CN112467091A - 基于无机氧化物颗粒的电极及固态电池 - Google Patents

基于无机氧化物颗粒的电极及固态电池 Download PDF

Info

Publication number
CN112467091A
CN112467091A CN201910843248.7A CN201910843248A CN112467091A CN 112467091 A CN112467091 A CN 112467091A CN 201910843248 A CN201910843248 A CN 201910843248A CN 112467091 A CN112467091 A CN 112467091A
Authority
CN
China
Prior art keywords
inorganic oxide
oxide particles
electrode
solid
oxide particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910843248.7A
Other languages
English (en)
Inventor
李长明
辛民昌
陈久存
吴超
辛程勋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qingdao Jiuhuan Xinyue New Energy Technology Co ltd
Original Assignee
Qingdao Jiuhuan Xinyue New Energy Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qingdao Jiuhuan Xinyue New Energy Technology Co ltd filed Critical Qingdao Jiuhuan Xinyue New Energy Technology Co ltd
Priority to CN201910843248.7A priority Critical patent/CN112467091A/zh
Priority to PCT/CN2020/113647 priority patent/WO2021043296A1/zh
Publication of CN112467091A publication Critical patent/CN112467091A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明公开了一种基于无机氧化物颗粒的电极,包括电极活性层,所述电极活性层内含有用于传导离子的无机氧化物颗粒Ⅰ。本发明还公开了一种基于无机氧化物颗粒的固态电池,包括正极、负极和位于所述正极与负极之间的固态电解质层,所述正极和/或负极采用如上所述的基于无机氧化物颗粒的电极。本发明基于无机氧化物颗粒的电极,通过在电极活性层内设置无机氧化物颗粒Ⅰ,无机氧化物颗粒Ⅰ可传导离子,如此,利用无机氧化物颗粒Ⅰ可将离子传导至电极活性层内部,能够有效提高电极活性层内的离子渗透率,并减小界面电阻。

Description

基于无机氧化物颗粒的电极及固态电池
技术领域
本发明属于储能设备技术领域,具体的为一种基于无机氧化物颗粒的电极及固态电池。
背景技术
固态电池是一种电池科技。与现今普遍使用的锂离子电池和锂离子聚合物电池不同的是,固态电池是一种使用固体电极和固体电解质的电池。传统的液态锂电池又被科学家们形象地称为“摇椅式电池”,摇椅的两端为电池的正负两极,中间为电解质(液态)。而锂离子就像优秀的运动员,在摇椅的两端来回奔跑,在锂离子从第一电容电极到第二电容电极再到第一电容电极的运动过程中,电池的充放电过程便完成了。固态电池的原理与之相同,只不过其电解质为固态,具有的密度以及结构可以让更多带电离子聚集在一端,传导更大的电流,进而提升电池容量。因此,同样的电量,固态电池体积将变得更小。不仅如此,固态电池中由于没有电解液,封存将会变得更加容易,在汽车等大型设备上使用时,也不需要再额外增加冷却管、电子控件等,不仅节约了成本,还能有效减轻重量。
发明内容
有鉴于此,本发明的目的在于提供一种基于无机氧化物颗粒的电极及固态电池,能够有效提高电极内的离子渗透率,并减小界面电阻。
为达到上述目的,本发明提供如下技术方案:
本发明首先提出了一种基于无机氧化物颗粒的电极,包括电极活性层,所述电极活性层内含有用于传导离子的无机氧化物颗粒Ⅰ。
进一步,所述无机氧化物颗粒Ⅰ的粒径小于等于所述电极活性层的厚度。
进一步,所述无机氧化物颗粒Ⅰ包括但不限于Li1.5Al0.5Ti1.5P3O12、Li1.5Al0.5Ge1.5P3O12、Li6.5La3Zr1.5Ta0.5O12、Li6.5La3Zr1.5Nb0.5O12、Li6.28Al0.24La3Zr2O12、Li6.40Ga0.20La3Zr2O12、Li0.45La0.55TiO3或LixPOyNz制成。
进一步,还包括电极集流体;所述无机氧化物颗粒Ⅰ背向所述电极集流体的一侧露出所述电极活性层;或,至少两颗所述无机氧化物颗粒Ⅰ相互接触在一起并组成无机氧化物颗粒团Ⅰ,所述无机氧化物颗粒团Ⅰ中,至少有一颗所述无机氧化物颗粒Ⅰ露出所述电极活性层。
本发明还提出了一种基于无机氧化物颗粒的固态电池,包括正极、负极和位于所述正极与负极之间的固态电解质层,所述正极和/或负极采用如上所述的基于无机氧化物颗粒的电极。
进一步,所述固态电解质层内含有无机氧化物颗粒Ⅱ。
进一步,所述无机氧化物颗粒Ⅱ的粒径小于等于所述固态电解质层的厚度。
进一步,所述无机氧化物颗粒Ⅱ包括但不限于Li1.5Al0.5Ti1.5P3O12、Li1.5Al0.5Ge1.5P3O12、Li6.5La3Zr1.5Ta0.5O12、Li6.5La3Zr1.5Nb0.5O12、Li6.28Al0.24La3Zr2O12、Li6.40Ga0.20La3Zr2O12、Li0.45La0.55TiO3或LixPOyNz制成。
进一步,所述无机氧化物颗粒Ⅱ的两侧均露出所述固态电解质层;或至少两颗所述无机氧化物颗粒Ⅱ相互接触在一起并组成无机氧化物颗粒团Ⅱ,所述无机氧化物颗粒团Ⅱ中,至少有两颗所述无机氧化物颗粒Ⅱ分别露出所述固态电解质层的两侧侧面。
进一步,设置在所述固态电解质层内的所述无机氧化物颗粒Ⅱ与设置在所述正极和/或负极内的所述无机氧化物颗粒Ⅰ接触在一起并实现离子传输。
本发明的有益效果在于:
本发明基于无机氧化物颗粒的电极,通过在电极活性层内设置无机氧化物颗粒Ⅰ,无机氧化物颗粒Ⅰ可传导离子,如此,利用无机氧化物颗粒Ⅰ可将离子传导至电极活性层内部,能够有效提高电极活性层内的离子渗透率,并减小界面电阻。
本发明基于无机氧化物颗粒的固态电池具有以下优点:
1)在正极和/或负极内设置无机氧化物颗粒Ⅰ,能够提高正极和/或负极内的离子渗透率、减小界面电阻;
2)在固态电解质层内设置无机氧化物颗粒Ⅱ,无机氧化物颗粒Ⅱ能够有效隔开正极和负极,如此,即可避免正极和负极接触短路,因而可以将固态电解质层做得更薄,减小内阻;
3)固态电解质层内设置的无机氧化物颗粒Ⅱ与正极、负极内设置的无机氧化物颗粒Ⅰ之间接触配合,也即无机氧化物颗粒Ⅰ与无机氧化物颗粒Ⅱ之间可形成离子传输通道,增强离子传输效率。
附图说明
为了使本发明的目的、技术方案和有益效果更加清楚,本发明提供如下附图进行说明:
图1为本发明基于无机氧化物颗粒的固态电池实施例的结构示意图;
图2为基于无机氧化物颗粒的电极的结构示意图。
附图标记说明:
1-正极;2-负极;3-固态电解质层;4-电极活性层;5-无机氧化物颗粒Ⅰ;6-无机氧化物颗粒Ⅱ;7-电极集流体。
具体实施方式
下面结合附图和具体实施例对本发明作进一步说明,以使本领域的技术人员可以更好的理解本发明并能予以实施,但所举实施例不作为对本发明的限定。
如图1所示,为本发明基于无机氧化物颗粒的固态电池实施例的结构示意图。本实施例基于无机氧化物颗粒的固态电池,包括正极1、负极2和位于正极1与负极2之间的固态电解质层3,正极1和/或负极2采用基于无机氧化物颗粒的电极制成。本实施例的正极1和负极2均采用基于无机氧化物颗粒的电极,当然,也可以仅将正极1采用基于无机氧化物颗粒的电极,以增加正极1的离子渗透率,或仅将负极2采用基于无机氧化物颗粒的电极,以增加负极2的离子渗透率。
如图2所示,本实施例基于无机氧化物颗粒的电极,包括电极活性层4,电极活性层4内含有用于传导离子的无机氧化物颗粒Ⅰ5。
进一步,无机氧化物颗粒Ⅰ5的粒径小于等于电极活性层4的厚度,本实施例的无机氧化物颗粒Ⅰ5的粒径等于电极活性层4的厚度,本实施例所有无机氧化物颗粒Ⅰ5的质量与电极活性层4的总质量之间的比值小于等于50%,以避免无机氧化物颗粒Ⅰ5过度影响电极活性层4的能量密度。
进一步,无机氧化物颗粒Ⅰ5包括但不限于Li1.5Al0.5Ti1.5P3O12、Li1.5Al0.5Ge1.5P3O12、Li6.5La3Zr1.5Ta0.5O12、Li6.5La3Zr1.5Nb0.5O12、Li6.28Al0.24La3Zr2O12、Li6.40Ga0.20La3Zr2O12、Li0.45La0.55TiO3或LixPOyNz制成。
进一步,固态电解质层3内含有无机氧化物颗粒Ⅱ6,且无机氧化物颗粒Ⅱ6的粒径小于等于固态电解质层3的厚度。本实施例的无机氧化物颗粒Ⅱ6的粒径等于固态电解质层3的厚度。由于无机氧化物颗粒Ⅱ6采用的陶瓷材料可用于传输离子,因而无机氧化物颗粒Ⅱ6的质量与固态电解质层3的总质量之间的比值可不做特别限定,固态电解质层3中采用的胶状的固态电解质材料一方面可用于传输离子,另一方面可填充无机氧化物颗粒Ⅱ6之间的空间,因而固态电解质层3由无机氧化物颗粒Ⅱ6以及胶状的固态电解质材料固化得到。
进一步,无机氧化物颗粒Ⅱ6包括但不限于Li1.5Al0.5Ti1.5P3O12、Li1.5Al0.5Ge1.5P3O12、Li6.5La3Zr1.5Ta0.5O12、Li6.5La3Zr1.5Nb0.5O12、Li6.28Al0.24La3Zr2O12、Li6.40Ga0.20La3Zr2O12、Li0.45La0.55TiO3或LixPOyNz制成。
进一步,本实施例的电极还包括电极集流体7;无机氧化物颗粒Ⅰ5背向电极集流体7的一侧露出电极活性层4;或,至少两颗无机氧化物颗粒Ⅰ5相互接触在一起并组成无机氧化物颗粒团Ⅰ,无机氧化物颗粒团Ⅰ中,至少有一颗无机氧化物颗粒Ⅰ露出电极活性层4,也即无机氧化物颗粒Ⅰ5露出电极活性层4,便于离子传导至电极活性层4内部。本实施例的无机氧化物颗粒Ⅰ5背向电极集流体7的一侧露出电极活性层4。
无机氧化物颗粒Ⅱ6的两侧均露出固态电解质层3;或至少两颗无机氧化物颗粒Ⅱ6相互接触在一起并组成无机氧化物颗粒团Ⅱ,无机氧化物颗粒团Ⅱ中,至少有两颗无机氧化物颗粒Ⅱ分别露出固态电解质层的两侧侧面。如此,离子可通过无机氧化物颗粒Ⅱ6直接在正极1和负极2之间传导,而不需要将离子在陶瓷材料与其他固态电解质材料之间转换传输,能够有效提高离子传输效率。本实施例的无机氧化物颗粒Ⅱ6的两侧均露出固态电解质层3。
进一步,设置在固态电解质层3内的无机氧化物颗粒Ⅱ6与设置在正极1和/或负极2内的无机氧化物颗粒Ⅰ5接触配合并实现离子传输。如此,正极1和负极2之间可通过无机氧化物颗粒Ⅰ5和无机氧化物颗粒Ⅱ6之间构建的离子传输通道传输离子,也可以通过其他固态电解质材料传输离子,离子传输效率更高。
本发明基于无机氧化物颗粒的固态电池,通过在电极活性层内设置无机氧化物颗粒Ⅰ,无机氧化物颗粒Ⅰ可传导离子,如此,利用无机氧化物颗粒Ⅰ可将离子传导至电极活性层内部,能够有效提高电极活性层内的离子渗透率,并减小界面电阻。
本实施例基于无机氧化物颗粒的固态电池还具有以下优点:
1)在正极和/或负极内设置无机氧化物颗粒Ⅰ,能够提高正极和/或负极内的离子渗透率、减小界面电阻;
2)在固态电解质层内设置无机氧化物颗粒Ⅱ,无机氧化物颗粒Ⅱ能够有效隔开正极和负极,如此,即可避免正极和负极接触短路,因而可以将固态电解质层做得更薄,减小内阻;
3)固态电解质层内设置的无机氧化物颗粒Ⅱ与正极、负极内设置的无机氧化物颗粒Ⅰ之间接触配合,也即无机氧化物颗粒Ⅰ与无机氧化物颗粒Ⅱ之间可形成离子传输通道,增强离子传输效率。
以上所述实施例仅是为充分说明本发明而所举的较佳的实施例,本发明的保护范围不限于此。本技术领域的技术人员在本发明基础上所作的等同替代或变换,均在本发明的保护范围之内。本发明的保护范围以权利要求书为准。

Claims (10)

1.一种基于无机氧化物颗粒的电极,包括电极活性层,其特征在于:所述电极活性层内含有用于传导离子的无机氧化物颗粒Ⅰ。
2.根据权利要求1所述的基于无机氧化物颗粒的电极,其特征在于:所述无机氧化物颗粒Ⅰ的粒径小于等于所述电极活性层的厚度。
3.根据权利要求1所述的基于无机氧化物颗粒的电极,其特征在于:所述无机氧化物颗粒Ⅰ包括但不限于Li1.5Al0.5Ti1.5P3O12、Li1.5Al0.5Ge1.5P3O12、Li6.5La3Zr1.5Ta0.5O12、Li6.5La3Zr1.5Nb0.5O12、Li6.28Al0.24La3Zr2O12、Li6.40Ga0.20La3Zr2O12、Li0.45La0.55TiO3或LixPOyNz制成。
4.根据权利要求1所述的基于无机氧化物颗粒的电极,其特征在于:还包括电极集流体;所述无机氧化物颗粒Ⅰ背向所述电极集流体的一侧露出所述电极活性层;或,至少两颗所述无机氧化物颗粒Ⅰ相互接触在一起并组成无机氧化物颗粒团Ⅰ,所述无机氧化物颗粒团Ⅰ中,至少有一颗所述无机氧化物颗粒Ⅰ露出所述电极活性层。
5.一种基于无机氧化物颗粒的固态电池,包括正极、负极和位于所述正极与负极之间的固态电解质层,其特征在于:所述正极和/或负极采用如权利要求1-4任一项所述的基于无机氧化物颗粒的电极。
6.根据权利要求5所述基于无机氧化物颗粒的固态电池,其特征在于:所述固态电解质层内含有无机氧化物颗粒Ⅱ。
7.根据权利要求5所述基于无机氧化物颗粒的固态电池,其特征在于:所述无机氧化物颗粒Ⅱ的粒径小于等于所述固态电解质层的厚度。
8.根据权利要求5所述基于无机氧化物颗粒的固态电池,其特征在于:所述无机氧化物颗粒Ⅱ包括但不限于Li1.5Al0.5Ti1.5P3O12、Li1.5Al0.5Ge1.5P3O12、Li6.5La3Zr1.5Ta0.5O12、Li6.5La3Zr1.5Nb0.5O12、Li6.28Al0.24La3Zr2O12、Li6.40Ga0.20La3Zr2O12、Li0.45La0.55TiO3或LixPOyNz制成。
9.根据权利要求5所述基于无机氧化物颗粒的固态电池,其特征在于:所述无机氧化物颗粒Ⅱ的两侧均露出所述固态电解质层;或至少两颗所述无机氧化物颗粒Ⅱ相互接触在一起并组成无机氧化物颗粒团Ⅱ,所述无机氧化物颗粒团Ⅱ中,至少有两颗所述无机氧化物颗粒Ⅱ分别露出所述固态电解质层的两侧侧面。
10.根据权利要求9所述基于无机氧化物颗粒的固态电池,其特征在于:设置在所述固态电解质层内的所述无机氧化物颗粒Ⅱ与设置在所述正极和/或负极内的所述无机氧化物颗粒Ⅰ接触在一起并实现离子传输。
CN201910843248.7A 2019-09-06 2019-09-06 基于无机氧化物颗粒的电极及固态电池 Pending CN112467091A (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201910843248.7A CN112467091A (zh) 2019-09-06 2019-09-06 基于无机氧化物颗粒的电极及固态电池
PCT/CN2020/113647 WO2021043296A1 (zh) 2019-09-06 2020-09-06 基于无机氧化物颗粒的电极及固态电池

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910843248.7A CN112467091A (zh) 2019-09-06 2019-09-06 基于无机氧化物颗粒的电极及固态电池

Publications (1)

Publication Number Publication Date
CN112467091A true CN112467091A (zh) 2021-03-09

Family

ID=74807800

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910843248.7A Pending CN112467091A (zh) 2019-09-06 2019-09-06 基于无机氧化物颗粒的电极及固态电池

Country Status (2)

Country Link
CN (1) CN112467091A (zh)
WO (1) WO2021043296A1 (zh)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011065982A (ja) * 2009-08-18 2011-03-31 Seiko Epson Corp リチウム電池用電極体及びリチウム電池
JP5720589B2 (ja) * 2012-01-26 2015-05-20 トヨタ自動車株式会社 全固体電池
US9520627B2 (en) * 2014-03-06 2016-12-13 International Business Machines Corporation Ion conducting hybrid membranes
JP6288033B2 (ja) * 2015-10-05 2018-03-07 トヨタ自動車株式会社 全固体電池
JP6685837B2 (ja) * 2016-05-30 2020-04-22 旭化成株式会社 固体電解質粒子膜の製造方法
CN107039640B (zh) * 2017-03-02 2019-09-13 清华大学 复合电极材料及其应用
CN210167439U (zh) * 2019-09-06 2020-03-20 青岛九环新越新能源科技股份有限公司 基于无机氧化物颗粒的电极及固态电池

Also Published As

Publication number Publication date
WO2021043296A1 (zh) 2021-03-11

Similar Documents

Publication Publication Date Title
CN111952663A (zh) 一种界面修饰的固态石榴石型电池及其制备方法
CN103730684B (zh) 一种高安全性全固态锂离子电池及其生产方法
CN112670483B (zh) 正极片、正极极板及固态电池
CN103247779A (zh) 一种电化学活性极片的制作方法
CN101465416A (zh) 锂离子电池用高比容量复合电极极片
CN113594468B (zh) 一种集流体及其制备方法和应用
CN210167439U (zh) 基于无机氧化物颗粒的电极及固态电池
WO2020232196A1 (en) Volume-expansion accommodable anode-free solid-state battery
CN212907803U (zh) 一种高倍率充放电的锂离子电池
CN207303231U (zh) 一种石墨烯锂离子负极极片
CN205992564U (zh) 安全型高比能量动力锂离子电池
CN206541886U (zh) 一种锂离子电池用电极极片
CN108321391A (zh) 一种新型石墨烯基全固体金属锂电池及其工作方法
CN105449294A (zh) 电池
JP2011003500A (ja) 全固体型リチウム二次電池
CN107732151A (zh) 锂离子电池负极片及其制备方法、锂离子电池
CN217035901U (zh) 一种内部串联型固态电池及固态电池组
CN207303230U (zh) 一种硅碳负极极片
CN112467091A (zh) 基于无机氧化物颗粒的电极及固态电池
CN108448110A (zh) 正极活性材料、正极材料、锂离子电池及其制备方法和应用
CN115498135A (zh) 一种具有多组电极的储能器件
CN208797099U (zh) 固态电池及电池组
CN210074028U (zh) 基于减少传质和扩散控制的多层电极及储能设备
CN205863319U (zh) 一种新型锂离子电池
CN220121901U (zh) 一种含双固体电解质的二次电池

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination