CN103329266A - 具有连接有源芯片的插板的堆叠微电子组件 - Google Patents

具有连接有源芯片的插板的堆叠微电子组件 Download PDF

Info

Publication number
CN103329266A
CN103329266A CN2011800663930A CN201180066393A CN103329266A CN 103329266 A CN103329266 A CN 103329266A CN 2011800663930 A CN2011800663930 A CN 2011800663930A CN 201180066393 A CN201180066393 A CN 201180066393A CN 103329266 A CN103329266 A CN 103329266A
Authority
CN
China
Prior art keywords
microelectronic element
plate
opening
micromodule
conducting element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2011800663930A
Other languages
English (en)
Other versions
CN103329266B (zh
Inventor
贝勒卡西姆.哈巴
瓦格.奥甘赛安
伊利亚斯.默罕默德
皮尤什.萨瓦利亚
克雷格.米切尔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Adeia Semiconductor Solutions LLC
Original Assignee
Tessera LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tessera LLC filed Critical Tessera LLC
Publication of CN103329266A publication Critical patent/CN103329266A/zh
Application granted granted Critical
Publication of CN103329266B publication Critical patent/CN103329266B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/065Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L25/0657Stacked arrangements of devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/12Mountings, e.g. non-detachable insulating substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/48Manufacture or treatment of parts, e.g. containers, prior to assembly of the devices, using processes not provided for in a single one of the subgroups H01L21/06 - H01L21/326
    • H01L21/4814Conductive parts
    • H01L21/4846Leads on or in insulating or insulated substrates, e.g. metallisation
    • H01L21/486Via connections through the substrate with or without pins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76898Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics formed through a semiconductor substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/481Internal lead connections, e.g. via connections, feedthrough structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49822Multilayer substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49827Via connections through the substrates, e.g. pins going through the substrate, coaxial cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/16Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2225/00Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
    • H01L2225/03All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00
    • H01L2225/04All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers
    • H01L2225/065All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L2225/06503Stacked arrangements of devices
    • H01L2225/06513Bump or bump-like direct electrical connections between devices, e.g. flip-chip connection, solder bumps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2225/00Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
    • H01L2225/03All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00
    • H01L2225/04All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers
    • H01L2225/065All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L2225/06503Stacked arrangements of devices
    • H01L2225/06517Bump or bump-like direct electrical connections from device to substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2225/00Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
    • H01L2225/03All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00
    • H01L2225/04All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers
    • H01L2225/065All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L2225/06503Stacked arrangements of devices
    • H01L2225/06541Conductive via connections through the device, e.g. vertical interconnects, through silicon via [TSV]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2225/00Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
    • H01L2225/03All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00
    • H01L2225/04All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers
    • H01L2225/065All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L2225/06503Stacked arrangements of devices
    • H01L2225/06572Auxiliary carrier between devices, the carrier having an electrical connection structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15311Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a ball array, e.g. BGA

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Wire Bonding (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)

Abstract

微电子组件(100)可包括第一微电子元件(102)、第二微电子元件(112)和插板(120),每个微电子元件都包含邻近正面(104、114)的有源半导体器件,插板(120)的材料具有小于10ppm/℃的热膨胀系数。每个微电子元件(102、112)都可都具有在自身正面(104、114)暴露的导电垫(106、116)。插板(120)可具有在插板的开口(222)内延伸的第二导电元件(118),且在插板的第一表面(227)及第二表面(229)暴露。第一表面(227)和第二表面(229)可分别面对第一微电子元件(102)和第二微电子元件(112)的正面(104、114)。每个微电子元件(102、112)还可都包括在从各微电子元件的背面(237、239)朝自身正面(104、114)延伸的开口(206、216)内延伸的第一导电元件(236、238)。至少一个第一导电元件(236、238)可穿过第一微电子元件(102)或第二微电子元件(112)中相应一个的导电垫(204、214)而延伸。

Description

具有连接有源芯片的插板的堆叠微电子组件
                                                                                                                     
相关申请的交叉引用
本申请为申请号为12/958866、申请日为2010年12月2日的美国专利申请的继续申请,其公开的内容以引用的方式并入本文。
背景技术
本发明涉及微电子器件的封装,尤其是半导体器件的封装。
微电子器件通常包括如硅或砷化镓等半导体材料的薄板,一般称为裸片或半导体芯片。半导体芯片一般设置为单独的预封装单元。在一些单元的设计中,半导体芯片安装至基板或芯片载体上,而基板或芯片载体再安装至如印刷电路板等的电路板上。
有源电路在半导体芯片的第一面(如正面)制备。为便于与有源电路的电连接,在芯片的同一面设置有结合垫。结合垫通常以规则阵列的形式设置,或者沿裸片的边缘,或者在裸片的中心,对于许多存储器件来说设置在裸片的中心。结合垫通常由如铜或铝等的导电金属制成,大约为0.5微米(μm)厚。结合垫可包括单层或多层的金属。结合垫的大小随器件类型而变化,但典型地,在一侧的尺寸为几十微米至几百微米。
贯通硅通路(TSV)用于提供半导体芯片的正面与背面之间的电连接,芯片的正面上设有结合垫,芯片的背面与正面相对。常规的TSV孔会使可用于容纳有源电路的第一表面部分缩减。这种第一表面上可用于有源电路的可利用空间的减少,会使生产每个半导体芯片所需的硅量增加,从而潜在地增加每个芯片的成本。
在芯片的任一几何布置中,尺寸是重要的考虑因素。随着便携式电子装置的快速发展,芯片的更紧凑几何布置的需求变得更为强烈。仅以示例的方式说明,通常称为“智能手机”的装置,集成了移动电话及强大的数据处理器、存储器、如全球定位系统接收器、数码相机等的辅助器件等的功能,以及局域网连接,并伴有高分辨率的显示及相关的图像处理芯片。这种装置可提供如完整的互联网连接、包括高清视频等的娱乐、导航、电子银行及更多的性能,都设置在袖珍式的装置内。复杂的便携装置要求把大量芯片包装至狭小的空间内。此外,一些芯片具有许多输入和输出接口,一般称为“I/O口”。这些I/O口必须与其他芯片的I/O口互连。这种互连应尽量短且应具有低的阻抗,以使信号传输延迟最小化。形成这些互连的元器件不应大幅度增加组件的尺寸。类似需求也出现在其他应用中,例如,数据服务器,如在互联网搜索引擎中使用的数据服务器。例如,在复杂芯片之间设置大量短且阻抗低的互连的结构,可增加搜索引擎的频带宽度(bandwidth),并降低其能耗。
尽管在半导体通路的形成和互连方面已取得进展,但为提升制作芯片正面与背面之间连接的处理过程,及这种过程生成的结构,仍可以做出进一步的改进。
发明内容
根据本发明的方面,微电子组件可包括第一微电子元件、第二微电子元件和插板,每个微电子元件都包含邻近其正面的有源半导体器件,插板的材料具有小于百万分之十每摄氏度的热膨胀系数。每个微电子元件都可具有远离自身正面的背面及在自身正面暴露的导电垫。插板可具有朝向相反的第一表面与第二表面、及在插板的开口内延伸的第二导电元件。第二导电元件可在插板的第一表面及第二表面暴露。
插板的第一表面可面对第一微电子元件的正面,插板的第二表面可面对第二微电子元件的正面。每个微电子元件还都可包括在开口内延伸的第一导电元件,开口从各微电子元件的背面朝各微电子元件的正面延伸。至少一个第一导电元件可穿过第一微电子元件或第二微电子元件中相应一个的导电垫而延伸。第一导电元件可与第二导电元件电耦合。
在特定实施例中,由第二导电元件穿过其延伸的开口可与穿过第一微电子元件及第二微电子元件而延伸的至少一个开口相交。在一个实施例中,由第二导电元件穿过其延伸的开口可与穿过第一微电子元件及第二微电子元件而延伸的每个开口都相交。在示例性的实施例中,由第二导电元件穿过其延伸的开口可与穿过第一导电元件和第二微电子元件而延伸的任一开口都不相交。在特定实施例中,插板可基本上由介电材料组成。在一个实施例中,插板可基本上由金属或半导体材料组成。插板内的开口可衬有绝缘体。
在示例性的实施例中,每个微电子元件的第一导电元件都可穿过相应导电垫而延伸。在特定实施例中,第二导电元件可包括在第一表面和第二表面暴露的第二导电垫。第一微电子元件和第二微电子元件的垫可为第一垫。第一垫可与第二垫并置。第一导电元件可与第一垫及第二垫的并置表面接触。在一个实施例中,插板内由第二导电元件穿过其延伸的开口,可具有相对于插板的第一表面及第二表面以直角延伸的内壁。在示例性的实施例中,插板内由第二导电元件穿过其延伸的开口可沿插板的第一表面与第二表面之间的方向逐渐变细。
在一个实施例中,第一微电子元件内的开口可沿从第一微电子元件的背面朝自身正面的方向逐渐变细。在特定实施例中,第一微电子元件内开口的内表面可相对于第一微电子元件的正面以直角延伸。在示例性的实施例中,第二导电元件可与插板内开口的内表面的轮廓一致。在一个实施例中,第二导电元件可与插板内开口的内表面的轮廓不一致。
在特定实施例中,插板内开口及第一微电子元件或第二微电子元件中至少一个内的开口可为逐渐变细的,彼此沿相反的方向变小。在示例性的实施例中,插板还可包括至少一个无源元器件,与第一微电子元件或第二微电子元件中至少一个电连接。在一个实施例中,根据本发明方面的系统可包括,上述的微电子组件及一个或多个与微电子组件电连接的其他电子元器件。在特定实施例中,系统还可包括壳体,所述微电子组件和所述其他电子元器件安装至所述壳体。
根据本发明另一方面,微电子组件的制造方法可包括:组装第一微电子组件与第二微电子组件及二者之间的插板的步骤,每个微电子元件都包含邻近自身正面的有源半导体器件,然后是形成在开口内延伸的第一导电元件的步骤,开口从各微电子元件的背面朝着自身正面延伸。每个微电子元件可具有远离自身正面的背面及在正面暴露的导电垫。
插板可基本上由半导体或无机介电材料中至少一种组成。插板可具有朝向相反的第一表面与第二表面,及穿过插板而延伸且在第一表面及第二表面暴露的第二导电元件。插板的第一表面可面对第一微电子元件的正面,而插板的第二表面可面对第二微电子元件的正面。至少一个第一导电元件可穿过至少一个微电子元件的相应导电垫而延伸。第一导电元件可与第二导电元件电耦合。微电子元件内开口的内表面可相对于每个微电子元件的相应正面沿第一方向和第二方向延伸,以限定明显的角度。
在示例性的实施例中,每个微电子元件的第一导电元件可穿过相应导电垫而延伸。在一个实施例中,第二导电元件可包括在第一表面和第二表面暴露的第二导电垫。每个微电子元件的第一导电垫可与第二垫中的一个并置。第一导电元件可与第一垫及第二垫的并置表面接触。在特定实施例中,插板内第二导电元件穿过其延伸的开口可具有相对于插板的第一表面和第二表面以直角延伸的内壁。
在一个实施例中,插板内第二导电元件穿过其延伸的开口可在插板的第一表面与第二表面之间的方向逐渐变细。在示例性的实施例中,第二导电元件可与插板内开口的内表面的轮廓一致。在特定实施例中,第二导电元件可与插板内开口的内表面的轮廓不一致。在一个实施例中,插板内开口和第二导电元件可沿相反的方向逐渐变细。
附图说明
图1是说明根据本发明实施例微电子组件放置为待与电路板附接时的截面图。
图1A是进一步详细说明根据本发明实施例微电子组件的局部截面图。
图2是说明根据本发明实施例微电子组件安装至电路板时的截面图。
图3是进一步说明根据本发明实施例微电子组件的平面图。
图4、图5、图6、图7、图8、图9、图10和图11是说明根据本发明实施例的变例的微电子组件制造方法的各阶段的局部截面图。
图12、图13和图14是说明根据图4、图5、图6、图7、图8、图9、图10和图11所示本发明实施例的变例的微电子组件制造方法的各阶段的局部截面图。
图15和图16是说明根据图12、图13和图14所示本发明实施例的变例的微电子组件制造方法的各阶段的局部截面图。
图17是说明根据图16所示本发明实施例的变例的微电子组件的局部截面图。
图18是说明根据图10所示本发明实施例的另一变例的微电子组件的局部截面图。
图19根据本发明一个实施例系统的示意图。
具体实施方式
图1示出了根据本发明一个实施例的微电子组件100。微电子封装包括第一微电子元件102和第二微电子元件112,每个都具有面对位于两微电子元件之间的插板120的承载触点的正面104、114。例如,每个微电子元件可都为集成在半导体芯片上的集成电路,半导体芯片可包括硅、硅合金或其他半导体材料,如III-V族半导体材料或II-VI族半导体材料。从作为放大图的图1A可以看出,芯片102具有正面104,也称为触点承载面,为芯片的主表面,芯片的第一区域105位于正面。第二芯片112可具有与芯片102相同的结构。第一区域105包括介电区域,介电区域典型地包括具有介电层的复数个布线层,介电层在布线层之间及围绕布线层而设置。在特定实施例中,介电区域可包括一层或多层具有低介电常数的介电材料层,即“低k”介电层。低k介电材料包括多孔二氧化硅、碳掺杂二氧化硅、聚合物电介质、多孔聚合物电介质、及其他。在多孔低k介电层中,介电层可具有大量孔隙,相对于相同材料的无孔层,孔隙降低介电材料的介电常数。介电材料通常具有远大于1.0的介电常数,但占据多孔材料内空隙的空气具有的介电常数约为1.0。以这种方式,一些介电材料可通过具有大量孔洞而使介电常数降低。
但是,一些低k介电材料,如聚合物介电材料和多孔介电材料,能承受的机械应力比常规介电材料小得多。特定类型的检测微电子元件的工作环境及方法,可存在处于低k介电材料能承受的应力限度或接近该限度的应力。通过使施加至微电子元件的应力移动至远离区域105内低k介电层的位置,本文描述的微电子组件对微电子元件的低k介电层提供了更好的保护。以这种方式,制造、操作及检测过程中施加至低k介电材料的应力大幅降低,因此保护了低k介电层。
层105还包括有源半导体器件(如晶体管、二极管或其他有源器件),通过布线层最终与正面的复数个导电垫106连接。当芯片为硅在绝缘体上(silicon-on-insulator,“SOT”)类型的芯片时,第一区域105还可包括置于有源半导体器件下方的隐埋介电层。第一区域105可使芯片的第二区域107与正面104分隔开。第一区域典型地具有0.1微米至5微米的厚度,且典型地不能减薄。第二区域107通常基本上由半导体材料(通常或为单晶或为多晶)组成,且典型地具有小于20微米的厚度,该厚度典型地由最初的半导体晶圆在处理过程中减薄的程度而确定。在一个实施例中,芯片可只有第一区域105而不存在第二区域107。因此,微电子元件102、112安装于其上的插板结构120,为微电子元件提供结构支撑,使微电子元件102、112的厚度可缩减至理想的程度。同样,每个微电子元件面对插板的介电区域105。
进一步如图1所示,例如利用粘接剂101,可使微电子元件与插板120结合在一起。其他可能的结合材料可包括玻璃,在特定实施例中,玻璃可掺杂,且可具有低于500℃的玻璃化转变温度。典型地,微电子元件112与另一微电子元件102基本上由相同的半导体材料组成。从图1可以进一步看出,微电子元件110可具有穿过微电子元件内开口而延伸的复数个导电通路元件,用于设置与导电垫106、116的电连接。
微电子元件102、112可通过穿过导电垫106、116及其间的插板102而延伸的导电元件118而电连接在一起。在一个示例中,导电元件118可包括,通过沉积与导电垫106、116暴露表面接触的金属而形成的金属特征。如下文进一步详述,形成导电元件可采用各种金属沉积步骤。
从图1可以进一步看出,导电元件118可与介电元件126的表面暴露的触点124,以与倒装芯片类似的方式导电结合,例如通过结合金属块128,如焊料、锡、铟或其组合。而介电元件可具有复数个端子130,用于使封装100进一步与电路板134的相应触点136电连接,例如通过导电块132,如从介电元件126突出的焊料球。图1示出的是与电路板134接合前的封装100。图2示出的微电子组件包括封装100及与其接合的电路板134。
散热器140可与微电子元件102的背面137热耦合,如通过导热材料142,如导热油脂、导热粘接剂、或具有相对低的熔点的接合金属,如焊料、锡、铟、金或其他材料。当导热材料142同时导电,如为金属或导电金属化合物时,介电层(未示出)可使微电子元件102的背面137与这种导热且导电的材料142分隔开。如上所述,微电子组件或封装100能使微电子元件102、112的厚度缩减至理想的程度。以这种方式,每个微电子元件102或112的厚度可仅为第一区域105(图1A)的厚度或这种厚度加上第二区域107的较小厚度。缩减后厚度可利用散热器140获得显著有效且均匀的热传递。
图3是从封装的微电子元件112的背面115来看时的视图,示出了在背面暴露的导电元件118,以面阵的方式布置。在图3中还示出,导电元件118在第二开口123内延伸且与在微电子元件110正面103(图1)暴露的导电垫116连接,导电垫106也可以面阵的方式布置。替代地,当微电子元件的导电垫116具有不同布置时,如可布置为邻近外围边缘或可布置在正面的中心,导电元件118典型地具有匹配的模式。
现在参照图4,将描述制作根据本发明另一实施例微电子组件的制造方法。图4是局部截面图,示出了具有通孔222的插板220,导电通路224穿过通孔222而延伸。通路224可终止于分别在插板的第一主表面227和第二主表面229上暴露的导电垫226、228。
插板可具有线性的热膨胀系数(CTE-α),其小于约每摄氏度百万分之十,即“小于10ppm/℃”。硅、二氧化硅、一些陶瓷材料、一些金属及其他材料的CTE-α都在这个范围内。当插板由金属或半导体材料制成时,介电层230可覆盖第一主表面和第二主表面并衬在通孔222内,用于使通路224及垫226、228与插板220的主体绝缘。然后,如图5所示,第一晶圆202和第二晶圆212可附接至插板,晶圆的正面203、213分别面对第一插板表面227和第二插板表面229。可采用粘接剂或其他介电材料201,如玻璃,以使插板与晶圆附接。典型地,晶圆附接至插板上,使得每个晶圆的导电垫与插板的垫并置。例如第一晶圆202的导电垫204可与插板垫226并置,而第二晶圆212的导电垫214与插板垫228并置。
接下来,从图6可以看出,如通过研磨(grinding)、磨光(lapping)或抛光(polishing),晶圆的厚度缩减,如上所述。在这个步骤完成后,每个晶圆202、212具有的厚度231可对应于不可变薄区域105(图1A)的厚度,如上所述,或可具有较大厚度,包括置于不可变薄区域下方的区域107(图1A)的一些材料。在一个实施例中,晶圆202、212中一个或两个的区域107可具有高达20微米的厚度。
图7示出了穿过每个晶圆厚度、包括晶圆上的导电垫204、214而延伸的第一开口206和第二开口216形成后,处理过程的随后阶段。例如,这种开口可通过蚀刻、激光图案化、喷砂、机械球磨、或可应用至每个晶圆的半导体材料的其他技术而制成。在穿过晶圆厚度而延伸的开口形成后,介电层232可在开口的内壁上形成,之后,开口可穿过相应的垫204、214而延伸。形成开口206、216和介电层232的过程可如以下任意或所有专利申请中描述:公开号为20080246136A1的美国专利公开说明书,或申请日都为2010年7月23号,申请号分别为12/842717、12/842612、12/842669、12/842692、12/842587的美国专利申请,这些专利申请中公开的内容以引用的方式并入本文。在一个实施例中,介电层232可选择性地在开口206、216内暴露的半导体或导体表面上、及微电子元件的暴露表面上,通过电泳沉积或电解沉积而形成。
图8示出了可选步骤,其中各晶圆垫204、214与插板垫226、228的并置表面之间的介电材料或结合材料的一部分可去除。
然后,如图9所示,一层或多层金属可沉积在开口206、216内,以形成分别在微电子组件面向外的表面237、239暴露的导电元件236、238。导电元件236、238分别与晶圆202、212的导电垫204、214接触,并通过插板垫226、228及穿过插板而延伸的通路224而电耦合在一起。
在图9所示的实施例中,由通路224穿过其而延伸的开口222,与穿过第一晶圆202及第二晶圆212而延伸的开口206、216相交。但是,其他布置也是可以的。例如,从图10可以看出,晶圆202、212中一个或二者内的导电元件可沿一个或多个横向240(插板主表面227延伸的方向)与通路224偏离。在图10所示的情况下,导电元件236、238都可沿相同方向与通路偏离,内部形成导电元件的开口206、216中没有一个与相对应插板开口222相交,通路224穿过插板开口222而延伸,并与导电元件236、238电连接。从图9可以看出,微电子元件202、212内开口206、216的内表面可相对于每个微电子元件各自的第一表面104沿第一方向和第二方向延伸,以限定明显的角度109。
从图10可以进一步看出,插板通路224与垫204、214之间的电连接可以一种或多种方式设置。例如,微电子元件212可具有远离导电垫214朝插板220延伸的迹线244,而迹线244可与插板通路224导电结合,如通过采用如焊料、锡或铟等接合金属245、扩散结合、或替代地,在加热及加压下使金属与金属直接接合。在另一示例中,插板220可具有导电迹线242,其远离通路224以插板第一主表面227延伸的方向240而延伸。在这种情况下,导电元件236的制造过程形成了第一晶圆的垫204与插板的迹线242之间的电连接。
图11示出了另一示例,其中导电元件236、238沿方向240相互偏离。
现在参照图12,示出了另一变例,其中插板320内的开口322为锥形的,从而沿朝着一个微电子元件202的正面的方向,开口宽度逐渐变小。微电子元件202、212内的开口306、316形成后,可在开口壁及第一表面上形成介电层307、317。此后,从图13可以看出,可除去在导电垫304、314的并置表面与插板通路的相应结合表面326、328之间的如粘接剂等介电材料的一部分。图14示出了与插板通路的相应表面接触的导电元件336、338已形成后的微电子组件,其中沉积的导电材料,如沉积金属,填充导电垫304、314的表面与插板通路的相应表面326、328之间的空间,导电垫304、314的表面与相应表面326、328并置。
图15示出了另一变例,其中导电元件424穿过插板开口而延伸,具有如截头圆锥形的形状,与插板开口422的内表面的轮廓不一致。图15所示结构的制造方法也可与上文所述(图4至图14)不同。在这种情况下,当插板420与微电子元件402、412接合时,插板可具有在第一主表面与第二主表面之间延伸的开口422,其内填充有介电材料426。在微电子元件402及其上的导电垫404内形成开口406时,穿过粘接层或结合层401及穿过介电材料426的区域,材料去除过程继续,直至导电垫414的上表面414a在开口406内暴露。此后,开口406内可填充一层或多层金属或导电金属化合物,以形成穿过微电子元件402及插板420而延伸的导电元件436。
图16示出了图15所示结构的变例,其中导电元件536形成为中空结构,衬在开口406内的介电层的内表面,但并不充满开口。导电元件536与开口406内暴露的导电垫414的上表面414a接触。图17示出了另一变例,其中开口506穿过两个导电垫504、514的厚度而延伸,使得在形成时,导电元件636、638可直接相互接触。
图18示出上述实施例(图11)的变例,其中插板720包含一个或多个无源电路元件。例如插板可包含第一电容750,具有分别与沿插板720主表面751延伸的迹线756、758电连接的电极752、754。类似地,插板可包含第二电容760,具有分别与沿插板720主表面761延伸的迹线766、768电连接的电极762、764。一些迹线758、766可通过另外的导电元件736、738而与导电垫连接,在组件工作过程中承载随时间变化的信号,而其他迹线756、768可与一个或多个导电垫(未示出)连接,在组件工作过程中承载参考电位如地面或电源电压。
在图18所示实施例的其他变例中,无源电路元件可包括设置为如图18所示的一个或多个电感器、电阻器或其他无源电路元件,且具有如从图18可以看出的电互连布置。
微电子组件及包含微电子组件的更高等级的组件的结构和制造方法可包括,下面的美国专利申请中所描述的结构和制造步骤。奥加涅相(Oganesian)等人共同拥有、共同待决、同日申请的、名称为“具有分段形成的贯通硅通路及芯片上载体的堆叠微电子组件”("STACKED MICROELECTRONIC ASSEMBLY WITH TSVS FORMED IN STAGES AND CARRIER ABOVE CHIP")(美国临时专利申请号为61/419033,律师案卷号为Tessera 3.8-619)的美国临时专利申请;及名称为“具有分段形成的贯通硅通路及复数个有源芯片的堆叠微电子组件”("STACKED MICROELECTRONIC ASSEMBLY WITH TSVS FORMED IN STAGES WITH PLURAL ACTIVE CHIPS")(美国临时专利申请号为61/419037,律师案卷号为Tessera 3.8-632)的美国临时专利申请。以下都在2010年7月23日申请的美国专利申请中也有描述,申请号分别为12/842717、12/842651、12/842612、12/842669、12/842692及12/842587的美国专利申请。所有这些专利申请所公开的内容都以引用的方式并入本文。上述的结构提供了超常的三维互连能力。这些能力可用于任意类型的芯片。仅以示例的方式说明,芯片的下面的组合可在如上文所述的结构中包括:(i)处理器及与该处理器一起使用的存储器;(ii)相同类型的复数个存储器芯片;(iii)不同类型的复数个存储器芯片,如DRAM(动态随机存储器)和SRAM(静态存储器);(iv)图像传感器和用于处理来自传感器的图像的图像处理器;(v)专用集成电路(“ASIC”)和存储器。上述的结构可在不同的电子系统的构造中利用。例如,根据本发明进一步实施例的系统800包括如上文所述的结构806与其他电子元器件808和810配合使用。在描述的示例中,元器件808为半导体芯片,而元器件810为显示屏,但任意其他元器件都可应用。当然,尽管为清楚图示起见,在图19中只描述了两个附加元器件,系统可包括任意数量的这种元器件。如上文所述的结构806可为,例如,上文所述的与图1、图9、图10、图14、图15、图16及图18相关的微电子组件100。在另一变例中,二者都可提供,且任意数量的这种结构都可应用。结构806和元器件808、810都安装至以虚线示意性地描绘的共同外壳801内,且彼此电互连以形成所需的电路。在所示的示例性系统中,系统包括如柔性印刷电路板等的电路板802,且电路板包括使元器件之间彼此互连的大量导电体804,其中在图19中只示出了一个。但是,这只是示例,任意适当的用于形成电连接的结构都可应用。外壳801作为便携式外壳而描述,具有用于如移动电话或个人数字助理等的类型,显示屏810暴露在外壳的表面。其中结构806包括如成像芯片等的光敏元件,还可配置镜头811或其他光学器件,以提供光至结构的路线。同样,图19内所示的简化系统只是示例,其他系统,包括一般视为固定结构的系统,如台式计算机、路由器及类似的结构,都可应用上述的结构而制成。
因为在不偏离本发明的情况下,上述的这些实施例和其他变例及技术特征的组合都可利用,优选实施例的上述描述应当认为是本发明范围的说明而不是限制。
工业实用性
本发明享有广泛的工业实用性,包括但不限于,微电子组件及制造微电子组件的方法。

