. | Metal-gate CMOS device |
JP5360119B2 (ja) * | 2011-04-18 | 2013-12-04 | 富士通セミコンダクター株式会社 | 半導体装置とその製造方法 |
US8445363B2 (en) | 2011-04-21 | 2013-05-21 | United Microelectronics Corp. | Method of fabricating an epitaxial layer |
US8324059B2 (en) | 2011-04-25 | 2012-12-04 | United Microelectronics Corp. | Method of fabricating a semiconductor structure |
US8426284B2 (en) | 2011-05-11 | 2013-04-23 | United Microelectronics Corp. | Manufacturing method for semiconductor structure |
US8481391B2 (en) | 2011-05-18 | 2013-07-09 | United Microelectronics Corp. | Process for manufacturing stress-providing structure and semiconductor device with such stress-providing structure |
US8431460B2 (en) | 2011-05-27 | 2013-04-30 | United Microelectronics Corp. | Method for fabricating semiconductor device |
US8716750B2 (en) | 2011-07-25 | 2014-05-06 | United Microelectronics Corp. | Semiconductor device having epitaxial structures |
US8575043B2 (en) | 2011-07-26 | 2013-11-05 | United Microelectronics Corp. | Semiconductor device and manufacturing method thereof |
US8647941B2 (en) | 2011-08-17 | 2014-02-11 | United Microelectronics Corp. | Method of forming semiconductor device |
US8969154B2 (en) | 2011-08-23 | 2015-03-03 | Micron Technology, Inc. | Methods for fabricating semiconductor device structures and arrays of vertical transistor devices |
US8674433B2 (en) | 2011-08-24 | 2014-03-18 | United Microelectronics Corp. | Semiconductor process |
US8476169B2 (en) | 2011-10-17 | 2013-07-02 | United Microelectronics Corp. | Method of making strained silicon channel semiconductor structure |
US8691659B2 (en) | 2011-10-26 | 2014-04-08 | United Microelectronics Corp. | Method for forming void-free dielectric layer |
US8754448B2 (en) | 2011-11-01 | 2014-06-17 | United Microelectronics Corp. | Semiconductor device having epitaxial layer |
US8574995B2 (en) * | 2011-11-10 | 2013-11-05 | Taiwan Semiconductor Manufacturing Company, Ltd. | Source/drain doping method in 3D devices |
US8647953B2 (en) | 2011-11-17 | 2014-02-11 | United Microelectronics Corp. | Method for fabricating first and second epitaxial cap layers |
US8709930B2 (en) | 2011-11-25 | 2014-04-29 | United Microelectronics Corp. | Semiconductor process |
US9136348B2 (en) | 2012-03-12 | 2015-09-15 | United Microelectronics Corp. | Semiconductor structure and fabrication method thereof |
US9202914B2 (en) | 2012-03-14 | 2015-12-01 | United Microelectronics Corporation | Semiconductor device and method for fabricating the same |
CN103325684B (zh) * | 2012-03-23 | 2016-03-02 | 中国科学院微电子研究所 | 一种半导体结构及其制造方法 |
US8664069B2 (en) | 2012-04-05 | 2014-03-04 | United Microelectronics Corp. | Semiconductor structure and process thereof |
US8866230B2 (en) | 2012-04-26 | 2014-10-21 | United Microelectronics Corp. | Semiconductor devices |
US8835243B2 (en) | 2012-05-04 | 2014-09-16 | United Microelectronics Corp. | Semiconductor process |
WO2013180244A1 (ja) * | 2012-05-31 | 2013-12-05 | 富士電機株式会社 | 半導体装置の製造方法 |
US8951876B2 (en) | 2012-06-20 | 2015-02-10 | United Microelectronics Corp. | Semiconductor device and manufacturing method thereof |
US8796695B2 (en) | 2012-06-22 | 2014-08-05 | United Microelectronics Corp. | Multi-gate field-effect transistor and process thereof |
CN103515239A (zh) * | 2012-06-28 | 2014-01-15 | 中芯国际集成电路制造(上海)有限公司 | 超薄soi半导体器件制造方法及超薄soi半导体器件 |
US8710632B2 (en) | 2012-09-07 | 2014-04-29 | United Microelectronics Corp. | Compound semiconductor epitaxial structure and method for fabricating the same |
JP5488675B2 (ja) * | 2012-11-14 | 2014-05-14 | ソニー株式会社 | 半導体装置の製造方法 |
US8900958B2 (en) | 2012-12-19 | 2014-12-02 | Taiwan Semiconductor Manufacturing Company, Ltd. | Epitaxial formation mechanisms of source and drain regions |
US8853039B2 (en) | 2013-01-17 | 2014-10-07 | Taiwan Semiconductor Manufacturing Company, Ltd. | Defect reduction for formation of epitaxial layer in source and drain regions |
US9117925B2 (en) | 2013-01-31 | 2015-08-25 | United Microelectronics Corp. | Epitaxial process |
US8753902B1 (en) | 2013-03-13 | 2014-06-17 | United Microelectronics Corp. | Method of controlling etching process for forming epitaxial structure |
US9034705B2 (en) | 2013-03-26 | 2015-05-19 | United Microelectronics Corp. | Method of forming semiconductor device |
US9064893B2 (en) | 2013-05-13 | 2015-06-23 | United Microelectronics Corp. | Gradient dopant of strained substrate manufacturing method of semiconductor device |
US8853060B1 (en) | 2013-05-27 | 2014-10-07 | United Microelectronics Corp. | Epitaxial process |
US9076652B2 (en) | 2013-05-27 | 2015-07-07 | United Microelectronics Corp. | Semiconductor process for modifying shape of recess |
US9293534B2 (en) | 2014-03-21 | 2016-03-22 | Taiwan Semiconductor Manufacturing Company, Ltd. | Formation of dislocations in source and drain regions of FinFET devices |
US8765546B1 (en) | 2013-06-24 | 2014-07-01 | United Microelectronics Corp. | Method for fabricating fin-shaped field-effect transistor |
US8895396B1 (en) | 2013-07-11 | 2014-11-25 | United Microelectronics Corp. | Epitaxial Process of forming stress inducing epitaxial layers in source and drain regions of PMOS and NMOS structures |
US8981487B2 (en) | 2013-07-31 | 2015-03-17 | United Microelectronics Corp. | Fin-shaped field-effect transistor (FinFET) |
US9142673B2 (en) * | 2013-07-31 | 2015-09-22 | Globalfoundries Inc. | Devices and methods of forming bulk FinFETS with lateral seg for source and drain on dielectrics |
US10157995B2 (en) * | 2013-08-09 | 2018-12-18 | Taiwan Semiconductor Manufacturing Company, Ltd. | Integrating junction formation of transistors with contact formation |
WO2015099782A1 (en) | 2013-12-27 | 2015-07-02 | Intel Corporation | Diffused tip extension transistor |
KR102157839B1 (ko) * | 2014-01-21 | 2020-09-18 | 삼성전자주식회사 | 핀-전계효과 트랜지스터의 소오스/드레인 영역들을 선택적으로 성장시키는 방법 |
US9214551B2 (en) | 2014-02-19 | 2015-12-15 | United Microelectronics Corp. | Method for fabricating semiconductor device, and semiconductor device made thereby |
JP2015228418A (ja) * | 2014-05-30 | 2015-12-17 | ルネサスエレクトロニクス株式会社 | 半導体集積回路装置およびその製造方法 |
US9941388B2 (en) * | 2014-06-19 | 2018-04-10 | Globalfoundries Inc. | Method and structure for protecting gates during epitaxial growth |
US10084063B2 (en) * | 2014-06-23 | 2018-09-25 | Taiwan Semiconductor Manufacturing Company Ltd. | Semiconductor device and manufacturing method thereof |
US9716160B2 (en) * | 2014-08-01 | 2017-07-25 | International Business Machines Corporation | Extended contact area using undercut silicide extensions |
DE102014111140B4 (de) * | 2014-08-05 | 2019-08-14 | Infineon Technologies Austria Ag | Halbleitervorrichtung mit Feldeffektstrukturen mit verschiedenen Gatematerialien und Verfahren zur Herstellung davon |
US9502418B2 (en) | 2014-10-02 | 2016-11-22 | International Business Machines Corporation | Semiconductor devices with sidewall spacers of equal thickness |
US20160155818A1 (en) * | 2014-11-27 | 2016-06-02 | United Microelectronics Corp. | Method for fabricating semiconductor device |
US9761693B2 (en) | 2014-11-27 | 2017-09-12 | United Microelectronics Corp. | Method for fabricating semiconductor device |
US11049939B2 (en) * | 2015-08-03 | 2021-06-29 | Semiwise Limited | Reduced local threshold voltage variation MOSFET using multiple layers of epi for improved device operation |
TWI680502B (zh) | 2016-02-03 | 2019-12-21 | 聯華電子股份有限公司 | 半導體元件及其製作方法 |
CN106206316A (zh) * | 2016-07-27 | 2016-12-07 | 上海集成电路研发中心有限公司 | 一种金属氧化物半导体场效应晶体管的制造方法 |
US10879354B2 (en) * | 2016-11-28 | 2020-12-29 | Taiwan Semiconductor Manufacturing Co., Ltd. | Semiconductor device and forming method thereof |
CN113629144B (zh) * | 2020-05-08 | 2023-07-07 | 长鑫存储技术有限公司 | 半导体器件及其制备方法 |
US11373696B1 (en) | 2021-02-19 | 2022-06-28 | Nif/T, Llc | FFT-dram |
Family Cites Families (30)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4133704A (en) * | 1977-01-17 | 1979-01-09 | General Motors Corporation | Method of forming diodes by amorphous implantations and concurrent annealing, monocrystalline reconversion and oxide passivation in <100> N-type silicon |
JPS6151959A (ja) * | 1984-08-22 | 1986-03-14 | Toshiba Corp | 半導体装置の製造方法 |
CA1216962A (en) * | 1985-06-28 | 1987-01-20 | Hussein M. Naguib | Mos device processing |
JPS6313379A (ja) * | 1986-07-04 | 1988-01-20 | Nippon Telegr & Teleph Corp <Ntt> | 半導体装置およびその製造方法 |
US4885617A (en) * | 1986-11-18 | 1989-12-05 | Siemens Aktiengesellschaft | Metal-oxide semiconductor (MOS) field effect transistor having extremely shallow source/drain zones and silicide terminal zones, and a process for producing the transistor circuit |
US5006476A (en) * | 1988-09-07 | 1991-04-09 | North American Philips Corp., Signetics Division | Transistor manufacturing process using three-step base doping |
US4876213A (en) * | 1988-10-31 | 1989-10-24 | Motorola, Inc. | Salicided source/drain structure |
US4998150A (en) * | 1988-12-22 | 1991-03-05 | Texas Instruments Incorporated | Raised source/drain transistor |
US5079180A (en) * | 1988-12-22 | 1992-01-07 | Texas Instruments Incorporated | Method of fabricating a raised source/drain transistor |
IT1235693B (it) * | 1989-05-02 | 1992-09-21 | Sgs Thomson Microelectronics | Transistore ad effetto di campo superficiale con regione di source e/o di drain scavate per dispositivi ulsi. |
US5012306A (en) * | 1989-09-22 | 1991-04-30 | Board Of Regents, The University Of Texas System | Hot-carrier suppressed sub-micron MISFET device |
JP2921889B2 (ja) * | 1989-11-27 | 1999-07-19 | 株式会社東芝 | 半導体装置の製造方法 |
US5231042A (en) * | 1990-04-02 | 1993-07-27 | National Semiconductor Corporation | Formation of silicide contacts using a sidewall oxide process |
US5168072A (en) * | 1990-10-12 | 1992-12-01 | Texas Instruments Incorporated | Method of fabricating an high-performance insulated-gate field-effect transistor |
JPH04350942A (ja) * | 1991-05-29 | 1992-12-04 | Nec Corp | 半導体装置の製造方法 |
JP2727818B2 (ja) * | 1991-09-17 | 1998-03-18 | 日本電気株式会社 | 半導体装置 |
US5341014A (en) * | 1992-01-07 | 1994-08-23 | Matsushita Electric Industrial Co., Ltd. | Semiconductor device and a method of fabricating the same |
US5242847A (en) * | 1992-07-27 | 1993-09-07 | North Carolina State University At Raleigh | Selective deposition of doped silion-germanium alloy on semiconductor substrate |
US5393685A (en) * | 1992-08-10 | 1995-02-28 | Taiwan Semiconductor Manufacturing Company | Peeling free metal silicide films using rapid thermal anneal |
US5352631A (en) * | 1992-12-16 | 1994-10-04 | Motorola, Inc. | Method for forming a transistor having silicided regions |
JPH0786579A (ja) * | 1993-09-14 | 1995-03-31 | Toshiba Corp | 半導体装置 |
US5409847A (en) * | 1993-10-27 | 1995-04-25 | Matsushita Electric Industrial Co., Ltd. | Manufacturing method of CMOS transistor in which heat treatment at higher temperature is done prior to heat treatment at low temperature |
US5478776A (en) * | 1993-12-27 | 1995-12-26 | At&T Corp. | Process for fabricating integrated circuit containing shallow junction using dopant source containing organic polymer or ammonium silicate |
US5405795A (en) * | 1994-06-29 | 1995-04-11 | International Business Machines Corporation | Method of forming a SOI transistor having a self-aligned body contact |
KR0135147B1 (ko) * | 1994-07-21 | 1998-04-22 | 문정환 | 트랜지스터 제조방법 |
US5710450A (en) * | 1994-12-23 | 1998-01-20 | Intel Corporation | Transistor with ultra shallow tip and method of fabrication |
US5538909A (en) * | 1995-01-19 | 1996-07-23 | United Microelectronics Corporation | Method of making a shallow trench large-angle-tilt implanted drain device |
US5569624A (en) * | 1995-06-05 | 1996-10-29 | Regents Of The University Of California | Method for shallow junction formation |
WO1997047159A1 (fr) * | 1996-06-03 | 1997-12-11 | Kanagawa Prefectural Government | Procede de fabrication d'un dispositif emettant des infrarouges et dispositif emettant des infrarouges ainsi obtenu |
TW346652B (en) * | 1996-11-09 | 1998-12-01 | Winbond Electronics Corp | Semiconductor production process |
-
1994
- 1994-12-23 US US08/363,749 patent/US5710450A/en not_active Expired - Lifetime
-
1995
- 1995-12-14 TW TW084113335A patent/TW330309B/zh not_active IP Right Cessation
- 1995-12-21 AU AU45283/96A patent/AU4528396A/en not_active Abandoned
- 1995-12-21 CN CN95197621A patent/CN1095196C/zh not_active Expired - Lifetime
- 1995-12-21 EP EP02015293A patent/EP1253632A3/en not_active Ceased
- 1995-12-21 JP JP8520543A patent/JPH10511506A/ja active Pending
- 1995-12-21 WO PCT/US1995/016760 patent/WO1996020499A1/en not_active Application Discontinuation
- 1995-12-21 EP EP95943954A patent/EP0803131A4/en not_active Ceased
- 1995-12-29 US US08/581,243 patent/US6165826A/en not_active Expired - Lifetime
-
1997
- 1997-11-17 US US08/971,992 patent/US6326664B1/en not_active Expired - Lifetime
-
2007
- 2007-09-27 JP JP2007251079A patent/JP5198823B2/ja not_active Expired - Lifetime
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7368792B2 (en) | 2003-05-14 | 2008-05-06 | Samsung Electronics Co., Ltd. | MOS transistor with elevated source/drain structure |
CN100456439C (zh) * | 2003-05-14 | 2009-01-28 | 三星电子株式会社 | 具有抬高的源极/漏极结构的mos晶体管及其制造方法 |
CN100449780C (zh) * | 2003-06-27 | 2009-01-07 | 英特尔公司 | 具有凸起的结区域的pmos晶体管 |
CN102468164A (zh) * | 2010-10-29 | 2012-05-23 | 中国科学院微电子研究所 | 晶体管及其制造方法 |
CN102468164B (zh) * | 2010-10-29 | 2014-10-08 | 中国科学院微电子研究所 | 晶体管及其制造方法 |
Also Published As
Publication number | Publication date |
---|---|
EP1253632A3 (en) | 2004-12-08 |
CN1175321A (zh) | 1998-03-04 |
US6165826A (en) | 2000-12-26 |
JPH10511506A (ja) | 1998-11-04 |
EP0803131A1 (en) | 1997-10-29 |
EP0803131A4 (en) | 1998-06-17 |
TW330309B (en) | 1998-04-21 |
US6326664B1 (en) | 2001-12-04 |
WO1996020499A1 (en) | 1996-07-04 |
JP2008053740A (ja) | 2008-03-06 |
US5710450A (en) | 1998-01-20 |
EP1253632A2 (en) | 2002-10-30 |
JP5198823B2 (ja) | 2013-05-15 |
AU4528396A (en) | 1996-07-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN1095196C (zh) | 具有超浅端区的晶体管及其制造方法 | |
US6198142B1 (en) | Transistor with minimal junction capacitance and method of fabrication | |
US5908313A (en) | Method of forming a transistor | |
US5583067A (en) | Inverse T-gate semiconductor device with self-aligned punchthrough stops and method of fabrication | |
US4835112A (en) | CMOS salicide process using germanium implantation | |
US5407847A (en) | Method for fabricating a semiconductor device having a shallow doped region | |
US5963803A (en) | Method of making N-channel and P-channel IGFETs with different gate thicknesses and spacer widths | |
US6451693B1 (en) | Double silicide formation in polysicon gate without silicide in source/drain extensions | |
US5933721A (en) | Method for fabricating differential threshold voltage transistor pair | |
US5851891A (en) | IGFET method of forming with silicide contact on ultra-thin gate | |
KR950010065A (ko) | 반도체 장치 및 그 제조방법 | |
US6380055B2 (en) | Dopant diffusion-retarding barrier region formed within polysilicon gate layer | |
US5705417A (en) | Method for forming self-aligned silicide structure | |
US6156613A (en) | Method to form MOSFET with an elevated source/drain | |
US6004849A (en) | Method of making an asymmetrical IGFET with a silicide contact on the drain without a silicide contact on the source | |
US6200840B1 (en) | Method for producing PMOS devices | |
EP0459398B1 (en) | Manufacturing method of a channel in MOS semiconductor devices | |
US6180464B1 (en) | Metal oxide semiconductor device with localized laterally doped channel | |
US5885874A (en) | Method of making enhancement-mode and depletion-mode IGFETS using selective doping of a gate material | |
US6475868B1 (en) | Oxygen implantation for reduction of junction capacitance in MOS transistors | |
US5976938A (en) | Method of making enhancement-mode and depletion-mode IGFETs with different gate thicknesses | |
US8395221B2 (en) | Depletion-free MOS using atomic-layer doping | |
US20020168828A1 (en) | Method of reducing threshold voltage shifting of a gate | |
US5650347A (en) | Method of manufacturing a lightly doped drain MOS transistor | |
US6372588B2 (en) | Method of making an IGFET using solid phase diffusion to dope the gate, source and drain |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CX01 | Expiry of patent term |
Granted publication date: 20021127 |
|
EXPY | Termination of patent right or utility model |