CN101997005B - 半导体器件及其制造方法 - Google Patents

半导体器件及其制造方法 Download PDF

Info

Publication number
CN101997005B
CN101997005B CN201010248853.9A CN201010248853A CN101997005B CN 101997005 B CN101997005 B CN 101997005B CN 201010248853 A CN201010248853 A CN 201010248853A CN 101997005 B CN101997005 B CN 101997005B
Authority
CN
China
Prior art keywords
layer
electrode layer
oxide semiconductor
film
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201010248853.9A
Other languages
English (en)
Other versions
CN101997005A (zh
Inventor
山崎舜平
坂田淳一郎
细羽幸
西田惠里子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Publication of CN101997005A publication Critical patent/CN101997005A/zh
Application granted granted Critical
Publication of CN101997005B publication Critical patent/CN101997005B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/45Ohmic electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1222Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or crystalline structure of the active layer
    • H01L27/1225Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or crystalline structure of the active layer with semiconductor materials not belonging to the group IV of the periodic table, e.g. InGaZnO
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/124Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or layout of the wiring layers specially adapted to the circuit arrangement, e.g. scanning lines in LCD pixel circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1255Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs integrated with passive devices, e.g. auxiliary capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/4908Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET for thin film semiconductor, e.g. gate of TFT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/7869Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising an oxide semiconductor material, e.g. zinc oxide, copper aluminium oxide, cadmium stannate

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Thin Film Transistor (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Liquid Crystal (AREA)
  • Electroluminescent Light Sources (AREA)
  • Shift Register Type Memory (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

本发明涉及半导体器件及其制造方法。本发明的一个目的是增加半导体器件的孔径比。在一个衬底上提供像素部分和驱动器电路。像素部分中的第一薄膜晶体管(TFT)包括:衬底上的栅极电极层;栅极电极层上的栅极绝缘层;栅极绝缘层上的氧化物半导体层;氧化物半导体层上的源极和漏极电极层;在栅极绝缘层、氧化物半导体层、源极和漏极电极层上的、与氧化物半导体层的一部分接触的保护性绝缘层;以及在保护性绝缘层上的像素电极层。所述像素部分具有光透射性质。此外,驱动器电路中的第二TFT的源极和漏极电极层的材料不同于第一TFT的源极和漏极电极层的材料。

Description

半导体器件及其制造方法
技术领域
本发明涉及包括氧化物半导体的半导体器件及其制造方法。
注意,在本说明书中,半导体器件指的是能够通过利用半导体性质运行的所有器件,并且诸如显示器件的光电器件、半导体电路、和电子设备全部是半导体器件。
背景技术
在半导体器件中使用光透射金属氧化物。例如,使用诸如铟锡氧化物(ITO)的导电金属氧化物(在下文中称为氧化物导体)作为在诸如液晶显示器的显示器件中需要的透明电极材料。
另外,光透射金属氧化物作为具有半导体性质的材料已经引起注意。例如,期望使用基于In-Ga-Zn-O的氧化物等作为在诸如液晶显示器的显示器件中需要的半导体材料。特别是,期望将其用于薄膜晶体管(在下文中也称为TFT)的沟道层。
可以通过低温工艺来形成包括具有半导体性质的金属氧化物(在下文中称为氧化物半导体)的TFT。因此,对氧化物半导体作为取代或超越在显示器件中使用的非晶硅的材料的期望已经提高。
此外,氧化物导体和氧化物半导体两者具有光透射性质。因此,当使用氧化物导体和氧化物半导体来制造TFT时,TFT可以具有光透射性质(例如,参见非专利文献1)。
此外,其中使用氧化物半导体的TFT具有高的场效应迁移率。因此,可以使用TFT来形成显示器件等中的驱动器电路(例如,参见非专利文献2)
【参考文献】
非专利文献1:T.Nozawa.“TransparentCircuitry”,NikkeiElectronicsNo.959,August27,2007,pp.39-52.
非专利文献2:T.Osadaetal.,“DevelopmentofDriver-IntegratedPanelusingAmorphousIn-Ga-Zn-OxideTFT,Proc.SID’09Digest,2009,pp.184-187.
发明内容
本发明一个实施例的目的是降低半导体器件的制造成本。
本发明一个实施例的目的是增加半导体器件的孔径比。
本发明一个实施例的目的是提高在半导体器件的显示部分上显示的图像分辨率。
本发明一个实施例的目的是提供一种能够高速操作的半导体器件。
本发明一个实施例是一种半导体器件,其包括在一个衬底上的驱动器电路部分和显示部分(也称为像素部分)。所述驱动器电路部分包括驱动器电路薄膜晶体管和驱动器电路布线。使用金属形成驱动器电路薄膜晶体管的源极电极(也称为源极电极层)和漏极电极(也称为漏极电极层),并使用氧化物半导体形成驱动器电路薄膜晶体管的沟道层。使用金属形成驱动器电路布线。所述显示部分包括像素薄膜晶体管和显示部分布线。使用氧化物导体形成像素薄膜晶体管的源极电极层和漏极电极层,并使用氧化物半导体形成像素薄膜晶体管的半导体层。使用氧化物导体形成所述显示部分布线。
使用具有底栅结构的反交错型薄膜晶体管作为所述像素薄膜晶体管和所述驱动器电路薄膜晶体管中的每一个。所述像素薄膜晶体管和所述驱动器电路薄膜晶体管每个是其中氧化物绝缘膜与在源极电极层与漏极电极层之间露出的半导体层的部分接触的薄膜晶体管。
注意,在非专利文献1中未公开TFT的具体制造工艺、包括在半导体器件中的另一元件(例如,电容器)的具体结构等。另外,未对在一个衬底上形成驱动器电路和光透射TFT的制造进行说明。
在根据本发明一个实施例的半导体器件中,在一个衬底上形成包括驱动器电路TFT的驱动器电路部分和包括像素TFT的显示部分。因此,可以降低半导体器件的制造成本。
在根据本发明一个实施例的半导体器件中,显示部分包括像素TFT和显示部分布线。使用氧化物导体来形成像素TFT的源极电极和漏极电极。使用氧化物半导体来形成像素TFT的半导体层。使用氧化物导体形成所述显示部分布线。换言之,在所述半导体器件中,形成像素TFT和像素布线的区域可以是开口。因此,可以增加半导体器件的孔径比。
在根据本发明一个实施例的半导体器件中,显示部分包括像素TFT和显示部分布线。使用氧化物导体形成像素TFT的源极电极和漏极电极,并使用氧化物半导体形成像素TFT的半导体层。使用氧化物导体形成所述显示部分布线。换言之,在所述半导体器件中,可以在不受像素TFT的尺寸限制的情况下确定像素大小。因此,可以提高在该半导体器件的显示部分上显示的图像的分辨率。
在根据本发明一个实施例的半导体器件中,驱动器电路部分包括驱动器电路TFT和驱动器电路布线。使用金属形成驱动器电路TFT的源极电极和漏极电极,并使用氧化物半导体形成驱动器电路TFT的沟道层。使用金属形成驱动器电路布线。换言之,在所述半导体器件中,驱动器电路包括具有高的场效应迁移率的TFT和具有低电阻的布线。因此,所述半导体器件能够高速操作。
作为在本说明书中使用的氧化物半导体,形成由InMO3(ZnO)m(m>0)表示的材料的薄膜,并制造包括该薄膜作为氧化物半导体层的薄膜晶体管。注意,M表示选自Ga、Fe、Ni、Mn、和Co中的一种或多种金属元素。例如,M可以是Ga,或者可以是Ga和除Ga之外的上述金属元素,例如,M可以是Ga和Ni或者Ga和Fe。此外,在氧化物半导体中,在某些情况下,除被包含作为M的金属元素之外,还包含诸如Fe或Ni的过渡金属元素或该过渡金属的氧化物作为杂质元素。在本说明书中,在由InMO3(ZnO)m(m>0)来表示其组成分子式的氧化物半导体层当中,将包含Ga作为M的氧化物半导体称为基于In-Ga-Zn-O的氧化物半导体,并将基于In-Ga-Zn-O的氧化物半导体的薄膜称为基于In-Ga-Zn-O的非单晶膜。
作为用于氧化物半导体层的金属氧化物,除上述的之外,还可以使用任何以下金属氧化物:基于In-Sn-Zn-O的金属氧化物;基于In-Al-Zn-O的金属氧化物;基于Sn-Ga-Zn-O的金属氧化物;基于Al-Ga-Zn-O的金属氧化物;基于Sn-Al-Zn-O的金属氧化物;基于In-Zn-O的金属氧化物;基于Sn-Zn-O的金属氧化物;基于Al-Zn-O的金属氧化物;基于In-O的金属氧化物;基于Sn-O的金属氧化物;以及基于Zn-O的金属氧化物。在使用以上金属氧化物形成的氧化物半导体层中可以包含硅的氧化物。
当在诸如氮气或稀有气体(例如,氩气或氦气)的惰性气体气氛中执行热处理的情况下,通过热处理将氧化物半导体层变成贫氧氧化物半导体层,以使其成为低电阻氧化物半导体层,即,n型(例如,n-型)氧化物半导体层。然后,通过形成将与该氧化物半导体层接触的氧化物绝缘膜,来使该氧化物半导体层处于氧过剩状态。因此,将氧化物半导体层的一部分变成高电阻氧化物半导体层,即,i型氧化物半导体层。因此,可以制造并提供包括具有良好电特性的高度可靠的薄膜晶体管的半导体器件。
当在诸如氮气或稀有气体(例如,氩气或氦气)的惰性气体气氛中执行热处理的情况下,通过热处理将氧化物半导体层变成贫氧氧化物半导体层,以使其成为低电阻氧化物半导体层,即,n型(例如,n-型或n+型)氧化物半导体层。然后,通过形成将与该氧化物半导体层接触的氧化物绝缘膜,来使该氧化物半导体层处于氧过剩状态。因此,将氧化物半导体层的一部分变成高电阻氧化物半导体层,即,i型氧化物半导体层。因此,可以制造并提供包括具有良好电特性的高度可靠的薄膜晶体管的半导体器件。
为了脱水或脱氢,在高于或等于350℃,优选地高于或等于400℃,且低于衬底的应变点的温度下,在诸如氮气或稀有气体(例如,氩气或氦气)的惰性气体气氛中,执行热处理,由此可以减少杂质,所述杂质诸如包含在氧化物半导体层中的水分。
在如下的热处理条件下对氧化物半导体层进行脱水或脱氢:即使在直至450℃对经受了脱水或脱氢的氧化物半导体层执行TDS(热脱附谱检测)也未检测到在300℃左右的水的两个峰或水的至少一个峰。因此,即使在直至450℃对包括经受了脱水或脱氢的氧化物半导体层的薄膜晶体管执行TDS,也至少未检测到在300℃左右的水的峰。
另外,重要的是,在半导体器件的制造工艺过程中不使氧化物半导体层暴露于空气,且不使水和氢混合到氧化物半导体层中。当使用通过如下获得的氧化物半导体层来形成薄膜晶体管时,薄膜晶体管的阈值电压可以是正电压,由此可以实现所谓的常闭(normally-off)开关元件:通过经由脱水或脱氢将氧化物半导体层变成低电阻氧化物半导体层(即,n型(例如n-型或n+型)氧化物半导体层,并随后通过向该低电阻氧化物半导体层供应氧以便将该层变成高电阻氧化物半导体层而成为i型氧化物半导体层,获得该氧化物半导体层。优选的是,显示器件中的沟道被形成有正阈值电压,在薄膜晶体管中该正阈值电压尽可能接近于0V。注意,如果薄膜晶体管的阈值电压是负的,则薄膜晶体管趋向于常开(normally-on);换言之,即使当栅极电压是0V时,电流也在源极电极与漏极电极之间流动。在有源矩阵显示器件中,电路中所包括的薄膜晶体管的电特性是重要的,并影响显示器件的性能。在薄膜晶体管的电特性当中,阈值电压(Vth)特别重要。当阈值电压即使在场效应迁移率是高的时候也是高的或负的时,难以控制电路。在薄膜晶体管具有高阈值电压及其阈值电压的大的绝对值时,薄膜晶体管不能执行作为TFT的开关功能,并且当在低压下驱动TFT时可能作为负载。在n沟道薄膜晶体管的情况下,优选的是只在施加正电压作为栅极电压之后才形成沟道且漏极电流流动。其中除非驱动电压升高否则不形成沟道的晶体管和其中即使当施加负电压时也形成沟道且漏极电流流动的晶体管不适合作为在电路中使用的薄膜晶体管。
另外,可以将其中温度从加热温度T降低的气氛切换到不同于该气氛的其中温度升高至加热温度T的气氛。例如,在炉中执行脱水或脱氢之后,在充满高纯度氧气或高纯度N2O气的炉中执行冷却而没有暴露于空气。
使用在通过用于脱水或脱氢的热处理减少膜中包含的水分之后在不包含水分的气氛(具有-40℃或以下优选-60℃或以下的露点)中缓慢地冷却(或冷却)的氧化物半导体膜,改善了薄膜晶体管的电特性,并实现了可以大规模生产的高性能薄膜晶体管。
在本说明书中,将在诸如氮气或稀有气体(例如,氩气或氦气)的惰性气体气氛中执行的热处理称为“用于脱水或脱氢的热处理”。在本说明书中,“脱氢”并不表示只有H2被此热处理消除。为方便起见,将H、OH-等的消除称为“脱水或脱氢”。
在诸如氮气或稀有气体(例如,氩气或氦气)的惰性气体气氛中执行热处理的情况下,通过热处理将最初为i型的氧化物半导体层变成贫氧氧化物半导体层,以使其成为低电阻氧化物半导体层,即,n型(例如,n-型或n+型)氧化物半导体层。然后,与漏极电极层重叠的区域被形成作为高电阻漏极区(也称为HRD区),其为贫氧区。
具体而言,高电阻漏极区的载流子浓度高于或等于1×1017/cm3,且至少高于沟道形成区的载流子浓度(低于1×1017/cm3)。注意,本说明书中的载流子浓度是在室温下通过霍耳效应测量获得的载流子浓度。
可以在氧化物半导体层与使用金属材料形成的漏极电极层之间形成低电阻漏极区(也称为LRN区)。具体而言,低电阻漏极区的载流子浓度高于高电阻漏极区(HRD区)的载流子浓度;例如,其高于或等于1×1020/cm3且低于或等于1×1021/cm3
然后,使经受了脱水或脱氢的氧化物半导体层的至少一部分处于氧过剩状态,从而成为高电阻氧化物半导体层,即,i型氧化物半导体层,由此形成沟道形成区。注意,作为用于使经受了脱水或脱氢的氧化物半导体层处于氧过剩状态的处理,执行以下:通过溅射法沉积与经受了脱水或脱氢的氧化物半导体层接触的氧化物绝缘膜;氧化物绝缘膜的沉积之后的热处理;氧气气氛中的热处理;或惰性气体气氛中的热处理之后的氧气气氛或极端干燥的空气(具有-40℃或以下优选-60℃或以下的露点)中的冷却处理等等。
此外,为了使经受了脱水或脱氢的氧化物半导体层的至少一部分(与栅极电极(也称为栅极电极层)重叠的一部分)充当沟道形成区,选择性地使氧化物半导体层处于氧过剩状态,从而成为高电阻氧化物半导体层,即,i型氧化物半导体层。可以以这样的方式来形成沟道形成区,即:使用Ti等的金属电极形成的源极电极层和漏极电极层被形成在经受了脱水或脱氢的氧化物半导体层上并与之接触,并且选择性地使未与源极电极层和漏极电极层重叠的暴露区域处于氧过剩状态。在选择性地使所述暴露区域处于氧过剩状态的情况下,形成与源极电极层重叠的第一高电阻漏极区和与漏极电极层重叠的第二高电阻漏极区,并且在第一高电阻漏极区与第二高电阻漏极区之间形成沟道形成区。换言之,以自对准方式在源极电极层与漏极电极层之间形成沟道形成区。
因此,可以制造并提供包括具有良好电特性的高度可靠的薄膜晶体管的半导体器件。
注意,通过在氧化物半导体层的一部分中形成与漏极电极层(和源极电极层)重叠的高电阻漏极区,可以改善形成驱动器电路时的可靠性。具体而言,通过形成高电阻漏极区,可以获得其中导电性可以从漏极电极层到沟道形成区经由高电阻漏极区而改变的结构。因此,在用连接到用于供应高电源电位VDD的布线的漏极电极层来执行操作的情况下,高电阻漏极区充当缓冲器,因此,即使当在栅极电极层与漏极电极层之间施加高电场时,也不在局部施加高电场,这引起晶体管的耐受电压的增加。
另外,通过在氧化物半导体层的一部分中形成与漏极电极层(和源极电极层)重叠的高电阻漏极区,可以减少形成驱动器电路时沟道形成区中的泄漏电流的量。具体而言,通过形成高电阻漏极区,在漏极电极层与源极电极层之间流动的晶体管的泄漏电流从漏极电极层通过漏极电极层侧上的高电阻漏极区、沟道形成区、和源极电极层侧上的高电阻漏极区流到源极电极层。在这种情况下,在沟道形成区中,从漏极电极层侧上的高电阻漏极区流到沟道形成区的泄漏电流可以集中于沟道形成区与栅极绝缘层之间的界面附近,其在晶体管关断时具有高电阻。因此,可以减少背沟道部分(沟道形成区的表面的一部分,其远离栅极电极层)中的泄漏电流的量。
此外,与源极电极层重叠的高电阻漏极区和与漏极电极层重叠的高电阻漏极区根据栅极电极层的宽度与栅极电极层的一部分重叠,而栅极绝缘层在它们之间,并且可以更有效地降低漏极电极层的边缘部分附近的电场的强度。
本发明一个实施例是一种半导体器件,其在一个衬底上包括具有第一薄膜晶体管的像素部分和具有第二薄膜晶体管的驱动器电路。所述第一薄膜晶体管包括:在所述衬底上的栅极电极层;在所述栅极电极层上的栅极绝缘层;在所述栅极绝缘层上的氧化物半导体层;在所述氧化物半导体层上的第一源极电极层和第一漏极电极层;导电层,其在第一源极电极层的一部分或第一漏极电极层的一部分上并与之接触;在所述栅极绝缘层、所述氧化物半导体层、所述第一源极电极层、和所述漏极电极层上与所述氧化物半导体层的一部分的保护性绝缘层;以及在所述保护性绝缘层上的像素电极层,其被电连接到所述导电层。所述第一薄膜晶体管的所述栅极电极层、所述栅极绝缘层、所述氧化物半导体层、所述第一源极电极层、所述第一漏极电极层、所述保护性绝缘层、和所述像素电极层具有光透射性质。此外,第二薄膜晶体管的第二源极电极层和第二漏极电极层的材料不同于第一薄膜晶体管的第一源极电极层和第一漏极电极层的材料,且是具有比第一薄膜晶体管的第一源极电极层和第一漏极电极层低的电阻的导电材料。
注意,在上述结构中,第二薄膜晶体管的源极电极层和漏极电极层中的每一个包括包含选自Al、Cr、Cu、Ta、Ti、Mo、和W的元素作为其主要组分的材料,或由包含上述元素的合金形成的堆叠膜。此外,第一薄膜晶体管的导电层包括包含选自Al、Cr、Cu、Ta、Ti、Mo、和W的元素作为其主要组分的材料,或由包含上述元素的合金形成的堆叠膜。
此外,在上述结构中,第一薄膜晶体管的源极电极层、漏极电极层、和像素电极层中的每一个可以包含氧化铟、氧化铟-氧化锡合金、氧化铟-氧化锌合金、或氧化锌。
在以上结构中,所述半导体器件还可以在同一衬底上包括电容器部分。另外,所述电容器部分可以具有电容器布线和与电容器布线重叠的电容器电极层,并且所述电容器布线和所述电容器电极层可以具有光透射性质。
另外,所述半导体器件还可以在第二薄膜晶体管的保护性绝缘层上包括与所述栅极电极层重叠的导电层。
在上述结构中,可以在第二薄膜晶体管的氧化物半导体层与源极电极层之间和在氧化物半导体层与漏极电极层之间提供低电阻漏极区,并且该低电阻漏极区可以包含与第一薄膜晶体管的源极电极层和漏极电极层相同的材料。
在上述结构中,与第二薄膜晶体管的源极电极层或漏极电极层重叠的氧化物半导体层的低电阻漏极区可以具有比第二薄膜晶体管的氧化物半导体层的沟道形成区低的电阻。
本发明的另一实施例是一种半导体器件的制造方法,该半导体器件在一个衬底上包括具有第一薄膜晶体管的像素部分和具有第二薄膜晶体管的驱动器电路。所述制造方法包括如下步骤:通过在衬底上形成光透射导电膜并在第一光刻步骤中选择性地去除该光透射导电膜,来形成作为第一薄膜晶体管的栅极电极层的第一栅极电极层和作为第二薄膜晶体管的栅极电极层的第二栅极电极层;在第一栅极电极层和第二栅极电极层上形成栅极绝缘层;通过在所述栅极绝缘层上形成氧化物半导体膜并在第二光刻步骤中选择性地去除氧化物半导体膜,来形成作为岛状氧化物半导体层的第一氧化物半导体层和第二氧化物半导体;对第一氧化物半导体层和第二氧化物半导体层进行脱水或脱氢;通过在经受了脱水或脱氢的第一氧化物半导体层和经受了脱水或脱氢的第二氧化物半导体层上依次形成氧化物导电膜和导电膜,并在第三光刻步骤和第四光刻步骤中选择性地去除所述氧化物导电膜和所述导电膜,而在第一氧化物半导体层上形成作为第一薄膜晶体管的源极电极层和漏极电极层的第一源极电极层和第一漏极电极层;通过形成与第一源极电极层的一部分或第一漏极电极层的一部分接触的导电层、在第二氧化物半导体层上的一对低电阻漏极区、和在该对低电阻漏极区上的一对导电层,来形成作为第二薄膜晶体管的源极电极层和漏极电极层的第二源极电极层和第二漏极电极层;在所述栅极绝缘层、第一氧化物半导体层、第二氧化物半导体层、第一源极电极层、第一漏极电极层、与第一源极电极层的一部分或第一漏极电极层的一部分接触的所述导电层、第二源极电极层、和第二漏极电极层上形成与第一氧化物半导体层的一部分和第二氧化物半导体层的一部分接触的保护性绝缘层;以及在所述保护性绝缘层上形成像素电极层。
本发明的另一实施例是一种半导体器件的制造方法,该半导体器件在一个衬底上包括具有第一薄膜晶体管的像素部分和具有第二薄膜晶体管的驱动器电路。所述制造方法包括如下步骤:通过在衬底上形成光透射导电膜并在第一光刻步骤中选择性地去除该光透射导电膜,来形成作为第一薄膜晶体管的栅极电极层的第一栅极电极层和作为第二薄膜晶体管的栅极电极层的第二栅极电极层;在第一栅极电极层和第二栅极电极层上形成栅极绝缘层;在所述栅极绝缘层上形成氧化物半导体膜;对所述氧化物半导体膜进行脱水或脱氢;通过在经受了脱水或脱氢的所述氧化物半导体膜上依次形成氧化物导电膜和导电膜,并在第二光刻步骤和第三光刻步骤中选择性地去除所述氧化物半导体膜、所述氧化物导电膜和所述导电膜,而在第一氧化物半导体层上形成作为第一薄膜晶体管的源极电极层和漏极电极层的第一源极电极层和第一漏极电极层,其;通过形成与第一源极电极层的一部分或第一漏极电极层的一部分接触的导电层、在第二氧化物半导体层上的一对低电阻漏极区、和在该对低电阻漏极区上的一对导电层,来形成作为第二薄膜晶体管的源极电极层和漏极电极层的第二源极电极层和第二漏极电极层;在所述栅极绝缘层、第一氧化物半导体层、第二氧化物半导体层、第一源极电极层、第一漏极电极层、与第一源极电极层的一部分或第一漏极电极层的一部分接触的所述导电层、第二源极电极层、和第二漏极电极层上,形成与第一氧化物半导体层的一部分和第二氧化物半导体层的一部分接触的保护性绝缘层;以及在所述保护性绝缘层上形成像素电极层。
在本发明一个实施例中,可以在第三光刻步骤中使用多色调掩模。
在本说明书中,“膜”意味着指其被形成在整个表面上且未被图案化。另外,“层”意味着指其被利用抗蚀剂掩模等图案化成期望形状。注意,“膜”与“层”之间的此区别是为方便起见,并且在某些情况下可以无任何差别地使用它们。并且,至于堆叠膜的每层,在某些情况下可以无任何差别地使用膜和层。
注意,在本说明书中为方便起见使用诸如第一和第二的序数,并且其不表示步骤的顺序和层的堆叠顺序。另外,本说明书中的序数并不表示描述本发明的特定名称。
作为包括驱动器电路的显示器件,除液晶显示器件之外,还给出其中使用发光元件的发光显示器件和其中使用电泳显示元件的显示器件(其也称为“电子纸”)。
在其中使用发光元件的发光显示器件中,像素部分包括多个薄膜晶体管。像素部分包括这样的区域,在该区域中一个薄膜晶体管的栅极电极被连接到另一薄膜晶体管的源极布线(也称为源极布线层)或漏极布线(也称为漏极布线层)。另外,在其中使用发光元件的发光显示器件的驱动器电路中,存在这样的区域,在该区域中薄膜晶体管的栅极电极被连接到该薄膜晶体管的源极布线或漏极布线。
可以制造并提供具有稳定电特性的薄膜晶体管。因此,可以提供包括具有良好电特性的高度可靠的薄膜晶体管的半导体器件。
附图说明
在附图中:
图1A1、1A2、1B1、1B2、1C1、和1C2示出半导体器件;
图2A至2E示出用于制造半导体器件的方法;
图3A至3E示出用于制造半导体器件的方法;
图4A至4C示出用于制造半导体器件的方法;
图5A至5E示出用于制造半导体器件的方法;
图6A1、6A2、6B1、6B2、6C1、和6C2示出半导体器件;
图7A和7B每个都示出半导体器件;
图8A和8B每个都示出半导体件;
图9A和9B每个都示出半导体件;
图10A1、10A2、和10B示出半导体器件;
图11A和11B示出半导体器件;
图12示出半导体器件的像素等效电路;
图13A至13C每个都示出半导体器件;
图14A和14B是每个都示出半导体器件的框图;
图15A和15B分别是信号线驱动器电路的电路图和时序图;
图16A至16C每个都示出移位寄存器的配置;
图17A和17B分别是移位寄存器的电路图和时序图;
图18示出半导体器件;
图19示出半导体器件;
图20是示出电子书阅读器的实例的外部视图;
图21A和21B分别是示出电视设备和数字相框的示例的外部视图;
图22A和22B是每个都示出游戏机的示例的外部视图;
图23A和23B分别是示出便携式计算机和移动电话的示例的外部视图;
图24示出半导体器件;
图25示出半导体器件;
图26示出半导体器件;
图27示出半导体器件;
图28示出半导体器件;
图29示出半导体器件;
图30示出半导体器件;
图31示出半导体器件;
图32示出半导体器件;
图33示出半导体器件;
图34示出半导体器件;
图35示出半导体器件;
图36示出半导体器件;
图37示出半导体器件;
图38A至38E示出用于制造半导体器件的方法;
图39A至39E示出用于制造半导体器件的方法;
图40A至40C示出用于制造半导体器件的方法;
图41A和41B每个都示出半导体件;
图42A和42B每个都示出半导体器件;
图43A和43B每个都示出半导体器件;
图44A和44B每个都示出半导体器件;以及
图45示出半导体器件。
具体实施方式
将参照附图来详细描述诸实施例。注意,本发明不限于以下说明,本领域的技术人员可以很容易理解,可以进行方式和细节的多种修改而不脱离本发明的精神和范围。因此,不应将本发明理解为限于以下实施例的说明。在下文将给出的结构中,在不同的图中用相同的附图标记来表示相同部分或具有类似功能的部分,并将不重复对其说明。
(实施例1)
在本实施例中,将参照图1A1至1C2、图2A至2E、图3A至3E、和图41A和41B来描述半导体器件和用于制造半导体器件的方法。在图1B1和1B2中,示出在一个衬底上形成的两个薄膜晶体管的横截面结构作为示例。在图1B1和1B2中示出的薄膜晶体管410和薄膜晶体管420每个是一种底栅晶体管。
图1A1是在驱动器电路中提供的薄膜晶体管410的平面图,而图1B1是沿着图1A1中的线C1-C2截取的横截面图。此外,图1C1是沿图1A1中的线C3-C4截取的横截面图。
在具有绝缘表面的衬底400上,在驱动器电路中提供的薄膜晶体管410包括:栅极电极层411;第一栅极绝缘层402a;第二栅极绝缘层402b;具有至少沟道形成区413、高电阻漏极区414a和高电阻漏极区414b的氧化物半导体层412;低电阻漏极区408a和低电阻漏极区408b;源极电极层415a;以及漏极电极层415b。此外,提供了覆盖薄膜晶体管410并与沟道形成区413接触的氧化物绝缘膜416。
注意,高电阻漏极区具有比沟道形成区小的电阻值,并且低电阻漏极区具有比高电阻漏极区小的电阻值。高电阻漏极区414a被以自对准方式形成为与低电阻漏极区408a的底表面接触。高电阻漏极区414b被以自对准方式形成为与低电阻漏极区408b的底表面接触。此外,沟道形成区413与氧化物绝缘膜416接触,并具有比高电阻漏极区414a和高电阻漏极区414b高的电阻;亦即,沟道形成区413是i型区。
优选的是,将金属材料用于源极电极层415a和漏极电极层415b,以使得薄膜晶体管410的布线具有减小的电阻。
薄膜晶体管410的栅极电极层411可形成为具有光透射导电膜的单层结构或叠层结构,或者具有光透射导电层和包含金属材料的导电层的叠层结构。
另外,当在液晶显示器件中在一个衬底上形成像素和驱动器电路时,在驱动器电路中,仅在用于构成诸如反相器(inverter)电路、与非(NAND)电路、或非(NOR)电路、或锁存器电路的逻辑门的薄膜晶体管或用于构成诸如读出放大器(senseamplifier)、恒压生成电路、或者VCO的模拟电路的薄膜晶体管中的源极与漏极电极之间施加正极性或负极性。因此,可以将高电阻漏极区414a和414b之一(其要求高耐受电压)设计为具有比另一个大的宽度。替代地,可以增加高电阻漏极区414a和414b的与栅极电极层411重叠的部分的宽度。
注意,虽然描述了具有单栅极结构的薄膜晶体管作为在驱动器电路中提供的薄膜晶体管410,但必要时,可以替代地形成具有其中包括多个沟道形成区的多栅极结构的薄膜晶体管。
通过提供低电阻漏极区408a和低电阻漏极区408b,薄膜晶体管410还可以在热量方面比具有肖特基结的薄膜晶体管更稳定地工作。以这种方式,通过有意提供具有比氧化物半导体层高的载流子浓度的低电阻漏极区来形成欧姆接触。
导电层417被形成在沟道形成区413上,以便与沟道形成区413重叠。当导电层417和栅极电极层411被电连接并被设置为相同电位时,可以从氧化物半导体层412之上和之下的栅极电极层411和导电层417两者向氧化物半导体层412施加栅极电压。在栅极电极层411和导电层417具有不同电位的情况下,例如,其中之一具有固定电位、GND电位、或0V,则可以控制TFT的电特性,诸如阈值电压。
此外,在导电层417与氧化物绝缘膜416之间提供保护性绝缘层403。
此外,保护性绝缘层403优选与设置在保护性绝缘层403下面的第一栅极绝缘层402a或充当基底(base)的绝缘膜接触,并阻挡诸如水分、氢离子、OH-的杂质从衬底的侧表面进入。以上结构在将氮化硅膜用于与保护性绝缘层403接触的第一栅极绝缘层402a或充当基底的绝缘膜时特别有效。
图1A2是设置在像素中的薄膜晶体管420的平面图,并且图1B2是沿着图1A2中的线D1-D2截取的横截面图。图1C2是沿图1A2中的线D3-D4截取的横截面图。
在具有绝缘表面的衬底400上,设置在像素中的薄膜晶体管420包括:栅极电极层421;第一栅极绝缘层402a;第二栅极绝缘层402b;具有至少沟道形成区423、高电阻漏极区424a和高电阻漏极区424b的氧化物半导体层422;源极电极层409a;以及漏极电极层409b。提供了覆盖薄膜晶体管420并与氧化物半导体层422的上表面接触的氧化物绝缘膜416。
注意,在液晶显示器件中执行AC驱动以防止液晶的劣化。通过AC驱动,以一定的时间间隔使施加于像素电极层的信号电位的极性反转为负的或正的。在连接到像素层的薄膜晶体管中,一对电极之一依次充当源极电极层和漏极电极层。在本说明书中,为方便起见,将像素中的薄膜晶体管的一对电极之一称为源极电极层并将另一个称为漏极电极层;然而,实际上,通过AC驱动所述电极中的一个依次充当源极电极层和漏极电极层。此外,设置在像素中的薄膜晶体管420的栅极电极层可以具有比在驱动器电路中提供的薄膜晶体管420的小的宽度,以使得可以减小漏电流。另外,可以将设置在像素中的薄膜晶体管420的栅极电极层设计为不与源极电极层或漏极电极层重叠,以使得可以减小泄漏电流。
在漏极电极层409b的一部分上提供导电层426,以使得像素电极层427经由导电层426电连接到漏极电极层409b。通过在漏极电极层上提供导电层426,可以减小接触电阻。
以自对准方式形成高电阻漏极区424a,其与源极电极层409a的底表面接触。以自对准方式形成高电阻漏极区424b,其与漏极电极层409b的底表面接触。此外,沟道形成区423与氧化物绝缘膜416接触,并具有高于高电阻漏极区424a和高电阻漏极区424b的电阻;亦即,沟道形成区423是i型区。
在形成氧化物半导体膜之后,执行用于减少作为杂质的水分等的热处理(用于脱水或脱氢的热处理)。当在用于脱水或脱氢的热处理之后形成与氧化物半导体层接触的氧化物绝缘膜,并执行缓慢冷却时,氧化物半导体层的载流子浓度降低,这引起薄膜晶体管420的电特性和可靠性的改善。
注意,氧化物半导体层412形成在源极电极层415a和漏极电极层415b下面并部分地与之重叠。氧化物半导体层412与栅极电极层411重叠,而第一栅极绝缘层402a和第二栅极绝缘层402b在其之间。还注意,氧化物半导体层422形成在源极电极层409a和漏极电极层409b下面并部分地与之重叠。此外,氧化物半导体层422与栅极电极层421重叠,而第一栅极绝缘层402a和第二栅极绝缘层402b在其之间。
为了实现具有高孔径比的显示器件,使用光透射导电膜来形成源极电极层409a和漏极电极层409b,以使得薄膜晶体管420可以充当光透射晶体管。此外,还使用光透射导电膜形成薄膜晶体管420的栅极电极层421。
在提供了薄膜晶体管420的像素中,将透射可见光的导电膜用于像素电极层427、另一电极层(诸如电容器电极层)、或另一布线层(诸如电容器布线层),由此实现具有高孔径比的显示器件。当然,优选的是,还将透射可见光的膜用于第一栅极绝缘层402a、第二栅极绝缘层402b、或氧化物绝缘膜416。
另外,保护性绝缘层403和平坦化绝缘层404被堆叠在像素电极层427与氧化物绝缘膜416之间。
在本说明书中,透射可见光的膜指的是具有实现75%至100%可见光透射率的厚度的膜。当该膜具有导电性时,也将其称为透明导电膜。对于用于栅极电极层、源极电极层、漏极电极层、像素电极层、另一电极层、或另一布线层的金属氧化物,可以使得对于可见光是半透明的导电膜。当导电膜对于可见光是半透明时,其具有50%至75%的可见光透射率。
在下文中,参照图2A至2E和图3A至3E来描述在一个衬底上制造薄膜晶体管410和薄膜晶体管420的工艺过程。
首先,在具有绝缘表面的衬底400上形成光透射导电膜,并随后在第一光刻步骤中形成栅极电极层411和421。此外,在像素部分中,使用与栅极电极层411和421相同的材料在同一第一光刻步骤中形成电容器布线(也称为电容器布线层)。在不仅在像素部分中而且在驱动器电路中也需要电容器的情况下,在驱动器电路中也形成电容器布线。注意,可以通过喷墨法来形成抗蚀剂掩模。当用喷墨法来形成抗蚀剂掩模时,不使用光掩模,这导致制造成本的降低。
虽然对于可以用作具有绝缘表面的衬底400的衬底没有特别限制,但衬底对后来将执行的热处理至少具有足够的耐热性是必要的。作为具有绝缘表面的衬底400,可以使用由钡硼硅酸盐玻璃、或铝硼硅酸盐玻璃等形成的玻璃衬底。
作为具有绝缘表面的衬底400,当要执行的热处理的温度高时,可以使用其应变点高于或等于730℃的玻璃衬底。此外,例如,使用诸如铝硅酸盐玻璃、铝硼硅酸盐玻璃、或钡硼硅酸盐玻璃的玻璃材料,作为衬底400的材料。注意,通过包含比硼酸大的量的氧化钡(BaO),玻璃衬底具有耐热性且更具有实际用途。因此,优选地使用包含BaO和B2O3使得BaO的量大于B2O3的量的玻璃衬底。
注意,作为玻璃衬底400的替代,可以使用由绝缘体形成的衬底,诸如陶瓷衬底、石英衬底、或蓝宝石衬底。替代地,可以使用结晶玻璃等。
可以在衬底400与栅极电极层411和421之间提供充当基底膜的绝缘膜。基底膜具有防止杂质元素从衬底400扩散的功能,并且可以被形成为具有使用氮化硅膜、氧化硅膜、氮氧化硅膜、和氧氮化硅膜中的一个或多个的单层或叠层结构。
作为栅极电极层411和421的材料,可以采用诸如以下材料的透射可见光的导电材料:基于In-Sn-Zn-O的金属氧化物;基于In-Al-Zn-O的金属氧化物;基于Sn-Ga-Zn-O的金属氧化物;基于Al-Ga-Zn-O的金属氧化物;基于Sn-Al-Zn-O的金属氧化物;基于In-Zn-O的金属氧化物;基于Sn-Zn-O的金属氧化物;基于Al-Zn-O的金属氧化物;基于In-O的金属氧化物;基于Sn-O的金属氧化物;基于Zn-O的金属氧化物;以及基于In-Sn-O的金属氧化物。作为用于栅极电极层411和421的金属氧化物膜的沉积方法,使用溅射法、真空蒸发法(或电子束蒸发法等)、电弧放电离子镀法、或喷射法。在使用溅射法的情况下,可以使用包含2至10重量百分比(含端值)的SiO2的靶来执行膜沉积,并且在所述金属氧化物膜中可以包含抑制结晶的SiOx(x>0)。以这种方式,可以防止金属氧化物膜在后来的步骤中执行的用于脱水或脱氢的热处理时结晶。
利用以下来形成栅极电极层411和421:选自Al、Cr、Ta、Ti、Mo、和W的元素,包含任意这些元素的合金,或包含任意这些元素的组合的合金膜等。
可以适当地将栅极电极层411和421的厚度选择为在50nm至300nm的范围内。在本实施例中,使用光透射导电材料来形成栅极电极层411和421;然而,本发明不限于此。例如,可以将设置在驱动器电路中的晶体管的栅极电极层形成为具有包含光透射导电材料的膜和金属膜的叠层结构,并且可以使用包含光透射导电材料的膜来形成设置在像素部分中的晶体管的栅极电极层。
在栅极电极层411和421上形成栅极绝缘层402。
可以通过等离子体CVD法或溅射法等使用任意的氧化硅膜、氮化硅膜、氧氮化硅膜、氮氧化硅膜、氧化铝膜、和氧氮化铝膜的单层或叠层来形成栅极绝缘层402。例如,可以使用SiH4、氧气、和氮气作为成膜气体通过等离子体CVD法来形成氧氮化硅膜。替代地,例如,可以使用掺杂有硼的硅靶来形成氧化硅膜,由此可以获得对水或氢较高的阻挡性。栅极绝缘层402被形成为大于或等于100nm且小于或等于500nm的厚度;例如,在栅极绝缘层402具有叠层结构的情况下,在其上面堆叠具有大于或等于50nm且小于或等于200nm的厚度的第一栅极绝缘层和具有大于或等于5nm且小于或等于300nm的厚度的第二栅极绝缘层。
在本实施例中,栅极绝缘层402是具有大于或等于50nm且小于或等于200nm的厚度的第一栅极绝缘层402a和具有大于或等于50nm且小于或等于300nm的厚度的第二栅极绝缘层402b的堆叠。作为第一栅极绝缘层402a,使用具有100nm的厚度的氮化硅膜或氮氧化硅膜。作为第二栅极绝缘层402b,使用具有100nm的厚度的氧氮化硅膜。
然后,在第二栅极绝缘层402b上将氧化物半导体膜430形成为大于或等于2nm且小于或等于200nm的厚度。为了即使在形成氧化物半导体膜430之后的用于脱水或脱氢的热处理之后也是非晶的,该氧化物半导体膜优选地具有小于或等于50nm的小的厚度。通过使氧化物半导体膜的厚度小,可以在形成氧化物半导体膜之后执行热处理时抑制氧化物半导体膜中的结晶。
注意,在通过溅射法形成氧化物半导体膜430之前,优选地通过其中引入氩气并产生等离子体的反向溅射(reversesputtering)来去除附着于第二栅极绝缘层402b的表面的灰尘。反向溅射指的是这样的方法,其中:在不向靶侧施加电压的情况下,在氩气气氛中将RF电源用于向衬底施加电压,以在衬底的附近产生等离子体而使表面改性。注意,作为氩气氛的替代,可以使用氮气、氦气、氧气等。
可以使用以下来形成氧化物半导体膜430:基于In-Sn-Zn-O的非单晶膜、基于In-Sn-Zn-O的材料、基于In-Al-Zn-O的材料、基于Sn-Ga-Zn-O的材料、基于Al-Ga-Zn-O的材料、基于Sn-Al-Zn-O的材料、基于In-Zn-O的材料、基于Sn-Zn-O的材料、基于Al-Zn-O的材料、基于In-O的材料、基于Sn-O的材料、基于Zn-O的材料、或基于In-Sn-O的材料。在本实施例中,利用基于In-Ga-Zn-O的氧化物半导体靶通过溅射法来形成氧化物半导体膜430。可以在稀有气体(通常为氩气)气氛、氧气气氛、稀有气体(通常为氩气)和氧气的气氛中通过溅射法来形成氧化物半导体膜430。在使用溅射法的情况下,可以使用包含2至10重量百分比(含端值)的SiO2的靶来执行膜沉积,并且在氧化物半导体膜430中可以包含抑制结晶的SiOx(x>0)。以这种方式,可以防止氧化物半导体膜430在后来的步骤中执行的用于脱水或脱氢的热处理时结晶。
这里,使用包含In、Ga、和Zn的氧化物半导体靶(In2O3∶Ga2O3∶ZnO=1∶1∶1[mol%]、In∶Ga∶Zn=1∶1∶0.5[at%]、且In∶Ga∶Zn=1∶1∶4[at%])来执行膜沉积。如下设置沉积条件:衬底与靶之间的距离是100mm,压力是0.2Pa,直流(DC)电源是0.5kW,并且气氛是氩气和氧气的混合气氛(氩气∶氧气=30sccm∶20sccm且氧气流率(flowrate)是40%)。注意,脉冲直流(DC)电源是优选的,因为可以减少灰尘且膜厚度可以是均匀的。基于In-Ga-Zn-O的非单晶膜的厚度大于或等于5nm且小于或等于200nm。
在本实施例中,作为氧化物半导体膜430,通过溅射法,使用基于In-Ga-Zn-O的氧化物半导体靶来形成具有20nm的厚度的基于In-Ga-Zn-O的非单晶膜。
溅射法的示例包括其中使用高频电源作为溅射功率源的RF溅射法、DC溅射法、和其中以脉冲的方式施加偏置的脉冲DC溅射法。在形成绝缘膜的情况下主要使用RF溅射法,并且在形成金属膜的情况下主要使用DC溅射法。
另外,还存在其中可以设置不同材料的多个靶的多源溅射装置。用该多源溅射装置,可以在同一腔室中形成不同材料的膜以将其堆叠,或者可以在同一腔室中同时通过放电形成具有多种材料的膜。
另外,存在如下的溅射装置:在腔室内部提供有磁体系统并用于磁控管溅射法的溅射装置;和其中用于使用利用微波产生的等离子体而不使用辉光放电的ECR溅射法的溅射装置。
此外,作为通过溅射的沉积非那根法,还存在其中使靶物质和溅射气体组分在沉积期间在化学上相互反应而形成其化合物薄膜的反应溅射法和其中在沉积期间也向衬底施加电压的偏置溅射法。
接下来,在第二光刻步骤中将氧化物半导体膜430处理成岛状氧化物半导体层。可以通过喷墨法来形成用于形成岛状氧化物半导体层的抗蚀剂掩模。当用喷墨法来形成抗蚀剂掩模时,不使用光掩模,这导致制造成本的降低。
接下来,对第一氧化物半导体层进行脱水或脱氢。用于脱水或脱氢的第一热处理的温度高于或等于400℃且低于衬底的应变点,例如,高于或等于400℃且低于或等于700℃。优选温度高于或等于425℃。注意,虽然当温度低于425℃时,优选地执行热处理长于一小时,但是当热处理的温度高于或等于425℃时,可以执行热处理一小时或更短。这里,以这样的方式来获得氧化物半导体层431和氧化物半导体层432:将衬底引入作为一种热处理装置的电炉中;在氮气氛中对氧化物半导体层进行热处理;并且防止层暴露于空气,并从而防止水和氢进入氧化物半导体层(参见图2B)。在本实施例中,在一个炉中的氮气气氛中执行从对氧化物半导体层进行脱水或脱氢的加热温度T至低到足以防止水进入的温度(尤其是低于加热温度T100℃以上的温度)的缓慢冷却。本发明不限于氮气气氛,并且替代地,可以在诸如氦气、氖气、氩气等稀有气体气氛中执行脱水或脱氢。
注意,在第一热处理中,优选的是在氮气或诸如氦气、氖气、或氩气的稀有气体的气氛中不包含水、氢气等。替代地,优选的是被引入热处理装置的氮气或诸如氦气、氖气、或氩气的稀有气体具有4N(99.99%)或以上更优选地6N(99.9999%)或以上的纯度;亦即,将杂质浓度设置为20ppm或更低,更优选地1ppm或更低。
注意,在某些情况下,根据第一热处理的条件或氧化物半导体层的材料,使氧化物半导体层结晶并变成微晶膜或多晶膜。
替代地,可以对尚未被处理成岛状氧化物半导体层的氧化物半导体膜430执行第一热处理。在这种情况下,在第一热处理之后,将衬底从热处理装置中取出并执行光刻步骤。
在形成氧化物半导体膜340之前,可以在惰性气体气氛(例如氮气、氦气、氖气、氩气)或氧气氛中执行热处理(在高于或等于400℃且低于衬底的应变点的温度),从而去除包含在栅极绝缘层402中的诸如氢和水的杂质。
接下来,在氧化物半导体层431和432及第二栅极绝缘层402b上形成氧化物导电膜,并随后在氧化物导电膜上形成金属导电膜。然后,在第三光刻步骤中,形成抗蚀剂掩模433a和抗蚀剂掩模433b并执行选择性蚀刻,以便形成氧化物导电层406、氧化物导电层407、导电层434、和导电层435(参见图2C)。
作为氧化物导电膜的材料,可以采用诸如以下材料的透射可见光的导电材料:基于In-Sn-Zn-O的金属氧化物;基于In-Al-Zn-O的金属氧化物;基于Sn-Ga-Zn-O的金属氧化物;基于Al-Ga-Zn-O的金属氧化物;基于Sn-Al-Zn-O的金属氧化物;基于In-Zn-O的金属氧化物;基于Sn-Zn-O的金属氧化物;基于Al-Zn-O的金属氧化物;基于In-O的金属氧化物;基于Sn-O的金属氧化物;基于Zn-O的金属氧化物;以及基于In-Sn-O的金属氧化物。适当地将氧化物导电膜的厚度选择为在50nm至300nm的范围内。在使用溅射法的情况下,可以使用包含2至10重量百分比(含端值)的SiO2的靶来执行膜沉积,并且在所述氧化物导电膜中可以包含抑制结晶的SiOx(x>0)。以这种方式,可以防止氧化物导电膜在后来的步骤中执行的第二热处理时结晶。
作为金属导电膜的材料,存在选自Al、Cr、Cu、Ta、Ti、Mo、和W的元素,包含这些元素中的任意作为组分的合金,以组合方式包含这些元素的合金等。金属导电膜优选地具有其中在钛层上堆叠铝层并在铝层上堆叠钛层的三层结构、或其中在钼层上堆叠铝层并在铝层上堆叠钼层的三层结构。不用说,金属导电膜可以具有单层结构、双层结构、或者包括四个或更多个层的叠层结构。
可以通过喷墨法来形成用于形成导电层434和435的抗蚀剂掩模。当通过喷墨法来形成抗蚀剂掩模时,不使用光掩模,这导致制造成本的降低。
然后,在去除抗蚀剂掩模433a和433b,在第四光刻步骤中,形成抗蚀剂掩模436a和抗蚀剂掩模436b,且执行选择性蚀刻以便形成源极电极层415a和漏极电极层415b、低电阻漏极区408a、低电阻漏极区408b、源极电极层409a和漏极电极层409b、导电层425a、导电层425b(看图2D)。注意,可以通过喷墨法来形成用于第四光刻步骤的抗蚀剂掩模。当通过喷墨法来形成抗蚀剂掩模时,不使用光掩模,这导致制造成本的降低。
通过利用氧化物半导体层431和432的蚀刻速率与氧化物导电层406和407的蚀刻速率之间的间隙,执行蚀刻处理以便将氧化物导电层406和407中的每一个划分并形成沟道区。氧化物导电层406和407的蚀刻速率高于氧化物半导体层431和432的蚀刻速率,这导致氧化物导电层406和407对氧化物半导体层431和432的选择性蚀刻。
优选的是,氧化物导电层406和407是不包含氧化铟但包含氧化锌作为组分的层。作为可以用于氧化物导电层406和407的材料的示例,存在氧化锌、氧化锌铝、氧氮化锌铝、氧化锌镓等。
可以使用通过使用掩模在氧化物导电层406和407上形成的源极电极层415a和漏极电极层415b来对氧化物导电层406和407进行蚀刻。当氧化物导电层406和407包含氧化锌作为组分时,可以使用诸如抗蚀剂剥离剂的碱性溶液来容易地蚀刻氧化物导电层406和407。
如上所述,通过蚀刻氧化物半导体膜430来形成岛状氧化物半导体层431和432;然后,在其上面堆叠氧化物导电层406和407及金属膜;并通过使用相同的掩模进行蚀刻处理来形成包括源极电极和漏极电极的布线图案,由此可以将氧化物导电层406和407留在使用金属膜形成的布线图案下面。
然后,在去除抗蚀剂掩模436a和抗蚀剂掩模436b之后,执行第五光刻步骤,以使得形成抗蚀剂掩模438a和抗蚀剂掩模438b,并执行选择性蚀刻以去除其上面未形成抗蚀剂掩模438b的导电层425a及部分导电层425b。通过去除未在其上面形成抗蚀剂掩模438b的导电层425b的一部分,可以形成导电层426(参见图2E)。
注意,由于在第五光刻步骤中选择性地蚀刻与源极电极层409a和漏极电极层409b重叠的导电层,所以适当地调整用于氧化物半导体层432、源极电极层409a、和漏极电极层409b的材料及蚀刻条件,以使得在蚀刻导电层时不将其去除。
在第五光刻步骤中,仅选择性地蚀刻导电层的在氧化物半导体层上并与之接触的部分。因此,在使用氨水(ammonia)过氧化物混合物(过氧化氢∶氨水∶水=5∶2∶2)等作为碱性蚀刻剂以便选择性地仅去除导电层的在氧化物半导体层上并与之接触的部分时,可以选择性地去除金属导电膜,以使得可以留下包含基于In-Ga-Zn-O的氧化物半导体的氧化物半导体层。
在漏极电极层409b的一部分上提供导电层426,由此经由导电层426将像素电极层427电连接到漏极电极层409b。以这种方式,通过在漏极电极层409b上提供导电层426,可以减小接触电阻。
然后,将作为保护性绝缘膜的氧化物绝缘膜416形成为与氧化物半导体层431和氧化物半导体层432接触。
可以使用作为用来不使诸如水和氢的杂质混合到氧化物绝缘膜416中的方法的溅射法等,适当地将氧化物绝缘膜416形成为具有至少大于或等于1nm的厚度。使用不包含诸如水分、氢离子和OH-的杂质的无机绝缘膜来形成被形成为与低电阻氧化物半导体层接触的氧化物绝缘膜416,并且其阻挡此类杂质从外面进入,通常为氧化硅膜、氮氧化硅膜、氧化铝膜、或氧氮化铝膜。在本实施例中,通过溅射法将氧化硅膜形成为300nm的厚度作为氧化物绝缘膜416。成膜时的衬底温度可以高于或等于室温并低于或等于300℃,并且在本实施例中设置为100℃。可以在稀有气体(通常为氩气)气氛、氧气氛、或包含稀有气体(通常为氩气)和氧气的气氛中执行通过溅射法进行的氧化硅膜的形成。作为靶,可以使用氧化硅靶或硅靶。替代地,可以使用掺杂硼的硅靶来形成氧化硅膜,由此可以获得针对水或氢的较高阻挡性。例如,可以在包含氧气和氮气的气氛中通过溅射法使用硅靶来形成氧化硅膜(参见图3A)。
接下来,执行在惰性气体气氛或氧气气氛中的第二热处理(优选地在高于或等于200℃且低于或等于400℃的温度,例如高于或等于250℃且低于或等于350℃的温度)。例如,可以在250℃在氮气气氛中执行第二热处理一小时。通过第二热处理,在氧化物半导体层431和氧化物半导体层432与氧化物绝缘膜416接触的同时对其加热。
以这种方式,通过溅射法来形成在背沟道侧上的作为保护膜的氧化硅膜,并随后执行在250℃到350℃(含端值)的热处理,由此将氧从氧化物半导体层431和氧化物半导体层432的暴露部分引入并扩散在氧化物半导体层431和氧化物半导体层432中。通过用溅射法形成,可以使氧化硅膜处于氧过剩状态状态,这使得能够通过热处理将氧引入并扩散在氧化物半导体层431和432中。当氧被引入并扩散在氧化物半导体层431和432中时,可以将沟道形成区变成高电阻沟道形成区,即,i型沟道形成区。因此,可以获得常闭薄膜晶体管。另外,通过使氧被引入并扩散在氧化物半导体层431和432中的热处理,可以使作为源极区和漏极区形成的氧化物半导体层431和432结晶化,且其可以具有改善的导电性。
此外,使被沉积之后的氧化物半导体膜经受用于脱水或脱氢的热处理,以便其具有减小的电阻并成为高电阻漏极区(HRD区)。选择性地使高电阻漏极区的一部分处于氧过剩状态。结果,与栅极电极层411重叠的沟道形成区413变成i型;与栅极电极层421重叠的沟道形成区423变成i型;以自对准方式形成与源极电极层415a重叠的高电阻漏极区414a和与漏极电极层415b重叠的高电阻漏极区414b;并且以自对准方式形成与源极电极层409a重叠的高电阻漏极区424a和与漏极电极层409b重叠的高电阻漏极区424b(参见图3A)。
通过在氧化物半导体层的一部分中形成与漏极电极层415b(和源极电极层415a)重叠的高电阻漏极区414b(或高电阻漏极区414a),可以改善形成驱动器电路时的可靠性。具体而言,通过形成高电阻漏极区414b,可以获得其中导电性可以从漏极电极层415b到沟道形成区413经由高电阻漏极区414b而改变的结构。因此,在用连接到用于供应高电源电位VDD的布线的漏极电极层415b来执行操作的情况下,高电阻漏极区414b充当缓冲层,并因此,即使当在栅极电极层411与漏极电极层415b之间施加高电场时,也不在局部施加高电场,这引起晶体管的耐受电压的增加。
另外,通过在部分氧化物半导体层形成与漏极电极层415b(或源极电极层415a)重叠的高电阻漏极区414b(或高电阻漏极区414a),可以减少形成驱动器电路时的沟道形成区413中的泄漏电流的量。
此外,通过在部分氧化物半导体层形成与漏极电极层409b(或源极电极层409a)重叠的高电阻漏极区424b(或高电阻漏极区424a),可以改善形成像素时的可靠性。具体而言,通过形成高电阻漏极区424b,可以获得其中导电性可以从漏极电极层409b到沟道形成区423经由高电阻漏极区424b而改变的结构。因此,在用连接到用于供应高电源电位VDD的布线的漏极电极层409b来执行操作的情况下,高电阻漏极区424b充当缓冲层,并因此,即使当在栅极电极层421与漏极电极层409b之间施加高电场时,也不在局部施加高电场,这引起晶体管的耐受电压的增加。
另外,通过在部分氧化物半导体层412形成与漏极电极层409b(或源极电极层409a)重叠的高电阻漏极区424b(或高电阻漏极区424a),可以减少形成像素时的沟道形成区423中的泄漏电流的量。
此外,通过在氧化物半导体层412与源极和漏极电极层415a和415b之间提供氧化物导电层,可以减小氧化物半导体层412与源极电极层415a之间和氧化物半导体层412与漏极电极层415b之间的电阻,并且可以实现晶体管的高速工作。
使用利用氧化物导电层形成的低电阻漏极区408a和408b在改善外围电路(驱动器电路)的频率特性方面是有效的。这是因为在(使用钛等形成的)金属电极与氧化物导电层(低电阻漏极区408a和408b)接触的情况下,比在(使用钛等形成的)金属电极与氧化物半导体层412接触的情况下更多地减小接触电阻。此外,在使用钼的情况下(例如,钼膜、铝膜、和钼膜的叠层结构),钼与氧化物半导体层412之间的高接触电阻已经是存在问题的。这是因为与钛相比,钼不容易被氧化并,因此从氧化物半导体层412中提取少量的氧,这不允许钼与氧化物半导体层412之间的界面是n型的。然而,即使在这种情况下,通过在氧化物半导体层412与源极电极层415a(或漏极电极层415b)之间插入使用氧化物导电层形成的低电阻漏极区408a(或低电阻漏极区408b),可以减小接触电阻并可以改善外围电路(驱动器电路)的频率特性。薄膜晶体管的沟道长度通过氧化物导电层406和407的蚀刻来确定,并因此其可以小得多。
然后,在氧化物绝缘膜416上形成保护性绝缘层403(参见图3B)。在本实施例中,可以用RF溅射法来形成氮化硅膜。由于RF溅射法允许高的生产率,所以优选地将其用作保护性绝缘层403的沉积方法。保护性绝缘层403是使用不包含诸如水分、氢离子和OH-的杂质的无机绝缘膜形成的,并阻挡它们从外面进入;例如,使用氮化硅膜、氮化铝膜、氮氧化硅膜、或氧氮化铝膜等。当然,保护性绝缘层403是具有光透射性质的绝缘膜。替代地,可以使用掺杂硼的硅靶来形成氧化硅膜,由此可以获得针对水或氢的较高阻挡性。
此外,保护性绝缘层403优选地与设置在保护性绝缘层403下面的第二栅极绝缘层402b或充当基底的绝缘膜接触,并阻挡诸如水分、氢离子、OH-的杂质从衬底的侧表面附近进入。上述结构在将氮化硅膜用于第二栅极绝缘层402b或充当基底的绝缘膜时特别有效。换言之,当将氮化硅膜设置为围绕氧化物半导体层的底表面、顶表面、和侧表面时,改善了显示器件的可靠性。
然后,在保护性绝缘层403上形成平坦化绝缘层404。可以使用具有耐热性的有机材料来形成平坦化绝缘层404,诸如聚酰亚胺、丙烯酸、苯并环丁烯、聚酰胺、或环氧树脂。除此类有机材料之外,还可以使用低介电常数材料(低k材料)、基于硅氧烷的树脂、PSG(磷硅酸盐玻璃)、或BPSG(硼磷硅酸盐玻璃)等。注意,可以通过堆叠使用这些材料形成的多个绝缘膜来形成平坦化绝缘层404。
注意,基于硅氧烷的树脂对应于使用基于硅氧烷的材料作为起始材料形成的包括Si-O-Si键的树脂。基于硅氧烷的树脂可以包括有机基团(例如,烷基基团或芳基基团)或氟基基团(fluorogroup)作为取代基。另外,有机基团可以包括氟基基团。
对用于形成平坦化绝缘层404的方法没有特别限制,并且可以根据材料通过诸如溅射法、SOG法、旋涂法、浸涂法、喷涂法、或液滴排放法(例如,喷墨法、丝网印刷、或胶版印刷等)、或者用诸如刮刀、辊涂机、幕式涂布机、刮刀式涂布机的工具(设备),来形成平坦化绝缘层404。
注意,作为提供保护性绝缘层403的替代,可以在氧化物绝缘膜416上形成平坦化绝缘层404。
接下来,在第六光刻步骤中,形成抗蚀剂掩模并去除驱动器电路部分中的平坦化绝缘层404(参见图3C)。
然后,在去除抗蚀剂掩模之后,在第七光刻步骤中,形成抗蚀剂掩模,并通过蚀刻平坦化绝缘层404、保护性绝缘层403、和氧化物绝缘膜416来形成到达导电层426的接触孔441(参见图3D)。另外,通过此蚀刻,还形成到达栅极电极层411和421的接触孔(未示出)。此外,可以通过喷墨法来形成用于形成到达导电层426的接触孔的抗蚀剂掩模。当用喷墨法来形成抗蚀剂掩模时,不使用光掩模,这导致制造成本的降低。
接下来,去除抗蚀剂掩模,并随后形成光透射导电膜。通过溅射法、或真空蒸发法等,使用氧化铟(In2O3)或氧化铟-氧化锡合金(In2O3-SnO2,缩写成ITO)等,来形成该光透射导电膜。还可以使用基于Al-Zn-O的非单晶膜作为光透射导电膜,其示例是基于Al-Zn-O-N的非单晶膜、包含氮的基于Zn-O-N的非单晶膜、和包含氮的Sn-基于Zn-O-N的非单晶膜。注意,基于Al-Zn-O-N的非单晶膜中的锌的相对比例(原子%)是小于或等于47原子%且大于非单晶膜中的铝的相对比例(原子%)的。非单晶膜中的铝的相对比例(原子%)大于非单晶中的氮的相对比例(原子%)。用基于盐酸的溶液来蚀刻此类材料。然而,由于特别是在蚀刻ITO时很容易产生残留物,所以可以使用氧化铟-氧化锌合金(In2O3-ZnO)来改善蚀刻可加工性。
注意,光透射导电膜中的相对比例的单位是原子百分比,并且通过使用电子探针x射线微分析仪(EPMA)的分析来评估该相对比例。
接下来,执行第八光刻步骤。形成抗蚀剂掩模,并通过蚀刻来去除不必要的部分以形成像素电极层427和导电层417(参见图3E)。
通过使用八个掩模的以上步骤,可以在一个衬底上分别在驱动器电路和像素电极部分中制造薄膜晶体管410和薄膜晶体管420。用于驱动器电路的薄膜晶体管410包括高电阻漏极区414a、高电阻漏极区414b、和包括沟道形成区413的氧化物半导体层412。用于像素的薄膜晶体管420包括高电阻漏极区424a、高电阻漏极区424b、和包括沟道形成区423的氧化物半导体层422。薄膜晶体管410和薄膜晶体管420具有其中高电阻漏极区充当缓冲层且即使当施加高电场时也不施加局部高电场的结构;以这种方式,晶体管可以具有增加的耐电压。
此外,优选地使设置在驱动器电路中的薄膜晶体管410的沟道长度L为短于设置在像素部分中的薄膜晶体管420的沟道长度。通过使设置在驱动器电路中的薄膜晶体管410的沟道长度L短,可以改善工作速度。设置在驱动器电路中的薄膜晶体管410的沟道长度L优选地大于或等于1μm且小于或等于5μm。设置在像素部分中的薄膜晶体管420的沟道长度优选地大于或等于5μm且小于或等于20μm。
另外,使用第一栅极绝缘层402a和第二栅极绝缘层402b作为电介质,通过电容器布线层和电容器电极层来形成存储电容器。通过与各像素对应以矩阵布置薄膜晶体管410和存储电容器以形成像素部分,并且通过在像素部分周围布置包括薄膜晶体管420的驱动器电路,可以获得用于制造有源矩阵显示器件的衬底之一。在本说明书中,为方便起见,将此类衬底称为有源矩阵衬底。
注意,像素电极层427通过在平坦化绝缘层404、保护性绝缘层403、和氧化物绝缘膜416中形成的接触孔电连接到电容器电极层。还注意,可以使用与源极电极层409a和漏极电极层409b相同的材料和工艺来形成电容器电极层。
另外,通过在与氧化物半导体层的沟道形成区413重叠的位置中提供导电层417,在检验薄膜晶体管的可靠性的偏置-温度应力测试(BT测试)中,可以减少薄膜晶体管410的阈值电压在BT测试前后的变化量。导电层417可以具有与栅极电极层411相同的电位或者具有与栅极电极层411不同的电位,并可以充当第二栅极电极层。导电层417的电位可以是GND电位、0V,或者导电层417可以处于浮置状态。
可以通过喷墨法来形成用于形成像素电极层427的抗蚀剂掩模。当用喷墨法来形成抗蚀剂掩模时,不使用光掩模,这导致制造成本的降低。
注意,在本实施例中,氧化物半导体层412之上和之下的层及氧化物半导体层422之上和之下的那些层是氧化硅膜。可以用等离子体CVD装置来形成栅极电极和栅极绝缘膜;换言之,可以原样地使用用于液晶面板的传统生产线。使用Si作为靶且使用氩气和氧气作为溅射气体,在室温下用溅射装置来沉积在背沟道侧形成的氧化硅膜。
注意,如图1B2所示,在本实施例中描述了其中在用于像素部分的薄膜晶体管420的漏极电极层409b上形成导电层426的结构;然而,可采用在图41A中示出的没有导电层426的结构。此外,如图1B1所示,描述其中在覆盖薄膜晶体管410的保护性绝缘层403上提供导电层417的结构;然而,可以采用如图41B所示的其中未提供保护性绝缘层403且在氧化物绝缘膜416上提供导电层417的结构。
可以自由地将本实施例与任何其它实施例组合。
(实施例2)
在图4A至4C中,示出了其第一热处理与在实施例1中的不同的示例。由于本实施例中所述的工艺过程与在图1A1至1C2、图2A至2E、和图3A至3E中所示的相同,所以用相同的附图标记来表示与图1A1至1C2、图2A至2E、和图3A至3E中的那些相同的部分,并省略对该部分的详细说明。
图4A至4C是示出制造两个薄膜晶体管的步骤的横截面图。
首先,依照实施例1,在具有绝缘表面的衬底400上形成光透射导电膜,并随后在第一光刻步骤中形成栅极电极层411和421。
接下来,在栅极电极层411和421上堆叠第一栅极绝缘层402a和第二栅极绝缘层402b。
随后,在第二栅极绝缘层402b上形成氧化物半导体膜430至大于或等于2nm且小于或等于200nm的厚度(参见图4A)。注意,以上步骤与在实施例1中的相同,且图4A对应于图2A。
之后,在惰性气体气氛中对氧化物半导体膜进行脱水或脱氢。用于脱水或脱氢的第一热处理的温度高于或等于350℃且低于衬底的应变点,优选地高于或等于400℃。这里,将衬底引入作为一种热处理装置的电炉中,并在氮气气氛中对氧化物半导体膜进行热处理;然后,氧化物半导体膜变成贫氧层且具有低电阻,亦即,氧化物半导体膜变成n型(诸如n-型或n+型)层,而不暴露于空气,因此没有任何水或氢进入氧化物半导体膜。然后,将高纯度氧气、高纯度N2O气体、或极端干燥的空气(具有低于或等于-40℃、优选地低于或等于-60℃的露点)引入同一炉中并执行冷却。优选的是所述氧气或N2O气体不包含水、氢等。替代地,优选的是,被引入热处理装置的氧气或N2O气体具有4N(99.99%)或以上、更优选地6N(99.9999%)或以上的纯度;亦即,将氧气或N2O气体的杂质浓度设置为20ppm或以下,更优选地1ppm或以下。
另外,在用于脱水或脱氢的第一热处理之后,可以在氧气气氛、N2O气氛、或极端干燥的空气(具有低于或等于-40℃、优选地低于或等于-60℃的露点)中,在高于或等于200℃且低于或等于400℃的温度,优选地在高于或等于200℃且低于或等于300℃的温度,执行热处理。
通过以上工艺过程,使整个氧化物半导体膜430处于氧过剩状态,由此,将氧化物半导体膜变成高电阻氧化物半导体膜,即,i型氧化物半导体膜;因此,形成氧化物半导体膜444(参见图4B)。结果,可以改善后来完成的薄膜晶体管的可靠性。
注意,虽然在本实施例中在氧化物半导体膜的沉积之后执行脱水或脱氢,但本发明不受特别限制,并且类似于实施例1,可以替代地在形成岛状氧化物半导体层之后执行第一热处理。
替代地,可以采用以下过程:在惰性气体气氛中对氧化物半导体膜进行脱水或脱氢并在惰性气体气氛中冷却;之后,在光刻步骤中将氧化物半导体膜处理成岛状氧化物半导体层443和455;然后,在氧气、N2O气体、或极端干燥的空气(具有低于或等于-40℃、优选地低于或等于-60℃的露点)中,在高于或等于200℃且低于或等于400℃的温度,优选地高于或等于200℃且低于或等于300℃的温度,执行热处理。
另外,在形成氧化物半导体膜430之前,可以在惰性气体气氛(例如,氮气、或氦气、氖气、或氩气)、氧气气氛、或极端干燥的空气(具有低于或等于-40℃、优选地低于或等于-60℃的露点)气氛中执行热处理(在高于或等于400℃和低于衬底的应变点的温度),从而去除包含在栅极绝缘层中的诸如氢和水的杂质。
然后,在第二光刻步骤中将氧化物半导体膜444处理成作为岛状氧化物半导体层的氧化物半导体层443和455。
此后,类似于实施例1的图2C至2E和图3A至3E所示的步骤,形成与氧化物半导体层443接触的低电阻漏极区408a和408b;形成作为金属导电层并与低电阻漏极区408a和408b接触的源极电极层415a和漏极电极层415b;以及形成与氧化物半导体层443接触的氧化物绝缘膜416,由此制造用于驱动器电路的薄晶体管449。同时,在像素部分中,形成作为光透射导电层并与氧化物半导体层455接触的源极电极层409a和漏极电极层409b;在漏极电极层409b上形成导电层426;并形成与氧化物半导体层455接触的氧化物绝缘膜416,由此制造用于像素的薄膜晶体管450。
接下来,在惰性气体气氛或氧气气氛中执行第二热处理(优选地,在高于或等于200℃且低于或等于400℃的温度,例如在高于或等于250℃且低于或等于350℃的温度)。例如,可以在250℃在氮气气氛中执行第二热处理一小时。
接下来,形成保护性绝缘层403,以覆盖薄膜晶体管449和450且与氧化物绝缘膜416接触,并在其上面堆叠平坦化绝缘层404。在氧化物绝缘膜416、保护性绝缘层403和平坦化绝缘层404中形成到达在漏极电极层409b上的导电层426的接触孔,并随后在接触孔中和平坦化绝缘层404上形成光透射导电膜。选择性地蚀刻光透射导电膜,以使得将像素电极层427电连接到薄膜晶体管450并形成处于与氧化物半导体层443的沟道形成区重叠的位置的导电层417(参见图4C)。
通过使用八个掩模的以上步骤,可以在一个衬底上分别在驱动器电路和像素电极部分中制造如下的薄膜晶体管449和薄膜晶体管450,在该薄膜晶体管449和薄膜晶体管450每一个中,整个氧化物半导体层是i型氧化物半导体层。用于驱动器电路的薄膜晶体管449包括完全本征的氧化物半导体层443。同样地,用于像素的薄膜晶体管450包括完全本征的氧化物半导体层455。
另外,可以使用第一栅极绝缘层402a和第二栅极绝缘层402b作为电介质由电容器布线层和电容器电极层来形成存储电容器。通过将薄膜晶体管450和存储电容器与各像素对应地成矩阵布置以形成像素部分,并且通过在像素部分周围布置包括薄膜晶体管449的驱动器电路,可以获得用于制造有源矩阵显示器件的衬底之一。
另外,通过在与氧化物半导体层443的沟道形成区重叠的位置中提供导电层417,在检验薄膜晶体管的可靠性的偏置-温度应力测试(BT测试)中,可以减少薄膜晶体管449的阈值电压在BT测试前后的变化量。导电层417可以具有与栅极电极层411相同的电位或者具有与栅极电极层411不同的电位,并可以充当第二栅极电极层。导电层417的电位可以是GND电位、0V,或者导电层417可以处于浮置状态。
可以通过喷墨法来形成用于形成像素电极层427的抗蚀剂掩模。当用喷墨法来形成抗蚀剂掩模时,不使用光掩模,这导致制造成本的降低。
注意,在本实施例中,氧化物半导体层483之上和之下的层及氧化物半导体层485之上和之下的那些层是氧化硅膜。可以用等离子体CVD装置来形成栅极电极和栅极绝缘膜;换言之,可以原样地使用用于液晶面板的传统生产线。使用Si作为靶且氩气和氧气作为溅射气体,在室温用溅射装置来沉积在背沟道侧上形成的氧化硅膜。
可以自由地将本实施例与任何其它实施例组合。
(实施例3)
参照图5A至5E来描述不同于实施例1的半导体器件的制造方法。可以以与实施例1中所述的类似地方式形成与实施例1中所述的相同地部分或具有与实施例1中所述的类似功能的部分;因此,省略重复说明。
图5A至5E是示出制造两个薄膜晶体管的步骤的横截面图。
类似于在实施例1的图2A中所示的步骤,在第一光刻步骤中在具有绝缘表面的衬底400上形成栅极电极层411和栅极电极层421;在栅极电极层411和栅极电极层421上形成作为栅极绝缘层的第一栅极绝缘层402a和第二栅极绝缘层402b;并在第二栅极绝缘层402b上形成氧化物半导体膜430(参见图5A)。
然后,在第二光刻步骤中将氧化物半导体膜430处理成岛状氧化物半导体层。
之后,类似于在实施例1的图2B中所示的步骤,通过第一热处理对氧化物半导体层进行脱水或脱氢。用于脱水或脱氢的第一热处理的温度高于或等于350℃且低于衬底的应变点,优选地高于或等于400℃。这里,以这样的方式来获得氧化物半导体层431和氧化物半导体层432:将衬底引入作为一种热处理装置的电炉中;在氮气氛中对氧化物半导体层进行热处理;并且防止层暴露于空气,并因此防止水和氢进入氧化物半导体层(参见图5B)。
接下来,在氧化物半导体层431和432及第二栅极绝缘层402b上形成氧化物导电膜;在氧化物导电膜上形成金属导电膜;然后,在第三光刻步骤中,形成抗蚀剂掩模445a和抗蚀剂掩模445b并执行选择性蚀刻以便形成低电阻漏极区408a和408b、源极电极层409a、漏极电极层409b、源极电极层415a、漏极电极层415b、以及导电层425a和425b(参见图5C)。作为用于氧化物导电膜和金属导电膜的材料,可以使用与实施例1的类似的材料。
注意,在此蚀刻过程中,可以适当地设置蚀刻条件,以使得能保持较低层中的氧化物半导体层431和432。例如,可以控制蚀刻时间。
优选地使用其蚀刻选择性高的材料作为氧化物半导体层431和432的材料及氧化物导电层406和407的材料。例如,作为氧化物半导体层的材料,使用包含Sn的金属氧化物材料(诸如SnZnOx或SnGaZnOx等),并且作为氧化物导电层的材料,可以使用ITO、AZO、AZON、ZnO、GZO、或IZO等。
然后,在去除抗蚀剂掩模445a和抗蚀剂掩模445b之后,执行第四光刻步骤,以使得形成抗蚀剂掩模438a和抗蚀剂掩模438b并执行选择性蚀刻以去除其上面未形成抗蚀剂掩模438b的导电层425a及导电层425b的一部分。通过去除其上面未形成抗蚀剂掩模438b的导电层425b的一部分,可以形成导电层426(参见图5D)。
注意,由于在第四光刻步骤中选择性地蚀刻与源极电极层409a和漏极电极层409b重叠的导电层,所以适当地调整用于氧化物半导体层432、源极电极层409a、和漏极电极层409b的材料及蚀刻条件,以使得在蚀刻导电层时不将其去除。
注意,氧化物半导体膜430优选地具有小于或等于50nm的厚度以便保持非晶。更优选地,完成的薄膜晶体管中的具有小厚度的区域的厚度大于或等于5nm且小于或等于20nm。
此外,优选使设置在所完成的驱动器电路中的薄膜晶体管410的沟道长度L短于设置在像素部分中的薄膜晶体管420的沟道长度。通过使设置在驱动器电路中的薄膜晶体管410的沟道长度L短,可以改善工作速度。设置在驱动器电路中的薄膜晶体管410的沟道长度L优选地大于或等于1μm且小于或等于5μm。设置在像素部分中的薄膜晶体管420的沟道长度L优选地大于或等于5μm且小于或等于20μm。
然后,类似于在实施例1的图3A所示的步骤,将作为保护性绝缘膜的氧化物绝缘膜416形成为与氧化物半导体层431和432接触,并执行第二热处理。因此,与栅极电极层411重叠的沟道形成区413变成i型;与栅极电极层421重叠的沟道形成区423变成i型;以自对准方式形成与源极电极层415a重叠的高电阻漏极区414a和与漏极电极层415b重叠的高电阻漏极区414b;并且以自对准方式形成与源极电极层409a重叠的高电阻漏极区424a和与漏极电极层409b重叠的高电阻漏极区424b。
然后,类似于在实施例1的图3B中所示的步骤,在氧化物绝缘膜416上形成保护性绝缘层403,并在保护性绝缘层403上形成平坦化绝缘层404。类似于在实施例1的图3C中所示的步骤,在第五光刻步骤中,形成抗蚀剂掩模并去除驱动器电路部分中的平坦化绝缘层404。之后,类似于在实施例的图3D中所示的步骤,在第六光刻步骤中,形成抗蚀剂掩模,以使得通过蚀刻平坦化绝缘层404、保护性绝缘层403、和氧化物绝缘膜416来形成到达导电层426的接触孔441。
然后,类似于在实施例的图3E中所示的步骤,形成光透射导电膜并进行第七光刻步骤。形成抗蚀剂掩模,并通过蚀刻来去除不必要的部分以形成像素电极层427和导电层417(参见图5E)。
通过使用七个掩模的以上步骤,可以在一个衬底上分别在驱动器电路和像素电极部分中制造薄膜晶体管410和薄膜晶体管420。另外,掩模的数目可以比实施例1的制造工艺过程中的少。用于驱动器电路的薄膜晶体管410包括高电阻漏极区414a、高电阻漏极区414b、和包括沟道形成区413的氧化物半导体层412。用于像素的薄膜晶体管420包括高电阻漏极区424a、高电阻漏极区424b、和包括沟道形成区423的氧化物半导体层422。薄膜晶体管410和薄膜晶体管420具有其中高电阻漏极区充当缓冲层且即使当施加高电场时也不施加局部高电场的结构;以这种方式,晶体管可以具有增加的耐受电压。
可以自由地将本实施例与任何其它实施例组合。
(实施例4)
将参照图6A1、6A2、6B1、6B2、6C1、和6C2、图38A至38E、和图39A至39E来描述不同于实施例1的半导体器件和用于制造该半导体器件的方法。图6B1、6B2、6C1、和6C2示出具有在一个衬底上形成的不同结构的两个晶体管的横截面结构的示例。图6A1、6A2、6B1、6B2、6C1、和6C2所示的薄膜晶体管460和薄膜晶体管470每个是一种底栅晶体管。
图6A1是设置在驱动器电路中的薄膜晶体管460的平面图。图6B1是沿图6A1中的线G1-G2截取的横截面图。另外,图6C1是沿图6A1中的线G3-G4截取的横截面图。
设置在驱动器电路中的薄膜晶体管460在具有绝缘表面的衬底衬底451上包括:栅极电极层461;第一栅极绝缘层452a;第二栅极绝缘层452b;至少包括沟道形成区463、以及高电阻漏极区464a和高电阻漏极区464b的氧化物半导体层462;低电阻漏极区446a和低电阻漏极区446b;源极电极层465a;以及漏极电极层465b。此外,提供了覆盖薄膜晶体管460并与沟道形成区463接触的氧化物绝缘膜466。
以自对准方式形成高电阻漏极区464a,其与低电阻漏极区446a的底表面接触。另外,以自对准方式形成高电阻漏极区464b,其与低电阻漏极区446b的底表面接触。沟道形成区463与氧化物绝缘膜466接触,并且是具有比高电阻漏极区464a和高电阻漏极区464b高的电阻的区域(即,i型区)。
此外,提供低电阻漏极区446a和446b使得薄膜晶体管460能够在热量方面比具有肖特基结的薄膜晶体管更稳定地工作。如上所述有意地提供具有比氧化物半导体层高的载流子浓度的低电阻漏极区,由此形成欧姆接触。
为了减小薄膜晶体管460中的布线的电阻,优选地将金属材料用于源极电极层465a和漏极电极层465b。
当在液晶显示器件中在一个衬底上形成像素和驱动器电路时,在驱动器电路中,仅在包括在诸如反相器电路、NAND电路、NOR电路、或锁存器电路的逻辑门中的薄膜晶体管和包括在诸如诸如读出放大器、恒压生成电路、或者VCO的模拟电路中的薄膜晶体管的源极电极与漏极电极之间施加正电压或负电压。因此,可以将要求高耐受电压的高电阻漏极区464b设计为比高电阻漏极区464a宽。此外,可以增加与栅极电极层重叠的高电阻漏极区464a和464b的宽度。
使用单栅极薄膜晶体管描述了设置在驱动器电路中的薄膜晶体管460;必要时,也可以形成包括多个沟道形成区的多栅极薄膜晶体管。
此外,将导电层467设置在沟道形成区463上以便与沟道形成区463重叠。导电层467被电连接到栅极电极层461,从而导电层467和栅极电极层461具有相同的电位,由此,可以从设置在栅极电极层461和导电层467之间的氧化物半导体层462的上方和下方施加栅极电压。替代地,当使栅极电极层461和导电层467具有不同的电位时,例如,当导电层467具有固定电位、GND电位、或0V时,可以控制TFT的电特性,诸如阈值电压。
此外,在导电层467与氧化物绝缘膜466之间提供保护性绝缘层453。
保护性绝缘层453优选地与设置在保护性绝缘层453下面的第二栅极绝缘层452b或充当基底的绝缘膜接触,并阻挡诸如水分、氢离子、OH-的杂质从衬底的侧表面进入。使用氮化硅膜作为保护性绝缘层453、第二栅极绝缘层452b、或充当基底的绝缘膜是特别有效的。
图6A2是设置在像素中的薄膜晶体管470的平面图。图6B2是沿图6A2中的线H1-H2截取的横截面图。另外,图6C2是沿图6A2中的线H13-H4截取的横截面图。
设置在像素中的薄膜晶体管470在具有绝缘表面的衬底451上包括:栅极电极层471;第一栅极绝缘层452a、第二栅极绝缘层452b;至少包括沟道形成区473及高电阻漏极区474a和高电阻漏极区474b的氧化物半导体层472;源极电极层447a;以及漏极电极层447b。另外,提供了覆盖薄膜晶体管470并与氧化物半导体层472的上表面和侧表面接触的氧化物绝缘膜466。
在液态结晶显示器件中执行AC驱动以防止液晶的劣化。通过AC驱动,每隔预定时间段使施加到像素电极层的信号电位的极性反转为正的或负的。在连接到像素电极层的TFT中,一对电极充当源极电极层和漏极电极层。在本说明书中,为方便起见,将像素中的薄膜晶体管的一对电极之一称为源极电极层,并将另一个称为漏极电极层;实际上,在AC驱动中,电极之一交替地充当源极电极层和漏极电极层。另外,为了减少泄漏电流的量,可以使设置在像素中的薄膜晶体管470中的栅极电极层的宽度窄于设置在驱动器电路中的薄膜晶体管460中的栅极电极层的宽度。另外,为了减少泄漏电流的量,可以将设置在像素中的薄膜晶体管470的栅极电极层设计为不与源极电极层或漏极电极层重叠。
此外,在漏极电极层447b的一部分上提供导电层476,以使得经由导电层476将像素电极层电连接到漏极电极层447b。在漏极电极层447b上提供导电层476,由此可以减小接触电阻。
高电阻漏极区474a以自对准方式形成为与源极电极层447a的底表面接触。另外,高电阻漏极区474b以自对准方式形成为与漏极电极层447b的底表面接触。沟道形成区473与氧化物绝缘膜466接触,并且是具有比高电阻漏极区474a和高电阻漏极区474b高的电阻的区域(即,i型区)。
此外,对氧化物半导体层462和氧化物半导体层472执行热处理(即,用于脱水或脱氢的热处理),以至少在形成氧化物半导体膜之后减少诸如水分的杂质。通过例如在执行用于脱水或脱氢的热处理和缓慢冷却之后将氧化物绝缘膜形成为与氧化物半导体层接触,来降低氧化物半导体层的载流子浓度,这引起薄膜晶体管470的电特性和可靠性的改善。
氧化物半导体层462形成在源极电极层465a和漏极电极层465b的下面,并且氧化物半导体层462的一些部分与源极电极层465a和漏极电极层465b重叠。另外,氧化物半导体层462与栅极电极层461重叠,而第一栅极绝缘层452a和第二绝缘层452b被插入它们之间。此外,氧化物半导体层472形成在源极电极层447a和漏极电极层447b的下面,并且氧化物半导体层472的一些部分与源极电极层447a和漏极电极层44b重叠。另外,氧化物半导体层472与栅极电极层471重叠,而第一栅极绝缘层452a和第二绝缘层452b被插入它们之间。
此外,为了实现具有高孔径比的显示器件,使用光透射导电膜来形成源极电极层447a和漏极电极层447b,从而薄膜晶体管470可以充当光透射薄膜晶体管。此外,还使用光透射导电膜形成薄膜晶体管420的栅极电极层421。
在其中提供薄膜晶体管470的像素中,将透射可见光的导电膜用于像素电极层477、另一电极层(例如,电容器电极层)、或另一布线层(例如,电容器布线层),因此,实现了具有高孔径比的显示器件。当然,优选将透射可见光的导电膜用于第一栅极绝缘层452a、第二栅极绝缘层452b、和氧化物绝缘膜466。
此外,在像素电极层477与氧化物绝缘膜466之间提供保护性绝缘层453和平坦化绝缘层454。
在本说明书中,透射可见光的膜指的是具有75%至100%的可见光透射率的膜;当该膜具有导电性时,也将其称为透明导电膜。可以将对于可见光而言是半透明的导电膜用于应用于栅极电极层、源极电极层、漏极电极层、像素电极层、另一电极层、或另一布线层的金属氧化物。当导电膜对于可见光是半透明的时,其具有50%至75%的可见光透射率。
下面将参照图38A至38E和图39A至39E来描述用于在一个衬底上制造薄膜晶体管460和薄膜晶体管470的过程。
首先,在具有绝缘表面的衬底451上形成光透射导电膜,并随后在第一光刻步骤中形成栅极电极层461和471。另外,使用与第一光刻步骤中的栅极电极层461和471相同的材料在像素部分中形成电容器布线。此外,当在驱动器电路以及像素部分中需要电容器时,还在驱动器电路中形成电容器布线。注意,可以通过喷墨法来形成抗蚀剂掩模。用喷墨法来形成抗蚀剂掩模不需要光掩模,这导致制造成本的降低。然后,在栅极电极层461上形成第一栅极绝缘层452a和第二栅极绝缘层452b。
对于具有绝缘表面的衬底451、栅极电极层461和471、第一栅极绝缘层452a、和第二栅极绝缘层452b,可以分别参考在实施例1中描述的具有绝缘表面的衬底400、栅极电极层411和421、第一栅极绝缘层402a、和第二栅极绝缘层402b;因此,省略其详细说明。
接下来,在第二栅极绝缘层452b上形成氧化物半导体膜480到2nm至200nm(含端值)的厚度(参见图38A)。氧化物半导体膜480优选具有50nm或以下的厚度,以便即使当在形成氧化物半导体膜480之后执行用于脱水或脱氢的热处理时也保持在非晶状态。氧化物半导体膜480的小厚度使得可以防止氧化物半导体膜480当在形成氧化物半导体膜480之后执行热处理时结晶。
注意,在通过溅射法形成氧化物半导体膜480之前,优选地通过其中通过氩气的引入产生等离子体的反向溅射来去除附着于第二栅极绝缘层452b的表面的灰尘。反向溅射指的是其中在不向靶侧施加电压的情况下在氩气气氛中使用RF电源向衬底侧施加电压,以使得在衬底周围产生等离子体以使表面改性。注意,作为氩气气氛的替代,可以使用氮气、氦气、或氧气等。
作为氧化物半导体膜480,使用基于In-Sn-Zn-O的非单晶膜、基于In-Sn-Zn-O的氧化物半导体膜、基于In-Al-Zn-O的氧化物半导体膜、基于Sn-Ga-Zn-O的氧化物半导体膜、基于Al-Ga-Zn-O的氧化物半导体膜、基于Sn-Al-Zn-O的氧化物半导体膜、基于In-Zn-O的氧化物半导体膜、基于Sn-Zn-O的氧化物半导体膜、基于Al-Zn-O的氧化物半导体膜、基于In-O的氧化物半导体膜、基于Sn-O的氧化物半导体膜、基于Zn-O的氧化物半导体膜、或基于In-Sn-O的氧化物半导体膜。在本实施例中,利用基于In-Ga-Zn-O的氧化物半导体靶通过溅射法来形成氧化物半导体膜480。替代地,可以在稀有气体(通常为氩气)气氛、氧气气氛、或包含稀有气体(通常为氩气)和氧气的气氛中,通过溅射法来形成氧化物半导体膜480。在使用溅射法的情况下,可以使用包含2至10重量百分比(含端值)的SiO2的靶来执行沉积,并且氧化物半导体膜中可以包含抑制结晶的SiOx(x>0),在这种情况下,可以防止在稍后步骤中的用于脱水或脱氢的热处理时结晶。
然后,对氧化物半导体膜480进行脱水或脱氢。用于脱水或脱氢的第一热处理的温度是350℃或以上且低于衬底的应变点,优选地为400℃或以上。这里,将衬底引入作为一种处理装置的电炉中,并在氮气气氛中对氧化物半导体膜执行热处理,于是防止水和氢进入氧化物半导体膜而氧化物半导体膜未暴露于空气;因此,获得氧化物半导体膜481(参见图38B)。在本实施例中,在氮气气氛中在一个炉内执行从对氧化物半导体膜480执行脱水或脱氢的加热温度T至低到足以防止水进入的温度的缓慢冷却;具体而言,执行缓慢冷却直至温度从加热温度T开始下降100℃或以上为止。脱水或脱氢气氛不限于氮气气氛,可以替代地使用稀有气体气氛(例如,氦气、氖气、或氩气)。
注意,在第一热处理中,优选的是在氮气或诸如氦气、氖气、或氩气的稀有气体的气氛中不包含水、氢等。替代地,优选的是被引入热处理装置的氮气或诸如氦气、氖气、或氩气的稀有气体具有4N(99.99%)或以上的纯度,更优选地6N(99.9999%)或以上的纯度(亦即,杂质浓度优选地为1ppm或以下,更优选地为20ppm或以下)。
根据第一热处理的条件或氧化物半导体膜480的材料,可以使氧化物半导体膜结晶成微晶膜或多晶膜。
替代地,可以在将氧化物半导体膜处理成具有岛状之后执行第一热处理。
在形成氧化物半导体膜480之前,可以通过在惰性气体气氛(例如,氮气、氦气、氖气、或氩气)或氧气气氛中的热处理(在高于或等于400℃且低于衬底的应变点的温度)来去除包含在栅极绝缘层中的诸如氢和水的杂质。
然后,在氧化物半导体膜481上依次形成氧化物导电膜和金属导电膜。
作为氧化物导电膜的沉积方法,使用溅射法、真空蒸发法(例如,电子束蒸发法)、电弧放电离子镀法、或喷射法。作为氧化物导电膜442的材料,可以使用具有比氧化物半导体层483的低电阻且比金属导电层484高的电阻的材料;例如,可以使用基于In-Sn-Zn-O的金属氧化物、基于In-Al-Zn-O的金属氧化物、基于Sn-Ga-Zn-O的金属氧化物、基于Al-Ga-Zn-O的金属氧化物、基于Sn-Al-Zn-O的金属氧化物、基于In-Zn-O的金属氧化物、基于Sn-Zn-O的金属氧化物、基于Al-Zn-O的金属氧化物、基于In-O的金属氧化物、基于Sn-O的金属氧化物、基于Zn-O的金属氧化物、或基于In-Sn-O的金属氧化物。适当时将氧化物导电膜的厚度设置在50nm至300nm的范围内。在使用溅射法的情况下,可以使用包含2至10重量百分比(含端值)的SiO2的靶来执行沉积,并且在氧化物导电膜中可以包含抑制结晶的SiOx(x>0),在这种情况下,可以防止在稍后步骤中的用于脱水或脱氢的热处理时结晶。
用于金属导电膜的材料的示例包括选自Al、Cr、Cu、Ta、Ti、Mo、和W的元素;包含这些元素中的任意作为组分的合金;以及以组合方式包含上述元素的合金。
金属导电膜优选地具有其中在钛层上堆叠铝层并在铝层上堆叠钛层的三层结构、或其中在钼层上堆叠铝层并在铝层上堆叠钼层的三层结构。当然,金属导电膜可以具有单层结构、双层结构、或包括四个或更多个层的叠层结构。
注意,可以替代地在形成氧化物导电膜和所述金属导电膜之后执行第一热处理。在形成氧化物导电膜和金属导电膜之后执行第一热处理的情况下,在堆叠氧化物导电膜和氧化物半导体膜480的情况下执行用于脱水或脱氢的热处理。利用此热处理,除非在氧化物半导体膜480中包含诸如氧化硅的抑制结晶的物质,否则氧化物半导体膜480结晶化。氧化物半导体膜480的晶体从基底表面以柱形生长。因此,当蚀刻氧化物半导体膜480上的金属膜以形成源极电极和漏极电极时,可以防止在金属膜下面的氧化物半导体膜480中形成底切(undercut)。利用对氧化物导电膜执行的用于脱水或脱氢的热处理,可以增加氧化物半导体膜480的导电性。注意,可以仅使氧化物半导体膜480经受在低于该氧化物导电膜热处理温度的温度执行的热处理。
在形成氧化物导电膜和金属导电膜之后,形成在第二光刻步骤中使用的抗蚀剂掩模482a和482b。注意,可以通过喷墨法来形成抗蚀剂掩模482a和482b。用喷墨法来形成抗蚀剂掩模不需要光掩模,这导致制造成本的降低。
在本实施例中,抗蚀剂掩模482a和482b每个都具有凹部或凸部。换言之,那些抗蚀剂掩模482a和482b还可以称为包括具有不同厚度的多个区域(在这里为两个区域)的抗蚀剂掩模。在抗蚀剂掩模482a或482b中,将厚的区域称为抗蚀剂掩模482a或482b的凸部,并将薄的区域称为抗蚀剂掩模482a或482b的凹部。
在抗蚀剂掩模482a和482b中的每一个中,与导电膜区域的后来将成为源极电极层或漏极电极层的区域对应地形成凸部,并与导电膜的后来经成为沟道形成区的区域对应地形成凹部。
可以使用多色调掩模来形成抗蚀剂掩模482a和482b。多色调掩模是能够以多级光强进行曝光的掩模,并且通常,以三级光强执行曝光以提供曝光区、半曝光区、和未曝光区。通过使用多色调掩模,可以通过一个曝光和显影步骤来形成具有多个厚度(通常为两种厚度)的抗蚀剂掩模。因此,通过使用多色调掩模,可以减少光掩模的数目。
通过使用多色调掩模的曝光和显影,可以形成抗蚀剂掩模482a和482b,其每个都包括具有不同厚度的区域。注意,不限于此,可以在不用多色调掩模的情况下形成抗蚀剂掩模482a和482b。
然后,通过使用抗蚀剂掩模482a和482b选择性地并同时蚀刻金属导电膜、氧化物导电膜、和氧化物半导体膜481,由此形成岛状氧化物半导体层483和485、氧化物导电层442和475、和金属导电层484和486(参见图38C)。在使用钛膜、铝膜、和钛膜的导电膜堆叠作为金属导电层的情况下,可以利用氯气通过干法蚀刻法来执行蚀刻。
接下来,减小(缩小)抗蚀剂掩模482a和482b以形成抗蚀剂掩模487a和487b。为了减小(缩小)抗蚀剂掩模,可以执行使用氧等离子体等的灰化。当减小(缩小)了抗蚀剂掩模时,金属导电层484和486的一部分被暴露。
接下来,使用抗蚀剂掩模487a和487b来执行选择性蚀刻,以形成源极电极层465a、漏极电极层465b、低电阻漏极区446a、低电阻漏极区446b、源极电极层447a、漏极电极层447b、导电层490a、和导电层490b(参见图38D)。注意,源极电极层465和漏极电极层465b下面的氧化物半导体层483的边缘部分从源极电极层465a和漏极电极层的外边缘向外延伸。类似地,导电层490a和490b下面的氧化物半导体层485的边缘部分从导电层490a和490b的外边缘向外延伸。注意,向外延伸的氧化物半导体层483和氧化物半导体层485的边缘部分在某些情况下可以具有减小的厚度。
注意,如图38D所示,氧化物半导体层483的边缘部分被定位得比低电阻漏极区446a和446b的边缘部分更向外;氧化物半导体层485的边缘部分被定位得比源极电极层447a和漏极电极层447b的边缘部分更向外。注意,氧化物半导体层483的边缘部分具有与将作为沟道形成区的氧化物半导体层483的部分相同的厚度。
利用氧化物导电层442和475与金属导电层484和486之间的蚀刻速率的差,执行执行用于划分金属导电层484和486的蚀刻处理。利用金属导电层484和486的蚀刻速率高于氧化物导电层442和475的蚀刻速率这一事实,来选择性地蚀刻氧化物导电层442和475。
优选的是,氧化物导电层442和475不包含氧化铟但包含氧化锌作为其组分。对于此类氧化物导电层442和475,可以使用氧化锌、氧化锌铝、氧氮化锌铝、或氧化锌镓等等。
可以使用氧化物导电层442和475上的源极电极层465a、漏极电极层465b、导电层490a、和导电层490b作为掩模,来蚀刻所形成的氧化物导电层442和475。氧化物导电层442和475包含氧化锌作为其组分,可以利用例如碱性溶液(诸如,抗蚀剂剥离剂)容易地蚀刻氧化物导电层442和475。
在将氧化物导电层442和475蚀刻成岛状氧化物导电层442和475之后,在氧化物导电层442和475上堆叠金属导电膜,并蚀刻包括源极电极层和漏极电极层的布线图案,由此,氧化物导电层442和475可以保留在金属导电膜的布线图案下面。
然后,去除抗蚀剂掩模482a和482b,并且在第三光刻步骤中,形成抗蚀剂掩模491a和491b并随后执行选择性蚀刻,由此去除在其上面未形成抗蚀剂掩模491b的导电层490a和490b的部分。去除在其上面未形成抗蚀剂掩模491b的部分导电层490b以形成导电层476(参见图38E)。
注意,由于在第三光刻步骤中选择性地去除与源极电极层447a和漏极电极层447b重叠的导电层,所以适当地控制氧化物半导体层485、源极电极层447a、和漏极电极层447b的材料和蚀刻条件,以使得在导电层的蚀刻中不去除氧化物半导体层485、源极电极层447a、和漏极电极层447b。
此外,在部分漏极电极层447b上提供导电层476,由此,经由导电层476将漏极电极层447b电连接到后来形成的像素电极层477。如上所述,在漏极电极层447b上提供导电层476,由此可以减小接触电阻。
接下来,将充当保护性绝缘膜的氧化物绝缘膜466形成为与氧化物半导体层483和氧化物半导体层485接触。
氧化物绝缘膜466具有至少1nm的厚度,且可以适当地通过诸如溅射法等用以不使诸如水和氢的杂质混合到氧化物绝缘膜466中的方法来形成。在本实施例中,通过溅射法来形成300nm厚的氧化硅膜作为氧化物绝缘膜。薄膜形成时的衬底温度可以高于或等于室温并低于或等于300℃,并且在本实施例中设置为100℃。可以在稀有气体(通常为氩气)气氛、氧气气氛、或包含稀有气体(通常为氩气)和氧气的气氛中执行通过溅射法的氧化硅膜的形成。作为靶,可以使用氧化硅靶或硅靶。替代地,可以使用掺杂硼的硅靶来形成氧化硅膜,在这种情况下,可以改善针对水或氢的阻挡性。例如,可以在包含氧气和氮气的气氛中通过溅射法使用硅靶来形成氧化硅膜。使用无机绝缘膜以与低电阻氧化物半导体层接触的方式形成氧化物绝缘膜466,所述无机绝缘膜不包含诸如水分、氢离子、或OH-的杂质且阻抗此类杂质从外面进入,其通常为氧化硅膜、氮氧化硅膜、氧化铝膜、或氧氮化铝膜。
接下来,执行第二热处理(优选地,在200℃到400℃(含端值)的温度,例如,250℃至350℃(含端值))。例如,可以在氮气气氛中在250℃下执行第二热处理一小时。利用第二热处理,在氧化物半导体层483和485与氧化物绝缘膜466接触的同时施加热量。
以这种方式,通过溅射法来形成背沟道侧上的作为保护膜的氧化硅膜,并随后执行在250℃到350℃(含端值)的热处理,由此从氧化物半导体层483和氧化物半导体层485的暴露部分将氧引入并扩散在氧化物半导体层483和氧化物半导体层485中。通过用溅射法形成,可以使氧化硅膜处于氧过剩状态状态,这使得能够通过热处理将氧引入并扩散在氧化物半导体层483和485中。当氧被引入并扩散在氧化物半导体层483和485中时,可以将沟道形成区变成高电阻沟道形成区,即,i型沟道形成区。因此,可以获得常闭薄膜晶体管。另外,通过使氧被引入并扩散在氧化物半导体层483和485中的热处理,可以使作为源极区和漏极区形成的氧化物半导体层483和485结晶,并且其可以具有改善的导电性。
此外,在所述形成之后对氧化物半导体膜执行用于脱水或脱氢的热处理以减小氧化物半导体膜的电阻,以使氧化物半导体膜变成高电阻漏极区(LRN区),然后选择性地使高电阻漏极区的一部分处于氧过剩状态。结果,与栅极电极层461重叠的沟道形成区、延伸区456a和456b、以及延伸区457a和457b变成i型区;并且与栅极电极层471重叠的沟道形成区473变成i型区。此外,以自对准方式形成与源极电极层465a重叠的高电阻漏极区464a和与漏极电极层465b重叠的高电阻漏极区464b;并且以自对准方式形成与源极电极层447a重叠的高电阻漏极区474a和与漏极电极层447b重叠的高电阻漏极区474b。
注意,通过在氧化物半导体层的一部分中形成与漏极电极层465b(和源极电极层465a)重叠的高电阻漏极区464a,可以改善形成驱动器电路时的可靠性。具体而言,通过形成高电阻漏极区464b,可以获得其中导电性可以经由高电阻漏极区464b从漏极电极层465b到沟道形成区463而改变的结构。因此,在用连接到用于供应高电源电位VDD的布线的漏极电极层465b来执行操作的情况下,高电阻漏极区464b充当缓冲层,因此,即使在栅极电极层461与漏极电极层465b之间施加高电场时,也不在局部施加高电场,这引起晶体管的耐受电压的增加。
此外,通过在氧化物半导体层的一部分中形成与漏极电极层465b(或源极电极层465a)重叠的高电阻漏极区464b(或高电阻漏极区464a),可以减少形成驱动器电路时的沟道形成区中的泄漏电流的量。
此外,通过在氧化物半导体层的一部分中形成与漏极电极层447b(或源极电极层447a)重叠的高电阻漏极区474b(或高电阻漏极区474a),可以改善形成像素时的可靠性。具体而言,通过形成高电阻漏极区474b,可以获得其中导电性可以经由高电阻漏极区474b从漏极电极层447b到沟道形成区473改变的结构。因此,在用连接到用于供应高电源电位VDD的布线的漏极电极层447b来执行操作的情况下,高电阻漏极区474b充当缓冲层,因此,即使在栅极电极层471与漏极电极层447b之间施加高电场时,也不在局部施加高电场,这引起晶体管的耐受电压的增加。
此外,通过在氧化物半导体层的一部分中形成与漏极电极层447b(或源极电极层447a)重叠的高电阻漏极区474b(或高电阻漏极区474a),可以减小形成像素时的沟道形成区473中的泄漏电流的量。
此外,形成在氧化物半导体层483与源极电极层465a和漏极电极层465b之间的氧化物导电层允许减小电阻并以高速驱动晶体管。
使用通过利用氧化物导电层形成的低电阻漏极区446a和446b在改善外围电路(驱动器电路)的频率特性方面是有效的。这是因为在(使用钛等形成的)金属电极与氧化物导电层(低电阻漏极区446a和446b)接触的情况下,能够比在(使用钛等形成的)金属电极与氧化物半导体层483接触的情况下更多地减小接触电阻。此外,在使用钼的情况下(例如,钼膜、铝膜、和钼膜的叠层结构),钼与氧化物半导体层483之间的高接触电阻已经存在问题。这是因为与钛相比,钼不容易被氧化,并因此从氧化物半导体层412中提取少量的氧,这不允许钼与氧化物半导体层483之间的界面成为n型。然而,即使在这种情况下,通过在氧化物半导体层483与源极电极层465a(或漏极电极层465b)之间插入使用氧化物导电层形成的低电阻漏极区446a(或低电阻漏极区465b),可以减小接触电阻并可以改善外围电路(驱动器电路)的频率特性。通过氧化物导电层(低电阻漏极区446a和446b)的蚀刻来确定薄膜晶体管的沟道长度,因此其可以小得多。
接下来,在氧化物绝缘膜466上形成保护性绝缘层453。在本实施例中,用RF溅射法来形成氮化硅膜。由于RF溅射法允许高产率,所以优选地将其用作保护性绝缘层453的沉积方法。使用不包含诸如水分、氢离子和OH-的杂质的无机绝缘膜来形成保护性绝缘层453,并且其阻挡此类杂质从外面的进入,其通常为氮化硅膜、氮化铝膜、氮氧化硅膜、或氧氮化铝膜。当然,保护性绝缘层453是光透射绝缘膜。替代地,使用掺杂硼的硅靶形成氧化硅膜,在这种情况下,可以改善针对水或氢的阻挡性。
保护性绝缘层453优选与设置在保护性绝缘层453下面的第二栅极绝缘层452b或充当基底的绝缘膜接触,并阻挡诸如水分、氢离子、OH-的杂质从衬底的侧表面附近进入。使用氮化硅膜作为第二栅极绝缘层452a或充当基底的绝缘膜是特别有效。换言之,提供氮化硅膜以便围绕氧化物半导体层的底表面、顶表面、和侧表面,由此增加显示器件的可靠性。
接下来,在保护性绝缘层453上形成平坦化绝缘层454。可以使用具有耐热性的有机材料来形成平坦化绝缘层454,诸如聚酰亚胺、丙烯酸、苯并环丁烯、聚酰胺、或环氧树脂。除此类有机材料之外,还可以使用低介电常数材料(低k材料)、基于硅氧烷的树脂、PSG(磷硅酸盐玻璃)、或BPSG(硼磷硅酸盐玻璃)等。注意,可以堆叠使用这些材料形成的多个绝缘膜以形成平坦化绝缘层454。
注意,基于硅氧烷的树脂对应于使用基于硅氧烷的材料作为起始材料而形成的包括Si-O-Si键的树脂。基于硅氧烷的树脂可以包括有机基团(例如,烷基基团或芳基基团)或氟基基团作为取代基。此外,有机基团可以包括氟基基团。
对用于形成平坦化绝缘层454的方法没有特别限制。根据材料,可以通过诸如溅射法、SOG法、旋涂法、浸涂法、喷涂法、或液滴排放法(喷墨法、丝网印刷、或胶版印刷)的方法、或者通过使用诸如刮刀、辊涂机、幕式涂布机、刮刀式涂布机的工具等来形成平坦化绝缘层454。
注意,可以在氧化物绝缘膜466上提供平坦化绝缘层454而不提供保护性绝缘层453。
接下来,执行第四光刻步骤,以便形成抗蚀剂掩模以去除驱动器电路部分中的平坦化绝缘层454(参见图39C)。
然后,在去除抗蚀剂掩模之后,执行第五光刻步骤,从而形成抗蚀剂掩模,并通过蚀刻平坦化绝缘层454、保护性绝缘层453、和氧化物绝缘膜466来形成到达导电层476的接触孔494(参见图39D)。另外,通过此蚀刻,还形成到达栅极电极层461和471的接触孔(未示出)。替代地,可以通过喷墨法来形成用于形成到达导电层476的接触孔的抗蚀剂掩模。用喷墨法来形成抗蚀剂掩模不需要光掩模,这导致制造成本的降低。
接下来,去除抗蚀剂掩模,并随后形成光透射导电膜。可以通过溅射法、或真空蒸发法等,使用氧化铟(In2O3)或氧化铟和氧化锡的合金(In2O3-SnO2,缩写为ITO)等,形成光透射导电膜。替代地,可以使用包含氮的基于Al-Zn-O的非单晶膜(即,基于Al-Zn-O-N的非单晶膜)、包含氮的基于Zn-O的非单晶膜、或包含氮的基于Sn-Zn-O的非单晶膜。注意,基于Al-Zn-O-N的非单晶膜中的锌的百分比(原子%)是47原子%或以下且高于该非单晶膜中的铝的百分比;该非单晶膜中的铝的百分比(原子%)高于该非单晶膜中的氮的百分比。用基于盐酸的溶液来蚀刻此类材料。然而,由于特别是在蚀刻ITO时很容易产生残留物,所以可以使用氧化铟和氧化锌的合金(In2O3-ZnO)以改善蚀刻可加工性。
接下来,执行第七蚀刻步骤,以使得形成抗蚀剂掩模并通过蚀刻来去除不必要的部分以形成像素电极层477和导电层467(参见图39E)。
通过上述步骤,使用七个掩模,可以在一个衬底上分别在驱动器电路和像素部分中制造薄膜晶体管460和薄膜晶体管470。用于驱动器电路的薄膜晶体管460包括包括氧化物半导体层483,所述氧化物半导体层483包括高电阻漏极区464a、高电阻漏极区464b、和沟道形成区463。用于像素的薄膜晶体管470包括氧化物半导体层485,所述氧化物半导体层485包括高电阻漏极区474a、高电阻漏极区474b、和沟道形成区473。薄膜晶体管460和470具有增加的耐受电压,因为高电阻漏极区充当缓冲器,从而即使当向薄膜晶体管460和470施加高电场时,也不向薄膜晶体管460和470施加局部高电场。
另外,可以在同一衬底上形成以第一栅极绝缘层452a和第二栅极绝缘层452b作为电介质的由电容器布线层和电容器电极构成的存储电容器。薄膜晶体管460和存储电容器被以矩阵布置以与各像素对应,从而形成像素部分,并在该像素部分周围布置包括薄膜晶体管460的驱动器电路,由此,可以获得用于制造有源矩阵显示器件的衬底之一。
注意,像素电极层477通过在平坦化绝缘层454、保护性绝缘层453、和氧化物绝缘膜466中形成的接触孔而电连接到电容器电极层。注意,可以在与漏极电极层447b相同的步骤中使用相同的材料来形成电容器电极层。
导电层467被提供为与氧化物半导体层中的沟道形成区463重叠,由此,在用于检验薄膜晶体管的可靠性的偏置-温度应力测试(称为BT测试)中,可以减少薄膜晶体管460的阈值电压在BT测试前后的变化量。导电层467的电位可以与栅极电极层461的电位相同或不同。导电层467还可以充当第二栅极电极层。替代地,导电层467的电位可以是GND电位或0V,或者导电层467可以处于浮置状态。
可以通过喷墨法来形成用于形成像素电极层477的抗蚀剂掩模。用喷墨法来形成抗蚀剂掩模不需要光掩模,这导致制造成本的降低。
注意,虽然在本实施例中描述了如图6B2所示的其中在像素部分中的薄膜晶体管470的漏极电极层447b上提供导电层476的结构,但也可以采用如图42A所示的其中未提供导电层476的结构。另外,虽然描述了如图6B1所示的其中在覆盖驱动器电路部分中的薄膜晶体管460的保护性绝缘层453上提供导电层476的结构,但如图42B所示,也可以采用其中在不提供保护性绝缘层453的情况下在氧化物绝缘膜466上提供导电层476的结构。
可以自由地将本实施例与任何其它实施例组合。
(实施例5)
在本实施例中,在图40A至40C中示出其中第一热处理与在实施例4中的不同的示例。除部分步骤之外,图40A至40C与图38A至38E和图39A至39E相同;因此,用相同的附图标记来表示与图38A至38E和图39A至39E中相同的部分并省略对这些部分的详细说明。
图40A至40C是示出用于制造两个薄膜晶体管的工艺过程的横截面图。
首先,如在实施例4中所述的,在具有绝缘表面的衬底451上形成光透射导电膜,并随后在第一光刻步骤中形成栅极电极层461和471。
然后在栅极电极层461和471上形成第一栅极绝缘层452a和第二栅极绝缘层452b的堆叠。然后,在第二栅极绝缘层452b上形成氧化物半导体膜480至2nm至200nm(含端值)的厚度(参见图40A)。注意,由于可以如在实施例4中那样执行直至且包括图40A中的步骤的那些步骤(参见图38A),所以省略对这些步骤的详细说明。
接下来,在惰性气体气氛中对氧化物半导体膜480进行脱水或脱氢。用于脱水或脱氢的第一热处理的温度是350℃或以上且低于衬底的应变点,优选地为400℃或以上。这里,将衬底引入作为一种热处理装置的电炉中并在氮气气氛中对氧化物半导体膜480执行热处理,然后减小氧化物半导体膜480的电阻,亦即,在氧化物半导体膜480未暴露于空气的情况下,使氧化物半导体膜480变成作为贫氧半导体膜的n型(例如,n-型或n+型)半导体膜,同时防止水或氢混合到氧化物半导体膜480中。之后,将高纯度氧气或高纯度N2O气体引入同一炉中并执行冷却。优选的是,在氧气或N2O气体中不包含水、氢气等。替代地,被引入热处理装置中的氧气或N2O气体的纯度优选为4N(99.99%)或以上、更优选为6N(99.9999%)或以上(亦即,氧气或N2O气体的杂质浓度优选地为20ppm或以下,更优选地为1ppm或以下)。
此外,在用于脱水或脱氢的第一热处理之后,可以在氧气气氛、N2O气氛、或极端干燥的空气(具有-40℃或以下优选-60℃或以下的露点)气氛中,在200℃至400℃(含端值),优选在200℃至300℃(含端值),执行热处理。
通过上述步骤使得整个氧化物半导体膜包含过量的氧;因此,获得具有增加的电阻的氧化物半导体膜496,亦即,i型氧化物半导体膜496(参见图40B)。结果,可以增加稍后制造的薄膜晶体管的可靠性。
注意,虽然在本实施例中描述了其中在形成氧化物半导体膜480之后执行脱水或脱氢的示例,但本发明不限于此。可以如实施例4中那样,在将氧化物半导体膜480处理成具有岛状之后执行第一热处理。
替代地,可以采用以下工艺过程:在惰性气体气氛中对氧化物半导体膜480执行脱水或脱氢;在惰性气体气氛中执行冷却;在光刻步骤中将氧化物半导体膜处理成岛状氧化物半导体层469和479;然后在氧气、N2O气气氛、或极端干燥的空气(具有-40℃或以下优选-60℃或以下的露点)气氛中执行热处理。
可以在形成氧化物半导体膜480之前,在惰性气体气氛(例如,氮气、氦气、氖气、或氩气)、氧气气氛、或极端干燥的空气(具有-40℃或以下优选-60℃或以下的露点)气氛中执行热处理(在高于或等于400℃且低于衬底的应变点的温度),以去除包含在栅极绝缘层中的诸如氢和水的杂质。
接下来,在第二光刻步骤中将氧化物半导体膜496处理成岛状氧化物半导体层469和479。
接下来,如在实施例4的图38C至38E和图39A至39E中那样,在外围驱动器电路部分中,以与氧化物半导体层469接触的方式形成低电阻漏极区446a和446b,以与作为金属导电层的源极电极层465a和漏极电极层465b及与低电阻漏极区446a和446b接触的方式形成氧化物绝缘膜466;如此,制造了用于驱动器电路的薄膜晶体管492。相反,在像素部分中,以与氧化物半导体层479接触的方式形成作为光透射导电层的源极电极层447a和漏极电极层447b,在漏极电极层447b上形成导电层476,并以与氧化物半导体层479接触的方式形成氧化物绝缘膜466;如此,制造了用于像素的薄膜晶体管493。
接下来,在惰性气体气氛或氧气气氛中执行第二热处理(优选地在200℃至400℃(含端值),例如在250℃至350℃(含端值))。例如,可以在氮气气氛中在250℃执行第二热处理一小时。
然后,将保护性绝缘层453形成为覆盖薄膜晶体管492和493并与氧化物绝缘膜466接触,并在保护性绝缘层453上堆叠平坦化绝缘层454。在氧化物绝缘膜466、保护性绝缘层453和平坦化绝缘层454中形成到达漏极电极层447b的接触孔,并随后在该接触孔中和在平坦化绝缘层454上形成光透射导电膜。选择性地蚀刻该光透射导电膜,以形成被电连接到薄膜晶体管493的导电层467和像素电极层477(参见图40C)。
通过上述步骤,可以利用五个掩模,在一个衬底上分别在驱动器电路和像素部分中制造薄膜晶体管492和薄膜晶体管493,在薄膜晶体管492和薄膜晶体管493中的每一个中,整个氧化物半导体层是i型氧化物半导体层。用于驱动器电路的薄膜晶体管492包括完全本征的氧化物半导体层469。用于像素的薄膜晶体管493包括完全本征的氧化物半导体层479。
另外,可以在同一衬底上形成以第一栅极绝缘层452a和第二栅极绝缘层452b作为电介质的由电容器布线层和电容器电极构成的存储电容器。薄膜晶体管493和存储电容器成矩阵布置以便与各像素对应,从而形成像素部分并在该像素部分周围布置包括薄膜晶体管492的驱动器电路,由此,可以获得用于制造有源矩阵显示器件的衬底之一。
导电层467被提供为与氧化物半导体层469中的沟道形成区463重叠,由此,在用于检验薄膜晶体管的可靠性的偏置-温度应力测试(称为BT测试)中,可以减少薄膜晶体管492的阈值电压在BT测试前后的变化量。导电层467的电位可以与栅极电极层461的电位相同或不同。导电层467还可以充当第二栅极电极层。替代地,导电层467的电位可以是GND电位或0V,或者导电层467可以处于浮置状态。
可以自由地将本实施例与任何其它实施例组合。
(实施例6)
在本实施例中,将描述其中使用在实施例1中描述的晶体管来制造有源矩阵液晶显示器件的示例。
图7A示出有源矩阵衬底的横截面结构的示例。
在实施例1中示出了在一个衬底上的驱动器电路中的薄膜晶体管和像素部分中的薄膜晶体管;在本实施例中,除那些薄膜晶体管之外,还示出了存储电容器、栅极布线(也称为栅极布线层)、和源极布线的端子部分以进行说明。可以在与实施例1中相同的制造步骤中形成电容器、栅极布线、和源极布线的端子部分,并且可以在不增加光掩模数目和步骤数目的情况下进行制造。此外,在像素部分中的充当显示区的部分中,可以使用光透射导电膜来形成栅极布线、源极布线、和电容器布线层,得到高的孔径比。此外,可以将金属线用于不充当显示区域的部分中的源极布线层,以减小布线电阻。
在图7A中,薄膜晶体管210是设置在驱动器电路中的薄膜晶体管,而被电连接到像素电极层227的薄膜晶体管220是设置在像素部分中的薄膜晶体管。
在本实施例中,在衬底200上形成的薄膜晶体管220具有与实施例1中的薄膜晶体管410相同的结构。
在与薄膜晶体管220的栅极电极层相同的步骤中使用相同的光透射材料形成的电容器布线层230与电容器电极层231重叠,而充当电介质的第一栅极绝缘层202a和第二栅极绝缘层202b插入它们之间;如此,形成存储电容器。在与薄膜晶体管220的源极电极层或漏极电极层相同的步骤中使用相同的光透射材料形成电容器电极层231。由于存储电容器以及薄膜晶体管220具有光透射性质,因此可以增加孔径比。
存储电容器的光透射性质在增加孔径比方面是重要的。特别是对于10英寸或更小的小液晶显示面板而言,即使当减小像素尺寸以便通过例如栅极布线的数目的增加来实现显示图像的较高清晰度时,也能够实现高孔径比。此外,将光透射膜用于薄膜晶体管220和存储电容器的部件使得即使当将一个像素划分成多个子像素以实现宽视角时也可以实现高孔径比。换言之,即使当布置一组高密度薄膜晶体管时也可以保持高孔径比,并且显示区可以具有足够的面积。例如,当一个像素包括两个至四个子像素和存储电容器时,存储电容器以及薄膜晶体管具有光透射性质,因此可以增加孔径比。
注意,存储电容器设置在像素电极层227下面,并且电容器电极层231电连接到像素电极层227。
虽然在本实施例中描述了其中存储电容器包括电容器电极层231和电容器布线层230的示例,但对存储电容器的结构没有特别限制。例如,可以以这样的方式来形成存储电容器,即,未提供电容器布线层,像素电极层与相邻像素中的栅极布线重叠,而平坦化绝缘层、保护性绝缘层、第一栅极绝缘层、和第二栅极绝缘层插入在它们之间。
依照像素密度提供多个栅极布线、源极布线、和电容器布线层。在端子部分中,布置具有与栅极布线相同的电位的多个第一端子电极、具有与源极布线相同的电位的多个第二端子电极、具有与电容器布线层相同的电位的多个第三端子电极等。对每一端子电极的数目没有特别限制,并且可以由从业者适当地确定端子的数目。
在端子部分中,可以使用与像素电极层227相同的光透射材料来形成具有与栅极布线相同的电位的第一端子电极232。第一端子电极232通过到达栅极布线的接触孔而电连接到栅极布线。在形成到达第一端子电极232的接触孔时,在氧化物半导体层上形成抗蚀剂掩模,由此,可以防止栅极绝缘膜与氧化物半导体层之间的界面被污染。
替代地,可以以直接在栅极绝缘膜上形成抗蚀剂掩模的方式来形成接触孔。在这种情况下,优选的是,在去除抗蚀剂之后,执行热处理以执行栅极绝缘膜的表面的脱水、脱氢、或脱羟基。可以在形成氧化物半导体层之后,在氧化物半导体层上堆叠氧化物导电层之后,或者在源极电极和漏极电极上形成钝化膜之后,执行用于氧化物半导体层的脱水或脱氢的热处理。关于栅极布线与源极布线之间的电连接,优选在源极布线下面形成氧化物导电层,在这种情况下,氧化物导电层充当缓冲层,电阻仅仅是取决于氧化物导电层的厚度的串联电阻,并且氧化物导电层不与金属形成绝缘氧化物。
设置在驱动器电路中的薄膜晶体管210的栅极电极层可以被电连接到设置在氧化物半导体层上的导电层217。在这种情况下,如在形成用于将薄膜晶体管220的漏极电极层上的导电层和像素电极层227相互电连接的接触孔的情况下那样,利用相同的光掩模进行平坦化绝缘层204、保护性绝缘层203、氧化物绝缘层216、第二栅极绝缘层202b、和第一栅极绝缘层202a的选择性蚀刻,来形成接触孔。设置在驱动器电路中的薄膜晶体管210的栅极电极层和导电层217通过接触孔电连接。
可以使用与像素电极层227相同的光透射材料来形成具有与设置在驱动器电路中的源极布线234相同的电位的第二端子电极235。第二端子电极235通过到达源极布线234的接触孔而电连接到源极布线234。源极布线是金属布线,在与薄膜晶体管210的源极电极层相同的步骤中使用相同的材料形成,并具有与薄膜晶体管210的源极电极层相同的电位。
在制造有源矩阵液晶显示器件的情况下,在有源矩阵衬底和提供有对电极(也称为对电极层)的对衬底之间提供液晶层,并将有源矩阵衬底和对衬底固定。在有源矩阵衬底上提供被电连接到对衬底上的对电极的公共电极,并在端子部分中提供被电连接到公共电极的第四端子电极。第四端子电极用于将公共电极设置为诸如GND电位或0V的固定电位。可以使用与像素电极层227相同的光透射材料来形成第四端子电极。
注意,图7A示出驱动器电路中的第一端子电极232的横截面结构。由于在本实施例中描述10英寸或更小的小液晶显示面板的示例,使用与薄膜晶体管220的栅极电极层相同的光透射材料来形成驱动器电路中的第一端子电极232。注意,第一端子电极232也充当布线。
另外,当使用相同的材料形成栅极电极层、源极电极层、漏极电极层、像素电极层、另一电极层、和另一布线层时,可以使用公共溅射靶和公共制造装置;因此,可以降低这些层的材料和在蚀刻时使用的蚀刻剂(或蚀刻气体)的成本,引起制造成本的降低。
当对图7A的结构中的平坦化绝缘层204使用感光树脂材料时,可以省略形成抗蚀剂掩模的步骤。
图7B示出横截面结构,其一部分不同于图7A中的结构。除未提供平坦化绝缘层204之外,图7B与图7A相同;因此,用相同的附图标记来表示与图7A中相同的部分并省略该部分的详细说明。在图7B中,像素电极层227、导电层217、和第二端子电极235在保护性绝缘层203上形成并与之接触。
利用图7B中的结构,可以省略用于形成平坦化绝缘层204的步骤。
图43A示出横截面结构,其一部分不同于图7A中的结构。由于电容器部分与图7A和7B中的相同,所以在图43A中未示出电容器部分。在图43A中,薄膜晶体管410是设置在驱动器电路中的薄膜晶体管,而被电连接到像素电极层477的薄膜晶体管420是设置在像素部分中的薄膜晶体管。此外,薄膜晶体管410和420与实施例2中的那些相同。
在端子部分中,可以使用与像素电极层477相同的光透射材料来形成具有与栅极布线相同的电位的第一端子电极468。第一端子电极468通过到达栅极布线的接触孔而电连接到栅极布线。在栅极绝缘膜中形成到达第一端子电极的接触孔之后,形成氧化物半导体层、氧化物导电层、和金属膜。然后,在金属膜上形成抗蚀剂掩模并执行蚀刻,以形成氧化物半导体层478、氧化物导电层446c、和金属层465c。
在直接在栅极绝缘膜上形成抗蚀剂掩模的情况下,优选的是,在去除抗蚀剂之后,执行热处理以执行栅极绝缘膜的表面的脱水、脱氢、或脱羟基。可以在形成氧化物半导体层之后,在氧化物半导体层上堆叠氧化物导电层之后,或者在源极电极和漏极电极上形成钝化膜之后,执行用于氧化物半导体层的脱水或脱氢的热处理。关于栅极布线与源极布线之间的电连接,优选地在源极布线下面形成氧化物导电层,在这种情况下,氧化物导电层充当缓冲层,电阻仅仅是取决于氧化物导电层的厚度的串联电阻,并且氧化物导电层不与金属形成绝缘氧化物。
图43B示出横截面结构,其一部分不同于图43A中的结构。除未提供平坦化绝缘层454之外,图43B与图43A相同;因此,用相同的附图标记来表示与图43A中相同的部分并省略该部分的详细说明。在图43B中,像素电极层427和导电层417在保护性绝缘层453上形成并与之接触。
图44A示出横截面结构,其一部分不同于图43A中的结构。在图44A中,薄膜晶体管410是设置在驱动器电路中的薄膜晶体管,而被电连接到像素电极层477的薄膜晶体管420是设置在像素部分中的薄膜晶体管。
图44A所示的薄膜晶体管410和420的氧化物半导体层和氧化物导电层的形状与图1B1和1B2所示的薄膜晶体管410和420的氧化物半导体层和氧化物导电层的形状不同,这是因为在形成氧化物半导体层和氧化物导电层之后执行蚀刻。之后,形成金属膜并执行蚀刻以形成源极电极层和漏极电极层。
在图44A中,为了在栅极绝缘膜中形成接触孔,在氧化物半导体层上形成抗蚀剂图案,由此,可以防止栅极绝缘膜与氧化物半导体层之间的界面被污染。替代地,可以以直接在栅极绝缘膜上形成抗蚀剂图案的方式来形成接触孔。在这种情况下,优选的是,在去除抗蚀剂之后,执行热处理以执行栅极绝缘膜的表面的脱水、脱氢、或脱羟基。可以在形成氧化物半导体层之后,在氧化物半导体层上堆叠氧化物导电层之后,或者在源极电极和漏极电极上形成钝化膜之后,执行用于氧化物半导体层的脱水或脱氢的热处理。关于栅极布线与源极布线之间的电连接,优选地在源极布线下面形成氧化物导电层,在这种情况下,氧化物导电层充当缓冲层,电阻仅仅是取决于氧化物导电层的厚度的串联电阻,并且氧化物导电层不与金属形成绝缘氧化物。
在端子部分中,可以使用与像素电极层477相同的光透射材料来形成具有与栅极布线相同的电位的第一端子电极468。第一端子电极468通过到达栅极布线的接触孔而电连接到栅极布线。为了形成到达第一端子电极468的接触孔,在氧化物半导体层上形成抗蚀剂掩模,由此,可以防止栅极绝缘膜与氧化物半导体层之间的界面被污染。
替代地,可以以直接在栅极绝缘膜上形成抗蚀剂掩模的方式来形成接触孔。在这种情况下,优选的是,在去除抗蚀剂之后,执行热处理以执行栅极绝缘膜的表面的脱水、脱氢、或脱羟基。可以在形成氧化物半导体层之后,在氧化物半导体层上堆叠氧化物导电层之后,或者在源极电极和漏极电极上形成钝化膜之后,执行用于氧化物半导体层的脱水或脱氢的热处理。关于栅极布线与源极布线之间的电连接,优选地在源极布线下面形成氧化物导电层,在这种情况下,氧化物导电层充当缓冲层,电阻仅仅是取决于氧化物导电层的厚度的串联电阻,并且氧化物导电层不与金属形成绝缘氧化物。
图44B示出横截面结构,其一部分不同于图44A中的结构。除未提供平坦化绝缘层454之外,图44B与图44A相同;因此,用相同的附图标记来表示与图44A中相同的部分并省略该部分的详细说明。在图44B中,像素电极层477和导电层417形成在保护性绝缘层453上并与之接触。
可以自由地将本实施例与任何其它实施例组合。
(实施例7)
存在这样的可能性:在液晶显示面板的尺寸超过10英并达到60英寸甚至120英寸的情况下光透射布线的电阻可能变成一个问题。因此,在本实施例中,将描述其中由金属布线制成栅极布线的一部分以便减小布线电阻的示例。
注意,在图8A中,用相同的附图标记来表示与在图7A中相同的部分并省略该部分的详细说明。注意,本发明还可以应用于在实施例1至4中所述的任何有源矩阵衬底。
图8A示出其中驱动器电路中的栅极布线的一部分由金属布线制成并以与光透射布线接触的方式形成的示例,所述光透射布线与薄膜晶体管210的栅极电极层相同。注意,由于形成金属布线,因此本实施例中的光掩模的数目比实施例1中的大。
首先,在衬底200上形成能够经受住用于脱水或脱氢的第一热处理的耐热导电材料膜(具有100nm至500nm(含端值)的厚度)。
在本实施例中,形成370nm厚的钨膜和50nm厚的氮化钽膜。虽然这里使用氮化钽膜和钨膜的堆叠作为导电膜,但不存在特别的限制,并且可以使用选自Ta、W、Ti、Mo、Al、和Cu的元素,包含这些元素中的任意作为其组分的合金,以组合方式包含上述元素的合金,或者包含任意这些元素作为其组分的氮化物,来形成导电膜。耐热导电材料膜不限于包含上述元素的单层且可以是两层或更多层的堆叠。
在第一光刻步骤中,形成金属布线以形成第一金属布线层236并形成第二金属布线层237。优选使用ICP(电感耦合等离子体)蚀刻法进行钨膜和氮化钽膜的蚀刻。可以利用蚀刻条件(例如,施加于盘绕电极的电功率的量、施加于衬底侧电极的电功率的量、和衬底侧电极的温度)的适当调整,通过ICP蚀刻法,来将膜蚀刻成期望的渐缩的形状(taperedshape)。因此,可以使第一金属线层236和第二金属线层237逐渐缩减;因此,可以减少在其上形成光透射导电膜时的缺陷。
然后,在形成光透射导电膜之后,在第二光刻步骤中形成栅极布线层238、薄膜晶体管210的栅极电极层、和薄膜晶体管220的栅极电极层。使用在实施例1中描述的透射可见光的任何导电材料来形成光透射导电膜。
注意,例如,如果在栅极布线层238与第一金属布线层236或第二金属布线层237之间存在界面,则通过稍后的热处理等可能形成氧化膜,并根据光透射导电膜的材料可能增加电阻。因此,优选地使用防止第一金属布线层236的氧化的金属氮化物膜来形成第二金属布线层237。
接下来,在与实施例1相同的步骤中形成栅极绝缘层、氧化物半导体层等。依照实施例1来执行后续步骤以完成有源矩阵衬底。
此外,在本实施例中,描述了其中在形成平坦化绝缘层204之后使用光掩模来选择性地去除端子部分中的平坦化绝缘层的示例。优选的是,不将平坦化绝缘层设置在端子部分中,以使得可以以有利的方式将端子部分连接到FPC。
在图8A中,在保护性绝缘层203上形成第二端子电极235。图8A示出与第二金属布线层237的一部分重叠的栅极布线层238;替代地,栅极布线层238可以覆盖全部的第一金属布线层236和第二金属布线层237。换言之,可以将第一金属布线层236和第二金属布线层237称为用于减小栅极布线层238的电阻的辅助布线。
在端子部分中,具有与栅极布线相同的电位的第一端子电极形成在保护性绝缘层203上并被电连接到第二金属布线层237。还可以使用金属布线来形成从端子部分引出的布线。
此外,为了减小布线电阻,可以在未充当显示区的部分中使用金属布线(即,第一金属布线层236和第二金属布线层237)作为用于栅极布线层和电容器布线层的辅助布线。
图8B示出横截面结构,其一部分不同于图8A中的结构。除驱动器电路中的薄膜晶体管中的栅极电极层的材料之外,图8B与图8A相同;因此,用相同的附图标记来表示与图8A中相同的部分,并省略对该部分的详细说明。
图8B示出其中由金属布线制成驱动器电路中的薄膜晶体管中的栅极电极层的示例。在驱动器电路中,栅极电极层的材料不限于光透射材料。
在图8B中,驱动器电路中的薄膜晶体管240包括其中在第一金属布线层242上堆叠第二金属布线层241的栅极电极层。注意,可以在与第一金属布线层236相同的步骤中使用相同的材料来形成第一金属布线层242。此外,可以在与第二金属布线层237相同的步骤中使用相同的材料来形成第一金属布线层241。
在将第一金属布线层242电连接到导电层217的情况下,优选对第二金属布线层241使用金属氮化物膜以便防止第一金属布线层242的氧化。
在本实施例中,将金属布线用于某些布线,以使得减小布线电阻;即使当液晶显示面板的尺寸超过10英寸并达到60英寸甚至120英寸时,也可以实现显示图像的高清晰度并可以实现高孔径比。
(实施例8)
在本实施例中,在图9A和9B中示出与实施例6中的不同的存储电容器的结构示例。除存储电容器的结构之外,图9A与图7A相同;因此,用相同的附图标记来表示与在图7A中相同的部分,并省略该部分的详细说明。图9A示出设置在像素中的薄膜晶体管220和存储电容器的横截面结构。
图9A示出其中以氧化物绝缘层216、保护性绝缘层203、和平坦化绝缘层204作为电介质由像素电极层227和与像素电极层227重叠的电容器电极层231构成存储电容器的示例。由于在与设置在像素中的薄膜晶体管220的源极电极层相同的步骤中使用相同的光透射材料来形成电容器电极层231,因此将电容器电极层231布置成不与薄膜晶体管220的源极布线层重叠。
在图9A所示的存储电容器中,一对电极和所述电介质具有光透射性质,因此存储电容器整体上具有光透射性质。
图9B示出与在图9A中不同的存储电容器的结构示例。除存储电容器的结构之外,图9B也与图7A相同;因此,用相同的附图标记来表示与在图7A中相同的部分并省略该部分的详细说明。
图9B示出其中以第一栅极绝缘层202a和第二栅极绝缘层202b作为电介质由存储布线层230以及与存储布线层230重叠的氧化物半导体层251和电容器电极层231的堆叠构成存储电容器的示例。电容器电极层231被堆叠在氧化物半导体层251上且与之接触,并且其充当存储电容器的电极之一。注意,在与薄膜晶体管220的源极电极层或漏极电极层相同的步骤中使用相同的光透射材料形成电容器电极层231。此外,由于在与薄膜晶体管220的栅极电极层相同的步骤中使用相同的光透射材料来形成电容器布线层230,因此将电容器布线层230被布置为不与薄膜晶体管220的栅极布线层重叠。
电容器电极层231被电连接到像素电极层227。
并且,在图9B所示的存储电容器中,一对电极和所述电介质具有光透射性质,因此存储电容器整体上具有光透射性质。
图9A和9B所示的每个存储电容器具有光透射性质;因此,即使在例如通过增加栅极布线的数目来减小像素尺寸以便实现显示图像的高清晰度,也可以获得足够的电容并可以获得高孔径比。
可以自由地将本实施例与任何其它实施例组合。
(实施例9)
在本实施例中,下面描述其中在一个衬底上形成驱动器电路的至少一部分和将在像素部分中提供的薄膜晶体管。
根据实施例1至5中的任何一个形成所述在像素部分中提供的薄膜晶体管。此外,在实施例1至5中的任何一个中描述的薄膜晶体管是n沟道TFT。因此,在与用于像素部分中的薄膜晶体管的衬底相同的衬底上形成驱动器电路当中的可以由n沟道TFT组成的某些驱动器电路。
图14A示出有源矩阵显示器件的框图的示例。在显示器件中,在衬底5300上提供像素部分5301、第一扫描线驱动器电路5302、第二扫描线驱动器电路5303、和信号线驱动器电路5304。在像素部分5301中,提供从信号线驱动器电路5304延伸的多个信号线,并提供从第一扫描线驱动器电路5302和第二扫描线驱动器电路5303延伸的多个扫描线。注意,在扫描线和信号线的交叉区中,将每个都具有显示元件的像素以矩阵布置。此外,显示器件的衬底5300通过柔性印刷电路(FPC)等的连接部分连接到时序控制电路5305(也称为控制器或控制IC)。
在图14A中,在与像素部分5301相同的衬底5300上形成第一扫描线驱动器电路5302、第二扫描线驱动器电路5303、和信号线驱动器电路5304。因此,减少了诸如在外部提供的驱动器电路等部件的数目,因此可以降低成本。此外,可以减少在布线从设置在衬底5300外部的驱动器电路延伸的情况下的连接部分中的连接数目,并可以改善可靠性或成品率。
注意,例如,时序控制电路5305向第一扫描线驱动器电路5302提供用于第一扫描线驱动器电路的开始信号(GSP1)和用于第一扫描线驱动器电路的时钟信号(GCK1)。另外,例如,时序控制电路5305向第二扫描线驱动器电路5303提供用于第二扫描线驱动器电路的开始信号(GSP2)(也称为开始脉冲)和用于第二扫描线驱动器电路的时钟信号(GCK2)。向信号线驱动器电路5304提供用于信号线驱动器电路的开始信号(SSP)、用于信号线驱动器电路的时钟信号(SCK)、用于视频信号的数据(DATA)(也简称为视频信号)、和锁存信号(LAT)。注意,每个时钟信号可以是具有不同相位的多个时钟信号,或者可以用反相时钟信号(CKB)来提供。注意,可以省略第一扫描线驱动器电路5302或第二扫描线驱动器电路5303。
在图14B中,在与像素部分5301相同的衬底5300上形成具有低驱动频率的电路(例如,第一扫描线驱动器电路5302和第二扫描线驱动器电路5303),并且在与提供有像素部分5301的衬底不同的另一衬底上形成信号线驱动器电路5304。此结构使得与使用单晶半导体形成的晶体管相比,能够使用具有低场效应迁移率的薄膜晶体管在衬底5300上形成驱动器电路。因此,可以实现显示器件尺寸的增加、步骤数目的减少、成本的降低、成品率的改善等。
在实施例1至5中描述的薄膜晶体管是n沟道TFT。在图15A和15B中,描述了使用n沟道TFT形成的信号线驱动器电路的结构和操作的示例。
信号线驱动器电路包括移位寄存器5601和开关电路5602。开关电路5602包括多个开关电路5602_1至5602_N(N是自然数)。开关电路5602_1至5602_N每个包括多个薄膜晶体管5603_1至5603_k(k是自然数)。描述其中薄膜晶体管5603_1至5603_k是n沟道TFT的示例。
通过以开关电路5602_1为例来描述信号线驱动器电路的连接关系。薄膜晶体管5603_1至5603_k的第一端子分别连接到布线5604_1至5604_k。薄膜晶体管5603_1至5603_k的第二端子分别连接到信号布线S1至Sk。薄膜晶体管5603_1至5603_k的栅极连接到布线5605_1。
移位寄存器5601具有依次向布线5605_1至5605_N输出H电平信号(也称为H信号或高电源电位电平)的功能和依次选择开关电路5602_1至5602_N的功能。
开关电路5602_1具有控制布线5604_1至5604_k与信号线S1至Sk之间的导通状态(第一端子与第二端子之间的导通性)的功能,亦即,控制是否向信号线S1至Sk提供布线5604_1至5604_k的电位的功能。以这种方式,开关电路5602_1具有选择器的功能。薄膜晶体管5603_1至5603_k具有控制布线5604_1至5604_k与信号线S1至Sk之间的导通状态的功能,亦即,分别向信号线S1至Sk提供布线5604_1至5604_k的电位的功能。以这种方式,薄膜晶体管5603_1至5603_k中的每一个充当开关。
注意,用于视频信号的数据(DATA)被输入到布线5604_1至5604_k。在很多情况下,用于视频信号的数据(DATA)是对应于图像数据或图像信号的模拟信号。
接下来,参照图15B中的时序图来描述在图15A中示出的信号线驱动器电路的操作。在图15B中,示出了信号Sout_1至Sout_N和信号Vdata_1至Vdata_k的示例。信号Sout_1至Sout_N是移位寄存器5601的输出信号的示例,并且信号Vdata_1至Vdata_k分别是输入到布线5604_1至5604_k的信号的示例。注意,信号线驱动器电路的一个工作周期对应于显示器件中的一个栅(gate)选择周期。例如,一个栅选择周期被划分成周期T1至TN。周期T1至TN是用于向所选行中的像素写入用于视频信号的数据(DATA)的周期。
注意,在某些情况下,为简单起见,将在本实施例中的附图等中所示的每个结构中的信号波形失真等被夸大。因此,本发明不限于这样的比例。
在周期T1至TN中,移位寄存器5601依次向布线5605_1至5605_N输出H电平信号。例如,在周期T1中,移位寄存器5601向布线5605_1输出高电平信号。于是,使薄膜晶体管5603_1至5603_k导通,从而使布线5604_1至5604_k及信号线S1至Sk导通。在这种情况下,分别向布线5604_1至5604_k输入Data(S1)至Data(Sk)。分别通过薄膜晶体管5603_1至5603_k将Data(S1)和Data(Sk)输入到第一至第k列中的所选行中的像素。因此,在周期T1至TN中,依次以k列向所选行中的像素写入用于视频信号的数据(DATA)。
通过以多列向像素写入用于视频信号的数据(DATA),可以减少用于视频信号的数据(DATA)的数目或布线的数目。因此,可以减少到外部电路的连接的数目。此外,通过每次向多个列的像素写入视频信号,可以延长写入时间,并可以防止视频信号写入的不足。
注意,对于移位寄存器5601和开关电路5602,可以使用通过使用在实施例1至5中描述的薄膜晶体管形成的电路。在这种情况下,包括在移位寄存器5601中的所有晶体管可以是仅n沟道晶体管或仅p沟道晶体管。
参照图16A至16C及图17A和17B来描述用于扫描线驱动器电路和/或信号线驱动器电路的一部分的移位寄存器的一种模式。
扫描线驱动器电路包括移位寄存器。另外,在某些情况下,扫描线驱动器电路可以包括电平移位器、或缓存器等。在扫描线驱动器电路中,当向移位寄存器输入时钟信号(CLK)和开始脉冲信号(SP)时,生成选择信号。所生成的选择信号被缓存器缓存和放大,并且所得到的信号被提供给相应的扫描线。一条线的像素中的晶体管的栅极电极连接到扫描线。由于一条线的像素中的晶体管必须全部一起导通,所以使用能够馈送大量电流的缓存器。
移位寄存器包括第一至第N脉冲输出电路10_1至10_N(N是大于或等于3的自然数)(参见图16A)。在图16A所示的移位寄存器中,分别从第一布线11、第二布线12、第三布线13、和第四布线14向第一至第N脉冲输出电路10_1至10_N提供第一时钟信号CK1、第二时钟信号CK2、第三时钟信号CK3、和第四时钟信号CK4。开始脉冲SP1(第一开始脉冲)被从第五布线15输入到第一脉冲输出电路10_1。来自前一级中的脉冲输出电路的信号(此类信号被称为前一级信号OUT(n-1))被输入到第二或更后级中的第n脉冲输出电路10_n(n是大于或等于2且小于或等于N的自然数)。来自处于落后第一脉冲输出电路10_1两级的那一级中的第三脉冲输出电路10_3的信号也被输入到第一脉冲输出电路10_1。以类似方式,来自处在落后第n脉冲输出电路10_n两级的那一级中的第(n+2)脉冲输出电路10_(n+2)的信号(此类信号称为后级信号OUT(n+2))被输入到第二或更后级中的第n脉冲输出电路10_n。因此,各级中的脉冲输出电路输出:第一输出信号(OUT(1)(SR)至OUT(N)(SR)),其将被输入到各后续级中的脉冲输出电路和/或在各脉冲输出电路之前两级的级中的脉冲输出电路;和第二输出信号(OUT(1)至OUT(N)),其将被输入到其它电路等。注意,如图16A所示,由于,例如,后级信号OUT(n+2)未被输入到移位寄存器的最后两级中的脉冲输出电路,所以可以另外向各脉冲输出电路输入第二开始脉冲SP2和第三开始脉冲SP3。
注意,时钟信号(CK)是以一定的间隔在H电平信号与L电平信号(也称为L信号或低电源电位电平)之间交替的信号。这里,第一至第四时钟信号(CK1)至(CK4)被依次延迟四分之一周期。在本实施例中,通过使用第一至第四时钟信号(CK1)至(CK4),执行脉冲输出电路的驱动的控制等。虽然依照向其输入时钟信号的驱动器电路将时钟信号用作GCK或SCK,但在这里将时钟信号描述为CK。
第一输入端子21、第二输入端子22、和第三输入端子23电连接任意的第一至第四布线11至14。例如,在图16A中,第一脉冲输出电路10_1的第一输入端子21被电连接到第一布线11,第一脉冲输出电路10_1的第二输入端子22被电连接到第二布线12,并且第一脉冲输出电路10_1的第三输入端子23被电连接到第三布线13。另外,第二脉冲输出电路10_2的第一输入端子21被电连接到第二布线12,第二脉冲输出电路10_2的第二输入端子22被电连接到第三布线13,并且第二脉冲输出电路10_2的第三输入端子23被电连接到第四布线14。
第一至第N脉冲输出电路10_1到10_n中的每一个包括第一输入端子21、第二输入端子22、第三输入端子23、第四输入端子24、第五输入端子25、第一输出端子26、和第二输出端子27(参见图16B)。在第一脉冲输出电路10_1中,向第一输入端子21输入第一时钟信号CK1,向第二输入端子22输入第二时钟信号CK2,向第三输入端子23输入第三时钟信号CK3,向第四输入端子24输入开始脉冲,向第五输入端子25输入后续级信号OUT(3),从第一输出端子输出第一输出信号OUT(1)(SR),并从第二输出端子27输出第二输出信号OUT(1)。
在第一至第N脉冲输出电路10_1至10_N中,除具有三个端子的薄膜晶体管之外,还可以使用上述实施例中所描述的具有四个端子的薄膜晶体管(TFT)。注意,在本说明书中,当薄膜晶体管具有两个栅极电极而半导体层处于它们之间时,将半导体层下面的栅极电极称为下栅极电极,并将半导体层上面的栅极电极称为上栅极电极。
当使用氧化物半导体来形成薄膜晶体管的沟道层时,在某些情况下,根据制造工艺,阈值电压在正或负方向偏移。因此,其中将氧化物半导体用于沟道层的薄膜晶体管有利地具有可以用来控制阈值电压的结构。可以通过对上栅极电极和/或下栅极电极的电位的控制,来将具有四个端子的薄膜晶体管的阈值电压控制为期望值。
接下来,参照图16C来描述图16B所示的脉冲输出电路的具体电路结构的示例。
图16C中所示的脉冲输出电路包括第一至第十三晶体管31至43。除第一至第五输入端子21至25、第一输出端子26、和第二输出端子27之外,还从向其提供第一高电源电位VDD的电源线51、向其提供第二高电源电位VCC的电源线52、和向其提供低电源电位VSS的电源线53,向第一至第十三晶体管31至43提供信号或电源电位。这里,如下设置图16C所示的电源线的电源电位之间的幅值关系:第一电源电位VDD高于第二电源电位VCC,并且第二电源电位VCC高于第三电源电位VSS。虽然第一至第四时钟信号(CK1)至(CK4)是以一定的间隔在H电平信号与L电平信号之间交替的信号,但当时钟信号处于H电平时,电位是VDD,并且当时钟信号处于L电平时,电位是VSS。注意,电源线51的电位VDD高于电源线52的电位VCC,从而对操作没有影响,施加于晶体管的栅极电极的电位可以是低的,可以减小晶体管的阈值电压的偏移,并且可以抑制劣化。优选地,使用具有四个端子的薄膜晶体管作为第一至第十三晶体管31至43之中的第一晶体管31和第六至第九晶体管36至39。第一晶体管31和第六至第九晶体管36至39需要操作使得用栅极电极的控制信号来切换充当源极或漏极的一个电极所连接到的节点的电位,并且还可以减少脉冲输出电路的故障,这是因为对输入到栅极电极的控制信号的响应很快(通态(on-state)电流的上升是急剧的)。因此,通过使用具有四个端子的薄膜晶体管,可以控制阈值电压,并可以进一步防止脉冲输出电路的故障。
在图16C中,第一晶体管31的第一端子被电连接到电源线51,第一晶体管31的第二端子被电连接到第九晶体管39的第一端子,并且第一晶体管31的栅极电极(第一栅极电极和第二栅极电极)被电连接到第四输入端子24。第二晶体管32的第一端子被电连接到电源线53,第二晶体管32的第二端子被电连接到第九晶体管39的第一端子,并且第二晶体管32的栅极电极被电连接到第四晶体管34的栅极电极。第三晶体管33的第一端子被电连接到第一输入端子21,并且第三晶体管33的第二端子被电连接到第一输出端子26。第四晶体管34的第一端子被电连接到电源线53,并且第四晶体管34的第二端子被电连接到第一输出端子26。第五晶体管35的第一端子电连接电源线53,第五晶体管35的第二端子被电连接到第二晶体管32的栅极电极和第四晶体管34的栅极电极,并且第五晶体管35的栅极电极电连接到第四输入端子24。第六晶体管36的第一端子电连接电源线52,第六晶体管36的第二端子被电连接到第二晶体管32的栅极电极和第四晶体管34的栅极电极,并且第六晶体管36的栅极电极(第一栅极电极和第二栅极电极)电连接第五输入端子25。第七晶体管37的第一端子电连接到电源线52,第七晶体管37的第二端子电连接到第八晶体管38的第二端子,并且第七晶体管37的栅极电极(第一栅极电极和第二栅极电极)电连接到第三输入端子23。第八晶体管38的第一端子电连接到第二晶体管32的栅极电极和第四晶体管34的栅极电极,并且第八晶体管38的栅极电极(第一栅极电极和第二栅极电极)电连接到第二输入端子22。第九晶体管39的第一端子被电连接到第一晶体管31的第二端子和第二晶体管32的第二端子,第九晶体管39的第二端子被电连接到第三晶体管33的栅极电极和第十晶体管40的栅极电极,并且第九晶体管39的栅极电极(第一栅极电极和第二栅极电极)被电连接到电源线52。第十晶体管40的第一端子被电连接到第一输入端子21,第十晶体管40的第二端子被电连接到第二输出端子27,并且第十晶体管40的栅极电极被电连接到第九晶体管39的第二端子20。第十一晶体管41的第一端子被电连接到电源线53,第十一晶体管41的第二端子被电连接到第二输出端子27,并且第十一晶体管41的栅极电极被电连接到第二晶体管32的栅极电极和第四晶体管34的栅极电极。第十二晶体管42的第一端子被电连接到电源线53,第十二晶体管42的第二端子被电连接到第二输出端子27,并且第十二晶体管42的栅极电极被电连接到第七晶体管37的栅极电极(第一栅极电极和第二栅极电极)。第十三晶体管43的第一端子被电连接到电源线53,第十三晶体管43的第二端子被电连接到第一输出端子26,并且第十三晶体管43的栅极电极被电连接到第七晶体管37的栅极电极(第一栅极电极和第二栅极电极)。
在图16C中,第三晶体管33的栅极电极的连接部分、第十晶体管40的栅极电极、和第九晶体管39的第二端子是节点A。第二晶体管32的栅极电极的连接部分、第四晶体管34的栅极电极、第五晶体管35的第二端子、第六晶体管36的第二端子、第八晶体管38的第一端子、和第十一晶体管41的栅极电极是节点B。
在图17A中,示出了在将图16C中所示的脉冲输出电路应用于第一脉冲输出电路10_1时,向/从第一至第五输入端子21至25、第一输出端子26、和第二输出端子27输入/输出的信号。
具体而言,向第一输入端子21输入第一时钟信号CK1,向第二输入端子22输入第二时钟信号CK2,向第三输入端子23输入第三时钟信号CK3,向第四输入端子24输入开始脉冲,向第五输入端子25输入后续级信号OUT(3),从第一输出端子26输出第一输出信号OUT(1)(SR),并从第二输出端子27输出第二输出信号OUT(1)。
注意,薄膜晶体管是具有至少栅极、漏极、和源极三个端子的元件。薄膜晶体管具有其沟道区形成在与栅极重叠的区域处的半导体,并且栅极的电位受到控制,由此,可以控制通过沟道区在漏极与源极之间流动的电流。这里,由于薄膜晶体管的源极和漏极可以根据薄膜晶体管的结构、工作条件等而改变,所以很难限定哪个是源极或漏极。因此,在某些情况下,并不将充当源极或漏极的区域称为源极或漏极。在这种情况下,例如,可以将源极和漏极之一称为第一端子并将其另一个称为第二端子。
注意,在图16C和图17A中,可以另外提供电容器以执行受到处于浮置状态的节点A影响的自举(bootstrap)操作。可以提供其一个电极被电连接到节点B的电容器以保持节点B的电位。
这里,在图17B中示出其中提供了多个图17A所示的脉冲输出电路的移位寄存器的时序图。注意,在图17B中,当移位寄存器是扫描线驱动器电路时,周期61是垂直回扫周期(verticalretraceperiod),而周期62是栅选择周期。
注意,如图17A所示,当提供具有被施加第二电源电位VCC的栅极的第九晶体管39时,在自举操作之前或之后存在以下优点。
在没有其栅极电极被提供第二电源电位VCC的第九晶体管39的情况下,当通过自举操作来提高节点A的电位时,作为第一晶体管31的第二端子的源极的电位增加至高于第一电源电位VDD的值。然后,第一晶体管31的源极被切换到第一端子侧,亦即,电源线51侧。因此,在第一晶体管31中,施加大的偏置电压量,并因此在栅极与源极之间以及栅极与漏极之间施加极大的应力,这可能导致晶体管的劣化。当提供其栅极电极被提供以第二电源电位VCC的第九晶体管39时,通过自举操作来提高节点A的电位,但同时,可以防止第一晶体管31的第二端子的电位的增加。换言之,通过第九晶体管39,可以减小施加在第一晶体管31的栅极与源极之间的负偏置电压。因此,通过本实施例中的电路结构,可以减小施加在第一晶体管的栅极与源极之间的负偏置电压,从而还可以抑制由于应力而引起的第一晶体管31的劣化。
注意,可以在任何的其中第九晶体管39通过第一端子和第二端子连接在第一晶体管31的第二端子与第三晶体管33的栅极之间的位置处提供第九晶体管39。当在本实施例中移位寄存器包括多个脉冲输出电路时,在具有比扫描线驱动器电路大的级数的信号线驱动器电路中可以省略第九晶体管39,并且存在减少晶体管数目的优点。
注意,当对用于第一至第十三晶体管31至43的半导体层使用氧化物半导体时,可以减小薄膜晶体管的闭态(off-state)电流,可以增加通态电流和场效应迁移率,并且可以降低劣化程度,由此可以减少电路的故障。与使用氧化物半导体形成的晶体管和使用非晶硅形成的晶体管相比,由于向栅极电极施加高电位而引起的晶体管的劣化程度是低的。因此,即使当向提供第二电源电位VCC的电源线提供第一电源电位VDD时,也可以获得类似操作,并且可以减少牵引在电路之间的电源线的数目;因此,可以减小电路的尺寸。
注意,即使当改变连接关系,使得分别从第二输入端子22和第三输入端子23提供从第三输入端子23提供给第七晶体管37的栅极电极(第一栅极电极和第二栅极电极)的时钟信号和从第二输入端子22提供给第八晶体管38的栅极电极(第一栅极电极和第二栅极电极)的时钟信号时,也获得的类似功能。注意,在图17A所示的移位寄存器中,状态从第七晶体管37和第八晶体管38两者导通的状态变成第七晶体管37截止且第八晶体管38导通的状态,然后变成第七晶体管37和第八晶体管38两者截止的状态;因此,由第七晶体管37的栅极电极的电位下降和第八晶体管38的栅极电极的电位下降而两次导致由于第二输入端子22和第三输入端子23的电位下降而引起的节点B的电位下降。另一方面,当图17A所示的移位寄存器如图17B所示的周期中那样工作时,状态从第七晶体管37和第八晶体管38两者导通的状态变成第七晶体管37导通且第八晶体管38截止的状态,然后变成第七晶体管37和第八晶体管38两者截止的状态。因此,由于第二输入端子22和第三输入端子23的电位下降而引起的节点B的电位下降被减少至一次,这是由第八晶体管38的栅极电极的电位下降而引起的。因此,优选的是这样的连接关系,即,从第三输入端子23向第七晶体管37的栅极电极(第一栅极电极和第二栅极电极)提供时钟信号CK3并从第二输入端子22向第八晶体管38的栅极电极(第一栅极电极和第二栅极电极)提供时钟信号CK2。这是因为可以减少节点的电位变化的次数,由此,可以减少噪声。
以这样的方式,在第一输出端子26的电位和第二输出端子27的电位每个被保持在L电平的周期中,有规律地向节点B提供H电平信号;因此,可以抑制脉冲输出电路的故障。
(实施例10)
制造薄膜晶体管,并且可以使用像素部分中和另外在驱动器电路中的薄膜晶体管来制造具有显示功能的半导体器件(也称为显示器件)。此外,在与像素部分相同的衬底上形成具有薄膜晶体管的部分或整个驱动器电路,由此,可以获得面板上系统(system-on-panel)。
所述显示器件包括显示元件。作为显示元件,可以使用液晶元件(也称为液晶显示元件)或发光元件(也称为发光显示元件)。发光元件就其种类而言包括由电流或电压来控制其亮度的元件,并且具体而言,就其种类而言,包括无机电致发光(EL)元件、有机EL元件等等。此外,可以使用诸如电子墨的通过电效应来改变其对比度的显示介质。
另外,所述显示器件包括显示元件被密封在其中的面板,和其中将包括控制器的IC等安装在该面板上的模块。此外,向对应于在显示器件的制造过程中完成显示元件之前的实施例的元件衬底提供用于向多个像素中的每一个中的显示元件提供电流的装置。具体而言,该元件衬底可以处于仅形成了显示元件的像素电极(也称为像素电极层)的状态,或在形成将作为像素电极的导电膜之后和在蚀刻导电膜以形成像素电极之前的状态,并且可以具有任何模式。
注意,本说明书中的显示器件意指图像显示器件、显示器件、或光源(包括照明器件)。此外,所述显示器件就其种类而言包括以下模块:包括附着的诸如柔性印刷电路(FPC)、载带自动接合(TAB)带、或带载封装(TCP)的连接器的模块;具有TAB带或在其末端处设有印刷布线板的TCP的模块;以及具有通过玻璃上芯片(COG)法直接安装在显示元件上的集成电路(IC)的模块。
参照图10A1、10A2、和10B来描述对应于半导体器件的一种模式的液晶显示面板的外观和横截面。图10A1和10A2每个是其中用密封剂4005将薄膜晶体管4010和4011及液晶元件4013密封在第一衬底4001和第二衬底4006之间的面板的平面图。图10B是沿图10A1和10A2中的线M-N截取的横截面图。
密封剂4005被设置为围绕在第一衬底4001上提供的像素部分4002和扫描线驱动器电路4004。在像素部分4002和扫描线驱动器电路4004上提供第二衬底4006。因此,通过第一衬底4001、密封剂4005、和第二衬底4006,将像素部分4002和扫描线驱动器电路4004与液晶层4008密封在一起。在与第一衬底4001上的被密封剂4005围绕的区域不同的区域中安装单独地制备的衬底上利用单晶半导体膜或多晶半导体膜形成的信号线驱动器电路4003。
注意,对单独地形成的驱动器电路的连接方法不存在特别限制,并且可以使用COG法、引线接合法、或TAB法等等。图10A1示出其中通过COG法来安装信号线驱动器电路4003的示例,而图10A2示出其中通过TAB法来安装信号线驱动器电路4003的示例。
在第一衬底4001上提供的像素部分4002和扫描线驱动器电路4004中的每一个包括多个薄膜晶体管。图10B示出包括在像素部分4002中的薄膜晶体管4010和包括在扫描线驱动器电路4004中的薄膜晶体管4011。在薄膜晶体管4010和4011上,提供保护性绝缘层4020和4021。
对于薄膜晶体管4010和4011而言,可以采用在任意实施例1至4中描述的包括氧化物半导体层的高度可靠的薄膜晶体管。可以使用在前述实施例中描述的薄膜晶体管410或薄膜晶体管449作为用于驱动器电路的薄膜晶体管4011。可以使用薄膜晶体管420或薄膜晶体管450作为用于像素的薄膜晶体管4010。在本实施例中,薄膜晶体管4010和4011是n沟道薄膜晶体管。
在绝缘层4021上,在与包括在用于驱动器电路的薄膜晶体管4011中的氧化物半导体层的沟道形成区重叠的位置中提供导电层4040。通过在与氧化物半导体层的沟道形成区重叠的位置中提供导电层4040,可以减小薄膜晶体管4011在BT测试前后之间的阈值电压的变化量。导电层4040可以具有与薄膜晶体管4011的栅极电极层相同的电位,或者具有与该栅极电极层的电位不同的电位,并且可以充当第二栅极电极层。导电层4040的电位可以是GND电位、0V,或者导电层4040可以处于浮置状态。
包括在液晶元件4013中的像素电极层4030被电连接到薄膜晶体管4010。在第二衬底4006上提供液晶元件4013的对电极层4031。其中像素电极层4030、对电极层4031、和液晶层4008相互重叠的部分对应于液晶元件4013。注意,像素电极层4030和对电极层4031分别提供有充当取向膜(alignmentfilm)的绝缘层4032和绝缘层4033,并且液晶层4008被夹在像素电极层4030与对电极层4031之间,绝缘层4032和4033被插入在它们之间。
注意,可以使用光透射衬底作为第一衬底4001和第二衬底4006;可以使用玻璃、陶瓷、或塑料。作为塑料,可以使用玻璃纤维增强塑料(FRP)板、聚氟乙烯(PVF)膜、聚酯膜、或丙烯酸树脂膜。
间隔物4035是通过绝缘膜的选择性蚀刻而获得的柱状间隔物,并且是为了控制像素电极层4030与对电极层4031之间的距离(单元间隙)而提供的。替代地,还可以使用球形间隔物。另外,对电极层4031被电连接到形成在与薄膜晶体管4010相同的衬底上的公共电位线。通过使用公共连接部分,可以通过布置在一对衬底之间的导电颗粒将对电极层4031和公共电位线相互电连接。注意,所述导电颗粒被包括在密封剂4005中。
替代地,可以使用表现出蓝相(bluephase)的液晶,其不需要取向膜。蓝相是液晶相之一,其刚好在胆甾相(cholestericphase)液晶的温度升高的同时在胆甾相变成各向同性相之前出现。由于蓝相仅在窄的温度范围内出现,所以将包含按重量计5%或以上手性试剂(chiralreagent)以便改善温度范围的液晶组合物用于液晶层4008。包括表现出蓝相的液晶和手性试剂的液晶组合物具有1毫秒或更少的短响应时间,具有光学各向同性使得不需要取向过程,并且具有小的视角依赖性。
除透射式液晶显示器件之外,本发明的实施例还可以应用于半透射式液晶显示器件。
描述了其中在衬底的外表面上(在观察者一侧上)提供偏振片并在衬底的内表面上提供用于显示元件的着色层(滤色器)和电极层的液晶显示器件的示例;然而,也可以在衬底的内表面上提供偏振片。偏振片和着色层的堆叠结构不限于本实施例,而且可以根据偏振片和着色层的材料或制造工艺的条件而适当地进行设置。
在薄膜晶体管4011中,形成绝缘层4041作为保护性绝缘膜,以便与包括沟道形成区的氧化物半导体层接触。可以使用与在实施例1中描述的氧化物绝缘膜416的材料和方法类似的材料和方法来形成绝缘层4041。另外,为了降低薄膜晶体管的表面粗糙度,用充当平坦化绝缘膜的保护性绝缘层4021覆盖薄膜晶体管。这里,作为绝缘层4041,通过根据实施例1的溅射法来形成氧化硅膜。
此外,在薄膜晶体管4010和4011上提供保护性绝缘层4020。可以使用与在实施例1中描述的保护性绝缘层403的材料和方法类似的材料和方法来形成保护性绝缘层4020。这里,作为保护性绝缘层4020,用PCVD法来形成氮化硅膜。
形成绝缘层4021来作为平坦化绝缘膜。可以使用与在实施例1中描述的平坦化绝缘层404的材料和方法类似的材料和方法来形成绝缘层4021;例如,可以使用具有耐热性的有机材料,诸如丙烯酸、聚酰亚胺、苯并环丁烯、聚酰胺、或环氧树脂。除此类有机材料之外,还可以使用低介电常数材料(低k材料)、基于硅氧烷的树脂、PSG(磷硅酸盐玻璃)、或BPSG(硼磷硅酸盐玻璃)等。注意,可以通过堆叠使用这些材料形成的多个绝缘膜来形成绝缘层4021。
注意,基于硅氧烷的树脂对应于使用基于硅氧烷的材料作为起始材料形成的包括Si-O-Si键的树脂。基于硅氧烷的树脂可以包括有机基团(例如,烷基基团或芳基基团)或氟基基团作为取代基。另外,有机基团可以包括氟基基团。
对用于形成绝缘层4021的方法没有特别限制,并且可以根据材料通过诸如溅射法、SOG法、旋涂法、浸涂法、喷涂法、或液滴排放法(例如,喷墨法、丝网印刷、或胶版印刷等)、或者用诸如刮刀、辊涂机、幕式涂布机、刮刀式涂布机的工具(设备),来形成绝缘层4021。绝缘层4021的烘焙步骤也充当氧化物半导体层的退火,由此可以高效地制造半导体器件。
可以使用光透射导电材料来形成像素电极层4030,所述光透射导电材料诸如:包含氧化钨的氧化铟、包含氧化钨的氧化铟锌、包含氧化钛的氧化铟、包含氧化钛的氧化铟锡、氧化铟锡(在下文中称为ITO)、氧化铟锌、或向其添加了氧化硅的氧化铟锡等等。
可以将包括导电高分子(也称为导电聚合物)的导电组合物用于像素电极层4030和对电极层4031。使用导电组合物形成的像素电极优选地具有小于或等于10000欧姆每方的薄层电阻和在550nm的波长大于或等于70%的光透射率。此外,包括在该导电组合物中的导电高分子的电阻率优选地小于或等于0.1Ω·cm。
作为导电高分子,可以使用所谓的π电子共轭导电聚合物。例如,可以给出聚苯胺或其衍生物、聚吡咯或其衍生物、聚噻吩或其衍生物、上述中的两种或更多种的共聚物等等。
此外,可以从FPC4018向信号线驱动器电路4003(其是单独地形成的)、扫描线驱动器电路4004、或像素部分4002提供多种信号和电位。
使用与包括在液晶元件4013中的像素电极层4030相同的导电膜来形成连接端子电极4015。使用与包括在薄膜晶体管4011中的源极和漏极电极层相同的导电膜来形成端子电极4016。
连接端子电极4015经由各向异性导电膜4019电连接到包括在FPC4018中的端子。
图10A1、10A2、和10B示出其中信号线驱动器电路4003单独地形成并安装在第一衬底4001上的示例;然而,本发明的实施例不限于此结构。可以单独地形成并随后安装扫描线驱动器电路,或者可以单独地形成并随后安装信号线驱动器电路的仅一部分或扫描线驱动器电路的一部分。
图19示出其中使用根据本说明书中公开的制造方法制造的TFT衬底2600形成液晶显示模块作为半导体器件的示例。
图19示出液晶显示模块的示例,其中,用密封剂2602将TFT衬底2600与对衬底2601相互固定,并在这些衬底之间提供包括TFT等的像素部分2603、包括液晶层的显示元件2604、和着色层2605。着色层2605是执行彩色显示所必需的。在RGB系统中,为各像素提供与红色、绿色、和蓝色的颜色对应的各着色层。在对衬底2601的外侧上提供偏振片2606,同时在TFT衬底2600的外侧上提供偏振片2607和扩散板2613。光源包括冷阴极管2610和反射板2611,并且电路衬底2612通过柔性布线板2609连接到TFT衬底2600的布线电路部分2608,并且电路衬底2612包括诸如控制电路或电源电路的外部电路。可以将偏振片和液晶层堆叠,在它们之间插入延迟板。
液晶显示模块可以采用TN(扭转向列)模式、IPS(平面内切换)模式、FFS(边缘场切换)模式、MVA(多畴垂直取向)模式、PVA(图案化垂直取向)模式、ASM(轴对称排列微单元)模式、OCB(光学补偿双折射)模式、FLC(铁电液晶)模式、或AFLC(反铁电液晶)模式等。
通过以上工艺过程,可以制造作为半导体器件的高度可靠的液晶显示面板。
可以以与在其它实施例中描述的结构适当组合的方式来实现本实施例。
(实施例11)
描述电子纸的示例作为半导体器件的实施例。
可以将半导体器件用于其中由电连接到开关元件的元件来驱动电子墨的电子纸。电子纸也称为电泳显示器件(电泳显示器),且其有利之处在于其具有作为普通纸(plainpaper)的相同水平的可阅读性,其具有比其它显示器件低的功率消耗,并且可以使其薄且重量轻。
电泳显示器件可以具有多种模式。电泳显示器件包含分散在溶剂或溶质中的多个微囊,每个微囊包含带正电的第一颗粒和带负电的第二颗粒。通过向微囊施加电场,微囊中的颗粒在彼此相反的方向移动,并且仅显示聚集在一侧的颗粒的颜色。注意,第一颗粒和第二颗粒每个包含染料且在没有电场的情况下不移动。此外,第一颗粒和第二颗粒具有不同的颜色(其可以是无色的)。
因此,电泳显示器件是利用所谓的介电电泳效应(dielectrophoreticeffect)的显示器件,通过该介电电泳效应,具有高介电常数的物质移动到高电场区。电泳显示器件不需要使用在液晶显示器件中要求的偏振片。
其中将上述微囊分散在溶剂中的解决方案称为电子墨。此电子墨可以被印刷在玻璃、塑料、布料、或纸张等的表面上。此外,通过使用滤色器或具有颜料的颗粒,还可以实现彩色显示。
另外,当在有源矩阵衬底上适当布置多个上述微囊以将其插入在两个电极之间时,可以完成有源矩阵显示器件,并且可以通过向微囊施加电场来执行显示。例如,可以使用通过在任意实施例1至4中描述的薄膜晶体管获得的有源矩阵衬底。
注意,微囊中的第一颗粒和第二颗粒每个可以由选自导电材料、绝缘材料、半导体材料、磁性材料、液晶材料、铁电材料、电致发光材料、电致变色材料、和磁泳材料的一种材料形成,或者由任意这些材料的复合物形成。
图18示出作为半导体器件的示例的有源矩阵电子纸。可以以类似于在实施例1中描述的薄膜晶体管的方式来形成用于半导体器件的薄膜晶体管581,其为包括氧化物半导体层的高度可靠的薄膜晶体管。替代地,可以使用在任意实施例2至4中描述的薄膜晶体管作为本实施例的薄膜晶体管581。
图18中的电子纸是使用扭转球显示系统的显示器件的示例。扭转球显示系统指的是这样的方法,其中在作为用于显示元件的电极层的第一电极层与第二电极层之间布置每个为黑色和白色的球状颗粒,并在第一电极层与第二电极层之间产生电位差以控制球状颗粒的取向,从而执行显示。
在衬底580上形成的薄膜晶体管581是底栅薄膜晶体管,且被与半导体层接触的绝缘层583覆盖。薄膜晶体管581的源极电极层或漏极电极层与在绝缘层583、584、和585中形成的开口中的第一电极层587接触,由此,将薄膜晶体管581电连接到第一电极层587。在衬底596上的第一电极层587与第二电极层588之间,提供球状颗粒589。每个球状颗粒589包括黑色区590a和白色区590b,以及在黑色区590a和白色区590b周围填充有液体的腔体594。球状颗粒589的周围填充有诸如树脂等的填料598。第一电极层587对应于像素电极,并且第二电极层588对应于公共电极。第二电极层588被电连接到在与薄膜晶体管581相同的衬底上提供的公共电位线。通过使用公共连接部分,可以通过布置在一对衬底之间的导电颗粒将第二电极层588电连接到公共电位线。
此外,作为扭转球的替代,还可以使用电泳元件。使用具有约10μm至200μm的直径的微囊,其中包封有透明液体、带正电的白色微粒、以及带负电的黑色微粒。在设置在第一电极层与第二电极层之间的微囊中,当通过第一电极层和第二电极层来施加电场时,白色微粒和黑色微粒移动到相对侧,从而可以显示白色或黑色。使用此原理的显示元件是电泳显示元件,且通常称为电子纸。电泳显示元件具有比液晶显示元件高的反射率,因此,不需要辅助光,功率消耗低,并且在昏暗位置处也可以识别显示部分。另外,即使当未向显示部分提供功率时,也可以保持已经显示了一次的图像。因此,即使具有显示功能的半导体器件(可以简称为显示器件或提供有显示器件的半导体器件)远离电波源,也可以存储所显示的图像。
通过以上工艺过程,可以制造作为半导体器件的高度可靠的电子纸。
可以以与在其它实施例中描述的结构适当组合的方式来实现本实施例。
(实施例12)
描述发光显示器件的示例作为半导体器件。作为包括在显示器件中的显示元件,在这里描述利用电致发光的发光元件。根据发光材料有机化合物还是无机化合物来将利用电致发光的发光元件分类。通常,将前者称为有机EL元件,并将后者称为无机EL元件。
在有机EL元件中,通过向发光元件施加电压,单独地从一对电极向包含发光有机化合物的层注入电子和空穴,并且电流流动。载流子(电子和空穴)复合,因此激发发光有机化合物。发光有机化合物从受激态返回到基态,从而发光。基于此机制,将此发光元件称为电流激励发光元件。
根据无机EL元件的元件结构将其分类为分散型无机EL元件和薄膜无机EL元件。分散型无机EL元件具有其中发光材料的颗粒被分散在粘合剂中的发光层,其发光机制是利用施主能级和受主能级的施主-受主复合型光发射。薄膜无机EL元件具有其中发光层被夹在电介质层之间结构,所述电介质层进一步被夹在电极之间,并且其发光机制是利用金属离子的内壳层电子跃迁的局部化型光发射。注意,在这里描述作为发光元件的有机EL元件的示例。
图12示出作为半导体器件的示例的可以对其应用数字时间灰度级驱动的像素结构的示例。
描述了可以对其应用数字时间灰度级驱动的像素的结构和操作。这里,一个像素包括两个n沟道晶体管,每个n沟道晶体管包括作为沟道形成区的氧化物半导体层。
像素6400包括开关晶体管6401、用于发光元件的驱动晶体管6402、发光元件6404、和电容器6403。开关晶体管6401的栅极被连接到扫描线6406,开关晶体管6401的第一电极(源极电极和漏极电极之一)被连接到信号线6405,并且开关晶体管6401的第二电极(源极电极和漏极电极中的另一个)被连接到用于发光元件的驱动晶体管6402的栅极。用于发光元件的驱动晶体管6402的栅极经由电容器6403连接到电源线6407,用于发光元件的驱动晶体管6402的第一电极被连接到电源线6407,并且用于发光元件的驱动晶体管6402的第二电极被连接到发光元件6404的第一电极(像素电极)。发光元件6404的第二电极对应于公共电极6408。公共电极6408被电连接到设置在同一衬底上的公共电位线。
将发光元件6404的第二电极(公共电极6408)设置为低电源电位。请注意,低电源电位是参照被设置给电源线6407的高电源电位满足低电源电位<高电源电位的电位。作为低电源电位,例如,可以采用GND电势、0V等。对发光元件6404施加高电源电位和低电源电位之间的电位差,并向发光元件6404施加电流,从而发光元件6404发光。在这里,为了使发光元件6404发光,设置每个电位,使得高电源电位与低电源电位之间的电位差是发光元件6404的正向阈值电压或更高。
可以使用用于发光元件的驱动晶体管6402的栅极电容作为电容器6403的替代,从而可以省略电容器6403。可以在沟道区与栅极电极之间形成用于发光元件的驱动晶体管6402的栅极电容。
在电压输入电压驱动方法的情况下,向用于发光元件的驱动晶体管6402的栅极输入视频信号,以使得用于发光元件的驱动晶体管6402处于充分导通和截止的两种状态中的任何一个。也就是说,用于发光元件的驱动晶体管6402在线性区工作。由于用于发光元件的驱动晶体管6402在线性区工作,所以向用于发光元件的驱动晶体管6402的栅极施加比电源线6407的电压高的电压。注意,向信号线6405施加高于或等于(电源线的电压+用于发光元件的驱动晶体管6402的Vth)的电压。
在执行模拟灰度级驱动而不是数字时间灰度级驱动的情况下,可以通过改变信号输入来使用与图12中相同的像素结构。
在执行模拟灰度级驱动的情况下,对用于发光元件的驱动晶体管6402的栅极施加高于或等于(发光元件6404的正向电压+用于发光元件的驱动晶体管6402的Vth)。发光元件6404的正向电压指示获得期望亮度时的电压,并至少包括正向阈值电压。通过输入视频信号以使得用于发光元件的驱动晶体管6402在饱和区工作,可以向发光元件6404供应电流。为了允许用于发光元件的驱动晶体管6402在饱和区中工作,电源线6407的电位高于用于发光元件的驱动晶体管6402的栅极电位。当使用模拟视频信号时,可以依照视频信号向发光元件6404馈送电流并执行模拟灰度级驱动。
注意,本发明的实施例不限于图12所示的像素结构。例如,可以向图12所示的像素添加开关、电阻器、电容器、晶体管、或逻辑电路等。
接下来,参照图13A至13C来描述发光元件的结构。通过以用于发光元件的n沟道驱动TFT为例来描述像素的横截面结构。可以以与实施例1中描述并设置在像素中薄膜晶体管类似的方式形成分别在图13A、13B、和13C所示的半导体器件中使用的用于发光元件的驱动TFT7001、7011、和7021,且它们是每个都包括氧化物半导体层的高度可靠薄膜晶体管。
为了提取从发光元件发射的光,需要阳极和阴极中的至少一个透射光。在衬底上形成薄膜晶体管和发光元件。发光元件可以具有顶发射结构、底发射结构、或双发射结构,在顶发射结构中,通过与衬底相对的表面来提取光发射;在底发射结构中,通过衬底侧上的表面来提取光发射;在双发射结构中,通过与衬底相对的表面和在衬底侧上的表面来提取光发射。可以将所述像素结构应用于具有任意这些结构的发光元件。
参照图13A来描述具有底发射结构的发光元件。
图13A是其中用于发光元件的驱动TFT7011是n沟道晶体管且从发光元件7012向阴极7013侧发射光的情况下的像素的横截面图。在图13A中,在经由连接电极层7030电连接到用于发光元件的驱动TFT7011的光透射导电膜7017上形成发光元件7012的阴极7013,并且在阴极7013上依次堆叠EL层7014和阳极7015。注意,光透射导电膜7017通过在氧化物绝缘层7031、绝缘层7032、和保护性绝缘层7035中形成的接触孔经由连接电极层7030电连接到用于发光元件的驱动TFT7011的漏极电极层。
作为光透射导电膜7017,可以使用诸如包含氧化钨的氧化铟、包含氧化钨的氧化铟锌、包含氧化钛的氧化铟、包含氧化钛的氧化铟锡、氧化铟锡(在下文中称为ITO)、氧化铟锌、或向其添加了氧化硅的氧化铟锡等材料的光透射导电膜。
可以将任意的不同材料用于阴极7013。具体而言,优选地使用具有低功函数的材料来形成阴极7013,诸如,诸如Li或Cs的碱金属;诸如Mg、Ca、或Sr的碱土金属;包含任何这些金属的合金(例如,Mg:Ag或Al:Li);或诸如Yb或Er的稀土金属等。在图13A中,将阴极7013形成为具有光可以透过的厚度(优选地,约5nm至30nm)。例如,可以使用具有20nm的厚度的铝膜作为阴极7013。
替代地,可以堆叠光透射导电膜和铝膜,并随后选择性地进行蚀刻,以便形成光透射导电膜7017和阴极7013。在这种情况下,可以使用同一掩模来执行蚀刻,这是优选的。
此外,用分隔物7019覆盖阴极7013的外围。使用聚酰亚胺、丙烯酸、聚酰胺、或环氧树脂等的有机树脂膜、无机绝缘膜、或有机聚硅氧烷来形成分隔物7019。特别优选的是,使用感光树脂材料来形成分隔物7019以在阴极7013上具有开口部分,以使得将开口部分的侧壁形成为具有连续曲率的倾斜表面。当使用感光树脂材料来形成分隔物7019时,可以省略形成抗蚀剂掩模的步骤。
可以使用单层或堆叠的多层来形成在阴极7013和分隔物7019上形成的EL层7014。当使用多个层来形成EL层7014时,通过在阴极7013上依次堆叠电子注入层、电子传输层、发光层、空穴传输层、和空穴注入层来形成EL层7014。注意,不需要形成所有的这些层。
另外,本发明不限于以上顺序的叠层;亦即,可以通过在阴极7013上依次堆叠空穴注入层、空穴传输层、发光层、电子传输层、和电子注入层来形成EL层7014。注意,当对比功率消耗时,在阴极7013上依次堆叠电子注入层、电子传输层、发光层、空穴传输层、和空穴注入层引起低的功率消耗,并因此是更优选的。
可以将任意的各种材料用于在EL层7014上形成的阳极7015;例如,具有高功函数的材料优选的,其示例为ZrN、Ti、W、Ni、Pt、Cr以及诸如ITO、IZO、和ZnO的透明导电材料。还优选的是,使用包含氮化钛的膜。此外,在阳极7015上,使用例如阻挡光的金属或反射光的金属来形成遮光膜7016。在本实施例中,使用ITO膜作为阳极7015并使用Ti膜作为遮光膜7016。
发光元件7012对应于EL层7014被夹在阴极7013与阳极7015之间的区域。在图13A所示的元件结构的情况下,如箭头所指示的,从发光元件7012向阴极7013侧发射光。
注意,在图13A中,示出其中使用光透射导电膜作为栅极电极层的示例。从发光元件7012发射的光穿过滤色器层7033并随后穿过TFT7011的栅极电极层、源极电极层等,从而被发射到外部。通过使用光透射导电膜作为TFT7011的极电极层、或源极电极层等,可以获得增加的孔径比。
通过以下来形成滤色器层7033:诸如喷墨法的液滴排放法;印刷法;或使用光刻技术的蚀刻法等。
用外涂层7034覆盖滤色器层7033,并在其上面进一步形成保护性绝缘膜7035。注意,虽然外涂层7034被示为具有图13A所示的小厚度,但外涂层7034具有减小由于滤色器层7033引起的不均匀的功能。
在氧化物绝缘层7031、绝缘层7032、和保护性绝缘层7035中形成并到达连接电极层7030的接触孔处于与分隔物7019重叠的位置。由于在图13A所示的示例中使用金属导电膜作为连接电极层7030,所以可以通过采用其中到达连接电极层7030的接触孔、分隔物7019、和导电膜7017相互重叠的结构来获得增加的孔径比。
参照图13B来描述具有双发射结构的发光元件。
在图13B中,在经由连接电极层7040电连接到驱动器TFT7021的光透射导电膜7027上形成发光元件7022的阴极7023,并在阴极7023上依次堆叠EL层7024和阳极7025。注意,光透射导电膜7027通过在氧化物绝缘层7041、绝缘层7042、和保护性绝缘层7045中形成的接触孔经由连接电极层7040电连接到驱动器TFT7021的漏极电极层。
可以使用诸如包含氧化钨的氧化铟、包含氧化钨的氧化铟锌、包含氧化钛的氧化铟、包含氧化钛的氧化铟锡、氧化铟锡(在下文中称为ITO)、氧化铟锌、或向其添加了氧化硅的氧化铟锡等的材料的光透射导电膜来形成光透射导电膜7027。
可以将任意的各种材料用于阴极7023。具体而言,优选地使用具有低功函数的材料来形成阴极7023,诸如,诸如Li或Cs的碱金属;诸如Mg、Ca、或Sr的碱土金属;包含任何这些金属的合金(例如,Mg:Ag或Al:Li);或诸如Yb或Er的稀土金属等。在本实施例中,将阴极7023形成为具有光可以透过的厚度(优选地,约5nm至30nm)。例如,可以使用具有20nm的厚度的铝膜作为阴极7023。
替代地,可以堆叠光透射导电膜和铝膜,并随后选择性地进行蚀刻,以便形成光透射导电膜7027和阴极7023。在这种情况下,可以使用同一掩模来执行蚀刻,这是优选的。
此外,用分隔物7029覆盖阴极7023的外围。使用聚酰亚胺、丙烯酸、聚酰胺、环氧树脂等的有机树脂膜、无机绝缘膜、或有机聚硅氧烷来形成分隔物7029。特别优选的是,使用感光树脂材料来形成分隔物7029以在阴极7023上具有开口部分,以使得将开口部分的侧壁形成为具有连续曲率的倾斜表面。当使用感光树脂材料来形成分隔物7029时,可以省略形成抗蚀剂掩模的步骤。
可以使用单层或堆叠的多层来形成在阴极7023和分隔物7029上形成的EL层7024。当使用多个层来形成EL层7024时,通过在阴极7023上依次堆叠电子注入层、电子传输层、发光层、空穴传输层、和空穴注入层来形成EL层7024。不需要形成所有的这些层。
另外,本发明不限于以上顺序的叠层;亦即,可以通过在阴极7023上依次堆叠空穴注入层、空穴传输层、发光层、电子传输层、和电子注入层来形成EL层7024。注意,当对比功率消耗时,在阴极7023上依次堆叠电子注入层、电子传输层、发光层、空穴传输层、和空穴注入层引起低的功率消耗,并因此是更优选的。
可以将任意的各种材料用于在EL层7024上形成的阳极7025。材料的示例包括具有高功函数的材料,诸如:诸如ITO、IZO、和ZnO的透明导电材料。在本实施例中,使用包含氧化硅的ITO膜作为阳极7026。
发光元件7022对应于EL层7024被夹在阴极7023与阳极7025之间的区域。在图13B所示的元件结构的情况下,如箭头所指示的,从发光元件7022向阳极7025侧和阴极7023侧发射光。
注意,在图13B中,示出其中使用光透射导电膜作为栅极电极层的示例。从发光元件7022发射到阴极7023的光穿过滤色器层7043,并随后穿过驱动TFT7021的栅极电极层、源极电极层等,从而被发射到外部。通过使用光透射导电膜作为TFT7021的栅极电极层、或源极电极层等,阳极7025侧上的孔径比可以基本上与阴极7023侧上的相同。
通过以下形成滤色器层7043:诸如喷墨法的液滴排放法;印刷法;使用光刻技术的蚀刻法等。
用外涂层7044覆盖滤色器层7043并在其上面进一步形成保护性绝缘膜7045。
在氧化物绝缘层7041、绝缘层7042、和保护性绝缘层7045中形成并到达连接电极层7040的接触孔处于与分隔物7029重叠的位置。由于在图13B所示的示例中使用金属导电膜作为连接电极层7040,所以可以通过采用其中到达连接电极层7040的接触孔、分隔物7029和连接电极层7040相互重叠的结构,来使阳极7025侧上的孔径基本上与阴极7023侧上的基本相同。
注意,在通过使用具有双发射结构的发光元件在两个显示表面上实现全色显示的情况下,从阳极7025侧发射的光不穿过滤色器层7043;因此,优选的是,还在阳极7025上提供具有滤色器层的密封衬底。
参照图13C来描述具有顶发射结构的发光元件。
图13C是其中作为驱动TFT的TFT7001是n型且从发光元件7002向阳极7005侧发射光的情况下的像素的横截面图。在图13C中,发光元件7002的阴极7003经由连接电极层7050电连接到TFT7001,并在阴极7003上依次堆叠EL层7004和阳极7005。
可以将任意的各种材料用于阴极7003。具体而言,优选地使用具有低功函数的材料来形成阴极7003,诸如,诸如Li或Cs的碱金属;诸如Mg、Ca、或Sr的碱土金属;包含任何这些金属的合金(例如,Mg:Ag或Al:Li);或诸如Yb或Er的稀土金属等。
此外,用分隔物7009覆盖阴极7003的外围。使用聚酰亚胺、丙烯酸、聚酰胺、或环氧树脂等的有机树脂膜、无机绝缘膜、或有机聚硅氧烷来形成分隔物7009。特别优选的是,使用感光树脂材料来形成分隔物7009以在阴极7003上具有开口部分,以使得将开口部分的侧壁形成为具有连续曲率的倾斜表面。当使用感光树脂材料来形成分隔物7009时,可以省略形成抗蚀剂掩模的步骤。
可以使用单层或堆叠的多层来形成在阴极7003和隔离层7009上形成的EL层7004。当使用多个层来形成EL层7004时,通过在阴极7003上依次堆叠电子注入层、电子传输层、发光层、空穴传输层、和空穴注入层来形成EL层7004。注意,不需要形成所有的这些层。
另外,本发明不限于以上顺序的叠层;亦即,可以通过在阴极7003上依次堆叠空穴注入层、空穴传输层、发光层、电子传输层、和电子注入层来形成EL层7004。注意,当以此顺序堆叠所述层时,阴极7003充当阳极。
在图13C中,在其中依次堆叠Ti膜、铝膜、Ti膜的叠层膜上,依次堆叠空穴注入层、空穴传输层、发光层、电子传输层、和电子注入层。此外,在其上面堆叠Mg:Ag的合金薄膜和ITO膜。
注意,当对比功率消耗时,在阴极7003上依次堆叠电子注入层、电子传输层、发光层、空穴传输层、和空穴注入层引起低的功率消耗,并因此是更优选的。
使用光透射导电材料来形成阳极7005;例如,可以使用包含氧化钨的氧化铟、包含氧化钨的氧化铟锌、包含氧化钛的氧化铟、包含氧化钛的氧化铟锡、氧化铟锡、氧化铟锌、或向其添加了氧化硅的氧化铟锡等。
发光元件7002对应于EL层7004被夹在阴极7003与阳极7005之间的区域。在图13C所示的元件结构的情况下,如箭头所指示的,从发光元件7002向阳极7005侧发射光。
虽然在图13C中示出其中使用薄膜晶体管420作为TFT7001的示例,但本发明并不特别限于此。
在图13C中,TFT7001的漏极电极层被电连接到连接电极层7050。此外,连接电极层被电连接到阴极7003。可以使用诸如聚酰亚胺、丙烯酸、苯并环丁烯、聚酰胺、或环氧树脂的树脂材料来形成平坦化绝缘层7053。除此类树脂材料之外,还可以使用低介电常数材料(低k材料)、基于硅氧烷的树脂、PSG(磷硅酸盐玻璃)、或BPSG(硼磷硅酸盐玻璃)等。注意,可以通过堆叠使用这些材料形成的多个绝缘膜来形成平坦化绝缘层7053。对用于形成平坦化绝缘层7053的方法没有特别限制,并且可以根据材料通过诸如溅射法、SOG法、旋涂法、浸涂法、喷涂法、或液滴排放法(例如,喷墨法、丝网印刷、或胶版印刷),或者用诸如刮刀、辊涂机、幕式涂布机、刮刀式涂布机的工具(设备),来形成平坦化绝缘层7053。
提供分隔物7009以使阴极7003与相邻像素的阴极绝缘。使用聚酰亚胺、丙烯酸、聚酰胺、或环氧树脂等的有机树脂膜、无机绝缘膜、或有机聚硅氧烷来形成分隔物7009。特别优选的是,使用感光树脂材料来形成分隔物7009,以在阴极7003上具有开口部分,以使得将开口部分的侧壁形成为具有连续曲率的倾斜表面。当使用感光树脂材料来形成分隔物7009时,可以省略形成抗蚀剂掩模的步骤。
在图13C所示的结构中,为了执行全色显示,发光元件7002、相邻的发光元件之一、以及相邻的发光元件中的另一个例如分别是发绿光的发光元件、发红光的发光元件、和发蓝光的发光元件。替代地,可以使用四种发光元件来制造能够进行全色显示的发光显示器件,包括发白光的发光元件以及三种发光元件。
在图13C所示的结构中,可以以如下的方式制造能够进行全色显示的发光显示器件:要布置的所有发光元件是发白光的发光元件;并且在发光元件7002上设置具有滤色器的密封衬底。当形成展现出诸如白光的单色光的材料并将其与滤色器或色彩转换层组合时,可以执行全色显示。
当然,还可以执行单色光发射的显示。例如,可以利用白光发射来形成照明器件;替代地,可以形成使用单色光发射的区域彩色发光器件。
此外,必要时,可以提供诸如偏振膜的光学膜,其示例之一是圆形偏振片。
虽然在这里描述有机EL元件作为发光元件,但也可以提供无机EL元件作为发光元件。
注意,描述了其中将控制发光元件的驱动的薄膜晶体管(驱动TFT)电连接到发光元件的示例;然而,可以采用其中在驱动TFT与发光元件之间连接用于电流控制的TFT的结构。
可以将本发明的一个实施例应用于未提供发光元件和分隔物时的液晶显示器件。参照图45来描述液晶显示器件的情况。
这里,驱动TFT7071是n型的。在图45中,驱动TFT7071具有与之电连接的光透射导电膜7067。光透射导电膜7067通过在氧化物绝缘层7061和保护性绝缘层7062中形成的接触孔经由连接电极层7060电连接到驱动TFT7071的漏极电极层。
可以使用光透射导电材料来形成光透射导电膜7067,所述光透射导电材料诸如:包含氧化钨的氧化铟、包含氧化钨的氧化铟锌、包含氧化钛的氧化铟、包含氧化钛的氧化铟锡、氧化铟锡(在下文中称为ITO)、氧化铟锌、或向其添加了氧化硅的氧化铟锡等。
注意,在图45中,示出其中使用光透射导电膜作为栅极电极层的示例。从背光等发射的光穿过滤色器层7063,从而被发射到外部。因此,通过使用光透射导电膜作为驱动器TFT7071的栅极电极层或源极电极层等,可以获得增加的孔径比。
通过以下形成滤色器层7063:诸如喷墨法的液滴排放法;印刷法;或使用光刻技术的蚀刻法等。
用外涂层7064覆盖滤色器层7063,并在其上面进一步形成保护性绝缘膜7065。注意,虽然在图45中外涂层7064被示为具有小的厚度,但外涂层7064具有减小由于滤色器层7063引起的不均匀的功能。
如上所述,还可以将本发明的一个实施例应用于液晶显示器件。
注意,半导体器件的结构不限于图12、图13A至13C、和图45所示的那些,并且可以基于本说明书所公开的技术以多种方式进行修改。
接下来,参照图11A和11B来描述对应于半导体器件的一种模式的发光显示面板(也称为发光面板)的外观和横截面。图11A是其中用密封剂将在第一衬底上形成的薄膜晶体管和发光元件密封在第一衬底与第二衬底之间的面板的平面图。图11B是沿图11A中的线H-I截取的横截面图。
提供密封剂4505以围绕在第一衬底4501上提供的像素部分4502、信号线驱动器电路4503a和4503b、以及扫描线驱动器电路4504a和4504b。另外,在像素部分4502、信号线驱动器电路4503a和4503b、以及扫描线驱动器电路4504a和4504b上提供第二衬底4506。因此,由第一衬底4501、密封剂4505、和第二衬底4506将像素部分4502、信号线驱动器电路4503a和4503b、以及扫描线驱动器电路4504a和4504b与填料4507一起密封。优选的是,用保护膜(诸如层压膜或紫外线可固化树脂膜)或具有高气密性且几乎不脱气的覆盖材料来封装面板,从而以这样的方式使面板不暴露于外界空气。
在第一衬底上形成的像素部分4502、信号线驱动器电路4503a和4503b、以及扫描线驱动器电路4504a和4504b每个都包括多个薄膜晶体管,并且在图11B中作为示例示出了被包括在像素部分4502中的薄膜晶体管4510和被包括在信号线驱动器电路4503a中的薄膜晶体管4509。
对于薄膜晶体管4509和4510而言,可以采用在任意实施例1至5中描述的包括氧化物半导体层的高度可靠的薄膜晶体管。可以使用在前述实施例中描述的任意薄膜晶体管410、460、449、和492作为用于驱动器电路的薄膜晶体管4509。可以使用任意薄膜晶体管420、450、470、和493作为用于像素的薄膜晶体管4510。在本实施例中,薄膜晶体管4509和4510是n沟道薄膜晶体管。
在绝缘层4544上,在与包括在用于驱动器电路的薄膜晶体管4509中的氧化物半导体层的沟道形成区重叠的位置中提供导电层4540。通过在与该氧化物半导体层的沟道形成区重叠的位置中提供导电层4540,可以减小薄膜晶体管4509的阈值电压在BT测试前后之间的变化量。导电层4540可以具有与薄膜晶体管4509的栅极电极层相同的电位,或者具有与薄膜晶体管4509的栅极电极层不同的电位,并且可以充当第二栅极电极层。导电层4540的电位可以是GND电位、0V,或者导电层4540可以处于浮置状态。
在薄膜晶体管4509中,形成绝缘层4541作为保护性绝缘膜,以便与包括沟道形成区的氧化物半导体层接触。可以使用与在实施例1中描述的氧化物绝缘膜416的材料和方法类似的材料和方法来形成绝缘层4541。另外,为了降低薄膜晶体管的表面粗糙度,用充当平坦化绝缘膜的绝缘层4544覆盖薄膜晶体管。这里,作为绝缘层4541,通过根据实施例1的溅射法来形成氧化硅膜。
此外,在绝缘层4541上形成保护性绝缘层4543。可以使用与在实施例1中描述的保护性绝缘层403的材料和方法类似的材料和方法来形成保护性绝缘层4543。这里,通过PCVD法形成氮化硅膜作为保护性绝缘层4543。
绝缘层4544被形成为平坦化绝缘膜。可以使用与在实施例1中描述的平坦化绝缘层404的材料和方法类似的材料和方法来形成绝缘层4544。这里,将丙烯酸用于绝缘层4544。
此外,附图标记4511表示发光元件。作为包括在发光元件4511中的像素电极的第一电极层4517被电连接到薄膜晶体管4510的源极电极层或漏极电极层。注意,发光元件4511的结构是(但不限于)包括第一电极层4517、电致发光层4512、和第二电极层4513的堆叠结构。根据从发光元件4511提取光的方向等,可以适当地改变发光元件4511的结构。
使用有机树脂膜、无机绝缘膜、或有机聚硅氧烷来形成分隔物4520。特别优选的是,使用感光材料来形成分隔物4520以在第一电极层4517上具有开口部分,以使得将开口部分的侧壁形成为具有连续曲率的倾斜表面。
可以使用单层或堆叠的多层来形成电致发光层4512。
可以在第二电极层4513和分隔物4520上形成保护膜以防止氧、氢、水分、二氧化碳等进入发光元件4511。作为保护膜,可以形成氮化硅膜、氮氧化硅膜、或DLC膜等。
另外,从FPC4518a和4518b向信号线驱动器电路4503a和4503b、扫描线驱动器电路4504a和4504b、或像素部分4502提供多种信号和电位。
使用与包括在发光元件4511中的第一电极层4517相同的导电膜来形成连接端子电极4515,并且使用与包括在薄膜晶体管4509和4510中的源极和漏极电极层相同的导电膜来形成端子电极4516。
连接端子电极4515经由各向异性导电膜4519电连接到包括在FPC4518a中的端子。
在从发光元件4511提取光的方向定位的第二衬底4506需要具有光透射性质。在这种情况下,将诸如玻璃板、塑料板、聚酯膜、或丙烯酸膜的光透射材料用于第二衬底4506。
作为填料4507,除诸如氮气或氩气的惰性气体之外,还可以使用紫外线可固化树脂或热固性树脂。例如,可以使用聚氯乙烯(PVC)、丙烯酸、聚酰亚胺、环氧树脂、硅氧烷树脂、聚乙烯醇缩丁醛(PVB)、或乙烯乙酸乙烯共聚物(EVA)。例如,可以将氮气用于填料4507。
另外,如果需要,可以在发光元件的发光表面上适当地提供光学膜,诸如偏振片、圆形偏振片(包括椭圆形偏振片)、延迟板(四分之一波片或半波片)、或滤色器。此外,所述偏振片或圆形偏振片可以提供有防反射膜。例如,可以执行防眩处理,通过该防眩处理,可以使得反射光被表面上的凸部和凹部散射以便减少眩目。
可以安装使用单晶半导体膜或多晶半导体膜在单独制备的衬底上形成的驱动器电路,作为信号线驱动器电路4503a和4503b及扫描线驱动器电路4504a和4504b。替代地,可以单独地形成并安装仅信号线驱动器电路或其一部分、或仅扫描线驱动器电路或其一部分。本实施例不限于图11A和11B所示的结构。
通过以上工艺过程,可以制造高度可靠的发光显示器件(显示面板)作为半导体器件。
可以以与在其它实施例中描述的结构适当组合的方式来实现本实施例。
(实施例13)
可以将本说明书中公开的半导体器件应用于电子纸。电子纸可以用于所有领域中的电子设备,只要该电子设备显示数据即可应用。例如,可以将电子纸应用于电子书阅读器(电子书)、海报、诸如火车的车辆中的广告、或诸如信用卡的多种卡的显示。图20示出电子设备的示例。
图20示出电子书阅读器的示例。例如,电子书阅读器2700包括两个壳体:壳体2701和壳体2703。壳体2701和壳体2703与铰链2711组合,以使得可以以铰链2711为轴打开和关闭电子书阅读器2700。该结构允许电子书阅读器2700像纸质书籍一样操作。
在壳体2701和壳体2703中分别结合了显示部分2705和显示部分2707。显示部分2705和显示部分2707可以显示一个图像或不同图像。在显示部分2705和新式部分2707显示不同图像的情况下,例如,右侧的显示部分(图20中的显示部分2705)可以显示文本而左侧的显示部分(图20中的显示部分2707)可以显示图形。
图20示出其中壳体2701提供有操作部分等的示例。例如,壳体2701提供有电源开关2721、操作键2723、扬声器2725等。可以用操作键2723来翻页。注意,可以在与壳体的显示部分相同的表面上提供键盘、指示设备等。此外,可以在壳体的背表面或侧表面上提供外部连接端子(例如,耳机端子、USB端子、或可连接到诸如AC适配器和USB电缆的多种电缆的端子)、记录介质插入部分等。此外,电子书阅读器2700可以具有电子辞典的功能。
可以将电子书阅读器2700配置为无线地发送和接收数据。通过无线通信,可以从电子书服务器购买和下载期望的书籍数据等。
(实施例14)
可以将本说明书中公开的半导体器件应用于多种电子设备(包括游戏机)。此类电子设备的示例包括电视机(也称为电视或电视接收机)、计算机等的监视器、诸如数字照相机或数字摄像机的影像拍摄装置、数字相框、移动电话手持机(也称为移动电话或移动电话设备)、便携式游戏机、便携式信息终端、音频再现设备、诸如弹球机的大型游戏机等。
图21A示出电视机的示例。在电视机9600中,将显示部分9603结合到壳体9601中。显示部分9603可以显示图像。这里,由支架9605来支撑壳体9601。
可以用壳体9601的操作开关或单独的遥控器9610来操作电视机9600。可以用遥控器9610的操作键9609来切换频道并可以控制音量,由此,可以控制在显示部分9603上显示的图像。此外,遥控器9610可以提供有用于显示从遥控器9610输出的数据的显示部分9607。
注意,电视机9600提供有接收机、调制解调器等。此外,当显示器件经由调制解调器有线地或无线地连接到通信网络时,可以执行单向(从发送机到接收机)或双向(在发送机与接收机之间或在接收机之间)信息通信。
图21B示出数字相框的示例。例如,在数字相框9700中,将显示部分9703结合到壳体9701中。显示部分9703可以显示多种图像。例如,显示部分9703可以显示用数字照相机等拍摄的图像的数据并充当普通相框。
注意,数字相框9700提供有操作部分、外部连接端子(USB端子或可连接到诸如USB电缆的多种电缆的端子)、记录介质插入部分等。虽然可以在与显示部分相同的表面上提供这些组件,但出于设计美学,优选的是将其设置在侧表面或背表面上。例如,在数字相框9700的记录介质插入部分中插入存储用数字照相机拍摄的图像的数据的存储器,并加载该数据,由此,可以在显示部分9703上显示图像。
可以将数字相框9700配置为无线地发送和接收数据。通过无线通信,可以加载期望的图像数据以进行显示。
图22A是便携式游戏机,并由两个壳体壳体9881和壳体9891组成,这个两个壳体通过接合部分9893彼此连接以使得可以打开或折叠便携式游戏机。在壳体9881和壳体9891中分别结合了显示部分9882和显示部分9883。另外,图22A所示的便携式游戏机提供有扬声器部分9884、记录介质插入部分9886、LED灯9890、输入装置(操作键9885、连接端子9887、传感器9888(具有测量力、位移、位置、速度、加速度、角速度、旋转数、距离、光、液体、磁性、温度、化学物质、声音、时间、硬度、电场、电流、电压、电功率、射线、流速、湿度、梯度、振动、气味、或红外线的功能)、以及扩音器9889)等等。当然,便携式游戏机的结构不限于上述结构,并且可以采用至少提供有本说明书中公开的半导体器件的其它结构。所述便携式游戏机可以适当地包括其它辅助设备。图22A所示的便携式游戏机具有读取存储在记录介质中的程序或数据以将其显示在显示部分上的功能,和通过无线通信与另一便携式游戏机共享数据的功能。注意,图22A所示的便携式游戏机的功能不限于上述的那些,并且该便携式游戏机可以具有多种功能。
图22B示出作为大型游戏机的投币机(slotmachine)的示例。在投币机9900中,在壳体9901中结合了显示部分9903。另外,投币机9900包括诸如起动杆或停止开关的操作装置、投币口、扬声器等。当然,投币机9900的结构不限于上述结构,并且可以采用至少提供有本说明书中公开的半导体器件的其它结构。投币机9900可以适当地包括附加配件。
图23A是示出便携式计算机的示例的透视图。
在图23A所示的便携式计算机中,具有显示部分9303的顶部壳体9301和具有键盘9304的底部壳体9302可以通过关闭连接顶部壳体9301和底部壳体9302的铰链单元而彼此重叠。因此,可方便地携带该便携式计算机。此外,在将键盘用于数据输入的情况下,铰链单元打开以使得用户可以看着显示部分9303输入数据。
除键盘9304之外,底部壳体9302还包括具有可以用来执行输入的指示设备9306。当显示部分9303是触控面板时,用户可以通过触摸显示部分的一部分来输入数据。底部壳体9302包括诸如CPU或硬盘的算术功能部分。另外,底部壳体9302包括外部连接端口9305,其中插入另一设备,例如符合USB通信标准的通信线缆。
顶部壳体9301还包括可以通过在顶部壳体9301中滑动而被装载在其中的显示部分9307。利用显示部分9307,可以实现大的显示屏幕。另外,用户可以调整可装载的显示部分9307的屏幕角度。如果可装载的显示部分9307是触控面板,则用户可以通过触摸显示部分9307的一部分来输入数据。
使用图像显示设备来形成显示部分9303或可装载的显示部分9307,所述图像显示设备诸如液晶显示面板或使用有机发光元件或无机发光元件等的发光显示面板。
另外,图23A所示的便携式计算机可以提供有接收机等,并且可以接收TV广播以便在显示部分9303或显示部分9307上显示图像。用户可以通过滑动并暴露显示部分9307且调整其角度来用显示部分9307的整个屏幕观看TV广播,连接顶部壳体9301和底部壳体9302的铰链单元被关闭。在这种情况下,不打开铰链单元且在显示部分9303上不执行显示。另外,仅执行用于显示TV广播的电路的启动。因此,可以使功率消耗最小化,这对电池容量有限的便携式计算机是有用的。
图23B是用户可以像手表一样戴在手腕上的移动电话的示例的透视图。
此移动电话形成有:主体,该主体包括至少包括电话功能的通信设备,和电池;带部分9204,其使得主体能够被戴在手腕上;调整部分9205,其用于调整带部分9204以适合手腕;显示部分9201;扬声器9207;以及麦克风9208。
另外,主体包括操作开关9203。操作开关9203可以例如充当用于在被按下时开始用于因特网的程序的按钮、用于切换显示的开关、或用于开始拍摄图像的指令的开关等,并可以被配置为具有各自的功能。
用户可以通过用手指户或输入笔触摸显示部分9201、操作开关9203、或向麦克风9208输入语音,来向此移动电话中输入数据。在图23B中,在显示部分9201上显示了显示按钮9202。用户可以通过用手指等触摸显示按钮9202来输入数据。
此外,主体包括影像拍摄装置部分9206,其包括具有将通过影像拍摄装置镜头形成的对象的图像转换成电子图像信号的功能的图像拾取装置。注意,并不是必须提供影像拍摄装置部分。
图23B所示的移动电话提供有TV广播等的接收机,并能够通过接收TV广播在显示部分9201上显示图像。另外,该移动电话提供有诸如存储器等的存储设备,并能够将TV广播记录在存储器中。图23B所示的移动电话可以具有诸如GPS的收集位置信息的功能。
使用诸如液晶显示面板或使用有机发光元件或无机发光元件等的发光显示面板的图像显示设备作为显示部分9201。图23B所示的移动电话紧凑且重量轻,并且电池容量有限。由于以上原因,优选地使用可以以低功率消耗驱动的面板作为用于显示部分9201的显示器件。
注意,虽然图23B示出戴在手腕上的电子设备,但本实施例不限于此,只要电子装置是便携的即可。
(实施例15)
在本实施例中,作为半导体器件的一种模式,将参照图24至37来描述每个包括在任意实施例1至5中描述的薄膜晶体管的显示器件的示例。在本实施例中,将参照图24至37来描述其中每个使用液晶元件作为显示元件的液晶显示器件的示例。可以使用在任意实施例1至5中描述的薄膜晶体管作为TFT628和629中的每一个。可以通过类似于任意实施例1至5中描述的过程来制造TFT628和629,且TFT628和629具有优良的电特性和高可靠性。在图24至37中,将描述其中使用图4C所示的薄膜晶体管作为薄膜晶体管的示例的情况;然而,本发明不限于此。
首先,描述垂直取向(VA)液晶显示器件。VA液晶显示器件具有一种控制液晶显示面板的液晶分子取向的形式。在VA液晶显示器件中,在不施加电压时,液晶分子被配像在相对于面板表面的垂直方向。在本实施例中,特别地,将像素划分成某些区域(子像素),并使诸分子在其各自的区域中在不同的方向取向。
图25和26分别示出像素电极和对电极。图25是示出形成像素电极的衬底侧的平面图。图24示出沿图25中的剖面线E-F截取的横截面结构。图26是示出形成对电极的衬底侧的平面图。下面参照这些图进行说明。
在图24中,其上面形成TFT628、连接到TFT628的像素电极层624、存储电容器部分630的衬底600与提供有对电极层640等的对衬底601相互重叠,并且在衬底600与对衬底601之间注入液晶。
对衬底601提供有着色膜636和对电极层640,并且在对电极层640上形成凸部644。在像素电极层624上形成取向膜648,并且类似地在对电极层640和凸部644上形成取向膜646。在衬底600与对衬底601之间形成液晶层650。
在衬底600上形成TFT628、连接到TFT628的像素电极层624、和存储电容器部分630。像素电极层624通过穿透用于覆盖TFT628、布线616、和存储电容器部分630的绝缘膜620、用于覆盖绝缘膜620的绝缘膜621、和用于覆盖绝缘膜621的绝缘膜622的接触孔623而连接到布线618。可以适当地使用在任意实施例1至5中描述的薄膜晶体管作为TFT628。此外,存储电容器部分630包括:作为第一电容器布线的电容器布线604,其与TFT628的栅极布线602同时形成;第一栅极绝缘膜606a;第二栅极绝缘膜606b;以及作为第二电容器布线的电容器布线617,其与布线616和618同时形成。
像素电极层624、液晶层650、和对电极层640相互重叠,由此形成液晶元件。
图25示出衬底600上的平面结构。使用任何实施例1至5中所述的材料来形成像素电极层624。像素电极层624提供有利狭缝625。提供狭缝625以用于控制液晶的取向。
可以以与TFT628、像素电极层624、和和部分630类似的方式形成图25所示的TFT629、连接到TFT629的像素电极层626、和存储电容器部分631。TFT628和629两者连接到布线616。此液晶显示面板的一个像素包括像素电极层624和626。像素电极层624和626组成子像素。
图26示出对衬底侧的平面结构。优选地使用与像素电极层624类似的材料形成对电极层640。在对电极层640上形成控制液晶取向的凸部644。注意,在图26中,用虚线表示在衬底600上形成的像素电极层624和626,并且对电极层640及像素电极电624和626相互重叠。
图27示出此像素结构的等效电路。TFT628和629两者连接到栅极布线602和布线616。在这种情况下,当电容器布线604和电容器布线605彼此不同时,液晶元件651和652的操作可以改变。换言之,精确地控制液晶的取向,并通过电容器布线604和605的电位的单独控制来增加视角。
当向提供有狭缝625的像素电极层624施加电压时,在狭缝625附近产生失真电场(倾斜电场)。对衬底601侧上的凸部644和狭缝625被交替地布置,从而有效地产生倾斜电场以控制液晶的取向,由此,液晶的取向方向根据位置而改变。换言之,通过多畴来增加液晶显示面板的视角。
接下来,将参照图28至31来描述不同于上述器件的VA液晶显示器件。
图28和图29示出VA液晶显示面板的像素结构。图29是衬底600的平面图。图28示出沿图29中的剖面线Y-Z截取的横截面结构。
在此像素结构中,在一个像素中提供多个像素电极,并且TFT连接到每个像素电极。由不同的栅极信号来驱动所述多个TFT。换言之,相互独立地控制施加于多畴像素中的各单独像素电极的信号。
像素电极层624通过穿透绝缘膜620、621、和622的接触孔623经由布线618连接到TFT628。像素电极层626通过穿透绝缘膜620、621、和622的接触孔627经由布线619连接到TFT629。TFT628的栅极布线602与TFT629的栅极布线603分离,以便可以提供不同的栅极信号。另一方面,充当数据线的布线616被TFT628和629共享。可以适当地使用在任意实施例1至5中描述的薄膜晶体管作为TFT628和629中的每一个。注意,在栅极布线602、栅极布线603、和电容器布线690上形成第一栅极绝缘膜606a和第二栅极绝缘膜606b。
像素电极层624的形状不同于像素电极层626的形状,并且像素电极层624和626被狭缝625分开。像素电极层626被形成为围绕展开成V形的像素电极层624的外侧。使得通过TFT628施加于像素电极层624的电压不同于通过TFT629施加于像素电极层626的电压,由此,控制液晶的取向。图31示出此像素结构的等效电路。TFT628连接到栅极布线602,并且TFT629连接到栅极布线603。TFT628和629两者都连接到布线616。当向栅极布线602和603提供不同的栅极信号时,液晶元件651和652的操作可以改变。换言之,单独地控制TFT628和629的操作,以精确地控制液晶元件651和652中的液晶的取向,这导致较宽的视角。
对衬底601提供有着色膜636和对电极层640。在着色膜636与对电极层640之间形成平坦化膜637以防止液晶的取向无序。图30示出对衬底侧的平面结构。对电极层640是被不同的像素共享的电极,并且形成有狭缝641。像素电极层624和626上的狭缝641和狭缝625被交替布置,以便有效地产生倾斜电场,由此,可以控制液晶的取向。因此,在不同的位置上液晶的取向可以改变,这导致较宽的视角。注意,在图30中,用虚线表示在衬底600上形成的像素电极层624和626,并且对电极层640及像素电极层624和626相互重叠。
在像素电极层624和像素电极层626上形成取向膜648,并且对电极层640类似地提供有取向膜646。在衬底600与对衬底601之间形成液晶层650。像素电极层624、液晶层650、和对电极层640相互重叠以形成第一液晶元件。像素电极层626、液晶层650、和对电极层640相互重叠以形成第二液晶元件。图30至33和图31所示的显示面板的像素结构是其中在一个像素中提供第一液晶元件和第二液晶元件的多畴结构。
接下来,描述处于水平电场模式的液晶显示器件。在水平电场模式下,在相对于单元中的液晶分子的水平方向施加电场,由此驱动液晶以表示灰度级。这种方法允许视角增加至约180°。下面描述处于水平电场模式的液晶显示器件。
在图32中,上面形成有电极层607、TFT628、和连接到TFT628的像素电极层624的衬底600与对衬底601重叠,并且在衬底600与对衬底601之间注入液晶。对衬底601提供有着色膜636、平坦化膜637等。注意,在对衬底601侧未提供对电极。另外,液晶层650形成在衬底600与对衬底601之间,而取向膜646和648被插入它们之间。
电极层607和连接到电极层607的电容器布线604、以及TFT628形成在衬底600上。可以与TFT628的栅极布线602同时形成电容器布线604。可以使用在任意实施例1至5中描述的薄膜晶体管作为TFT628。可以使用与在实施例1至5中描述的像素电极层427相同的材料来形成电容器布线604。另外,电极层607被几乎以像素形式划分。注意,第一栅极绝缘膜606a和第二绝缘膜606b形成在电极层607和电容器布线604上。
TFT628的布线616和618形成在第一栅极绝缘膜606a和第二栅极绝缘膜606b上。布线616是视频信号通过其传播的数据线,在液晶显示面板中沿一个方向延伸,连接到TFT628的源极或漏极区,并充当源极和漏极电极之一。布线618充当源极和漏极电极中的另一个,并连接到像素电极层624。
绝缘膜620形成在布线616和618上,并且绝缘膜621形成在绝缘膜620上。在绝缘膜621上,像素电极层624被形成为通过绝缘膜620和621中形成的接触孔连接到布线618。使用与在任意实施例1至5中描述的像素电极层的材料类似的材料来形成像素电极层624。
以这种方式,在衬底600上形成TFT628和连接到TFT628的像素电极层624。注意,利用电极层607、第一栅极绝缘膜606a、第二栅极绝缘膜606b、绝缘膜620和621、和像素电极层624形成存储电容器。
FIG33是示出像素电极的结构的平面图。图32示出沿图33中的剖面线O-P截取的横截面结构。像素电极层624提供有狭缝625。提供狭缝625以用于控制液晶的取向。在这种情况下,在电极层607与像素电极层624之间产生电场。在电极层607与像素电极层624之间形成的第一栅极绝缘膜606a和第二栅极绝缘膜606b的厚度每个为50nm至200nm,其比2μm至10μm的液晶层厚度小得多。因此,基本上与衬底600平行地(在水平方向)产生电场。用此电场来控制液晶的取向。通过使用在基本上平行于衬底的方向的电场,使液晶分子水平地旋转。在这种情况下,液晶分子在任何状态下水平地取向,因此,对比度等较少地受到视角的影响,这导致更宽的视角。另外,由于电极层607和像素电极层624两者是光透射电极,所以可以增加孔径比。
接下来,描述处于水平电场模式的液晶显示器件的不同示例。
图34和35示出处于IPS模式的液晶显示器件的像素结构。图35是平面图。图34示出沿图35中的剖面线V-W截取的横截面结构。参照这两个图来给出以下说明。
在图34中,上面形成有TFT628和连接到TFT628的像素电极层624的衬底600与对衬底601重叠,并且在衬底600与对衬底601之间注入液晶。对衬底601提供有着色膜636、平坦化膜637等。注意,在对衬底601侧未提供对电极。液晶层650形成在衬底600与对衬底601之间,而取向膜646和648被插入它们之间。
公共电位线609和TFT628形成在衬底600上。可以与TFT628的栅极布线602同时形成公共电位线609。像素电极层624几乎以像素的形式被划分。可以使用在任何实施例1至6中描述的薄膜晶体管作为TFT628。
TFT628的布线616和618形成在第一栅极绝缘膜606a和第二栅极绝缘膜606b上。布线616是视频信号通过其传播的数据线,其在液晶显示面板中在一个方向延伸,连接到TFT628的源极或漏极区,并充当源极和漏极电极之一。布线618充当源极和漏极电极中的另一个,并连接到像素电极层624。
在布线616和618上形成绝缘膜620,并且在绝缘膜620上形成绝缘膜621。另外,在绝缘膜621上,像素电极层624被形成为通过绝缘膜620和621中形成的接触孔623连接到布线618。使用与在实施例1中描述的像素电极层427的材料类似的材料来形成像素电极层624。注意,如图35所示,像素电极层624被形成为使得像素电极层624和与公共电位线609同时形成的梳状电极可以产生水平电场。此外,像素电极层624被形成为使得像素电极层624的梳齿部分和与公共电位线609同时形成的梳状电极的那些被交替地布置。
通过在施加于像素电极层624的电位与公共电位线609的电位之间产生的电场来控制液晶的取向。通过使用沿基本上平行于衬底的方向的电场,使液晶分子水平地旋转。在这种情况下,液晶分子在任何状态下水平地取向,因此,对比度等较少地受到视角的影响,这导致更宽的视角。
以这种方式,在衬底600上形成TFT628和连接到TFT628的像素电极层624。利用公共电位线609和电容器电极层615及设置在公共电位线609与电容器电极层615之间的第一栅极绝缘膜606a和栅极绝缘膜606b形成存储电容器。电容器电极层615和像素电极层624在接触孔623中相互连接。
接下来,描述处于TN模式的液晶显示器件的模式。
图36和图37示出处于TN模式的液晶显示器件的像素结构。图37是平面图。图36示出沿图37中的剖面线K-L截取的横截面结构。参照这两个图来给出以下说明。
像素电极层624通过在绝缘膜620和621中形成的接触孔623经由布线618连接到TFT628。充当数据线的布线616被连接到TFT628。可以使用在任何实施例1至5中描述的薄膜晶体管作为TFT628。
使用实施例1至5中所述的像素电极层427来形成像素电极层624。可以与TFT628的栅极布线602同时形成电容器布线604。在栅极布线602和电容器布线604上形成第一栅极绝缘膜606a和第二绝缘膜606b。利用第一栅极绝缘膜606a和第二栅极绝缘膜606b、电容器布线604、和电容器电极层615形成存储电容器。电容器电极层615和像素电极层624通过接触孔623相互连接。
对衬底601提供有着色膜636和对电极层640。在着色膜636与对电极层640之间形成平坦化膜637,以防止液晶的取向无序。在像素电极层624与对电极层640之间形成液晶层650,而取向膜646和648被插入它们之间。
像素电极层624、液晶层650、和对电极层640相互重叠,由此形成液晶元件。
可以在衬底600侧形成着色膜636。将偏振片附着于衬底600的作为提供有薄膜晶体管的表面的反面的表面,并且将偏振片附着于衬底601的作为设置有对电极层640的表面的反面的表面。
通过上述过程,可以制造液晶显示器件作为显示器件。本实施例的液晶显示器件每个具有高孔径比。
本申请是基于2009年8月7日向日本专利局提交的日本专利申请No.2009-185315,在此通过引用将其全部内容并入本文中。

Claims (12)

1.一种半导体器件,包括:
在衬底上形成的像素部分,该像素部分包括第一晶体管;以及
在所述衬底上形成的驱动器电路部分,该驱动器电路部分包括第二晶体管,
其中,所述第一晶体管包括:
在所述衬底上的第一栅极电极层;
在所述第一栅极电极层上的栅极绝缘层;
在所述栅极绝缘层上的第一氧化物半导体层;
在所述第一氧化物半导体层上的第一源极电极层和第一漏极电极层;
在所述第一源极电极层的一部分或所述第一漏极电极层的一部分上并与之接触的第一导电层;
在所述栅极绝缘层、第一氧化物半导体层、第一源极电极层、第一漏极电极层和第一导电层上的第一氧化物绝缘层,所述第一氧化物绝缘层至少与在所述第一源极电极层和所述第一漏极电极层之间的所述第一氧化物半导体层的一部分接触,以及
所述第一氧化物绝缘层上的像素电极层,所述像素电极层被电连接到所述第一导电层,
其中,所述第二晶体管包括:
在所述衬底上的第二栅极电极层;
在所述第二栅极电极层上的所述栅极绝缘层;
在所述栅极绝缘层上的第二氧化物半导体;
在所述第二氧化物半导体层上的第二源极电极层和第二漏极电极层;以及
在所述第二氧化物半导体层、第二源极电极层和第二漏极电极层上的第二氧化物绝缘层,所述第二氧化物绝缘层与所述第二氧化物半导体层接触,
其中,所述第一栅极电极层、所述栅极绝缘层、所述第一氧化物半导体层、所述第一源极电极层、所述第一漏极电极层、所述第一氧化物绝缘层、和所述像素电极层中的每一个具有光透射性质,
其中,所述第二源极电极层和所述第二漏极电极层是由与所述第一导电层的相同的层形成的,
其中,所述第二源极电极层和所述第二漏极电极层的材料不同于所述第一源极电极层和所述第一漏极电极层的材料,以及其中,所述第二源极电极层和所述第二漏极电极层的材料是电阻比所述第一源极电极层和所述第一漏极电极层的材料低的导电材料。
2.根据权利要求1所述的半导体器件,其中,所述第二源极电极层和所述第二漏极电极层包括包含选自Al、Cr、Cu、Ta、Ti、Mo、和W的元素的金属膜,或包括包含任何以上元素的合金膜的堆叠体。
3.根据权利要求1所述的半导体器件,其中,所述第一导电层包括包含选自Al、Cr、Cu、Ta、Ti、Mo、和W的元素的材料,或包括包含任何以上元素的合金膜的堆叠体。
4.根据权利要求1所述的半导体器件,其中,所述第一源极电极层、所述第一漏极电极层、和所述像素电极层包括氧化铟、氧化铟-氧化锡合金、氧化铟-氧化锌合金、或氧化锌。
5.根据权利要求1所述的半导体器件,还包括:
在所述衬底上的电容器部分,
其中,所述电容器部分包括电容器布线和与所述电容器布线重叠的电容器电极层,以及
其中,所述电容器布线和所述电容器电极层中的每一个具有光透射性质。
6.根据权利要求1所述的半导体器件,还包括:
在所述第二氧化物绝缘层上的与所述第二栅极电极层重叠的第二导电层。
7.根据权利要求6所述的半导体器件,其中,所述第二导电层包括与所述像素电极层相同的材料。
8.根据权利要求7所述的半导体器件,还包括:
在所述第二氧化物半导体层与所述第二源极电极层之间和在所述第二氧化物半导体层与所述第二漏极电极层之间的氧化物导电层,
其中,所述氧化物导电层包括与所述第一晶体管的所述第一源极电极层和所述第一漏极电极层相同的材料。
9.一种制造半导体器件的方法,所述半导体器件包括具有第一晶体管的像素部分和具有第二晶体管的驱动器电路,所述方法包括步骤:
通过在衬底上形成第一导电膜并选择性地去除所述第一导电膜,在所述衬底上形成所述第一晶体管的第一栅极电极层和所述第二晶体管的第二栅极电极层;
在所述第一栅极电极层和所述第二栅极电极层上形成栅极绝缘层;
在所述栅极绝缘层上形成氧化物半导体膜,
通过选择性地去除所述氧化物半导体膜,形成在所述第一栅极电极层和所述栅极绝缘层上的第一氧化物半导体层,和在所述第二栅极电极层和所述栅极绝缘层上的第二氧化物半导体层;
至少加热所述第一氧化物半导体层和所述第二氧化物半导体层,以降低所述第一氧化物半导体层和所述第二氧化物半导体层中的氢浓度,
在所述第一氧化物半导体层和所述第二氧化物半导体层上依次形成氧化物导电膜和第二导电膜,
通过选择性地去除所述氧化物导电膜和所述第二导电膜,形成在所述第一氧化物半导体层上的第一源极电极层和第一漏极电极层、在所述第二氧化物半导体层上的一对低电阻漏极区、和在该对低电阻漏极区上的第二源极电极层和第二漏极电极层,
形成与所述第一漏极电极层或所述第一源极电极层的一部分接触的导电层,
形成在所述栅极绝缘层、所述第一氧化物半导体层、所述第二氧化物半导体层、所述第一源极电极层、所述第一漏极电极层、所述导电层、所述第二源极电极层和所述第二漏极电极层上的、与所述第一氧化物半导体层的一部分和所述第二氧化物半导体层的一部分接触的保护性绝缘层;以及
在所述保护性绝缘层上形成像素电极层,所述像素电极层被电连接到所述导电层,
其中,所述第一氧化物半导体层和所述第二氧化物半导体层是岛状氧化物半导体层。
10.根据权利要求9所述的制造半导体器件的方法,其中,在所述像素部分中,所述栅极绝缘层、所述第一氧化物半导体层、所述第一源极电极层、所述第一漏极电极层、和所述导电层中的每一个具有光透射性质。
11.一种制造半导体器件的方法,所述半导体器件包括具有第一晶体管的像素部分和具有第二晶体管的驱动器电路,所述方法包括步骤:
通过在衬底上形成第一导电膜并选择性地去除所述第一导电膜,在所述衬底上形成所述第一晶体管的第一栅极电极层和所述第二晶体管的第二栅极电极层;
在所述第一栅极电极层和所述第二栅极电极层上形成栅极绝缘层;
在所述栅极绝缘层上形成氧化物半导体膜,
至少加热所述氧化物半导体膜,以降低所述氧化物半导体膜中的氢浓度;
通过选择性地去除所述氧化物半导体层,形成在所述第一栅极电极层和所述栅极绝缘层上的第一氧化物半导体层以及在所述第二栅极电极层和所述栅极绝缘层上的第二氧化物半导体层;
在所述第一氧化物半导体层和所述第二氧化物半导体层上依次形成氧化物导电膜和第二导电膜;
通过选择性地去除所述氧化物导电膜和所述第二导电膜,形成在所述第一氧化物半导体层上的第一源极电极层和第一漏极电极层、在所述第二氧化物半导体层上的一对低电阻漏极区、和在该对低电阻漏极区上的第二源极电极层和第二漏极电极层,
形成与所述第一漏极电极层或所述第一源极电极层的一部分接触的导电层;
形成在所述栅极绝缘层、所述第一氧化物半导体层、所述第二氧化物半导体层、所述第一源极电极层、所述第一漏极电极层、所述导电层、所述第二源极电极层和所述第二漏极电极层上的、与所述第一氧化物半导体层的一部分和所述第二氧化物半导体层的一部分接触的保护性绝缘层;以及
在所述保护性绝缘层上形成像素电极层,所述像素电极层被电连接到所述导电层,
其中,所述第一氧化物半导体层和所述第二氧化物半导体层是岛状氧化物半导体层。
12.根据权利要求11所述的制造半导体器件的方法,其中,在所述像素部分中,所述栅极绝缘层、所述第一氧化物半导体层、所述第一源极电极层、所述第一漏极电极层、和所述导电层中的每一个具有光透射性质。
CN201010248853.9A 2009-08-07 2010-08-06 半导体器件及其制造方法 Active CN101997005B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009185315 2009-08-07
JP2009-185315 2009-08-07

Publications (2)

Publication Number Publication Date
CN101997005A CN101997005A (zh) 2011-03-30
CN101997005B true CN101997005B (zh) 2015-11-25

Family

ID=43534147

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201010248853.9A Active CN101997005B (zh) 2009-08-07 2010-08-06 半导体器件及其制造方法

Country Status (5)

Country Link
US (1) US8912541B2 (zh)
JP (5) JP5721361B2 (zh)
KR (1) KR101760241B1 (zh)
CN (1) CN101997005B (zh)
TW (1) TWI596741B (zh)

Families Citing this family (75)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI415283B (zh) * 2009-02-18 2013-11-11 Au Optronics Corp X射線感測器及其製作方法
JP5663231B2 (ja) * 2009-08-07 2015-02-04 株式会社半導体エネルギー研究所 発光装置
EP2284891B1 (en) * 2009-08-07 2019-07-24 Semiconductor Energy Laboratory Co, Ltd. Semiconductor device and manufacturing method thereof
US8115883B2 (en) 2009-08-27 2012-02-14 Semiconductor Energy Laboratory Co., Ltd. Display device and method for manufacturing the same
WO2011027656A1 (en) 2009-09-04 2011-03-10 Semiconductor Energy Laboratory Co., Ltd. Transistor and display device
WO2011027702A1 (en) * 2009-09-04 2011-03-10 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device and method for manufacturing the same
WO2011027701A1 (en) * 2009-09-04 2011-03-10 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device and method for manufacturing the same
CN102891181B (zh) 2009-09-16 2016-06-22 株式会社半导体能源研究所 晶体管及显示设备
KR101608923B1 (ko) 2009-09-24 2016-04-04 가부시키가이샤 한도오따이 에네루기 켄큐쇼 산화물 반도체막 및 반도체 장치
WO2011043164A1 (en) 2009-10-09 2011-04-14 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the semiconductor device
CN102598279B (zh) * 2009-11-06 2015-10-07 株式会社半导体能源研究所 半导体装置
CN102598284B (zh) 2009-11-06 2015-04-15 株式会社半导体能源研究所 半导体器件
KR101802406B1 (ko) 2009-11-27 2017-11-28 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치 및 반도체 장치의 제작방법
CN103081092B (zh) 2010-08-27 2016-11-09 株式会社半导体能源研究所 存储器件及半导体器件
US8803143B2 (en) 2010-10-20 2014-08-12 Semiconductor Energy Laboratory Co., Ltd. Thin film transistor including buffer layers with high resistivity
KR102138213B1 (ko) 2010-11-24 2020-07-27 가부시키가이샤 한도오따이 에네루기 켄큐쇼 유기 광 디바이스 및 유기 광 디바이스의 보호 부재
KR101763052B1 (ko) 2010-12-03 2017-07-28 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치
JP5315468B2 (ja) * 2011-02-07 2013-10-16 シャープ株式会社 アクティブマトリクス基板の製造方法、表示パネル、及び表示装置
US8841664B2 (en) * 2011-03-04 2014-09-23 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US9646829B2 (en) * 2011-03-04 2017-05-09 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of semiconductor device
US9219159B2 (en) 2011-03-25 2015-12-22 Semiconductor Energy Laboratory Co., Ltd. Method for forming oxide semiconductor film and method for manufacturing semiconductor device
US9012904B2 (en) * 2011-03-25 2015-04-21 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
TWI545652B (zh) 2011-03-25 2016-08-11 半導體能源研究所股份有限公司 半導體裝置及其製造方法
CN102655165B (zh) 2011-03-28 2015-04-29 京东方科技集团股份有限公司 一种非晶氧化物薄膜晶体管及其制作方法、显示面板
US9082860B2 (en) * 2011-03-31 2015-07-14 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US9012905B2 (en) 2011-04-08 2015-04-21 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device including transistor comprising oxide semiconductor and method for manufacturing the same
US9331206B2 (en) * 2011-04-22 2016-05-03 Semiconductor Energy Laboratory Co., Ltd. Oxide material and semiconductor device
TWI671911B (zh) * 2011-05-05 2019-09-11 日商半導體能源研究所股份有限公司 半導體裝置及其製造方法
US9117920B2 (en) * 2011-05-19 2015-08-25 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device using oxide semiconductor
JP6005401B2 (ja) * 2011-06-10 2016-10-12 株式会社半導体エネルギー研究所 半導体装置の作製方法
KR20130007006A (ko) * 2011-06-28 2013-01-18 삼성디스플레이 주식회사 유기 발광 표시 장치 및 유기 발광 표시 장치의 제조 방법
CN102915968A (zh) * 2011-08-01 2013-02-06 中芯国际集成电路制造(上海)有限公司 Cmos晶体管的制作方法
US8952379B2 (en) * 2011-09-16 2015-02-10 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
KR102128369B1 (ko) 2011-09-29 2020-06-30 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치
US10014068B2 (en) * 2011-10-07 2018-07-03 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
SG11201504615UA (en) 2011-10-14 2015-07-30 Semiconductor Energy Lab Semiconductor device
KR20130040706A (ko) 2011-10-14 2013-04-24 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치 및 반도체 장치의 제작 방법
KR102072244B1 (ko) * 2011-11-30 2020-01-31 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치 및 반도체 장치의 제작 방법
JP2015043112A (ja) * 2011-12-21 2015-03-05 シャープ株式会社 タッチパネルおよびタッチパネル付き表示装置
JP2015166889A (ja) * 2012-07-02 2015-09-24 シャープ株式会社 タッチパネルおよびタッチパネル付き表示装置
JP2014199899A (ja) * 2012-08-10 2014-10-23 株式会社半導体エネルギー研究所 半導体装置
US8937307B2 (en) * 2012-08-10 2015-01-20 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
TWI575663B (zh) 2012-08-31 2017-03-21 半導體能源研究所股份有限公司 半導體裝置
KR101968929B1 (ko) * 2012-09-11 2019-04-16 삼성디스플레이 주식회사 센서 기판, 이의 제조 방법 및 이를 포함하는 센싱 표시 패널
KR20240001283A (ko) * 2012-09-13 2024-01-03 가부시키가이샤 한도오따이 에네루기 켄큐쇼 표시 장치
JP2014089444A (ja) * 2012-10-05 2014-05-15 Semiconductor Energy Lab Co Ltd 表示装置及び電子機器
TWI607510B (zh) * 2012-12-28 2017-12-01 半導體能源研究所股份有限公司 半導體裝置及半導體裝置的製造方法
KR102000738B1 (ko) * 2013-01-28 2019-07-23 삼성디스플레이 주식회사 정전기 방지 회로 및 이를 포함하는 표시 장치
US10566455B2 (en) * 2013-03-28 2020-02-18 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
TWI627751B (zh) * 2013-05-16 2018-06-21 半導體能源研究所股份有限公司 半導體裝置
JP2015195327A (ja) * 2013-06-05 2015-11-05 株式会社半導体エネルギー研究所 半導体装置
JP6475424B2 (ja) * 2013-06-05 2019-02-27 株式会社半導体エネルギー研究所 半導体装置
US9818763B2 (en) 2013-07-12 2017-11-14 Semiconductor Energy Laboratory Co., Ltd. Display device and method for manufacturing display device
KR102386362B1 (ko) * 2013-12-02 2022-04-15 가부시키가이샤 한도오따이 에네루기 켄큐쇼 표시 장치
US9349751B2 (en) 2013-12-12 2016-05-24 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US9397149B2 (en) * 2013-12-27 2016-07-19 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
CN103777395A (zh) * 2014-01-27 2014-05-07 京东方科技集团股份有限公司 阵列基板及其制作方法、显示装置
TWI546850B (zh) * 2014-11-14 2016-08-21 群創光電股份有限公司 顯示面板之製備方法
US9964799B2 (en) * 2015-03-17 2018-05-08 Semiconductor Energy Laboratory Co., Ltd. Display device, display module, and electronic device
CN104934444B (zh) * 2015-05-11 2018-01-02 深圳市华星光电技术有限公司 共平面型氧化物半导体tft基板结构及其制作方法
US9728650B1 (en) * 2016-01-14 2017-08-08 Hon Hai Precision Industry Co., Ltd. Thin film transistor array panel and conducting structure
CN105742293A (zh) * 2016-03-01 2016-07-06 京东方科技集团股份有限公司 一种阵列基板及其制作方法
US10333004B2 (en) * 2016-03-18 2019-06-25 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, semiconductor wafer, module and electronic device
SG10201701689UA (en) 2016-03-18 2017-10-30 Semiconductor Energy Lab Semiconductor device, semiconductor wafer, and electronic device
TWI602306B (zh) * 2016-07-05 2017-10-11 Innolux Corp 陣列基板結構與顯示裝置
CN107689391B (zh) * 2016-08-04 2020-09-08 鸿富锦精密工业(深圳)有限公司 薄膜晶体管基板及其制备方法
US10244230B2 (en) 2017-03-01 2019-03-26 Avalon Holographics Inc. Directional pixel for multiple view display
CN107393934B (zh) 2017-08-14 2020-02-21 京东方科技集团股份有限公司 一种阵列基板、其制作方法及显示装置
CN107507841B (zh) * 2017-09-22 2021-01-22 京东方科技集团股份有限公司 阵列基板及其制作方法、显示装置
KR102671921B1 (ko) 2018-04-26 2024-06-05 가부시키가이샤 한도오따이 에네루기 켄큐쇼 표시 장치 및 전자 기기
CN110554544B (zh) * 2018-06-01 2023-04-14 山力科技有限公司 微开关电子书写板
JP2020053475A (ja) * 2018-09-25 2020-04-02 株式会社ジャパンディスプレイ 薄膜トランジスタ及び表示装置
CN110515252B (zh) * 2019-08-30 2024-02-20 京东方科技集团股份有限公司 电子纸像素单元、以及电子纸像素单元制备方法
US20210193049A1 (en) * 2019-12-23 2021-06-24 Apple Inc. Electronic Display with In-Pixel Compensation and Oxide Drive Transistors
WO2023100022A1 (ja) * 2021-11-30 2023-06-08 株式会社半導体エネルギー研究所 表示装置、及び表示装置の作製方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1399161A (zh) * 2001-07-21 2003-02-26 三星电子株式会社 用于液晶显示板的薄膜晶体管基板及其制造方法
CN1892387A (zh) * 2005-06-30 2007-01-10 株式会社半导体能源研究所 液晶显示器件及其制造方法
CN101057333A (zh) * 2004-11-10 2007-10-17 佳能株式会社 发光器件
CN101335274A (zh) * 2005-09-29 2008-12-31 株式会社半导体能源研究所 半导体器件及其制造方法
CN101526709A (zh) * 2008-03-06 2009-09-09 株式会社日立显示器 液晶显示装置

Family Cites Families (155)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60198861A (ja) 1984-03-23 1985-10-08 Fujitsu Ltd 薄膜トランジスタ
JPH0244256B2 (ja) 1987-01-28 1990-10-03 Kagaku Gijutsucho Mukizaishitsu Kenkyushocho Ingazn2o5deshimesarerurotsuhoshokeinosojokozoojusurukagobutsuoyobisonoseizoho
JPH0244258B2 (ja) 1987-02-24 1990-10-03 Kagaku Gijutsucho Mukizaishitsu Kenkyushocho Ingazn3o6deshimesarerurotsuhoshokeinosojokozoojusurukagobutsuoyobisonoseizoho
JPS63210023A (ja) 1987-02-24 1988-08-31 Natl Inst For Res In Inorg Mater InGaZn↓4O↓7で示される六方晶系の層状構造を有する化合物およびその製造法
JPH0244260B2 (ja) 1987-02-24 1990-10-03 Kagaku Gijutsucho Mukizaishitsu Kenkyushocho Ingazn5o8deshimesarerurotsuhoshokeinosojokozoojusurukagobutsuoyobisonoseizoho
JPH0244262B2 (ja) 1987-02-27 1990-10-03 Kagaku Gijutsucho Mukizaishitsu Kenkyushocho Ingazn6o9deshimesarerurotsuhoshokeinosojokozoojusurukagobutsuoyobisonoseizoho
JPH0244263B2 (ja) 1987-04-22 1990-10-03 Kagaku Gijutsucho Mukizaishitsu Kenkyushocho Ingazn7o10deshimesarerurotsuhoshokeinosojokozoojusurukagobutsuoyobisonoseizoho
JP2714016B2 (ja) * 1988-08-05 1998-02-16 株式会社東芝 表示装置
JPH02252269A (ja) * 1989-03-27 1990-10-11 Seiko Epson Corp 半導体装置
JPH05326953A (ja) * 1991-04-26 1993-12-10 Tonen Corp アクティブマトリックス型画像表示パネルの製造方法
JP2776083B2 (ja) * 1991-08-23 1998-07-16 日本電気株式会社 液晶表示装置およびその製造方法
JPH05251705A (ja) 1992-03-04 1993-09-28 Fuji Xerox Co Ltd 薄膜トランジスタ
JP3479375B2 (ja) 1995-03-27 2003-12-15 科学技術振興事業団 亜酸化銅等の金属酸化物半導体による薄膜トランジスタとpn接合を形成した金属酸化物半導体装置およびそれらの製造方法
KR100394896B1 (ko) 1995-08-03 2003-11-28 코닌클리케 필립스 일렉트로닉스 엔.브이. 투명스위칭소자를포함하는반도체장치
JP3625598B2 (ja) 1995-12-30 2005-03-02 三星電子株式会社 液晶表示装置の製造方法
JP2001051292A (ja) * 1998-06-12 2001-02-23 Semiconductor Energy Lab Co Ltd 半導体装置および半導体表示装置
JP4170454B2 (ja) 1998-07-24 2008-10-22 Hoya株式会社 透明導電性酸化物薄膜を有する物品及びその製造方法
JP4300435B2 (ja) * 1998-08-18 2009-07-22 ソニー株式会社 電気光学装置の製造方法、及び電気光学装置用の駆動基板の製造方法
US6261881B1 (en) * 1998-08-21 2001-07-17 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device provided with semiconductor circuit consisting of semiconductor element and method of manufacturing the same
JP3692795B2 (ja) * 1998-08-25 2005-09-07 カシオ計算機株式会社 表示装置
JP2000150861A (ja) 1998-11-16 2000-05-30 Tdk Corp 酸化物薄膜
JP3276930B2 (ja) 1998-11-17 2002-04-22 科学技術振興事業団 トランジスタ及び半導体装置
TW460731B (en) 1999-09-03 2001-10-21 Ind Tech Res Inst Electrode structure and production method of wide viewing angle LCD
JP4253826B2 (ja) * 1999-09-07 2009-04-15 カシオ計算機株式会社 画像読取装置
JP3581073B2 (ja) * 2000-03-07 2004-10-27 シャープ株式会社 イメージセンサおよびその製造方法
JP2001284592A (ja) 2000-03-29 2001-10-12 Sony Corp 薄膜半導体装置及びその駆動方法
JP2001324725A (ja) 2000-05-12 2001-11-22 Hitachi Ltd 液晶表示装置およびその製造方法
JP4089858B2 (ja) 2000-09-01 2008-05-28 国立大学法人東北大学 半導体デバイス
KR20020038482A (ko) 2000-11-15 2002-05-23 모리시타 요이찌 박막 트랜지스터 어레이, 그 제조방법 및 그것을 이용한표시패널
JP3997731B2 (ja) 2001-03-19 2007-10-24 富士ゼロックス株式会社 基材上に結晶性半導体薄膜を形成する方法
JP2002289859A (ja) 2001-03-23 2002-10-04 Minolta Co Ltd 薄膜トランジスタ
JP2003029293A (ja) 2001-07-13 2003-01-29 Minolta Co Ltd 積層型表示装置及びその製造方法
JP2003037268A (ja) 2001-07-24 2003-02-07 Minolta Co Ltd 半導体素子及びその製造方法
JP3925839B2 (ja) 2001-09-10 2007-06-06 シャープ株式会社 半導体記憶装置およびその試験方法
JP4090716B2 (ja) 2001-09-10 2008-05-28 雅司 川崎 薄膜トランジスタおよびマトリクス表示装置
JP4974425B2 (ja) * 2001-09-10 2012-07-11 株式会社半導体エネルギー研究所 半導体装置の作製方法
JP4634673B2 (ja) * 2001-09-26 2011-02-16 シャープ株式会社 液晶表示装置及びその製造方法
WO2003040441A1 (en) 2001-11-05 2003-05-15 Japan Science And Technology Agency Natural superlattice homologous single crystal thin film, method for preparation thereof, and device using said single crystal thin film
JP4164562B2 (ja) 2002-09-11 2008-10-15 独立行政法人科学技術振興機構 ホモロガス薄膜を活性層として用いる透明薄膜電界効果型トランジスタ
JP4083486B2 (ja) 2002-02-21 2008-04-30 独立行政法人科学技術振興機構 LnCuO(S,Se,Te)単結晶薄膜の製造方法
CN1445821A (zh) 2002-03-15 2003-10-01 三洋电机株式会社 ZnO膜和ZnO半导体层的形成方法、半导体元件及其制造方法
JP3933591B2 (ja) 2002-03-26 2007-06-20 淳二 城戸 有機エレクトロルミネッセント素子
US7339187B2 (en) 2002-05-21 2008-03-04 State Of Oregon Acting By And Through The Oregon State Board Of Higher Education On Behalf Of Oregon State University Transistor structures
JP2004022625A (ja) 2002-06-13 2004-01-22 Murata Mfg Co Ltd 半導体デバイス及び該半導体デバイスの製造方法
US7105868B2 (en) 2002-06-24 2006-09-12 Cermet, Inc. High-electron mobility transistor with zinc oxide
JP4723787B2 (ja) * 2002-07-09 2011-07-13 シャープ株式会社 電界効果型トランジスタ、その製造方法及び画像表示装置
JP4183990B2 (ja) * 2002-07-11 2008-11-19 シャープ株式会社 薄膜フォトトランジスタ及びそれを用いたアクティブマトリクス基板並びにそれを用いた画像読み取り装置。
US7067843B2 (en) 2002-10-11 2006-06-27 E. I. Du Pont De Nemours And Company Transparent oxide semiconductor thin film transistors
JP4166105B2 (ja) 2003-03-06 2008-10-15 シャープ株式会社 半導体装置およびその製造方法
JP2004273732A (ja) 2003-03-07 2004-09-30 Sharp Corp アクティブマトリクス基板およびその製造方法
JP4108633B2 (ja) 2003-06-20 2008-06-25 シャープ株式会社 薄膜トランジスタおよびその製造方法ならびに電子デバイス
US7262463B2 (en) 2003-07-25 2007-08-28 Hewlett-Packard Development Company, L.P. Transistor including a deposited channel region having a doped portion
US7282782B2 (en) 2004-03-12 2007-10-16 Hewlett-Packard Development Company, L.P. Combined binary oxide semiconductor device
US7145174B2 (en) 2004-03-12 2006-12-05 Hewlett-Packard Development Company, Lp. Semiconductor device
JP4620046B2 (ja) 2004-03-12 2011-01-26 独立行政法人科学技術振興機構 薄膜トランジスタ及びその製造方法
US7297977B2 (en) 2004-03-12 2007-11-20 Hewlett-Packard Development Company, L.P. Semiconductor device
US7211825B2 (en) 2004-06-14 2007-05-01 Yi-Chi Shih Indium oxide-based thin film transistors and circuits
JP2006100760A (ja) 2004-09-02 2006-04-13 Casio Comput Co Ltd 薄膜トランジスタおよびその製造方法
US7285501B2 (en) 2004-09-17 2007-10-23 Hewlett-Packard Development Company, L.P. Method of forming a solution processed device
US7298084B2 (en) 2004-11-02 2007-11-20 3M Innovative Properties Company Methods and displays utilizing integrated zinc oxide row and column drivers in conjunction with organic light emitting diodes
US7791072B2 (en) 2004-11-10 2010-09-07 Canon Kabushiki Kaisha Display
US7863611B2 (en) 2004-11-10 2011-01-04 Canon Kabushiki Kaisha Integrated circuits utilizing amorphous oxides
US7601984B2 (en) 2004-11-10 2009-10-13 Canon Kabushiki Kaisha Field effect transistor with amorphous oxide active layer containing microcrystals and gate electrode opposed to active layer through gate insulator
KR100911698B1 (ko) 2004-11-10 2009-08-10 캐논 가부시끼가이샤 비정질 산화물을 사용한 전계 효과 트랜지스터
US7453065B2 (en) 2004-11-10 2008-11-18 Canon Kabushiki Kaisha Sensor and image pickup device
US7829444B2 (en) 2004-11-10 2010-11-09 Canon Kabushiki Kaisha Field effect transistor manufacturing method
US7579224B2 (en) 2005-01-21 2009-08-25 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing a thin film semiconductor device
US7608531B2 (en) 2005-01-28 2009-10-27 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, electronic device, and method of manufacturing semiconductor device
TWI472037B (zh) 2005-01-28 2015-02-01 Semiconductor Energy Lab 半導體裝置,電子裝置,和半導體裝置的製造方法
US7858451B2 (en) 2005-02-03 2010-12-28 Semiconductor Energy Laboratory Co., Ltd. Electronic device, semiconductor device and manufacturing method thereof
US7948171B2 (en) 2005-02-18 2011-05-24 Semiconductor Energy Laboratory Co., Ltd. Light emitting device
JP5117667B2 (ja) * 2005-02-28 2013-01-16 カシオ計算機株式会社 薄膜トランジスタパネル
US20060191092A1 (en) * 2005-02-28 2006-08-31 O'reilly Donna M Multi-purpose mitt
JP2006245031A (ja) * 2005-02-28 2006-09-14 Casio Comput Co Ltd 薄膜トランジスタパネル
US20060197092A1 (en) 2005-03-03 2006-09-07 Randy Hoffman System and method for forming conductive material on a substrate
US7151276B2 (en) * 2005-03-09 2006-12-19 3M Innovative Properties Company Semiconductors containing perfluoroether acyl oligothiophene compounds
US8681077B2 (en) 2005-03-18 2014-03-25 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, and display device, driving method and electronic apparatus thereof
WO2006105077A2 (en) 2005-03-28 2006-10-05 Massachusetts Institute Of Technology Low voltage thin film transistor with high-k dielectric material
US7645478B2 (en) 2005-03-31 2010-01-12 3M Innovative Properties Company Methods of making displays
US8300031B2 (en) 2005-04-20 2012-10-30 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device comprising transistor having gate and drain connected through a current-voltage conversion element
KR20060121370A (ko) * 2005-05-24 2006-11-29 삼성전자주식회사 액정표시장치의 제조방법과 이에 의한 액정표시장치
JP2006344849A (ja) 2005-06-10 2006-12-21 Casio Comput Co Ltd 薄膜トランジスタ
US7691666B2 (en) 2005-06-16 2010-04-06 Eastman Kodak Company Methods of making thin film transistors comprising zinc-oxide-based semiconductor materials and transistors made thereby
US7402506B2 (en) 2005-06-16 2008-07-22 Eastman Kodak Company Methods of making thin film transistors comprising zinc-oxide-based semiconductor materials and transistors made thereby
US7507618B2 (en) 2005-06-27 2009-03-24 3M Innovative Properties Company Method for making electronic devices using metal oxide nanoparticles
KR100711890B1 (ko) 2005-07-28 2007-04-25 삼성에스디아이 주식회사 유기 발광표시장치 및 그의 제조방법
JP2007059128A (ja) 2005-08-23 2007-03-08 Canon Inc 有機el表示装置およびその製造方法
JP4850457B2 (ja) 2005-09-06 2012-01-11 キヤノン株式会社 薄膜トランジスタ及び薄膜ダイオード
JP5116225B2 (ja) 2005-09-06 2013-01-09 キヤノン株式会社 酸化物半導体デバイスの製造方法
JP2007073705A (ja) 2005-09-06 2007-03-22 Canon Inc 酸化物半導体チャネル薄膜トランジスタおよびその製造方法
JP4280736B2 (ja) 2005-09-06 2009-06-17 キヤノン株式会社 半導体素子
KR100729043B1 (ko) 2005-09-14 2007-06-14 삼성에스디아이 주식회사 투명 박막 트랜지스터 및 그의 제조방법
JP5078246B2 (ja) 2005-09-29 2012-11-21 株式会社半導体エネルギー研究所 半導体装置、及び半導体装置の作製方法
JP5064747B2 (ja) 2005-09-29 2012-10-31 株式会社半導体エネルギー研究所 半導体装置、電気泳動表示装置、表示モジュール、電子機器、及び半導体装置の作製方法
JP5037808B2 (ja) 2005-10-20 2012-10-03 キヤノン株式会社 アモルファス酸化物を用いた電界効果型トランジスタ、及び該トランジスタを用いた表示装置
US7745798B2 (en) 2005-11-15 2010-06-29 Fujifilm Corporation Dual-phosphor flat panel radiation detector
KR101112655B1 (ko) 2005-11-15 2012-02-16 가부시키가이샤 한도오따이 에네루기 켄큐쇼 액티브 매트릭스 디스플레이 장치 및 텔레비전 수신기
JP5129473B2 (ja) 2005-11-15 2013-01-30 富士フイルム株式会社 放射線検出器
JP5250929B2 (ja) 2005-11-30 2013-07-31 凸版印刷株式会社 トランジスタおよびその製造方法
KR100732849B1 (ko) 2005-12-21 2007-06-27 삼성에스디아이 주식회사 유기 발광 표시장치
TWI292281B (en) 2005-12-29 2008-01-01 Ind Tech Res Inst Pixel structure of active organic light emitting diode and method of fabricating the same
US7867636B2 (en) 2006-01-11 2011-01-11 Murata Manufacturing Co., Ltd. Transparent conductive film and method for manufacturing the same
JP4977478B2 (ja) 2006-01-21 2012-07-18 三星電子株式会社 ZnOフィルム及びこれを用いたTFTの製造方法
US7576394B2 (en) 2006-02-02 2009-08-18 Kochi Industrial Promotion Center Thin film transistor including low resistance conductive thin films and manufacturing method thereof
US7977169B2 (en) 2006-02-15 2011-07-12 Kochi Industrial Promotion Center Semiconductor device including active layer made of zinc oxide with controlled orientations and manufacturing method thereof
KR20070101595A (ko) 2006-04-11 2007-10-17 삼성전자주식회사 ZnO TFT
US20070252928A1 (en) 2006-04-28 2007-11-01 Toppan Printing Co., Ltd. Structure, transmission type liquid crystal display, reflection type display and manufacturing method thereof
JP5060738B2 (ja) 2006-04-28 2012-10-31 株式会社ジャパンディスプレイイースト 画像表示装置
JP4277874B2 (ja) 2006-05-23 2009-06-10 エプソンイメージングデバイス株式会社 電気光学装置の製造方法
JP5028033B2 (ja) 2006-06-13 2012-09-19 キヤノン株式会社 酸化物半導体膜のドライエッチング方法
JP4999400B2 (ja) 2006-08-09 2012-08-15 キヤノン株式会社 酸化物半導体膜のドライエッチング方法
JP4609797B2 (ja) 2006-08-09 2011-01-12 Nec液晶テクノロジー株式会社 薄膜デバイス及びその製造方法
TWI312580B (en) 2006-09-04 2009-07-21 Taiwan Tft Lcd Associatio A thin film transistor, manufacturing method of a active layer thereof and liquid crystal display
JP4332545B2 (ja) 2006-09-15 2009-09-16 キヤノン株式会社 電界効果型トランジスタ及びその製造方法
JP4274219B2 (ja) 2006-09-27 2009-06-03 セイコーエプソン株式会社 電子デバイス、有機エレクトロルミネッセンス装置、有機薄膜半導体装置
JP5164357B2 (ja) 2006-09-27 2013-03-21 キヤノン株式会社 半導体装置及び半導体装置の製造方法
US7622371B2 (en) 2006-10-10 2009-11-24 Hewlett-Packard Development Company, L.P. Fused nanocrystal thin film semiconductor and method
JP5216204B2 (ja) * 2006-10-31 2013-06-19 株式会社半導体エネルギー研究所 液晶表示装置及びその作製方法
US7772021B2 (en) 2006-11-29 2010-08-10 Samsung Electronics Co., Ltd. Flat panel displays comprising a thin-film transistor having a semiconductive oxide in its channel and methods of fabricating the same for use in flat panel displays
JP2008140684A (ja) 2006-12-04 2008-06-19 Toppan Printing Co Ltd カラーelディスプレイおよびその製造方法
US20080157081A1 (en) 2006-12-28 2008-07-03 Samsung Electronics Co., Ltd. Organic light emitting device and method for manufacturing the same
KR101303578B1 (ko) 2007-01-05 2013-09-09 삼성전자주식회사 박막 식각 방법
US8207063B2 (en) 2007-01-26 2012-06-26 Eastman Kodak Company Process for atomic layer deposition
US8436349B2 (en) 2007-02-20 2013-05-07 Canon Kabushiki Kaisha Thin-film transistor fabrication process and display device
WO2008105347A1 (en) 2007-02-20 2008-09-04 Canon Kabushiki Kaisha Thin-film transistor fabrication process and display device
JP5196870B2 (ja) 2007-05-23 2013-05-15 キヤノン株式会社 酸化物半導体を用いた電子素子及びその製造方法
JP2008258579A (ja) * 2007-03-09 2008-10-23 Seiko Epson Corp 薄膜トランジスタおよび表示装置
KR100851215B1 (ko) 2007-03-14 2008-08-07 삼성에스디아이 주식회사 박막 트랜지스터 및 이를 이용한 유기 전계 발광표시장치
JP5244331B2 (ja) 2007-03-26 2013-07-24 出光興産株式会社 非晶質酸化物半導体薄膜、その製造方法、薄膜トランジスタの製造方法、電界効果型トランジスタ、発光装置、表示装置及びスパッタリングターゲット
KR101338021B1 (ko) * 2007-04-04 2013-12-06 삼성디스플레이 주식회사 박막 트랜지스터, 이를 포함하는 유기 발광 표시 장치 및그 제조 방법
WO2008126879A1 (en) 2007-04-09 2008-10-23 Canon Kabushiki Kaisha Light-emitting apparatus and production method thereof
JP5197058B2 (ja) 2007-04-09 2013-05-15 キヤノン株式会社 発光装置とその作製方法
US7795613B2 (en) 2007-04-17 2010-09-14 Toppan Printing Co., Ltd. Structure with transistor
KR101325053B1 (ko) 2007-04-18 2013-11-05 삼성디스플레이 주식회사 박막 트랜지스터 기판 및 이의 제조 방법
KR20080094300A (ko) 2007-04-19 2008-10-23 삼성전자주식회사 박막 트랜지스터 및 그 제조 방법과 박막 트랜지스터를포함하는 평판 디스플레이
KR101334181B1 (ko) * 2007-04-20 2013-11-28 삼성전자주식회사 선택적으로 결정화된 채널층을 갖는 박막 트랜지스터 및 그제조 방법
US8274078B2 (en) 2007-04-25 2012-09-25 Canon Kabushiki Kaisha Metal oxynitride semiconductor containing zinc
JP2009194351A (ja) 2007-04-27 2009-08-27 Canon Inc 薄膜トランジスタおよびその製造方法
KR101345376B1 (ko) 2007-05-29 2013-12-24 삼성전자주식회사 ZnO 계 박막 트랜지스터 및 그 제조방법
US8354674B2 (en) * 2007-06-29 2013-01-15 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device wherein a property of a first semiconductor layer is different from a property of a second semiconductor layer
JP5143514B2 (ja) 2007-09-21 2013-02-13 株式会社ジャパンディスプレイウェスト 表示装置及び表示装置の製造方法
KR101563692B1 (ko) * 2007-10-19 2015-10-27 가부시키가이샤 한도오따이 에네루기 켄큐쇼 표시장치 및 그 구동 방법
JP4506810B2 (ja) * 2007-10-19 2010-07-21 ソニー株式会社 表示装置
JP5377940B2 (ja) 2007-12-03 2013-12-25 株式会社半導体エネルギー研究所 半導体装置
US8202365B2 (en) 2007-12-17 2012-06-19 Fujifilm Corporation Process for producing oriented inorganic crystalline film, and semiconductor device using the oriented inorganic crystalline film
KR101516034B1 (ko) 2007-12-25 2015-05-04 이데미쓰 고산 가부시키가이샤 산화물 반도체 전계효과형 트랜지스터 및 그의 제조 방법
JP5540517B2 (ja) 2008-02-22 2014-07-02 凸版印刷株式会社 画像表示装置
JP2009265271A (ja) 2008-04-23 2009-11-12 Nippon Shokubai Co Ltd 電気光学表示装置
US9041202B2 (en) 2008-05-16 2015-05-26 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method of the same
EP2146379B1 (en) * 2008-07-14 2015-01-28 Samsung Electronics Co., Ltd. Transistor comprising ZnO based channel layer
JP4623179B2 (ja) 2008-09-18 2011-02-02 ソニー株式会社 薄膜トランジスタおよびその製造方法
JP5451280B2 (ja) 2008-10-09 2014-03-26 キヤノン株式会社 ウルツ鉱型結晶成長用基板およびその製造方法ならびに半導体装置
WO2011010545A1 (en) 2009-07-18 2011-01-27 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
KR101851403B1 (ko) 2009-07-18 2018-04-23 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치 및 반도체 장치 제조 방법
TWI528527B (zh) 2009-08-07 2016-04-01 半導體能源研究所股份有限公司 半導體裝置及半導體裝置之製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1399161A (zh) * 2001-07-21 2003-02-26 三星电子株式会社 用于液晶显示板的薄膜晶体管基板及其制造方法
CN101057333A (zh) * 2004-11-10 2007-10-17 佳能株式会社 发光器件
CN1892387A (zh) * 2005-06-30 2007-01-10 株式会社半导体能源研究所 液晶显示器件及其制造方法
CN101335274A (zh) * 2005-09-29 2008-12-31 株式会社半导体能源研究所 半导体器件及其制造方法
CN101526709A (zh) * 2008-03-06 2009-09-09 株式会社日立显示器 液晶显示装置

Also Published As

Publication number Publication date
JP2020036019A (ja) 2020-03-05
JP2011054946A (ja) 2011-03-17
US20110031497A1 (en) 2011-02-10
CN101997005A (zh) 2011-03-30
JP2019033261A (ja) 2019-02-28
JP6600055B2 (ja) 2019-10-30
TW201117356A (en) 2011-05-16
TWI596741B (zh) 2017-08-21
US8912541B2 (en) 2014-12-16
JP2015173265A (ja) 2015-10-01
JP2017208558A (ja) 2017-11-24
JP6392942B2 (ja) 2018-09-19
KR20110015374A (ko) 2011-02-15
JP5721361B2 (ja) 2015-05-20
KR101760241B1 (ko) 2017-07-21

Similar Documents

Publication Publication Date Title
CN101997005B (zh) 半导体器件及其制造方法
CN101997007B (zh) 半导体装置及制造半导体装置的方法
CN102576732B (zh) 半导体装置与用于制造半导体装置的方法
CN102473734B (zh) 半导体装置及其制造方法
CN102473733B (zh) 半导体装置以及制造半导体装置的方法
CN102484140B (zh) 半导体器件的制造方法
TWI629769B (zh) 半導體裝置和其製造方法
CN101714547B (zh) 显示装置
CN101714546B (zh) 显示装置及其制造方法
CN101997036B (zh) 半导体装置及其制造方法
CN101997003B (zh) 半导体装置
CN102473735B (zh) 半导体装置及其制造方法
CN102496628B (zh) 显示装置
CN102648524B (zh) 半导体器件、显示装置和电子电器
CN102549758B (zh) 半导体器件及其制造方法
CN105140132A (zh) 半导体装置及其制造方法
CN107195686A (zh) 半导体装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant