CN101997111A - 锂电池用电极体及锂电池 - Google Patents

锂电池用电极体及锂电池 Download PDF

Info

Publication number
CN101997111A
CN101997111A CN2010102580836A CN201010258083A CN101997111A CN 101997111 A CN101997111 A CN 101997111A CN 2010102580836 A CN2010102580836 A CN 2010102580836A CN 201010258083 A CN201010258083 A CN 201010258083A CN 101997111 A CN101997111 A CN 101997111A
Authority
CN
China
Prior art keywords
electrode
lithium battery
composite material
electrode body
material layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2010102580836A
Other languages
English (en)
Other versions
CN101997111B (zh
Inventor
市川祐永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to CN201410461435.6A priority Critical patent/CN104362288B/zh
Publication of CN101997111A publication Critical patent/CN101997111A/zh
Application granted granted Critical
Publication of CN101997111B publication Critical patent/CN101997111B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/043Processes of manufacture in general involving compressing or compaction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明提供可确保安全性、可得到充分大的输出且可大容量化的锂电池以及适合制造锂电池的锂电池用电极体。该锂电池用电极体(1)包括:集电极(2)、以及通过混合含有电极活性物质的多个第一粒子(4)和含有固体电解质的多个第二粒子(5)而成的电极复合材料层(3)。电极复合材料层(3)设置在集电极(2)的一侧。多个第二粒子(5)的平均粒径小于多个第一粒子(4)的平均粒径。