Claims (28)

1. 微电子组件,包括:
第一微电子元件和第二微电子元件,每个微电子元件都包含邻近其正面的有源半导体器件,每个微电子元件都具有远离自身正面的背面,且每个都具有在自身正面暴露的导电垫;
插板,所述插板的材料具有小于百万分之十每摄氏度的热膨胀系数(“CTE”),所述插板具有朝向相反的第一表面与第二表面,及在所述插板的开口内延伸、且在所述第一表面及所述第二表面暴露的第二导电元件,所述第一表面面对所述第一微电子元件的正面,且所述第二表面面对所述第二微电子元件的正面;
所述第一微电子元件和第二微电子元件中的每个进一步包括在开口内延伸的第一导电元件,所述开口从各微电子元件的背面朝各微电子元件的正面延伸,其中至少一个所述第一导电元件穿过所述第一微电子元件或所述第二微电子元件中相应一个的导电垫而延伸,且所述第一导电元件与所述第二导电元件电耦合。
2. 根据权利要求1所述的微电子组件,其中由所述第二导电元件穿过其延伸的所述开口与穿过所述第一微电子元件和所述第二微电子元件而延伸的至少一个开口相交。
3. 根据权利要求1所述的微电子组件,其中由所述第二导电元件穿过其延伸的所述开口与穿过所述第一微电子元件及所述第二微电子元件而延伸的每个开口都相交。
4. 根据权利要求1所述的微电子组件,其中由所述第二导电元件穿过其延伸的所述开口与穿过所述第一导电元件和所述第二微电子元件而延伸的任一开口都不相交。
5. 根据权利要求1所述的微电子组件,其中所述插板基本上由介电材料组成。
6. 根据权利要求1所述的微电子组件,其中所述插板基本上由金属或半导体材料组成,其中所述插板内的所述开口衬有绝缘体。
7. 根据权利要求1所述的微电子组件,其中每个微电子元件的所述第一导电元件都穿过相应导电垫而延伸。
8. 根据权利要求1所述的微电子组件,其中所述第二导电元件包括在所述第一表面和第二表面暴露的第二导电垫,所述第一微电子元件及所述第二微电子元件的垫为第一垫,所述第一垫与所述第二垫并置,所述第一导电元件与所述第一垫及所述第二垫的并置表面接触。
9. 根据权利要求1所述的微电子组件,其中所述插板内由第二导电元件穿过其延伸的所述开口,具有相对于所述插板的第一表面及第二表面以直角延伸的内壁。
10. 根据权利要求1所述的微电子组件,其中所述插板内由第二导电元件穿过其延伸的所述开口沿所述插板的第一表面与第二表面之间的方向逐渐变细。
11. 根据权利要求9所述的微电子组件,其中所述第一微电子元件内的开口沿从所述第一微电子元件的背面朝自身正面的方向逐渐变细。
12. 根据权利要求10所述的微电子组件,其中所述第一微电子元件内的开口沿从所述第一微电子元件的背面朝自身正面的方向逐渐变细。
13. 根据权利要求9所述的微电子组件,其中所述第一微电子元件内开口的内表面相对于所述第一微电子元件的正面以直角延伸。
14. 根据权利要求10所述的微电子组件,其中所述第一微电子元件内开口的内表面相对于所述第一微电子元件的正面以直角延伸。
15. 根据权利要求1所述的微电子组件,其中所述第二导电元件与所述插板内开口的内表面的轮廓一致。
16. 根据权利要求1所述的微电子组件,其中所述第二导电元件与所述插板内开口的内表面的轮廓不一致。
17. 根据权利要求1所述的微电子组件,其中所述插板内开口及所述第一微电子元件或所述第二微电子元件中至少一个内的开口为锥形,彼此沿相反的方向变小。
18. 根据权利要求1所述的微电子组件,其中所述插板还包括至少一个无源元器件,与所述第一微电子元件或所述第二微电子元件中至少一个电连接。
19. 系统,包括,根据权利要求1所述的微电子组件,及一个或多个与所述微电子组件电连接的其他电子元器件。
20. 根据权利要求19所述的系统,进一步包括壳体,所述微电子组件和所述其他电子元器件安装至所述壳体。
21. 微电子组件的制造方法,包括:
将第一微电子组件和第二微电子组件与二者之间的插板组装,每个微电子元件都包含邻近自身正面的有源半导体器件,且具有远离自身正面的背面及在自身正面暴露的导电垫,
所述插板基本上由半导体或无机介电材料中至少一种组成,所述插板具有朝向相反的第一表面和第二表面,及穿过所述插板而延伸、且在所述第一表面及所述第二表面暴露的第二导电元件,使得所述第一表面面对所述第一微电子元件的正面,而所述第二表面面对所述第二微电子元件的正面;
然后形成在开口内延伸的第一导电元件,所述开口从各微电子元件的背面朝着自身正面延伸,至少一个所述第一导电元件穿过至少一个微电子元件的相应导电垫而延伸,所述第一导电元件与所述第二导电元件电耦合,其中所述微电子元件内开口的内表面相对于每个微电子元件的相应正面沿第一方向和第二方向延伸,以限定明显的角度。
22. 根据权利要求21所述的方法,其中每个微电子元件的所述第一导电元件穿过相应导电垫而延伸。
23. 根据权利要求21所述的方法,其中所述第二导电元件包括在所述第一表面和所述第二表面暴露的第二导电垫,每个微电子元件的所述第一导电垫与所述第二垫中的一个并置,所述第一导电元件与所述第一垫及所述第二垫的并置表面接触。
24. 根据权利要求21所述的方法,其中所述插板内由所述第二导电元件穿过其延伸的所述开口具有相对于所述插板的第一表面和第二表面以直角延伸的内壁。
25. 根据权利要求21所述的方法,其中所述插板内由所述第二导电元件穿过其延伸的所述开口沿所述插板的第一表面与第二表面之间的方向逐渐变细。
26. 根据权利要求21所述的方法,其中所述第二导电元件与所述插板内开口的内表面的轮廓一致。
27. 根据权利要求21所述的方法,其中所述第二导电元件与所述插板内开口的内表面的轮廓不一致。
28. 根据权利要求27所述的方法,其中所述插板内开口和所述第二导电元件沿相反的方向逐渐变细。
CN201180066393.0A 2010-12-02 2011-12-02 具有连接有源芯片的插板的堆叠微电子组件 Active CN103329266B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US12/958,866 US8637968B2 (en) 2010-12-02 2010-12-02 Stacked microelectronic assembly having interposer connecting active chips
US12/958,866 2010-12-02
PCT/US2011/063025 WO2012075371A1 (en) 2010-12-02 2011-12-02 Stacked microelectronic assembly having interposer connecting active chips

Publications (2)

Publication Number Publication Date
CN103329266A true CN103329266A (zh) 2013-09-25
CN103329266B CN103329266B (zh) 2016-10-19

Family

ID=45373838

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201180066393.0A Active CN103329266B (zh) 2010-12-02 2011-12-02 具有连接有源芯片的插板的堆叠微电子组件

Country Status (7)

Country Link
US (1) US8637968B2 (zh)
EP (1) EP2647046B1 (zh)
JP (1) JP5857065B2 (zh)
KR (1) KR101871866B1 (zh)
CN (1) CN103329266B (zh)
TW (1) TWI458070B (zh)
WO (1) WO2012075371A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110364518A (zh) * 2018-04-11 2019-10-22 意法半导体(格勒诺布尔2)公司 包括电子芯片的电子设备

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8569876B2 (en) 2006-11-22 2013-10-29 Tessera, Inc. Packaged semiconductor chips with array
US8329578B2 (en) * 2009-03-27 2012-12-11 Taiwan Semiconductor Manufacturing Company, Ltd. Via structure and via etching process of forming the same
US9640437B2 (en) 2010-07-23 2017-05-02 Tessera, Inc. Methods of forming semiconductor elements using micro-abrasive particle stream
US8847380B2 (en) * 2010-09-17 2014-09-30 Tessera, Inc. Staged via formation from both sides of chip
US8587126B2 (en) * 2010-12-02 2013-11-19 Tessera, Inc. Stacked microelectronic assembly with TSVs formed in stages with plural active chips
US8736066B2 (en) 2010-12-02 2014-05-27 Tessera, Inc. Stacked microelectronic assemby with TSVS formed in stages and carrier above chip
US20130073755A1 (en) * 2011-09-20 2013-03-21 Advanced Micro Devices, Inc. Device protocol translator for connection of external devices to a processing unit package
TWI500125B (zh) * 2012-12-21 2015-09-11 Unimicron Technology Corp 電子元件封裝之製法
CN103903990B (zh) * 2012-12-28 2016-12-28 欣兴电子股份有限公司 电子组件封装的制法
US9237648B2 (en) 2013-02-25 2016-01-12 Invensas Corporation Carrier-less silicon interposer
US9691693B2 (en) 2013-12-04 2017-06-27 Invensas Corporation Carrier-less silicon interposer using photo patterned polymer as substrate
US9437536B1 (en) 2015-05-08 2016-09-06 Invensas Corporation Reversed build-up substrate for 2.5D
JP6502751B2 (ja) * 2015-05-29 2019-04-17 東芝メモリ株式会社 半導体装置および半導体装置の製造方法
US10211160B2 (en) 2015-09-08 2019-02-19 Invensas Corporation Microelectronic assembly with redistribution structure formed on carrier
US9666560B1 (en) 2015-11-25 2017-05-30 Invensas Corporation Multi-chip microelectronic assembly with built-up fine-patterned circuit structure
US10204889B2 (en) * 2016-11-28 2019-02-12 Taiwan Semiconductor Manufacturing Co., Ltd. Package structure and method of forming thereof
US11652036B2 (en) * 2018-04-02 2023-05-16 Santa Clara Via-trace structures
EP3807927A4 (en) * 2018-06-13 2022-02-23 Invensas Bonding Technologies, Inc. TSV AS A HIDEPAD
US11309285B2 (en) * 2019-06-13 2022-04-19 Micron Technology, Inc. Three-dimensional stacking semiconductor assemblies and methods of manufacturing the same
US11610833B2 (en) * 2020-10-22 2023-03-21 Nanya Technology Corporation Conductive feature with non-uniform critical dimension and method of manufacturing the same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101101884A (zh) * 2006-07-07 2008-01-09 奇梦达股份公司 具有堆叠芯片的半导体器件以及制造该器件的方法
US20080185719A1 (en) * 2007-02-06 2008-08-07 Philip Lyndon Cablao Integrated circuit packaging system with interposer
US20100038778A1 (en) * 2008-08-13 2010-02-18 Samsung Electronics Co., Ltd. Integrated circuit structures and fabricating methods that use voids in through holes as joining interfaces
US20100117242A1 (en) * 2008-11-10 2010-05-13 Miller Gary L Technique for packaging multiple integrated circuits
US20100230795A1 (en) * 2009-03-13 2010-09-16 Tessera Technologies Hungary Kft. Stacked microelectronic assemblies having vias extending through bond pads
WO2010104637A1 (en) * 2009-03-12 2010-09-16 Micron Technology, Inc. Method for fabricating semiconductor components using maskless back side alignment to conductive vias

Family Cites Families (219)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL8403613A (nl) 1984-11-28 1986-06-16 Philips Nv Elektronenbundelinrichting en halfgeleiderinrichting voor een dergelijke inrichting.
US4765864A (en) 1987-07-15 1988-08-23 Sri International Etching method for producing an electrochemical cell in a crystalline substrate
DE3850855T2 (de) 1987-11-13 1994-11-10 Nissan Motor Halbleitervorrichtung.
US5229647A (en) 1991-03-27 1993-07-20 Micron Technology, Inc. High density data storage using stacked wafers
US5322816A (en) 1993-01-19 1994-06-21 Hughes Aircraft Company Method for forming deep conductive feedthroughs
US5380681A (en) 1994-03-21 1995-01-10 United Microelectronics Corporation Three-dimensional multichip package and methods of fabricating
IL110261A0 (en) 1994-07-10 1994-10-21 Schellcase Ltd Packaged integrated circuit
GB2292015B (en) 1994-07-29 1998-07-22 Plessey Semiconductors Ltd Trimmable inductor structure
US6826827B1 (en) 1994-12-29 2004-12-07 Tessera, Inc. Forming conductive posts by selective removal of conductive material
US5703408A (en) 1995-04-10 1997-12-30 United Microelectronics Corporation Bonding pad structure and method thereof
US6284563B1 (en) 1995-10-31 2001-09-04 Tessera, Inc. Method of making compliant microelectronic assemblies
US6013948A (en) 1995-11-27 2000-01-11 Micron Technology, Inc. Stackable chip scale semiconductor package with mating contacts on opposed surfaces
US5686762A (en) 1995-12-21 1997-11-11 Micron Technology, Inc. Semiconductor device with improved bond pads
TW343210B (en) 1996-01-12 1998-10-21 Matsushita Electric Works Ltd Process for impregnating a substrate, impregnated substrate and products thereof
US5808874A (en) 1996-05-02 1998-09-15 Tessera, Inc. Microelectronic connections with liquid conductive elements
US5700735A (en) 1996-08-22 1997-12-23 Taiwan Semiconductor Manufacturing Company, Ltd. Method of forming bond pad structure for the via plug process
JP3620936B2 (ja) 1996-10-11 2005-02-16 浜松ホトニクス株式会社 裏面照射型受光デバイスおよびその製造方法
US6143396A (en) 1997-05-01 2000-11-07 Texas Instruments Incorporated System and method for reinforcing a bond pad
US6573609B2 (en) 1997-11-25 2003-06-03 Tessera, Inc. Microelectronic component with rigid interposer
DE69737262T2 (de) 1997-11-26 2007-11-08 Stmicroelectronics S.R.L., Agrate Brianza Herstellungsverfahren für einen Vorder-Hinterseiten-Durchkontakt in mikro-integrierten Schaltungen
US6620731B1 (en) 1997-12-18 2003-09-16 Micron Technology, Inc. Method for fabricating semiconductor components and interconnects with contacts on opposing sides
WO1999038204A1 (fr) 1998-01-23 1999-07-29 Rohm Co., Ltd. Interconnexion damasquinee et dispositif a semi-conducteur
US6982475B1 (en) 1998-03-20 2006-01-03 Mcsp, Llc Hermetic wafer scale integrated circuit structure
US5986343A (en) 1998-05-04 1999-11-16 Lucent Technologies Inc. Bond pad design for integrated circuits
US6492201B1 (en) 1998-07-10 2002-12-10 Tessera, Inc. Forming microelectronic connection components by electrophoretic deposition
US6103552A (en) 1998-08-10 2000-08-15 Lin; Mou-Shiung Wafer scale packaging scheme
US6261865B1 (en) 1998-10-06 2001-07-17 Micron Technology, Inc. Multi chip semiconductor package and method of construction
JP2000195896A (ja) 1998-12-25 2000-07-14 Nec Corp 半導体装置
US6181016B1 (en) 1999-06-08 2001-01-30 Winbond Electronics Corp Bond-pad with a single anchoring structure
US6368410B1 (en) 1999-06-28 2002-04-09 General Electric Company Semiconductor processing article
US6168965B1 (en) 1999-08-12 2001-01-02 Tower Semiconductor Ltd. Method for making backside illuminated image sensor
JP4139533B2 (ja) 1999-09-10 2008-08-27 大日本印刷株式会社 半導体装置とその製造方法
US6277669B1 (en) 1999-09-15 2001-08-21 Industrial Technology Research Institute Wafer level packaging method and packages formed
JP2001102479A (ja) * 1999-09-27 2001-04-13 Toshiba Corp 半導体集積回路装置およびその製造方法
JP2001127243A (ja) 1999-10-26 2001-05-11 Sharp Corp 積層半導体装置
US6507113B1 (en) 1999-11-19 2003-01-14 General Electric Company Electronic interface structures and methods of fabrication
JP3684978B2 (ja) 2000-02-03 2005-08-17 セイコーエプソン株式会社 半導体装置およびその製造方法ならびに電子機器
US6498387B1 (en) 2000-02-15 2002-12-24 Wen-Ken Yang Wafer level package and the process of the same
US6586955B2 (en) 2000-03-13 2003-07-01 Tessera, Inc. Methods and structures for electronic probing arrays
JP3879816B2 (ja) 2000-06-02 2007-02-14 セイコーエプソン株式会社 半導体装置及びその製造方法、積層型半導体装置、回路基板並びに電子機器
US6472247B1 (en) 2000-06-26 2002-10-29 Ricoh Company, Ltd. Solid-state imaging device and method of production of the same
US6399892B1 (en) 2000-09-19 2002-06-04 International Business Machines Corporation CTE compensated chip interposer
JP3433193B2 (ja) 2000-10-23 2003-08-04 松下電器産業株式会社 半導体チップおよびその製造方法
US6693358B2 (en) 2000-10-23 2004-02-17 Matsushita Electric Industrial Co., Ltd. Semiconductor chip, wiring board and manufacturing process thereof as well as semiconductor device
EP1207015A3 (en) 2000-11-17 2003-07-30 Keltech Engineering, Inc. Raised island abrasive, method of use and lapping apparatus
JP2002162212A (ja) 2000-11-24 2002-06-07 Foundation Of River & Basin Integrated Communications Japan 堤体ひずみ計測センサ
US20020098620A1 (en) 2001-01-24 2002-07-25 Yi-Chuan Ding Chip scale package and manufacturing method thereof
KR100352236B1 (ko) 2001-01-30 2002-09-12 삼성전자 주식회사 접지 금속층을 갖는 웨이퍼 레벨 패키지
WO2002063681A1 (en) 2001-02-08 2002-08-15 Hitachi, Ltd. Semiconductor integrated circuit device and its manufacturing method
KR100364635B1 (ko) 2001-02-09 2002-12-16 삼성전자 주식회사 칩-레벨에 형성된 칩 선택용 패드를 포함하는 칩-레벨3차원 멀티-칩 패키지 및 그 제조 방법
US6498381B2 (en) 2001-02-22 2002-12-24 Tru-Si Technologies, Inc. Semiconductor structures having multiple conductive layers in an opening, and methods for fabricating same
JP2002270718A (ja) 2001-03-07 2002-09-20 Seiko Epson Corp 配線基板及びその製造方法、半導体装置及びその製造方法、回路基板並びに電子機器
JP2002359347A (ja) 2001-03-28 2002-12-13 Seiko Epson Corp 半導体装置及びその製造方法、回路基板並びに電子機器
JP2002373957A (ja) 2001-06-14 2002-12-26 Shinko Electric Ind Co Ltd 半導体装置及びその製造方法
JP2003020404A (ja) 2001-07-10 2003-01-24 Hitachi Ltd 耐熱性低弾性率材およびそれを用いた装置
US6531384B1 (en) 2001-09-14 2003-03-11 Motorola, Inc. Method of forming a bond pad and structure thereof
US20030059976A1 (en) 2001-09-24 2003-03-27 Nathan Richard J. Integrated package and methods for making same
JP2003124393A (ja) 2001-10-17 2003-04-25 Hitachi Ltd 半導体装置およびその製造方法
US6727576B2 (en) 2001-10-31 2004-04-27 Infineon Technologies Ag Transfer wafer level packaging
US20040051173A1 (en) 2001-12-10 2004-03-18 Koh Philip Joseph High frequency interconnect system using micromachined plugs and sockets
TW544882B (en) 2001-12-31 2003-08-01 Megic Corp Chip package structure and process thereof
TW517361B (en) 2001-12-31 2003-01-11 Megic Corp Chip package structure and its manufacture process
US6743660B2 (en) 2002-01-12 2004-06-01 Taiwan Semiconductor Manufacturing Co., Ltd Method of making a wafer level chip scale package
JP2003282791A (ja) 2002-03-20 2003-10-03 Fujitsu Ltd 接触型センサ内蔵半導体装置及びその製造方法
JP2003318178A (ja) 2002-04-24 2003-11-07 Seiko Epson Corp 半導体装置及びその製造方法、回路基板並びに電子機器
TWI229435B (en) 2002-06-18 2005-03-11 Sanyo Electric Co Manufacture of semiconductor device
US6716737B2 (en) 2002-07-29 2004-04-06 Hewlett-Packard Development Company, L.P. Method of forming a through-substrate interconnect
US7030010B2 (en) 2002-08-29 2006-04-18 Micron Technology, Inc. Methods for creating electrophoretically insulated vias in semiconductive substrates and resulting structures
US6903442B2 (en) 2002-08-29 2005-06-07 Micron Technology, Inc. Semiconductor component having backside pin contacts
US7329563B2 (en) 2002-09-03 2008-02-12 Industrial Technology Research Institute Method for fabrication of wafer level package incorporating dual compliant layers
EP1551060B1 (en) 2002-09-24 2012-08-15 Hamamatsu Photonics K. K. Photodiode array and method for manufacturing same
JP4440554B2 (ja) 2002-09-24 2010-03-24 浜松ホトニクス株式会社 半導体装置
JP2004128063A (ja) 2002-09-30 2004-04-22 Toshiba Corp 半導体装置及びその製造方法
US20040104454A1 (en) 2002-10-10 2004-06-03 Rohm Co., Ltd. Semiconductor device and method of producing the same
TW569395B (en) 2002-10-30 2004-01-01 Intelligent Sources Dev Corp Method of forming a stacked-gate cell structure and its NAND-type flash memory array
US20050012225A1 (en) 2002-11-15 2005-01-20 Choi Seung-Yong Wafer-level chip scale package and method for fabricating and using the same
JP3918935B2 (ja) 2002-12-20 2007-05-23 セイコーエプソン株式会社 半導体装置の製造方法
JP4072677B2 (ja) 2003-01-15 2008-04-09 セイコーエプソン株式会社 半導体チップ、半導体ウエハ、半導体装置及びその製造方法、回路基板並びに電子機器
JP2004356618A (ja) * 2003-03-19 2004-12-16 Ngk Spark Plug Co Ltd 中継基板、半導体素子付き中継基板、中継基板付き基板、半導体素子と中継基板と基板とからなる構造体、中継基板の製造方法
SG137651A1 (en) 2003-03-14 2007-12-28 Micron Technology Inc Microelectronic devices and methods for packaging microelectronic devices
JP3680839B2 (ja) 2003-03-18 2005-08-10 セイコーエプソン株式会社 半導体装置および半導体装置の製造方法
US6841883B1 (en) 2003-03-31 2005-01-11 Micron Technology, Inc. Multi-dice chip scale semiconductor components and wafer level methods of fabrication
US6908856B2 (en) 2003-04-03 2005-06-21 Interuniversitair Microelektronica Centrum (Imec) Method for producing electrical through hole interconnects and devices made thereof
EP1519410A1 (en) 2003-09-25 2005-03-30 Interuniversitair Microelektronica Centrum vzw ( IMEC) Method for producing electrical through hole interconnects and devices made thereof
JP4373695B2 (ja) 2003-04-16 2009-11-25 浜松ホトニクス株式会社 裏面照射型光検出装置の製造方法
DE10319538B4 (de) 2003-04-30 2008-01-17 Qimonda Ag Halbleitervorrichtung und Verfahren zur Herstellung einer Halbleitereinrichtung
EP1482553A3 (en) 2003-05-26 2007-03-28 Sanyo Electric Co., Ltd. Semiconductor device and manufacturing method thereof
US6972480B2 (en) 2003-06-16 2005-12-06 Shellcase Ltd. Methods and apparatus for packaging integrated circuit devices
US6927156B2 (en) 2003-06-18 2005-08-09 Intel Corporation Apparatus and method extending flip-chip pad structures for wirebonding on low-k dielectric silicon
JP3646720B2 (ja) 2003-06-19 2005-05-11 セイコーエプソン株式会社 半導体装置及びその製造方法、回路基板並びに電子機器
WO2004114397A1 (en) 2003-06-20 2004-12-29 Koninklijke Philips Electronics N.V. Electronic device, assembly and methods of manufacturing an electronic device
JP2005026405A (ja) 2003-07-01 2005-01-27 Sharp Corp 貫通電極構造およびその製造方法、半導体チップならびにマルチチップ半導体装置
JP2005045073A (ja) 2003-07-23 2005-02-17 Hamamatsu Photonics Kk 裏面入射型光検出素子
JP4499386B2 (ja) 2003-07-29 2010-07-07 浜松ホトニクス株式会社 裏面入射型光検出素子の製造方法
KR100537892B1 (ko) 2003-08-26 2005-12-21 삼성전자주식회사 칩 스택 패키지와 그 제조 방법
US7180149B2 (en) 2003-08-28 2007-02-20 Fujikura Ltd. Semiconductor package with through-hole
JP2005093486A (ja) 2003-09-12 2005-04-07 Seiko Epson Corp 半導体装置の製造方法及び半導体装置
JP2005101268A (ja) 2003-09-25 2005-04-14 Sanyo Electric Co Ltd 半導体装置の製造方法
WO2005031863A1 (en) 2003-09-26 2005-04-07 Tessera, Inc. Structure and method of making capped chips having vertical interconnects
JP4948756B2 (ja) 2003-09-30 2012-06-06 アギア システムズ インコーポレーテッド 集積回路内に形成されたインダクタ及びその製造方法
US7495179B2 (en) 2003-10-06 2009-02-24 Tessera, Inc. Components with posts and pads
TWI259564B (en) 2003-10-15 2006-08-01 Infineon Technologies Ag Wafer level packages for chips with sawn edge protection
US7132743B2 (en) * 2003-12-23 2006-11-07 Intel Corporation Integrated circuit package substrate having a thin film capacitor structure
TWI234244B (en) 2003-12-26 2005-06-11 Intelligent Sources Dev Corp Paired stack-gate flash cell structure and its contactless NAND-type flash memory arrays
US20050156330A1 (en) 2004-01-21 2005-07-21 Harris James M. Through-wafer contact to bonding pad
US7026175B2 (en) 2004-03-29 2006-04-11 Applied Materials, Inc. High throughput measurement of via defects in interconnects
US7368695B2 (en) 2004-05-03 2008-05-06 Tessera, Inc. Image sensor package and fabrication method
US20050248002A1 (en) 2004-05-07 2005-11-10 Michael Newman Fill for large volume vias
KR100618837B1 (ko) 2004-06-22 2006-09-01 삼성전자주식회사 웨이퍼 레벨 패키지를 위한 얇은 웨이퍼들의 스택을형성하는 방법
US7232754B2 (en) 2004-06-29 2007-06-19 Micron Technology, Inc. Microelectronic devices and methods for forming interconnects in microelectronic devices
JP4343044B2 (ja) * 2004-06-30 2009-10-14 新光電気工業株式会社 インターポーザ及びその製造方法並びに半導体装置
JP2006019455A (ja) 2004-06-30 2006-01-19 Nec Electronics Corp 半導体装置およびその製造方法
KR100605314B1 (ko) 2004-07-22 2006-07-28 삼성전자주식회사 재배선 보호 피막을 가지는 웨이퍼 레벨 패키지의 제조 방법
US7750487B2 (en) 2004-08-11 2010-07-06 Intel Corporation Metal-metal bonding of compliant interconnect
US7598167B2 (en) 2004-08-24 2009-10-06 Micron Technology, Inc. Method of forming vias in semiconductor substrates without damaging active regions thereof and resulting structures
US7378342B2 (en) 2004-08-27 2008-05-27 Micron Technology, Inc. Methods for forming vias varying lateral dimensions
US7129567B2 (en) 2004-08-31 2006-10-31 Micron Technology, Inc. Substrate, semiconductor die, multichip module, and system including a via structure comprising a plurality of conductive elements
KR100604049B1 (ko) 2004-09-01 2006-07-24 동부일렉트로닉스 주식회사 반도체 칩 패키지 및 그 제조방법
US7300857B2 (en) 2004-09-02 2007-11-27 Micron Technology, Inc. Through-wafer interconnects for photoimager and memory wafers
JP4139803B2 (ja) 2004-09-28 2008-08-27 シャープ株式会社 半導体装置の製造方法
JP4246132B2 (ja) 2004-10-04 2009-04-02 シャープ株式会社 半導体装置およびその製造方法
US7819119B2 (en) 2004-10-08 2010-10-26 Ric Investments, Llc User interface having a pivotable coupling
KR100676493B1 (ko) 2004-10-08 2007-02-01 디엔제이 클럽 인코 재배선 기판을 이용한 웨이퍼 레벨 칩 스케일 패키지의제조 방법
US7081408B2 (en) 2004-10-28 2006-07-25 Intel Corporation Method of creating a tapered via using a receding mask and resulting structure
JP4873517B2 (ja) 2004-10-28 2012-02-08 オンセミコンダクター・トレーディング・リミテッド 半導体装置及びその製造方法
US20060278997A1 (en) 2004-12-01 2006-12-14 Tessera, Inc. Soldered assemblies and methods of making the same
JP4795677B2 (ja) 2004-12-02 2011-10-19 ルネサスエレクトロニクス株式会社 半導体装置およびそれを用いた半導体モジュール、ならびに半導体装置の製造方法
JP4290158B2 (ja) 2004-12-20 2009-07-01 三洋電機株式会社 半導体装置
KR20060087273A (ko) 2005-01-28 2006-08-02 삼성전기주식회사 반도체 패키지및 그 제조방법
US7675153B2 (en) 2005-02-02 2010-03-09 Kabushiki Kaisha Toshiba Semiconductor device having semiconductor chips stacked and mounted thereon and manufacturing method thereof
US7538032B2 (en) 2005-06-23 2009-05-26 Teledyne Scientific & Imaging, Llc Low temperature method for fabricating high-aspect ratio vias and devices fabricated by said method
TWI244186B (en) 2005-03-02 2005-11-21 Advanced Semiconductor Eng Semiconductor package and method for manufacturing the same
TWI264807B (en) 2005-03-02 2006-10-21 Advanced Semiconductor Eng Semiconductor package and method for manufacturing the same
US20060264029A1 (en) 2005-05-23 2006-11-23 Intel Corporation Low inductance via structures
US7795134B2 (en) 2005-06-28 2010-09-14 Micron Technology, Inc. Conductive interconnect structures and formation methods using supercritical fluids
US7834273B2 (en) * 2005-07-07 2010-11-16 Ibiden Co., Ltd. Multilayer printed wiring board
JP4694305B2 (ja) 2005-08-16 2011-06-08 ルネサスエレクトロニクス株式会社 半導体ウエハの製造方法
US20070049470A1 (en) 2005-08-29 2007-03-01 Johnson Health Tech Co., Ltd. Rapid circuit training machine with dual resistance
US20070052050A1 (en) 2005-09-07 2007-03-08 Bart Dierickx Backside thinned image sensor with integrated lens stack
JP2007157844A (ja) 2005-12-01 2007-06-21 Sharp Corp 半導体装置、および半導体装置の製造方法
US20070126085A1 (en) 2005-12-02 2007-06-07 Nec Electronics Corporation Semiconductor device and method of manufacturing the same
US7456479B2 (en) 2005-12-15 2008-11-25 United Microelectronics Corp. Method for fabricating a probing pad of an integrated circuit chip
JP4826248B2 (ja) 2005-12-19 2011-11-30 Tdk株式会社 Ic内蔵基板の製造方法
KR100714310B1 (ko) 2006-02-23 2007-05-02 삼성전자주식회사 변압기 또는 안테나를 구비하는 반도체 패키지들
US20080029879A1 (en) 2006-03-01 2008-02-07 Tessera, Inc. Structure and method of making lidded chips
JP4659660B2 (ja) 2006-03-31 2011-03-30 Okiセミコンダクタ株式会社 半導体装置の製造方法
JP2007311676A (ja) 2006-05-22 2007-11-29 Sony Corp 半導体装置とその製造方法
KR100837269B1 (ko) 2006-05-22 2008-06-11 삼성전자주식회사 웨이퍼 레벨 패키지 및 그 제조 방법
JP4950559B2 (ja) 2006-05-25 2012-06-13 パナソニック株式会社 スルーホール電極の形成方法
KR100750741B1 (ko) 2006-09-15 2007-08-22 삼성전기주식회사 캡 웨이퍼, 이를 구비한 반도체 칩, 및 그 제조방법
US7531445B2 (en) 2006-09-26 2009-05-12 Hymite A/S Formation of through-wafer electrical interconnections and other structures using a thin dielectric membrane
US20080079779A1 (en) 2006-09-28 2008-04-03 Robert Lee Cornell Method for Improving Thermal Conductivity in Micro-Fluid Ejection Heads
JP2008091632A (ja) 2006-10-02 2008-04-17 Manabu Bonshihara 半導体装置の外部回路接続部の構造及びその形成方法
US7901989B2 (en) 2006-10-10 2011-03-08 Tessera, Inc. Reconstituted wafer level stacking
US7759166B2 (en) 2006-10-17 2010-07-20 Tessera, Inc. Microelectronic packages fabricated at the wafer level and methods therefor
US7719121B2 (en) 2006-10-17 2010-05-18 Tessera, Inc. Microelectronic packages and methods therefor
US7935568B2 (en) 2006-10-31 2011-05-03 Tessera Technologies Ireland Limited Wafer-level fabrication of lidded chips with electrodeposited dielectric coating
US7807508B2 (en) 2006-10-31 2010-10-05 Tessera Technologies Hungary Kft. Wafer-level fabrication of lidded chips with electrodeposited dielectric coating
KR100830581B1 (ko) 2006-11-06 2008-05-22 삼성전자주식회사 관통전극을 구비한 반도체 소자 및 그 형성방법
US7781781B2 (en) 2006-11-17 2010-08-24 International Business Machines Corporation CMOS imager array with recessed dielectric
US7791199B2 (en) 2006-11-22 2010-09-07 Tessera, Inc. Packaged semiconductor chips
US8569876B2 (en) 2006-11-22 2013-10-29 Tessera, Inc. Packaged semiconductor chips with array
US20080136038A1 (en) 2006-12-06 2008-06-12 Sergey Savastiouk Integrated circuits with conductive features in through holes passing through other conductive features and through a semiconductor substrate
FR2911006A1 (fr) 2007-01-03 2008-07-04 St Microelectronics Sa Puce de circuit electronique integre comprenant une inductance
JP2008177249A (ja) 2007-01-16 2008-07-31 Sharp Corp 半導体集積回路のボンディングパッド、その製造方法、半導体集積回路、並びに電子機器
EP2575166A3 (en) 2007-03-05 2014-04-09 Invensas Corporation Chips having rear contacts connected by through vias to front contacts
JP4380718B2 (ja) 2007-03-15 2009-12-09 ソニー株式会社 半導体装置の製造方法
KR100845006B1 (ko) 2007-03-19 2008-07-09 삼성전자주식회사 적층 칩 패키지 및 그 제조 방법
JP2008258258A (ja) 2007-04-02 2008-10-23 Sanyo Electric Co Ltd 半導体装置
US7977155B2 (en) 2007-05-04 2011-07-12 Taiwan Semiconductor Manufacturing Company, Ltd. Wafer-level flip-chip assembly methods
US20080284041A1 (en) 2007-05-18 2008-11-20 Samsung Electronics Co., Ltd. Semiconductor package with through silicon via and related method of fabrication
JP4937842B2 (ja) 2007-06-06 2012-05-23 ルネサスエレクトロニクス株式会社 半導体装置およびその製造方法
US7767497B2 (en) 2007-07-12 2010-08-03 Tessera, Inc. Microelectronic package element and method of fabricating thereof
WO2009017758A2 (en) 2007-07-27 2009-02-05 Tessera, Inc. Reconstituted wafer stack packaging with after-applied pad extensions
US7932179B2 (en) 2007-07-27 2011-04-26 Micron Technology, Inc. Method for fabricating semiconductor device having backside redistribution layers
KR101588723B1 (ko) 2007-07-31 2016-01-26 인벤사스 코포레이션 실리콘 쓰루 비아를 사용하는 반도체 패키지 공정
KR101387701B1 (ko) * 2007-08-01 2014-04-23 삼성전자주식회사 반도체 패키지 및 이의 제조방법
US7902069B2 (en) 2007-08-02 2011-03-08 International Business Machines Corporation Small area, robust silicon via structure and process
KR100885924B1 (ko) 2007-08-10 2009-02-26 삼성전자주식회사 묻혀진 도전성 포스트를 포함하는 반도체 패키지 및 그제조방법
WO2009023462A1 (en) 2007-08-10 2009-02-19 Spansion Llc Semiconductor device and method for manufacturing thereof
KR100905784B1 (ko) 2007-08-16 2009-07-02 주식회사 하이닉스반도체 반도체 패키지용 관통 전극 및 이를 갖는 반도체 패키지
KR101213175B1 (ko) * 2007-08-20 2012-12-18 삼성전자주식회사 로직 칩에 층층이 쌓인 메모리장치들을 구비하는반도체패키지
JP2009088201A (ja) 2007-09-28 2009-04-23 Nec Electronics Corp 半導体装置
JP2009129953A (ja) 2007-11-20 2009-06-11 Hitachi Ltd 半導体装置
US20090127667A1 (en) 2007-11-21 2009-05-21 Powertech Technology Inc. Semiconductor chip device having through-silicon-via (TSV) and its fabrication method
US7998524B2 (en) 2007-12-10 2011-08-16 Abbott Cardiovascular Systems Inc. Methods to improve adhesion of polymer coatings over stents
US7446036B1 (en) 2007-12-18 2008-11-04 International Business Machines Corporation Gap free anchored conductor and dielectric structure and method for fabrication thereof
US8084854B2 (en) * 2007-12-28 2011-12-27 Micron Technology, Inc. Pass-through 3D interconnect for microelectronic dies and associated systems and methods
WO2009104668A1 (ja) 2008-02-21 2009-08-27 日本電気株式会社 配線基板及び半導体装置
US20090212381A1 (en) 2008-02-26 2009-08-27 Tessera, Inc. Wafer level packages for rear-face illuminated solid state image sensors
US7791174B2 (en) 2008-03-07 2010-09-07 Advanced Inquiry Systems, Inc. Wafer translator having a silicon core isolated from signal paths by a ground plane
US7842548B2 (en) 2008-04-22 2010-11-30 Taiwan Semconductor Manufacturing Co., Ltd. Fixture for P-through silicon via assembly
US7838967B2 (en) * 2008-04-24 2010-11-23 Powertech Technology Inc. Semiconductor chip having TSV (through silicon via) and stacked assembly including the chips
US20090267183A1 (en) 2008-04-28 2009-10-29 Research Triangle Institute Through-substrate power-conducting via with embedded capacitance
US7939449B2 (en) 2008-06-03 2011-05-10 Micron Technology, Inc. Methods of forming hybrid conductive vias including small dimension active surface ends and larger dimension back side ends
US7863721B2 (en) 2008-06-11 2011-01-04 Stats Chippac, Ltd. Method and apparatus for wafer level integration using tapered vias
US20100013060A1 (en) 2008-06-22 2010-01-21 Taiwan Semiconductor Manufacturing Company, Ltd. Method of forming a conductive trench in a silicon wafer and silicon wafer comprising such trench
JP5183340B2 (ja) 2008-07-23 2013-04-17 日本電波工業株式会社 表面実装型の発振器およびこの発振器を搭載した電子機器
US7906404B2 (en) 2008-11-21 2011-03-15 Teledyne Scientific & Imaging, Llc Power distribution for CMOS circuits using in-substrate decoupling capacitors and back side metal layers
US7939926B2 (en) 2008-12-12 2011-05-10 Qualcomm Incorporated Via first plus via last technique for IC interconnects
US20100159699A1 (en) 2008-12-19 2010-06-24 Yoshimi Takahashi Sandblast etching for through semiconductor vias
JP5308145B2 (ja) 2008-12-19 2013-10-09 ルネサスエレクトロニクス株式会社 半導体装置
TWI366890B (en) 2008-12-31 2012-06-21 Ind Tech Res Inst Method of manufacturing through-silicon-via and through-silicon-via structure
KR20100087566A (ko) 2009-01-28 2010-08-05 삼성전자주식회사 반도체 소자 패키지의 형성방법
US8158515B2 (en) 2009-02-03 2012-04-17 International Business Machines Corporation Method of making 3D integrated circuits
TWI466258B (zh) * 2009-04-10 2014-12-21 Nanya Technology Corp 電性通透連接及其形成方法
US8263434B2 (en) * 2009-07-31 2012-09-11 Stats Chippac, Ltd. Semiconductor device and method of mounting die with TSV in cavity of substrate for electrical interconnect of Fi-PoP
JP5715334B2 (ja) * 2009-10-15 2015-05-07 ルネサスエレクトロニクス株式会社 半導体装置
US8008121B2 (en) * 2009-11-04 2011-08-30 Stats Chippac, Ltd. Semiconductor package and method of mounting semiconductor die to opposite sides of TSV substrate
US8519538B2 (en) 2010-04-28 2013-08-27 Taiwan Semiconductor Manufacturing Company, Ltd. Laser etch via formation
US8299608B2 (en) * 2010-07-08 2012-10-30 International Business Machines Corporation Enhanced thermal management of 3-D stacked die packaging
US8598695B2 (en) 2010-07-23 2013-12-03 Tessera, Inc. Active chip on carrier or laminated chip having microelectronic element embedded therein
US8697569B2 (en) 2010-07-23 2014-04-15 Tessera, Inc. Non-lithographic formation of three-dimensional conductive elements
US9640437B2 (en) 2010-07-23 2017-05-02 Tessera, Inc. Methods of forming semiconductor elements using micro-abrasive particle stream
US8791575B2 (en) 2010-07-23 2014-07-29 Tessera, Inc. Microelectronic elements having metallic pads overlying vias
US8796135B2 (en) 2010-07-23 2014-08-05 Tessera, Inc. Microelectronic elements with rear contacts connected with via first or via middle structures
US8686565B2 (en) 2010-09-16 2014-04-01 Tessera, Inc. Stacked chip assembly having vertical vias
US8847380B2 (en) * 2010-09-17 2014-09-30 Tessera, Inc. Staged via formation from both sides of chip
US8421193B2 (en) * 2010-11-18 2013-04-16 Nanya Technology Corporation Integrated circuit device having through via and method for preparing the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101101884A (zh) * 2006-07-07 2008-01-09 奇梦达股份公司 具有堆叠芯片的半导体器件以及制造该器件的方法
US20080185719A1 (en) * 2007-02-06 2008-08-07 Philip Lyndon Cablao Integrated circuit packaging system with interposer
US20100038778A1 (en) * 2008-08-13 2010-02-18 Samsung Electronics Co., Ltd. Integrated circuit structures and fabricating methods that use voids in through holes as joining interfaces
US20100117242A1 (en) * 2008-11-10 2010-05-13 Miller Gary L Technique for packaging multiple integrated circuits
WO2010104637A1 (en) * 2009-03-12 2010-09-16 Micron Technology, Inc. Method for fabricating semiconductor components using maskless back side alignment to conductive vias
US20100230795A1 (en) * 2009-03-13 2010-09-16 Tessera Technologies Hungary Kft. Stacked microelectronic assemblies having vias extending through bond pads

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110364518A (zh) * 2018-04-11 2019-10-22 意法半导体(格勒诺布尔2)公司 包括电子芯片的电子设备

Also Published As

Publication number Publication date
EP2647046A1 (en) 2013-10-09
CN103329266B (zh) 2016-10-19
US8637968B2 (en) 2014-01-28
WO2012075371A1 (en) 2012-06-07
US20120139094A1 (en) 2012-06-07
TW201246500A (en) 2012-11-16
JP5857065B2 (ja) 2016-02-10
KR20130122959A (ko) 2013-11-11
JP2013546192A (ja) 2013-12-26
KR101871866B1 (ko) 2018-06-27
EP2647046B1 (en) 2020-11-18
TWI458070B (zh) 2014-10-21

Similar Documents

Publication Publication Date Title
CN103329266A (zh) 具有连接有源芯片的插板的堆叠微电子组件
CN103370784B (zh) 同时的晶圆结合及互连接合
US9368476B2 (en) Stacked microelectronic assembly with TSVs formed in stages with plural active chips
CN103109349A (zh) 具有与第一通路或中间通路结构连接的后触点的微电子元件
US10396114B2 (en) Method of fabricating low CTE interposer without TSV structure
US10181411B2 (en) Method for fabricating a carrier-less silicon interposer
US10403510B2 (en) Method of fabricating a carrier-less silicon interposer using photo patterned polymer as substrate

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant