WO2013180244A1 - 半導体装置の製造方法 - Google Patents

半導体装置の製造方法 Download PDF

Info

Publication number
WO2013180244A1
WO2013180244A1 PCT/JP2013/065104 JP2013065104W WO2013180244A1 WO 2013180244 A1 WO2013180244 A1 WO 2013180244A1 JP 2013065104 W JP2013065104 W JP 2013065104W WO 2013180244 A1 WO2013180244 A1 WO 2013180244A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat treatment
silicon
semiconductor substrate
semiconductor device
diffusion
Prior art date
Application number
PCT/JP2013/065104
Other languages
English (en)
French (fr)
Inventor
寺西 秀明
中澤 治雄
荻野 正明
Original Assignee
富士電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士電機株式会社 filed Critical 富士電機株式会社
Priority to JP2014518739A priority Critical patent/JP6135666B2/ja
Publication of WO2013180244A1 publication Critical patent/WO2013180244A1/ja
Priority to US14/511,862 priority patent/US9450070B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66234Bipolar junction transistors [BJT]
    • H01L29/66325Bipolar junction transistors [BJT] controlled by field-effect, e.g. insulated gate bipolar transistors [IGBT]
    • H01L29/66333Vertical insulated gate bipolar transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66234Bipolar junction transistors [BJT]
    • H01L29/66325Bipolar junction transistors [BJT] controlled by field-effect, e.g. insulated gate bipolar transistors [IGBT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/22Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities
    • H01L21/225Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities using diffusion into or out of a solid from or into a solid phase, e.g. a doped oxide layer
    • H01L21/2251Diffusion into or out of group IV semiconductors
    • H01L21/2252Diffusion into or out of group IV semiconductors using predeposition of impurities into the semiconductor surface, e.g. from a gaseous phase
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/22Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities
    • H01L21/225Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities using diffusion into or out of a solid from or into a solid phase, e.g. a doped oxide layer
    • H01L21/2251Diffusion into or out of group IV semiconductors
    • H01L21/2252Diffusion into or out of group IV semiconductors using predeposition of impurities into the semiconductor surface, e.g. from a gaseous phase
    • H01L21/2253Diffusion into or out of group IV semiconductors using predeposition of impurities into the semiconductor surface, e.g. from a gaseous phase by ion implantation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/761PN junctions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table

Definitions

  • the present invention relates to a method for manufacturing a semiconductor device.
  • a matrix converter is known as a direct link type conversion circuit that can eliminate the need for a circuit. Since this matrix converter is used under an AC voltage, a plurality of switching devices constituting the matrix converter require bidirectional switching devices capable of current control in the forward and reverse directions.
  • FIG. 9 is a circuit diagram showing an equivalent circuit of a bidirectional switching device using a reverse blocking IGBT.
  • the reverse blocking IGBT refers to a device having a characteristic in which the reverse breakdown voltage is set to the same breakdown voltage as the forward breakdown voltage and the breakdown voltage reliability is improved.
  • FIG. 8 is a cross-sectional view schematically showing a cross-sectional structure of a conventional reverse blocking IGBT.
  • FIG. 8 is described in Patent Document 1 below.
  • This conventional reverse blocking IGBT has an active region 110 in the center, and has a structure having a p-type isolation layer 31 surrounding the outer side of the active region 110 with a breakdown voltage structure region 120 interposed therebetween. To do. For this reason, in order to form the p-type isolation layer 31 only by thermal diffusion from one main surface of the semiconductor substrate, the depth of the p-type isolation layer 31 needs to be very deep, With diffusion (drive-in). Thermal diffusion is generally performed in an oxidizing atmosphere.
  • ions are confined in the semiconductor substrate by forming an oxide film on the surface of the semiconductor substrate, and ions are prevented from escaping from the substrate surface side to the outside due to thermal diffusion.
  • a mixed gas containing other gases argon (Ar), nitrogen (N 2 ), etc.
  • heat treatment is performed in an atmosphere or heat treatment is performed in an inert gas atmosphere not containing oxygen.
  • n ⁇ type drift region 21 includes an n ⁇ type drift region 21, a p type base region 22, an n + type emitter region 23, a gate insulating film 24, a gate electrode 25, an interlayer insulating film 26, an emitter electrode 29, and a p type collector region.
  • 27 is a region serving as a main current path of a vertical IGBT including 27 and a collector electrode 28.
  • the p-type isolation layer 31 is a p-type region formed to a depth reaching the p-type collector region 27 on the back surface side from the front surface of the semiconductor substrate by thermal diffusion of boron (B).
  • the end portion of the pn junction surface between the p-type collector region 27 and the n ⁇ -type drift region 21, which is a reverse breakdown voltage junction, is a chip-side end surface 30 that serves as a cut surface in chip formation. It is exposed to the surface 32 of the pressure
  • FIG. 5 ((a) to (d)) and FIG. 6 ((a) to (d)) show impurities that form the p-type isolation layer 104 for such reverse blocking IGBT by coating diffusion or ion implantation, respectively.
  • It is manufacturing process sectional drawing which shows a diffusion process in process order.
  • FIG. 5 is a cross-sectional view showing a state in the middle of forming a separation layer by conventional coating diffusion.
  • FIG. 6 is a cross-sectional view showing a state in the middle of forming a separation layer by conventional ion implantation.
  • FIG. 7 is a cross-sectional view showing an end structure of a conventional reverse blocking IGBT.
  • FIG. 7A shows a reverse blocking IGBT in which a separation layer is formed by a diffusion layer having a depth penetrating the semiconductor substrate, which is manufactured by the manufacturing process of FIGS. 5 and 6.
  • a thermal oxide film 101 having a thickness (film thickness) of about 1.5 ⁇ m to 2.5 ⁇ m is formed on the front side of the semiconductor substrate 100 made of thick silicon (Si) having a thickness of 500 ⁇ m or more as a dopant mask.
  • the thermal oxide film 101 is patterned to form an opening 102 for introducing an impurity for forming a separation layer (FIGS. 5B and 6B).
  • a boron source 103 as an impurity is applied to the opening 102 to form a shallow deposit layer of boron (or boron is ion-implanted 105 into the semiconductor substrate 100 exposed to the opening 102 of the thermal oxide film 101).
  • FIG. 5 (c), FIG. 6 (c) the thermal oxide film 101 used as a dopant mask for selective diffusion of boron (diffusion for p-type separation layer) is removed.
  • heat treatment is performed at a high temperature (1300 ° C.) and for a long time (100 hours to 200 hours) to form a p-type diffusion layer 104 having a depth of about 100 ⁇ m to 200 ⁇ m (FIGS. 5D and 6D). d)).
  • This p-type diffusion layer 104 is used as a separation layer.
  • an oxide film is formed again on the front surface of the semiconductor substrate 100 surrounded by the p-type diffusion layer 104, and a process (not shown) for forming a MOS gate structure and a necessary front surface functional region is performed.
  • the semiconductor substrate 100 is thinned by grinding and removing from the back surface of the semiconductor substrate 100 until reaching the bottom of the p-type diffusion layer 104 (FIGS. 5D and 6D).
  • a back surface structure composed of a p-type collector region and a collector electrode (not shown) is formed on the ground surface of the back surface, and the semiconductor substrate 100 is cut by a scribe line 108 positioned at the center of the p-type diffusion layer 104.
  • the reverse blocking IGBT formed into a chip by this cutting is shown in FIG. 7A and the sectional view of FIG.
  • FIG. 7B shows an example of an end structure of a reverse blocking IGBT manufactured according to Patent Documents 2 to 4 below. Furthermore, as shown in the cross-sectional view of FIG.
  • FIG. 10 is a cross-sectional view showing the structure of a reverse blocking IGBT having a separation layer formed using a conventional trench.
  • reference numeral 106 denotes a p-type collector region
  • 108 denotes a scribe line
  • 111 denotes a MOS gate structure on the front side of the substrate.
  • a conventional semiconductor substrate used for manufacturing a high voltage power device is a single crystal silicon (hereinafter referred to as FZ (floating zone) method) using polycrystalline silicon (hereinafter abbreviated as polycrystalline silicon for FZ).
  • FZ silicon semiconductor substrate A silicon semiconductor substrate (hereinafter abbreviated as FZ silicon semiconductor substrate) cut out from FZ silicon single crystal) has been used.
  • This FZ silicon semiconductor substrate is compared with a silicon semiconductor substrate (hereinafter abbreviated as CZ silicon semiconductor substrate) cut out from a silicon single crystal (hereinafter abbreviated as CZ silicon single crystal) manufactured by the CZ (Czochralski) method.
  • CZ silicon single crystal silicon single crystal manufactured by the CZ (Czochralski) method.
  • the FZ silicon single crystal is indispensable as a silicon crystal for power devices having a particularly high breakdown voltage and large current capacity.
  • a larger-diameter FZ silicon semiconductor substrate has been demanded to reduce the cost of the device, but it is difficult to increase the FZ silicon semiconductor substrate compared to the CZ silicon semiconductor substrate.
  • polycrystalline silicon for FZ is used as described above.
  • polycrystalline silicon for FZ which is necessary as a raw material for the FZ method, has a high purity, is not easily cracked or cracked, has a uniform grain boundary structure, and has a diameter suitable for the FZ silicon single crystal to be produced.
  • the production of such polycrystalline silicon for FZ has a much higher yield and productivity than the production of nugget-like polycrystalline silicon (hereinafter abbreviated as CZ polycrystalline silicon) used in the CZ method. Low.
  • the depth of the p-type diffusion layer 104a from the front surface side of the substrate is decreased.
  • the thermal diffusion time at a high temperature can be surely shortened, but another problem arises when the depth of the p-type diffusion layer 104a is made too shallow.
  • the V-shaped groove must be deepened accordingly. There arises a new problem that the semiconductor substrate 100 is easily broken.
  • the following problem arises in the method of shortening the high-temperature thermal diffusion time by forming the p-type isolation layer 104b using the trench 109 having the side wall perpendicular to the main surface as shown in FIG.
  • the time required for etching the trench 109 having a depth of about 200 ⁇ m is about 100 minutes.
  • adverse effects such as an increase in lead time and an increase in the number of maintenances are brought about.
  • precipitates are generated on the semiconductor substrate depending on the heat treatment conditions.
  • This precipitate causes crystal defects such as stacking faults, which may adversely affect the electrical characteristics of a semiconductor device manufactured using a semiconductor substrate.
  • a typical crystal defect is an oxygen precipitate (SiO 2 ) generated when the CZ silicon semiconductor substrate is heat-treated. This is because the oxygen dissipated from the quartz crucible of the container during the pulling of the CZ silicon ingot (CZ silicon crystal) is taken into the CZ silicon ingot, and this oxygen is precipitated as SiO 2 during the heat treatment.
  • FZ silicon ingots have been manufactured using CZ silicon ingots instead of polysilicon rods as raw materials. This is because the oxygen contained in the CZ silicon ingot is diffused outward at the time of melting by induction heating and the oxygen concentration contained in the FZ silicon ingot is lowered when recrystallized, thereby reducing the FZ silicon having a low oxygen concentration. This is a method of manufacturing an ingot.
  • a heat treatment for a long time at a high temperature for example, 100 hours at a temperature of 1300 ° C.
  • a high temperature for example, 100 hours at a temperature of 1300 ° C.
  • precipitates may be generated, resulting in poor electrical characteristics of the semiconductor device.
  • This precipitate is known to be a nitrogen precipitate ( ⁇ -Si 3 N 4 ) by microscopic analysis, and this nitrogen precipitate is caused by heat treatment in an atmosphere containing nitrogen.
  • the present invention uses a silicon semiconductor substrate cut from an FZ silicon crystal manufactured using a CZ silicon crystal, and has a high temperature length of 1290 ° C. or more and 100 hours or more.
  • a method for manufacturing a semiconductor device capable of suppressing the generation of crystal defects due to thermal diffusion at a high temperature for a long time in a silicon semiconductor substrate even when a step of forming a deep diffusion layer by thermal diffusion over time is provided. For the purpose.
  • a semiconductor device manufacturing method has the following characteristics.
  • a diffusion process is performed in which a diffusion layer having a depth of 50 ⁇ m or more is formed on a silicon semiconductor substrate manufactured by the FZ method by thermal diffusion at a heat treatment temperature within a range of 1290 ° C. or higher and lower than the melting temperature of silicon crystals.
  • a second heat treatment in a nitrogen atmosphere or a mixed gas atmosphere of nitrogen and oxygen is performed to form the diffusion layer.
  • the FZ silicon semiconductor substrate cut out from the FZ silicon crystal manufactured by the FZ method using polycrystalline silicon for FZ as a raw material is used as the silicon semiconductor substrate. It is preferable to use it.
  • the semiconductor device manufacturing method according to the present invention is the CZ-FZ cut out from a CZ-FZ silicon crystal manufactured by the FZ method using polycrystalline silicon for CZ as a raw material as the silicon semiconductor substrate in the above-described invention. It is also preferable to use a silicon semiconductor substrate.
  • the processing time t (time) of the first heat treatment is t> It is preferable to satisfy 3.5 ⁇ 10 ⁇ 6 ⁇ L 2 .
  • the thickness of the silicon semiconductor substrate is L ( ⁇ m)
  • the diffusion coefficient of interstitial silicon atoms at the processing temperature T of the first heat treatment is DT.
  • the processing time t (time) of the first heat treatment satisfies t> L 2 / (16 ⁇ DT).
  • the processing time t (hour) of the first heat treatment is It is preferable to satisfy t> 3.5 ⁇ 10 ⁇ 6 ⁇ M 2 .
  • the treatment time t (hour) of the first heat treatment preferably satisfies t> M 2 / (16 ⁇ DT).
  • the diffusion layer serving as a separation layer constituting the reverse blocking insulated gate bipolar transistor is formed.
  • a silicon semiconductor substrate cut out from an FZ silicon crystal manufactured by the FZ method using a CZ silicon crystal for increasing the diameter and reducing the cost is used. Even when a deep diffusion layer is formed by high-temperature long-time thermal diffusion at 100 ° C. or higher and 100 hours or longer, the occurrence of crystal defects due to high-temperature long-time thermal diffusion in the semiconductor substrate can be suppressed. There is an effect. Further, according to the method for manufacturing a semiconductor device according to the present invention, it is possible to reduce the amount of inert gas that is a raw material gas when performing thermal diffusion for a long time at a high temperature, thereby reducing the manufacturing cost. There is an effect that can be done.
  • FIG. 1 is a cross-sectional view schematically showing a state of a CZ-FZ silicon semiconductor substrate during the manufacture of a semiconductor device according to an embodiment of the present invention.
  • FIG. 2 is a cross-sectional view schematically showing the state of the CZ-FZ silicon semiconductor substrate during the manufacture of the semiconductor device according to the embodiment of the present invention.
  • FIG. 3 is a cross-sectional view schematically showing a state of the CZ-FZ silicon semiconductor substrate in the process of manufacturing the semiconductor device according to the embodiment of the present invention.
  • FIG. 4 is a cross-sectional view simulating a cross-sectional X-ray topography photograph of a CZ-FZ silicon semiconductor substrate.
  • FIG. 1 is a cross-sectional view schematically showing a state of a CZ-FZ silicon semiconductor substrate during the manufacture of a semiconductor device according to an embodiment of the present invention.
  • FIG. 2 is a cross-sectional view schematically showing the state of the CZ-FZ silicon semiconductor substrate during the manufacture
  • FIG. 5 is a cross-sectional view showing a state in the middle of forming a separation layer by conventional coating diffusion.
  • FIG. 6 is a cross-sectional view showing a state in the middle of forming a separation layer by conventional ion implantation.
  • FIG. 7 is a cross-sectional view showing an end structure of a conventional reverse blocking IGBT.
  • FIG. 8 is a cross-sectional view schematically showing a cross-sectional structure of a conventional reverse blocking IGBT.
  • FIG. 9 is a circuit diagram showing an equivalent circuit of a bidirectional switching device using a reverse blocking IGBT.
  • FIG. 10 is a cross-sectional view showing the structure of a reverse blocking IGBT having a separation layer formed using a conventional trench.
  • diffusion for forming a deep diffusion layer for example, a separation layer having a depth reaching from the front surface to the back surface of the semiconductor substrate by high-temperature and long-time thermal diffusion (drive-in), which is a feature of the present invention.
  • drive-in high-temperature and long-time thermal diffusion
  • the manufacturing method of the reverse blocking IGBT according to the embodiment of the present invention is different from the conventional manufacturing method of the reverse blocking IGBT described above in the manufacturing method of the reverse blocking IGBT according to the embodiment of the present invention.
  • the required thermal diffusion of the separation layer is first heat-treated in an oxygen (O 2 ) atmosphere or a mixed gas atmosphere of oxygen and inert gas, and then in a nitrogen (N 2 ) atmosphere or a mixed gas atmosphere of nitrogen and oxygen.
  • the second heat treatment is adopted.
  • 1 to 3 are cross-sectional views schematically showing the state of a CZ-FZ silicon semiconductor substrate during the manufacture of a semiconductor device according to an embodiment of the present invention. First, a CZ-FZ silicon semiconductor substrate 1 is prepared.
  • vacancy defects 2 may partially exist from the initial state (before the semiconductor device manufacturing process is input) (FIG. 1A).
  • the vacancy defect 2 cannot be directly detected because its size is very small (in the figure, it is shown schematically large).
  • thermal oxidation is performed on the CZ-FZ silicon semiconductor substrate 1 in an atmosphere not containing nitrogen so that the thickness (film thickness) of the front surface of the CZ-FZ silicon semiconductor substrate 1 is about 1 ⁇ m.
  • the oxide film 3 is formed using a dopant mask (FIG. 1B).
  • an opening 4 for forming a conductive layer is formed in the oxide film 3 by patterning and etching (FIG. 1C).
  • boron (B) ion implantation (boron ion implantation) 5 is performed on the CZ-FZ silicon semiconductor substrate 1 exposed in the opening 4 at a high dose of about 10 15 cm ⁇ 2, for example.
  • Layer 6 is formed (FIG. 1 (d)).
  • a first heat treatment at a temperature of 1300 ° C. is performed for 10 hours in a mixed gas atmosphere in which 30% of oxygen (O 2 ) 10 and 70% of argon (Ar) 9 are mixed.
  • Furnace temperature and temperature are 700 ° C., for example, and the temperature raising / lowering rate is 1 ° C./min, for example.
  • the exposed portion of the CZ-FZ silicon semiconductor substrate 1 is oxidized to form the thermal oxide film 7 and the boron ion implanted layer 6 implanted by the boron ion implantation 5 is diffused to form the boron diffusion layer 8.
  • FIG. 2 shows a schematic diagram of a cross-sectional structure of the CZ-FZ silicon semiconductor substrate 1 at this time.
  • Excess Si atoms generated by thermal oxidation by the first heat treatment are implanted 11 into the CZ-FZ silicon semiconductor substrate 1 as interstitial atoms (hereinafter referred to as interstitial Si atoms) (FIG. 2A).
  • interstitial Si atoms hereinafter referred to as interstitial Si atoms
  • a second heat treatment at a temperature of 1300 ° C. is performed for 90 hours in a mixed gas atmosphere in which 30% of oxygen (O 2 ) 10 and 70% of nitrogen (N 2 ) 12 are mixed.
  • the boron diffusion layer 8 is further diffused to form the p-type conductive layer 13 having a depth reaching the back surface from the front surface of the CZ-FZ silicon semiconductor substrate 1.
  • a schematic diagram of a cross-sectional structure at this point is shown in FIG. Since the vacancy defects 2 in the CZ-FZ silicon semiconductor substrate 1 have already been filled by the first heat treatment, even if the second heat treatment is subsequently performed in an atmosphere containing nitrogen, the nitrogen precipitates in the CZ-FZ silicon semiconductor substrate 1. There is no vacancy defect 2 which is the starting point from which the product is deposited. Therefore, the nitrogen precipitation phenomenon does not occur.
  • FIG. 4 is a cross-sectional view simulating a cross-sectional X-ray topography photograph of a CZ-FZ silicon semiconductor substrate.
  • FIG. 4A shows the first heat treatment at a temperature of 1300 ° C. for 10 hours in a mixed gas atmosphere in which 30% of oxygen (O 2 ) 10 and 70% of argon (Ar) 9 are mixed.
  • CZ-FZ silicon semiconductor substrate 1 in which a second heat treatment at a temperature of 1300 ° C.
  • FIG. 4 (b) shows a CZ-in which a heat treatment at a temperature of 1300 ° C. is performed for 100 hours in a mixed gas atmosphere in which 30% of oxygen (O 2 ) and 70% of nitrogen (N 2 ) are mixed.
  • the figure which imitated the section X-ray topography photograph of FZ silicon semiconductor substrate 1 is shown (henceforth the comparative example 1). As shown in FIGS.
  • FIG. 4C shows a CZ in which a heat treatment at a temperature of 1300 ° C. was performed for 100 hours in a mixed gas atmosphere in which 30% of oxygen (O 2 ) and 70% of argon (Ar) were mixed.
  • FIG. 2 shows a cross-sectional X-ray topographic photograph of the FZ silicon semiconductor substrate 1 (hereinafter referred to as Comparative Example 2). As shown in FIGS. 4A and 4C, it was confirmed that the example can form a deep conductive layer in the substrate without generating nitrogen precipitates, as in Comparative Example 2. .
  • 4A, 4B, and 4C also show a longitudinal contrast in the cross-sectional X-ray topographic photographs, but this is the case when the crystal is highly complete. It is a contrast called Pendell fringes due to the generated dynamic diffraction phenomenon, not a crystal defect.
  • the heat treatment temperature is 1300 ° C. and the heat treatment time is Although it is 10 hours, it is sufficient that the vacancy defects 2 existing in the CZ-FZ silicon semiconductor substrate 1 in the initial state can be filled with interstitial Si atoms, and the heat treatment temperature and the heat treatment time may be variously changed.
  • the conditions are described below.
  • the heat treatment conditions are such that interstitial Si atoms are implanted 11 in the entire thickness direction of the CZ-FZ silicon semiconductor substrate 1.
  • the CZ-FZ silicon semiconductor substrate 1 is formed according to the final breakdown voltage of the semiconductor device. Since there is a case where the wafer is thinned by grinding, in that case, interstitial Si atoms are implanted from the front surface of the CZ-FZ silicon semiconductor substrate 1 to the position of the final product thickness of the semiconductor device 11. Just do it.
  • the first heat treatment may be performed using an atmosphere containing another inert gas (for example, helium (He), neon (Ne), or the like) instead of argon gas.
  • another inert gas for example, helium (He), neon (Ne), or the like
  • He helium
  • Ne neon
  • argon gas instead of argon gas.
  • the mixed gas in the nitrogen atmosphere or nitrogen and oxygen is subsequently continued.
  • boron boron ion implantation layer 6
  • the heat treatment time of the second heat treatment is set according to the depth of the p-type conductive layer 13.
  • the heat treatment time of the second heat treatment is a time during which the boron diffusion layer 8 diffused by the first heat treatment can be further diffused by the second heat treatment to form the p-type conductive layer 13 having a desired depth.
  • the total heat treatment time of the first heat treatment and the heat treatment time of the second heat treatment may exceed 100 hours, for example. Also in this case, since the vacancy defects 2 in the CZ-FZ silicon semiconductor substrate 1 are filled with interstitial Si atoms by the first heat treatment, the desired depth can be obtained without generating nitrogen precipitates by the second heat treatment.
  • the p-type conductive layer 13 can be formed.
  • the deep p-type conductive layer 13 formed in this way can be used as a p-type isolation layer for maintaining the reverse breakdown voltage structure of an IGBT having a reverse breakdown voltage structure (reverse blocking IGBT) (cross-sectional structure of the reverse blocking IGBT).
  • reverse blocking IGBT reverse breakdown voltage structure
  • FIG. Since it is necessary to form the p-type isolation layer so as to surround the entire peripheral edge of the semiconductor device (semiconductor chip), when the p-type isolation layer is formed only by the thermal diffusion method, the p-type isolation layer starts from one main surface of the semiconductor substrate. It is necessary to form a continuous p-type conductive layer 13 having a depth reaching the other main surface. Note that the product thickness of the semiconductor substrate used in the semiconductor device is determined by the breakdown voltage of the semiconductor device.
  • the product thickness of the semiconductor substrate is about 100 ⁇ m.
  • the product thickness of the semiconductor substrate is about 180 ⁇ m.
  • the product thickness of the semiconductor substrate is about 240 ⁇ m.
  • the heat treatment temperature of the second heat treatment is 1300 ° C. in the above description, but may be 1290 ° C. Lowering the heat treatment temperature of the second heat treatment to less than 1290 ° C. is not preferable because there is no problem in the pressure resistance characteristics, but there is a problem of practicality that the heat diffusion time becomes long and the working efficiency deteriorates. Specifically, when a deep isolation layer necessary for a reverse blocking IGBT having a withstand voltage of 600 V is formed by thermal diffusion, for example, thermal diffusion at a temperature of 1300 ° C. requires a heat treatment time of 100 hours, but at a temperature of 1280 ° C. The thermal diffusion of this requires a heat treatment time of 150 hours and is inefficient.
  • the heat treatment temperature of the second heat treatment is preferably 1290 ° C. or higher.
  • the upper limit of the heat treatment temperature of the second heat treatment can be raised to a temperature at which the CZ-FZ silicon semiconductor substrate 1 does not deform so as to hinder the wafer process. If the CZ-FZ silicon semiconductor substrate 1 is not deformed, the higher the thermal diffusion temperature, the shorter the thermal diffusion time, which is preferable. That is, the heat treatment temperature of the second heat treatment is preferably set to be equal to or lower than the melting point of Si. This is because the temperature is such that the CZ-FZ silicon semiconductor substrate 1 does not melt and deform the shape of the CZ-FZ silicon semiconductor substrate 1 (approximately 1350 ° C.).
  • the first heat treatment is a step of diffusing interstitial Si atoms from the front surface side of the wafer to a depth of at least 50 ⁇ m or more. Since the diffusion rate of interstitial Si atoms is high, the thermal diffusion temperature is 1290 ° C. or less. Even if the thermal diffusion time is 100 hours or less, there is no problem as long as the condition of t> L 2 / (16 ⁇ DT) or t> M 2 / (16 ⁇ DT) is satisfied as described above.
  • the first heat treatment satisfies the condition of t> 3.5 ⁇ 10 ⁇ 6 ⁇ L 2 or t> 3.5 ⁇ 10 ⁇ 6 ⁇ M 2 as described above when the thermal diffusion temperature is 1300 ° C. It only has to be.
  • t, DT, L, and M are the heat treatment time of the first heat treatment, the diffusion coefficient of interstitial silicon atoms at the treatment temperature T of the first heat treatment, and the CZ-FZ silicon semiconductor substrate 1 as described above. And the product thickness of the semiconductor substrate (the thickness of the silicon substrate in accordance with the withstand voltage).
  • the second heat treatment is a step in which p-type dopant (boron) is diffused from the front surface side of the wafer to a depth of at least 50 ⁇ m or more in order to form an isolation region of the reverse breakdown voltage structure of the reverse blocking IGBT.
  • the speed is slower than that of interstitial Si atoms, and the thermal diffusion temperature is desirably 1290 ° C. or higher.
  • the vacancy defects in the CZ-FZ silicon semiconductor substrate are filled by the first heat treatment in the oxygen atmosphere or the mixed gas atmosphere of oxygen and inert gas. Then, the second heat treatment in an atmosphere containing nitrogen is performed to form a diffusion layer having a desired depth, for example, as a reverse blocking IGBT separation layer without generating nitrogen precipitates in the CZ-FZ silicon semiconductor substrate. be able to. Therefore, a semiconductor having a deep diffusion layer with high-temperature and long-time thermal diffusion at 1290 ° C. or more and 100 hours or more using a CZ-FZ silicon semiconductor substrate in which crystal defects are likely to occur in order to increase the diameter and reduce the cost. Even in the case of manufacturing an apparatus, the amount of an inert gas such as argon, which is a raw material gas used for heat treatment for forming a diffusion layer, can be reduced, and the generation of crystal defects can be suppressed at a low cost.
  • an inert gas such as argon
  • the high temperature and long time thermal diffusion process for forming the p-type separation layer of the reverse blocking IGBT has been mainly described above. However, the high temperature and long time heat exceeding 100 hours at a temperature of 1290 ° C. or higher.
  • the present invention can also be applied to other semiconductor device manufacturing methods having a process of forming a deep diffusion layer by diffusion. Further, in the above-described embodiment, the case where a semiconductor device is manufactured using a CZ-FZ silicon semiconductor substrate is described as an example. However, the present invention is not limited to this, and FZ is used by using FZ polycrystalline silicon. The same effect can be obtained even if an FZ silicon semiconductor substrate cut out from the manufactured FZ silicon single crystal is used.
  • the polycrystalline silicon for FZ is a substantially cylindrical polysilicon rod used in the FZ method. Further, the present invention is similarly established even when the conductivity type is reversed.
  • the method for manufacturing a semiconductor device according to the present invention is useful for a semiconductor device having a deep impurity diffusion layer accompanied by high-temperature and long-time thermal diffusion.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Element Separation (AREA)

Abstract

 1290℃以上の高温長時間の熱拡散によって深い拡散層を形成するにあたって、深い拡散層を形成する熱拡散のための熱処理を、酸素雰囲気または酸素と不活性ガスとの混合ガス雰囲気の第1熱処理を行った後に、窒素雰囲気または窒素と酸素との混合ガス雰囲気の第2熱処理を行う構成とする。第1熱処理では、CZ-FZシリコン半導体基板(1)の露出部分を熱酸化してCZ-FZシリコン半導体基板(1)内の空孔欠陥(2)を格子間シリコン原子で埋めるとともに、ボロンイオン注入層(6)を拡散させてボロン拡散層を形成する。第2熱処理では、ボロン拡散層を拡散させて深い拡散層を形成する。これにより、1290℃以上シリコン結晶の融解温度未満の熱処理温度および100時間以上の高温長時間の熱拡散によって深さ50μm以上の拡散層を形成する工程を有する場合でも、結晶欠陥の発生を抑制し、かつ不活性ガスの使用量を削減させて製造コストを低減することができる。

Description

半導体装置の製造方法
 本発明は、半導体装置の製造方法に関する。
 近年、半導体素子を用い、AC(交流)/AC変換や、AC/DC(直流)変換、DC/AC変換などを行うための電力変換回路では、電解コンデンサや直流リアクトルなどで構成される直流平滑回路を不要にすることができる直接リンク形変換回路として、マトリクスコンバータが知られている。このマトリクスコンバータは交流電圧下で使用されるため、マトリクスコンバータを構成する複数のスイッチングデバイスには、順方向および逆方向に電流制御可能な双方向スイッチングデバイスを必要とする。
 最近、回路の小型化、軽量化、高効率化、高速応答化および低コスト化等の観点から、前記双方向スイッチングデバイスを、図9の等価回路図に示すように2個の逆阻止IGBT(絶縁ゲート型バイポーラトランジスタ)を逆並列接続構成としたものが着目されている。図9は、逆阻止IGBTを用いた双方向スイッチングデバイスの等価回路を示す回路図である。このような逆阻止IGBTの逆並列接続構成には、逆方向電圧を阻止するためのダイオードを不要にすることができるというメリットがある。すなわち、逆阻止IGBTとは、逆耐圧を順耐圧と同程度の耐圧にすると共に耐圧信頼性も高めた特性を有するデバイスをいう。一方、従来の電力変換回路に使用される通常のIGBTでは、逆耐圧を有しない通常のトランジスタやMOSFET(絶縁ゲート型電界効果トランジスタ)と同様に、有効な逆耐圧は求められていなかったため、逆耐圧が順耐圧に比べて低く耐圧信頼性も低いIGBTで充分であった。
 つぎに、従来の逆阻止IGBTの構造について説明する。図8は、従来の逆阻止IGBTの断面構造を模式的に示す断面図である。図8は、下記特許文献1に記載されている。この従来の逆阻止IGBTは、中央に活性領域110があり、この活性領域110を取り巻く外周側に、耐圧構造領域120を挟んで、さらにその外側を取り囲むp型分離層31を有する構造を特徴とする。このため、p型分離層31を半導体基板の一方の主面からの熱拡散のみにより形成するためには、p型分離層31の深さを非常に深くする必要があり、高温長時間の熱拡散(ドライブイン)を伴う。熱拡散は、一般に酸化雰囲気で行われる。その理由は、半導体基板の表面に酸化膜を形成することにより半導体基板内にイオンを閉じ込め、熱拡散により基板表面側から基板外にイオンが散逸するのを防ぐためである。また、デバイス設計上、熱拡散時に必要以上に酸化膜を形成したくない場合は、酸素分圧を低くして、他のガス(アルゴン(Ar)、窒素(N2)など)も含む混合ガス雰囲気中で熱処理したり、酸素を含まない不活性ガス雰囲気中での熱処理を行う場合もある。
 図8の活性領域110は、n-型ドリフト領域21、p型ベース領域22、n+型エミッタ領域23、ゲート絶縁膜24、ゲート電極25、層間絶縁膜26、エミッタ電極29、p型コレクタ領域27およびコレクタ電極28などを備える縦型のIGBTの主電流の経路となる領域である。p型分離層31は、ボロン(B)の熱拡散により半導体基板のおもて面から裏面側のp型コレクタ領域27に達する深さに形成されるp型の領域である。このp型分離層31によって、逆耐圧接合であるp型コレクタ領域27とn-型ドリフト領域21との間のpn接合面の終端部は、チップ化の際の切断面となるチップ側端面30に露出されず、絶縁膜で保護された耐圧構造部120の表面32に露出される。このため、p型分離層31を備えた逆阻止IGBTは、逆耐圧信頼性を高くすることができる。
 図5((a)~(d))、図6((a)~(d))は、そのような逆阻止IGBTにかかるp型分離層104を塗布拡散またはイオン注入によって、それぞれ形成する不純物拡散プロセスを工程順に示す製造工程断面図である。図5は、従来の塗布拡散による分離層の形成途中の状態を示す断面図である。図6は、従来のイオン注入による分離層の形成途中の状態を示す断面図である。図7は、従来の逆阻止IGBTの端部構造を示す断面図である。図7(a)には、図5、図6の製造工程によって作製される、半導体基板を貫通する深さの拡散層により分離層を構成した逆阻止IGBTを示す。まず、500μm以上の厚いシリコン(Si)を半導体材料とする半導体基板100のおもて面側に、厚さ(膜厚)がおおよそ1.5μm~2.5μm程度の熱酸化膜101をドーパントマスクとして形成する(図5(a)、図6(a))。
 つぎに、この熱酸化膜101をパターニングして分離層を形成する不純物を導入するための開口部102を形成する(図5(b)、図6(b))。つぎに、開口部102に不純物となるボロンソース103を塗布し、ボロンの浅いデポジット層を形成する(または、熱酸化膜101の開口部102に露出する半導体基板100にボロンをイオン注入105する)(図5(c)、図6(c))。つぎに、ボロンの選択拡散(p型分離層用拡散)のためのドーパントマスクとして用いた熱酸化膜101を除去する。つぎに、高温(1300℃)、長時間(100時間~200時間)の熱処理を行い、100μm~200μm程度の深さのp型の拡散層104を形成する(図5(d)、図6(d))。このp型の拡散層104を分離層として利用する。
 その後、p型の拡散層104により取り囲まれた半導体基板100のおもて面に再度酸化膜を形成しMOSゲート構造および必要なおもて面側機能領域を形成するプロセス(図示せず)を施す。つぎに、半導体基板100の裏面から前記p型の拡散層104の底部に達するまで破線で示すように研削し除去して半導体基板100を薄くする(図5(d)、図6(d))。この裏面研削面に図示しないp型コレクタ領域とコレクタ電極とで構成される裏面構造を形成し、p型の拡散層104の中心部に位置するスクライブライン108で半導体基板100を切断する。この切断によりチップ化された逆阻止IGBTを図7(a)および前記図8の断面図に示す。
 しかし、前記図5、図6に示すように、p型分離層を塗布拡散またはイオン注入によって形成する逆阻止IGBTでは、前述のように深いp型分離層の形成のために高温長時間の熱拡散を必要とする。その結果、この高温長時間の熱拡散中に、半導体基板内の格子間に酸素原子が導入され、酸素析出物や酸素ドナー化現象、結晶欠陥などが発生する。これらの結晶欠陥が導入されると、半導体基板中のpn接合でリーク電流が高くなったり、半導体基板上に形成された絶縁膜の耐圧、信頼性が大幅に劣化する虞が大きくなる。
 そこで、この高温長時間の熱拡散に起因する問題点を解消するために、p型分離層の拡散深さを浅くして高温の熱拡散にかかる時間を短くする方法が複数開発されている。例えば、半導体基板の裏面からV字溝を形成して分離層の深さを浅くすることにより分離層の形成に要する高温の熱拡散にかかる時間を短くする製造方法である(例えば、下記特許文献2~4参照。)。下記特許文献2~4により作製される逆阻止IGBTの端部構造の一例を図7(b)に示す。さらに、図10の断面図に示すように、半導体基板100のおもて面側から深さ200μmの垂直側壁を有するトレンチ109を形成し、その側壁に深さの浅い分離層104bを設けることにより高温の熱拡散にかかる時間を短縮する方法も知られている。図10は、従来のトレンチを利用して形成した分離層を有する逆阻止IGBTの構造を示す断面図である。図10中の符号106はp型コレクタ領域、108はスクライブライン、111は基板おもて面側のMOSゲート構造をそれぞれ示す。
 一方、従来、高耐圧パワーデバイスの製造に用いられる半導体基板には、多結晶シリコン(以降、FZ用多結晶シリコンと略記)を用いてFZ(フローティングゾーン)法により製造されるシリコン単結晶(以降、FZシリコン単結晶と略記)から切り出されたシリコン半導体基板(以降、FZシリコン半導体基板と略記)が使用されてきた。このFZシリコン半導体基板は、CZ(チョクラルスキー)法により製造されるシリコン単結晶(以降、CZシリコン単結晶と略記)から切り出されたシリコン半導体基板(以降、CZシリコン半導体基板と略記)に比べて結晶に含まれる転位が少ない、含有酸素が少ないなどの利点がある。このため、FZシリコン単結晶は、特に高耐圧大電流容量のパワーデバイス用シリコン結晶として欠かせない。しかし、近年は、デバイスのコスト低減のため、より大口径のFZシリコン半導体基板が求められているが、FZシリコン半導体基板はCZシリコン半導体基板に比べて大口径化が難しい。
 通常、FZシリコン単結晶の原料としては、前述のようにFZ用多結晶シリコンを使用する。しかし、FZ法の原料として必要であるFZ用多結晶シリコンは、高純度で、クラックや割れが生じにくく、均一な粒界組織であり、かつ、製造するFZシリコン単結晶に適した直径であるとともに、扁平やクランクが少なくなく、表面状態の良い円柱状であることが必要とされる。このようなFZ用多結晶シリコンの製造は、CZ法で使用されるナゲット状の多結晶シリコン(以降、CZ用多結晶シリコンと略記)の製造に比較して、歩留りや、生産性が非常に低い。一方、直径300mm向けを中心としたCZ用多結晶シリコンの需要が大幅に増加している。そこで、従来のFZ用多結晶シリコンの代わりに大口径の結晶シリコンが安定して得られるCZシリコン単結晶を原料として、大口径のFZシリコン単結晶を製造する方法が公知になっている(例えば、下記特許文献5参照。)。この方法によって製造されたFZシリコン単結晶から切り出されたシリコン半導体基板を以降、CZ-FZシリコン半導体基板と略記する。
特開2006-80269号公報 米国特許第7741192号明細書 特開2006-303410号公報 特開2011-181770号公報 特開2007-314374号公報
 しかしながら、前述のように、上記特許文献2~4に記載の半導体基板の裏面からV字溝を形成する方法では、基板おもて面側からのp型の拡散層104aの深さを浅くすることで高温での熱拡散時間を確実に短縮することができるが、p型の拡散層104aの深さを浅くし過ぎた場合、別の問題が生じる。具体的には、高温での熱拡散時間を短くするために基板おもて面側からの拡散層104aの深さを浅くしていくと、その分、V字溝を深くしなければならないため、半導体基板100が割れやすくなるという新たな問題が生じる。
 さらに、図10に示すような主面に垂直な側壁を有するトレンチ109を利用してp型分離層104bを形成することにより高温の熱拡散時間を短縮する方法では、つぎの問題が生じる。例えば、200μm程度の深さのトレンチ109のエッチングに要する時間は、典型的なドライエッチング装置を用いた場合、1枚あたり100分間程度である。このため、トレンチ109を利用してp型分離層104bを形成する場合、リードタイムの増加、メンテナンス回数の増加などの弊害をもたらす。
 また、前述の図5~図7の説明にかかる高温長時間の熱拡散では、前述のCZ-FZシリコン半導体基板を用いた場合、当初(半導体装置の製造工程投入前)から基板内に含まれるとされる空孔に起因して相乗的に発生する結晶欠陥、および、熱拡散処理時の雰囲気ガス種に起因して半導体基板内に新たに発生する結晶欠陥の影響で、従来のFZシリコン半導体基板を用いた場合よりもさらに半導体装置の良品率が低下(悪化)するという問題が生じる。
 すなわち、半導体基板には、熱処理条件により析出物が発生する。この析出物により積層欠陥などの結晶欠陥が発生し、この結晶欠陥が、半導体基板を用いて製造する半導体装置の電気的特性に悪影響を及ぼす虞がある。その代表的な結晶欠陥は、CZシリコン半導体基板を熱処理した際に発生する酸素析出物(SiO2)である。これは、CZシリコンインゴット(CZシリコン結晶)の引き上げ中に容器の石英るつぼから散逸した酸素がCZシリコンインゴット中に取り込まれ、この酸素が熱処理時にSiO2として析出したものである。
 このようなSiO2の析出に伴って発生する結晶欠陥が半導体装置のpn接合付近に存在する場合、接合リークや耐圧不良の原因となる。このため、LSI(Large Scale Integration)などの横型半導体装置においては、通常、熱処理によって半導体基板のおもて面付近の活性部内に酸素析出物が生じないような対策を行う。一方、IGBTなどの大電力向けの縦型半導体装置は、半導体基板のおもて面側から裏面側までの基板全体に電流が流れるため、CZシリコン半導体基板を熱処理して基板のおもて面付近の酸素析出物発生を抑制するだけでは不十分である。
 そのため、縦型半導体装置に用いる半導体基板を製造するには、インゴット製造時に酸素の混入を防ぐことのできるFZ法を用いてFZシリコンインゴットを製造するのが一般的である。FZシリコンインゴットを用いることにより、前述の酸素析出物の発生を抑制することができ、基板全面に電流が流れる縦型半導体装置の電気的特性不良を低減することが可能である。しかしながら、半導体基板を熱処理した際に発生する析出物は、酸素析出物だけではない。
 近年、FZシリコンインゴットの原料のポリシリコンロッド材料の需給逼迫に伴い、原料にポリシリコンロッドではなくCZシリコンインゴットを用いてFZシリコンインゴットを製造することが行われている。これは、CZシリコンインゴット中に含まれる酸素を、誘導加熱による溶融時に外方拡散させ、再結晶化させるときにFZシリコンインゴット中に含まれる酸素濃度を低下させることにより、低酸素濃度のFZシリコンインゴットを製造する方法である。
 しかしながら、CZシリコンインゴットを用いて製造したFZシリコンインゴットからら切り出されたCZ-FZシリコン半導体基板において、深い導電層を形成するために高温長時間(例えば1300℃の温度で100時間)の熱処理を行った場合、析出物が発生し、半導体装置の電気的特性の不良が生じることがある。この析出物は、微視的解析により、窒素析出物(α-Si34)であることがわかっており、この窒素析出物は窒素を含む雰囲気での熱処理に起因するものである。このような窒素析出物の発生を防ぐ方法として、アルゴンと酸素との混合ガス雰囲気での熱処理方法があるが、アルゴンと酸素との混合ガス雰囲気での高温長時間の熱処理は、原料ガスにアルゴンを多く用いるため、コスト増になるという問題がある。
 本発明は、前述した従来技術による問題点を解消するため、CZシリコン結晶を用いて製造されるFZシリコン結晶から切り出されたシリコン半導体基板を使用して、1290℃以上および100時間以上の高温長時間の熱拡散によって深い拡散層を形成する工程を有する場合でも、シリコン半導体基板内に前記高温長時間の熱拡散に起因する結晶欠陥の発生を抑制することができる半導体装置の製造方法を提供することを目的とする。
 上述した課題を解決し、本発明の目的を達成するため、この発明にかかる半導体装置の製造方法は、つぎの特徴を有する。FZ法により製造されるシリコン半導体基板に、1290℃以上シリコン結晶の融解温度未満の範囲内の熱処理温度の熱拡散によって深さ50μm以上の拡散層を形成する拡散工程を行う。前記拡散工程では、酸素雰囲気または酸素と不活性ガスとの混合ガス雰囲気の第1熱処理を行った後に、窒素雰囲気または窒素と酸素との混合ガス雰囲気の第2熱処理を行うことにより前記拡散層を形成する。
 また、この発明にかかる半導体装置の製造方法は、上述した発明において、前記シリコン半導体基板として、FZ用多結晶シリコンを原料としてFZ法で製造されるFZシリコン結晶から切り出されたFZシリコン半導体基板を用いることが好ましい。
 また、この発明にかかる半導体装置の製造方法は、上述した発明において、前記シリコン半導体基板として、CZ用多結晶シリコンを原料としてFZ法で製造されるCZ-FZシリコン結晶から切り出されたCZ-FZシリコン半導体基板を用いることも好ましい。
 また、この発明にかかる半導体装置の製造方法は、上述した発明において、前記シリコン半導体基板の厚さをL(μm)とした場合に、前記第1熱処理の処理時間t(時間)は、t>3.5×10-6×L2を満たすことが好ましい。
 また、この発明にかかる半導体装置の製造方法は、上述した発明において、前記シリコン半導体基板の厚さをL(μm)とし、前記第1熱処理の処理温度Tにおける格子間シリコン原子の拡散係数をDT(μm2/h)とした場合に、前記第1熱処理の処理時間t(時間)は、t>L2/(16×DT)を満たすことが好ましい。
 また、この発明にかかる半導体装置の製造方法は、上述した発明において、耐圧に応じたシリコン基板の厚さをM(μm)とした場合に、前記第1熱処理の処理時間t(時間)は、t>3.5×10-6×M2を満たすことが好ましい。
 また、この発明にかかる半導体装置の製造方法は、上述した発明において、耐圧に応じたシリコン基板の厚さをM(μm)とし、前記第1熱処理の処理温度Tにおける格子間シリコン原子の拡散係数をDT(μm2/h)とした場合に、前記第1熱処理の処理時間t(時間)は、t>M2/(16×DT)を満たすことが好ましい。
 また、この発明にかかる半導体装置の製造方法は、上述した発明において、前記拡散工程では、逆阻止型の絶縁ゲート型バイポーラトランジスタを構成する分離層となる前記拡散層を形成することが好ましい。
 本発明にかかる半導体装置の製造方法によれば、大口径化とコストダウンのためにCZシリコン結晶を用いてFZ法で製造されるFZシリコン結晶から切り出されたシリコン半導体基板を使用して、1290℃以上および100時間以上の高温長時間の熱拡散によって深い拡散層を形成する場合であっても、半導体基板内に高温長時間の熱拡散に起因する結晶欠陥の発生を抑制することができるという効果を奏する。また、本発明にかかる半導体装置の製造方法によれば、高温長時間の熱拡散を行う際の原料ガスである不活性ガスの使用量を削減することができるため、製造コストを低減することができるという効果を奏する。
図1は、本発明の実施の形態にかかる半導体装置の製造途中のCZ-FZシリコン半導体基板の状態を模式的に示す断面図である。 図2は、本発明の実施の形態にかかる半導体装置の製造途中のCZ-FZシリコン半導体基板の状態を模式的に示す断面図である。 図3は、本発明の実施の形態にかかる半導体装置の製造途中のCZ-FZシリコン半導体基板の状態を模式的に示す断面図である。 図4は、CZ-FZシリコン半導体基板の断面X線トポグラフィー写真を模した断面図である。 図5は、従来の塗布拡散による分離層の形成途中の状態を示す断面図である。 図6は、従来のイオン注入による分離層の形成途中の状態を示す断面図である。 図7は、従来の逆阻止IGBTの端部構造を示す断面図である。 図8は、従来の逆阻止IGBTの断面構造を模式的に示す断面図である。 図9は、逆阻止IGBTを用いた双方向スイッチングデバイスの等価回路を示す回路図である。 図10は、従来のトレンチを利用して形成した分離層を有する逆阻止IGBTの構造を示す断面図である。
 以下、本発明にかかる半導体装置の製造方法の好適な実施の形態について、添付図面を参照して詳細に説明する。本明細書および添付図面においては、nまたはpを冠記した層や領域では、それぞれ電子または正孔が多数キャリアであることを意味する。また、nやpに付す+および-は、それぞれそれが付されていない層や領域よりも相対的に不純物濃度が高いまたは低いことを意味する。なお、以下の実施の形態の説明および添付図面において、同様の構成には同一の符号を付し、重複する説明を省略する。また、実施の形態で説明される添付図面は、見易くまたは理解し易くするために正確なスケール、寸法比で描かれていない。本発明はその要旨を超えない限り、以下に説明する実施の形態の記載に限定されるものではない。
(実施の形態)
 以下、本発明の実施の形態にかかる半導体装置の製造方法について、大口径化とコストダウンのために、CZ(チョクラルスキー)シリコン(Si)インゴット(CZシリコン結晶)を原料としてFZ(フローティングゾーン)法により製造したFZシリコン単結晶(FZシリコンインゴット)から切り出されたFZシリコン半導体基板(CZ-FZシリコン半導体基板)を用いて、耐圧600Vの逆阻止IGBTを製造する場合を例に説明する。CZシリコンインゴットは、ナゲット状の多結晶シリコン(CZ用多結晶シリコン)を原料としてCZ法により作製されたCZシリコン単結晶である。特には、本発明の特徴である高温長時間の熱拡散(ドライブイン)によって深い拡散層、例えば半導体基板のおもて面から裏面に達する程度の深さを有する分離層を形成するための拡散工程について説明する。以降説明する拡散工程の大部分は前記図6、図7(a)を参照して説明した従来の逆阻止IGBTの製造プロセスを用いる。
 本発明の実施の形態にかかる逆阻止IGBTの製造方法が前述した従来の逆阻止IGBTの製造方法と異なる点は、本発明の実施の形態にかかる逆阻止IGBTの製造方法では、高温長時間を要する分離層の熱拡散を、酸素(O2)雰囲気中または酸素と不活性ガスとの混合ガス雰囲気中で第1熱処理した後に、窒素(N2)雰囲気中または窒素と酸素との混合ガス雰囲気中で第2熱処理する構成とした点である。図1~3は、本発明の実施の形態にかかる半導体装置の製造途中のCZ-FZシリコン半導体基板の状態を模式的に示す断面図である。まず、CZ-FZシリコン半導体基板1を用意する。CZ-FZシリコン半導体基板1内には、初期状態(半導体装置の製造工程投入前)から、部分的に空孔欠陥2(V:Vacancy)が存在する場合がある(図1(a))。この空孔欠陥2は、サイズが微小であるため直接検出することはできない(図中では模式的に大きく表示している)。
 つぎに、このCZ-FZシリコン半導体基板1に対して窒素を含まない雰囲気の熱酸化を行い、CZ-FZシリコン半導体基板1のおもて面に厚さ(膜厚)をおおよそ1μm程度にした酸化膜3をドーパントマスクとして形成する(図1(b))。つぎに、この酸化膜3にパターニング・エッチングにより、導電層を形成するための開口部4を形成する(図1(c))。つぎに、開口部4に露出するCZ-FZシリコン半導体基板1にボロン(B)のイオン注入(ボロンイオン注入)5を例えば1015cm-2程度の高ドーズ量で行うことにより、ボロンイオン注入層6を形成する(図1(d))。
 つぎに、例えば酸素(O2)10を30%とアルゴン(Ar)9を70%とを混合した混合ガス雰囲気中で、1300℃の温度の第1熱処理を10時間実施する。炉入れ、炉出し温度は例えば700℃で、昇降温速度は例えば1℃/minである。これによって、CZ-FZシリコン半導体基板1の露出部分を酸化して熱酸化膜7を形成するとともに、ボロンイオン注入5により注入したボロンイオン注入層6を拡散させてボロン拡散層8を形成する。この時点でのCZ-FZシリコン半導体基板1の断面構造模式図を図2に示す。第1熱処理による熱酸化に伴い発生した余剰Si原子が、格子間原子(以下、格子間Si原子とする)としてCZ-FZシリコン半導体基板1に注入11されることにより(図2(a))、空孔欠陥2が埋められる(図2(b))。
 その後、例えば酸素(O2)10を30%と窒素(N2)12を70%とを混合した混合ガス雰囲気中で、1300℃の温度の第2熱処理を90時間実施する。これによって、ボロン拡散層8をさらに拡散させて、CZ-FZシリコン半導体基板1のおもて面から裏面に達する深さのp型導電層13を形成する。この時点での断面構造模式図を図3に示す。第1熱処理によって既にCZ-FZシリコン半導体基板1内の空孔欠陥2が埋められているため、その後窒素を含む雰囲気で第2熱処理を行っても、CZ-FZシリコン半導体基板1内に窒素析出物が析出する起点となる空孔欠陥2が存在しない。したがって、窒素析出現象は起こらない。
 次に、第1,2熱処理後のCZ-FZシリコン半導体基板1の断面観察を行った結果について説明する。図4は、CZ-FZシリコン半導体基板の断面X線トポグラフィー写真を模した断面図である。図4(a)には、酸素(O2)10を30%とアルゴン(Ar)9を70%とを混合した混合ガス雰囲気中で、1300℃の温度の第1熱処理を10時間実施した後に、酸素(O2)10を30%と窒素(N2)12を70%とを混合した混合ガス雰囲気中で、1300℃の温度の第2熱処理を90時間実施したCZ-FZシリコン半導体基板1の断面X線トポグラフィー写真を模した図を示す(以下、実施例とする)。比較として、図4(b)に、酸素(O2)を30%と窒素(N2)を70%とを混合した混合ガス雰囲気中で、1300℃の温度の熱処理を100時間実施したCZ-FZシリコン半導体基板1の断面X線トポグラフィー写真を模した図を示す(以下、比較例1とする)。図4(a),4(b)に示すように、実施例においては、比較例1のような、窒素析出物に起因する欠陥によるコントラスト変化は観測されなかった。さらに、比較として、図4(c)に、酸素(O2)を30%とアルゴン(Ar)を70%とを混合した混合ガス雰囲気中で、1300℃の温度の熱処理を100時間実施したCZ-FZシリコン半導体基板1の断面X線トポグラフィー写真を模した図を示す(以下、比較例2とする)。図4(a)、4(c)に示すように、実施例は、比較例2と同様に、窒素析出物を発生させずに深い導電層を基板中に形成することができることが確認された。図4(a),4(b),4(c)のいずれの断面X線トポグラフィー写真を模した図にも、縦方向のコントラストが見られるが、これは結晶の完全性が高い場合に生じる動力学回折現象によるペンデル縞と呼ばれるコントラストであり、結晶欠陥ではない。
 なお、本実施の形態では酸素(O2)10を30%とアルゴン(Ar)9を70%とを混合した混合ガス雰囲気中での第1熱処理において、熱処理温度を1300℃とし、熱処理時間を10時間としたが、初期状態でCZ-FZシリコン半導体基板1内に存在する空孔欠陥2を格子間Si原子で埋めることができればよく、熱処理温度と熱処理時間とを種々変更してもよい。以下に、その条件について述べる。
 格子間Si原子の拡散係数Dと、第1熱処理の熱処理時間t(h)と、拡散長X(濃度1/e)と間には、X=2√(Dt)の関係がある。松本智による「高純度同位体を用いた半導体中の自己拡散現象の解明」(応用物理学会、応用物理80(2011)、p.987-990)で求められた拡散係数の値を高温領域に外挿すると、熱処理温度が1300℃である場合、D=5.0×10-8(cm2/s)=1.8×104(μm2/h)である。また、CZ-FZシリコン半導体基板1を第1熱処理すると、基板のおもて面と裏面との両面側から格子間Si原子が注入11される。このため、CZ-FZシリコン半導体基板1の厚さをL(μm)とすると、酸化雰囲気での第1熱処理の熱処理時間tが、2√(Dt)=L/2の関係を満たす熱処理時間より長ければ、CZ-FZシリコン半導体基板1の全体に格子間Si原子が注入11されることになる。これらの関係式から、第1熱処理の熱処理時間tは、第1熱処理の処理温度Tにおける格子間シリコン原子の拡散係数をDTとしたときに、t=L2/(16×DT)とあらわすことができる。この式に熱処理温度1300℃における格子間Si原子の拡散係数D=1.8×104(μm2/h)を上記式のDTに代入すると、t(h)=3.47×10-6×L2(μm2)となる。よって、CZ-FZシリコン半導体基板1の厚さLを例えば500(μm)とすると、t=0.87(h)=52(min)となり、熱処理温度が1300℃である場合においては52分以上の第1熱処理を行えば、CZ-FZシリコン半導体基板1中の空孔欠陥2を格子間Si原子で埋めることができる。なお、h:時間(hour)、min:分(minute)、s:秒(second)である。
 また、上記ではCZ-FZシリコン半導体基板1の厚さ方向全体に格子間Si原子を注入11する熱処理条件としたが、CZ-FZシリコン半導体基板1は、最終的な半導体装置の耐圧に応じて研削して薄ウェハ化を行う場合があるため、その場合は、CZ-FZシリコン半導体基板1のおもて面から、半導体装置の最終的な製品厚さの位置まで格子間Si原子を注入11すれば良い。
 また、アルゴンガスの代わりに、他の不活性ガス(例えばヘリウム(He)、ネオン(Ne)など)を含む雰囲気を用いて第1熱処理を行っても良い。また、熱酸化膜7の厚さをより厚くしたい場合は、不活性ガス無しで、酸素100%の酸素雰囲気にしても同様の効果が得られる。
 上記の関係式から決定した熱処理温度・熱処理時間で酸素雰囲気中または酸素と不活性ガスとの混合ガス雰囲気中の第1熱処理を行った後に、引き続き、窒素雰囲気中または窒素と酸素との混合ガス雰囲気中での第2熱処理を行うことにより、CZ-FZシリコン半導体基板1内に窒素析出物を生成させずに所望の深さまでボロン(ボロンイオン注入層6)を拡散させ、深いp型導電層13を形成することができる。第2熱処理の熱処理時間は、p型導電層13の深さに応じて設定される。すなわち、第2熱処理の熱処理時間は、例えば、第1熱処理により拡散されてなるボロン拡散層8を第2熱処理によってさらに拡散させて所望の深さのp型導電層13を形成可能な時間であり、第1熱処理の熱処理時間と第2熱処理の熱処理時間とを合わせて例えば100時間を超えてもよい。この場合においても、第1熱処理によりCZ-FZシリコン半導体基板1内の空孔欠陥2が格子間Si原子で埋められているため、第2熱処理により窒素析出物を生成させずに所望の深さのp型導電層13を形成することができる。
 このようにして形成した深いp型導電層13は、逆耐圧構造を持つIGBT(逆阻止IGBT)の逆耐圧構造を保持するためのp型分離層として用いることができる(逆阻止IGBTの断面構造は例えば図8参照)。p型分離層は、半導体装置(半導体チップ)の周辺端部を全て取り囲むように形成する必要があるため、p型分離層を熱拡散方式のみで形成する場合、半導体基板の一方の主面から他方の主面まで達する深さの連続したp型導電層13を形成する必要がある。なお、半導体装置に使用する半導体基板の製品厚さは、その半導体装置の耐圧によって決まる。例えば、600Vクラス耐圧の逆阻止IGBTであれば、半導体基板の製品厚さは約100μmである。1200Vクラス耐圧の逆阻止IGBTであれば、半導体基板の製品厚さは約180μmである。1700Vクラス耐圧の逆阻止IGBTであれば、半導体基板の製品厚さは約240μmである。p型分離層を、熱拡散方式とV字型溝に対するイオン注入後のレーザーアニール方式とを併用して形成する場合は、熱拡散により形成するp型分離層の厚さはより浅くできる(逆阻止IGBTの断面構造は例えば図7(b)参照)。その場合でも、V字型溝形成後に半導体基板の機械的強度が低下して製造工程中で半導体基板が割れることを防止するために、熱拡散により形成するp型分離層の厚さは50μm以上を必要とする。
 第2熱処理の熱処理温度について、前述の説明では1300℃としたが、1290℃としてもよい。第2熱処理の熱処理温度を1290℃より低くすることは耐圧特性には問題が生じないが、熱拡散時間が長くなり、作業効率が悪くなるという実用性の問題が生じるため好ましくない。具体的には、耐圧600Vの逆阻止IGBTに必要な深い分離層を熱拡散によって形成する場合、例えば、1300℃の温度での熱拡散では100時間の熱処理時間で済むが、1280℃の温度での熱拡散では150時間も熱処理時間が必要になり効率が悪い。したがって、第2熱処理の熱処理温度は、1290℃以上とするのが好ましい。一方、第2熱処理の熱処理温度の上限は、CZ-FZシリコン半導体基板1に、ウエハプロセスに支障があるような変形が生じない温度にまでは上昇させることができる。CZ-FZシリコン半導体基板1に変形が生じなければ、熱拡散温度を高温にするほど熱拡散時間を短縮させることができるので好ましい。すなわち、第2熱処理の熱処理温度はSiの融点以下とするのが好ましい。その理由は、CZ-FZシリコン半導体基板1が溶け出してCZ-FZシリコン半導体基板1の形状を変形させないような温度(おおよそ1350℃程度)であるからである。
 第1熱処理は、格子間Si原子をウェハのおもて面側から少なくとも深さ50μm以上まで拡散させる工程で格子間Si原子の拡散速度が速いため、熱拡散温度が1290℃以下であっても、熱拡散時間が100時間以下であっても、上述したようにt>L2/(16×DT)またはt>M2/(16×DT)の条件を満たしていれば問題ない。また、第1熱処理は、熱拡散温度が1300℃の場合は、上述したようにt>3.5×10-6×L2またはt>3.5×10-6×M2の条件を満たしていればよい。これらの条件式において、t、DT、LおよびMは、上述したようにそれぞれ第1熱処理の熱処理時間、第1熱処理の処理温度Tにおける格子間シリコン原子の拡散係数、CZ-FZシリコン半導体基板1の厚さ、および半導体基板の製品厚さ(耐圧に応じたシリコン基板の厚さ)である。第2熱処理は、逆阻止IGBTの逆耐圧構造の分離領域を形成するために、p型ドーパント(ボロン)をウェハのおもて面側から少なくとも深さ50μm以上まで拡散させる工程で、ボロンの拡散速度は格子間Si原子よりも遅く、熱拡散温度が1290℃以上であることが望ましい条件となる。
 以上、説明したように、本発明の実施の形態によれば、酸素雰囲気または酸素と不活性ガスとの混合ガス雰囲気の第1熱処理によりCZ-FZシリコン半導体基板内の空孔欠陥を埋めることで、その後の窒素を含む雰囲気での第2熱処理によって、CZ-FZシリコン半導体基板内に窒素析出物を発生させずに、例えば逆阻止IGBTの分離層となる所望の深さの拡散層を形成することができる。したがって、大口径化とコストダウンのために、結晶欠陥が生じ易いCZ-FZシリコン半導体基板を使用して、1290℃以上および100時間以上の高温長時間の熱拡散を伴う深い拡散層を有する半導体装置を製造する場合でも、拡散層を形成するための熱処理に用いる原料ガスであるアルゴンなどの不活性ガスの使用量を削減して低コストで、かつ結晶欠陥の発生を抑制することができる。
 以上において本発明では、逆阻止IGBTのp型分離層の形成のための高温長時間の熱拡散プロセスを中心に説明したが、1290℃以上の温度で100時間を超えるような高温長時間の熱拡散によって深い拡散層を形成するプロセスを有する他の半導体装置の製造方法にも適用することができる。また、上述した実施の形態では、CZ-FZシリコン半導体基板を使用して半導体装置を製造する場合を例に説明しているが、これに限らず、FZ用多結晶シリコンを用いてFZ法により製造されるFZシリコン単結晶から切り出されたFZシリコン半導体基板を用いても同様の効果が得られる。FZ用多結晶シリコンとは、FZ法で用いられる略円柱状のポリシリコンロッドである。また、本発明は、導電型を反転させても同様に成り立つ。
 以上のように、本発明にかかる半導体装置の製造方法は、高温長時間の熱拡散を伴う深い不純物拡散層を有する半導体装置に有用である。
 1 CZ-FZシリコン半導体基板
 2 空孔欠陥
 3 酸化膜
 4 酸化膜の開口部
 5 ボロンイオン注入
 6 ボロンイオン注入層
 7 熱酸化膜
 8 ボロン拡散層
 9 アルゴン原子
 10 酸素分子
 11 余剰シリコン原子の注入
 12 窒素分子
 13 p型導電層
 21 n-型ドリフト領域(シリコン半導体基板)
 22 p型ベース領域
 23 n+型エミッタ領域
 24 ゲート絶縁膜
 25 ゲート電極
 26 層間絶縁膜
 27 p型コレクタ領域
 28 コレクタ電極
 29 エミッタ電極
 30 チップ側端面
 31 p型分離層
 32 耐圧構造部の表面
 110 活性領域
 120 耐圧構造部

Claims (8)

  1.  フローティングゾーン法により製造されるシリコン半導体基板に、1290℃以上シリコン結晶の融解温度未満の範囲内の熱処理温度の熱拡散によって深さ50μm以上の拡散層を形成する拡散工程を含み、
     前記拡散工程では、酸素雰囲気または酸素と不活性ガスとの混合ガス雰囲気の第1熱処理を行った後に、窒素雰囲気または窒素と酸素との混合ガス雰囲気の第2熱処理を行うことにより前記拡散層を形成することを特徴とする半導体装置の製造方法。
  2.  前記シリコン半導体基板として、多結晶シリコンを原料としてフローティングゾーン法で製造されるシリコン結晶から切り出された半導体基板を用いることを特徴とする請求項1に記載の半導体装置の製造方法。
  3.  前記シリコン半導体基板として、チョクラルスキー法で製造される結晶シリコンを原料としてフローティングゾーン法で製造されたシリコン結晶から切り出された半導体基板を用いることを特徴とする請求項1に記載の半導体装置の製造方法。
  4.  前記シリコン半導体基板の厚さをL(μm)とした場合に、前記第1熱処理の処理時間t(時間)は、t>3.5×10-6×L2を満たすことを特徴とする請求項1に記載の半導体装置の製造方法。
  5.  前記シリコン半導体基板の厚さをL(μm)とし、前記第1熱処理の処理温度Tにおける格子間シリコン原子の拡散係数をDT(μm2/h)とした場合に、前記第1熱処理の処理時間t(時間)は、t>L2/(16×DT)を満たすことを特徴とする請求項1に記載の半導体装置の製造方法。
  6.  耐圧に応じたシリコン基板の厚さをM(μm)とした場合に、前記第1熱処理の処理時間t(時間)は、t>3.5×10-6×M2を満たすことを特徴とする請求項1に記載の半導体装置の製造方法。
  7.  耐圧に応じたシリコン基板の厚さをM(μm)とし、前記第1熱処理の処理温度Tにおける格子間シリコン原子の拡散係数をDT(μm2/h)とした場合に、前記第1熱処理の処理時間t(時間)は、t>M2/(16×DT)を満たすことを特徴とする請求項1に記載の半導体装置の製造方法。
  8.  前記拡散工程では、逆阻止型の絶縁ゲート型バイポーラトランジスタを構成する分離層となる前記拡散層を形成することを特徴とする請求項1~7のいずれか一つに記載の半導体装置の製造方法。
PCT/JP2013/065104 2012-05-31 2013-05-30 半導体装置の製造方法 WO2013180244A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2014518739A JP6135666B2 (ja) 2012-05-31 2013-05-30 半導体装置の製造方法
US14/511,862 US9450070B2 (en) 2012-05-31 2014-10-10 Method for manufacturing a silicon semiconductor substrate including a diffusion layer prior to forming a semiconductor device thereon

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012124176 2012-05-31
JP2012-124176 2012-05-31

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/511,862 Continuation US9450070B2 (en) 2012-05-31 2014-10-10 Method for manufacturing a silicon semiconductor substrate including a diffusion layer prior to forming a semiconductor device thereon

Publications (1)

Publication Number Publication Date
WO2013180244A1 true WO2013180244A1 (ja) 2013-12-05

Family

ID=49673431

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/065104 WO2013180244A1 (ja) 2012-05-31 2013-05-30 半導体装置の製造方法

Country Status (3)

Country Link
US (1) US9450070B2 (ja)
JP (1) JP6135666B2 (ja)
WO (1) WO2013180244A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11881504B2 (en) 2020-12-07 2024-01-23 Mitsubishi Electric Corporation Semiconductor device and manufacturing method therefor

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112530806A (zh) * 2019-09-19 2021-03-19 上海先进半导体制造股份有限公司 单环mos器件及其制作方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6092610A (ja) * 1983-10-26 1985-05-24 Rohm Co Ltd ボロン拡散量の制御方法
JPH09227300A (ja) * 1995-10-19 1997-09-02 Siemens Ag シリコンウェハ中の結晶欠陥の除去方法
JP2006080269A (ja) * 2004-09-09 2006-03-23 Fuji Electric Holdings Co Ltd 高耐圧半導体装置およびその製造方法
JP2007314374A (ja) * 2006-05-26 2007-12-06 Shin Etsu Handotai Co Ltd Cz法により製造したシリコン結晶棒を原料としたfz単結晶シリコンの製造方法

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5671933A (en) * 1979-11-19 1981-06-15 Toshiba Corp Impurity diffusion to semiconductor substrate
JPS60105224A (ja) * 1983-11-11 1985-06-10 Fujitsu Ltd 半導体装置の製造方法
NL8600022A (nl) * 1986-01-08 1987-08-03 Philips Nv Werkwijze voor het vervaardigen van een halfgeleiderinrichting waarbij een doteringselement vanuit zijn oxide in een halfgeleiderlichaam wordt gediffundeerd.
JPH03193698A (ja) 1989-12-20 1991-08-23 Fujitsu Ltd シリコン単結晶及びその製造方法
JP2516823B2 (ja) * 1990-02-28 1996-07-24 信越半導体株式会社 浮遊帯域融解法による単結晶シリコン製造用の棒状多結晶シリコン及びその製造方法
JPH0442525A (ja) * 1990-06-08 1992-02-13 Fujitsu Ltd 半導体装置の製造方法
JP2771066B2 (ja) * 1992-02-03 1998-07-02 シャープ株式会社 半導体装置の製造方法
JP2607853B2 (ja) 1994-09-27 1997-05-07 直江津電子工業株式会社 シリコン半導体ウエハの拡散方法及びディスクリート基板の製造方法
US5710450A (en) * 1994-12-23 1998-01-20 Intel Corporation Transistor with ultra shallow tip and method of fabrication
JP3584945B2 (ja) 1995-02-24 2004-11-04 三菱住友シリコン株式会社 Soi基板の製造方法
JP3173392B2 (ja) 1996-11-12 2001-06-04 トヨタ自動車株式会社 太陽電池素子及びその製造方法
JP2975912B2 (ja) 1997-06-17 1999-11-10 直江津電子工業株式会社 半導体ウエハの製造方法
JP4967200B2 (ja) 2000-08-09 2012-07-04 富士電機株式会社 逆阻止型igbtを逆並列に接続した双方向igbt
JP2004319653A (ja) 2003-04-15 2004-11-11 Toshiba Ceramics Co Ltd シリコンウエハの熱処理方法
JP4747260B2 (ja) 2003-04-16 2011-08-17 富士電機株式会社 逆阻止型絶縁ゲート形バイポーラトランジスタの製造方法
JP4982948B2 (ja) 2004-08-19 2012-07-25 富士電機株式会社 半導体装置の製造方法
JP5082211B2 (ja) 2005-03-25 2012-11-28 富士電機株式会社 半導体装置の製造方法
JP5127235B2 (ja) 2007-01-10 2013-01-23 株式会社豊田中央研究所 半導体装置の製造方法
JP5296992B2 (ja) * 2007-01-31 2013-09-25 Sumco Techxiv株式会社 シリコン結晶素材及びその製造方法
JP5428216B2 (ja) 2008-06-20 2014-02-26 富士電機株式会社 シリコンウェハ、半導体装置、シリコンウェハの製造方法および半導体装置の製造方法
JP5439969B2 (ja) 2009-06-18 2014-03-12 富士電機株式会社 半導体装置
JP5740820B2 (ja) 2010-03-02 2015-07-01 富士電機株式会社 半導体装置および半導体装置の製造方法
JP2011249712A (ja) 2010-05-31 2011-12-08 Toshiba Corp 半導体装置及びその製造方法
US10115587B2 (en) 2012-02-23 2018-10-30 Fuji Electric Co., Ltd. Method of manufacturing semiconductor device
WO2013176037A1 (ja) 2012-05-22 2013-11-28 富士電機株式会社 半導体装置の製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6092610A (ja) * 1983-10-26 1985-05-24 Rohm Co Ltd ボロン拡散量の制御方法
JPH09227300A (ja) * 1995-10-19 1997-09-02 Siemens Ag シリコンウェハ中の結晶欠陥の除去方法
JP2006080269A (ja) * 2004-09-09 2006-03-23 Fuji Electric Holdings Co Ltd 高耐圧半導体装置およびその製造方法
JP2007314374A (ja) * 2006-05-26 2007-12-06 Shin Etsu Handotai Co Ltd Cz法により製造したシリコン結晶棒を原料としたfz単結晶シリコンの製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11881504B2 (en) 2020-12-07 2024-01-23 Mitsubishi Electric Corporation Semiconductor device and manufacturing method therefor
JP7446212B2 (ja) 2020-12-07 2024-03-08 三菱電機株式会社 半導体装置およびその製造方法

Also Published As

Publication number Publication date
JP6135666B2 (ja) 2017-05-31
JPWO2013180244A1 (ja) 2016-01-21
US9450070B2 (en) 2016-09-20
US20150031175A1 (en) 2015-01-29

Similar Documents

Publication Publication Date Title
US8329563B2 (en) Semiconductor device including a gettering layer and manufacturing method therefor
JPWO2011125305A1 (ja) シリコンエピタキシャルウエーハ、シリコンエピタキシャルウエーハの製造方法、及び半導体素子又は集積回路の製造方法
CN107564806A (zh) 降低半导体本体中的杂质浓度
JP2016111337A (ja) 半導体ウエハーの製造方法と低格子間酸素濃度を有する半導体デバイス
JP2016063190A (ja) 炭化珪素エピタキシャル基板の製造方法、炭化珪素エピタキシャル基板および炭化珪素半導体装置
JP5428216B2 (ja) シリコンウェハ、半導体装置、シリコンウェハの製造方法および半導体装置の製造方法
JP2010062466A (ja) 垂直シリコンデバイス用シリコンウェーハ及びその製造方法、シリコン単結晶、並びに、垂直シリコンデバイス
JP5453749B2 (ja) 垂直シリコンデバイス用シリコンウェーハの製造方法及び垂直シリコンデバイス用シリコン単結晶引き上げ装置
JP4434080B2 (ja) 絶縁ゲート型半導体装置およびその製造方法
JP6135666B2 (ja) 半導体装置の製造方法
JP2015149346A (ja) 半導体装置の製造方法および半導体装置
US9431270B2 (en) Method for producing semiconductor device
JP7446212B2 (ja) 半導体装置およびその製造方法
JP5921089B2 (ja) エピタキシャルウエハの製造方法及び半導体装置の製造方法
JP5648379B2 (ja) 半導体装置の製造方法
WO2021181644A1 (ja) 半導体装置およびその製造方法
JPWO2018207394A1 (ja) 半導体装置
JP5725255B2 (ja) 半導体装置の製造方法
JP6268948B2 (ja) Mos型半導体装置の製造方法
JP6111720B2 (ja) 半導体装置の製造方法
JP2012004174A (ja) 逆阻止型絶縁ゲート形バイポーラトランジスタおよびその製造方法
WO2017002432A1 (ja) シリコン基板およびそれを用いた窒化物半導体ウェハ、並びに、窒化物半導体装置
JP2015041720A (ja) 半導体装置の製造方法
JP2005142511A (ja) 半導体装置とその製造方法
JPS58121642A (ja) 半導体装置の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13797560

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014518739

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13797560

Country of ref document: EP

Kind code of ref document: A1