Description

锂电池用电极体及锂电池
技术领域
本发明涉及锂电池用电极体及锂电池等。
背景技术
将锂或含锂物质用于负极的锂电池不仅重量轻且容量大,并且通过与适当的正极组合可得到高电压。因此,锂电池广泛用于便携式电子设备、照相机、钟表、电动工具、混合动力汽车用的电池等。但是,这样的锂电池由于锂具有的高活性和使用有机电解液,具有在短路时发生着火、爆炸等危险。因此,锂电池的设计最重要的是保证安全。
作为保证安全性的方法例如有脱电解液。作为脱电解液的一个尝试,开发了使用凝胶聚合物电解质的锂聚合物电池。但在该尝试中,由于使有机电解质浸渗在聚合物凝胶中,所以不能消除使用寿命的限制和着火、爆炸的危险性。
并且,作为脱电解液的其他尝试,开发了采用陶瓷电解质(无机固体电解质)的锂电池(例如参考专利文献1)。如果像这样采用陶瓷电解质,由于通过电池反应而在电解质中移动的离子只有锂离子,因此几乎无副反应,并且不含可燃性有机溶液,无需密封部件和液体封装结构,因此可实现小型、薄型化。
但是,如上述专利文献1的实施例中记载的那样,由于陶瓷电解质粉与电极活性物质的界面或陶瓷电解质粉与陶瓷电解质粉的界面上的接触不充分,将陶瓷电解质粉与电极活性物质一同压粉成形的方法不能得到良好的电池输出,而且,由于伴随循环充电放电而产生的体积变化,其界面接触不稳定,使用寿命缩短。
另一方面,还公开了使用溅射等气相沉积法形成正极薄膜/陶瓷电解质薄膜/负极薄膜这样的层压体的锂电池(例如参考专利文献2)。在层压这样的薄膜的方法中,电极(正极薄膜或负极薄膜)与陶瓷电解质在界面上的接触良好,且可减少活性物质层和电解质层的厚度,因此可期待得到高输出和良好的使用寿命特性。
但是,在上述专利文献2的方法中,单位面积的活性物质的总厚度只有1μm至几m左右,很难制造足够容量的电池。即,想要得到足够容量的电池,需要制造活性物质的总厚度超过100μm的电池,但在上述专利文献2的方法中很难超过100μm,因此,现阶段仍不能制造容量充足的电池。
专利文献1:日本特开2006-277997号公报
专利文献2:日本特开2004-179158号公报
发明内容
本发明的一个方式提供可确保安全性且可得到足够大的输出、而且可大容量化的锂电池以及适合制造锂电池的锂电池用电极体。
本发明的锂电池用电极体的特征在于包括:集电极以及由混合含有电极活性物质的多个第一粒子和含有固体电解质的多个第二粒子而成的电极复合材料层,上述电极复合材料层设置在上述集电极的一侧,上述多个第二粒子的平均粒径小于上述多个第一粒子的平均粒径。
根据该锂电池用电极体,由于使多个第二粒子的平均粒径小于多个第一粒子的平均粒径,因此单位体积的电极活性物质与固体电解质的接触点增加,这些界面上的接触面积增大,因此,使用该电极体的锂电池的输出增大,同时可形成大容量。并且,由于混合由电极活性物质形成的多个第一粒子与具有固体电解质粒子的多个第二粒子而形成的电极复合材料层设置在集电极的一侧,因此,可脱电解液,从而容易确保安全性。
并且,在上述锂电池用电极体中,优选通过对上述多个第一粒子和上述多个第二粒子的混合物进行加压成型而形成上述电极复合材料层。
通过这样,电极复合材料层容易固定在集电极上,并且容易脱电解液。
并且,在上述锂电池用电极体中,优选上述电极复合材料层的与上述集电极抵接侧的相反侧使上述多个第二粒子覆盖上述多个第一粒子。
这样,在使用该电极体制造锂电池时,通过多个第二粒子覆盖多个第一粒子而形成的固体电解质的覆盖层可确实防止使用了该电极体的锂电池的正极与负极之间发生短路。
并且,在上述锂电池用电极体中,上述多个第二粒子中的固体电解质粒子的平均粒径优选为100nm以下。
这样,在烧结这些多个第二粒子和多个第一粒子形成陶瓷制电极复合材料层时,可将烧结温度抑制得较低。并且,通过这样降低烧结温度,可防止固体活性物质(第一粒子)或根据需要添加的导电粒子(导电剂)或粘合剂变质,而且可防止这些物质意外地引起化学反应。
并且,在上述锂电池用电极体中,优选上述多个第二粒子包括平均粒径为100nm以下绝缘物粒子。
这样,通过在绝缘物粒子和其他粒子的界面上形成双电层且由此缺陷浓度增加这一所谓的界面双电层效果,提高了电极活性物质的单位重量的离子电导率。
上述其他粒子例如是含有无机固体电解质的第二粒子。
并且,在上述锂电池用电极体中,优选在上述电极复合材料层上,固体电解质层设置在电极复合材料层的与上述集电极抵接侧的相反侧。
通过这样,在使用该电极体制造锂电池时,可通过上述固体电解质层更可靠地防止使用了该电极体的锂电池的正极与负极间的短路。
并且,在上述锂电池用电极体中,优选使有机溶剂或有机电解液浸渗在上述电极复合材料层中。
通过这样,在使用该电极体制造锂电池时,通过有机溶剂或有机电解液的作用提高离子电导率,增加输出。
本发明的锂电池的特征在于,上述锂电池用电极体作为正极或负极使用。
根据该锂电池,如上所述,由于使用了单位体积的电极活性物质与固体电解质的接触点增加、且在这些界面上的接触面积增大的电极体,因此可实现高输出化和大容量化。并且,由于使用了电极复合材料层,因此可进行脱电解液,容易确保安全性。
本发明的另一锂电池的特征在于,包括由上述锂电池用电极体形成、且上述电极活性物质由正极活性物质构成的正极和设置在上述锂电池用电极体的上述电极复合材料层上、且由金属负极活性物质和集电极构成的负极。
根据该锂电池,如上所述,由于将单位体积的电极活性物质与固体电解质的接触点增加、且在这些界面上的接触面积增大的电极体用作正极,因此可实现高输出化和大容量化。并且,由于使用了电极复合材料层,因此可脱电解液,从而容易确保安全性。
而且,由于具有含有固体电解质的电极复合材料层,没有形成树突的危险,因此可使用例如大容量的由锂金属形成的负极。
本发明的另一锂电池的特征在于,包括由上述锂电池用电极体形成、且上述电极活性物质由正极活性物质构成的正极以及由上述锂电池用电极体形成、且上述电极活性物质由负极活性物质构成的负极。
根据该锂电池,如上所述,由于将单位体积的电极活性物质与固体电解质的接触点增加、且在这些界面上的接触面积增大的电极体分别作为正极和负极使用,因此可实现高输出化和大容量化。并且,由于使用了电极复合材料层,因此可脱电解液,从而容易确保安全性。而且,由于无需设置现有的锂电池中的隔膜,因此零件数量减少,可降低成本。
并且,在这些锂电池中,也可使有机溶剂或有机电解液浸渗在上述正极侧的集电极和上述负极侧的集电极之间的上述电极复合材料层中。
通过这样,通过有机溶剂或有机电解液的作用,提高离子电导率,增加输出。
并且,在这些锂电池中,也可使有机溶剂或有机电解液浸渗在设置于上述正极侧的集电极和上述负极侧的集电极之间的上述电极复合材料层和上述固体电解质层中。
附图说明
图1是示出本发明的锂电池用电极体的第一实施方式的主要部位侧剖视图;
图2是示出本发明的锂电池用电极体的第二实施方式的主要部位侧剖视图;
图3是示出本发明的锂电池用电极体的第三实施方式的主要部位侧剖视图;
图4是示出本发明的锂电池的第一实施方式的主要部位侧剖视图;
图5是示出本发明的锂电池的第二实施方式的主要部位侧剖视图;以及
图6是示出本发明的锂电池的第三实施方式的主要部位侧剖视图。
具体实施方式
以下参考附图就本发明进行具体说明。
首先就本发明的锂电池用电极体进行说明。图1是本发明的锂电池用电极体的第一实施方式的主要部位侧剖视图,图1中的符号1是锂电池用电极体(以下称为电极体)。
该电极体1包括由板状(或箔状)的集电极2以及与该集电极2的一个表面侧抵接设置的电极复合材料层3,如后所述,作为锂二次电池(锂电池)的正极或负极使用。
集电极2由Cu、Ni、Ti、Al、不锈钢和碳等导电性薄板部件(箔部件)形成,在电极体1作为正极形成的情况下和作为负极形成的情况下,可适当地选择使用这些材料。并且,正极布线层(未图示)或负极布线层(未图示)与该集电极2连接。
并且,在集电极2上也可以连接其他形式的正极布线或负极布线,以代替上述的正极布线层或负极布线层。
电极复合材料层3由成型体形成,该成型体通过混合由无机电极活性物质(电极活性物质)形成的多个第一粒子4和由无机固体电解质粒子5a(固体电解质)形成的多个第二粒子5并将该混合物加压成型烧结而成。
作为构成第一粒子的无机电极活性物质,在将电极体1用作正极时选择使用无机正极活性物质,在将电极体1用作负极时选择使用无机负极活性物质。
作为无机正极活性物质可使用钴酸锂(LiCoO2)、镍酸锂(LiNiO2)、锰酸锂(LiMN2O4)和钛酸锂(Li4Ti5O12)等。
作为无机负极活性物质可使用钛酸锂(Li4Ti5O12)等。
作为由这些无机电极活性物质形成的第一粒子4,其平均粒径为1μm至10μm左右。在本发明中,平均粒径是指在将上述电极复合材料层3在任意的面(第一粒子4和第二粒子5混合存在的面)切断时露出的剖面上,所露出的全部第一粒子4形成的面中的最大直径(最大长度)的平均值。
作为由无机固体电解质粒子5a形成的多个第二粒子5可使用以下各种物质。
(1)具有锂离子导电性的无机晶体、无机玻璃或部分结晶玻璃。
(2)LiTi2(PO4)3、Li1.3M0.3Ti1.7(PO4)3(其中,M=Al、Sc)等NASICON型陶瓷晶体。
(3)Li0.35La0.55TiO3、LiSr2TiTaO6Li3xLa1/3-xTaO3等钙钛矿型陶瓷晶体。
(4)Li4-xSi1-xPxxS4、Li4-xGe1-xPxS4等thiolysine(チオリシン)晶体。
(5)Li14Zn(GeO4)4等锗酸锌锂(Lisicon)晶体。
(6)Li掺杂β-Al2O3晶体。
(7)含有上述晶体的部分结晶玻璃。
(8)Li2S-SiS2-LiPO3类、Li2S-P2S5类等硫化玻璃。
(9)Li2O-SiO2-B2O3类、Li2O-SiO2-ZrO2类氧化玻璃。
(10)LIPON玻璃(例如参考日本特开2004-179158号公报)。而且也可使用以下物质。
(11)LiI晶体。
(12)Li3PO4晶体。
(13)Li7La3Zr2O12等石榴石型陶瓷晶体。
作为由这样的无机固体电解质粒子5a形成的多个第二粒子5,其平均粒径为纳米粒子的一般直径即100nm以下左右,优选为50nm左右。即,在本发明中,作为这些多个第二粒子5,使用的是其平均粒径充分小于上述多个第一粒子4的平均粒径的在1/100以下左右的粒子。
通过这样,在电极复合材料层3上,每单位体积的无机电极活性物质(第一粒子4)与无机固体电解质(无机固体电解质粒子5a)的接触点增加,在这些界面上的接触面积增大。
并且,通过使由无机固体电解质粒子5a形成的多个第二粒子5的平均粒径在100nm以下左右,如后所述,在成型电极复合材料层3时,可将烧结温度抑制得较低。与上述第一粒子4的平均粒径相同,这里的该平均粒径是在将上述电极复合材料层3在任意的面(第一粒子4和第二粒子5混合存在的面)切断时,在露出的剖面上所露出的全部第二粒子5(无机固体电解质粒子5a)形成的面中的最大直径(最大长度)的平均值。
并且,作为该无机固体电解质粒子5a(第二粒子5)的形成方法可采用以下的众所周知的方法。
即,可以采用机械磨碎法、水热合成法、超临界水热合成法、微乳液法、RESS(超临界溶液快速膨胀)法、PGSS(气体饱和溶液微粒形成)法、GAS(气体反溶剂重结晶)法和SEDS(溶液强化固体分散)法等,其中优选水热合成法。
并且,在本实施方式中,在该电极复合材料层3上添加由粘合剂粒子或导电粒子(导电剂)形成的添加剂6。这里的粘合剂粒子例如可使用苯乙烯类热塑性弹性体、聚烯烃、聚酰胺和聚酰亚胺等形成的粒子,导电粒子例如可使用碳粒子。
在这样的电极复合材料层3上,对第一粒子4与第二粒子5(无机固体电解质粒子5a)的混合比没有特别限制,重量比为2∶8~8∶2左右。并且,电极复合材料层3中的粘合剂粒子和导电粒子的合计混合比(组合比例)为重量比2%~30%左右。
这样的电极复合材料层3以适当的混合比混合第一粒子4和第二粒子5(无机固体电解质粒子5a),之后以适当的混合比添加粘合剂粒子和导电粒子后进行混合。然后,向成型模具中填充该混合物,与一般的颗粒成型一样,通过加热加压得到所需形状(例如长方体)的电极复合材料层3。根据所使用的粒子种类或混合比、粘合剂种类或量等适当地设定成型压力和成型温度。另外,由于无机固体电解质粒子5a的平均粒径为100nm以下左右,可将成型电极复合材料层3时的烧结温度抑制在较低温度,通过这样,防止无机固体电解质粒子5a或导电粒子(导电剂)、粘合剂的变质,而且可防止这些物质意外地引起化学反应。
并且,如图1所示,在这样形成的电极复合材料层3中,在与集电极2抵接侧的相反侧上,上述多个第二粒子5覆盖上述多个第一粒子4。即,在集电极2的相反侧形成由第二粒子5(无机固体电解质粒子5a)构成的覆盖层7。该覆盖层7的厚度为50nm以上,优选为200nm以上。通过形成这样的覆盖层7,如后所述,在使用该电极体1制造锂电池时,可通过该覆盖层7确实防止正极与负极之间的短路。
然后,通过以覆盖层7为外侧的方式将这样得到的电极复合材料层3抵接于上述集电极2并进行固定(贴合),得到图1所示的电极体1。
这样的电极体1由于多个第二粒子5的平均粒径小于多个第一粒子4的平均粒径,因此在电极复合材料层3中,单位体积的无机电极活性物质与无机固体电解质的接触点增加,这些界面上的接触面积增大,因此可增加使用了该电极体1的锂电池的输出,同时也可实现大容量化。并且,由于将通过混合由无机电极活性物质形成的多个第一粒子4和具有无机固体电解质粒子的多个第二粒子5而形成的电极复合材料层3设置在集电极2的一侧,所以使应用了电极体1的锂电池可脱电解液,因此可容易确保安全性。
图2是本发明的锂电池用电极体的第二实施方式的主要部位侧剖视图,图2中的符号10是锂电池用电极体(以下称为电极体)。
该电极体10与图1所示的电极体1的不同点在于多个第二粒子5除了无机固体电解质粒子5a还包括绝缘物粒子5b。
绝缘物粒子5b由Al2O3或TiO2等绝缘物质形成,其平均粒径与上述无机固体电解质粒子5a一样为100nm以下,优选为50nm左右。这样的绝缘物粒子5b在整个第二粒子5中,即在由无机固体电解质粒子5a和绝缘物粒子5b形成的第二粒子5中占1mol%~50mol%,优选占8mol%左右。
这样,本实施方式的电极体10由于添加了绝缘物粒子5b作为第二粒子5,因此通过界面效果、界面双电层效果,可提高无机电极活性物质的单位重量的离子电导率,因此,可增加使用了该电极体10的锂电池的输出。另外,如果第二粒子5中的绝缘物粒子5b的混合比率不到1mol%,则几乎不能期待界面效果、界面双电层效果,不能提高离子电导率,如果超过50mol%,则含有第二粒子的电极复合材料层3整体的离子电导率降低,所以是不优选的。
图3是示出本发明的锂电池用电极体的第三实施方式的主要部位侧剖视图,图3中的符号20是锂电池用电极体(以下称为电极体)。
该电极体20与图1所示的电极体1的不同点在于在上述电极复合材料层3的上述覆盖层7上面、即与上述集电极2抵接侧的相反侧设置无机固体电解质层21。
无机固体电解质层21由与上述(1)~(10)所示的无机固体电解质粒子5a的材料相同的材料形成,可使用预先将无机固体电解质粒子5a成型为薄板状(箔状)的层或市售的无机固体电解质片等。并且,使用不破坏离子电导率程度的薄的无机固体电解质层21,例如为2mm以下,优选使用成型为20μm以下的薄板状(箔状)的电解质层。并且,例如在对电极复合材料层3进行加热加压制作成型体时,将该无机固体电解质层21与上述第一粒子4和第二粒子5的混合物一起放入成型模具,与混合物一起加热加压,从而如图3所示,将无机固体电解质层21一体状设置在电极复合材料层3的一侧上(覆盖层7上)。
这样的电极体20通过设置了无机固体电解质层21,在使用该电极体20制造锂电池时,可确实防止其正极与负极之间的短路。
另外,在该第三实施方式中,作为该电极复合材料层3使用了与图1所示的电极复合材料层3相同的结构的电极复合材料层,特别是由于设置了无机固体电解质层21,因此也可使用未形成覆盖层7的电极复合材料层。
并且,作为电极复合材料层,也可使用如图2所示的多个第二粒子5包括绝缘物粒子5b的电极复合材料层。
而且,也可使有机溶剂或有机电解液浸渗上述电极复合材料层3。作为有机溶剂可使用乙二醇等。并且,作为有机电解液,优选使用将盐酸锂溶解在乙二醇中的饱和溶液等。为了使有机溶剂或有机电解液浸渗电极复合材料层3,预先将电极复合材料层3加热加压成型为多孔形。通过这样,在第一粒子4和第二粒子5之间形成微小空隙(孔),有机溶剂或有机电解液浸渗到此处并被存储。
使用这样的电极体制造锂电池时,通过有机溶剂或有机电解液的作用可提高电极复合材料层3中的离子导电率,因此可提高所得到的锂电池的输出。
作为上述有机溶剂可使用碳酸乙烯酯。并且,作为有机电解液优选使用将六氟磷酸锂或盐酸锂溶解在碳酸乙烯酯或乙二醇中的饱和溶液等。并且,也可进行加压成型,代替上述的加热加压成型。
以下就本发明的锂电池进行说明。
本发明的锂电池是将上述锂电池用电极体1(10、20)用作正极或负极的电池。图4是示出这样的锂电池的第一实施方式的主要部位侧剖视图,图4中的符号30是锂电池。
该锂电池30将图3所示的电极体20作为上述电极体(锂电池用电极体)用于正极31,在其无机固体电解质层21上、即与集电极2的相反侧依次层压金属负极活性物质32和集电极33作为负极34。在用作正极31侧的电极体20中,作为形成第一粒子4的无机电极活性物质使用正极活性物质。使用锂金属或Li-In合金、Li-Al合金等作为金属负极活性物质32。并且,作为集电极33,使用与上述电极体1(10、20)的集电极2相同种类的材料。
然后,将电极体20和金属负极活性物质32以及集电极33层叠并放入成型模具,整体通过加压成型成为一体,得到了锂电池30。另外,正极31侧的集电极2上连接正极布线层(未图示),负极34的集电极33上连接负极布线层(未图示)。
并且,也可取代上述正极布线层或负极布线层,在正极31侧的集电极2上连接其他形式的正极布线,在负极34的集电极33上连接其他形式的负极布线。
如上所述,这样的锂电池30由于使用了单位体积的无机电极活性物质与无机固体电解质的接触点增加、且在这些的界面上的接触面积增大的电极体20,因此可实现高输出化和大容量化。并且,由于使用了电极复合材料层3,因此可脱电解液,可容易确保安全性。
而且,由于在正极31侧的电极复合材料层3与负极34之间设置了无机固体电解质层21,可更确实防止正极31与负极34之间的短路。
图5是示出本发明的锂电池的第二实施方式的主要部位侧剖视图,图5中的符号40是锂电池。
该锂电池40与图4所示的电极体1的不同点在于不仅是正极31侧,负极侧也使用了图3所示的电极体20。
即,使作为正极31侧的电极体20中的无机固体电解质层21和作为负极41侧的电极体20中的无机固体电解质层21抵接形成该锂电池40。并且,在作为正极31侧使用的电极体20中,作为形成第一粒子4的无机电极活性物质使用正极活性物质,在作为负极41侧使用的电极20中,作为形成第一粒子4的无机电极活性物质使用负极活性物质。
因此,这样的锂电池40由于使用了单位体积的无机电极活性物质与无机固体电解质的接触点增加、且在这些的界面上的接触面积增大的电极体20,因此可实现高输出化和大容量化。并且,由于使用了电极复合材料层3,因此可脱电解液,可容易确保安全性。
而且,由于在正极31侧的电极复合材料层3与负极41侧的电极复合材料层3之间设置了无机固体电解质层21,因此,可进一步确实防止正极31与负极41之间的短路。并且,无需设置现有的锂电池中的隔膜,因此可减少零件数量,降低成本。
另外,在该锂电池40中,虽然在正极侧、负极侧双方使用了图3所示的电极体20,但也可只在其中任何一侧使用图3所示的电极体20,在另一侧使用图1所示的电极体1或图2所示的电极体10。
并且,在图4、图5所示的锂电池30、40中,使用了包括具有覆盖层7的电极复合材料层3的电极体20,但由于在正极侧和负极侧之间配置了无机固体电解质层21,因此也可使用包括无覆盖层7的电极复合材料层的电极。
而且,如图6所示的第三实施方式的锂电池50那样,可将图1所示的电极体1用于正极侧、负极侧双方,当然也可将图2所示的电极体10用于正极侧、负极侧双方。
这样结构的锂电池50等由于使用了包括具有覆盖层7的电极复合材料层3的电极体1(10),因此可确实防止正极与负极之间的短路。
并且,在图4至图6所示的锂电池30(40、50)中,也可使有机溶剂或有机电解液浸渗在正极侧的集电极和负极侧的集电极之间的电极复合材料层中。这种情况下,可使用预先使有机溶剂或有机电解液浸渗在电极复合材料层中的电极体来组装锂电池,也可使有机溶剂或有机电解液浸渗在组装成图4至图6所示状态的锂电池30(40、50)的电极复合材料层中。
并且,在图4至图6所示的锂电池30(40、50)中,也可使有机溶剂或有机电解液浸渗在设置于正极侧的集电极和负极侧的集电极之间的电极复合材料层和无机固体电解质层中。这种情况下,可使用预先使有机溶剂或有机电解液浸渗在电极复合材料层、无机固体电解质层中的电极体来组装锂电池,也可使有机溶剂或有机电解液浸渗在组装成图4至图6所示状态的锂电池30(40、50)的电极复合材料层中和无机固体电解质层中。
这样,可通过有机溶剂或有机电解液的作用提高电极复合材料层中的离子导电率,提高锂电池的输出。
另外,本发明的锂电池可特别期待应用于重视安全性的单电池超过20Wh、电池组超过100Wh的锂电池。
并且,可提高无机固体电解质层中的离子导电率,进一步提高锂电池的输出。
并且,可用于便携式电话或笔记本电脑等便携式电子设备、电动汽车等。
也可用于神经刺激仪、除颤器、心脏起搏器、心脏收缩模型、心脏收缩调制器、电除颤器、给药设备、人工耳蜗植入体、助听器、传感器、テレトリ一设备、诊断记录仪等重视安全性的体内植入器械中。
本发明的锂电池用电极体以及锂电池不受上述实施方式的限制,在不超出本发明宗旨的范围内可进行各种改变。例如,在上述的实施方式中,电极复合材料层设置在集电极的一侧,也可将电极复合材料层设置在集电极的两侧,并且将固体电解质设置成包围住电极复合材料层的实施方式也属于本发明的应用范围内。
符号说明
1锂电池用电极体                2集电极
3电极复合材料层                4第一粒子
5第二粒子    5a无机固体电解质粒子(固体电解质)
5b绝缘物粒子                   7覆盖层
10锂电池用电极体               20锂电池用电极体
21无机固体电解质层(固体电解质)
30锂电池                      31正极
32金属负极活性物质层          33集电极
34负极                        40锂电池
41负极                        50锂电池

Claims (12)

1.一种锂电池用电极体,其特征在于,包括:
集电极;以及
由含有电极活性物质的多个第一粒子和含有固体电解质的多个第二粒子混合而成的电极复合材料层,
所述电极复合材料层设置在所述集电极的一侧,
所述多个第二粒子的平均粒径小于所述多个第一粒子的平均粒径。
2.根据权利要求1所述的锂电池用电极体,其特征在于,所述电极复合材料层是通过对所述多个第一粒子和所述多个第二粒子的混合物进行加压成型而形成。
3.根据权利要求1或2所述的锂电池用电极体,其特征在于,在所述电极复合材料层的与所述集电极抵接侧的相反侧使所述多个第二粒子覆盖所述多个第一粒子。
4.根据权利要求1至3中任一项所述的锂电池用电极体,其特征在于,所述多个第二粒子中的固体电解质粒子的平均粒径为100nm以下。
5.根据权利要求4所述的锂电池用电极体,其特征在于,所述多个第二粒子包括平均粒径为100nm以下的绝缘物粒子。
6.根据权利要求1至5中任一项所述的锂电池用电极体,其特征在于,在所述电极复合材料层上,固体电解质层设置在所述电极复合材料层的与所述集电极抵接侧的相反侧。
7.根据权利要求1至6中任一项所述的锂电池用电极体,其特征在于,有机溶剂或有机电解液浸渗在所述电极复合材料层中。
8.一种锂电池,其特征在于,将权利要求1至7中任一项所述的锂电池用电极体用作正极或负极。
9.一种锂电池,其特征在于,包括:
正极,由权利要求1至7中任一项所述的锂电池用电极体形成,且所述电极活性物质由正极活性物质构成;以及
负极,设置在所述锂电池用电极体的所述电极复合材料层上,并由金属负极活性物质和集电极形成。
10.一种锂电池,其特征在于,包括:
正极,由权利要求1至7中任一项所述的锂电池用电极体形成,所述电极活性物质由正极活性物质构成;以及
负极,由权利要求1至7中任一项所述的锂电池用电极体形成,所述电极活性物质由负极活性物质构成。
11.根据权利要求8至10中任一项所述的锂电池,其特征在于,有机溶剂或有机电解液浸渗在所述正极侧的集电极和所述负极侧的集电极之间的所述电极复合材料层中。
12.根据权利要求8至10中任一项所述的锂电池,其特征在于,有机溶剂或有机电解液浸渗在设置于所述正极侧的集电极和所述负极侧的集电极之间的所述电极复合材料层和所述固体电解质层中。
CN201010258083.6A 2009-08-18 2010-08-18 锂电池用电极体及锂电池 Active CN101997111B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410461435.6A CN104362288B (zh) 2009-08-18 2010-08-18 锂电池用电极体及锂电池

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2009-189168 2009-08-18
JP2009189168 2009-08-18
JP2010173910A JP2011065982A (ja) 2009-08-18 2010-08-02 リチウム電池用電極体及びリチウム電池
JP2010-173910 2010-08-02

Related Child Applications (1)

Application Number Title Priority Date Filing Date
CN201410461435.6A Division CN104362288B (zh) 2009-08-18 2010-08-18 锂电池用电极体及锂电池

Publications (2)

Publication Number Publication Date
CN101997111A true CN101997111A (zh) 2011-03-30
CN101997111B CN101997111B (zh) 2016-02-17

Family

ID=43605623

Family Applications (2)

Application Number Title Priority Date Filing Date
CN201410461435.6A Active CN104362288B (zh) 2009-08-18 2010-08-18 锂电池用电极体及锂电池
CN201010258083.6A Active CN101997111B (zh) 2009-08-18 2010-08-18 锂电池用电极体及锂电池

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CN201410461435.6A Active CN104362288B (zh) 2009-08-18 2010-08-18 锂电池用电极体及锂电池

Country Status (3)

Country Link
US (2) US9005817B2 (zh)
JP (1) JP2011065982A (zh)
CN (2) CN104362288B (zh)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102280618A (zh) * 2011-07-06 2011-12-14 苏州大学 一种锂离子电池正极材料及其制备方法
CN103733414A (zh) * 2011-08-11 2014-04-16 丰田自动车株式会社 硫化物系固体电池
CN103972472A (zh) * 2013-02-05 2014-08-06 精工爱普生株式会社 电极复合体的制造方法、电极复合体及锂电池
CN103972474A (zh) * 2013-02-05 2014-08-06 精工爱普生株式会社 活性物质成形体的制造方法、活性物质成形体、锂电池的制造方法及锂电池
CN103972463A (zh) * 2013-02-05 2014-08-06 精工爱普生株式会社 电极复合体的制造方法
CN104835984A (zh) * 2014-02-10 2015-08-12 精工爱普生株式会社 电极复合体的制造方法、电极复合体以及电池
CN105470521A (zh) * 2014-09-30 2016-04-06 精工爱普生株式会社 电极复合体、电极复合体的制造方法及锂电池
CN106252591A (zh) * 2015-06-08 2016-12-21 精工爱普生株式会社 电极复合体、电极复合体的制造方法以及锂电池
CN108963222A (zh) * 2018-07-13 2018-12-07 国联汽车动力电池研究院有限责任公司 固态复合电解质电极活性材料及其制备方法与应用
CN110226255A (zh) * 2017-01-24 2019-09-10 日立造船株式会社 全固态电池及其制造方法
CN110235284A (zh) * 2017-01-24 2019-09-13 日立造船株式会社 全固态电池用电极的制造方法以及全固态电池的制造方法
CN110867560A (zh) * 2018-08-28 2020-03-06 宁德时代新能源科技股份有限公司 一种负极极片及二次电池
CN111095625A (zh) * 2017-09-29 2020-05-01 日本瑞翁株式会社 全固体二次电池电极用复合颗粒及其制造方法、全固体二次电池用电极、以及全固体二次电池
CN111316485A (zh) * 2018-01-05 2020-06-19 松下知识产权经营株式会社 正极材料及电池
CN111952661A (zh) * 2020-08-14 2020-11-17 横店集团东磁股份有限公司 一种固态锂离子电池及其制备方法
CN113439351A (zh) * 2018-12-21 2021-09-24 伊利卡科技有限公司 复合材料
CN113812019A (zh) * 2019-05-08 2021-12-17 株式会社Lg新能源 用于全固态二次电池的负极的预锂化方法及使用其的二次电池
CN113812019B (zh) * 2019-05-08 2024-05-31 株式会社Lg新能源 全固态二次电池及其制造方法

Families Citing this family (71)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8877388B1 (en) * 2010-01-20 2014-11-04 Sandia Corporation Solid-state lithium battery
JP5455766B2 (ja) 2010-04-23 2014-03-26 トヨタ自動車株式会社 複合正極活物質、全固体電池、および、それらの製造方法
JP5679748B2 (ja) * 2010-09-21 2015-03-04 日立造船株式会社 全固体電池の製造方法
US9306208B2 (en) 2011-01-21 2016-04-05 Zeon Corporation Manufacturing method of an electrode for electrochemical element and an electrochemical element
CN103518283A (zh) * 2011-05-19 2014-01-15 丰田自动车株式会社 锂固体电池
JP5849543B2 (ja) * 2011-09-05 2016-01-27 セイコーエプソン株式会社 リチウムイオン二次電池用電極体、リチウムイオン二次電池用電極体の製造方法およびリチウムイオン二次電池
JP5444543B2 (ja) * 2011-09-13 2014-03-19 株式会社日立製作所 リチウムイオン二次電池用電極およびリチウムイオン二次電池
JP2013073907A (ja) 2011-09-29 2013-04-22 Toyota Motor Corp 電極合材の製造方法
JP6024097B2 (ja) 2011-11-15 2016-11-09 セイコーエプソン株式会社 固体電解質層形成用組成物、固体電解質層の製造方法およびリチウムイオン二次電池の製造方法
JP5747848B2 (ja) * 2012-03-21 2015-07-15 トヨタ自動車株式会社 正極活物質層含有体の製造方法
JP5447578B2 (ja) * 2012-04-27 2014-03-19 株式会社豊田自動織機 固体電解質及び二次電池
US10128507B2 (en) 2012-12-07 2018-11-13 Samsung Electronics Co., Ltd. Lithium secondary battery
US9362546B1 (en) 2013-01-07 2016-06-07 Quantumscape Corporation Thin film lithium conducting powder material deposition from flux
US20150053889A1 (en) * 2013-08-23 2015-02-26 Brian O'Hunt Franklin High-Power and High-Energy-Density Lithium Compound Solid-State Cathode
CN105636921A (zh) 2013-10-07 2016-06-01 昆腾斯科普公司 用于锂二次电池的石榴石材料和制造和使用石榴石材料的方法
PL2903073T3 (pl) * 2013-10-24 2019-04-30 Lg Chemical Ltd Cząstki elektrolitu stałego, sposób ich wytwarzania i bateria wtórna litowa je zawierająca
JP2015097150A (ja) * 2013-11-15 2015-05-21 セイコーエプソン株式会社 電池用電極体、電極複合体およびリチウム電池
WO2015080450A1 (ko) * 2013-11-26 2015-06-04 주식회사 엘지화학 고체 전해질층을 포함하는 이차전지
DE102014205945A1 (de) * 2014-03-31 2015-10-01 Bayerische Motoren Werke Aktiengesellschaft Aktives Kathodenmaterial für sekundäre Lithium-Zellen und Batterien
WO2015151144A1 (ja) * 2014-03-31 2015-10-08 株式会社日立製作所 全固体リチウム二次電池
WO2015159331A1 (ja) * 2014-04-14 2015-10-22 株式会社日立製作所 全固体電池、全固体電池用電極及びその製造方法
JP2016025020A (ja) * 2014-07-23 2016-02-08 セイコーエプソン株式会社 電極複合体、リチウム電池および電極複合体の製造方法
US20170250405A1 (en) * 2014-07-30 2017-08-31 Central Glass Co., Ltd. Precursor of Lithium Titanate Composite Product and Method for Producing Same
JP2016058250A (ja) * 2014-09-10 2016-04-21 セイコーエプソン株式会社 リチウム電池用電極体及びリチウム電池
DE102014226396A1 (de) * 2014-12-18 2016-06-23 Bayerische Motoren Werke Aktiengesellschaft Kompositkathode und diese umfassende Lithiumionenbatterie sowie Verfahren zur Herstellung der Kompositkathode
DE102014226392A1 (de) 2014-12-18 2016-06-23 Bayerische Motoren Werke Aktiengesellschaft Flexible Primärspule für induktives Laden
DE102014226390A1 (de) * 2014-12-18 2016-06-23 Bayerische Motoren Werke Aktiengesellschaft Kompositanode und diese umfassende Lithiumionenbatterie sowie Verfahren zur Herstellung der Kompositanode
JP6868335B2 (ja) * 2015-01-12 2021-05-12 アイメック・ヴェーゼットウェーImec Vzw 固体バッテリおよび製造方法
EP3283450A4 (en) 2015-04-16 2018-10-17 QuantumScape Corporation Setter plates for solid electrolyte fabrication and methods of using the same to prepare dense solid electrolytes
US20160329594A1 (en) * 2015-05-07 2016-11-10 Ford Global Technologies, Llc Solid state battery
JP2017004673A (ja) * 2015-06-08 2017-01-05 セイコーエプソン株式会社 電極複合体、電極複合体の製造方法およびリチウム電池
CN105098227B (zh) * 2015-08-22 2018-03-16 哈尔滨工业大学 全固态锂离子电池及其制备方法
JP6572063B2 (ja) * 2015-08-26 2019-09-04 富士フイルム株式会社 全固体二次電池、全固体二次電池用電極シート及びこれらの製造方法
DE102015217749A1 (de) * 2015-09-16 2017-03-16 Robert Bosch Gmbh Beschichtetes Kathodenaktivmaterial für eine Batteriezelle
US9966630B2 (en) 2016-01-27 2018-05-08 Quantumscape Corporation Annealed garnet electrolyte separators
JP6737293B2 (ja) * 2016-02-10 2020-08-05 日立化成株式会社 導電粒子、絶縁被覆導電粒子、異方導電性接着剤、接続構造体及び導電粒子の製造方法
JP6786231B2 (ja) * 2016-03-16 2020-11-18 株式会社東芝 リチウムイオン二次電池用積層体、リチウムイオン二次電池、電池パック及び車両
EP3455892B1 (en) 2016-05-13 2024-02-07 QuantumScape Battery, Inc. Solid electrolyte separator bonding agent
US11158880B2 (en) 2016-08-05 2021-10-26 Quantumscape Battery, Inc. Translucent and transparent separators
KR101887766B1 (ko) * 2016-10-20 2018-08-13 현대자동차주식회사 활물질 복합 입자, 이를 포함하는 전극 복합체와 이들의 제조방법 및 전고체 전지
US11916200B2 (en) 2016-10-21 2024-02-27 Quantumscape Battery, Inc. Lithium-stuffed garnet electrolytes with a reduced surface defect density and methods of making and using the same
WO2018123967A1 (ja) * 2016-12-26 2018-07-05 昭和電工株式会社 全固体リチウムイオン電池
CN108630982A (zh) * 2017-03-24 2018-10-09 株式会社东芝 电极组、二次电池、电池包及车辆
US11489193B2 (en) 2017-06-23 2022-11-01 Quantumscape Battery, Inc. Lithium-stuffed garnet electrolytes with secondary phase inclusions
US10347937B2 (en) 2017-06-23 2019-07-09 Quantumscape Corporation Lithium-stuffed garnet electrolytes with secondary phase inclusions
WO2019090360A1 (en) 2017-11-06 2019-05-09 Quantumscape Corporation Lithium-stuffed garnet thin films and pellets having an oxyfluorinated and/or fluorinated surface and methods of making and using the thin films and pellets
EP3736897A4 (en) 2018-01-05 2021-03-17 Panasonic Intellectual Property Management Co., Ltd. SOLID ELECTROLYTE MATERIAL AND BATTERY
WO2019135316A1 (ja) 2018-01-05 2019-07-11 パナソニックIpマネジメント株式会社 固体電解質材料、および、電池
WO2019135347A1 (ja) 2018-01-05 2019-07-11 パナソニックIpマネジメント株式会社 固体電解質材料、および、電池
WO2019135348A1 (ja) 2018-01-05 2019-07-11 パナソニックIpマネジメント株式会社 固体電解質材料、および、電池
EP3736822A4 (en) 2018-01-05 2021-03-10 Panasonic Intellectual Property Management Co., Ltd. SOLID ELECTROLYTE AND BATTERY
CN111295720B (zh) 2018-01-05 2022-05-10 松下知识产权经营株式会社 固体电解质材料及电池
CN111344811B (zh) 2018-01-05 2022-05-10 松下知识产权经营株式会社 固体电解质材料及电池
CN111279430B (zh) * 2018-01-05 2022-01-04 松下知识产权经营株式会社 固体电解质材料及电池
JP7281672B2 (ja) 2018-01-05 2023-05-26 パナソニックIpマネジメント株式会社 電池
WO2019135320A1 (ja) 2018-01-05 2019-07-11 パナソニックIpマネジメント株式会社 固体電解質材料、および、電池
WO2019146137A1 (ja) * 2018-01-24 2019-08-01 パイオトレック株式会社 セパレーターレス導電ポリマー固体電解質二次電池
WO2019146296A1 (ja) 2018-01-26 2019-08-01 パナソニックIpマネジメント株式会社 正極材料およびそれを用いた電池
WO2019146292A1 (ja) 2018-01-26 2019-08-01 パナソニックIpマネジメント株式会社 正極材料およびそれを用いた電池
CN111587508A (zh) 2018-01-26 2020-08-25 松下知识产权经营株式会社 电池
JP7033042B2 (ja) * 2018-09-27 2022-03-09 太陽誘電株式会社 全固体電池
EP3890073A4 (en) 2018-11-29 2022-01-19 Panasonic Intellectual Property Management Co., Ltd. NEGATIVE ELECTRODE MATERIAL, BATTERY AND METHOD FOR PRODUCING BATTERY
CN112400242A (zh) 2018-11-29 2021-02-23 松下知识产权经营株式会社 负极材料以及电池
JP7117588B2 (ja) 2018-12-27 2022-08-15 パナソニックIpマネジメント株式会社 全固体電池およびその製造方法
US20200235404A1 (en) * 2019-01-17 2020-07-23 Chongqing Jinkang New Energy Automobile Co., Ltd. Graphene Coated Cathode Particles for a Lithium Ion Secondary Battery
KR102036924B1 (ko) * 2019-03-15 2019-10-25 (주)후성 육불화인산알칼리금속염 제조방법, 육불화인산알칼리금속염, 육불화인산알칼리금속염 함유 전해농축액 제조방법, 및 이차전지 제조방법
US11807543B2 (en) 2019-08-02 2023-11-07 Ut-Battelle, Llc Ionically conductive powders and films, and methods of preparation
CN112467091A (zh) * 2019-09-06 2021-03-09 青岛九环新越新能源科技股份有限公司 基于无机氧化物颗粒的电极及固态电池
US11928472B2 (en) 2020-09-26 2024-03-12 Intel Corporation Branch prefetch mechanisms for mitigating frontend branch resteers
US11588176B2 (en) * 2021-01-04 2023-02-21 Bioenno Tech LLC All solid-state lithium-ion battery incorporating electrolyte-infiltrated composite electrodes
US20230009422A1 (en) * 2021-07-07 2023-01-12 EnPower, Inc. Solid-state electrode having integrated sulfide separator

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101075691A (zh) * 2006-05-15 2007-11-21 索尼株式会社 锂离子电池
CN101099250A (zh) * 2005-01-06 2008-01-02 松下电器产业株式会社 锂离子电池用正极和使用了该正极的锂离子电池
CN101425604A (zh) * 2007-09-05 2009-05-06 精工爱普生株式会社 固体电解质材料、电池器件以及全固体锂二次电池

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5494762A (en) * 1992-01-16 1996-02-27 Nippondenso Co., Ltd. Non-aqueous electrolyte lithium secondary cell
JPH08195219A (ja) 1994-11-14 1996-07-30 Matsushita Electric Ind Co Ltd 全固体リチウム二次電池
US20020192137A1 (en) * 2001-04-30 2002-12-19 Benjamin Chaloner-Gill Phosphate powder compositions and methods for forming particles with complex anions
JP4092669B2 (ja) * 1998-04-27 2008-05-28 ソニー株式会社 固体電解質二次電池
JPH11345609A (ja) * 1998-06-02 1999-12-14 Mitsubishi Chemical Corp リチウム二次電池
JP4505886B2 (ja) * 1999-06-29 2010-07-21 ソニー株式会社 固体電解質電池
EP1244168A1 (en) * 2001-03-20 2002-09-25 Francois Sugnaux Mesoporous network electrode for electrochemical cell
JP5032721B2 (ja) * 2001-04-03 2012-09-26 富士通株式会社 導電性電極材料、電極部品、静電偏向器及び荷電粒子ビーム露光装置
JP2003173769A (ja) * 2001-12-05 2003-06-20 Japan Storage Battery Co Ltd 非水電解質二次電池
JP2004164896A (ja) * 2002-11-11 2004-06-10 Nissan Motor Co Ltd 全固体高分子電池用電極とその製造方法
US20040096745A1 (en) * 2002-11-12 2004-05-20 Matsushita Electric Industrial Co., Ltd. Lithium ion conductor and all-solid lithium ion rechargeable battery
JP2004179158A (ja) 2002-11-12 2004-06-24 Matsushita Electric Ind Co Ltd リチウムイオン伝導体および全固体リチウムイオン二次電池
EP1786052B1 (en) * 2004-08-18 2012-09-19 Central Research Institute of Electric Power Industry Organic electrolyte battery, and process for producing positive electrode sheet for use therein
JP5197918B2 (ja) * 2004-12-02 2013-05-15 株式会社オハラ 全固体リチウムイオン二次電池および固体電解質
EP1815553A2 (en) * 2004-12-02 2007-08-08 Kabushiki Kaisha Ohara All solid lithium ion secondary battery and a solid electrolyte therefor
US20060216596A1 (en) * 2005-03-25 2006-09-28 Michael Cheiky PTFE copolymer and binding for coating cathode particles
JP2006277997A (ja) 2005-03-28 2006-10-12 Idemitsu Kosan Co Ltd 高性能全固体リチウム電池
US7993782B2 (en) * 2005-07-01 2011-08-09 National Institute For Materials Science All-solid lithium battery
US7955530B2 (en) * 2005-09-06 2011-06-07 Lg Chem, Ltd. Metal composite oxides containing strontium and ionic conductors using the same
JP2007095376A (ja) * 2005-09-27 2007-04-12 Sony Corp 電池
TW200716481A (en) * 2005-10-17 2007-05-01 Lg Chemical Ltd Composite oxides comprising strontium, lantanium, yttrium and ionic conductors using the same
JP5200329B2 (ja) * 2006-03-31 2013-06-05 大日本印刷株式会社 非水電解液二次電池用電極板及びその製造方法並びに非水電解液二次電池
JP4923679B2 (ja) * 2006-03-31 2012-04-25 トヨタ自動車株式会社 積層型電池
JP2008059843A (ja) * 2006-08-30 2008-03-13 Kyoto Univ 固体電解質層及びその製造方法
JP5110565B2 (ja) * 2007-03-08 2012-12-26 トヨタ自動車株式会社 リチウム二次電池、正極活物質被覆用粒子の製造方法およびリチウム二次電池の製造方法
JP5615551B2 (ja) 2007-09-21 2014-10-29 出光興産株式会社 耐熱性正極合材及びそれを用いた全固体リチウム二次電池
JP5217562B2 (ja) * 2008-03-28 2013-06-19 住友電気工業株式会社 固体電解質膜およびリチウム電池
JP5752890B2 (ja) * 2009-03-18 2015-07-22 出光興産株式会社 正極合材及びリチウム電池
US20120028128A1 (en) * 2009-03-18 2012-02-02 Santoku Corporation All-solid-state lithium battery

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101099250A (zh) * 2005-01-06 2008-01-02 松下电器产业株式会社 锂离子电池用正极和使用了该正极的锂离子电池
CN101075691A (zh) * 2006-05-15 2007-11-21 索尼株式会社 锂离子电池
CN101425604A (zh) * 2007-09-05 2009-05-06 精工爱普生株式会社 固体电解质材料、电池器件以及全固体锂二次电池

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102280618B (zh) * 2011-07-06 2013-08-07 苏州大学 一种锂离子电池正极材料及其制备方法
CN102280618A (zh) * 2011-07-06 2011-12-14 苏州大学 一种锂离子电池正极材料及其制备方法
CN103733414A (zh) * 2011-08-11 2014-04-16 丰田自动车株式会社 硫化物系固体电池
CN103972472B (zh) * 2013-02-05 2018-04-10 精工爱普生株式会社 电极复合体的制造方法、电极复合体及锂电池
CN103972472A (zh) * 2013-02-05 2014-08-06 精工爱普生株式会社 电极复合体的制造方法、电极复合体及锂电池
CN103972474A (zh) * 2013-02-05 2014-08-06 精工爱普生株式会社 活性物质成形体的制造方法、活性物质成形体、锂电池的制造方法及锂电池
CN103972463A (zh) * 2013-02-05 2014-08-06 精工爱普生株式会社 电极复合体的制造方法
CN103972463B (zh) * 2013-02-05 2018-12-21 精工爱普生株式会社 电极复合体的制造方法
CN104835984A (zh) * 2014-02-10 2015-08-12 精工爱普生株式会社 电极复合体的制造方法、电极复合体以及电池
CN104835984B (zh) * 2014-02-10 2018-11-06 精工爱普生株式会社 电极复合体的制造方法、电极复合体以及电池
CN105470521A (zh) * 2014-09-30 2016-04-06 精工爱普生株式会社 电极复合体、电极复合体的制造方法及锂电池
CN106252591A (zh) * 2015-06-08 2016-12-21 精工爱普生株式会社 电极复合体、电极复合体的制造方法以及锂电池
US11876171B2 (en) 2017-01-24 2024-01-16 Hitachi Zosen Corporation All-solid-state battery and production method of the same
CN110226255A (zh) * 2017-01-24 2019-09-10 日立造船株式会社 全固态电池及其制造方法
CN110235284A (zh) * 2017-01-24 2019-09-13 日立造船株式会社 全固态电池用电极的制造方法以及全固态电池的制造方法
CN111095625B (zh) * 2017-09-29 2023-03-31 日本瑞翁株式会社 全固体二次电池、电极、电极用复合颗粒及其制造方法
CN111095625A (zh) * 2017-09-29 2020-05-01 日本瑞翁株式会社 全固体二次电池电极用复合颗粒及其制造方法、全固体二次电池用电极、以及全固体二次电池
CN111316485A (zh) * 2018-01-05 2020-06-19 松下知识产权经营株式会社 正极材料及电池
CN108963222A (zh) * 2018-07-13 2018-12-07 国联汽车动力电池研究院有限责任公司 固态复合电解质电极活性材料及其制备方法与应用
CN110867560A (zh) * 2018-08-28 2020-03-06 宁德时代新能源科技股份有限公司 一种负极极片及二次电池
US11721811B2 (en) 2018-08-28 2023-08-08 Contemporary Amperex Technology Co., Limited Negative electrode plate and secondary battery
CN113439351A (zh) * 2018-12-21 2021-09-24 伊利卡科技有限公司 复合材料
CN113439351B (zh) * 2018-12-21 2024-04-16 伊利卡科技有限公司 复合材料
CN113812019A (zh) * 2019-05-08 2021-12-17 株式会社Lg新能源 用于全固态二次电池的负极的预锂化方法及使用其的二次电池
CN113812019B (zh) * 2019-05-08 2024-05-31 株式会社Lg新能源 全固态二次电池及其制造方法
CN111952661A (zh) * 2020-08-14 2020-11-17 横店集团东磁股份有限公司 一种固态锂离子电池及其制备方法
CN111952661B (zh) * 2020-08-14 2022-02-25 横店集团东磁股份有限公司 一种固态锂离子电池及其制备方法

Also Published As

Publication number Publication date
US20110045355A1 (en) 2011-02-24
JP2011065982A (ja) 2011-03-31
CN104362288B (zh) 2017-04-12
US9005817B2 (en) 2015-04-14
CN104362288A (zh) 2015-02-18
US20150188124A1 (en) 2015-07-02
CN101997111B (zh) 2016-02-17

Similar Documents

Publication Publication Date Title
CN101997111B (zh) 锂电池用电极体及锂电池
US20200321604A1 (en) Sintered electrode cells for high energy density batteries and related methods thereof
US8304115B1 (en) Multi layer ceramic battery
CA2148008C (en) Lithium battery having electrode-electrolyte assembly and method for forming electrode-electrolyte assembly
JP6085085B2 (ja) リチウム蓄電池及びその製造方法
JP6070681B2 (ja) リチウム電池用電極体及びリチウム電池
CN111213261B (zh) 电极层叠体、全固态层叠型二次电池及其制造方法
DE102020133443A1 (de) Elektrodenüberlagerungskonfiguration für Batterien mit bipolaren Komponenten
JP2012503278A5 (zh)
DE102018119665A1 (de) Carbonatbasiertes elektrolytsystem zur verbesserung oder unterstützung der effizienz von elektrochemischen zellen mit lithiumhaltigen anoden
US11398646B2 (en) Method for manufacturing solid-state battery and solid-state battery
CN105934847A (zh) 电器件
CN106575796A (zh) 柔性电池
JP7100196B2 (ja) 全固体リチウムイオン二次電池とその製造方法、及び負極用積層シート
US20200106135A1 (en) Hybrid solid-state cell with a sealed anode structure
CN110034301B (zh) 可再充电电池和其制造方法
US10497962B2 (en) Electrode including an increased active material content
EP4016690A1 (en) Method for manufacturing lithium metal unit cell for all-solid-state battery, and unit cell manufactured thereby
KR101979040B1 (ko) 리튬 축전지
CN114551984A (zh) 具有厚电极的固态双极型电池组
JP5648747B2 (ja) 固体電池及びその製造方法
CN115732737A (zh) 无阳极固态电池组及电池组制造的方法
CN117154341A (zh) 用于固态电池组的聚合物阻挡件
KR20190042671A (ko) 리튬이온 배터리용 전극 재료
JP2001093535A (ja) 固体電解質電池

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant